DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

TO ACKERMANN-IZE OR NOT TO ACKERMANN-IZE?

ON EFFICIENTLY HANDLING UNINTERPRETED FUNCTION
SYMBOLS IN SMT (EUF U T)

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén

Alberto Griggio, Alessandro Santuari, and Roberto Sebastiani

May 2006

Technical Report # DIT-06-031

To Ackermann-ize or not to Ackermann-ize?
On Efficiently Handling Uninterpreted Function
Symbols in SMT(EUF UT)

Roberto Bruttomesso!, Alessandro Cimatti!, Anders Franzén!2,

Alberto Griggio?, Alessandro Santuari’, and Roberto Sebastiani’

L ITC-IRST, Povo, Trento, Italy. {bruttomesso, cimatti, franzen}@itc.it
2 DIT, Universita di Trento, Italy. {griggio, santuari, rseba}@dit.unitn.it

Abstract. Satisfiability Modulo Theories (SMT (7)) is the problem of deciding
the satisfiability of a formula with respect to a given background theory 7. When
T is the combination of two simpler theories 7] and ‘T (SMT(7; U ‘%)), a stan-
dard and general approach is to handle the integration of 77 and 75 by performing
some form of search on the equalities between the shared variables.

A frequent and very relevant sub-case of SMT(7; U‘D) is when 7 is the the-
ory of Equality and Uninterpreted Functions (EU%). For this case, an alterna-
tive approach is to eliminate first all uninterpreted function symbols by means of
Ackermann’s expansion, and then to solve the resulting SMT (‘T;) problem.

In this paper we build on the empirical observation that there is no absolute win-
ner between these two alternative approaches, and that the performance gaps be-
tween them are often dramatic, in either direction.

We propose a simple technique for estimating a priori the costs and benefits, in
terms of the size of the search space of an SMT tool, of applying Ackermann’s
expansion to all or part of the function symbols. We have implemented a prepro-
cessor which analyzes the input formula, decides autonomously which functions
to expand, performs such expansions and gives the resulting formula as input to
an SMT tool.

A thorough experimental analysis, including the benchmarks of the SMT’05 com-
petition, shows that our preprocessor performs the best choice(s) nearly always,
and that the proposed technique is extremely effective in improving the overall
performance of the SMT tool.

1 Introduction

Satisfiability Modulo a Theory 7 (SMT(7T)) is the problem of checking the satisfiabil-
ity of a quantifier-free (or ground) first-order formula with respect to a given first-order
theory 7. ! Theories of interest for many applications are, e.g., the theory of difference
logic DL, the theory EUF of equality and uninterpreted functions, the quantifier-free
fragment of Linear Arithmetic over the rationals £LA4(Q) and that over the integers
LA(Z), the theory of bit-vectors BY. A prominent approach to SMT(‘T), which un-
derlies several systems (e.g., CVCLITE [3], DLSAT [11], DPLL(T)/BarceLogic [13],

! We are considering theories with equality.

MATHSAT [6], TSAT++ [2], ICS/YICES [12]), is based on extensions of propositional
SAT technology: a SAT solver is modified to enumerate boolean assignments, and inte-
grated with a decision procedure for sets of literals in the theory T (‘T -solver).

When 7 is the combination of two simpler theories ‘7 and 73 (SMT(Z; U‘%)), a
standard and general approach is to handle the integration of 7} and ‘Z; by performing
some form of search on the equalities between the variables which are shared between
the theories (interface equalities): in the Nelson-Oppen [14] and Shostak [16] schemata
(NO hereafter), the interface equalities are deduced by the T -solvers; in the Delayed
Theory Combination schema (DTC hereafter) [8, 9] all or part of them are assigned to
truth values also by the underlying SAT solver.

A frequent and very relevant sub-case is when one of the two theories is that of
equality and uninterpreted functions £ U ¥ . (Hereafter we refer to this problem as SMT
(EUF JUT).) For this case, an alternative approach is to eliminate first all uninterpreted
function symbols by means of Ackermann’s expansion [1], and then to solve the result-
ing single-theory SMT(T') problem. (Hereafter we refer to this approach as ACK.)

In this paper we focus on SMT (EUF U T). Comparing the performances of DTC
and ACK approaches, we notice that not only there is no absolute winner, but also the
performance gaps are often dramatic, in either direction. We investigate the causes of
this fact, and we introduce a technique for estimating off-line the costs and benefits, in
terms of the size of the search space of an SMT tool, of applying Ackermann’s expan-
sion to all or part of the function symbols.

We have implemented a preprocessor which analyzes the input formula, decides
autonomously which functions to expand, performs such expansions and gives the re-
sulting formula as input to an SMT tool.

A thorough experimental analysis, including the benchmarks of the SMT’05 com-
petition, shows that our preprocessor performs the best choice(s) nearly always, and that
the proposed technique is extremely effective in improving the overall performance of
the SMT tool.

The paper is organized as follows. In §2 we introduce the necessary background in-
formation on SMT, SMT(T; U;), DTC and Ackermann’s expansion. In §3 we present
the main intuitions and ideas underlying our work. In §4 we present our new preproces-
sor. In §5 we present the experimental evaluation of our work. In §6 we conclude and
briefly present potential future developments.

2 Background

2.1 Satisfiability Modulo Theory

Fig. 1 presents Bool+7, (a much simplified version of) a standard schema of a decision
procedure for SMT(‘T). The function Aroms(@) takes a ground formula ¢ and returns
the set of atoms which occur in @. We use the notation @ to denote the propositional ab-
straction of @, which is formed by the function 723 that maps propositional variables
to themselves, ground atoms into fresh propositional variables, and is homomorphic
w.r.t. boolean operators and set inclusion. The function B27 is the inverse of 723B. We
use p? to denote a propositional assignment, i.e. a conjunction (a set) of propositional
literals. (If 72B(u) = T2B(¢), then we say that u propositionally satisfies ¢.)

function Bool+T (@: quantifier-free formula)
AP —— T2B(Atoms(@))
9F — T2B(¢)
while Bool-satisfiable(¢”) do
P —— pick_total_assign(AP, oP)
(p,m)— T — satisfiable(B2T (uP))
if p = sat then return sat
QP — QP AN—~T2B(m)
end while
return unsat
end function
Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+7

O 01N BN~

The idea underlying the algorithm is that the truth assignments for the propositional
abstraction of @ are enumerated and checked for satisfiability in 7. The procedure ei-
ther returns sat if one such model is found, or returns unsat otherwise. The function
pick_total_assign returns a total assignment to the propositional variables in @7, that is,
it assigns a truth value to all variables in 4”. The function 7 -satisfiable(u) detects if the
set of conjuncts u is 7 -satisfiable: if so, it returns (sat, 0); otherwise, it returns (unsat,
), where T C u is a T -unsatisfiable set, called a theory conflict set. We call the negation
of a conflict set, a conflict clause.

The algorithm is a coarse abstraction of the ones underlying most SMT tools (includ-
ing, e.g., TSAT++, MATHSAT, DLSAT, DPLL(T)/BarceLogic, CVCLITE, ICS/YICES).

In practice, the enumeration is carried out by means of efficient implementations
of the DPLL algorithm [17], where a partial assignment p* is built incrementally, and
unit propagation is used extensively to perform all the assignments which derive de-
terministically from the current p”. Conflict sets, generated because either the current
uP falsifies the formula or because 7 -satisfiable(B27T (uP)) fails, are used to prune the
search tree and to backtrack as high as possible (backjumping), and learned as conflict
clauses to avoid generating the same conflicts in future branches. Another important im-
provement is early pruning: intermediate assignments are checked for 7 -satisfiability
and, if not 7 -satisfiable, then are pruned (since no refinement can be 7T -satisfiable);
finally, theory deduction can be used to reduce the search space by explicitly returning
truth values for unassigned literals, as well as constructing/learning implications. The
interested reader is pointed to [6, 7] for details and further references.

2.2 SMT(T; UT>) via theory combination

In many practical applications of SMT(T), the background theory is a combination
of two (or more) theories 7; and ‘Z;. Most approaches to SMT (71 U ‘%) rely on the
adaptation of the Bool+7 schema, by instantiating 7 -satisfiable with some decision
procedure for the satisfiability of 77 U ‘T, typically based on an integration schema like
Nelson-Oppen (NO) [14] (or its variant due to Shostak [16]), or on the more recent
Delayed Theory Combination (DTC) schema [5, 9].

Both the NO and DTC schemata work only for combinations of stably-infinite and
signature-disjoint theories ‘I; with equality (we recall that 7; is stably-infinite iff every
quantifier-free 7;-satisfiable formula is satisfiable in an infinite model of ‘Z;). Moreover,

function DTC (¢;: quantifier-free formula)

1 @ «— purify(¢;)

2 AP —— T2B(Atoms(Q) Uinterface_equalities(@))

3 o — T2B(p)

4 while Bool-satisfiable (¢7) do

5 A Al = P —— pick _total _assign(AP, @F)
6 (p1,m1)— Ty-satisfiable (B2T (uf Aul))

7 (p2,M2)«— Tr-satisfiable (B2T (uy Aul))

8 if (p| = sat A p, = sat) then return sat else

9 if p; = unsat then ¢” «—— @” A~T2B(n;)

10 if p> = unsat then @7 «— @ A—T2B(,)
11 end while
12 return unsat
end function
Fig. 2. A simplified view of the DTC procedure for SMT (7} U‘T)

they require the input formula to be pure: a formula @ is pure iff every atom y in @ is
i-pure for some i € {1,2}, that is W contains only =, variables and symbols from the
signature of ‘Z;. Every non-pure 7] U‘T; formula @ can be converted into an equivalently
satisfiable pure formula ¢’ by recursively labeling terms ¢ with fresh variables v;, and
by conjoining the definition atom (v, = ¢) to the formula. E.g.:

(f(x+3y) :g(zx_y)) = (f(vx+3y) :g(Vfoy))/\(VJﬁBy :x“"?’y)/\(vafy = zx_Y)'

This process is called purification, and is linear in the size of the input formula.

In a pure formula @, an interface variable is a variable appearing in both 1-pure and
2-pure atoms. An interface equality is an equality between two interface variables.

In the NO schema, the two decision procedures for 7; and ‘7 (‘Z;-solvers) coop-
erate by exchanging (disjunctions of) interface equalities (e;;’s). In the DTC schema,
each of the two Z;-solvers works in isolation, without direct exchange of information.
Their mutual consistency is ensured by augmenting the input problem with all interface
equalities e;;, even if these do not occur in the original problem. The enumeration of
assignments includes not only the atoms in the formula, but also the interface equalities
e;j. Both theory solvers receive, from the boolean level, the same truth assignment g, for
e;j: under such conditions, the two “partial” models found by each decision procedure
can be merged into a model for the input formula.

A simplified view of the DTC algorithm is presented in Fig. 2. Initially (lines 1-3),
the formula is purified, the e;;’s which do not occur in the purified formula are created
and added to the set of propositional symbols A7, and the propositional abstraction ¢
of @ is created. Then, the main loop is entered (lines 4—11): while @” is propositionally
satisfiable (line 4), a satisfying truth assignment g is selected (line 5). Truth values
are associated not only to atoms in @, but also to the e;; atoms, even though they do
not occur in @. p” is then (implicitly) separated into wf A ul A b, where B2T (1f) is
a set of i-pure literals and B2 (uf) is a set of e; j-literals. The relevant part of u” are
checked for consistency against each theory (lines 6-7); Z;-satisfiable(u) returns a pair
(pi,™;), where p; is unsat iff u is unsatisfiable in 7;, and sat otherwise. If both calls to ;-
satisfiable return sat, then the formula is satisfiable. Otherwise, when p; is unsat, then
; is a theory conflict set, i.e. w; C u and T; is ‘Z;-unsatisfiable. Then, @7 is strengthened

to exclude truth assignments which may fail in the same way (line 9-10), and the loop
is resumed. Unsatisfiability is returned (line 12) when the loop is exited without having
found a model.

In practical implementations of DTC, as before, the enumeration is carried out by
means of efficient implementations of the DPLL engine, where a partial assignment
P is built incrementally, exploiting unit-propagation, backjumping and learning, early
pruning, theory deduction. Moreover, if one or both Z;-satisfiable have the capability of
deducing (disjunctions of) interface equalities which derive in ‘Z; from a partial assign-
ment u, > then such a deduction is exploited to prune the boolean search on the interface
equalities (e;j-deduction). To this extent, DTC extends the NO schema, in the sense that
it allows for using 7;-satisfiable procedures with every deduction capability, trading e;;-
deduction power with boolean search, and allows for emulating the NO schema [10].
For the sake of simplicity, in this paper we do not consider ¢;;-deduction for DTC. We
refer the reader to [9, 10] for a more detailed discussion.

Example 1. Let ¢ be the following EUF U LA(Z)-pure formula

w=h(x) Na=h(y)Ne=f(z) Ad = f(b)Aflc) = f(b) A 0
w=fd)A=(c=d)ANx>yAx<yAz=w—aAb=0.

¢ =

x,y,z,w,a,b are the interface variables, so that there are 15 interface equalities: z =
bw=ba=bx=by=bz=wz=ax=zy=z,W=a,X=W,y =WwWX=a,y =
a,x =y.
The DPLL solver generates first the assignment p := uzqg U, g(z) satisfying @, s.t.
Hzuy = {W = h(x),a = h(y)7C = f(Z),d = f(b),f(C) = f(b),W = f(d)’_'(c = d)}v

Mraz) = {x>yx<yz=w-—a,b=0}.
Then it tries to extend it with a total truth assignment y, to the interface equalities such
that ueq e U and uy .7y U, are consistent in EUF and LA(Z) respectively. This
requires some search on the 15 interface equalities.

E.g, if the DPLL engine is smart or lucky enough to select firstx =y, w =a,z=>b,
then we have
MrazyU{—~(x=y)} Fra@z) L, so thatx =yis added to
uegr U{x=y,~(w=a)} Ezug L, so that w =a is added to g,
MrazyU{x=y,w=a,~(z=b)} Fra@z) L, so that z= b is added to g,
Hegr U{x=y,w=a,z=>b} Fxqys L, hence ¢ is EUF U LA(Z)-inconsistent. &

Notice that on a single-theory SMT(7) problem, DTC behaves as a standard SMT
tool, because there are no interface equalities.

23 SMT(EUYF UT) via Ackermann’s expansion

When one of the theories 7; is £ U, another possible approach to the SMT (7} U‘%)
problem is to eliminate uninterpreted function symbols by means of Ackermann’s ex-
pansion [1] so to obtain an SMT(‘T) problem with only one theory. The method works
by replacing every function application occurring in the input formula ¢ with a fresh

2 In the NO schema his capability is strictly required to both Z-satisfiable’s [14].

variable and then adding to ¢ all the needed functional consistency constraints. The
new formula ¢’ obtained is equisatisfiable with ¢, and contains no uninterpreted func-
tion symbols. First, each distinct function application f(x1,...,x,) is replaced by a fresh
variable vy, ... Then, for every pair of distinct applications of the same function,
f(x1,...,x,) and f(y1,...,ys), a constraint

arity(f)
(N ack(x;) =ack(yi)) = Vi) = VF(1mn)>)
i=1
is added, where ack is a function that maps each function application g(z1,...,z,) into

the corresponding variable v, (,, . .), each variable into itself and is homomorphic wrt.
the interpreted symbols. The atom ack(x;) = ack(y;) is not added if the two sides of the
equality are syntactically identical.

Example 2. Let @ be the pure formula (1) of Example 1. Then, replacing every function
application with a fresh variable, and adding all the functional consistency constraints,
we obtain the formula

PAck = W= V() N@= V() NC= Vi) AN = Vo) AVi(e) = Vi) N
w=vipA-(c=d)Ax>yAx<yANz=w—aNb=0A

3)

The DPLL solver first deterministically selects the truth assignment
Hram) = LW = Va()@ = Va(y)s€ = Vi) d = Vi), Vi) = Vb)) W = Via)
—(c=d)x>yx<yz=w—a,b=0 ’

which is consistent in £A4(Z). Then, it performs some search on the remaining 12
equalities. 3

E.g., if it is smart or lucky enough to select first x =y, z = b, then we have:
MrazyU{~(x=Y)} Fra@z) L, sothatx =y is added to y,
Hraz)yU{X =Y, Vi) = Vi), ~(2=D0)} FErae) L, so that z=b is added to g,
Mraz)Y {x=y, Vh(x) = Vh(y),2=b,Vy(5) = Vf([,)}):Lﬂl(Z) L, hence 9is EUF ULA(Z)-
inconsistent. o

Notice that, for simplicity, in Example 1 we have considered a pure formula @,
which might be the result of purifying some non-pure formula @'. If so, applying Ack-
ermann expansion directly to ¢’ might result into a more compact formula than (3).

Henceforth, we call respectively Ackermann constraints or Ackermann implica-
tions the functional consistency constraints added by Ackermann expansion, Acker-
mann equalities the equalities occurring in the Ackermann constraints, and Ackermann
variables the variables occurring in the Ackermann equalities.

3 The remaining equalities are only 12 because V() = Vy(p) causes the removal of the 5th im-
plication.

Wisa Hash

10000

10000

1000 N " B 1000 |

Fe
AR
@] el @]
B owr . {r 2w
@) }i.'.' . [a)

..

) e b
. . . . 01 RENE IR YL 2 Tl
01 1 10 00 1000 10000 01 1 10 100 1000 10000

AcCK AcCK

01

Fig. 3. Execution time ratio (in logarithmic scale) for DTC and ACK on the benchmarks Wisa
and Hash, using MATHSAT. A dot above the diagonal line means better performance of ACK
and vice versa. The horizontal and vertical dashed lines represent time-out.

3 To Ackermann-ize or not to Ackermann-ize?

We start from a simple empirical observation: neither DTC or ACK always prevails in
the task of solving SMT(EUF UT) problems, and the performance gaps between the
two approaches may be dramatic, in either direction. As an example, Figure 3 shows
the execution times of the two approaches on two different groups of benchmarks, for
the MATHS AT [7] solver (both tests will be described in §5). For the Wisa benchmarks
(left), Ack is up to 1000 times* faster than DTC, whilst for the Hash benchmarks
(right) the converse is true.

By tracing the behavior of MATHS AT on these tests, we notice that the performance
gaps mirror the different amount of boolean search performed by the two techniques.
From which we argue that one of the main reasons of such big performance gaps is the
different size of the boolean search space that each technique has to explore in order to
decide the satisfiability of its input.

Thus, we look to both techniques from the perspective of the boolean search only.
Both DTC and AcCK require the SAT solver to perform an extra boolean search on
equalities which did not occur in the original formula (i.e., on the interface equalities
and on the Ackermann equalities respectively). Thus the enlargement of the boolean
search space with the two techniques depends directly to the number of these new equal-
ities introduced.

3.1 Enlargement of the search space with DTC

In the DTC approach it may necessary to assign a truth value to up to all the interface
equalities. If @ is a pure £UF U7 formula, then the number of interface equalities is
given by
V[(V1)
2)

4 or possibly more, if we consider also the timed-out examples.

where | V| is the number of interface variables in @. (Notice that this is an upper bound
for the number of the new equalities introduced, since some of them might already
appear in @.) Thus, with DTC, the number of boolean atoms the SAT solver may have to
explore is enlarged by a factor that is quadratic in the number of the interface variables.

Example 3. The formula ¢ of Example 1 has 6 interface variables, so that the number
of atoms the SAT solver may have to explore is increased by (6-5)/2 = 15 interface
equalities, all of which are new. S

Notice that, in general, the input problem ¢ must be purified to be handled by DTC.
The purification process adds a number of new variables and atoms that is linear in the
size of @. However, this does not cause an enlargement of the boolean search space,
because all the atoms added are definitions of terms like (v, =) and occur as unit
clauses in the resulting formula, so that they are assigned a priori and deterministically
to true by the SAT solver.

3.2 Enlargement of the search space with ACK

In the ACK approach, the increase in the boolean search space depends on the number
of (new) equalities in the Ackermann constraints introduced.

Let be the set of (distinct) function symbols occurring in @, and let Oy be the set
of all (distinct) applications of the function f in the input formula ¢. Then the number
of new Ackermann equalities introduced is less or equal than

y A=D1, ®
fer

In fact, for each f € ¥ and for each of the (|Of|- (|Oy| —1))/2 pairs of distinct occur-
rences of f, Equation (2) causes the introduction of up to (arity(f) + 1) new Ackermann
equalities. (As with DTC, this is an upper bound, both because some of the equalities
in one constraint could already occur in the formula or in other constraints, and because
identities like x = x are dropped by construction.)

Thus, with ACK, the number of boolean atoms the SAT solver may have to explore
is enlarged by a factor that is quadratic in the number of occurrences of each function
symbol, and linear in the number of distinct function symbols and in their arity.

Example 4. In the formula ¢ (1) of Example 1, O, = 1 and Oy = 4. Thus the Ackermann
constraints introduced in the formula @ck (3) of Example 2 contain (2-1)/2-(14+1)+
(4-3)/2- (1 +1) = 14 equalities. Since vy = V() is not new, the new equalities are
13. Notice that also ¢ = b does not really increase the boolean search space, because the
5th implication is immediately removed by the DPLL solver (Footnote 3). o

3.3 Intuition: the “frontier” between £U¥ and 7 in DTC and ACK

Both DTC and ACK introduce an enlargement of the search space of the input problem
¢. Intuitively, we can think of this extra boolean search as the cost associated to each
of the two approaches for handling the interaction between the two theories. We notice

(a) DTC (b) ACK
Fig. 4. Schemas of the frontier between EUF and 7 in the DTC and ACK approaches.

function DECIDE (¢: quantifier-free formula)

1 ack_eq «—— countAckEqualities(@)

2 int_eq «—— countlnterfaceEqualities(Q)
3 if ack_eq < int_eq then

4 return ackermanize(Q)

5 else

6 return ¢

7 end if

end function

Fig. 5. High-level description of the DECIDE algorithm

that the set of new equivalences introduced by either approach corresponds to a distinct
notion of “frontier” between EUF and 7 in the two approaches.

In DTC, the frontier is given by the interface variables (see Figure 4.a). As the cost
of DTC depends quadratically on the size of the frontier, DTC is expected to perform
better for those examples where the two theories are loosely coupled, and worse when
there is a strong connection between them.

With ACK, the frontier between the two theories is potentially much larger, because
it consists in the inputs and outputs of all (distinct) function applications (i.e, the Acker-
mann variables), including those which do not interact with terms of the theory 7 (see
Figure 4.b). However, in this case the cost is not quadratic on the number of variables
in the frontier; rather, it depends on the number of different functions and of distinct
occurrences of each function invocation (4). Thus ACK is expected to perform better
when the number of distinct function invocations for the same function is low.

4 Cost-driven Ackermann-ization

When we want to check the satisfiability of an SMT(EUF U7T) formula ¢, no matter
which of the two approaches (DTC or ACK) we use, we must pay a price in terms
of enlargement of the boolean search space. We believe that this cost is one of the
main factors which influence the performance of the two methods. Thus, being able to
estimate this cost a priori can drive the choice of which technique to apply.

4.1 A global-decision approach: DECIDE

Our first, basic idea is that of trying to estimate a priori the difference of costs of ap-
plying ACK or DTC, and to simply select the technique that costs less. We call this

first idea “a global-decision approach” because here the decision involves all function
symbols altogether.

The resulting algorithm DECIDE is outlined in Figure 5. Let ¢ be a (possibly non-
pure) SMT(EUF UT) formula. The function countAckEqualities returns the number
of new Ackermann equalities added by the Ackermann’s expansion of ¢. The func-
tion countInterfaceEqualities returns the number of new interface equalities in (the for-
mula resulting from purifying) ¢. Notice that both functions return the exact number of
equalities introduced, avoiding counting repeated equalities, identities x = x, etc. Both
functions are straightforward to implement, and their complexity is linear in the size of
0.

DECIDE works as a preprocessor for an SMT solver for SMT(EUF U T) which
uses DTC: the algorithm either returns an Ackermann-ized version of the input ¢ (if
ACK costs less), or leaves the input untouched. As noticed in §2, in the first case DTC
behaves as a standard single-theory SMT tool, so that the two options correspond to
AcK and DTC respectively.

Example 5. Consider again the formulas (1) and (3) of Examples 1 and 2 respectively.
DTC would introduce 15 new interface equalities, whilst ACK would introduce 13 new
Ackermann equalities. Therefore DECIDE in this case would choose ACK.

4.2 A local-decision approach: PARTIAL

The idea just described can be generalized in the following way. From §3 we know
that the cost of DTC depends quadratically on the global number of interface variables,
whilst the cost of ACK, for each function symbol f, depends quadratically on the num-
ber of the distinct occurrences of f and linearly on its arity. Thus, we can decide to
apply Ackermann’s expansions only to subsets of the function symbols, according to
their relative costs. We call this second idea “a local-decision approach” because here
the decision involves subsets of function symbols.

Let f be a function in ¢ with very few occurrences but many arguments shared be-
tween EUF and 7. Then f causes a low increase of the ACK costs and a big increase of
the DTC costs, because Ackermann’s expansion will introduce few constraints, whilst
the high number of interface variables would make DTC generate many new equalities.
On the other hand, a function g with many occurrences but few or no arguments shared
among the theories is going to cost much less for DTC than for ACK for the very same
reason. Thus, if we consider a formula which contains both f and g, then applying Ack-
ermann’s expansion only partially, so that to remove only f, and solving the resulting
problem with DTC, is going to cost less than pure ACK or pure DTC.

Example 6. Consider again the formula (1) of Example 1. If we expand only &, we get
the following formula:

o = Wi Ac= £ Ad = FB)A () = F(B) A = £(d) A
“(e=d)AxZyANx<yAz=w—Vvp Ab=0A 5)
X =Y = Vh(x) = Va(y)»

which has only 3 interface variables (z, b and w). Using DTC on ¢’ would then en-
large the search space by 3 interface equalities. Therefore, the mixed approach would

10

function PARTIAL (Q: quantifier-free formula)

A—0

Y purify(9)

do
B —— selectFunctionsToAckermanize ()
Y «— ackermanizeFunctions(y, B)
A4— AUB

while B £ 0

¢’ «—— ackermanizeFunctions(@, 4)

return ¢’

end function

NeleIEN Bie U, I NS I (S R

Fig. 6. High-level description of the PARTIAL algorithm

cost in total 5 new equalities (2 for the Ackermann constraints and 3 for the interface
equalities), which is less than with ACK (13) and DTC (15). o

The ideal solution would be to develop an algorithm that applies Ackermann’s ex-
pansion to the subset of the function symbols corresponding to a global minimum in the
number of new equalities to add. Unfortunately, finding such a global optimal solution
seems to be very expensive. Intuitively, this is because both the cost and the bene-
fit of applying Ackermann’s expansion to each function symbol —in terms of more
Ackermann equalities and less interface equalities to add respectively— depend on the
previous eliminations of some other functions. (For example, as a consequence of the
elimination of a function f, it may become convenient to eliminate also g because they
had many pairs of corresponding arguments in common.) Thus, finding the global opti-
mum may require exploring up to all the 2/#| possible subsets of function symbols.

For this reason, we have conceived instead the algorithm PARTIAL (outlined in Fig-
ure 6) which finds a local optimum. PARTIAL is a greedy algorithm that starts from the
purified formula and that finds at each step a set of function symbols B whose removal
causes a reduction in the number of equivalences to add. When this set is empty, a local
minimum has been reached, and the algorithm terminates. Then the Ackermann’s ex-
pansion on the set of selected functions 4 is performed on the original input formula @,
and the result is returned.

The core of PARTIAL is the function selectFunctionsToAckermanize, which returns
the set of functions to remove in order to reduce the number of new equalities to add,
according to the following heuristic. The function symbols occurring in ¢ are divided
into (possibly overlapping) subgroups G,’s, one for every interface variable v in @, G,
consisting in the set of all the function symbols that cause v to be an interface vari-
able. Then it is returned the group G, which causes the maximum reduction gaing, in
terms of equivalences to add. (That is, gaing, is defined as the difference between the
number of interface equalities to remove and the number of equalities in the functional
consistency constraints to add, if all the functions in the group were removed with Ack-
ermann’s expansion.) If for no group G, the value gaing, is positive, then the empty set

is returned. J

5 As a direct consequence of how the groups are built, removing the functions in a group removes
at least one interface variable from 7/, so that at least |7/| — 1 interface equalities are removed.

11

Example 7. Consider the pure formula (1) used in all the previous examples. When
invoked for the first time, selectFunctionsToAckermanize constructs for the set of func-
tions {f, 4} in (1) six groups, one for each interface variable:

Gr = Gy = Ga = {h} Gv=G.= Gr ={/}.

Then, for each of them, the associated gain (i.e. the difference between the number of
interface equalities to remove and the number of equalities to add for the functional
consistency constraints) is computed:

gaing, :gaingy = gaing, = 12—-2 =10, gaing, = gaing =gaing, =12—-11=1

because removing & makes x, y and a loose the status of interface variables, whilst re-
moving f the same happens for w, z and b. Thus selectFunctionsToAckermanize selects
{h} only, causing the generation of the formula (5) of Example 6. At the next iteration
of the main loop of PARTIAL, the only function symbol is f, which is not removed since
all gaing, ’s are negative. o

5 Empirical Evaluation

We implemented both DECIDE and PARTIAL in a preprocessor program, written in
C++. Ithandles SMT(EUF U L A) problems, and has four different operational modes:

transparent (DTC), which simply reads a problem from its standard input (in either
MATHSAT or SMT [15] format) and outputs it to its standard output without doing
anything;

ackermanize, which removes every uninterpreted function symbol;

decide, which applies the DECIDE algorithm; and

partial, which applies the PARTIAL algorithm to remove a subset of the uninterpreted
function symbols.

We tested our preprocessor with the MATHS AT [7] solver, which handles SMT(EUF U
L£4) problems with DTC. We used different benchmark suites, coming from different
domains:

QF_UFIDL comes from the SMT-LIB [15], and is made of formulas with EU¥ and
integer difference logic. It is a superset of the QF_UFIDL set used in the SMT-
COMP’05 competition [4];

Wisa are software verification benchmarks from the Wisconsin Safety Analyzer, cre-
ated with a slightly modified version of the generator available at http://www.cs.
wisc.edu/wisa/papers/icse05/wisa-benchmarks.html;

EufLaArithmetic are simulations of arithmetic operations (succ, pred, sum) modulo
N, using ZUF and LA(Z). This and the following groups of benchmarks were
introduced in [9];

Hash are problems over hash tables, modeled with a combination of EUF and LA(Z);

It may be the case that more than one interface variable is removed: e.g., if Gy C Gy, then
removing all the function symbols in G, causes the removal of both x and y from 7.

12

RandomCoupled are randomly generated SMT(EUF U LA(Q)) problems, with a
propositional 3-CNF structure. In this group, there is a high coupling between the
two theories, that is there is a high probability that for instance an argument of a
function is a £LA(Q) term;

RandomDecoupled are tests generated in the same way as the previous group, but
where the coupling between £UF and LA(Q) is low.

The tests were run on a machine with an Intel Xeon 3GHz processor running Linux.
The memory limit was set to 1GB, and the time limit to 1000 sec. °

Figure 7 shows the results, both for the individual suites singularly and for the union
of all the suites. A point in (X,Y) states that X problems have been solved each in less
or equal than Y seconds. (Notice the logarithmic scale of the Y axis.) A higher number
of tests solved means better performance. When this number is the same, the lowest line
is the best.

The following table summarizes the total results. The rows are sorted from the worst
to the best, while the columns show details of the performances in terms of total number
of tests solved, total running time, and total time to solve a fixed amount N of tests, for
various values of N.

Number of| Total time Total time for solving N tests

tests solved| (for all tests)| 300| 600 [1200| 1384 | 1479 | 1513
transparent (DTC)[1384 34500 [25.9[100.8[1804[34500] - | -
ackermanize 1479 41431 |33.0/149.31402| 5436 [41431| -
decide 1513 12891 |22.1)82.4 | 629 | 1646 | 3577 {12891
partial 1516 13393 |21.1)75.9 | 602 | 1495 | 3450 |11335

We can see from both Figure 7 and the above table that different suites show very
different performance gaps between transparent (DTC) and ackermanize (ACK), as
observed in §2, and that both decide (DECIDE) and partial (PARTIAL) always behave
quite similarly to the best of the two. (E.g., looking at the data, we noticed that decide
chooses the most efficient option nearly always, and that the few samples for which it
does not are such that the performance gaps between ACK and DTC are minor.)

The overall result shows that both DECIDE and PARTIAL are globally much more
efficient than both ACK and DTC, with PARTIAL being the best technique.

6 Conclusions

In this paper we have focused on the SMT(EUF U T) problem. We have proposed a
simple technique for estimating a priori the costs and benefits, in terms of the size of
the search space of an SMT tool, of applying Ackermann’s expansion to all or part of
the function symbols; we have implemented a preprocessor which analyzes the input
formula, decides autonomously which functions to expand, performs such expansions
and gives the resulting formula as input to an SMT tool; we have performed a thorough
experimental analysis with MATHSAT on SMT(EUF UDL), SMT(EUF U LA(Q))

6 In order to make the results reproducible, the binaries of the tools used and the benchmarks
used are available at http://www.dit.unitn.it/ rseba/lpar06/allstuff.tar.gz.

13

QF_UFIDL Wisa EufLaArithmetic
T T T T T T T T 1000 T T T T T T T
ackermanize
w0 transparent(dtc) ——/ 1 or 7
-
,
10F PLE q w0 L7 -
| /
I R
K ,
1 ,
l' I//
I
L transparent(dtc) |]7,: 777777 - ackermanize |
i transparent(ditc)
2 decide partial
ped decide
orf I 1
L R N I L] I R B IS I R
Hash RandomCouple RandomDecoupled
T T, 100 T T T T 0 T
;
,
.] p
r_ "
e . 1 transparent(ditc) i ackermanize- - - - - - - - - P’ ‘
S “F ackermanize - - - - - - - - - transparent(ditc) ’
K decide L decide]
;
of It 1
’;I N 4
ackermanize |
1 fransparent(dtc) i
decide /
o1 1
o1 1
o1 1
P9 S RSN SHN O OSSO O SRR o) B S RO S
I L I R TR T E m m m m @ w %0 % o mo me # a0 w0 ® %o
Overall
1000 T]
transparent(dtc) f
100 . |
ackermanize- - - - - - - - - - - - - - - - - -

decide

001 I | I I I I |
0 200 400 600 800 1000 1200 1400 1600

Fig. 7. Results of the benchmarks for the MATHS AT solver. For each technique, the X axis rep-
resents the number of tests solved and the Y axis the time required (in log scale). The labels in
the plots are sorted according to performance: from the worst to the best.

14

and SMT(EUF U LA(Z)), showing that the proposed technique is extremely effective
in improving the overall performance of the SMT tool.

As future developments, we plan to experiment the effectiveness of our techniques

also with other SMT tools (e.g., CVCLITE [3], ICS/YICES [12]), and with other theo-
ries (e.g., EUF with the theory of bit-vectors BYV).

References

1.
2.

3.

4.

10.

12.

13.

15.
16.
17.

W. Ackermann. Solvable Cases of the Decision Problem. North Holland Pub. Co., 1954.

A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based Decision Proce-
dure for the Boolean Combination of Difference Constraints. In Proc. SAT 04, 2004.

C.L. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating Validity
Checker. In Proc. CAV’04, volume 3114 of LNCS. Springer, 2004.

Clark Barrett, Leonardo de Moura, and Aaron Stump. SMT-COMP: Satisfiability modulo
theories competition. In CAV ’05, volume 3576 of LNCS, pages 20-23. Springer-Verlag,
2005.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Ranise, and R. Sebas-

tiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In Proc. Int.
Conf. on Computer-Aided Verification, CAV 2005., volume 3576 of LNCS. Springer, 2005.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz, and R. Se-

bastiani. An incremental and Layered Procedure for the Satisfiability of Linear Arithmetic
Logic. In Proc. TACAS’05, volume 3440 of LNCS. Springer, 2005.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz, and R. Sebas-

tiani. MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal
of Automated Reasoning, 2005. to appear.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Se-

bastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In Proc.
CAV 2005, volume 3576 of LNCS. Springer, 2005.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Se-

bastiani. Efficient Theory Combination via Boolean Search. Information and Computation,
2005. To appear.

R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: a Comparative Analysis.
Technical report, DIT, University of Trento, 2006. Submitted for publication. Available at
http://www.dit.unitn.it/rseba/papers/DTCvsNO.pdf.

. S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some Progress in Satisfiability Checking for

Difference Logic. In Proc. FORMATS-FTRTFT 2004, 2004.

J.-C. Filliatre, S. Owre, H. RueB, and N. Shankar. ICS: Integrated Canonizer and Solver. In
Proc. CAV’01, volume 2102 of LNCS, pages 246-249, 2001.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast deci-
sion procedures. In Proc. CAV’04, volume 3114 of LNCS, pages 175-188. Springer, 2004.

. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans.

on Programming Languages and Systems, 1(2):245-257, 1979.

S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.1. Technical report, 2005.

R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31:1-12, 1984.
Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers. In
Proc. CAV’02, number 2404 in LNCS, pages 17-36. Springer, 2002.

15

