
Journal of Physics: Conference Series

OPEN ACCESS

AMI: AMS Monitoring Interface
To cite this article: Gabriele Alberti and Paolo Zuccon 2011 J. Phys.: Conf. Ser. 331 082008

View the article online for updates and enhancements.

You may also like
Analysis of the performance of CMOS
APS imagers after proton damage
S Meroli, D Passeri, L Servoli et al.

-

Test of a prototype Microstrip Silicon
Detector for the FOOT experiment
G Silvestre, B Di Ruzza, G Ambrosi et al.

-

TCAD optimization of LGAD sensors for
extremely high fluence applications
T. Croci, A. Morozzi, V. Sola et al.

-

This content was downloaded from IP address 81.56.129.69 on 15/10/2023 at 22:03

https://doi.org/10.1088/1742-6596/331/8/082008
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02002
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02002
https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012065
https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012065
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01008
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01008

AMI: AMS Monitoring Interface

Gabriele Alberti1,2, Paolo Zuccon1

1INFN Sez. Perugia, via Pascoli, 06100 Perugia, Italy
2DMI, Università degli Studi di Perugia, via Pascoli, 06100 Perugia, Italy

E-mail: gabriele.alberti@pg.infn.it, paolo.zuccon@pg.infn.it

Abstract. The problem of an easy access to the AMS-02 Slow Control data, is considered
and resolved by the design, the implementation and the deployment of a web application with
an RDBMS backend. This application, built on top the Web2py framework, allows for an easy
browsing of the slow control data even from remote sites.

1. Introduction on AMS-02
The Alpha Magnetic Spectrometer -02[1] is a particle physics experiment devoted to the precise
measurement of the cosmic ray fluxes from a low Earth orbit; it will be installed on the
International Space Station and it is supposed to take data for more than ten years.

The principal physics goals of AMS-02 are:

• the search for primordial anti-matter by the observation of anti-nuclei with Z ≥ 2, the
observation of anti-helium nuclei would imply the existence of anti-matter domains, the
observation of anti-carbon nuclei would imply the existence of anti-matter stars.

• the search for Dark Matter signatures by observing peculiar spectral features on the rare
components of the cosmic rays fluxes as the positrons and the anti-protons.

• the precise measurement of the nuclei fluxes up to Iron in order to constrain the cosmic
rays production and propagation models.

To achieve its goal AMS is equipped with a permanent magnet proving a field of ∼ 0.15T
confined within a cylindrical volume and with a negligible magnetic moment. A silicon tracker,
composed by nine layer of high resolution detectors (10µm in the bending plane) placed within
and outside the magnet bore, provides an accurate measurement of the particle trajectory and
hence of its rigidity.

A set of scintillator layers placed above and below the magnet bore determines the direction
of the particle along its trajectory and measures the Time of Flight (TOF).

A Ring Image Cherenkov (RICH) detector allows for a precise velocity measurement, in
particular for higher charge nuclei and allows for the isotope separation.

A Transition Raditation Detector (TRD) on top and an Electromagnetic Calorimeter (ECAL)
on the bottom allow for an efficient proton electron separation and for an accurate electron energy
measurement.

By means of the energy released in the silicon and in the plastic scintillators and from the
number of photons emitted as Cherenkov radiation, a redundant measurement of the particle
charge up to Iron is done.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

Published under licence by IOP Publishing Ltd 1

The AMS subdetectors and the other AMS subsystems devoted to guarantee the correct
working in the hostile space environment are producing a large amount of health and status
data, such as temperatures, currents, voltages, pressures and status words. The temperature
sensors alone are more than 300 and counting also the other measured parameters we reach a
number of the order 2000.

A tool designed to manage and display these data is the subject of this work.

2. AMS Monitoring
In AMS each subdetector or subsystem has various sensors and probes designed to monitor the
health and the status of the system, as temperature, voltage or pressure.

Most of these quantities need to be constantly monitored to be sure the system is working
properly and to detect a possible hardware failure early.

In a normal ground environment the common approach would be to write one or more monitor
programs polling the hardware at the desired frequency and displaying the acquired data.

This is not the case for a space experiment as AMS where the commanding or uplink channel
is not always available or may suffer of a very limited bandwidth. Furthermore the uplink and
the downlink channels may be available in different periods.

The very limited uplink bandwidth is carefully managed by NASA and usually the
“commanding windows” have to be used to instruct AMS on how to perform during the next
uplink unavailability.

In AMS-02, the on-board main computer (J Main Digital Computer) polls all the subsystems
regularly about their status and sends the replies to the ground in the so-called housekeeping
data stream whenever the downlink is available.

2.1. Data organization
AMS commands and data are expressed in a format called AMSBlock. The anatomy of an
AMSBlock can be described as a header and a payload, for what concerns the replies the header
contains few words: the packet length, the address of the replying subsystem (node number),
the code of the command which originated the reply (data type), a time stamp and some
handshaking control bits. The payloads instead contains the data in a format that depends on
the node number and on the datatype.

The housekeeping data stream is made by a sequence of AMSBlocks, each coming from a
different part of the system and containing informations about that part of the system.

After a quite complicate path through the NASA interfaces and protocols, the AMSBlocks
are eventually written to a disk accessible by the AMS-02 users, to be processed by the monitor
programs and, possibly, the offline software.

On disk the AMSBlock are organized on files containing all the AMSBlocks that arrived to
ground within one minute. When 1-minute file is ready is then sent from NASA to the AMS
control room (Payload Operations Control Center); there it is unpacked and made available to
the monitoring programs. As a consequence the most fresh data to be used as real time monitor
data are at least one minute late with respect to the moment the measure occurred.

In order to get the data from a particular subsystem the most straightforward approach is
to scan the whole housekeeping data stream as it is made available on disk, extract the required
data and display them.

The system in facts doesn’t guarantee any ordering on the packets within the stream
both because they are produced by asynchronous requests in the JMDC and because the
communication channel does not guarantee that packets are delivered in sequence.

This approach however is very resource consuming as independent programs need to scan the
same stream and if an user needs, for instance, a particular temperature of a subdetector in a
determined time window, he has to seek through (almost) the whole stream.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

2

The idea to develop the AMS Monitoring Interface (AMI) comes from the need to find a
more practical approach to solve this problem.

3. AMI: AMS Monitoring Interface
Keeping in mind how the AMS data flow works and considering that every AMSBlock contains
unique time based informations, the idea to use an RDBMS appeared as the most promising.

A well designed DB structure allows to seek through the whole dataset with a simple query,
letting the DB handle all the searching for desired information. Having a RDBMS as backend
allows to implement a lot of valuable features, such as a graphic output for the various data, long
term studies of various parameters, or correlation among several measured data. The latter in
particular needs random access to the data, operation that would be hard with the one minute
file approach.

Another request we want to fulfill is to make the AMS Slow Control data available to as
much users as possible. The first yet most effective development has been a web application to
show those data on a browser.
This approach has many advantages, particularly:

• It allows for multiple access with a single application

• There is no need to run a specific program on the client

• A web server with an RDBMS backend has been proven to allow very large scalability

• There is a huge amount of examples and a proven possibility to implement advanced features

The AMI conceptual design is a web application as frontend to an RDBMS combined with a
plotting facility

3.1. The data base structure
The first step in the implementation, has been the design of the data base structure. We have
chosen a solution that exploits the structure of the AMS-02 subsystems.

From the Slow Control data point of view AMS-02 can be seen as a set of objects (nodes)
producing various data. As a consequence of its modular and redundant design, AMS-02 presents
sets of nodes of the same kind. These nodes share the same node type code, but each one has
its own unique node number.

Nodes with the same node type, share the same set of commands (data type) and replies.
The reply to a single command (data type) may contain multiple quantities, as for example the
temperatures measured in a set of different points. To properly treat these feature we introduced
the extended data type implemented as a 32 bit integer. The 16 least significance bits contains
the data type and the upper 16 most significant bits identify the single datum within the reply.
The pair node type, extended data type represent then unambiguously a data kind.

The structure of the database is easily made: the main table contains the list of node types,
then there is a table of the extended data types with the reference to a given node type. A
separate table lists the node numbers with a reference to the corresponding node type.

For each extended data type we store: a string describing the quantity, a string with the
measurement unit and the warning and the alarm limits.

The actual data are stored on a separate table containing: the timestamp, the datum, a
reference to the node number and a reference to the extended data type.

The provided data are usually expressed as ADC values, a conversion function is then needed
to convert the ADC number to meaningful values in a given unit. We then introduced a
separate table, with reference to the node number and to the extended data type, that contains
the coefficients of a polynomial correction function.

The structure of the data base is depicted in figure 1. The database primary keys are not
shown, for each table a sequential row counter is used as primary key.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

3

Node type table

Node
Type

string Data Type table
Node Type Reference
Extended
Data type

Integer

Description String
Unit of
measurement

String

max_ok double
min_ok double
max_warn double
min_warn double

Node Number table

Node Type reference

Node
Number

integer

Node Name string

Slow Control data

Node
Number

reference

Data Type reference

Timestamp integer

value integer

Correction coefficients

Node
Number

reference

Data Type reference

intercept double

Slope double

Quadratic double

Figure 1. Simplified DB layout. Primary keys (not shown) are sequential index counters on
each table.

3.2. Tools: Python, Web2py, rrdtool
Choosing the tools to design our web application required a careful evaluation; many different
toolkits are available and most of them have been proven to be really flexible and performing.

The first requirement has been to have Python as programming language. This choice is
motivated mostly by the features of this language as the lightweight, the fast prototyping and
the large amount of available libraries. Our previous experience in programing in Python was
also a crucial factor since it drastically reduced the time of development. We also required for
the framework to be available as free software.

Among many others, we considered: Turbogears, Django, Zope, Cherrypy, and Web2py. A
the end our choice has been Web2py1.
Web2py is a simple tool written by a single developer, and it has several advantages:

• It is very small, as its footprint on disk is ∼ 10 MB,

• It uses the MVC (Model View Controller) paradigm,

• It comes with a powerful webserver usable in production, making very easy the deployment
(it’s still possible to use a fully featured Apache HTTP server though)

• It has a simple administrative interface to access the database

• It has an integrated authentication library

• It provides an interface to implement web services (JSON, XMLRPC) writing only few lines
of code

1 http://www.web2py.com

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

4

Subsystem 1

Subsystem 2

Subsystem 3

...

JMDC

DISK

RDBMS

SCANNER

DAL

XMLRPC INTERFACE WEB INTERFACE

XMLRPC CLIENT WEB BROWSER

Figure 2. AMI architecture

• Even if its community is rather small it seems to be very reactive to help solving problems
and issues

After choosing the framework, we had to choose a tool to easily generate plots. As our primary
need is to plot quantities over time, we have chosen rrdtool2, a well known tool of proven
robustness, that is also free and open source.

3.3. Architectural overview
AMI is composed of different parts, as shown in Figure 2:

• RDBMS: The data base backend

• DAL: The Web2py Database Abstraction Layer that holds the database structure
description

• AMI web interface: It allows to distribute the plots of the quantities to be monitored

• AMI XMLRPC interface: It allows for remote programs to interact with the database

• The Scanner: The utility that scans the housekeeping data stream and fills the database via
the XMLRPC interface

The RDBMS backend is managed by the web2py’s DAL, the Database Abstraction Layer. It
offers an API capable of offering database access programmatically, with no need to write SQL
code. With it, we have a homogeneous way to access the data throughout the application, and
we don’t need to take care of connecting or authenticating to the database. As already told,
web2py uses the MVC paradigm: the data are represented virtually by a Model, that is a set of
class-like interfaces which describe how the database should be organized and offers an access
to it (DAL). The View gets the data from the Model and renders them in a suitable way for
interaction, in our case a webpage containing forms and plots. The Controller is the layer in
charge of taking input from the user, requesting or modifying data in the Model and preparing
a response to be rendered by the View.

2 http://www.mrtg.org/rrdtool/

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

5

Figure 3. Example of a “custom view”

3.3.1. Web interface The main goal to achieve when we have decided to develop AMI was an
easy way to browse the data: a web interface. Using the web allows to have the data available
worldwide and it allows the delivery on an ever growing quantity of devices, either computers,
smartphones or, recently, tablets.

From the web interface it is possible to browse, by name, the extended data types stored in
the database for a given node. It is then possible to select a time window to be displayed, either
up to the current time or up to a timestamp selected by the user. A custom python code within
Web2py extracts the requested data from the database, uses rrdtool to generate a plot of the
data as a png picture file and makes it available to the client.

In this way is possible to generate on request a plot for every data type stored in AMI.
Another possibility is to plot sets of data types that need to be shown in one page to have

a feeling of what is going on. Those are the dedicated views which gather together more data
types in one or more plots and show them in the same page. Using the DAL interface we have
developed an internal set of functions to access the data very easily, and to code a “custom
view” it is just matter of few lines of code. An example of such view is shown in Figure 3.

3.3.2. XMLRPC interface Web2py allows very easily to build other kind of views, among them
particularly interesting for us is the XMLRPC interface. Through this interface it is possible to
call from an external application (XMLRPC Client) several pieces of code (procedures) defined
and running in the server. In our case, it is possible to insert new data into the RDBMS or
request data already stored.

3.3.3. The Scanner The JMDC periodically collects the data from all the subdetectors and
sends them to the ground. Once they reach our ground recording system, the data are written to

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

6

the disk as one minute files containing AMSBlocks, ready to be analyzed. The first step needed
in order to make AMI work is to scan these files looking for the data we want to be stored in the
database. The scanner is a small, easy to extend C++ application able to parse the data, look
up for a function capable to decode them and use the XMLRPC interface to fill the database.
A python script takes care of launching the application as new files become available.

4. Deployement and optimizations
The full AMI chain of the scanner, database and web application has been deployed on various
environments.

The development environment has been a single machine using SQLite as a backend.
The first production deployment that held the data of a single subsystem, had a single

machine running the Web2py server and a MySQL instance.
The current production deployment, holding the data of many AMS-02 subsystem, runs on

a high availability system with Oracle 11g as backend.
During the development several problems have been found and solved. The first problem

arose from the choice to have a single table to store all the pairs of timestamp and value. As the
table grew the database became slower and slower, to give an example the views displaying one
day of data taking were taking up to 60 seconds to be produced and displayed. The problem
has been solved by creating a timestamp-value table for each extended data type so the search
has been broken into finding the right table and searching the wanted timestamp through it.

By side effect, this produced a very large number of tables that was also an issue since Web2py
by default checks for the existence of all the tables at every connection. We however modified
our application to customize the default Web2py behavior and have it to avoid unnecessary
checks.

We also noted that concurrent access of multiple users was also degrading the performance
of our web application. Given that, in our case, most of the user are interested to look at the
most recent data, typically we have many users performing the same queries. To make the page
loading faster, we then implemented a caching system for the plots. Before this optimization,
at every connection AMI built a new plot, that is a png image. This involves fetching the data
from DB, organizing them, creating the rrdtool database, and finally creating the png image file.
Having a lot of clients asking for the same data (the latest) was unpractical. If the plot for the
data requested already exists, the cached copy is served to the client. This has been a significant
improvement on AMI speed, with the loading time to display a 6 hour data window passing
from an average of 2.5 s to 0.7 s. Furthermore given the typical pattern of access corresponding
to users looking at the last few hours of data with an update period of 3 min, the first user
asking for new data will miss the cache while all the others will hit it. So we have an missed
cache rate of ∼ 3 min.

We have also to consider that, at the moment of the implementation of the caching system,
the typical number of concurrent users was 4, while in the latest production environment this
number has grown to 15. We expect a increase of this number as the experiment will be deployed
to the International Space Station.

AMI is currently used to monitor several subsystems of AMS-02, it allows for experts that
built that subsystem to remotely monitor it.

5. Improvements and future plans
Several options are considered to improve the AMI performances and features:

• Give alternatives to rrdtool for the plotting feature. We are considering tools, such as
matplotlib3, that could also produce different plots like correlations or 3D representations.

3 http://matplotlib.sourceforge.net/

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

7

• Introduce a custom view editor that allows the users to build and organize their own views
directly from a web interface.

• Try to use NoSQL as backend instead of a traditional RDBMS. The use of NoSQL could
give better performance as the number of stored variable increases and would allow also for
an easier multi site deployment. However this step is very optional, and we would probably
need to go deep into Web2py to see if it is viable.

6. Conclusions
We designed, implemented and deployed a web application that allows for an easy retrieval and
display of the AMS-02 slow control data. The application is routinely used to monitor the health
and status of various AMS-02 subsystems and allows for remote experts to quickly diagnose the
source of possible anomalies.

References
[1] Zuccon P 2008 NIM A 596 74

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 082008 doi:10.1088/1742-6596/331/8/082008

8

