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ABSTRACT 

In food manufacturing, the quality control procedure is a critical activity that consists in organizing, 

measuring, tracking, and filing the conditions of the production process and the final product, with the 

goal of guaranteeing the designed quality standard. During the last 30 years, due to a mounting 

concern by both consumers and lawmakers, the definition of quality and the application of quality 

control improved drastically, and new methodologies have been developed to ensure better control of 

food production and to understand the effect of raw materials and the process condition on the final 

quality of the food product.  

This thesis discusses the approaches to quality control procedures in food manufacture, focusing on 

the relationship between the conditions of the process and the quality profile of the final product, 

testing in a real-case scenario of a complex production process advanced data analysis procedures. 

The statistical and analytical procedures proposed have been applied in a real case studio from 

Trentingrana cheese production, a dairy consortium in the northeast region of Italy producing a 

ripened semi-artisanal hard cheese under the Protected Denomination of Origin (PDO) of Grana 

Padano. The aim is developing tailored statistical procedures that infer the effect of the critical factors 

of production on quality properties of this PDO product considering its semi-artisanal production 

process and the presence of multiple confounding factors. The statistical analyses were applied to a 

dataset of measurements of physical, sensory, and chemical properties collected on cheese wheels 

sampled systematically to represent the variability of the production of the Trentingrana wheels over 

two years of production. 

In the first introductory chapter, after a review of the different definitions of quality, the most 

important quality parameters for a food product and the standard measurement techniques adopted in 



 

quality control are presented. Then, in the chapter 2, the standard procedures of data analysis are 

reviewed, as well as the new approaches derived from the context of the foodomic sciences and 

machine learning models for the analysis of quality control data in food manufacturing.  

Two implemented and tested practical statistical procedures in the context of the Trentingrana 

consortium are reported: the results are discussed according to the objectives of the quality control 

process, the type of data, and the organization of food production. In the first case, reported in chapter 

3, Linear Mixed Model ANOVA Simultaneous Component Analysis (LMM-ASCA) was developed 

to investigate the effect of the dairy factory, the bimester of production, and the variability within a 

cheese wheel using colorimetric and textural measurements. In the second case, reported in chapter 4, 

a standard ASCA model with the addition of a blocking factor to include systematic error was 

developed to investigate the relationship between the dairy factory and bimester of production and the 

volatile organic compounds (VOCs) profile of Trentingrana cheese wheels. 

In addition, in chapter 5, an approach to relate physical measurements on Trentingrana samples with 

sensory evaluations of texture by a trained panel is presented. The objective of this procedure is to 

incorporate the quality control procedure information from different quality parameters. The 

development of the Partial Least Squares (PLS) predictive model, its validation, and the evaluation of 

its performances are discussed. 

In the last section (chapter 6), the development of an image analysis procedure to measure the visual 

quality of the rind thickness of cheese wheels is reported, comparing the performances of two different 

algorithms. 

The data analysis tools proposed in this thesis have been proved to be useful for exploring, inferring, 

and plotting the process quality properties and suitable for analyzing complex and unbalanced 



 

experimental designs. Furthermore, the data analysis procedures proposed improve quality control 

activity both at the process level and at the product level, increasing the information that is possible 

to extract from the measurement collected in a context where standard statistical approaches cannot 

infer significant information. 
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CHAPTER 1. INTRODUCTION 

The present chapter reports a brief discussion of the definition of food quality, reporting how it 

was defined throughout the last century and why this concept is important in food manufacturing. In 

the rest of the chapter, the definition of quality control procedures in food manufacture is discussed, 

focusing on the quality protocol called “Quality by Design”. The objectives and the procedures of this 

protocol are reported, and its applications are discussed. In the last section, the case study is presented. 

The case consists of the development of systematic quality control procedures to estimate the quality 

profile of hard-seasoned cheese wheels produced by the Trentingrana consortium, a consortium of 

dairy factories producing a grana-type cheese under the Product Designation of Origin (PDO) of 

Grana Padano. In the present section, there will be a brief excursus on the context of the manufacturing 

sector of hard seasoned cheese production in Italy and of Trentingrana consortium. 

1.1 Quality control in food production 

1.1.1 Definition of food quality 

In the European agrifood sector, food quality is a determining factor in consumer choices and food 

intake (Eurobarometer, 2014). 

Food quality represents the sum of all properties and assessable attributes of a food item, and it is 

defined by different parameters according to the approach adopted toward the evaluation of the food 

product. It is influenced by a wide range of situational and contextual factors. 

The meaning of the term food quality has not always been the same, and the shifts in the interpretation 

of this term are aligned with the most important concerns for consumers and stakeholders in the food 

chain. 
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The first reference for a suitable definition of quality is the one proposed by FAO (2003), which states 

that:” Food safety refers to all those hazards […] that may make food injurious to the health of the 

consumer. […] Quality includes all other attributes influencing a product's value to the consumer. 

This includes negative attributes such as spoilage, contamination with filth, discoloration, off-odors, 

and positive attributes such as the food's origin, color, flavor, texture, and processing method.”. This 

definition considers food quality adopting the point of view of food and nutrition sciences. 

Klaus Grunert in its review (Grunert, 2005) presented another definition of food quality that adopts a 

wider perspective, including in the evaluation of the approach of sensory and consumer sciences. 

According to this interpretation, food quality is defined both in objective and subjective ways: one 

refers to the properties that are measurable with instrumental procedures and the other is related to the 

estimation of the perceptions of the user. 

This approach represents a shift of perspective from the previous definition of quality, including the 

evaluation of food products adopting methodologies from different scientific fields, such as sensory 

science, consumer science, and behavioral psychology. 

For the specific case of sensory quality control, the application of a systematic approach for its 

estimation in food industries started in the 1990s, proposing more scientific and repeatable procedures 

(Muñoz, 2002). Sensory sciences applied to food analysis is an established method for understanding 

the intrinsic properties of the food product and gaining insight into consumers’ opinions (Yang & Lee, 

2019). This definition of food quality overcomes the evaluation of the safety of food products as the 

only objective of the properties of the final product and adds more points of view on the product and 

the production process, defining multiple aspects that determine quality. 
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A more explanatory definition of food quality was reported by Leitzmann (Leitzmann, 1993), who 

states that to be estimated, food quality requires the adoption of multiple approaches to evaluate the 

different parameters that affect the choice of food consumption, from the contents of nutrients to the 

sensory properties, also including the analysis of the economic and the ecological impact of food 

production. This wider approach defines food quality as the combination of different dimensions, each 

having its quality parameters, that may be correlated or not. These dimensions are related to physical 

properties, subjective perception (sensory, preferences, psychological needs), and socio-

environmental impact (economic, cultural, and ecological importance). 

A functional summarization of this definition of quality as a collection of many parameters estimated 

from different disciplines was presented by Giusti and coauthors (Giusti et al. 2008), adopting the 

term Total Food Quality (TFQ), as a summary of the evaluations from multiple scientific disciplines, 

which are summarized in table 1.  

 

Table 1 – Summary of quality parameters considered in the total food quality approach and their definition. 

PARAMETER DEFINITION 
SENSORY Color, appearance, texture, juiciness, taste, astringency and aroma 

SAFETY Presence of toxic compounds normally contained in foods, 
contaminants, mycotoxins, pathogen, and toxigenic 
microorganisms 

NUTRITIONAL VALUE Calories content and macronutrients composition, as well as non-
nutrients with high biological activity, compounds from 
technological processes, digestibility, and bioavailability 

FUNCTIONAL PROPERTIES Ease of use of several ingredients used for processing and 
transformation 

SERVICE AND STABILITY Resistance to rapid deterioration (processing, storage, 
transportation, and shelf-life conditions) 

HEALTHINESS Capacity of some food components to exert beneficial effects on 
consumers’ health (e.g. probiotics, vitamins) 

PSYCHOLOGICAL Convenience, price, ease of use, novelty, psycho-active effects of 
food 
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1.1.2 Quality protocols 

In the agrifood industry, the meaning of quality determines most of the goals for the industrial activity 

in terms of product and process standards. For example, defining quality as compliance with safety 

standards (as the first definition proposed) corresponds to a producer setting the goal that the food 

products comply with safety standards. To achieve this, it is necessary to develop a production process 

that ensures the absence of health risks and a control procedure to monitor product safety.  

For food manufacturers, the adoption of the Total Food Quality approach corresponds to the 

development of a production process that is optimized to comply with a wider range of quality 

standards. 

To comply with those quality standards many quality procedures have been developed over the years. 

A quality procedure is a standardized protocol proposed for agri-food industries that consists of a 

series of activities and recordings that are necessary to reach the desired standards. 

There are many categories of quality protocol, according to their legal significance, they can be briefly 

summarized in mandatory protocols such as (HACCP, HARCP, Fielding et al. 2011), food quality 

certifications from International Standard Organizations (ISO 9001, ISO 22000, Psomas & 

Fotopoulos 2010), European Union quality label (PDO, PGI, TSG, Grunert & Aachmann 2016), and 

Private Label Certifications (GlobalGAP, BRC, Tey et al. 2016). 

This thesis focuses on the quality protocol called Quality by Design, because of its compatibility with 

the concept of total food quality and because it allows estimating properly the relationships between 

the production process in food manufacturers and the properties of the final product. 
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1.2 Quality by Design 

1.2.1 Definition 

The Quality by Design approach has been defined in the International Conference on Harmonization 

of Technical Requirements for Registration of Pharmaceutical for Human Use (shortened in ICH) Q9 

guideline as ‘a systematic approach to quality development that begins with predefined objectives and 

emphasizes product and process understanding and process control, based on sound science and 

quality risk management’ (ICH, 2023). 

This approach consists of several steps of process evaluation, identification of key parameters, 

development of systematic control procedures, and monitoring of the performance of the control 

procedures (Rathore, 2014, Rathore & Winkle, 2009). It is neither always appropriate nor always 

necessary to use a formal risk management process (using recognized tools and/ or internal procedures 

e.g., standard operating procedures). The use of informal risk management processes (using empirical 

tools and/ or internal procedures) can also be considered acceptable (ICH, 2023). 

The Quality by Design approach saves time and resources of post-manufacturing quality testing to 

assure that the product is compliant. In other words, the quality is ‘built into’ the process, as opposed 

to ‘tested on’ the products. 

This approach to the quality control procedures is based on the idea that the improvement of the quality 

properties of the food product must be associated with the conditions of the process by deliberate 

design, analyzing the effect of the parameters on the final properties of the product.  
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It is possible to guarantee the desired quality level by monitoring the conditions of the production 

process to maintain the optimal parameters once the relationship between the quality profile of the 

final product and the condition of the production process is inferred. 

To gain this result, it is necessary to develop a process analytical protocol capable of measuring as 

fast as possible the conditions of the process and alerting when the values measured are outside the 

optimal level. This procedure is defined Process analytical technology (PAT). 

The concept of quality by design was determined by Food and Drug Administration in 2004 to 

encourage in the manufacturing sector this new approach, defining a set of scientific principles and 

tools supporting innovation and a strategy for regulatory implementation that would encourage 

innovation (FDA, 2004). 

To implement it practically in the agrifood production context, it has been summarized in seven points 

(Savitha & Devi, 2022): 

1. Identify quality target product profile (QTPP): 

The Quality target product profile is, as defined in ICH guidelines, “A prospective summary of the 

quality characteristics of a drug product that ideally will be achieved to ensure the desired quality, 

taking into account safety and efficacy of the drug product”. In this step the quality profile of the 

product is defined, according to the quality approach adopted by the producer. 

2. Identify Critical quality attributes (CQA): 

Once QTPP has been identified, the next step is to identify the relevant CQA. A CQA has been defined 

as “a physical, chemical, biological, or microbiological property or characteristic that should be within 

an appropriate limit, range, or distribution to ensure the desired product quality”. Identification of 
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CQA is performed through risk assessment as per the ICH guidance Q9 (ICH, 2023). Prior product 

knowledge, data from literature references, and laboratory tests are needed to establish the CQA for 

the given product. This step consists in defining measurable characteristics of the product matching 

the quality standards defined. 

3. Defining the product design space 

The product design space is a multidimensional matrix containing the realistic combinations of CQA 

values intervals based on the data from the laboratory, consumer studies on the product, published 

literature, and process capabilities considering the variability observed in the manufactured lots 

(Rathore et al. 2010). 

4. Defining the process design space 

Once the product design space has been defined, process characterization studies are carried out to 

estimate the relevant variables in process conditions for final product quality. Then, the realistic 

combinations of process parameters are estimated and reported. The available combinations are 

reported considering the process capabilities and the properties requested in the final product (van 

Hoek et al. 2009). 

5. Defining a control strategy 

Control strategy has been defined as “a planned set of controls, derived from current product and 

process understanding that assures process performance and product quality” (FDA 2004). The 

control strategy in the Quality by Design paradigm is established via risk assessment that integrates 

standard safety procedures such as HACCP with the critical values estimated for CQA and process 

parameters. According to the food manufacturer considered and the quality parameters requested the 
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control strategy could include procedural controls, in-process controls, lot release testing, process 

monitoring, characterization testing, comparability testing, and stability testing. 

6. Process validation and regulatory filings 

Process validation consists in scaling the defined process procedure to factory conditions, to 

demonstrate that the process can deliver a product in the desired quality parameters operating in the 

established design space and that the reduced and/or pilot scale systems are representative of the 

manufacturing scale process. Regulatory filing procedures include the final acceptable ranges for all 

key process parameters in addition to a more restricted operating space. From the regulatory 

standpoint, a key parameter is an adjustable parameter of the process that, when maintained within a 

narrow range, ensures operational reliability whereas a critical parameter is an adjustable parameter 

of the process that should be maintained within a narrow range to not affect a critical product quality 

attribute (Parenteral Drug Association, 2012). 

7. Process monitoring, life-cycle management, and continuous improvement 

Process monitoring is required during the product's lifecycle to keep track of changes and 

manufacturing deviations to avoid declines in product quality. To monitor the robustness of the quality 

system is necessary to consider the following four elements: process performance/product-quality 

monitoring; preventive/corrective action; management of changes in the process; management review 

of process performance and product quality. 

1.2.2 Development of Quality by Design approach in food manufacture 

The adoption of a Quality by Design protocol in a food manufacturing context is analogous to the 

approach of other protocols. Because Quality by Design does not correspond to an official commercial 
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label, such as IFS, BRC, GlobalGAP or International Standard Organization certifications such as ISO 

22000 or ISO 9001, its implementation consists of internal activities that do not require to be 

confirmed by an external audit. Rather, QbD activities are a code for an efficient collection and 

interpretation of data for the estimation of the effect of the process conditions on the properties of the 

final product (Moran et al. 2017). 

Many measurement protocols adopted for the evaluations of the process in Quality by Design are 

already collected and filled according to mandatory HACCP procedures (Quinn & Marriott 2002). 

Usually, standard hazard analysis does not include enough measurements to estimate the quality 

profile of the final product. 

Another difference between HACCP and Quality by Design is the viewpoint shift: HACCP protocol 

is focused on hazard monitoring and a quality control approach that aims to avoid risks for the 

consumer and to guarantee the absence of non-conformities in the product. Consequently, the 

procedure controls critical points of the process to ensure that critical levels do not exit from a critical 

area. Differently, Quality by Design aims to optimize the conditions of the process to obtain the best 

available properties of the final product, deploying a systematic measurement procedure to estimate 

the quality profile of the final product and the key variables of the production process. 

To estimate the quality profile according to all the different quality dimensions (according to the Total 

Food Quality approach) it is necessary to develop a systematic sampling procedure of the final product 

to infer the results of the measurements to the real-scale production process. A well-planned sampling 

procedure must consider all the systematic sources of variability that may affect the product quality 

and the natural variability of the product itself: the first issue requires defining sampling from different 

levels of process factors, and the other to estimate the number of samples needed to reach enough 

statistical power. Those topics will be discussed in chapter 2. Another critical issue in the sampling 
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procedure is the handling of the food samples: to ensure that the measurement would not be biased by 

spoilage, it is necessary to define a regular protocol for storing food samples to avoid unwanted 

modifications in chemical properties and especially in the sensory profile. 

To estimate the Total Food Quality of a product it is necessary to define analytical procedures adopting 

different scientific approaches according to the quality dimension measured. 

The main scientific approaches are physical, chemical, biological, sensory, and consumer analysis. 

Each consists of measurement techniques based on different principles, the adoption of different 

instruments, and the development of different statistical procedures (Grunert 2005). 

A summary of the quality parameter of each analytical approach is reported in table 2. 

     Table 2: Summary of analytical approaches adopted to estimate quality parameters in food. 

Analytical 

approaches 
Quality parameter related Main analytical techniques 

Physical Color, structure Cairone et al. 2020, Banks 2007, 
Drake et al. 1999 

Chemical Gross composition, volatile compounds, 
micronutrients, contaminants 

Qin et al. 2022 

Biological Microbial count, enzymatic activity Erkmen 2022 

Sensory Sensory profile, defects Drake 2007 

Consumer Preference, emotion, affection Ruiz Capillas et al. 2021 

To develop a Quality by Design procedure, the safety-related parameters that are usually measured to 

ensure many standard HACCP procedures can be also related to sensory quality parameters (Andrews 

et al. 2021). In table 3 are reported many examples of measurements related to standard safety 

measurements that are also related to standard measurements. 
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Table 3: Summary of analytical measurements that affect quality at multiple levels.   

Property measured Implication Reference 

Primary Sensory 

Microbial counts 
Food safety, 
nutritional 
value 

Atypical flavour, etc. 
(rotten) 

McAuliffe et al.(2019) 

pH/acidity 
Functionality, 
composition 

Sourness Barnes et al. (1991) 

Peroxide value (of fats) 
Nutritional 
value 

Atypical flavour, etc. 
(oxidised) 

Mehta et al.(2018) 

Proximate analyses 
Nutritional 
value, cost 

Atypical texture, 
taste, etc. 

Barnes et al. (1991) 

Free fatty acids 
Functionality 
(of fat) 

Atypical flavour 
(lipolytic) 

Mannion et al. (2016) 

Rheological properties Functionality Texture, etc. Laguna et al.(2017) 

Tribology Food quality Mouthfeel Sarkar & Krop (2019) 

‘Thermal’ properties 
(SFC, DSC, etc.) 

Functionality 
Mouthfeel (e.g., ice 
cream melt) 

Roland et al. (1999) 

Particulates (particle 
size, insoluble particles, 
foreign particles, etc. 

Food safety, 
food quality 

Texture (e.g., 
grittiness, 
creaminess) 

Shewan et al. (2020) 

It is worth saying, even if it is not discussed in the present thesis, that also the quality dimension 

related to the influence of socio-economic features such as price, claims, availability, needs to be 

studied according to the principles of marketing related disciplines. 

1.3 Presentation of the case study 

1.3.1 The importance of hard-seasoned cheese in Italy 
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In the Italian market, the production of hard-seasoned cheese is a critical sector of the agri-food chain. 

The average yearly production of DOP hard-seasoned cheese in Italy is 358.050 tonnes, and 41.07% 

of these were exported (CLAL 2023a). During the last two years 2020 and 2021, the trade balance for 

dairy products registered a positive score between the importation and exportation of dairy products. 

DOP hard seasoned cheese has an important part in this trade balance, with an overall value for 

exportation of 1143.3 million in 2021 (increasing of 10.9% from the previous year), and it is the ninth 

category of product for the value of exportations (CREA 2022). 

1.3.2 Trentingrana Consortium 

Trentingrana cheese is an extra-hard-seasoned cheese type with an Italian Protected Designation of 

Origin (PDO) falling under the Grana Padano PDO (Eur lex. 1996), and it is produced by dairy 

factories located in the Autonomous Province of Trento in the north-east region of Italy. In 2021, the 

Trentingrana consortium produced 126.781 cheese wheels, an increase of 2.0% compared to the 

previous year (CLAL 2023b). 

The Trentingrana trademark, embossed on the wheel near the “Grana Padano” label, emphasizes the 

distinctive properties of this cheese (Endrizzi et al. 2013) and its production process that has many 

specific differences from the product specification of Grana Padano: the use of raw cow milk only 

from livestock on mountain terrains in a delimited area (Autonomous the Province of Trento, 

Northeast Italy), the application of restricted cattle feeding, and the removal of lysozyme and silage 

from the cow’s feeding (MiPAAF, 2022). 

1.3.3 Production Process of Trentingrana cheese 

The Trentingrana consortium is a second-level consortium formed by 15 dairy factories, each of which 

is organized as a primary level consortium formed by the farmers producing milk.  
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The production process of Trentingrana cheese consists of several steps: 

1. Milk is produced in farms by cows bred according to official guidelines in farms located in the 

Trentino region. 

2. Milk is collected and brought to the dairy, the milk may be brought all in the evening (single milk 

collection procedure) or partially in the evening and partially in the morning after (double milk 

collection procedure). 

3. During the night, milk is skimmed adopting the gravity separation procedure, and skimmed milk 

is moved to a separate repository. 

4. After this, milk is placed in specific copper vats, that are heated at a temperature between 30 and 

36 °C and added with rennet for a duration from 7 to 12 minutes. The presence of rennet will start 

the coagulation procedure in the vat of the milk while it is agitated, and operators provide to spike 

the milk adopting specific instruments to make sure that the curd will coagulate in flakes of the 

dimension of rice. 

5. After the coagulation procedure is complete, the curd is cooked at a temperature ranging from 52 

to 57 °C degrees during an amount of time from 15 to 27 minutes. 

6. The curd granules are left to rest in the copper cauldron, immersed in the whey, for a maximum 

of 70 minutes from the end of the heating phase, so that they aggregate, to form a compact mass. 

7. Using a sort of wooden shovel (“pala”) and a linen cloth (“schiavino”), the curd mass is raised 

from the bottom of the cauldron and cut into two equal parts, to create two twin wheels. 

8. Each of the two wheels is removed from the copper cauldron, wrapped in linen cloths, and placed 

on a shelf (“spersola”).  

9. Each wheel is placed into a special mould (“fascera”) made of suitable plastic material. A heavy 

object of the same material is then placed on top of the cheese to place pressure. 
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10. After about 12 hours, a piece of plastic engraved with the Marks of Origins is inserted. 

11. Then a casein plate, with a specific ID code is placed on the top face of the wheel, this is crucial 

when identifying the traceability of each wheel. 

12. Two days later, the process of salting (“salatura”) starts: the cheese wheels are soaked in brine, a 

solution of water and salt. This step can take from 14 to 30 days, depending on the saline solution 

and the size of the wheel. 

13. Once the salting is finished, the wheels are taken into a “hot room” (“camera calda”) where they 

will dry for a few hours. 

14. Finally, the cheese wheels will be taken to a specific maturing warehouse, where they will be left 

to age for a minimum of 9 months. 

15. After 9 months, the cheese wheels are moved from the dairy factory to another repository of the 

consortium where they spent the last part of the ripening phase, which generally last 7-9 months. 

This production process presents several critical production points (Suherman et al. 2021), which are 

reported there: 

● Milk collection inside the dairy factory: microbial activity, enzymatic activity, and gross 

composition of the raw milk. 

● Milk coagulation in the vat: time and temperature of coagulation and cooking phases. 

● Breaking of the curd: lowering speed of the pH of the curd. 

● Salting: the brine solution must maintain saturation. 

● Ripening: the condition of temperature and humidity needs to be maintained at acceptable 

levels. 

● Final ripening: after 3 months, it is necessary to check if there are no present defects of holes 

or cracks inside the cheese wheel due to unwanted microbial activity. To control this a 
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traditional procedure called “battitura” is adopted: trained operators listen to the sound of 

cheese wheels after hitting them with a small hammer. According to the sound, it is estimated 

if there are present cracks or gas bubbles inside the cheese wheels. 

1.3.4. Critical Issues of the production process 

In the present section are summarized the features of the Trentingrana production process that needs 

to be considered to develop a quality control procedure that represents the overall production process. 

All the issues reported are relevant sources of variability that affect the final properties of the cheese 

or causes the large variability between each cheese wheel. 

1.3.4.1.Semi artisanal process 

A semi-artisanal process is food manufacture that is not completely standardized, and part of the 

operative decision relies on the experience of the operators working there. In Trentingrana cheese 

production each dairy factory has important sources of variability of the quality of the final product: 

the composition of the milk may vary significantly due to the seasonal effect on cows’ lactation; each 

cheese wheel may vary due to the variations in the conditions of time and temperature during 

coagulation, cooking and rest phase in the copper vat. 

The preparation and the addition of the rennet in the vats is done manually by the operators, and the 

correct development of the coagulation procedure and the development of the textural properties of 

the cheese are influenced by the handling of the curd, which often is still done by hand, or adopting 

simple mechanical devices. 

Furthermore, variations in the heating procedure affect the microbial growth, the occurrence of 

Maillard’s reaction, and the water dispersion inside the cheese wheels. Furthermore, during the 
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ripening phase, it is necessary to maintain the right environmental conditions of heat and humidity, 

but it is not possible to monitor the exact microbial activity inside the cheese wheel, nor to intervene 

to change it.  

Overall, the production process has got some steps that can’t be monitored properly because of the 

intrinsic properties of the food product and the production process. There are many sources of 

variation that may cause differences between the sensory, physical, and chemical properties of cheese 

wheels produced in similar conditions.  

1.3.4.2.Structure of the production process 

The cheese wheels labeled with Trentingrana mark are produced in 15 different dairy factories from 

different areas of Trentino region, in the north-east area of Italy.  

Each dairy factory operates inside the regulation of the consortium doing all these steps of the 

production process, but the product specification allows producers to collect milk from different farms 

that differ according to cow’s breed, altitude, and use of unifeed mixer wagons or traditional feeding 

procedures (Bittante et al., 2011). Additionally, the product specification allows applying slight 

changes in rennet, whey starters, and heating/storing machinery used in the dairy factory. Altogether, 

this can reasonably affect the peculiar physical and sensory properties of the final product (Ricci et 

al., 2022). 

Only the final steps of the ripening phase are completed in a comprehensive repository for the whole 

consortium. 

1.3.4.3.Discontinuous process 
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The production of hard-seasoned cheese is discontinuous, which means that the raw milk is treated in 

regular intervals to recreate the final product, not in a continuous production process. 

The discontinuity is then exacerbated by the presence of a long ripening phase that does not permit to 

intervene in a critical step for the correct development of the final physical and sensory characteristics 

of the product (Khattab et al. 2019). 

The discontinuous structure of the process affects the quality control procedure in the following ways: 

greater storage space is needed for in-between production stages (such as curing and ripening), non-

conformities in critical control points lead to greater waste and production cost because most of the 

defects of grana cheese can be detected only in the final stages of the production process. There are 

also practical issues as increased employee downtime due to waiting between processes and 

meticulous quality control, improperly planned batch processes can lead to bottlenecks that limit 

production. 

1.4. Development of quality control procedure 

Because of the issues of the agrifood context, monitoring the quality of a product from a discontinuous 

production process dislocated in many different small plants, with many uncontrolled sources of 

variability, requires a quality control procedure designed specifically to deal with those issues. 

The Quality by Design approach needs to be designed carefully considering the estimations done 

during the previous steps of the projects. The quality control procedure needs to be designed 

considering the quality traits of interest, the properties of the final product, and the structure of the 

production process, to develop a representative procedure to collect useful information on the 

properties of the product. 



18 

 

The case study of Trentingrana cheese represents an interesting example of a quality control procedure 

developed according to the features of the product and the process and can be presented as the 

application of a tailored Quality by Design approach to understand the relationship between the 

condition of the process and the quality properties of the food product. 

1.4.1. Sampling procedure 

Every 2 months, 1 to 3 cheese wheels were randomly sampled from the 18-month-ripened “first-

quality” wheels produced by each dairy of the Trentingrana consortium during the considered 

sampling period of 2 years (Endrizzi et al. 2013, Bittante et al. 2011). 

The number of cheese wheels sampled from each dairy factory was determined according to its 

volume of production during the two months: one wheel for each dairy delivering up to 1000 wheels, 

two wheels for 1001 to 1500 delivered, and three for more than 1500 delivered cheese wheels. 

Due to the internal organization procedures of the Trentingrana consortium, the cheese wheels 

sampled during the last couple of months had a ripening period of three weeks less than the others. 

All the measurements were acquired on a weekly basis: a subset of 6 cheese wheels was brought from 

the storehouse to the laboratory of the Edmund Mach Foundation, where each wheel was opened and 

visually evaluated by a panel of experts. Then, each cheese wheel was portioned. One portion was 

evaluated by the quality control panel of the Trentingrana consortium, and the other one was directed 

to instrumental analysis. 

A balanced design of cheese wheels from different dairies in each session day was introduced to 

balance the data collection procedure, avoiding the effect of the session on quality evaluation. The 

cheese wheels from the dairies that produced a lower amount of first-class wheels due to the 
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insurgence of defects in the previous semester were submitted to the expert panel before the others, 

to collect first data from the most problematic sections of the production process. 
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CHAPTER 2. DATA STRUCTURES AND STRATEGIES FOR DATA ANALYSIS 

 In the present chapter the procedures to manage data from quality control processes are 

reported. The first step is the definition of an experimental design. Then it is necessary to report an 

analysis of the factors that affect the conditions of the production process and the validation procedure 

of the hypothesis related to these factors. In the last section of this chapter, a list of advanced statistical 

models and machine learning algorithms that could be adopted to overcome these issues is reported. 

2.1 Experimental Designs in quality control 

 The approach of the design of experiments (DOE) was formalized between the second and 

third decades of the twentieth century (Fisher, 1935) but has been applied in food manufacture for 

quality control procedures involving also sensory parameters on a larger scale at the beginning of the 

twenty-first century. The aim of this procedure is to select the optimal number of measurements 

necessary to estimate the effect of one or more input variables and their interaction on the final 

conditions if there could exist a causal relationship between them (Montgomery, 2013).  

Furthermore, the experimental design requires to be designed according to the objective of the 

research. In the context of quality control procedure, it is very important to choose a design that 

represents the overall variability of the values and that reports the variability associated with the data 

considering all the issues reported previously. The most common experimental designs are factorial 

designs, fractional factorial designs, factorial design containing blocking factors, split-plot designs, 

nested designs, and multi-way design. 

2.1.1 Factorial Design 
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The factorial design is the basic experimental design, consisting of nk observation applied, where k is 

the number of factors present in the experimental design, and n is the number of levels in the 

experimental design if each factor has got the same number of levels. This design is widely used in 

experiments involving two or more factors where it is necessary to study both the effect of factors and 

their interaction. 

This kind of study is particularly useful when it is necessary to analyze the effect of many different 

factors at the same time to identify if there is an overall effect of the considered factors. In this phase 

is preferable to adopt a low number of levels for each factor, to not collect an excessive number of 

measurements when there is not enough information available to estimate whether some factors are 

significant. 

This experimental procedure can detect the presence of interaction and avoiding misleading 

conclusions due to the presence of interactions if all the possible combinations are not considered. 

The main downside of this experimental design is that it requires a vast number of measurements, and 

consequently a vast amount of time and resources to collect all the information. For example, an 

experiment with 6 factors, each of them having 2 levels, requires 26= 64 combinations, each of them 

with at least two repetitions. This amount of measurement could easily outrun the resources available 

in most experiments, because of the large number of measurements requested. 

2.1.2 Fractional Factorial Design 

To handle a reasonable amount of measurement and consider the hypothesis that the most important 

effects are related to singular factors and second-level interactions, the construction of a specific 

experimental design, called fractional factorial design, is proposed. 
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This procedure is the most widely adopted for product development, process improvement, and 

experimentation in industrial contexts because it allows a functional procedure for screening factors 

for large effects by adopting the minimum amount of measurement available.      

The experimental design requires 𝑛𝑘−1 combinations, which are the one-half fraction of the 

measurement estimated by the complete factorial design. The combinations are chosen to adopt a 

generator procedure that allows the experimenter to estimate the most effects and interactions with a 

smaller number of measures. 

2.1.3 Factorial designs containing block factor 

In experimental design applied to an industrial context it is often necessary to include process-related 

factors that could or could not affect the overall response of the other factors considered in the 

experiment. To include those measurements properly in the experimental procedure, it is necessary to 

adopt a blocking factor structure for the factorial design, which means that the potential confounding 

factor is integrated with the experiment as a fixed blocking factor and the construction of the 

experimental design needs to be planned accordingly.  

The first procedure consists in creating many sub-experimental designs similar in each blocking 

factor, which could be a reasonable solution if the experimenter knows that there are important 

differences between each block. This procedure is mandatory for every control related to the HACCP 

procedure for safety control of food manufacturing in European countries. 

If the analyses are not critical, and the blocks considered are not too different, it is possible to include 

the blocking factor in the experimental design, applying inside each block a different set of 𝑛𝑘−2 

combinations of measurements, to make sure that considering every block together every combination 
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is applied. In this way, both the information related to the effect of the factors and the information 

related to the effect of the blocking factor can be estimated. 

2.1.4 Nested design 

To include nested factors in an experimental design it is necessary to develop a hierarchical 

experimental design, which consists of an experimental design optimized to identify the major source 

of variability considering the structure of data. The procedure to optimize the collection of data is 

called general m-stage nested design and consists in estimating each variable nested inside another 

variable as part of the experimental design without including the interactions term in the estimation 

of all the combinations, due to the structure of the experiment. Hence, the nesting factors cannot 

interact with the levels nested in the other levels, differently from the estimations adopted in designs 

adopting blocking factors. 

If in an experimental design, both nested and factorial factors are present, it is possible to apply a 

factorial experimental design inside each nesting factor. 

2.1.5 Split-plot design 

Split-plot designs are constructed to extrapolate the largest amount of information from factorial 

experiments which cannot apply complete randomization of the order of the measurements due to 

practical reasons. This could be related to practical issues related to the organization of the plant or 

the presence of seasonal effects.  

This experimental design consists of estimating the main batches representing one factor, measuring 

multiple times, and then changing the condition of the same levels according to the same order of 

levels for the other factors. To explain more clearly, the split-plot design could consist in preparing of 
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the same batch of raw material and treating different portions of it in different time conditions, instead 

of repeating the whole procedure for each interaction, or taking measurements in the same fields in a 

different part of the year, instead of randomizing the fields and applying a sampling procedure during 

different years. 

2.1.6 Multi-way design 

Multi-way data are characterized by several sets of variables that are measured in a crossed fashion. 

Chemical examples could be fluorescence emission spectra measured at several excitation 

wavelengths for several samples, fluorescence lifetime measured at several excitation and emission 

wavelengths, or any kind of spectrum measured chromatographically for several samples. 

Determining such variables will give rise to three-way data, i.e., the data can be arranged in a cube 

instead of a matrix as in standard multivariate data sets (Coppi 1994). 

Differently from two-way multi factors datasets, multi-way datasets contain increasing and decreasing 

trends due for example in peak structures in spectral data and to the internal correlation structure of 

time series analysis, where two values near in time cannot be too different and usually are 

differentiated. 

2.2 Factors affecting data structure 

Data collected by Quality by Design procedures need to be collected to be representative of the 

structure of the production process. To be sure of that, it is necessary to collect enough measurements 

from each combination of process variables. 
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The experimental design needs to be built to be as representative as possible of the process analyzed.  

Many critical issues that characterize the quality control procedures from an industrial process that 

need to be included in the experimental design structure are reported. 

2.2.1 Type of variable in project design space 

To create a proper sampling procedure, it is necessary to know which are the variables of interest      

and their levels. According to the Quality by Design procedure, this corresponds to point 4 of the 

procedure: “defining the process design space”. The variables of interest can be of two types: 

● Condition related: These are variables that affect directly the desired and undesired reactions 

occurring in food products during their transformation. Those parameters are continuous, such 

as the conditions of the time and temperature during the heating process, or the increased rate 

of the microbial population during fermentation.      

● Process Related: These variables are directly related to the physical structure of the 

production process and to factors affecting the process. They are related to practical issues of 

the organization of the production process, such as the production plant and the machinery 

used, the season, and the production batch. Those factors are prevalently discrete, and they 

need to be included in the model because they represent random sources of variability that 

cannot be controlled directly. 

To build a reliable experimental design and consequently a reliable sampling procedure, it is important 

to properly address these two different kinds of sources of variability. Generally physicochemical 

related factors can be treated as fixed factors, as they are defined in Montgomery (2013), and in the 

construction of an experimental design they need to be addressed in that way, recognizing the levels 

of interest and how the experimental design can be arranged consequently, for example selecting 
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which of all the possible interactions needs to be observed from time to time. On the other side, process 

related factors can be intended like blocking factors or random factors, and considered accordingly in 

the estimation of the experimental design, because they are uncontrolled sources of variations that 

need to be included in the measurements to understand properly the condition of the process. 

Obviously, not including process related variables in the estimation of the sampling procedure can 

only lead to an incomplete and not representative sampling procedure, and consequently to an 

impossible detection of the defects in the products and of the anomalies in the process. At the same 

time, to properly include physicochemical variables in the experimental design it is necessary to both 

prior knowledge on their effect on the final features of the product and how they may influence each 

other, to choose the right levels, and to estimate which interaction of interest needs to be inserted in 

the experimental design. This knowledge is partially available from literature, especially on heating 

process (Fryers & Robbins, 2005). 

2.2.2 Dimension of the process 

The dimension of the process is related to the volume of production of the manufacture analyzed, 

which will require more samples to reach enough statistical power to infer significantly informative 

information from the data, without occurring in type I and type II statistical errors while investigating 

the presence of significant variations in the products and the effect of different process conditions in 

the final product (Dumicic & Zmuk, 2013). 

Obtaining a representative sample of a large volume of production is one of the most difficult issues 

related to Quality by Design procedure. This procedure is especially complicated in food 

manufacturing, where the individual variability of each sample may be significant and is always 

present. 
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To manage this issue, available solutions are establishing a regular sampling procedure or sampling 

the products after bottleneck passages to detect overall variation in a unit of time. This is particularly 

functional in discontinuous processes, where the food is produced in batches that are affected by 

similar conditions. Two key concepts in sampling procedures are design balance and randomization. 

The first indicates that the sample needs to be representative of the number of elements in the original 

population for each level of the factor considered, permitting a representative inferring of the condition 

of the project. Randomization is a cornerstone concept in statistical data analysis and consists in 

randomly determining the singular samples from the batches and the order in which they are analyzed, 

to guarantee the assumption of the independent distribution of the measurements. 

Generally, this practical issue requires a cost/benefit evaluation, considering first the properties that 

need constant monitoring because of specific requirements of food manufacturers (Johnsen 2014) or 

known issues (Duan et al. 2023). Then it is necessary to consider all the practical issues related to the 

availability of time, personnel, and instruments. 

2.2.3 Multivariate Structure 

To develop a quality control system, it is necessary to consider that food food products cannot be 

characterized adopting only one measurement, but to measure properly each quality parameter it is 

necessary to consider it from a multivariate point of view. Many properties of food cannot be measured 

using only one variable, such as volatile organic profile and textural properties, and many properties 

are measured by obtaining more than one variable, such as color. Sensory analysis is multivariate in 

nature too and requires that all the properties collected are considered both in univariate and 

multivariate ways at the same time to convey useful information. 



28 

 

At the same time, the food production manufacture must be monitored considering more than one 

parameter at a time. Even simple processes are affected by multiple variables at the same time, such 

as time, temperature, and humidity, that interact between them. 

The presence of multivariate data in quality control requires a multivariate approach to detect outliers 

in standard quality control procedure: first, to detect outliers it is necessary to consider multivariate 

variance instead of univariate, and consequently adopt a different set of statistical tests and 

visualization techniques to inspect this feature. Multivariate datasets such as spectral measurements, 

time series, and mass spectrometry have also an issue due to their internal correlation: multiple 

variables collected may be correlated or anti-correlated with each other, leading to a loss of 

information and a redundancy of the datasets that many multivariate approaches can handle properly. 

Furthermore, to estimate a reliable association between variables of the process and properties of the 

product it is necessary to deploy a reliable statistical procedure adopting multivariate regression 

algorithms, such as Partial Least Squares regression (PLS). The algorithm available will be discussed 

in a further section of the chapter. Multivariate data not only requires specific algorithms, but also a 

different validation Also, multivariate data requires some attention at the experimental design level: 

different properties measured simultaneously may imply multivariate statistical error added to each 

value, which needs to be addressed considering repeated measurements. 

2.2.4 Confounding Factors 

To infer information about the effect of the condition of the process, quality control procedures 

associate measurements with known process conditions. It is necessary to consider that all the 

information is collected with measurements applied in real-time from a real scale production process, 

hence the variability of the products is related to multiple factors at the same time. Estimating a causal 
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relationship between food properties and process condition requires an accurate knowledge of the 

underlying phenomenon occurring during food manufacture, a strong familiarity with the production 

process with the possibility to check directly in the plant the conditions if required, and a good 

understanding of the measurement techniques adopted. It is always necessary to investigate if the 

variability detected in the plant is related to external or accidental sources of variability, to not estimate 

wrong relationships between products that are not actually related together.  

Different process conditions may affect the properties of food, so statistical analysis of the data 

collected from quality control procedures may be easily affected by the presence of multiple 

confounding factors at the same time. For this reason, it is necessary to have a good knowledge of the 

underlying phenomenon to directly inspect the food processing facilities, and directly investigate the 

presence of an external or accidental source of variability present that needs to be included. 

It is necessary, after the collection of the measurements the application of preliminary exploratory 

analysis, such as residual analysis of ANOVA or PCA for multivariate data. If the effect of 

confounding factors is detected it is necessary to evaluate if either do not consider completely the 

measurements or to include in further analysis the effect of the confounding factors. If the decision is 

to use the data, proper statistical analysis includes pre-treatment as mean-centering for each level of a 

confounding factor, and the inclusion of a blocking factor in the definitive ANOVA or linear models. 

2.2.5 Nested factors 

During quality control procedures in the food production process, it is possible that the condition of a 

factor of interest is not always identical according to the different conditions of another factor, such 

as the effect of the different suppliers or machinery adopted according to different production plants. 
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This arrangement of an experimental design is called nested or hierarchical design (Montgomery, 

2013).  

The nested and the nesting factors can be both random and fixed, this depends on the condition of the 

experiment. Considering the previous examples, the variability associated with different machinery 

in different plants can be defined as nested fixed factors, while the effect of a different operator inside 

the same plant at each machine could be defined as a random factor. 

Considering nested structure is necessary to correctly interpret the relationships between different 

factors and to interpret them properly because it is necessary to state that it is not possible to measure 

the effect of a factor level outside of another factor’s level. Thus, not defining properly the exact 

structure can conduct in the integration of non-existing interaction factors and different calculations 

for the estimation of the degrees of freedom associated with each factor and interaction and 

consequently with significant results in the analysis. 

2.3 Advanced statistical models 

Models for the analysis of a multivariate experimental design (Buvé et al. 2022) 

2.3.1 Principal Component Analysis 

PCA is the most popular unsupervised multivariate analytical technique to extract information out of 

large multivariate data sets among food scientists (Wold et al. 1987). Besides quality control, it is 

used for data exploration, to look for overall trends, for outlier detection, and to recognize patterns 

(Abdi and Williams, 2010). Thanks to its powerful visualization tools of scores and loadings, PCA is 

applied to almost all data at least for exploration purposes (Abdi and Williams, 2010, Jolliffe, 2002, 

van den Berg et al., 2006). 
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In the context of quality control, the most common application of Principal Component Analysis is 

outlier detection, which consists in estimating a multivariate confidence interval on the values of the 

principal components and assuming that values outside those intervals are significantly different from 

average values at a multivariate level. This principle was then implemented to create SIMCA 

classifiers, that are essentially decision trees based on the projection of new measurements onto 

Principal components estimated from the categories that need to be tested. 

Another application in food quality control is the estimation of the importance of the variables from 

loading values. This procedure is used to estimate which variables contain more information in terms 

of variance, and to estimate the correlation or anticorrelation structure between variables. 

For the analysis of product quality, PCA can highlight the presence of sub-groups that are significantly 

different at multivariate levels, but it does not provide a clear view of the effect of the differences 

detected. This is related to the fact that PCA is an unsupervised technique, so the information about 

the Y-variables needed to be investigated is not explicitly included (in contrast to PLS). Nevertheless, 

the trends in the data set related to process conditions would be detected by PCA if the multivariate 

distribution of the parameters is strongly affected by the process conditions. 

2.3.2 Parallel Factors Analysis (PARAFAC) 

Parallel Factor Analysis consists of a multivariate analysis of multi-way datasets estimating the tensor 

structure of the dataset (Rasmus, 1997). In the case of a three-way data set, PARAFAC algorithm 

decomposes it into a sum of triple vector products. Each element in the three-way array estimated by 

the algorithm, 𝑥𝑖𝑗𝑘, can be described as a function of these loadings as presented in Eq. 1  

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑟

𝑅

+ 𝑏𝑗𝑟 + 𝑐𝑘𝑟 + 𝑒𝑖𝑗𝑘 
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where 𝑥𝑖𝑗𝑘 is (or represents) the value of the i-th sample for the j-th and k-th variable, R the number 

of latent components chosen in the PARAFAC model, 𝑎𝑖𝑟, 𝑏𝑗𝑟 and 𝑐𝑘𝑟 the loadings of the first, second 

and third dimension for each PARAFAC component r and 𝑒𝑖𝑗𝑘 the residual. The PARAFAC model is 

built using an iterative Alternating Least Squares method based on tensor algebra. The PARAFAC 

model minimizes the sum of squares of the residual 𝑒𝑖𝑗𝑘 (Rasmus, 1997). 

PARAFAC can be applied to the multi-way data set avoiding the unfolding procedure. Unfolding can 

result in a loss of information, due to the absence of correspondence between the original data and the 

applied model (Bro, 1997). In comparison with PCA unfolding, PARAFAC algorithm avoids 

overfitting issues and is more robust with multi-way datasets, but generally fits worse the data than 

PCA algorithm. It is interesting to consider that, being robust, PARAFAC models are less sensitive to 

noise, so if the model is able to describe the data well enough, the larger variance explained by PCA 

algorithm will include probably noise (Rasmus, 1997, Smilde et al., 2004). 

It should be noted that until now PARAFAC was almost exclusively applied to fluorescence 

spectroscopy data due to its ability to model physical phenomena directly (i.e. to split the fluorescence 

signal into signals of pure constituents). For this reason, the application of those algorithms in other 

types of multi-way data needs to be discussed and validated before starting to analyze its applicability. 

There are interesting contexts where PARAFAC procedure could be useful for inferring and 

summarizing interesting information, such as temporal sensory data (TDS and TCATA), and complete 

stress/strain curves from textural measurements. 

2.3.3 Multivariate factors Analysis (MFA) 

Multiple Factors analysis (MFA) (Becue-Bertaut & Pages, 2008) is a multivariate data analysis 

method for summarizing and visualizing a complex data table in which individuals are described by 
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several variables (quantitative and/or qualitative) structured into groups. It considers the contribution 

of all active groups of variables to define the distance between individuals. 

The number of variables in each group may differ and the nature of the variables (qualitative or 

quantitative) can vary from one group to another, but the variables should be the same nature in each 

group (Abdi & Williams, 2010). MFA is a general factor analysis, based on PCA when variables are 

quantitative and MCA (multiple correspondence analysis) when variables are qualitative. 

The main principle of MFA is the application of factor analysis to the whole set of variables in which 

each group of variables is weighted respectively by PCA or MCA transformation. This procedure 

represents individuals and variables as in any factor analysis, adopting score plots, loading plots, and 

biplots. This statistical instrument is capable of displaying at the same time the effect of each group 

of variables on individuals and comparing them at individual and aggregated level (Escofier & Pagés, 

1994). 

2.3.4 ANOVA Simultaneous Component Analysis (ASCA) 

Anova Simultaneous Component Analysis (ASCA) consists of applying a multivariate matrix 

decomposition (based on SVD) on the matrices of the expected values estimated from a univariate 

analysis of the experimental variables. In other words, the ASCA approach analyzes at a multivariate 

level the effect of each factor, and uses the powerful visualization instruments of PCA, such as score 

and loading plots, to highlight the latent factors that are contributing to each design factor. 

The first step consists in applying to every variable a parametric statistical model which must apply 

the same decomposition to every variable. The aim of this procedure is to estimate the effect on each 

singular variable of the levels of each factor included in the model. To infer significant information, 

the model applied must apply a decomposition representative of the experimental design of the data, 
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including factors and interaction that correspond to the real experimental design. To properly represent 

more complex experimental design different versions of ASCA have been proposed to include nested 

and random factors, such as LMM-ASCA, and to consider multidimensional correlation structures, 

such as PARAFASCA. 

 Once the models are estimated, it is possible to infer for every level of every factor including the 

effect on each variable, obtaining multiple matrices reporting the variation from the overall mean for 

every variable. The considerable outcome from this passage consists in obtaining a simplification and 

a representative summarization of the individuals of the experiments, capable of proceeding with 

further multivariate analysis with a restricted dataset that consists in the estimation of the tendencies 

of the dataset. 

The significance of these values is estimated by the validation of the models at the univariate level, 

selecting only the values significantly different for the factor considered. This step is added to ensure 

that the analysis uses only variables affected by the factors investigated. It is worth saying that the 

ASCA procedure applies a standard multivariate analysis based on Single Value Decomposition, 

which estimates principal components to maximize the variance between individuals, therefore the 

values estimated by non-significant models do not add significant difference between subjects. 

All the significant effects for each level of each factor are estimated using this equation: 

𝑋𝑎𝑗 = 𝑇𝑎𝑗 ∗ 𝑃𝑎𝑗 

where Xaj is the effect matrix of the factor a in the j-th variable, T is the contrast matrix, and P is the 

vector of the effects. The effect matrix is grouped for all the parameters to obtain a complete effect 

matrix that represents the decomposition of the effect estimated for each level of a factor for every 

variable.  
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To observe the distribution of the samples and to interpret their relations with each variable, Principal 

Component Analysis (PCA) is adopted on the matrix of effects. 

Before the estimation of principal components, to compare the effects estimated for different 

variables, the matrices of the effects of each factor were centered for each variable. 

The results can be reported by adapting the graphical tools proper of PCA, such as bi-plots and scree 

plots, allowing of the summarization of large pieces of information in a clear and deliverable way. 

For the interpretation of ASCA graphical tools, it is necessary to consider that the single value 

decomposition is not applied to the overall variance of the dataset, but to the variance related to a 

single factor or interaction at the time, consequently, the percentage of explained variance for each 

component represents the variance associated to the sum of squares of the considered factors. To 

associate the value of the explained variance to the overall variance of the process it is necessary to 

estimate the contribution of each factor to the multivariate variance by estimating the overall sum of 

every sum of squares for the considered factor for each model and consider its proportion toward the 

overall sum of the total sum of squares for each model (Thiel et al. 2017). A complete calculation will 

lead to the determination of the explained variance of each factor and interaction included in the 

decomposition procedure, including the residuals, and the percentage of multivariate variance 

explained by this procedure. The results can be properly represented by a bar plot. This plot, along 

with the results of the univariate or multivariate permutation tests can lead to the interpretation of the 

significance of the multivariate decomposition of ASCA. If the multivariate variance is explained 

mostly by the residuals and there is no multivariate significant difference and not even a large amount 

of univariate significant parameters, the factor considered can be considered as not significant. 
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Subsequently, the presence of unincluded multivariate effects can be included in analyzing the 

multivariate structure of residuals adopting biplots. This visual analysis helps detect the presence of 

significant multivariate effects that are not represented in the model by estimating if the multivariate 

analysis of the residual is different from a multivariate normal distribution. 

2.3.5 Linear Mixed Models-ASCA 

Linear mixed models (LMM) are an extension of standard linear models for regression analysis of 

experimental designs containing observations that cannot be assumed to be independent of each other, 

such as repeated measurements or measurements from the same sample. This method considers the 

error structure in the data, estimating at the same time the effect of fixed factors, which are the factors 

of interest, and random factors, which represent the individual variability caused by non-measurable 

sources of variation. This univariate statistical analysis can be integrated into a multivariate 

framework extending the principle of ANOVA simultaneous component analysis (ASCA). 

The application of linear mixed models with ASCA decomposition in an experimental design with 

nested and random factors and unbalanced levels is still an uncommon procedure in data analysis 

(Martin & Govaerts 2020). Therefore, the issues related to the evaluation of this type of statistical 

model and its application are still not widely addressed in the context of food manufacturing quality 

control. In the last decade, the interest in this methodology has been increasing, due to the growing 

availability of vast multivariate datasets from stratified experimental designs acquired in ecological 

and industrial studies. 

2.3.6 Parallel Factor ANOVA simultaneous component analysis (PARAFASCA) 

PARAFASCA consists of the application of Parallel Factor Decomposition to the effect matrix 

estimated from the ANOVA decomposition of a multi-way multivariate experimental design. This 
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procedure is proposed for a multi-dimensional dataset, which means datasets that contains at least 

three crossed design factors. These factors affect independently the response and all the levels of one 

factor are crossed with all the levels of the other factor, for example a dataset of spectral data collected 

along time where all the measurement were estimated for the same frequencies (Jansen et al. 2008). 

These data contain two simultaneous correlation structures within each factor, and an interaction 

between these two the other factors considered (Acar & Yener 2009).  

The first part of the analytical procedure is the same as ASCA, consisting of the decomposition of 

each variable according to the experimental design considered, but the decomposition is applied to 

each variable at each level of the third-dimensional factor. 

PARAFASCA consists of the combination between PARAFAC and ASCA by modeling the estimate 

values obtained by ANOVA decomposition of relevant design contributions to the variation of 

parameters using PARAFAC instead of PCA. The interpretation of this novel technique is more 

straightforward for multiway datasets than standard ASCA because PARAFAC can disentangle 

factors and interactions in the experimental design.  

2.3.7 Partial Least Squares regression (PLS) 

PLS is a widespread algorithm that was proposed initially by Wold (1966) that consists, in its simplest 

form, in a method to associate two data matrices using a linear multivariate model that estimates a 

series of mathematical objects that maximizes the covariance between the two datasets. These 

mathematical objects are latent variables calculated iteratively to estimate the coefficients of each 

variable to maximize the covariance between the two matrices. The iteration consists in applying the 

calculation of the next principal components adopting the residuals from the previous component 
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adopted, assuring that augmenting the number of components will improve the fitting of the overall 

model (Vinzi et al. 2010). 

The iterative estimation of these components allows the researcher to estimate multiple coefficients 

for each variable, allowing the representation of complex correlation structures between predictors 

and predicted values. Those values can also have an interesting informative value, allowing to 

represent of this correlation structure with the correlation plot, which is a specific application of the 

bi-plot graph, adapted for the information inferred from PLS models. 

2.3.8 Orthogonal Partial Least Squares Regression (O-PLS) 

O-PLS consists of an alternative to the PLS algorithm that has certain properties rendering the model 

more tractable, and the mathematical procedure allows modeling separately the variations of the 

predictors correlated and orthogonal to the response (Thevenot et al., 2015 ). This model improves the 

interpretation of the effect of the predictors and their systematic variation compared to standard PLS 

(Pinto et al.,2012). 

The O-PLS algorithm divides the overall variance in the X-block into two model parts, one part which 

models the correlations between X and Y and another part that expresses the variation that is not 

related (orthogonal) to Y. Components that are correlated to Y are here called predictive. Components 

that are uncorrelated to Y are here called orthogonal. It is worth noting that if the model is trained to 

predict a single Y-variable, the O-PLS algorithm will estimate one predictive component and any 

number of orthogonal (no relation to Y) or pseudo-orthogonal (very little relation to Y; only when 

missing values in X) components (Eriksson et al. 2013). Therefore, differently from standard PLS, 

only one set of predictors will be estimated. 
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The O-PLS algorithm structure represents in a more operative way the performance of the model and 

the significance of the variables because it employs only one principal component, so only one 

coefficient is estimated in the model, therefore the importance of variables is reported in an easily 

interpretable way. The importance of variables is reported by adopting tailored graphical solutions 

such as S-plots, which are scatterplots representing the correlation of each variable or bar plots 

comparing the index of importance available. 

2.3.9 Classifiers for process monitoring 

Classifiers are machine learning algorithms that instead of predicting continuous values they assign a 

category to each subject according to the values of the dataset they were trained to analyze. Those 

algorithms have got wide application in the context of quality control because they can allow a fast 

and effective procedure for assisting or automatizing the decision-making process in quality 

evaluation. There are multiple different algorithms that are adopted for these procedures. A good 

example is Support Vector Machine (SVM). SVM is a widely adopted algorithm for classification, 

then improved also for regression (Cervantes et al. 2020), that is based on the definition of variables 

spaces for classification with a machine learning procedure based on a hyperplane that maximizes the 

margin between classes. The training of the parameters is not based on minimizing the mean squared 

error, but on maximizing the existing distance between the hyperplane estimated and the closest 

observation. This index is called “margin”.. The method of training based on maximizing margin is 

necessary to find a unique solution for the definition of the hyperplane because otherwise there would 

be an infinite number of solutions in most situations. 

The SVM algorithm is used mainly in the context of bioinformatics and image analysis, but there are 

also applications in food science (Zhu & Spachos 2021; Astuti et al. 2018). 
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The downsides of applying the Support Vector Machine algorithm are the high computational cost 

due to the algorithm's complexity and the fact that it is designed for binary classification problems. 

Furthermore, the performance of standard SVM algorithms is severely affected by unbalanced 

datasets. For those reasons, support vector machines are adopted mostly for the development of 

sensors for quality control and not for higher-level classification procedures (Cervantes et al. 

2020).Random Forest is a machine learning algorithm used for classification and regression 

(Fawagreh et al. 2014). Developed by Breiman (2001), the method combines the bagging sampling 

approach (Breiman 1996), and the random selection of features, (Amit & Geman 1997), to construct 

a collection of decision trees (a “forest”) with a controlled variation. The bagging sampling consists 

in constructing each decision tree in the ensemble using a sample with replacement from the training 

data, while the random selection of features consists in selecting a subset of variables. After the 

estimation of each tree, the ensemble determines the class label of an unlabeled instance. This is done 

via majority voting where each classifier casts one vote for its predicted class label, then the most 

voted label is used to classify the instance. 

The random forest algorithm has been applied virtually in every field, in food quality, there are many 

applications for the relationship between the effect of the process and the chemical properties of the 

final product (Granitto et al. 2006; Fabris et al. 2010; Meoni et al., 2021). 

Because of the bagging procedure, each random forest model can estimate the importance of each 

variable for the classification in one or another group, performing a simple and easily interpretable 

variable selection procedure. Another important advantage related to the random forest algorithm is 

the reiterated principle of estimating the classification with multiple decision trees, which allows us 

to estimate the average amount of attribution of a certain class rather than another. Another interesting 

feature of the random forest algorithm is that is a non-parametric model, so it is not necessary that the 
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variables of the models respond to a specific distribution of values, because the random forest 

algorithm relies on a structure of multiple decision trees. 

The downfalls of random forest are the risk of overfitting, which can be avoided by adopting many 

samples to develop a reliable predictive model. Because of its non-parametric structure, it is important 

to develop a good pre-selection procedure for the variables, removing variables that do perfect 

separation in classification procedures (Belgiu & Dragut, 2016). 

2.4 Validation Procedures 

For the estimation of the significance of a statistical model validation is a mandatory step in statistical 

analysis. Validation can be defined as an established scientific and statistical approach proving that a 

set of measurements is sufficiently reliable to prove fitness for purpose. In the context of statistical 

analysis, validation consists of the statistical procedure to estimate the probability that the result 

inferred by the model is significantly different from the results that could be inferred if the data 

acquired were not representative of any distribution. 

2.4.1 Outlier estimation 

This procedure consists of the estimation of the importance of each measurement in the final model, 

by comparing the performance obtained in a model without these measurements (Cousineau & 

Chartier, 2010). The objective of the comparison between these two models is to check if the 

prediction changes significantly after the removal of a singular value. If a model is significantly 

affected by a singular measurement, this model is not representative of the overall variability of the 

population, it rather summarizes the variance between the overall population and the outlier(s). Once 

the outlier is detected, it is reported and investigated as a possible signal of an anomaly inside the 

production process. 
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2.4.2 Univariate Monte Carlo Simulation 

As stated above the null hypothesis consists in the absence of significant effect of the parameters of 

interest in the experiment, except for the random error and the presence of effects related to random 

factors. To estimate the null distribution usually a Montecarlo simulation (n = 1000) is adopted to 

estimate the null hypothesis’ distribution of the sum of squares decomposition and to compare the 

results to the decomposition of the variables applied considering the factors of interest of the 

experiement, as discussed in Stamirova et al. (2013). To perform a reliable permutation test, it is 

necessary to maintain the structure of the dataset, including all the nested and random factor structures 

in the random reassigning procedures, to ensure that the null hypothesis’ distribution estimated is 

related only to the effect of the factors investigated and their interactions. Furthermore, the α-values 

needs to be chosen, in a proportion related to the number of iterations. The null hypothesis is rejected 

when the permuted sum of squares decompositions is lower than the values obtained by the real model 

for less than 5% of the permutations. After the permutation, for each factor, it is necessary to adjust 

the estimated p values using the Bonferroni correction. 

Using multiple permutations at the univariate level, after an appropriate adjustment for multiple 

comparisons, instead of a singular permutation test at the multivariate level, allows for avoiding the 

effect of internal correlation when evaluating the significance of each parameter. 

2.4.3 Multivariate Monte Carlo Simulation 

The procedure of validation can be performed also at a multivariate level, validating at once the 

significance of the data matrix estimated by the multivariate model adopted, such as ASCA, LMM-

ASCA, PLS, or PCA, comparing the F norm with a null distribution of F norm estimated from models 

inferred from permutated data matrices. 
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This multivariate validation procedure is considered preferable: from a computational point of view, 

because it requires less calculation power, consisting of only one permutation procedure, while from 

a statistical point of view, because the internal correlation is included in the matrix analyzed so the 

overall structure of the data is considered in the procedure of estimating the null distribution. This 

procedure also is more easily interpretable, because the hypothesis verified is the significance of the 

whole analysis and not the significance of a singular variable in the overall model. An example of the 

representation of the results of this statistical procedure is reported in Figure 1. 

 

Figure 1: Graphical representation of multivariate validation via permutation test. The histogram 

on the left represents the null distribution of the F norm estimated via permutation tests, while 

the red vertical thinned line represents the F norm estimated from the actual matrix of data. 

On the right the fill column on the right represents the proportions between the values of the 

null distribution lower than the actual F value (red) and the values of the null distribution 

higher than the actual F value (blue). The black thinned horizontal line represents the 

confidence limit of 5%. 
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2.5 Estimation of the importance of variables 

Once a model has been developed and validated, the estimation of the importance of the variables is 

a procedure that consists in determining which variable of the dataset composes the significant effect 

detected. This procedure is functional to interpret multivariate models. The importance of variables is 

reported as a singular value adopting different numeric indexes. The estimation of the variable 

importance could be executed by adopting different procedures: according to the algorithm adopted 

there may be a different value determining the importance of the variable, but algorithms such as 

Random Forest, PLS, and O-PLS-DA can determine the importance of each variable. In many cases, 

research relies on the value of these variables estimated by these methods, but it is preferable to 

validate these indices by estimating confidence intervals by bootstrap procedure: Random Forest 

algorithm performs already an internal bootstrapduring the validation step, so a well-trained algorithm 

already performs a complete and informative validation process. 

The indices adopted are the Variable Importance Parameter (VIP), the regression coefficient, or the 

loading values (Galindo-Prieto et al. 2014). 

The bootstrap procedure consists of the estimation of the confidence intervals by estimating multiple 

models removing a small set of samples inside the dataset and replacing the removed samples by 

repeating other measurements. Adopting the bootstrap procedure guarantees that each estimation 

contains the same values of mean and median, to guarantee a similar data structure with different 

values. The values estimated are used to estimate a confidence interval for each variable. The 

estimation of the confidence interval is necessary to estimate and compare the importance of the 

variables. 
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According to the algorithm adopted and the structure of the data, the results can be represented using 

a bar plot, with error bars to represent confidence intervals, or adopting loading plots if the model 

adopted is composed of multiple mathematical objects, such as PLS or Support Vector Machine. 

Another plot often adopted is the S-plot, which is a scatterplot that represents at the same time the 

covariance and the correlation structure of the predictor’s variables in PLS and O-PLS models. More 

exactly, in the x-axis of the S plot is reported the covariance of the variable for the principal component 

considered (this is particularly useful when it is adopted by the O-PLS algorithm, which comprises 

only one principal component), and the correlation between each variable and the score vector of the 

predictive component.  
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CHAPTER 3. STATISTICAL MODELS FOR PHYSICAL MEASUREMENTS FROM 

QUALITY CONTROL PROCEDURES 

In the present chapter, the application of advanced statistical workflows for the interpretation of data 

from quality control procedures in the Trentingrana case study are reported. The importance of 

physical measurement is presented in the context of the case study. An LMM-ASCA statistical model 

is proposed to infer the effect of the condition of the project considering the experimental design 

available. The reported work was already presented in Ricci et al. (2022), published in the open access 

journal Foods. 

3.1. Measurement procedures to deal with quality control issues 

3.1.1. Instrumental textural measurements 

There is a wide range of instrumental techniques to assess food texture in both research and industry 

(Oraguzie et al., 2009, Zdunek et al., 2010). Those measurement methods are based on different 

mechanical principles, they interact in a different way with the sample, and they differ on the amount 

of information reported, some estimate only a single value, while others provide broader information 

on the history of deformation, such as time-series data on texture measurement (Derington et al., 

2011). 

The majority of the textural measurement procedures estimate the force exerted by the instrument on 

the sample in a limited and repeatable interval, which can be until a rupture in the structure of the 

sample until a defined length of deformation or until the amount necessary to maintain a uniform 

speed during the deformation of the sample is reached (Chaunier et al., 2007, Greve et al., 2010). 

Thus, it is difficult to compare the results obtained by using different instruments without knowing 
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properly the context of the product analyzed and the meaning of the values estimated from the specific 

measurement procedures adopted. 

The first characterization of the typologies of mechanical measurements of food texture consists of 

two macro-categories, one of the destructive methods and the other of the non-destructive methods. 

Destructive measurements analyze the properties associated with the micro-structural and molecular 

structures of the product. This group comprehends the three-point bending test, single-edge notched 

bend (SENB) test, puncture, penetration, and cutting tests. 

Non-destructive textural measurements do not cause visible damage on the matrix and are possible to 

apply this procedure online, but they are still destructive on a micro-scale and at the same time the 

information obtained from experiments is not comprehensive. 

Instrumental texture analysis is not directly related to mouthfeel, so there cannot be a direct association 

between the sensory properties estimated via sensory analysis, but there are multiple studies about the 

relationships between instrumental and sensory properties. 

3.1.2. Colorimetric measurements 

 The color is a property that is defined both from a physical point of view and a sensory point of view. 

According to the first point of view color appearance is the response of retina rods and cones to the 

reflected radiation in the so-called visible region of the electromagnetic spectrum, that is, the range 

between 400 and 700 nm, which is due to the interaction between a light source and pigments in the 

food sample. 
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On the other hand, color is also a perception mediated by neuronal answers, to complex external 

stimuli, by which everyone gives a personal interpretation, mediated by different external influences 

(Cairone et al. 2020). 

Color represents the first characteristic of a food product noticed by the consumer and plays a 

dominant role in the decision-making process. 

When a consumer decides to acquire foodstuff, they use the color appearance as the first sensory 

evaluation, matching the color appearance to other food proprieties such as ripening, freshness, and 

absence of defects. The evaluation of color perception by consumers may be or not be conscious, 

according to the individual and to the food product, but the stimuli perceived by the eyes are 

interpreted by the brain and could be influenced by other information. 

Nevertheless, the energy associated with the light’s reflection process depends on the pigment type 

and the content that can be measured. Hence, the strict measure of material quality could be an 

objective physical measure of chemical parameters and an indicator associated with the sensory 

quality parameters, depending on the structure and the structure and the properties of the food product 

(Pathare et al. 2013). 

There are multiple systems to unambiguously define color (Schanda 2007), the CIEL*a*b* color 

space is the standard method proposed by the Commission Internationale de l’Eclairage with the aim 

to answer the human perception of colors. According to this method, each color is defined using three 

parameters: L*, which represents the luminance, between black and white, perceived by the retina 

rods; a* which is the expression of the greenness for negative values or of the redness for positive 

values, and b* which represents the blueness for negative values or the yellowness for positive values. 
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3.2. Application 1 – Study of the effect of the production process on the physical properties of 

Trentingrana cheese 

3.2.1. Introduction 

The texture properties of extra-hard cheese affect how the cheese is portioned and packed. Texture 

also affects the behavior of the cheese when it is subjected to shredding or grating, and how the cheese 

retains gas and hence, its predisposition to form eyes, cracks, or swell. The color of cheese 

significantly contributes to sensory responses and plays an important role in the anticipation phase of 

the selection and consumption of food materials (Fox & Cogan 2004). Consumer expectations are 

influenced both by cheese color itself and its homogeneity. Both colorimetric and textural properties 

are critical for the commercial value of hard-seasoned cheese, such as Trentingrana cheese. The 

measurement of those properties defines the product from a technological and commercial point of 

view. 

The quality of the raw milk (casein content, casein micelle structure, and fat content, Bittante et al. 

2011, McDermott et al. 2016) and conditions of the cheese-making process (for example, pre-

acidification of milk, type and quantity of rennet, cooking temperature, acidification of the cheese 

mass, and temperature and humidity during seasoning, Mucchetti et al. 2014) are fundamental factors 

that influence the textural and colorimetric properties of cheese (Banks 2007). 

The production chain of hard-seasoned cheese with a Protected Designation of Origin (PDO) usually 

consists of many individual dairy factories belonging to the same producer cooperative that transforms 

raw milk conferred daily from many small farms. This fragmentation of the process suggests that there 

may be significant differences in the process and the characteristics of the raw material (Cipolat-Gotet 

et al. 2013) despite the presence of a consortium that regulates the production. At a supply chain level, 
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the effect of process and raw materials conditions on the physical characteristics of the final product 

are mostly attributable to the dairy factory and the time of the year when the fresh milk is delivered. 

Due to the large dimension of the Trentingrana cheese wheel (a height from 20 to 26 cm and a diameter 

from 35 to 45 cm), these physical properties can vary according to the position in the cheese wheel, 

since water content and temperature in the early stage of the process, as well as microbial activity, 

depends on the distance from the center. Thus, for a more comprehensive description of the physical 

properties of a single cheese wheel, it is necessary to take multiple samples from the same cheese 

wheel, addressing the distance from the central position. 

To date, there are few studies that have investigated the effect of the dairy factory and the time of the 

year on the colorimetric and textural properties of hard cheeses; nevertheless, Bellesia et al. (2003) 

highlight a large variability among dairies for volatile components of Parmigiano Reggiano cheese 

while Careri et al. (1996) report a much lower variability on the same type of cheese in relation to 

chemical parameters and non-volatile fractions. Franceschi et al. (2019) notice how the month of the 

year and the dairy can determine the efficiency of the cheese-making process. According to our 

knowledge, no study has tried to estimate the effect of different dairies and different months of the 

year on the textural and colorimetric properties of cheese. 

To estimate the effect of the dairy factory and the time of the year on both colorimetric and textural 

properties while considering the natural variability of artisanal cheese production, it is necessary to 

characterize a real-scale production process. From a statistical point of view, the optimal data analysis 

strategy has to be able: (a) to take into account the multilevel nature of the experimental design 

separating the contribution of the different study factors from the variability arising during the cheese-

wheel making process; (b) to estimate the correlation among colorimetric and textural properties. 
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Linear mixed models (LMM) are an extension of standard linear models for regression analysis of 

experimental designs containing observations that cannot be assumed to be independent of each other, 

such as repeated measurements or measurements from the same sample (Bats et al. 2013). This 

method considers the error structure in the data, estimating at the same time the effect of fixed factors, 

which are the factors of interest, and random factors, which represent the individual variability caused 

by non-measurable sources of variation. In our specific scenario, linear mixed models can handle 

information better than ANOVA, because they take into consideration repeated measurements in the 

same cheese wheel, and they describe in the models the variability related to uncontrolled production 

parameters. 

LMM is a univariate approach that can be integrated into a multivariate framework extending the 

principle of ANOVA simultaneous component analysis (ASCA) (Smilde et al. 2012), which consists 

of applying a multivariate matrix decomposition (based on SVD) on the matrices of the expected 

values estimated from a univariate analysis of the experimental variables. In other words, the ASCA 

approach analyzes at a multivariate level the effect of each factor, and uses the powerful visualization 

instruments of PCA, such as score and loading plots, to highlight the latent factors that are contributing 

to each design factor. 

The application of linear mixed models with ASCA decomposition in an experimental design with 

nested and random factors and unbalanced levels is still an uncommon procedure in data analysis. 

Therefore, the issues related to the evaluation of this type of statistical model and its application are 

still not widely addressed in the context of food manufacturing quality control. In the last decade, the 

interest in this methodology has been increasing, due to the growing availability of vast multivariate 

datasets from stratified experimental designs acquired in ecological and industrial studies. 
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Stamirova et al. (2013) applied a linear mixed model to evaluate differences in food manufacturing, 

presenting a statistically robust procedure for analyzing data on the effect of different herbal tea 

pasteurization treatments from three different years of production. The effect of many confounding 

factors in the chemical properties of a herbal product is estimated using a statistical model to describe 

the complex interactions between the main fixed and random factors, obtaining consistent results. 

Martin and Govaerts (2020) reviewed several different applications of linear mixed models with 

ASCA decomposition for different datasets, ranging from metabolomics to sensory science. A step-

by-step procedure to develop and evaluate a statistical model with both random and fixed effects is 

explained, and the procedures to estimate models’ outcomes, such as statistical significance and effect 

size are compared. A suitable procedure for matrix decomposition and reconstruction is presented, 

with a focus on the individuation of the most important effects after the transformation of data. 

This study aims to analyze the variation of textural and colorimetric parameters of a semi-artisanal 

PDO product according to dairy, sampling position, and time of the year using LMM-ASCA analysis, 

which has proven to be a valid statistical procedure to evaluate a large-scale dataset of measurements 

from Trentingrana industrial quality control process. 

3.2.2. Materials and methods 

3.2.2.1.Sampling procedure 

During the years 2017 and 2018, a total of 317 Trentingrana cheese wheels were collected from the 

15 dairies belonging to Trentingrana Consortium, according to the sampling procedure of the 

Trentingrana project. 
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Subsequently, from each wheel, 24 blocks of cheese were sampled, each block with a length of 3 cm, 

a width of 1.5 cm, and a height of 1.5 cm. Each set of blocks from the same product was cut at the 

same distance from the center of the wheel and assigned to one of six different categories according 

to the distance from the central position. The sampling position is illustrated in Figure 2. Colorimetric 

and textural analyses were carried out on each block. 

 

Figure 2: Example of two slices of Trentingrana cheese. Each box corresponds to one sampling 

position, each color to a sampling zone: round (RND, red); round central (RNDs, brown); 

external plate (RNDp1, black); intermediate zone (Int, purple); internal plate (RNDp2, green); 

center (CNT, blue). 

Globally, 317 cheese wheels were sampled from 12 sampling sessions from each dairy on a bi-

monthly basis and 7608 measurements were acquired for 6 different parameters during 54 analytical 

sessions. 
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3.2.2.2.Analytic Determinations 

L*a*b* components from the CIELAB color space model (Schanda 2007) were measured once 

on one of the wider surfaces of each cheese block sample using a CR-400 colorimeter (Konica Minolta 

Sensing Inc., Tokyo, Japan) using the D65 illuminant source, an observation angle of 2°, and 

previously calibrated with a reference white standard ceramic tile. Data were acquired using the CM-

S100w SpectraMagicTM color data software (Konica Minolta Sensing Inc., Tokyo, Japan). 

Texture properties were measured on each cheese block by a TA-XT texture analyzer (Stable 

MicroSystem Ltd., Godalming, UK) applying a uniaxial compression/penetration on one of the wider 

sides of the cheese block sample. Following the method described by Noël et al. (1996), a 4 mm probe 

was used with a speed of 1.67 mm/s, a trigger force of 5 N, setting the endpoint of the measurement 

when a maximum strain of 90% of the height of the sample was obtained, and three mechanical 

parameters were calculated on the recorded curves. Those parameters are reported in Table 4. 

Table 4. Parameters extrapolated from the stress/strain curve estimated from uniaxial compression. 

Parameter Description Measure Unit 

Maximum Force (Fmax) 
The maximum amount of force applied by the uniaxial probe to 

the sample. 
N 

Area under the curve (Ac) 
The whole area under the force/strain curve during the 

compression of the sample until the endpoint. 
N*mm 

Elastic modulus (El) The slope of the linear part of the stress-strain curve. N/mm 

3.2.2.3.Statistical analysis 

Due to the various sources of variability that affect the final product, the results are highly structured 

data. Before each analysis, each variable has been centered and scaled to unit variance, to obtain 

comparable results from each model. Each variable was checked for the assumption of normality using 

QQ plots in Figure 3. 
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Figure 3: Q-Q plot of the normal distribution of each parameter of instrumental measurements. 

The experimental design was built to consider the many specific sources of variation inside the supply 

chain of a PDO product (Endrizzi et al. 2013). Here we wanted to estimate the effect of the dairy 

factory and the time of the year (“Time” factor, from now). The position in the wheel was also included 

in the model to estimate the natural variability present in each cheese wheel. 

To describe the design of the sampling campaign, we used an unbalanced experimental design with 

four factors and their interactions, represented by this Equation: 

𝑥𝑖𝑘𝑙𝑔𝑡 = 𝜇 + 𝛼𝑘 + 𝛽𝑙 + 𝛾𝑔 + (𝛼𝛽)𝑘𝑙 + (𝛼𝛾)𝑘𝑔 + (𝛽𝛾)𝑙𝑔 + 𝛿𝑡 + 𝜖𝑘𝑙𝑔𝑡𝑖 

Where α corresponds to the fixed factor “sampling position” with level k, β corresponds to the fixed 

factor “Time” with level l, γ to the fixed factor “dairy factory” with level g, and δ to the random factor 
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“cheese wheel” at level t. Level i represents the repeated measurements conducted in the same 

sampling position of the same cheese wheel from different blocks. This model is applied to each 

colorimetric and textural parameter estimated. 

Because each couple of months the cheese wheel has been analyzed from each dairy, the cheese wheel 

factor is nested inside the other fixed factors, so there is no interaction effect that involves this factor. 

For each variable, a linear mixed model was estimated to assess the significance of the factor “Time”, 

“dairy factory”, and “position”. The cheese wheel factor was defined as random. For each factor and 

each interaction, the matrix of contrasts was set to obtain a sum to zero estimation. This procedure 

ensures that each level would be tested with the grand mean of the dataset. 

As previously stated, the aim of the experiment was to determine the effect of the dairy factory (n = 

15) and the time when cheese is produced (n = 6).  

Each model was validated by a permutation test. The null hypothesis for each variable was that there 

is no significant effect for any of the parameters except for the random factor of the cheese wheel. 

Montecarlo simulation (n = 1000) was used to estimate the null hypothesis’ distribution of the sum of 

squares decomposition and to compare the results to the effective decomposition, as discussed in 

Stamirova et al. (2013). Each permutation test was performed, maintaining the nested structure of the 

factor of the sampling position inside the other two factors, to make sure that the null hypothesis’ 

distribution estimated was attributable only to the effect of the factors investigated and their 

interactions. The α-values chosen are 1/1000 and the null hypothesis is rejected when the permuted 

sum of squares decompositions is lower than the values obtained by the real model for less than 5% 

of the permutations. After the permutation, for each factor, the estimated p values were adjusted using 
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the Bonferroni correction. Each analysis have been performed using R statistical language (R core 

Team, 2021). 

3.2.3. Results and discussion 

According to the results of the permutation test, the factors “Dairy Factory” and “Sampling Position” 

are significant in the models estimated for all parameters, and the factor “Time” is significant for each 

parameter except for colorimetric index a* and the textural parameter “Area under the curve”. The 

interactions between “Dairy Factory” and “Time” are not significant for all the parameters, the “Time” 

and “Sampling Position” interaction is significant only for the colorimetric parameters, and the 

interaction between “Dairy Factory” and “Sampling Position” is significant for each parameter except 

the elastic modulus. 

Those results state that the color and the structure of the cheese wheels change when there are changes 

in the production process, in the sampling position, and, to a lower amount, the season of the year 

when milk was produced. 

There are no important differences between the variations of each dairy at different seasons, but the 

overall value of a sampling position varies according to the dairy and the time, at least for colorimetric 

properties. Results are shown in Figure 4. 
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Figure 4: Tile plot reporting the p values estimated from the permutation tests for the significance of 

each factor (“T”: Time, “D”: Dairy Factory, “S”: Sampling Position, “S:T”: interaction between 

Sampling Position and Time, “D:S”: interaction between Dairy Factory and Sampling Position, 

“D:T”: interaction between Dairy Factory and Time) of the linear mixed models. 

3.2.3.1.Simultaneous Component Analysis: LMM-ASCA Results 

The first features of the model evaluated were the estimations of the contribution of each parameter 

to the explained variance for each different factor, as reported in Figure 5. The contribution of each 

parameter to the multivariate decomposition of each factor was estimated according to Kassambara 

(2017a). The contribution of explained variance was estimated for all the dimensions considered for 

each factor: four for “Dairy Factory” and two for “Sampling Position” and “Time”. The number of 
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dimensions taken into consideration was estimated to obtain at least 85% of explained variance for 

each factor; the values are represented in the scree plots in Figure 6. 

 

 

Figure 5: Barplots showing the contribution of each parameter to the explained variance for each 

LMM-ASCA decomposition of the model. 
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Figure 6: Scree plots for the ASCA decomposition of the factors “Dairy Factory” (A), “Time” (B), 

and “Sampling Position” (C). 

In the LMM-ASCA model, the contributions of the experimental variables represent the effective 

fraction of the variance considered for each factor due to the preprocessing step of unit scale 

normalization of each parameter before the estimation of all the models, and the estimation of the 

effect matrix from all models together. 

Different from PCA, principal components from ASCA decompositions represent the effective 

percentage of explained variance quantitatively, and the contribution of each parameter is quantitative 

information of which the parameter effectively varies the most between the levels of each factor 

considering the effect of all the other factors in the experimental design. 
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The parameters containing the largest amount of variance in ASCA decomposition for the factor 

“Dairy Factory” are the colorimetric parameters and, for a less amount, the textural parameter Area 

Maximum Force (Fmax); for the factor “Sampling Position”, the colorimetric indices contribute more, 

and for the factor “Time”, the textural parameters are the most important in determining the overall 

variance together colorimetric index b*. 

For the factor “Dairy Factory”, the results of the ASCA multivariate analysis show that 96% of 

explained variance is described by the first four principal components, as shown in the scree plots in 

Figure 6. 

The first component describes 36.5% of the total variation. This component describes mostly the 

variation from the overall mean for the colorimetric component a*, then the variation for the 

component L*, and then the anticorrelated variation to those colorimetric properties of all the textural 

parameters. 

The biplot in Figure 7, shows that according to the first principal the dairy factories are divided 

according to the overall value of the textural properties and the value of the colorimetric parameters 

L* and a* of their cheese wheels. The dairies labeled C-14 and C-11, which produced cheese are 

characterized by overall higher values for all the textural properties and less bright color of the grain, 

are located in the left side of the plot; The dairies C-1, C-2, C-3, C-6, C-7, C-8, C-9, C-13, and C-15, 

which produced wheels with textural parameters and L* and a* colorimetric parameters not 

significantly different from the overall mean, are placed in the central part of the plot; the remaining 

dairies (C-4, C-5, C-10, C-12) produced cheese wheels having textural parameters lower than the 

overall mean and higher values of L* and a* colorimetric values than the overall mean. 
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Figure 7: Biplot for ASCA showing the values for the first two principal components for the LMM-

ASCA decomposition to the factor “Dairy Factory”. Score values for each level are represented by 

black dots and labeled from C-1 to C-15 for each dairy factory. Loading values are represented using 

arrows for each parameter acquired and colored according to the type of the measurement: “El” 

stands for elastic modulus; “Ac” for the area under the curve; “Fmax” for maximum force; “L*”, 

“a*”, and “b*” labels are referred to the coordinates of the Lab color spaces. 

The variation related to the colorimetric index b* is represented by the second component, which 

accounts for 36% of the total variance. The dairies C-2, C-5, C-13, and C-14 are those producing 

cheese wheels with lower values of the colorimetric parameter b* than the overall mean, consequently 

they are placed on the upper side of the plot; in the central are of the plot, between the score values of 

−0.55 and 0.55, there are the dairies C-1, C-3, C-4, C-7, C-9, C-10, C-11, and C-12, which produced 
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cheese wheels having an average value of b* not significantly different from the overall mean; the 

remaining dairies, labeled C-6, C-8, and C-15, produced cheese wheels having an average value of b* 

higher than the overall mean, and are locatd in the lower part of the graph. 

The first two principal components show that there are four dairy factories that differ from the overall 

mean by more than 95% of the explained variance, which are C-2, C-5, C-10, and C-14. 

The third principal component describes the 18.1% of the overall variance (Figure 8) and is 

determined mostly by the values of all the physical parameters, with the colorimetric b* index in 

anticorrelated position with respect to all the other parameters. This component divides three dairies 

(C-1, C-3, C-7) from all the others, for their overall lower values of textural and colorimetric 

parameters, except b*. 

 



64 

 

Figure 8: Biplot for ASCA showing the values for the third and fourth principal components for the 

LMM-ASCA decomposition to the factor “Dairy Factory”. Score values for each level are represented 

by black dots and labeled from C-1 to C-15 for each dairy factory. Loading values are represented 

using arrows for each parameter acquired and colored according to the type of the measurement: 

“El” stands for elastic modulus; “Ac” for the area under the curve; “Fmax” for maximum force; 

“L*”, “a*”, and “b*” labels are referred to the coordinates of the Lab color spaces. 

The fourth principal component explains only 5.4% of the total variance, and it describes the variation 

mostly related to the textural index of the area below the curve and, in a lower amount, to the a* 

colorimetric index. It divides mostly the dairies C-2 and C-5 from the overall mean. These latter two 

principal components explain 23.5% of the overall variance and highlight another interesting cluster 

including four dairies C-6, C-9, C-10, and C-14. 

To estimate the presence of cluster inside the ASCA decomposition for this factor, which, differently 

than the other two analyzed, has many different levels and more structured results, a k-means cluster 

analysis has been performed on the score value matrix of the LMM-ASCA decomposition. The 

clustering procedure was performed using the Hartigan-Wong algorithm reported by Hartigan & 

Wong (1979); the optimal number of clusters was estimated using the Silhouette method as reported 

by Kassambara (2017b). Results are summarized in Figure 9. 
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Figure 9: Results of the clustering analysis on LMM-ASCA decomposition of the “Dairy Factory” 

factor; (A) representation on clusters; (B) results of the Elbow method for the estimation of the optimal 

number of clusters. Score values for each level are represented by black dots and labeled from C-1 to 

C-15 for each dairy factory, and colored according to the cluster estimated. Loading values are 

represented using arrows for each parameter acquired: “El” stands for elastic modulus; “Ac” for 

area under the curve; “Fmax” for maximum force; “L*”, “a*”, and “b*” labels are referred to the 

coordinates of the lab color spaces. 

Cluster analysis highlights the presence of two big clusters, named 1 and 4 both containing four 

dairies. Then it is estimated that cluster 2, which contains three different dairies with values near to 

the center of the plot (C-1, C-3, and C-7), and two small clusters, that represents the presence of the 

dairy factories have values very different from the overall mean (C-2 and C-5 in cluster 3; C-13 and 

C-14 in cluster 5). 

Differences in the properties of the final product can be explained by differences in the raw material 

and the technological process: together with the quality of raw milk used, the type and quantity of 
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rennet and natural whey starters, the handling of the curd, the operations of acidification, heating, 

cooling, and the ripening condition and time, all these factors are able to affect the quality of the final 

product. Even though the production of Trentingrana cheese follows a general standardized procedure 

and the Trentingrana cheese product specification reports the crucial technological steps, it is a semi-

artisanal production, with a significant internal variability related to the different dairy. 

The clusters estimated can be partially explained because of important similarities in the technology 

of the process: The dairy C-1 and C-3 use both the same kind and the same quantity of rennet, and 

they have similar values of time and temperature in the procedure of the heating of the curd (data not 

shown). Unfortunately, many other similarities are quite complex to interpret, because they do not 

correspond to other know properties of the dairy factories. 

Differences between dairy factories belonging to the same consortium have already been detected by 

Franceschi et al. (2019) for the efficiency of the process, and Mucchetti et al. (2014) noticed the effect 

of slight variation inside the production process of extra-hard cheese as an important source of 

variation for the appearance and the structure of the cheese; our research also highlighted differences 

in the physical properties of the cheese wheels that can be used as quality indices. 

For the factor “Time”, ASCA decomposition represents 87.1% of total variance with the first two 

principal components. As shown in the biplot in Figure 10, the first PC describes variations in all the 

colorimetric parameters, with b* in an anticorrelated position with a* and L* and b*, and, with less 

significance, the textural parameters elastic modulus and maximum force applied. The second 

principal component describes variation mostly due to the colorimetric index b*, the area below the 

curve (Ac) and the maximum force applied (Fmax). Along with the first component, the wheels 

sampled in May and June are characterized by brighter and thicker grain than the average; the wheels 

sampled from January to April, in November and December, and in July and August are characterized 
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by medium values of textural and colorimetric properties, and the wheels sampled from September to 

October show higher values of the textural parameters and more yellow color than the average. The 

second component separates the wheels produced from November to December from all the others 

because of a significantly higher value of the colorimetric index b* that can be interpreted as a more 

yellowish color than the average. 

 

Figure 10: Biplot for ASCA showing the values for the first two principal components for the LMM-

ASCA decomposition to the factor “Time”. Score values for each level are represented by black dots, 

labeled using the first three letters of the two months of each couple of months when the cheese wheels 

were sampled. Loading values are represented using arrows for each parameter acquired and colored 

according to the type of the measurement: “El” stands for elastic modulus; “Ac” for area under the 

curve; “Fmax” for maximum force; “L*”, “a*”, and “b*” labels are referred to the coordinates of 

the Lab color spaces. 
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Differences and similarities found in this analysis are likely to highlight the effect of seasonal variation 

in the raw milk used, which causes a change in the overall content of protein (data not shown). The 

overall lower values of density of the last two couples of months (November and December) may 

partly be due to the design of the sampling procedure. Indeed, the cheese wheels produced over that 

period were seasoned 3 weeks less than the others to ease the logistic organization of the sampling 

procedure within the consortium. 

For the factor “Sampling Position”, multivariate ASCA estimated 96.4% of the explained variance 

with two principal components. The first component, as reported in the biplot in Figure 11, describes 

the overall variation related to all textural and colorimetric parameters, with a strong anticorrelation 

between the colorimetric parameter L* and all the other measurements. 

 

Figure 11: Biplot for ASCA showing the values for the first two principal components for the LMM-

ASCA decomposition of the factor “Sampling Position”. Score values for each level are represented 
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by black dots, each label corresponds to a different sampling position: “RND”: round; “RNDs”: 

round central; “RNDp1”: external plate; “Int”: intermediate zone; “RNDp2”: internal plate; 

“CNT”: center. Loading values are represented using arrows for each parameter acquired and 

colored according to the type of the measurement: “El” stands for elastic modulus; “Ac” for area 

under the curve; “Fmax” for maximum force; “L*”, “a*”, and “b*” labels are referred to the 

coordinates of the Lab color spaces. 

In this component, the sampling position levels are placed from left to right according to higher values 

of texture and a darker color. This disposition corresponds to a decreasing distance from the center of 

the cheese wheel. 

The second component describes mostly variation in the colorimetric indices and the area under the 

curve. According to this component, all the levels but one do not have a significant variation from the 

grand mean, except for the intermediate position between the central zone and the round of the wheel, 

which results in higher values for each index. This disposition in the biplot suggests that the gradient 

highlighted by the first component is not linear and that the intermediate position has higher values 

than those expected according to the variation of the distance from the center. 

Differences due to the sampling position inside the cheese wheels are well known (Prentice 1992), 

they are due to the inhomogeneous content of water, protein, and fat in the casein structure, related to 

the diffusion phenomenon during curing and seasoning of the cheese wheel. Water, which spreads 

from the center to the external zone of the wheel when the evaporation phenomenon begins, acts as a 

low-viscosity lubricant, reducing overall texture properties and as a solvent for coloring molecules, 

reducing their concentration, hence the color brightness decrease (Milovanovic et al. 2020). The color 

difference is mostly related to the concentration of products of the Maillard reaction naturally 

occurring in cheese (Bley et al. 1985): the central zone of the cheese wheel maintains a temperature 
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above 50 °C longer than the external zones, therefore more chromophore molecules are formed during 

and after the heating of the curd (Adachi et al. 2020). 

3.2.4. Conclusions 

Significant differences have been detected among the dairy factories of the Trentingrana consortium, 

the time of the year, and the sampling positions. Analysis of significant differences in the context of 

real-scale quality control at an aggregate level allows for detecting which are the phenomena that may 

modify the physical properties of cheese, to allow improvements in the production process, and most 

importantly, to focus on what are the features that affect the production process and to understand 

them better. 

Those results are related to the effect of variations of the process of production on the physical 

properties of the final product and can be detected when changes in the three factors considered (dairy 

factory, time, and sampling position) have an overall significant effect. The differences in the 

percentage of explained variance by each different factor evidenced the importance of the sampling 

position as a critical point in the evaluation of cheese wheels: the results highlighted a large effect due 

to sampling position, especially on color values. Research on these products should consider the 

importance of the geometry of the cheese wheel to characterize its overall properties. 

Differences detected for the dairy factory factor are more difficult to interpret. Results show that there 

are similarities and differences related to the production process, as resulted from information given 

by the consortium. At the same time, raw material properties are not always easily related to the final 

product, and this may also be explained by the importance of the technologies applied for the 

caseification process, as, for example, the use of curd in liquid or in powder form, or a mixed 

combination, its coagulation activity, and the gradient of temperature during the heating of the paste. 
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Differences related to the time when the cheese wheels were produced are likely related to the seasonal 

variation of the raw milk, which tends to have different protein content and a different concentration 

of beta-carotene depending on the season and to a different diet, causing variations in the textural and 

colorimetric properties. 

Quality evaluation of hard seasoned cheese requires many different measurements to define all its 

properties, from physical to sensory. In this study, LMM-ASCA procedures allow for analyzing the 

effect of multiple different factors comparing many measurements at the same time, giving a 

statistically valid comparison of the whole profile of the product between different subgroups in 

complex or nested experimental designs. 

The results of those analyses are functional to the development of classification models for the quality 

monitoring of the production of hard seasoned cheese and to evaluate the effect of the process of 

production on the commercial quality of the product Trentingrana Cheese. 

At this moment, further research is needed to better understand the relationship between the variation 

in the production process and the physical quality of hard seasoned cheese. 
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CHAPTER 4.  STATISTICAL ANALYSIS FOR QUALITY CONTROL OF CHEMICAL 

PROFILE 

In the present chapter, the importance of chemometrics measurements is presented and discussed, and 

a statistical model to interpret VOCs data from quality control procedure is presented and discussed. 

The analytical procedure proposed was published in Ricci et al. (2023). 

4.1.Importance of Chemical measurements 

4.1.1. Chemical measurements 

Chemical properties of food are the most common procedures to estimate the properties of a food 

product and to develop quality control procedures. From traditional chemical essays, since the 2000s 

the application of new technologies like mass spectrometry and near infra-red spectroscopy allowed 

to collect a large amount of information that are related to different chemical properties at the same 

time. The adoption of these procedures represented a significant improvement for the quality control 

procedure and helped to develop a new paradigm of fingerprinting of the products. Fingerprinting 

consists in collecting at the same time multiple measurements related to different properties of the 

product and developing a multivariate approach to create a reliable procedure to analyze them. For a 

broader investigation on the adoption of Volatile organic compound profile for quality control, we 

recommend the work of Lin et al. (2022). 
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4.2.Application 2 – Study of the effect of the production process on the Volatile Organic 

Compounds composition 

4.2.1. Introduction 

Volatile organic compounds (VOCs) are molecules characterized by high vapor pressure at room 

temperature and low water solubility. Several VOCs in food contribute to odors and flavors that play 

a key role in sensory quality perception and liking responses (Khattab et al. 2019, Liaw et al. 2011). 

In cheese, VOCs are produced to a great extent during ripening by the catabolic activity of 

microorganisms on carbohydrates, lipids, and proteins naturally present in milk and rennet (Kilcawley 

et al. 2018; Marilley & Casey, 2004; McSweeney & Sousa, 2000; McSweeney, 2004). The metabolic 

pathways responsible for the synthesis of VOCs are affected by the properties of raw milk and the 

conditions of the production process. For this reason, VOCs are considered reliable markers of process 

quality and traceability of cheese products (Pisano et al., 2016; Suh, 2022). 

Trentingrana dairy factories differ in the adoption of a double or a single milk collection procedure 

(Endrizzi et al., 2012), which determines differences in storage time, temperature conditions of the 

raw milk before transformation, and intensity of the milk skimming process. This latter process 

decreases bacterial and somatic cell counts by natural gravity separation of fat, thus standardizing the 

properties of fat and casein/fat ratio (McSweeney et al., 2004). The effects of the milk collection 

procedure, the skimming process, and storage temperature on the sensory and chemical properties of 

Trentingrana cheese have already been studied. Endrizzi et al. (2012) found differences in physical 

properties and sensory quality attributes in cheese wheels produced in pilot plants with different milk 

collection procedures and in different seasons, showing significant differences in commercial quality, 

colorimetric properties, and the VOC profile. Franciosi et al. (2011) reported the effect of the milk 

collection procedure on chemical and VOCs composition in Trentingrana cheese showing a higher 
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content of free fatty acids and related esters in cheese wheels produced using double collection without 

refrigeration. In a similar study, Fabris et al. (2010) trained a random forest classifier to recognize the 

milk collection procedure from the VOC content in Trentingrana cheese and to highlight which 

molecules are determinants for discriminating the cheese wheels produced in different seasons. 

Monitoring the VOC profile of Trentingrana in its real-scale production process is functional to 

understanding how to operatively improve its quality: associating the presence of chemical 

compounds to a production process condition or a feature of the final product allows to develop a 

faster quality control procedure and to estimate how the issue studied is related to the chemical 

properties of food (Ellis & Mayhew, 2014). 

Previous studies were done using a restricted batch of samples from pilot plants with a balanced 

experimental design to study the factors of interest, and thus excluding at multivariate level the effect 

of the other factors that may influence the final quality of the product in a real production context. 

Overall, previous results highlighted that there exists a need to develop a large-scale monitoring of 

the chemical properties of Trentingrana cheese, to estimate the significance and the importance of the 

factors investigated in previous experiments in the real context of the production process. Because of 

the presence of many factors and the multivariate structure of VOC data, there is also the need to 

develop a functional and reliable statistical procedure to infer the effect of the process-related factors 

at multivariate level removing the nuisance due to confounding factors. 

The objective of this work is to test the suitability of ANOVA-Simultaneous Component Analysis 

(ASCA) to extract useful information from volatile organic compound data measured in Trentingrana 

cheese in a real production context where several confounding factors are present, and no experimental 

design is designed focusing on predefined a priori factors. To this end, within the collaboration with 

Trentingrana – Consorzio dei Caseifici Sociali Trentini (Italy), the VOC profile of Trentingrana 
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cheese over two years of production was analyzed by SPME/GC-MS, sampling a representative 

selection of cheese wheels from its real-scale production process. We estimated how VOC profiles 

are related to distinct raw materials, different processing of the different cheese factories, the 

enzymatic activity of the rennet adopted, and different parts of the year when the milk is produced. 

A two-step analytical process is presented: first, for the estimation of the significance and the effect 

size of two process-related factors (Dairy Factory and Time of the year when the wheels are produced), 

an ANOVA-Simultaneous Component Analysis was adopted. Analyzing the results, an overall 

tendency in the VOC content between different dairy factories was detected. The effect of the milk 

collection procedure adopted by the dairy factory is proposed as an interpretation for this tendency. 

To test this hypothesis and to estimate its effect, an O-PLS-DA predictive model was trained and 

validated (Smilde et al. 2012, Trygg & Wold, 2002). 

4.2.2. Materials and methods 

4.2.2.1 Sampling procedure 

A total of 317 cheese wheels were bi-monthly sampled from the Trentingrana Consortium repository 

(located in the Autonomous Province of Trento, Northeast Italy) during the years 2017 and 2018. The 

wheels were produced from November 2015 to October 2017 by 15 different dairy factories located 

in the Province of Trento (Italy), ripened for 18 ± 2 months, and labeled progressively from C-1 to C-

15 (production traits of each dairy are summarized in Table 5). For each dairy factory, the number of 

samples varied in proportion to the volume of cheese wheels delivered from a minimum of 1 cheese 

wheel and a maximum of 3. For more details on sampling criteria, see Ricci et al. (2022). The samples 

for the analysis of VOCs were prepared by taking 24 parallelepipeds of cheese (3 × 1.5 × 1.5 cm) 

from various positions of the freshly cut half part of the wheel then finely grounded and well mixed. 
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Approximately 3 g of grounded cheese were weighted inside a 20 mL GC-MS vial (Supelco, 

Bellefonte, CA, USA), capped with PTFE/silicone septa (Supelco, Bellefonte, CA, USA), and stored 

at −80 °C. For each cheese wheel, three vials from the same mixing were prepared. Before the analysis, 

samples were thawed for 1 h at room temperature, then each vial was spiked with the internal standard, 

just before the beginning of the analysis. Each sample was classified according to the dairy factory 

where it was produced, the part of the year when the milk was collected, and the milk collection 

procedure adopted for its production. At the beginning of the sampling procedure, from one of the 

first cheese wheels, 100 vials were prepared with the same grounded cheese mix and stored at −80 °C 

than used as quality control (QC sample) during GC-MS analysis over time. 

Table 5: Production traits across dairy factories of the Trentingrana consortium. 

Dairy 
Factory 

Number of 
farms 

associated 
to the dairy 

Percentage of 
farms using 

unifeed 
alimentation 

procedure 

Number of cheese 
wheels produced 

during production 
year 2015/16 

Number of cheese 
wheels produced 

during production year 
2016/17 

Milk 
collection 
procedure 

adopted 

C-1 17 58.8 14476 14929 Double 

C-2 18 16.7 1207 1534 Mixed 

C-3 51 3.9 9882 10415 Double 

C-4 38 26.3 11881 10537 Single 

C-5 10 30 6145 6296 Double 

C-6 59 6.8 3010 2387 Single 

C-7 38 10.5 6695 7390 Single 

C-8 47 4.3 5286 5900 Double 

C-9 46 0 5119 5407 Double 

C-10 12 8.3 1985 3721 Double 

C-11 78 1.3 7072 7795 Double 

C-12 95 1.1 7961 8609 Double 

C-13 9 0 5137 5028 Single 

C-14 72 2.8 8287 9183 Double 

C-15 27 0 2635 1801 Single 

In dairy factories where double milk collection (DMC) procedure is adopted, the full-fat milk of the 

evening milking is delivered to the cheese factory and undergoes a gravity separation process 
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overnight in large vats (Ma & Barbano, 2000). After that, the milk of the morning milking is added to 

the semi-skimmed milk and used to produce cheese according to the standard cheese-making 

procedure of the Trentingrana. The single milk collection (SMC), instead, consists in storing the milk 

of the morning milking at the dairy farm in controlled conditions and then adding the evening milk, 

before moving the raw milk to the cheese factory, where the skimming procedure takes place 

overnight. Samples produced in the dairy factory labeled C-2 were classified in a third-class called 

mixed milk collection (MMC) because in that specific dairy factory both collection procedures are 

used according to the farm where the milk is collected. 

4.2.2.2 SPME/GC-MS analysis 

The procedure for Headspace solid-phase microextraction coupled with gas chromatography-mass 

spectrometry (SPME/GC-MS) was performed according to Endrizzi et al. (2012) with a few 

amendments. The samples were equilibrated at 40 °C for 30 min, and then in the headspace 

environment, a fused silica fiber coated with 2 cm of 50/30 μm 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS, Supelco, Bellefonte, PA, USA) 

was inserted and exposed for 30 min without changing the temperature. The desorption of the volatile 

compounds from the SPME fiber was performed at 250 °C for 5 min in the injector port of a GC-MS 

operating in electron ionization mode (EI, internal ionization source; 70 eV). The control of the 

procedure phases was managed using an auto-sampling system (CTC combiPAL, CTC Analysis AG, 

Zwingen, Switzerland) equipped with a cooling system that kept the vials at 4 °C before the start of 

the analysis. Separation was conducted on an HP-Innowax fused silica capillary column (30 m, 0.32 

mm ID, 0.5 μm film thickness; Agilent Technologies, Palo Alto, CA, USA). Separation conditions 

were as follows: carrier gas was helium at a constant flow rate of 2 mL/min; oven temperature 

programming was 40 °C for 3 min, an increase from 40 to 180 °C at 4 °C/min, stationary at 180 °C 
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for 6 min, then another increase from 180 to 220 °C at 5 °C/min and finally, 220 °C for 3 min. The 

mass spectrometer operated a mass scan range from 33 to 300 m/z (GC Clarus 500, PerkinElmer, 

Norwalk CT, USA). 

Compound identification was based on mass spectra matching with those present in the standard 

NIST14 (NIST/EPA/NIH, 2014) library and linear retention times calculated injecting C7–C30 n-

hydrocarbon series under the same chromatographic conditions. Compounds were semi-quantified 

spiking samples with 4-methyl-2-pentanone (Sigma-Aldrich) as I.S. 0.05 g/L in aqueous solution. 

Amount of VOCs in the samples were expressed as μg/kg equivalent of the I.S. 

The analytical measurements were performed over a period of two months and required four different 

batches of SPME fibers to overcome the decline of the performances due to the deterioration of the 

fiber itself. The repeatability of the method was assessed for each batch of SPME fiber, analyzing 

twelve replicates of a reference cheese on the same day. The observed average variation, estimated 

for the classes of acids, esters, ketones, and aldehydes agreed with the literature for SPME analysis 

with this type of matrix (Barbieri et al., 1994; Bellesia et al., 2003, results in table 6). Furthermore, a 

QC sample was measured every ten cheese samples over all the period of measurements. 

Table 6: Repeatability index for different classes of molecules for each SPME fiber adopted in 

SPME/GC-MS analysis. Values are estimated from 12 repeated analysis on a reference cheese 

sample. 

SPME fiber Acids Aldehydes esters ketones 

1 14% 12% 6% 8% 

2 27% 26% 15% 25% 

3 37% 28% 10% 34% 

4 22% 25% 6% 20% 
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4.2.2.3 Statistical analysis 

VOCs data were analyzed using ANOVA simultaneous component analysis (ASCA, Smilde et al., 

2012) to identify multivariate patterns significantly associated with the different study factors: Dairy 

Factories, Time of the year, and their interaction, and the effect of the batch of SPME fiber. The ASCA 

model decomposes the signal of each volatile x in the following form:  

𝑥𝑗𝑘𝑛𝑖  = 𝜇 +  𝛼𝑗  + 𝛽𝑘  + 𝛾𝑛  + (𝛼𝛽)𝑗𝑘  +  𝜖𝑖 

Where μ represent the overall mean of the volatile compound, 𝛼𝑗 the expected value for the jth Dairy 

Factory, 𝛽𝑘 the expected value for the kth Time of the year, 𝛾𝑛 the expected value for the nth batch of 

SPME fibers, (𝛼𝛽)𝑗𝑘  the interaction between the Dairy Factory and Time and 𝜖𝑖 the residual error 

for the ith cheese wheel representing the natural variability of each cheese wheel. The effect of the 

batch of SPME fibers is considered a known and controllable nuisance source of variability and it is 

integrated into the model as a blocking factor (Montgomery, 2013). 

A permutation test (n = 1000) was applied to assess the univariate statistical significance of each factor 

for each volatile compound estimating empirical null distributions for the univariate sum of squares 

(α = 0.05). 

An Orthogonal Partial Least Squares – Discriminant Analysis (O-PLS-DA, Trygg & Wold, 2002) 

classifier was developed to deeply investigate the Milk Collection procedure adopted to produce each 

cheese wheel from its VOC profile. 

The model was built using a restricted dataset of the 14 dairy factories that use single or double milk 

collection (n = 306, prevalence of DMC = 70.9%), to analyze only the two most prominent modalities 

of the milk collection process. Data were partitioned into train and test sets (train/test ratio = 0.8) and 
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a cross-validation procedure was performed in the train set to estimate the optimal number of 

orthogonal projections. To assess the predictive capacity of the model, the results from repeated 

partitions were compared with a null distribution obtained by a permutation test (n = 1000) in terms 

of sensitivity, specificity, and overall accuracy (using Cohen’s Kappa index, Ferri et al. 2009). 

To identify which VOCs were related to the variation of the Milk Collection Procedure, a bootstrap 

procedure (n = 1000) was employed to estimate the confidence intervals and the significance of the 

regression coefficient of every VOC included in the model (Lazraq et al. 2003). The validation of the 

coefficients of the model identified the VOCs affected by the different milk collection procedure. This 

procedure of testing for significance considers the dimensionality and the structure of the data as it is 

modeled by O-PLS-DA and does not require standard statistical assumptions. 

4.2.3 Results and discussions 

4.2.3.1 Qualitative VOCs assessment 

A total of 75 volatile organic compounds have been identified by SPME/GC-MS analysis. These 

compounds belong to the following chemical classes: esters (n = 17), alcohols (n = 13), ketones (n = 

11), acids (n = 9), aldehydes (n = 8), sulfurs (n = 5), hydrocarbons (n = 4), phenols (n = 3), lactones 

(n = 2), terpenes (n = 2) and pyrazines (n = 1). Overall results are summarized in table 7. 

Table 7: Overall values for SPME/GC-MS measurements for each volatile organic compound 

detected in Trentingrana Cheese expressed in μg/kg equivalent of i.s., each measurement has been 

carried out in triplicate. The values of the linear retention index are obtained from NIST 14 

database (NIST/EPA/NIH 2014). 

https://www.sciencedirect.com/science/article/pii/S0023643822012993#bib35
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Compound 
Category 

Compound Name Minimu
m 

Mean Maximu
m 

Retention 
Index 

Estimated 

Retention 
Index NIST 

Acids acetic acid 30.21 222.45 633.28 1529 1449 

propionic acid 0.00 50.76 876.65 1594 1535 

butanoic acid 85.66 682.33 5040.80 1689 1625 

2-methyl butanoic acid 0.00 0.72 12.11 1759 1662 

hexanoic acid 78.00 870.81 9791.60 1914 1846 

heptanoic acid 0.00 5.44 85.49 2049 1950 

octanoic acid 25.84 232.10 3846.18 2127 2060 

nonanoic acid 0.00 7.74 51.94 2211 2171 

decanoic acid 5.87 48.29 678.66 2339 2276 

 Total Acids mean 235.63     

Total acids Standard 
deviation 

472.30     

Alcohols 2-propanol 1.14 6.66 43.26 932 927 

ethanol 6.79 1030.0
7 

4455.16 940 932 

2-butanol 0.00 6.75 230.39 1035 1025 

2-methyl, 1-butanol 6.19 35.68 159.91 1142 1119 

1-butanol 0.00 9.11 69.39 1164 1142 

3-methyl 1 butanol 0.00 13.35 72.21 1222 1209 

1-pentanol 0.00 1.36 6.85 1261 1250 

3-methyl, 3-buten 1-ol 2.11 9.14 24.43 1261 1248 

2-heptanol 0.00 10.08 70.88 1330 1320 

prenol 1.27 5.06 11.31 1332 1320 

hexanol 0.00 6.48 66.12 1364 1355 

2-ethyl hexanol 0.00 1.00 10.40 1501 1491 

2-nonanol 0.00 0.74 35.89 1531 1521 

 Total alcohols mean 87.34     

Total alcohols 
Standard deviation 

522.54     

Aldehydes 2-methyl butanal 1.47 6.92 22.06 919 914 

3-methyl butanal 5.45 23.81 61.35 922 918 
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Compound 
Category 

Compound Name Minimu
m 

Mean Maximu
m 

Retention 
Index 

Estimated 

Retention 
Index NIST 

hexanal 0.00 2.20 7.31 1100 1083 

3-methyl 2-butenal 0.00 0.29 2.06 1212 1215 

nonanal 0.00 1.71 19.78 1402 1391 

decanal 0.00 0.38 3.29 1510 1498 

benzaldehyde 0.00 3.96 36.74 1533 1520 

phenyl acetaldehyde 0.73 4.24 14.55 1654 1640 

 Total Aldehydes mean 5.44     

Total aldehydes 
standard deviation 

8.61     

Esters ethyl acetate 1.27 21.13 110.65 900 888 

ethyl propanoate 0.00 4.70 145.03 965 953 

isopropyl isobutanoate 0.00 32.12 188.59 970 959 

ethyl butanoate 15.96 299.17 1668.76 1049 1035 

2-methyl ethyl 
butanoate 

0.00 0.01 0.50 1062 1051 

butyl acetate 0.00 0.87 12.00 1093 1074 

ethyl valerate 0.00 1.53 9.76 1147 1134 

butyl butanoate 0.00 0.95 20.41 1229 1220 

ethyl hexanoate 6.04 240.55 1777.48 1244 1233 

isoamyl butanoate 0.00 0.77 9.86 1273 1259 

butyl pentanoate 0.00 0.00 0.19 1324 1310 

propyl hexanoate 0.00 0.13 8.98 1329 1316 

isopentyl hexanoate 0.00 0.00 0.31 1423 1451 

butyl hexanoate 0.00 0.07 2.79 1423 1408 

ethyl octanoate 0.44 21.28 203.50 1444 1435 

2-hydroxy, 4-methyl, 
methyl pentanoate 

0.00 0.36 9.16 1481 1513 

ethyl decanoate 0.00 4.17 32.61 1649 1638 

 Total esters mean 26.16     

Total esters standard 
deviation 

107.10     

Hydrocarbons (E) 3-octene 0.00 0.97 4.65 885 850 
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Compound 
Category 

Compound Name Minimu
m 

Mean Maximu
m 

Retention 
Index 

Estimated 

Retention 
Index NIST 

ethyl benzene 0.00 0.94 18.64 1135 1129 

p-xylene 0.00 0.36 5.35 1143 1138 

m-xylene 0.00 0.88 14.04 1148 1143 

 Total hydrocarbons 
mean 

0.63     

Total hydrocarbons 
standard deviation 

1.39     

Ketones 2-propanone 3.30 29.61 80.99 882 819 

2-butanone 1.42 13.73 448.25 909 907 

2-pentanone 20.72 117.10 460.19 986 981 

2-hexanone 0.00 6.18 15.84 1099 1083 

3-heptanone 0.00 2.56 12.87 1165 1161 

2-heptanone 87.21 240.30 545.57 1194 1182 

2-octanone 0.00 0.54 6.68 1294 1287 

acetoin 0.00 5.19 60.71 1295 1284 

2-nonanone 7.64 27.49 69.51 1397 1390 

2-undecanone 1.47 5.37 11.76 1608 1598 

acetophenone 0.00 0.36 6.24 1661 1647 

 Total ketones mean 37.37     

Total ketones standard 
deviation 

77.97     

Lactones butanolactone 0.00 0.71 7.28 1637 1632 

delta decalactone 0.96 3.12 6.88 2162 2194 

 Total lactones mean 1.92     

Total lactones 
standard deviation 

1.64     

Phenols phenol 0.54 1.37 2.63 2021 2000 

4-methyl phenol 0.23 1.03 10.60 2095 2080 

3-methyl phenol 0.75 5.24 18.66 2103 2091 

 Total phenols mean 2.55     

Total phenols standard 
deviation 

2.74     
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Compound 
Category 

Compound Name Minimu
m 

Mean Maximu
m 

Retention 
Index 

Estimated 

Retention 
Index NIST 

Pyrazines 2, 6 dimethyl pyrazine 0.00 5.61 21.84 1336 1328 

Sulfurate 
Compounds 

methanthiol 0.00 1.24 6.97 866 692 

carbon disulfide 0.00 2.86 31.88 870 735 

dimethyl sulfide 0.53 3.77 12.90 872 754 

dimethyl disulfide 0.00 1.14 5.84 1089 1077 

dimethyl sulfone 0.00 1.75 6.43 1911 1903 

 Total sulfurate mean 2.15     

Total sulfurate 
standard deviation 

2.20     

Terpenes α thujene 0.00 1.39 23.56 1026 1028 

limonene 0.00 4.02 189.39 1201 1200 

 Total terpenes mean 1.80     

Total terpenes 
standard deviation 

10.08  
 

   

Identified compounds agreed with the literature on VOCs in grana cheese (Qian & Reineccius, 2002). 

The most prominent compound type by overall relative concentration is organic acids, followed by 

ketones and alcohols. Those classes contain several molecules that are directly related to the natural 

content of raw milk, such as medium-chain fatty acids, and they are naturally occurring in many milk-

based products due to lipid catabolism by endogenous enzymes and microbial activity (Collins, 

McSweeney, & Wilkinson, 2004). 

Esters were characterized by a high overall mean but also high variability. These compounds are 

synthetized from the lipidic fraction by the microbial activity in milk during ripening and they are 

often associated with positive sensory descriptors in hard seasoned cheese (Liu et al. 2004, Qian & 

Reineccius 2002). High levels of variance in ester compounds were already detected in previous works 

on Trentingrana cheese (Fabris et al., 2010). Conversely, both terpenes and hydrocarbons were present 

at low levels with high variability because most of them were not detected in all the samples. 
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According to literature, these compounds are related to the cows’ diet and the seasonal effect and are 

not naturally occurring in ripened cheeses (Kilcawley et al., 2018). Lastly, phenols, 3-methyl phenol 

and 4-methyl phenol are mostly related to amino-acid metabolism, however their presence may also 

be related to the diet and the external environment (Curtin & McSweeney 2004; Panseri et al. 2014). 

4.2.3.2 ANOVA simultaneous component analysis 

The percentage of total variance explained by each factor and interaction was estimated according to 

Bertinetto et al. (2020) by calculating the percentages for each factor of the sum of squares, as reported 

in Figure 12. 

 

Figure 12: Barplot reporting the percentage of the overall variance explained by each factor of the 

ASCA model. 
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The high percentage of explained variance related to the effect of the SPME fibers highlighted that 

there is an important systematic error related to the 4 different batches of fibers used. Even if the effect 

of a measurement-related bias is important, the ASCA framework allows to analyze the effect of Dairy 

Factory and Time removing the effect of a potential confounding factor such as the variation of the 

SPME fiber. 

Results of ASCA permutation test showed no significant effects at a univariate level for the interaction 

of Dairy Factory and Time, while 3 molecules were significantly responding to the factor Time. The 

Dairy Factory factor was significant for 46 molecules out of 75 and the SPME fiber factor was 

significant for 55 out of 75 compounds (Figure 13). 
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Figure 13: Barplot showing the significance of the factors of ASCA decomposition reported using 

p.values estimated using a permutation test for each VOC. The red line indicates the significance 

threshold of 0.05, results were adjusted using Bonferroni correction. 

Considering that none of the compounds was significantly responding to the interaction factor (Time: 

Dairy Factory), the multivariate decomposition of this term was not considered. 

The Time factor has been included in the model, but it has been analyzed also at a univariate level. 

The permutation test demonstrated that the ASCA decomposition with the model proposed is 

representative of the overall data structure. Results are discussed further below for the factor Dairy 

Factory and Time of the year, respectively. 

To verify the presence of significant factors not included in the model of the multivariate 

decomposition, the PCA biplot of the residuals was analyzed to estimate the presence of effects not 

represented in the model (Figure 14). 
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Figure 14: Multivariate distribution of residuals of ASCA decomposition. Each point corresponds to 

a single measurement, the ellipsis indicates the interval of confidence at 95%. 

In ASCA decomposition, the Dairy Factory factor was the factor related to the production process that 

described the largest percentage of explained variance (14.5%, Figure 12), excluding the blocking 

factor SPME fiber. The variations in the production process adopted in the dairy factory significantly 

affect the VOCs profile of Trentingrana cheese more than the other factors included in the model. 

The results of the multivariate decomposition of the Dairy Factory term of the ASCA decomposition 

are shown in Figure 15. The biplot indicates that the first two components account for 51.3% of the 

overall variability. The first principal component separated from left to right all the dairies for the 

content of organic acids, their esterified form, and 1- and 2- butanol. Along with this component, the 

samples were separated from the right to left for the content of two ketones (propanone and 
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pentanone), and from left to right for the increasing content of free fatty acids and their esterified 

forms. 

 

Figure 15: Results of ASCA decomposition for the factor Dairy Factory. 

In the plot A the score values for each level labeled from C-1 to C-15 for each dairy factory are 

reported and they are represented by blue, orange, or black dots according to the milk collection 

procedure they adopt (respectively blue for DMC, yellow for SMC, and black for MMC). In plot B 

loading values are reported and represented using dark-gray text, only VOCs significantly different 

are represented. (For interpretation of the references to color in this figure legend, the reader is referred 

to the Web version of this article.) 
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On the first component, which explained 28.8% of the overall variance, the dairy factories were 

distributed in different groups, with three dairies (C-7, C-4, and C-15) placed on the far left, C-6 and 

C-13 placed on the left side, C-1, C-2, C-5, C-9, C-12, and C-14 placed in the central position of the 

axis, and C-3, C-8, C-10 and C-11 in the right side of the plot. 

The second principal component explained 22.5% of the overall variance and was related to the 

variation among dairies due to propionic acid, limonene, α-thujene, 2,6-dimethyl pyrazine, and 

alcohols such as 2-propanol, 2-butanol, and 2-heptanol. Along with this component, the dairy factory 

C-11 was separated from all the others in the lower part of the graph. This was due mostly to the 

higher content of limonene, and to the lower content of 2,6-dimethyl pyrazine. Higher levels of 

limonene have previously been related to the cow's diet (Kilcawley et al., 2018) or to process related 

contaminants from industrial detergents. Conversely, the formation of 2,6-dimethyl pyrazine is related 

to the Maillard reaction occurring during milk cooking during cheese production (Divine et al. 2012), 

and to the higher content of propionic acid, which is related to the activity of contaminant microbes, 

which are associated to the handling of the raw milk and the condition of the production process 

(Giraffa 2021). The presence of propionic bacteria in Trentingrana was already reported by Rossi et 

al. (2012), who also found significant differences in the microbial activity during ripening between 

dairies and between different parts of the year. 

The formation of free fatty acids and their esterified form is related to the catabolism of triglycerides 

during ripening (Collins et al. 2004). The distinct levels of these molecules between dairies along the 

first principal component suggest that the concentration is related to the process of the milk collection 

procedure. 

The effect of the dairy factory on the textural and colorimetric properties of Trentingrana cheese was 

reported in a previous work (Ricci et al. 2022). Comparing the results, the dairy factories that were 
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similar for the overall physical properties of their cheese were not similar for the overall VOCs profile. 

This could be due to the fact that the factors that affect the physical properties and the factors that 

affect the formation of VOCs in Grana cheese are different: color and texture of cheese are mostly 

affected by the properties of the raw milk and the treatments of the curd, while VOCs formation is 

affected also in a large scale by the microbial activity during the ripening process (Divine et al., 2012; 

Fox et al. 2017; Kilcawley et al., 2018). 

Noteworthily, the dairy factories differ in the farm producing the raw milk, the heating and storing 

machinery used, the properties of the whey starter, and the milk collection procedures, which can be 

double or single. Comparing the results to the information about the dairies available in Table 5, it 

should be noted that the factor that affects the overall variation of VOCs between dairy factories is 

the milk collection procedure. Conversely, the average volume of production for year, the number of 

farms delivering the milk, and the adoption of unifeed alimentation system in the farms are not directly 

related to the formation of volatile organic compounds in hard seasoned cheese. These results 

highlight the importance of the milk collection procedure on the overall chemical profile of 

Trentingrana cheese, coherently with the results reported by Endrizzi et al. (2012). 

Overall, the ASCA model highlighted the importance of the milk collection procedure on the VOC 

profile of Trentingrana cheese and separated the dairy C-11 from the others in the second principal 

component, detecting that the production process differs in that specific plant, modifying the 

concentration of other volatile organic compounds. These results indicated that ASCA is a valuable 

data analysis procedure to recognize significant differences at process levels in large-scale sampling 

procedures, such as routinary sampling procedures. The relations between volatile compounds and the 

milk collection procedure is further discussed in section 4.2.3.3. 
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For the effect of the time of the year, as shown in Figure 12, only 2.6% of the multivariate variance 

was explained by the factor Time. Hence, considering the small number of significantly different 

molecules for this factor according to the permutation test (Figure 13), the multivariate ASCA 

decomposition could be misleading, however it was reported in Figure 16. 

 

Figure 16: ASCA decomposition related to the factor Time. Score values for each level are 

represented by black dots, labeled using the first three letters of the two months of each couple of 

months when the cheese wheels were sampled. 

The permutation test reports that the three molecules that vary significatively by the production time 

of the year included 3-methyl phenol (m-cresol), p-xylene, and ethylbenzene. 



93 

 

Ethylbenzene is classified as a pollutant (Panseri et al., 2014), and hence was not included in further 

analysis. 

The effect of the time of the year on these single compounds is reported in the boxplot in Figure 17. 

The formation of p-xylene and 3-methyl-phenol is associated with the metabolism of aromatic amino 

acids (Curtin & McSweeney, 2004), and a seasonal effect in their concentrations was reported in raw 

milk used for cheesemaking by Faustini et al. (2019). Post-hoc analysis highlighted that the cheese 

wheels produced from September to December have a lower content of 3-methyl-phenol than those 

produced from January to April, and higher levels of ethyl benzene and p-xylene than those produced 

from March to June. 
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Figure 17: Boxplot reporting values of the three significantly different volatile compounds for the 

factor "Time". 

Values are centered for the mean value of each batch of SPME fiber adopted. Each dot corresponds 

to a single measurement, the bold black line represents the median value, upper and lower margins of 

the blocks indicate the limit of the second and third quartile respectively, and whiskers indicate upper 

confidence intervals at 95%. The dashed red line represents the overall median for each compound. 

Letters show the groups estimated from post-hoc pairwise comparison tests. 

The estimated effect of time of the year when the wheels were produced on the content of VOCs was 

low at the multivariate level. Interestingly, Fabris et al. (2010), detected 8 molecules that changed 
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significantly according to different part of the year when the milk is produced, analyzing with PTR-

MS a small sample of cheese wheels from a pilot plant. The molecules were tentatively identified as 

medium-chain organic acids and ketones. The different results could be interpreted considering the 

smaller analytical power of the previous research due to the limited number of samples analyzed. 

This could also be explained considering the variance added by the natural variability of the product: 

the seasonal effect may influence the volatile compounds in raw milk, but there are no indications that 

it could also modify the conditions during the production process and the ripening phase, thus a 

transformed product could be less affected by seasonal conditions. 

4.2.3.3 O-PLS-DA predictive model 

The O-PLS-DA algorithm allows modeling separately the variations of the predictors correlated and 

orthogonal to the response. This model improves the explication of the effect of the predictors and 

their systematic variation compared to standard PLS (Pinto et al. 2012). To estimate the effective 

presence of the effect of the milk collection procedure on the VOC content, the predictive O-PLS-DA 

model was validated using a permutation test. The significance was tested by comparing the 

performance indices of the models trained in the permutation test, considered as the null distribution, 

with the indices estimated from multiple partitions of the real data set. The comparisons between the 

replicates and the null distributions are shown in the violin plots in Figure 18. 
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Figure 18: Violin plot reporting the comparisons between the distributions of the model performance 

on repeated partitions and the null distribution of the permutation test. 

Results of the Wilcoxon statistical test are reported in the box of text above each parameter, each dot 

represents a single measurement, null distribution and multiple partitions distribution are colored in 

blue and red respectively. 

Results of the comparison between multiple partitions and null distribution demonstrated that the final 

O-PLS-DA model had significant predictive capacities, reported by the significant difference from 

the null distribution of the kappa index estimated from repeated partitions. Moreover, it efficiently 

separated the two groups, as reported by the high values of sensitivity and specificity and by their 

significant difference from null distribution. This model demonstrated that at multivariate level the 

content of VOCs in a single cheese wheel could be associated with a different milk collection 



97 

 

procedure adopted by the dairy factory. The test adopted demonstrated that the model was 

representative of the underlying data structure and that its performances were reliable independently 

from the single data partition. 

The confidence interval of each regression coefficient of the model was estimated using a bootstrap 

approach, and the molecules whose confidence interval included 0 value were labeled as non-

significant. The validated coefficient absolute values of the significant molecules are reported in the 

barplot in Figure 19. 

 

Figure 19: Barplot showing the absolute value of the significant regression coefficients of the O-PLS-

DA model validated using bootstrap. 
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Values reported in light-blue bars are referred to the Single Milk Collection procedure (SMC) and 

values in orange bars are referred to the Double Milk Collection procedure (DMC). Bars show the 

absolute values of the coefficients of the model, dashed error bars report the estimated confidence 

intervals. 

The bootstrap test of the O-PLS-DA model determined that the concentration of 44 volatile 

compounds is related to a different milk collection procedure. Results showed that the content of 

volatile compounds produced by the catabolism of fat in cheese, such as medium-chained free fatty 

acids, their esterified forms, and secondary alcohols, is related to the different milk delivery 

procedures. 

The formation of 2-pentanone was related to the different pasture techniques of the cows by different 

studies (Kilcawley et al., 2018; Villeneuve et al., 2013). However, as the product specification of 

production regulates the food intake of the cows, the most reasonable production pathway is the 

oxidative pathway of fatty acids by microbial activity (Collins et al., 2004). Instead, 3-methyl butanal 

and 2-methyl-1-butanol are transitory compounds of branched amino acids’ catabolism during 

ripening (Bovolenta et al., 2014). 

Medium-chain fatty acids, such as hexanoic, heptanoic, octanoic, nonanoic, and decanoic acids were 

significantly higher in cheese wheels produced by a double delivery procedure of milk. The different 

quantities could be explained by a higher lipolytic activity due to the storage and collecting procedure, 

as suggested by Franciosi et al. (2012). 

The formation of ethyl hexanoate, ethyl octanoate, and ethyl decanoate is related to the esterification 

of an organic acid with ethanol due to microbial activity, and their presence is related to the availability 

of free fatty acids (Kilcawley et al., 2018). Interestingly, such compounds were significantly higher 
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in cheese from double milk collection procedures, thus reasonably suggesting these molecules as other 

reliable markers of the process. Moreover, these results are coherent with those highlighted by the 

ASCA model for the factor Dairy Factory. 

According to Collins et al. (2004), lipase activity in cheese is affected by process conditions and 

microbial and enzymatic activity, and it is a critical step for the synthesis of secondary products of 

lipid metabolism during ripening. Wang and Randolph (1978) reported a reduction of the lipase 

activity in skim milk after temperature inactivation of the lipase naturally present in milk in conditions 

similar to the milk collection procedures reported in the present work. Eugster et al. (2019), instead, 

reported that Non-Starter-Lactic-Acid-Bacteria (NSLAB) can produce acetoin, 2-butanone, and 2-

butanol at high levels from pyruvate in hard and semi-hard cheeses, affecting the catabolism of amino 

acids positively. Altogether, an explanation for the variations related to the milk collection process 

could be that the different duration of the skimming process may affect the activity of the endogenous 

lipase enzyme in milk and of the non-starter lactic bacteria (NSLAB) naturally present in the raw 

milk, which grows better in raw milk collected using the double delivery procedure (Franciosi et al. 

2011, Giraffa 2021). The routinary analysis of the total microbial population in raw milk sampled 

from vats done by Trentingrana Consortium reported a significant difference between dairy factories 

according to the different milk collection procedure (data not shown). 

The results reported on the effect of milk collection procedure are coherent with previous research in 

a single dairy factory with controlled conditions of milk collection procedures (Endrizzi et al. 2012), 

which reported significant differences in the content of organic acids and esters between cheese 

wheels produced adopting a different milk collection procedure. This confirms the validity of the 

adopted multivariate strategy based on ANOVA-Simultaneous Component Analysis (ASCA) to 
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extract useful information from volatile organic compound data in a real production context where 

several confounding factors are present. 

4.2.4 Conclusions 

The analysis of food products directly sampled from the production process allowed measuring the 

relation between the production process’ variables and the properties of the food product at a real 

scale semi-industrial level. 

ANOVA simultaneous component analysis showed the effect of the season and the production plant 

on the content of volatile compounds in cheese, highlighting the differences between dairy factories 

due to milk collection and the sub-products of Maillard reaction at low temperatures. 

These results highlight how the Trentingrana cheese chemical profile is affected by the first steps of 

the production process: raw milk storing and skimming. For this reason, the quality control procedure 

to produce hard-seasoned cheeses needs also to monitor and uniform the conditions of the process in 

those early stages to ensure the same properties. 

In conclusion, the proposed analytical framework can be applied in other research related to large-

scale food production processes to highlight the factors responsible reliably and effectively for the 

differences observed when the latter are masked by several confounding cofactors. 

Further research is needed to estimate the underlying mechanism at the chemical and microbial level 

of technological variations in the production process and their effect on the quality of cheese at the 

technological and sensory levels. The association of microbial and VOCs data could help to 

understand the synthesis of VOCs in Trentingrana cheese. Furthermore, if associated with process 

conditions data, they could provide useful information for the optimization of the production process.  
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CHAPTER 5. FROM INSTRUMENTAL TO SENSORY 

The relationship between the instrumental and the sensory quality parameters is a topic of great 

concern in food technology because the estimation of those relationships gives insights into the 

interpretations of the causes behind the mechanism of perceptions and consumer preference. 

Furthermore, understanding those relationships is necessary to associate mechanical measurements 

with sensory defects to develop automatic quality control procedures. In the present chapter, the 

procedure for the association between instrumental and sensory measurement is presented and 

discussed and an application of the Trentingrana case study is reported. The results of the analysis 

proposed here were published in poster format and are reported in the abstract book of the conference 

EUROSENSE 2022: A Sense of Earth 10th European Conference on Sensory and Consumer 

Research, Turku, Finland, 13 - 16 September 2022, written by Ricci M.,  Gasperi F., Menghi L., 

Endrizzi I., Cliceri D., Aprea E., in the context of the TRENTINGRANA project by Edmund Mach 

Foundation. 

5.1 The association between sensory and instrumental measurements 

5.1.1 Sensory Measurements 

Sensory quality control is adopted in a large amount of food manufactures, with a slight variation to 

adapt the analytical procedure to the specific production processes and sensory properties (Munoz 

2002). 

The application of sensory quality control is a fundamental tool to detect many defects that cannot be 

detected by adopting instrumental procedures. Many sensory properties are critical for consumer 
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acceptance, and they usually cannot be measured efficiently with the instrumental procedure but can 

be easily detected by humans developing an adequate sensory analytical framework. 

The adoption of sensory quality procedures represents an important change in perspective in the 

specification of the product because it requires a definition of sensory parameters to be measured and 

to define which are the optimal levels of sensory properties. 

The procedures of sensory quality control may be applied in agrifood manufacture in many ways, ISO 

20613 (ISO 2019) reports some of these measurements. 

5.1.2. Relating instrumental to sensory measurements 

During the last 30 years, the association between sensory properties and instrumental properties of 

food has been studied at different levels (Andrews et al. 2021, Spence 2021, Smyth & Cozzolino 

2013, Seisonen et al. 2016, Foegeding & Drake 2007). Despite the vast number of experiments, a lot 

of work remains to be done for a detailed association between many different chemical and physical 

properties of food products and for many sensory properties.  

In the context of quality control procedures, instrumental analysis can be used to quickly detect 

sources of sensory defects. This is possible for issues where the chemistry or the structure of the 

product is related to the hypotheses about the cause of the quality traits detected through sensory 

analysis. There are many factors that can impact the integrity of the supply chain and lead to sensory 

defects: an interesting example in the Trentingrana production process is the incorrect handling of the 

temperature during the cooking of the curd, which can cause excessive retention of water inside the 

cheese wheel and consequently the formation of stirred paste. 
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Sensory analysis is necessary for determining the presence of sensory defects. The association 

between sensory and instrumental analysis consists in validating a statistical procedure that estimates 

the range of the values from instrumental measurements that are associated with the presence of 

defects. It is worth saying that for sensory defects instrumental (and other non-sensory) analyses can 

be useful, but not infallible: false negatives may happen because may incur problems that are related 

to other causes that do not affect the properties measured by the instrument.  

To associate chemical instrumental analysis with human sensory analysis to infer the associations 

between flavor-related sensory properties and physical-chemical properties, first of all, it is necessary 

to understand how the sensory information analyzed is acquired and how it is interpreted, to ensure 

that the associations inferred are not spurious (Andrews et al. 2021). Then, it is necessary to have 

clearly defined terms and definitions for the sensory attributes adopted (Drake & Civille 2003). 

Defined terms are functional tools for panel training and minimizing variability but also for choosing 

and interpreting instrumental measurements of the sensory attribute. 

The comparison of chemical or physical instrumental analysis versus human sensory analysis in the 

determination of flavor- or texture- related sensory properties requires knowing how the sensory 

properties are acquired by the human and how it is interpreted. 

In the specific case of the analysis of texture sensory properties in cheese products, the perceptions 

are affected by the food structure, but the presence of taste components can modify the perception, 

due to the phenomenon of cross-modal interaction (Foegeding et al. 2007).  

Thus, human perception of the sensory profile of a food depends on multiple factors rather than the 

simple presence of a range of individual chemical compounds and their absolute levels or of the 

several mechanical properties of material structure. Regarding texture and flavour properties of 
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cheese, we need to acknowledge the events that happen during mastication: the temperature increases, 

particles are mixed with saliva, and the crushing process is between jagged surfaces of teeth. 

Furthermore, because cheese is a viscoelastic material the mechanical properties sensed during 

chewing are affected by the rate of jaw closure. In most instrumental textural measurements those 

conditions are not present, surfaces are plain, and analyses are done isothermally. 

The property of cheese texture that is most easily measured by instrumental and sensory analysis is 

Hardness (Wium et al. 1997, Drake et al. 1999). This is because both the human mouth and 

mechanical property-testing instruments are capable of measuring force and are more easily 

correlated. However, Hardness is not the only defining textural term for cheese. As will become 

evident in the case study, properties that are assessed by chewing, such as cohesiveness, adhesiveness, 

and smoothness, require more analysis. 

The correlation structure between sensory texture and instrumental textural profile in cheese was 

estimated differently in different research (Bryant et al. 1995, Drake et al. 1999). There are various 

factors that may explain the variations, such as the mechanics of the test, the individual differences 

between the panelists, the adoption of slightly different tasting procedures, or non-coinciding 

definitions for the same terms. 

5.2 Statistical Models 

For the analysis of the relations between sensory and instrumental parameters is available an array of 

traditional statistical methods, such as experimental designs combined with response surface 

methodologies and linear regression methods (comprising multiple linear regression, partial least 

squares, preference mapping). Also, more advanced procedures have been proposed, such as artificial 

neural networks (Yu et al. 2018). 
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Experimental designs are denoted by a matrix, that represents the independent variables analyzed with 

the columns, and the samples or experimental runs with rows, divided by the factors of interest. 

Because of the multivariate structure of sensory data, standard univariate statistical procedure such as 

one-factor analysis of variance (ANOVA) cannot estimate the correlation structure between food 

physicochemical attributes, sensory profiles, and hedonic properties (Zielinski et al. 2014). 

Furthermore, the presence of masking and synergistic effects, especially between different sensory 

properties of food, determines relationships between these factors that cannot be properly represented 

by adopting simple univariate statistical procedures (Noble & Ebeler, 2002). A single physical 

property such as texture or flavor may be related to multiple sensory attributes in different ways, as 

perceived by the human brain (Perrot et al. 2006). Multivariate statistical methods are essential for 

these evaluations. These methods are categorized into linear and nonlinear, and in the next paragraphs 

some of the most used procedures will be presented. 

Multiple linear regression is a statistical model that predicts a single dependent variable from multiple 

independent variables. As explained in the previous paragraph, linear regression using a single 

independent variable is often insufficient and is unlikely to yield a satisfactory explanation of the 

relationship between the independent and dependent variables. 

Stepwise multiple linear regression is a linear regression technique adopting a selection algorithm of 

the variables in building a regression model. This regression procedure is divided into steps, consisting 

in adding or removing a model term from the model. Model terms with the most significant change in 

the designed index of good fitness will be added or removed, to maintain only the most relevant 

features.  
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Partial Least Squares Regression (PLSR) is a linear regression method that can be thought of as a 

combination between multiple linear regression and principal component analysis. For further 

discussion, we recommend chapter 2 of this thesis and Noble & Elber (2002). 

Preference mapping is a further application of PCA and other related methods (principal component 

regression, PLSR, etc.). It is used in producing a visual representation of sensory and consumer data 

from which significant trends and observations can be easily deduced, for an extensive discussion on 

the background of preference mapping, readers can be referred to Greenhoff and MacFie (1994). 

Artificial Neural Networks (ANN) are machine learning models that are very efficient in correlating 

process variables with non-linear relationships, which are very common in food processing and 

sensory analysis. ANN has been used in food areas associated with sensory analysis, sensory quality-

based food process control, and control set points of processes (Kupongsak & Tan 2006). 

ANN algorithm consists of a network of many neurons that carry non-linear function, and a different 

unit that contains different function is weighted, connected, and combined to produce overall output.  

Before applying ANN, the input and output variables should be established. Next, the type of ANN 

should be chosen, such as radial basis function and other critical parameters. Input variables are 

inserted in the first layer, and the calculation steps proceed layer by layer until the last one.  

ANNs have been used for many purposes in food technology (Marini et al. 2008, Cevoli et al. 2011, 

Bona et al. 2011, Baykal & Yildrim 2013). 
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5.3 Application 3: prediction of sensory textural properties of Trentingrana cheese 

5.3.1 Introduction 

The distinctive production process of Trentingrana cheese ensures the peculiar sensory quality and its 

characteristic granular texture. 

Texture properties are critical quality traits for ripened cheese, affecting its overall sensory quality 

and acceptability. Because monitoring texture sensory properties using traditional sensory evaluations 

is highly expensive and time-consuming, predictive models could be promising tools that lower the 

costs and produce effective results. 

The present study developed Partial Least Squares Regression models to estimate textural sensory 

attributes from instrumental texture measurements and gross composition in 64 cheese wheels 

sampled from the Trentingrana consortium dairies (n = 15).  

The same cheeses were analyzed for mechanical properties using uniaxial penetration in 24 replicates 

in the same portion of cheese evaluated by the panel, sampled in different positions considering the 

variability inside the product. Cheese gross composition was estimated by Near Infra-Red (NIR) 

spectroscopy. 

The objectives of the work were to estimate textural sensory attributes from instrumental texture 

measurements and gross composition, and to infer which physical properties affect the textural 

sensory properties of hard-ripened cheese. This relationship was estimated and validated for each 

sensory descriptor. 

The validation procedure consists in evaluating if the results estimated by the models are significantly 

more accurate than results estimated by random values, confirming the hypothesis of an association 
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between instrumental and sensory measurements. The validation step verifies if the model can give 

more information than a random estimation of the results or add only more nuisance and cannot 

estimate associations between sensory and instrumental data. 

5.3.2. Materials and methods 

5.3.2.1.Instrumental measurements 

Texture properties were measured on each cheese block by a TA-XT texture analyzer (Stable 

MicroSystem Ltd., Godalming, UK) applying a uniaxial compression/penetration on one of the wider 

sides of the cheese block sample. Following the method described by Noël et al. (1996), a 4 mm probe 

was used with a speed of 1.67 mm/s, a trigger force of 5 N, setting the endpoint of the measurement 

when a maximum strain of 90% of the height of the sample was obtained, and three mechanical 

parameters were calculated on the recorded curves. Those parameters are the same adopted in 

application 1 and are reported in Table 4. 

5.3.2.2.Sensory measurements 

A trained panel (n = 14; 71 % males; average age = 40 years old) analyzed Trentingrana samples in 

duplicate according to conventional descriptive sensory analysis. The texture attributes evaluated were 

Hardness, Friability, Humidity, Crystals, Microstructure, and Solubility, on a continuous scale from 

0 to 100. The panel evaluated 3 samples in duplicate in each session and a total of 20 weekly session 

were performed. 

The panel was previously trained on each descriptor with reference products to define the minimum 

and maximum levels. The sensory scores assigned to each sample were the average value of each 

panelist’s assessments. The list of sensory descriptors is reported in table 8. 
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Table 8: Summary of texture descriptors, their definition, and how the judges are trained to recognize 

and estimate them. 

Descriptor Definition Evaluation procedure 
Reference for  

lowest 
intensity 

Reference for  
maximum 
intensity 

Hardness 

Resistance of the 
sample to a small 

pressure exerted using 
the molars. 

Put the whole sample between the 
molars, close the jaw uniformly, 

and estimate the resistance of the 
sample before being deformed. 

Wurstel Steamed carrot 

Friability 

Product’s tendency to 
form multiple 

fragments at the 
beginning of the 

mastication. 

Bite the sample using molars from 
2 to 4 times and estimate the 
increment of the number of 

fragments before they solve in the 
saliva. 

Egg yolk 
Canestrello 

biscuit 

Humidity 
The perceived 

humidity/dryness 
during mastication. 

Put the sample in the mouth, 
masticate it 4 times and evaluate 

the level of humidity/dryness. 
Madeleine Wurstel 

Crystals 

The number of crystals 
perceived in the 
sample during 
mastication. 

Masticate the sample (8 times 
until it turns into bolus) 

considering the sound produced by 
the compression of crystals by the 

teeth. 

Ricotta cheese 
Ricotta cheese + 

granulated sugar 

Microstructure 

Particle size 
perception in the bolus 
after the mastication 

of the sample. 

Masticate the sample (4-8 times 
until bolus formation) 

and evaluate the shape and the 
perception of the particles in 

contact with tongues, cheeks and 
gums (from thin to coarse). 

Ricotta cheese Cous cous 

Solubility 
Perception of fast 

solving of the sample 
in the mouth’s saliva. 

Masticate the sample from 4 to 8 
times with molars and estimate 

the speed of the dissolution in the 
saliva of the whole sample or of 

part of it. 

Almond Egg yolk 

5.3.2.3.Statistical analysis 

For each sensory descriptor a Partial Least Squares Regression model was developed by adopting a 

Kernel PLS algorithm. The regressor adopted were all the instrumental measurements adopted and of 

their second-level interactions. To estimate the optimal number of components for each model, a 

cross-validation procedure with a multi-fold balanced partition was applied. 
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In the present context, because a second set of measurements of sensory and instrumental data to test 

the model was not available, a permutation procedure is proposed (n = 1000). A permutation test 

consists of multiple estimations of predictive models with a dataset with randomized predicted values 

for each model and estimating the predictive capacity of each model estimated. 

The predictive capacity of the model is summarized by the Random Mean Square Error (RMSE) 

values between the predicted values and the values of the test set. Then, the RMSE index distribution 

of all the values estimated by the predictive models trained with the real dataset is estimated, using 

each time a different balanced randomized partition. 

Each predictive model estimated for each permutation is trained after a balanced random partition 

between train and test subgroups, followed by a cross validation procedure inside the train set to 

estimate the optimal number of components for that specific partition. Subsequently, the model is 

applied in the test partition. 

This procedure estimates two distributions, one representing the null distribution of the random error 

once the data are completely mislabeled (the null error), and the other representing the predictive 

capacity of the model including the effect of the different partition on the significance of the model. 

The difference between the two distributions is verified by a Wilcox pairwise test considering both 

the significance of the test and the r value for the effect size (Tomczak & Tomczak, 2014). 

To estimate the predictive power of the trained model, a multiple partition procedure was performed 

to estimate the average estimation for every value of the dataset by the final model, to estimate the 

predictive power of the PLS structure.  

5.3.3. Results and discussion 
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5.3.3.1.Validation of the models 

The results of the validation test were reported adopting a violin plot, to show the comparison between 

the null distribution of the error and the distribution of the error from multiple partitions. To interpret 

correctly the test, the results of an unpaired Wilcoxon test statistic were also reported on the top of 

each parameter. The interpretation of the results, to overcome the effect of the high number of 

measurements due to the recursive structure of the permutation, was done considering both the p value 

of the test and the r index reporting the size of the effect detected by the test. The results are shown in 

Figure 20. 

 

Figure 20: Violin plot representing the results of the permutation test. The box above each descriptor 

reports the results of the Wilcox test. The point inside each violin represents the mean of the 

distribution, and the line represents the standard deviation. 

The results reported in the image show clearly that only three descriptors were significantly predicted 

more accurately than the null distribution, so it is legit to assume that the PLS model can effectively 

predict three sensory descriptors: Crystals, Friability and Hardness. It is generally acknowledged 
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(Foedeging & Drake 2007) that Hardness and Friability are two sensory descriptors associated with 

perceptions that can be related more easily than others with the results of instrumental measurements 

capable of estimating the force necessary to break the structure, while the descriptor for crystal has 

been much less investigated in the literature, being a descriptor of a quality trait related to the quality 

profile of grana cheese (Kindstedt & Polowsky 2021). The validation test also showed that there are 

no significant relations between the instrumental measurement of texture and gross composition and 

the perception of the Microstructure, Solubility, and Humidity. These descriptors are related to 

properties that probably are not measured by the analytical techniques adopted, consequently were 

not considered in the rest of the work. 

After the first validation step, a cross validation procedure was performed for the three significantly 

different descriptors, to estimate the optimal number of components that the models must adopt to 

represent optimally the results. The results of the cross-validation procedure were reported in the 

scatter plots in Figure 21. 
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Figure 21: Scatterplots representing the results of the cross-validation procedure of the PLS models 

for Hardness, Friability, and Crystals. The vertical blue dotted line represents the number of 

components with the lower value of RMSE, and the horizontal red dotted line represents the value of 

the standard deviation of the observed values. 

The results of the cross-validation procedures show that for Hardness and Friability respectively two 

and three principal components can represent optimally the overall structure between sensory and 

instrumental measurements, showing that there are no excessively complex correlation structures 

between them. For the descriptor Crystal were elected 11 principal components to represent the 

correlation structure. The number of components was chosen because the lowest Random Mean 

Square Error (RMSE) estimated using cross validation was the one corresponding to eleven principal 

components. This result may be related to the presence to a complex correlation structure, which needs 

a larger number of principal components than the amount adopted for other sensory descriptors, 

because it is not a simple linear relation. 

5.3.3.2. Predictive power of the models 

Adopting a multiple partition procedure (n=1000), the overall predictive capacity of the PLS models 

was estimated, and the overall explained variance was measured. The predicted values were 

summarized by the means for each observed value, to estimate the average estimation of the models 

compared to the real value. The comparison between the observed values and the mean predicted 

values represented the average predictive power of the model independently from the partition adopted 

to train it. The results were represented by adopting scatter plots comparing the predicted versus the 

observed values reported in Figure 22. 
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Figure 22: Scatterplots reporting the comparison between observed and predicted values for the three 

sensory descriptors which have significant PLS predictive models. The black dotted lines represent 

the bisector passing by the zero values of both axes, while the two red dotted lines represent the 

bisector passing through the +5 and -5 values of Y axis, to help interpret the difference between 

predicted and observed values. The RMSE and SMAPE values for each descriptor are reported above 

each scatterplot, while the values of R2 are reported in the lower part of each plot.  

As we can see in Figure 22, the results show that even if they are significant, the PLS predictive 

models can represent only a small part of the overall variance without overfitting. The overall error of 

this procedure is lower than the overall standard deviation of the observed values, thus the model can 

estimate significant differences. However, the low values of the R2 for each sensory descriptor      

indicate that only a fraction of the overall variance of the sensory properties of Trentingrana cheese 

can be detected by the actual models. 

5.3.3.3.Correlation structure 
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To estimate which are the variables that the PLS models estimated adopted mostly to predict the 

sensory properties of cheese, the loadings values of the validated models were studied. To represent 

the correlation structure estimated by PLS models, biplots representing the loading values for each 

variable of the matrix X, and the loading values for the Y values were used. For the sake of 

interpretation, only the individual variables without interactions were represented. 

 

Figure 23: Biplot representing the loading values for the X and Y matrix of the PLS model estimated 

for predicting the descriptor “Hardness”. The Y loading value is reported in blue, the x loading values 

are reported in black. 

In the model predicting “Hardness” sensory descriptor, as reported in Figure 23, the two principal 

components explain 82.9% of the variance of the matrix X and 35.7% of the variance of Y. Those 

values mean that a large amount of the variance of the instrumental measurement is correlated with a 

fraction of the overall variation of Hardness.  
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The correlation structure shows that the values estimated by the texture analyzer are all positively 

correlated with Hardness, as well as the content of ashes too. Furthermore, we can see that the content 

of fat and the content of NaCl are anti-correlated with the intensity of Hardness. 

 

Figure 24: Biplot representing the loading values for the X and Y matrix of the PLS model estimated 

for predicting the descriptor “Friability”. The Y loading value is reported in blue, the x loading values 

are reported in black. 

For the PLS model predicting Friability, as we can see in the biplot in Figure 24, the first two principal 

components of the PLS model represent cumulatively the 79.1% of the variance of the matrix X and 

the 31.8% of the Y value. This represents, similarly to the previous PLS model, that the model 

associates a large percentage of the X matrix with a small percentage of the Y matrix.  

The distribution of the loadings values highlights that the instrumental parameters of Maximum force 

and elastic modulus by the texture analyzer are positively correlated with the perception of friability 

firmness, as well as the content of NaCl and fat. The plot also shows that the textural parameter “Total 

Area” (that represents the integral sum of the force applied during the complete penetration of the 
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probe in the sample) and the content of water and ash are negatively correlated with the perception of 

friability Firmness. 

 

Figure 25: Biplot representing the loading values for the X and Y matrix of the PLS model estimated 

for predicting the descriptor “Crystals”. The Y loading value is reported in blue, the x loading values 

are reported in black. 

The first two components of the PLS predictive model for the descriptor “Crystals” represent 78% of 

the X matrix and 38.6% of the Y matrix. 

The loadings values highlight that the value of Maximum Force exerted by the texture analyzer and 

the content of protein and NaCl are positively correlated with the perception of Crystals, while the 

value of Total Area, water, Fat, and Ash are anticorrelated. 

5.3.4. Conclusions 

The predictive models had performances significantly different from the null distribution for three 

descriptors: Hardness, Friability, and Crystals. The coefficients of the models were bootstrap 
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validated, thus estimating the relationships between oral perception and the physical properties of 

cheese. Significant correlations between perceived Hardness and the maximum force applied and 

between perceived Friability and the presence of NaCl were estimated.  

The low R2 values are due to the absence of critical parameters of the tasters and of other sensory 

properties that couldn’t be included in these models (Andrewes et al. 2021). Thus, the PLS models 

inferred the correlation structures between physical and sensory properties, highlighting the 

anticorrelation structure between Maximum force and Total area for descriptors Friability and Crystals 

and the different effects of the combination of NaCl and Fat content with sensory textural properties.  
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CHAPTER 6. IMAGE ANALYSIS FOR AUTOMATIC QUALITY CONTROL 

In the present chapter the use of image analysis in food quality control procedures, reporting its main 

applications in food quality control is discussed. The rest of the chapter discusses the development of 

a quality control procedure for the case study, reporting the development of two different image 

analysis algorithms and comparing their performance. The analyses proposed here are reported in the 

proceedings of the Improve 2023, 3rd International Conference on Image Processing and Vision 

Engineering, written by Caraffa A., Ricci M., Lecca M., Modena C.M., Aprea E., Gasperi F., 

Messelodi S., in the context of a collaboration between Edmund Mach Foundation and Bruno Kessler 

Foundation (Caraffa et al., 2023). 

6.1 Applications of image analysis procedures 

Image analysis is a well-established tool in process analytical technology, and it is applied in many 

different food productions, such as fruit sorting, spoilage recognition, and detection of sensory 

eligibility of the product (Meenu et al. 2021). Nevertheless, for several food manufacturers, quality 

control still relies on the evaluation of human operators, who judge the quality of food by their 

perception of quality features such as visual appearance, texture, hardness, crispness, smell, and taste 

(Munoz et al. 2002). Trained operators can elaborate a large variety of sensory perceptions at the same 

time and summarize them in a single evaluation, with eventually the aid of simple visual comparison 

(Brosnan & Sun, 2004), but their work requires a large amount of time, it is affected by sensory fatigue 

and cannot be applied to many samples on a regular basis (Laddi et al. 2013). Furthermore, visual 

quality evaluation is affected by subjective differences between judges and an overall inter-individual 

variability, which is managed by adopting a well-designed experimental protocol, the basic rules of 

good practice of sensory analysis, and carefully selecting, training, and monitoring judges. For this 
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reason, many instrumental measurement procedures are included in process analytical technology to 

replace human evaluation. 

Visual inspection plays an important role in the quality assessment of many food products, and it is 

of great concern to develop many interesting analytical procedures. Visual analysis can collect 

information about the color, structure, and composition of food products.  Optical analysis of food 

products can be classified according to the scale of the visual data collected, dividing the analysis 

between microscopic and macroscopic scale measurements. Microscopic scale defines all the analyses 

performed using technologically advanced instruments, e.g., near-infrared imaging systems, 

spectroscopy and hyperspectral imaging systems, and X-ray imaging sensors, that provide objective 

measures regarding microstructures (Russ, 2015; Lei and Sun, 2019). 

Macroscopic analysis comprehends the analysis of images at a scale not significantly different from 

the perception of the human eye, such as Computer vision techniques, that analyze the visual 

properties of food through image processing algorithms. Those techniques are promising tools for 

objective, effective, sustainable, cheaper, and faster assessment of food quality (Du and Sun 2004, 

Turgut et al. 2014, Ma et al. 2016, Jackman and Sun 2013). An interesting application in food 

manufacturing is the assessment of the degree of conformity to the quality standards of a protected 

cheese brand (Bosakova-Ardenska et al. 2021, Badarò et al. 2021). 

In practice, image analysis procedure consists of the development and the application of algorithms 

on the matrix corresponding to the image, after preprocessing procedures, such as cropping, filtering, 

noise removal, and the extraction of contours. 
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The next step is the extraction of the features, consisting in measuring the properties of the image, to 

summarize its properties. The features extracted are the measurements of the color content, the 

presence of patterns, and the morphological/geometrical properties in the image. 

Then, the values extracted from the previous procedures are processed by adopting the tailored 

algorithm, according to the objectives of the analysis. First, a selection procedure or a dimension 

reducing procedure is applied, then the effective data analysis procedure, which could be a statistical 

model, a fuzzy logic model, or a machine learning model, according to the fitness for a purpose is 

applied to the data and the results are validated. 

The application of artificial neural networks models or another black-box model on image analysis 

and computer vision may require only simple pre-processing steps at most, while all the other steps 

of feature extraction and selection are bypassed, because during the training of artificial neural 

networks for image analysis there are many procedures that proceed to detect the importance of 

variables. 

An overview of computer vision methods applied to quality control procedures of dairy products, 

together with a discussion about the limitations of adopting standard image analysis algorithms, can 

be found in (Lukinac et al. 2018). 

6.2 Visual quality of hard seasoned cheese 

6.2.1 Visual quality in Trentingrana 

The Trentingrana Consortium included in the quality control procedure a visual evaluation of the 

cheese wheels after they were cut in half. The visual examination considered three quality parameters: 

the color of the grain, its structure, and the rind thickness. 
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The color of the grain is evaluated considering the hue, the intensity, the homogeneity and the presence 

of spots and defects in the surface of the grain right after the opening of the cheese wheel. 

The structure of the grain is an overall evaluation of the morphological properties analyzing the 

surface of the grain ready after the opening of the cheese wheel. The properties of the grain surface 

considered are the granularity, the presence of cracks or holes, crystals, and the overall homogeneity. 

Also, the presence of defects, such as stretched, chalky, or foamy. 

The last parameter, the rind thickness is the focus of the rest of the chapter and will be thoroughly 

discussed in the next section. 

6.2.2 Importance of rind thickness 

The rind is the external region of cheese, it has a more compact texture and darker color compared to 

the grain in the internal regions. Rind thickness may change from one side to another in the same 

wheel and may be larger at the edges and in the round sides. The color of the grain below the rind 

fades gradually to the overall color of the grain. Differently from fresh, soft cheese, hard seasoned 

cheese such as Trentingrana cheese have a rind section characterized by a darker color and higher 

Hardness of the grain. The formation of the rind is due to the variation in the water content in the 

external part of the cheese wheel that is caused by the water dispersion due to salting and ripening 

procedures (Fox & Cogan 2004). The correct exposition in terms of time, temperature, and humidity 

during the ripening phase, along with systematic removal of the external water exuded from the wheel 

guarantees the correct development of the ripening procedures in terms of physical phenomena. For 

this reason, the thickness of the rind is directly related to the intensity of the water dispersion inside 

the cheese wheel and represents an indicator of the condition of the ripening phase. If the rind is too 

thick, it is due to excessive water dispersion, while a thin rind is related to a too low amount of water 
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dispersion, which can cause the growth of undesired microbial flora. It is also of great concern for 

quality control the identification of rind defects such as calcium lactate crystal formation and 

excessive rind halo, because they are caused by the supersaturation of the cheese serum phase with 

calcium and lactate ions due to bad water diffusion, which then forms crystals producing white hazes 

on the surface of the cheese (Khattab et al. 2019, Rajbhandari & Kindstd 2008). 

Another important parameter of the properties of the rind is its uniformity, which is directly related to 

the handling of the cheese wheels during ripening: difference in the thickness of the rind between the 

upper and the lower plate is directly related to the position of the rind during the ripening and the 

amount of time spent after being rotated in the stall. A difference in uniformity is inevitable, but 

important differences between the upper and the lower plate are related to the exposition to air, 

guaranteed by regular reversals of the wheel. 

Because of these relations between the thickness of the rind and the condition of the ripening process, 

along with the indication of the internal product specification of the Grana Padano Consortium, and 

the concern of the consumers, the Trentingrana consortium included in the quality control procedure 

of the evaluation of the rind thickness as one of the visual parameters that the quality jury must 

evaluate. 

6.3 Application 4 – Evaluation of rind thickness in Trentingrana cheese 

6.3.1 Introduction 

The objective of this work is to assess the visual quality of Trentingrana cheese, a local variety of 

Protected Designation of Origin (PDO) Grana Padano cheese, adopting advanced machine vision 

techniques. The cheese wheels produced were sampled and rated by a panel of experts assessing 
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multiple quality parameters after tasting and visual evaluation. Some wheels are opened along their 

diameter and visually screened by the experts. 

For the estimation of visual quality, one key parameter is the rind thickness, because ungrounded 

cheese with a thick or uneven rind isn’t appreciated on the market, and it is an index of anomalies in 

the water content due to ripening conditions. For this reason, this parameter needs to be estimated, 

with other visual and sensory parameters, to evaluate the best preparation of the final product. In the 

present work, a deep learning method was developed and tested to estimate the rind thickness of 

Trentingrana cheese in six different positions from high-definition images. 

Using an industrial camera several images of Trentingrana cheese slices were obtained from a half-

wheel by wire-cutting a piece and then dividing it into left and right slices. To estimate the human 

perception of rind thickness, a panel of 12 experts examined each picture and measured the rind 

thickness in the upper and lower faces of the cheese slice and the heel. To improve the assessment of 

the overall rind quality, for each cheese wheel the image of two slices was collected and measured 

and for each image, the thickness of the rind was measured in five different positions. In this stage, 

the jury was asked to evaluate the rind thickness from digital images of the cheese slices instead of 

the real ones. This assured that the models were trained using estimation that were inferred exactly 

from the same visual parameters that will be used to train the model. 

The data collected were used to train and test an artificial neural network that estimates the thickness 

of the rind reported by the experts from the images. Results show that the model predicts accurately 

the panel estimation of the rind thickness. As a reference, a purpose-driven algorithm that relies on 

the traditional computer vision procedure of detecting the contrast between rind and paste areas was 

developed. Compared to the mean thicknesses reported by the experts, the Mean Absolute Error 



125 

 

(MAE) for the hand-crafted algorithm stands at 1.10 mm, while the MAE for the deep learning method 

is 0.51 mm. 

6.3.2 Materials and methods 

6.3.2.1 Image acquisition 

We considered 45 cheese wheels from 15 dairy factories related to Trentingrana Consortium. Each 

wheel was opened along its diameter with a special knife. A piece about 2.5 cm thick was wire-cut 

and divided into a left and a right slice. 

Using a visual analyzer (Iris, AlphaMos, Tolouse France) under the top and bottom lighting (D65 

compliant, 6700°K color temperature), we acquired N=90 images I1, …, IN with dimension 1024x768 

pixels, each depicting a slice of cheese. 

A calibration step was performed to estimate the conversion factor from pixels to millimeters. For this 

purpose, an image was captured depicting an object of known dimensions (in millimeters), and its size 

in the image (in pixels) was extracted, resulting in 1 pixel corresponding to 0.29 mm. 

6.3.2.2 Image annotation 

The visual evaluation has been performed through an online questionnaire created using 

EyeQuestion® (EyeQuestion, 2022), submitting all the images in randomized order to a jury of K = 

12 experts E1, …, EK. The experts quantitatively estimated the rind thickness of each cheese slice in 

three regions: for each image, each expert provided an estimate of the rind thickness in centimeters 

measured on the upper face A, heel B, and lower face C.  A set of three rulers were superimposed on 

each image to assist the task of the experts. 
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Each region received K subjective measurements of rind thickness. The analysis of these estimates 

shows the presence of outliers and different evaluators provided different thickness values because of 

the smooth transition from rind to paste. 

6.3.2.3 Region extraction 

The Region Extractor receives as input an image I. It identifies three parts on the cheese border and 

three regions where the experts performed their measurements. 

To this end, it computes the foreground mask F corresponding to the cheese area in I and localizes the 

upper and lower faces A, C, and the heel B by analyzing the concavities along its boundary partial F. 

One-thick-pixel parts PA, PB, and PC are extracted from partial F around the middle point of the three 

sides. Three rectangular regions (RA, RB, and RC) around these parts are cropped and used as input to 

the Thickness Estimator. The size of the rectangles was chosen to roughly match the area observed by 

the experts to provide their measurements (280x150 pixels). Regions RB and RC were rotated to appear 

as RA, i.e., with the white background at the top of the region. 

6.3.2.4 Ground truth estimation 

We defined a method to associate each region Ri,p, where  i=1, …, N and p ∈ {A, B, C}, with a 

thickness measure taking into account the intrinsic variability of the annotations provided by different 

experts. Given the set of measures Tk
i,p, where k=1, …, K, we first normalized them with respect to a 

central position as follows: 

𝑀𝑖,𝑝 =  
1

𝐾 − 2
(∑ 𝑇𝑘

𝑖,𝑝 − 𝑇𝑘
𝑖,𝑝  − 𝑇𝑘

𝑖,𝑝

𝐾

𝑘−1

) 
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Then, we defined the ground-truth for 𝑅𝑖,𝑝 as: 

𝑇𝑖,𝑝 =
1

𝐾
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𝐾
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𝑀
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The dataset was organized to keep track of the slice/wheel from which each region came. 

6.3.2.5 Standard image analysis algorithm 

The first computer vision method implemented for detecting the rind consisted in a hand-crafted 

algorithm (from here it will be called HCA). This algorithm was based on the empirical evidence that 

the rind of the cheese is darker than the interior because of its higher density and that the paste has a 

uniform coloring, although not constant. Thus, the rind thickness can be detected by searching for a 

color variation in the image by analyzing adjacent regions close to the three parts of interest. 

The algorithm presented takes as input the image of a slice and extracts the 1-pixel-thick parts PA, PB, 

PC as done in the data preparation step for the training of the deep learning method. 

To highlight as much as possible the variation between rind and paste, and to attenuate an illumination 

gradient due to the acquisition device, the image is pre-processed by means of a color edge-preserving 

smoothing followed by an intensity normalization step. HCA works on this last image, named G. Let 

P be an element in {PA, PB, PC} and R the corresponding rectangular region in {RA, RB, RC}. HCA 



128 

 

computes n + 1 regions P0 = P, P1 = S (P, 1), . . ., Pn = S (P, n), where Pi is obtained by shifting P0 by 

i pixels towards the cheese interior. n was fixed in such a way to ensure the scanning of a sufficiently 

large area to include both rind and paste, i.e., approximately 5 cm expressed in pixels. For each i, 

HCA computes the median of G’s values along Pi and plots it with respect to i (Figure 26. In this way, 

HCA builds up the projection function f: {0, . . ., n} → [0, 255] such that fi is the median value of the 

G values over Pi. We choose to compute the median as it is not affected by outlier values due, for 

example, to the presence of crystals in the paste. 

 

Figure 26: Procedure of image cropping and parameter extraction for Handmade algorithm. In (a) 

a right slice, where the parts A, B and C are marked in color. In (b) an intensity normalization of (a). 

In (c), the intensity values of a region adjacent to part A are considered to build the plot in (d), 

representing the mean intensity value of the designed set of pixels. 

In Figure 26, the plot of the average intensity value shows for most of the images a shape with low 

values at the very first part of the rind (darker), increasing inside the rind and sub-rind area, followed 

by a flat area generated when scanning the paste region. HCA estimates the rind thickness for each 

part of interest P by analyzing the generated intensity distribution f as follows. 
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1. Compute the value 𝑉𝑗 of average intensity f in the plateau zone. 𝑉𝑗 is estimated as the median of all 

the pixels belonging to the zone obtained by a strong shrink of the mask F (corresponding to 2 cm, to 

overpass the rind) and the rectangle R of the part P, to capture a paste-only zone. 

2. Compute the local minima of Sf and the depth of their basins, where Sf indicates a Gaussian 

smoothing of the average intensity. Discard the minima with low depth and those with ordinate too 

close to 𝑉𝑗; select the minimum M = (𝑀𝑖, 𝑀𝑗) having the greater abscissa 𝑖. 

3. Determine the transition point 𝑈 = (𝑈𝑖, 𝑈𝑗) with 𝑈𝑖 > 𝑀𝑖. The transition point should define the end 

of the rind zone. Depending on the cheese slice this can be marked: this is expressed by the slope 𝑓 

between 𝑀 and the starting point of plateau 𝑉. In the current implementation of HCA 𝑈𝑗 is defined 

as: 

𝑈𝑗  =  (1 −  𝜇)𝑀𝑗  +  𝜇𝑉𝑗 

where μ is a real-valued coefficient ranging between 0 and 1. In this implementation, μ has been set 

empirically to 0.3. 

The end of the rind region is determined in HCA by selecting in the set f − 1(Uj) the point in the 

interval (Mi, Vi) with greater abscissa. We observe that the value of μ has little influence on the 

position of Ui if the ramp between M and V is steep, i.e., when the separation between rind and paste 

is quite clear. The position of Ui can be influenced more significantly by the choice of μ in the case 

where the transition between rind and paste is very smooth. This agrees with the uncertainty of 

different annotators in cheese slices that exhibit a gradual transition. A graphical representation of the 

estimated values by this algorithm are reported in the plot in Figure 27. 
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Figure 27: Score plot representing the profile analysis: the green line highlights the plateau, while 

the estimated transition line, between the plateau and the selected minimum M of the intensity, is 

depicted in orange. U indicates the value used to compute the rind thickness which corresponds to its 

abscissa. 

6.3.2.6 Artificial Neural networks 

Initially, as a pre-processing step, from each image were extracted three parts called PA, PB, PC, 

respectively containing the upper plate, the heel, and the lower plate. 

A ResNet18 model, a well-known architecture for image recognition tasks (He et al. 2016), was 

developed. A fully connected layer replaced the final layer, returning a single value. The whole 

network was trained from scratch testing with a lower performance by fine-tuning a backbone pre-

trained on ImageNet (Russakovsky et al. 2015). The deeper network ResNet50 was tried without 

achieving better results. As ResNet18 resulted superior to the deeper ResNet50, a shallower network, 
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i.e., a ResNet variant with only 10 layers was tested, but did not boost the performance. Other 

architecture and approaches tested were ShuffleNet (Zhang et al. 2018), RegNet (Radosavovic et al. 

2020), ConvNeXt (Li et al. 2022), and CLIP (Radford et al. 2021). However, there were no significant 

differences between their performances and the previous one. A more in-depth investigation on the 

reasons for this behavior is left for future work. 

6.3.3 Results and discussion 

6.3.3.1 Performances of the models 

The performance of the deep learning-based method is compared with the performance of the HCA 

and the original dataset of averaged quality evaluations by the panel of human experts. Figure 28 

shows the performance of the proposed deep learning method compared with the HCA algorithm in 

terms of Mean Absolute Error (MAE) for the three slice regions and for the overall mean. The human 

evaluation consists of the error of the individual evaluations of the panel of 12 experts used to estimate 

the ground truth. The MAE of the average value of the three regions of the deep learning method is 

0.51 mm, while the MAE of the HCA is 1.10 mm, which is similar to the MAE for a generic human 

evaluator, about 1.24 mm. 
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Figure 28: Bar plot showing the comparison of the error produced by a virtual average expert 

(yellow), the HCA algorithm (blue), and the proposed Neural Network (NN) approach (orange). Mean 

Absolute Error (in millimeters) is reported separately for regions A, B, C, and for the overall mean. 

Compared to a classical image analysis method based on manual feature selection, the deep learning 

approach achieves significantly better performance and avoids the critical tasks of selecting features 

typical of traditional methods. 

To validate further the network, the areas of the input images that most influenced the final estimate 

were plotted using a Grad-CAM variant for visual explanations of network decisions in regression 

problems (Selvaraju et al.2017). In Figure 29 the reasonable areas of the input images are used by the 

model for predicting the thickness of the image. 
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Figure 29: Comparison of the original image crop for the estimation of the upper segment extraction 

and the estimation of the importance of each pixel in the estimation of the result. 

In Figure 30, the values estimated by the network are compared with the sorted values of the ground-

truth thickness of the regions. We can observe that the network maintains, in trend, the ordering of 

measures. 
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Figure 30: Plot reporting the values predicted by the ANN model compared with the ground truth 

values. Ground truth values are reported in blue and are in increasing order, while predicted values 

are reported in red. The continuous green line represents the mean of the observed values.  

As reported in Figure 30, the artificial neural network algorithm overestimates the measurements 

when the wheel has a thicker rind and underestimates it for regions with a thinner rind. The R2-score 

of 0.68 means that the MSE of the model is less than a third of the standard deviation of the ground 

truth values. 

6.3.4 Conclusion 

The research objective was the quality assessment of PDO Trentingrana cheese proposing a deep 

learning-based method to estimate the thickness of the rind, which currently is estimated by a pool of 

experts, but their work requires time and is rather expensive. 

The automation of this procedure is functional to support panels in visual quality evaluation. The 

artificial neural network algorithm proposed implements a regression technique that learns the cheese 

thickness from a set of measurements deduced by the experts’ annotations. 

It is worth saying that in the present experiment, the amount of data collected is quite low compared 

to the number of observations that a deep learning model requires to be properly trained. A data 

augmentation procedure was applied to reach enough measurements, but the results were not related 

to the final measurements. A larger dataset for the training procedure of the model is required to 

improve the overall performance of the model and its adaptability to more real-case samples. 

The Mean Absolute Error (MAE) reported for the Neural Network model is 0.51mm, i.e., less than 

half the MAE of a generic human evaluator. Moreover, the approach enabled better results than a 
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hand-crafted method, which was specifically implemented to localize accurately the transition 

between cheese rind and paste. 

From the present results, the next activity required is the estimation of the rind thickness using images 

depicting rock-cracked cheese slices instead of wire-cut slices. Analyzing these images, standard 

image analysis algorithms based on color change, like the one presented in this work, cannot work 

properly, because there are fewer visual changes in the transition from the rind to the grain. 

Further objectives consist in inferring a quality evaluation from the physical parameters estimated by 

the judges. Assuming that the evaluation of the quality is a comprehensive evaluation of the 

dimension, color, uniformity, and distribution of the rind along with the presence of defects (such as 

the accumulation of dehydrated grain behind the rind), it is reasonable that an algorithm can recognize 

the presence of those visual parameters, and estimate if are present excessive anomalies and if the 

image can be associated to a positive or a negative evaluation. 

Finally, rind thickness is only one of the visual quality features considered by the quality panel of the 

Trentingrana Consortium, hence the automatic estimation of other visual characteristics, such as paste 

color and texture, could be a topic for future research to provide more comprehensive support to 

cheese producers. 
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CHAPTER 7. CONCLUSIONS 

In the last years, a general improvement in measurement technologies and an increasing concern about 

many different quality parameters caused an overall increase in the amount of measurement collected 

systematically in the context of food production (Rathore 2014). 

The collection of large amounts of data from the complex experimental design of quality control 

requires the adoption of improved statistical analysis to correctly interpret those data and to develop 

reliable procedures that are functional for an automated analytical procedure. 

The statistical procedures proposed in chapters 3 and 4 are procedures capable of inferring the correct 

information from complex experimental designs which are present in many productions process.       

The parameters that are discussed in the two works reported in chapters 3 and 4 are related to the 

production processes, the season effect, and the treatment of raw material, such as the milk collection 

procedure. The proposed statistical framework can be easily adapted to different food production 

considering for example different kinds of measurement, related to other quality parameters, or to 

different experimental designs. 

     In the present work, the objective was to present and discuss a reliable statistical procedure to 

estimate the significance of predictive models adopting a permutation test, to guarantee the availability 

of information from statistical or machine learning models only after a reliable exclusion of the null 

hypothesis. Furthermore, the estimation of the predictive power can measure the effectiveness of the 

models developed and how they can really explain the relationship between the sensory and the 

instrumental data. The adoption of these procedures allows a quantitative estimation of the 

effectiveness of the models adopted and consequently for the interpretation of the correlation structure 

between sensory properties and instrumental measurements. 
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The activity in chapter 6 consists of a first step into the development of a rapid quality control 

procedure functional for the improvement of the Process Analytical Technology of the Trentingrana 

case study. Further research aims to estimate the quality evaluation of Trentingrana cheese on the 

parameter of “rind thickness” from the estimation of the dimension of the rind and its distribution in 

the whole cheese wheel. This represents an interesting example of the optimization of quality control 

procedures, simplifying the activity of human quality evaluators adding a previous step of evaluation 

by a predictive model, and proposing to human evaluation only cheese wheels that have been detected 

as problematic, or not fitting all the automatized standard set.  

Interesting improvements for the procedure proposed here consist in developing statistical procedures 

capable of more accurate clustering procedures after multivariate estimation of the effect of factors. 

The development of an improved ASCA structure, adopting the analytical approach of Multiple Factor 

Analysis to the estimation of multiple series of Analysis of Variance is a possible direction that needs 

to be considered. Another interesting improvement could be the application of the PARAFASCA 

algorithm in the context of time-dependent sensory analysis: data from Temporal Dominant Sensation 

(TDS) and Temporal Check All That Apply (TCATA) still have got nuances due to their multi-way 

structure (Meyners & Castura 2018). The PARAFAC decomposition of the values of multiple 

analyses of variance applied to all the multi-way structures could propose an overall estimation of the 

effects of multiple confounding factors in this experimental design. 

Another possible application of the ASCA-based statistical procedures proposed in this thesis is the 

analysis of data collected from quality control procedures collected in different food manufacturers, 

to test the inferring capacity of ASCA and ASCA-based models in other real-case frameworks and 

their effectiveness in comparing data from different manufacturers. 

It is also worth proposing the development of a statistical tool equipped with a user-friendly interface 

to increase the adoption of those statistical tools in a wider range of analytical contexts. 
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