DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

MULTI-SESSION SECURITY MONITORING
FOR MOBILE CODE

Fabio Massacci and Katsiaryna Naliuka

November 2006

Technical Report # DIT-06-067

Multi-session Security Monitoring for Mobile
Code

Fabio Massacci® Katsiaryna Naliuka ®

& Unaversity of Trento

Abstract

There is increasing demand for running multiple times a number of interacting
applications in a secure and controllable way on mobile devices. Such demand is
not supported by the Java/ NET security models based on trust domains nor by
current security monitors or language-based security approaches. Trust domains
don’t allow for interactions while language-based security doesn’t support enough
customizable policies.

A careful analysis of the security requirements in the booming domain of mobile
games reveals that most practical security requirements can be represented with an
enhanced notion of pure past temporal Logic augmented with the intuitive notion
of session.

We propose an approach that allows security policies that are i) expressive enough
to capture multiple sessions and interacting applications, ii) suitable for efficient
monitoring, iii) convenient for a developer to specify them. Since getting all three
at once is impossible, we advocate a logical language, 2D-LTL a bi-dimensional
temporal logic fit for multiple sessions and for which efficient monitoring algorithms
can be given, and a graphical language based on standard UML sequence diagrams
with a tight correspondence between the two.

In this paper we show a refined formal model for capturing the notion of ses-
sion and the correctness and completeness of the monitoring algorithm for security
policies expressed in 2D-LTL.

Email addresses: Fabio.Massacci@unitn.it (Fabio Massacci),
naliuka@dit.unitn.it (Katsiaryna Naliuka).
I This work has been partly supported by the EU-IST-STREP-S3MS and FIRB-
SECURITY.

Millions

120
100
» 80
4
é 60
S 40
7]
20 . I: —
D __—|:|:-_—_'_ Ll —— ||
2006 2007 2008 2009
m Instant Messaging O Interactive Gaming
O Picture/Video Sharing m Push To Talk
N Voice Over WLAN H Other Services

Source: IMS Research, 2006
Fig. 1. Expected revenues for the mobile software market

1 Introduction

Mobile devices are increasingly powerful and popular. The smart phone in our
pocket has more computing power than the PC encumbering our desk 15 years
ago. Yet, if we look at the amount of software available on high-end mobile
phones we cannot find even remotely the amount of third party software that
was available on our old PC.

One of the reasons for this lack of applications is also the security model
adopted for mobile phones. Indeed, the current security model (for instance
Java MIDP 2.0) is based on trust relationships: before running an application
a device checks that it is signed by a trusted party. Different trust domains
segregate applications into sandboxes: inter-operability is either total or not
existing. E.g. if a payment service is available on the platform and an appli-
cation for paying parking meters is loaded in the same trust domain, the user
cannot block the parking application from performing large payments.

Most of the current services such as ring-tones, short messages etc. (see Fig. 1)
are rather simple and the need for a more sophisticated technology is not
apparent.

There is however one notable exception: Mobile Games. On-line games are
significantly more complex than one can expect [13] and the recent trend of
bringing to the mobile massive multi-player online role-playing games, MM-
MORG for short, introduces additional challenges. Essentially, an MMMORG
is a mobile adventure game, which many people can play at once. Distributed

MMMORG keep the role of the game server very small, with most of the game
controls run on the mobile device. Such components are able to do complex
actions such as silently starting a connection, informing other players by send-
ing them SMS text messages, manipulating the user’s address book and so on
(see e.g. [21]).

Whereas starting a connection might seem irrelevant in the fixed world of
broadband access it can cost a fortune when run on a mobile phone without a
business GPRS or UMTS flat rate, or may end up exhausting one’s battery just
in the moment we need it to make an urgent call. Checking that an application
satisfies a number of security properties becomes therefore essential.

Equipping every mobile device with a more flexible security mechanism can
be a solution. One of the components of such a system could be a run-time
monitor, which controls the program’s execution and prevents it from per-
forming illegitimate actions. In this setting, automated reasoning techniques
could be extremely useful as they would have a “dual use”. Before deployment,
security properties could be checked against the mobile game to guarantee the
desired level of security before the operator or the developer signs the code.
After deployment, we could monitor the satisfaction of the security policies at
run-time (we discuss the issue more in details in section 2).

Building such run-time enforcement monitor has been the major goal behind
research in security automata [19,4], history-based access control [3,6,12], or
usage-based access control [17]. A problem is that the language to express such
the policies to be monitored must be [20]

(1) expressive enough to reflect the desired security policies;

(2) suitable for efficient monitoring, as we envisage to enforce it on devices
as performance-critical as smart phones;

(3) convenient for a human as we cannot expect a SME developer to be
accustomed with logics, type systems or the like.

It is a folk theorem that expressivity, efficiency and usability are hardly satis-
fied all at once.

However, out of a detailed analysis of the domain [21], it emerges that most
user relevant security properties can be essentially captured by a variant of
pure-past LTL. Informally, we consider properties of the form “the software
will download updates from Internet available only if the user permits it” while
we assume that properties like “if the user would like weekly updates, then on
sundays the software eventually download all available magic weapons” are
taken care of by game’s developers.

1.1 Our Contribution

Our proposal is to design two languages: a formal language that satisfies re-
quirements (1) and (2) and a graphical language that satisfies (1) and (3).
The formal language guarantees soundness and precision of security policies.
The graphical language greatly simplifies specification of policies and security
properties. Then we must establish a correspondence between the graphical
constructs and the logical policies.

To meet (1+2) we propose a policy language 2D-LTL, based on the past-time
linear temporal logic and extended to describe multiple sessions of a program
or the concurrent execution of multiple programs. To meet (14-3) we show how
2D-LTL can be used for formalizing UML interaction diagrams [16] exploiting
the STAIRS trace semantics for UML [7]. A developer can use these diagrams
to specify policies and then translate them in 2D-LTL. We believe the usage of
a well know graphical notation is more effective to gauge industry acceptance
than inventing yet another graphical notation.

In this, paper we focus on the semantics of the security modelling language
and the automated reasoning mechanism needed to build an effective run-
time monitor. We provide a natural semantic for multiple sessions and a cor-
responding 2D-LTL logic (for bi-dimensional LTL). The intuition is that the
logic should capture two dimensions in the execution of a program such as
a mobile game: the first is the classical dimension of time as a sequence of
states traversed by the single run of the game. The second dimention locates
the application single run (or session in the intuitive sense of the word) with
respect to other applications or to previous runs of the same one.

For sake of clarity, we sketch some idea of the graphical notation, in order to
give a grasp of the overall scientific approach, and point the reader to [15] for
further details on the translation.

In the rest of the paper we give some motivating examples (§2), introduce
our policy language (§3) and discuss the run-time monitoring of policies (§4).
Than we provide an overview of UML sequence diagrams(§5) and discuss
the formalization of the diagrams in 2D-LTL (§6). Description of the related
work(§7) and final remarks end the paper.

2 DMotivating Application

When discussing how to secure a mobile game, the issue boils down to the
following one: we need a set of methods and tools that decide whether an

Table 1
Security enforcement during application life-cycle

Development Deployment Execution
(I) at design and (IT) after desgn (I11) when | (IV) during the
devel but before ship- downloadine th H ¢ th

velopment) . ownloading the | execution of the

. ping the applica- . ..
time " application application

ion

action related to a given application is allowed on a mobile platform. Such
decisions can be taken at different stages of the application’s life-cycle and
each stage will have different functionality constraints as detailed in Table 1.

Requirements (I) can be achieved by appropriate design rules and require de-
veloper support; (II) and (III) can be carried out through (automatic) verifi-
cation techniques. Such verifications can take place before downloading (static
analysis and model checking by developers and operators followed by a con-
tract coming with a trusted signature) or as a combination of pre and post-
loading operations (e.g., through in-line monitors and proof carrying code);
(IV) can be implemented by run-time checking. All methods have different
technical and business properties. From an operator’s view point:

e working on existing devices would rule out run-time enforcement, and favor
static analysis. Monitors may be used (for properties that could not be
proved), but on-device proof would then not be possible.

e Operators distrusting the certification process could rely on run-time checks,
at the price of upgrading devices’ software. In-lining could be used, and
contracts could be verified on the device itself.

e An operator who wants to be able to run existing applications would prefer
run-time enforcement.

The users’ perspectives could be different as individuals might care more of
privacy, whereas companies might care more of security. Table 2 shows some
of possible strengths and limitations of each technology.

In this scenarios, typical requirements from end users are: [21]:

(1) User should be able to control how much money could be spent by one
application during a specific period (at least per session). Accumulated
cost and limits should be easily accessible for reading or updating by the
user at any time.

(2) User should be able to control uninstalling process of the application,
including all the associated files/information stored.

(3) Each time the application accesses specific device/user information (not
referred to its own information), user should be able to control the access.

(4) Any relevant information sent by the application outside of the device
should be controlled by the user.

Table 2
Technologies Strengths and Weaknesses

Criteria Static Analysis | In-lining | Run-time
Works with existing devices v ? X
Works with existing applications ? X v
Does not modify applications v X v
Offline proof of correctness v v X
Load-time proof of correctness X v X
May depend on run-time data X V v
Does not affect runtime performance v ? X

(5) While the application is running some accesses to other applications could
be required. For this reason, user should be notified and should be able
to control an access.

(6) The application should not run if the battery is below a certain value
specified by the user.

By transforming such user requirements into security properties we end up
with properties of the following form:

e permitting or prohibiting the activation or deactivation of a security relevant
service (e.g. opening a communication, sending an SMS text, starting an
application, modifying the address book etc.)

e presence of past events as a pre-requisite for allowing another present event
(e.g. the user confirmation before an SMS is send or an image is downloaded)

e cumulative accounting of events (e.g. the application only loads each image
from the network once)

e cnabling or disabling features since an initial event took place, for instance
disabling the game’s silent calls since the battery fell down a certain level.

However, when stating more precisely the above requirements, an additional
notion comes into play: the notion of session. This notion is fairly clear from
a user’s point of view: we started an application, we run it and then we ter-
minated it. End of the session.

The constraints on what may happen during a session can be easily character-
ized with pure-past linear temporal logic: “you can do A only if previously you
did B”; “you can do C if you have been doing B since you did A” and so on.
Time is linear and rooted, it starts at the moment we invoke the application
and ends when we terminate it.

Multiple sessions are also intuitively clear: we start an application, we run,
we terminate it; then we restart again, we run it again, we stop it; then we

restart it, and so on. Each time it is a new session. In some cases it is the
same application that it is re-started again, in other cases there might be
other applications.

Let’s see two examples:

Example 1 A mobile phone user participates in a multi-player online game.
Communication during the game is performed through MMS messages. The
user’s mobile operator provides a number N of MMS messages per month for
free. So, the user wants the game applet to send no more than N messages
every month. When this limit is reached, the applet must suspend the game
and ask the user whether he is willing to continue playing. If the answer is
yes, the game must be resumed, else it must be terminated.

Example 2 In Example 1 the user can answer ‘no to all”. Then the applet
must terminate its execution without further ado each time the limit is reached
in subsequent executions.

The two examples below shows that we can aggregate these constraints into
two large classes:

constraints on the current session that describe the security behavior of
the application from the moment in which it is invoked to the moment in
which it is turned off.

constraints across multiple sessions of the application (or its interaction
with applications that started before actually invoking the current applica-
tion)

Both properties can be expressed in terms of past behavior of actions and
objects’ properties belonging to the application with different temporal oper-
ators.

Another important observation is that all such constraints are always charac-
terized by what we might call the monitoring assumption: they must be true
at any single moment during the execution of the game.

3 A bi-dimensional model of execution

As we already said, we can consider a model of the system as a bi-dimensional
model with two “time” dimensions.

The horizontal time dimension determines the progressing of an application
during a run i.e. the sequence of events from the moment it is activated to the
moment it terminates. The vertical dimension represents the active sessions

that have been started by the system and not terminated. We can imagine
that the execution starts on the ground floor, and the progresses on the same
floor sweeping more and more rooms. At a certain point we start a new session
(of another application or another instance of the old one), climb to the new
floor and keep moving in that floor. Occasionally we remember that we have
left our previous session half-ways, return to the those previous floor and keep
sweeping there. Than we will keep progressing by either spawning new floors
or sweeping new rooms.

The existence of these two levels of execution was underlined by Abadi and
Fournet in [1] where they are called sensitive access requests history (sweeping
room after room) and history of control transfers (climbing from floor to floor).

To define the model we start with some preliminary definitions.

Definition 1 Let E be a set, a trace t over a E is a sequence of elements
from E. The set of all possible non empty traces over E is denoted by E*. If
t € Et we will denote the length of the trace t as |t| and the i-th element as
t[i]. The following operations on traces are defined:

concatenation t; o ty gluing two traces together.

truncation t[..1] taking the prefix of length i of trace t

filtering E' © t (E' C E) the result of this operation is another trace t' that
s obtained from t by removing all elements that are not contained in A.

For example {e1,es} ® (ea,e3,€2,6e1) = (€, €9, €1%).

3.1 A traditional linear model

The traditional model of execution is a sequence of events, such as starting
or ending a process, or updating a state of the running process when it has
performed new actions. Besides events, we define an additional set of labels
L, which contains unique labels for all processes (i.e. the pair application and
session) run on the device. So every session of the application is associated
with exactly one label [€ I]7]

Definition 2 Let L be a set of labels and P a set of boolean predicates that
represents possible actions a process can perform. A serialized execution t is
a sequence over the events E = {new(l),update(P’,1),end(l)} where P' C P
(actions that have occurred in the updated process) and |l € L is subject to the
following constraints:

2 In practice, this can be easily done with signed assemblies in .NET. and similar
features in Java.

b

(new(1), update({?m1}, 1), update({a1}, 1), update({!ma}, 1), end(1)) o
(new(2), update({?m1},2), update({a1}, 2), update({!ma}, 2), end(2)) o
(new(3), update({?m1}, 3), update({a1}, 3))

Fig. 3. Non-resuming sessions (Example 3)

(1) new(l) occurs at most once,

(2) end(l) occurs at most once,

(3) if update(P’,l) occurs in the trace then new(l) occurs before it in the trace
and end(l) does not occur before it,

(4) if end(l) occurs in the trace then new(l) occurs before it.

Example 3 A mobile device is equipped with GPRS and Wi-Fi transmit-
ters, and the applet must check the availability of either network. It sends
two messages my, mo to the network interfaces (actually these are invocations
of APIs), and the transmitters perform the checks ay and ay. Than transmit-
ters report back the states of each network by messages ms and my. Figure 2
tllustrates the behavior of the system by the diagram.

We denote by !m a predicate “sending a message m”. Receiving a message we

Applet 1

(new(1), update({!m1}, 1), update({!m2}, 1), new(2), update({?ma}, 2)) o
(new(3), update({?m1}, 3), update({az2}, 2), update({ai},3)) o
(update({!ms},2), end(2), update({!ma}, 3), end(3), update({?ms}, 1), update({?ma}, 1))

Fig. 4. Resuming sessions (Example 3)

will denote as Tm.

Consider the situation from the point of view of GPRS device.: session starts
when the device is invoked by a message m; from the applet; than it performs
a check ay; reports the state of the network by another message ms. Than
a session terminates, and if the applet is invoked once again a new session
starts. The serialized trace of the execution from this point of view is depicted
at Figure 3.

On the other hand, if we consider evolution of the system as a whole, the ses-
sion of the main applet is never terminated but only suspended when GPRS
and Wi-Fi transmitters perform their tasks. Figure 4 presents a trace of exe-
cution for the whole system.

Such operational representation is a faithful reflection of what happens in
reality, with single threaded execution of “concurrent” applets or repeated
sessions of the same applet.

To prove the correctness of the monitoring algorithm we need a series of ad-
ditional definitions:

Definition 3 Let t be a serialized execution over L and P. Given a label |
such that new(l) occurs in t, the label of the previous session with respect to
[is the label prec (l,t) such that new(prec(l,t)) occurs before new(l) in t and
there is not other new(l") between them in t.

Unfortunately, serialized traces are suitable only for expressing global prop-
erties in LTL that disregard completely the structure of sessions. Expressing
temporal properties of sessions in this model turned out to be significantly
convolute and does not correspond to the intuitions that users have about the
system.

3.2 A bi-dimensional natural model

Technically, we link states of each application by using two threads: the session
and the frontier. A session represents the sequence of states corresponding to
a single execution of an application. A frontier is formed of the last active
states of all previously started sessions. From an application perspective, the
session represents what it did by running itself. The frontier is the point of
arrival of what the others did so far. The frontier formed by the last events of
all sessions is the current frontier (see Fig. 4).

Definition 4 A history is a tuple H = (S, sy, 7,F,L, P,V), where S is a set
of states, a special state sy € S, is the final state of the history, the functions
T,F:S — ST link every state to a sequence of states, i.e. its session and its
frontier, V : P — 25 is an assignment of predicates from a set P to a set of
states. L is a set of labels of sessions and the following conditions hold:

Session past determinism Foralls € S if T (s) =to(s_1,s) thenT (s_1) =
to(s_y)

Current frontier past determinism If F (sy) = fio(s')ofy then F (s') =
t10(s)

Mutual past determinism For all s € S if F(s) = f -5 -5, T (s) =
to(s_1,s) exists s" € T (s') such that F (s_1) = f o (s",s_1)

Intuitively s corresponds to the final state of the last open session. 7 (s)
returns a prefix of the session, to which s belongs, up to s itself inclusive.
Similarly, F (s) is a frontier formed of the states of all previously started
sessions. The frontier F (sf) is a current frontier and includes final states of
all session. If s is the final state of its session F (s) is a prefix of F (sf) (final
past determinism). When a new event occurs after s in its session and s is no
longer the final state F (s) becomes frozen and does not change any more.

To clarify the concept of sessions and frontiers let us return to Example 3.
For the GPRS applet manager execution is a sequence of successive sessions
where new session cannot start until the old one has completely finished its
execution. Then a frontier for state s includes final states of all preceding
sessions and s itself. At Figure 3 a solid line depicts the frontier for state !m;
of Session 3 (the current frontier) and a dashed line shows the frontier for the
state a; of the same session. It can be seen that they coincide in all points but
the last.

From the perspective of the system as a whole the previously suspended ses-
sions can be resumed again. The example of how our model reflects this sit-
uation is depicted at Figure 4. The frontier for final states of all sessions
succeeding the resumed one will change. For instance, the frontier for !my,
depicted in the figure by the solid curve, includes state ?m, of Session 1, even

tl..d,f[lj]Ep,pe P iff pholdsin (¢]..i], f[..j])

t[a], fLglFE -y ift t[.d], flJ]FE Y

el fLaEde Vo ifE t[d], fLLG]E Yo or Myl.j] B

tli], fl-d]EYe ¥ iff j>land7 (f[j—1),f[.j—1E%

t[.a], fl-7] Evo Sg oy it t[.d], f[.j]E 1y orj>1and
T(fli=1D,f[J—1F¢o Sc ¢ and
tl.d], f 5] F o

tld], f L4 E YL iff i>landt[i—1,F@li—1)Ew

t1.4], FL.4]E o Sy it t[.d], f[.j] F ¢ ori>1and
t[.i—1),F(t[i—1]) F o S 11 and
L], £ 1) F o
Fig. 5. 2D-LTL Recursive semantics

though the corresponding event happened later in the execution. However, a
frontier for a; (depicted by the dashed line) do not change since this event is
no longer final in its session. It belongs to the past of Session 3 and its frontier
cannot be changed any more.

For our own policy language 2D-LTL we use the following operators: =, V,
Y. (“in the previous state of this session”), Sp, (“since in this session”), Y
(“in the previous session”), Sg (“since between sessions”). So if p € P are
atomic propositions, then 2D-LTL formulae are:

F:J_’T’p|_\F|F1VF2’YLF|F15LF2’YGF‘FlsGFg

Definition 5 A history H = (S,s¢, T,F, P, V) satisfies 2D-LTL formula ¢
(H = 9¢) iff T (sy),F (sf) = ¢ where |= is evaluated in a recursive way along
the rules of Figure 5.

Other local (respectively global) operators can be expressed by a combination
of the primitive local (resp. global) operators. For example:

in some session in the past Og ¢ = true Sg ¢

in some moment in the past in this session O ¥ = true S, ¥
historically in every session in the past Hg v = =Og =
historically in the past in this session Hj ¢ = -0y -

If we limit state predicates to statements about occurrence of events in the
session and do not use local operators, we obtain the model@ by Krukow et
al.[12]. If we only have one session, the model is equivalent to Havelund and
Rosu’s [9]. We discuss this issue more in detail in the Section 7.

We do not make any assumption on the values of the predicates used in the
formula. It is possible to use any computable predicates on the state of exe-
cution.

To make the examples of how our policy language can be used, let us produce
the formulae that encode the policies of our running example. For writing
all policies, we use the predicate M M S _limit_achieved(s) and the predicates
yes_sent, no_sent, and no_to_all_sent that evaluate to true since the mes-
sage was sent until it was received. Also we use the events suspend, resume
terminate, ask_user, answer_yes, answer_no, and answer_no_to_all, and the
application label game.

Example 4 If the MMS messages limit was achieved, suspend the execution.

He (Y (MMS_limit_achieved) — suspend)

We use Hg to ensure that the policy hold in every session (that means that
in our game applet too).

Example 5 After the MMS messages limit was achieved and the game was
suspended, the user must be asked whether he wants to continue playing.

He (Yr (Y (MMS_limit_achieved) A suspend) — ask_user)

For the complicated version of our example we should also set a policy, which
ensures the game to be terminated without asking, if the user has answered
“no_to_all” in some previous session of the game.

Example 6 After the MMS messages limit was achieved and the game was
suspended, if the user answered “no to all” in a previous session of the game,
the applet must be terminated.

He ((Yo (suspend AY, MMS _limit_achieved)

O¢ (game N Op answer_no_to_all)) — terminate)

The next example is taken from [12].

3 We do not consider their “possible” operator, which they also ignore in all their
examples.

Example 7 eBay transaction after closing the auction consists of the follow-
ing steps: the winning bidder sends payment for the bid; finally the seller sends
the bid to the winner. Moreover, at every stage positive, negative, or neutral
feedback can be provided by any side (after giving feedback it can no longer be
changed). We use the predicates pay (buyer sends payment), pos, neg, neu
when the seller provides a positive, negative, or neutral feedback.

When a customer decides whether he wants to bid at someone’s auction he
may use the following criteria among others: “The seller has never provided
negative feedback after the payment is made”. Here the order of the events is
crucial. This policy can be expressed in 2D-LTL in the following way:

HG _\OL (neg VAN OL pay)

In comparison with [12] we can capture this policy without introducing a
special event “ignore” (unobservable for everyone but the bidder himself).

Definition 6 A corresponding history H = H(t) for serialized trace of exe-
cution t is constructed recursively by the following rules:

(1) To a trace consisting of the event t = (new(l)) corresponds a history H =
<{5(()l1)},5?1,7, F, A}, 0, V>, where T(s(()ll)) = <5?1>, f(s(()ll)) = <5(()ll)>.
It is obvious that H satisfies the properties of the history.
(2) With every new event in the trace the system evolves from H to H' ac-
cording to its type:
new (1)

S'=Su{sy} sy &8
<s(()l)> ,if s = s[()l)

T'(s)=
T (s) otherwise
O\ r e D
F(s) = F (sy) o<sO >, if s = sy

F(s) otherwise

L' =1 P =P
V'(p) = V(p) s;=s

update(Pew,li) Let F(sy) = <sgl), - ,s§iﬁ;1)s§lk), ce sgi":ll), sf>, label
of the last open session is l,,.

S =S U{s"}, where s ¢ S
T (%)) o (sit) if s = sid

T (s)=
7 (s) otherwise
(lk—1) (Uk) (1) oo) .
F(s)= F(sik71>0<si ,...,sij>,zf5—sij,k§j§n
F(s) otherwise
L/:L P/:PUPnew
, V) ULsiilY ifp € Pocw | st ifl=1,
V'(p) = sy =
V(p) otherwise sy otherwise

end(ly) H' = H (nothing changes in the history).
Proposition 1 If H(t) is a valid history then H(t o {(e))is also a history.

For the proof of Proposition 1 see Appendix A.

4 Run-time verification

We outline how the monitoring process can be organized. Since sessions in the
past can be reactivated (when the controls return to them) it is impossible to
evaluate the formula recursively by looking only one step backward [10,12]. So
we store the last state of each application since the first not terminated one.
When a new event is captured, the evaluation starts from the session where this
event happened and proceeds through all the applications that have started
after that session. Evaluation of each session uses the values obtained from
the previous computation.

As values of elements do not depend only on the values of succeeding elements
in the same session, nor on the values in succeeding session, a bi-dimensional
recursive calculation can be derived by using the recursive semantics from
Section 3 . We show the intuitions behind the algorithm in Fig.6.

Essentially the intuition is that for all currently active sessions 4 from 1 to Iy
the following properties holds:

® Opreioc|i] contains the evaluation of all subformulae of 2D-LTL formula ¢ in
state ¢ [..i; — 1], F (¢[..i; — 1]). Obviously at the beginning of the trace we
set it to nil,

. pgb;regl contains the evaluation of the formula in state 7 (s;_1), F (sj_1). If
7 =1 then it is also set to nil.

1 Algorithm ABSTRACTMONITOR;

2 input a 2D-LTL formula ¢;

3 } a sequence of events from the target E;

4 throws SecurityException if event e € E violates F
5 variable integer [4;

6 begin
7 lf:();
8 while E not empty do
9 pick e from F;
10 if e.type == new then
11 ly = lp+1;
12 Create ¢£{0wa gblj;egl? qb;j;eloc from §b7
13 Evaluate((), ¢ow, gbj;;egl, nil);
14 else if e.type == update(P, 1) then
15 ;lureloc = flow? ¢§7regl = 51_0111;7
16 Evaluate(P? iwungbgm"egl? ¢§9reloc);
17 for j=1+1 to [y do
18 1 Evaluate(nil, gwaw,. ;Tegl, Qs;reloc);
19 if not ¢/w then throw SecurityException;
20 end

Fig. 6. The simplified algorithm for monitoring the target application

e Pis aset of predicates true in s; (which can be the empty set 0, or P = nil.

e after executing Evaluate qﬁi{ow contains the evaluation of the formula in
state 7 (s;), F (s;).

The detailed monitoring algorithm is presented in Fig. 8 and Fig. 7.

At first we must detail the construction of the Evaluate function assuming
its input arrays contain the right information. So, we break down the formula
¢ into sub-formulae in such a way that we can recursively evaluate it as one
by Havelund and Rosu [10] and Krukow [12]. Sub-formulae are placed in such
order that if now[k;] is a sub-formula of now[ks] then k; > ky. This construc-
tions allows one to evaluate quickly a formula on the basis of the pre-computed
value of the sub-formulae.

For the correctness of the Evaluate function we will simply make use of the
following facts:

e the pre_loc[0..m] array contains the evaluation of all subformulae of 2D-LTL
formula in state ¢ [..i; — 1], F (¢[..i; — 1]). If i; = 1 then pre_loc|0..m]= nil,

e pre_gl[0..m| contains the evaluation of the formula in state 7 (s;_1) , F (sj_1).
If j =1 then pre_gl[0..m]= nil,

e identical conditions for the set of predicates P as we have shown in the
ABSTRACTMONITOR.

1 Evaluate values of the subformulae
2 input
3 a set of predicates P

4 //(if nil then the predicates are unchanged with respect to now)
5 an ordered array of subformulae now
6 an ordered array of subformulae pre_gl
7 //(if nil this is the first session)
8 } an ordered array of subformulae pre_loc
9 //(if nil this the session has just started)
10 output
11 now is modified and contains updated values for all subformulae
12 begin
13 for k=now.legth-1 downto 0 do
14 case now|k|.type of
15 predicate p:
16 if P = nil then skip; //value unchanged
17 else if p € P then nowlk|=true
18 else now|k|=false;
19 _'¢z':
20 now [k]=not nowl[i;
21 ¢7, A iji
22 now k|=nowl[i] and now|j];
23 ;i V ¢
24 nowk|]=now/i] or nowl[j];
25 YL 9252
26 if pre_locli] == nil then now|k|=false;
27 else now|[k|=pre_loc|[i];
28 YG ¢1
29 if pre_glli] == nil then now[k]=false;
30 else now|[k|=pre_gl[i[;
31 ¢i Si ¢;:
32 if pre_locli] == nil then nowk|=nowl[j];
33 else now|k|=nowlj] or nowli| and pre_loc[k];
34 ¢i Sg ¢
35 if pre_glli| == nil then now[k]=nowl[j];
36 else now[k]=nowlj] or nowli| and pre_gl]i];
37 end

Fig. 7. The algorithm for recursive evaluation of 2D-LTL formulae

Then it is easy to prove by induction the after executing the function Eval-
uate the now[0..m] array contains the evaluation of the formula in state

T (s5),F (s)).

Now we have the machinery for full monitoring algorithm Fig. 8.

1 Algorithm MONITOR;
2 input a 2D-LTL formula ¢;
3 asequence of events from the target
4 throws SecurityException if event e € E violates F
5 variable an array of subformulae F;
6 integer ly;
7 begin
8 [fIO;
9 nowl[0]=nil;
10 F=decompose(¢);
11 order F by inclusion so that if F[i] is a subformula of F[j] then i > j;
12 while F not empty do

13 pick e from FE;

14 if e.type == new then

15 Iy = l+1;

16 create arrays now|l],pre[ls] from F;

17 Evaluate(0), now[l;], now[l 1], nil);

18 else if e.type == update(P, 1) then

19 pre[l]=now(l];

20 Evaluate(P, now|l|, now[l-1], pre[l]);

21 for j=1+1 to [y do

22 Evaluate(nil, now[j|, now[j-1], pre[j]);
23 if not now[l/][0] then throw SecurityException;
24 end

Fig. 8. The algorithm for monitoring

We can now state the main result of the paper:

Theorem 1 Let t be a serialized execution over E and let ¢ be a 2D-LTL
formula. Then now[l;][0] == 1 iff H(t) = ¢.

The proof is done by induction on the number of elements in the monitored
trace. We show that a strong invariant that links the value of the now arrays to
the value of the monitored formula at key points in the history corresponding
to the serialized trace (for details of the proof see Appendix B).

In a nutshell, if the number of sessions in the execution is equal to [; and
F (sy) = (s1,...,s;) is the current frontier of execution then for all j = 1..I;
the following properties hold:

(1) now[j] contains the result of evaluation of the formula in state s;,

(2) if 7 (sj) = t[..4;] then pre[j] contains the result of evaluation of the for-
mula in state sg_l) =t[i; — 1],

(3) nowl[i][0..n] is evaluated in s;.

1 Algorithm OPTMONITOR;

2 input a 2D-LTL formula ¢;

3 asequence of events from the target

4 throws SecurityException if event e € E violates F
5 variable an array of subformulae F;

6 integer ly;

7 a heap of integers RunningSessions;

8 //top element contains minimal element min(RunningSessions);
9 begin
10 lf:();

11 RunningSessions=0;

12 now|0]=nil;

13 F=decompose(¢);

14 order F by inclusion so that if F[i] is a subformula of F[j] then i > j;
15 while E not empty do

16 pick e from FE;

17 if e.type == new then

18 ly = lp+1;

19 add [/; to RunningSessions;

20 //as in MONITOR

21 else if e.type == update(P,l) then

22 pre[l|=now][l];

23 Evaluate(P, now[l], now[l-1], pre[l]);

24 for j=1+1 to [y do

25 Evaluate(nil, nowl[j], now[j-1], prelj]);
26 else if e.type == end(l) then

27 remove | from RunningSessions;

28 destroy prell];

29 for j=max(2, 1) to min(RunningSessions)-1 do
30 destroy(newlj-1])

31 if not now[l;][0] then throw SecurityException;
32 end

Fig. 9. The optimized algorithm for monitoring

More details are provided in the appendix.

Certain optimization of this algorithm can be performed. In particular, there
is no need to store values of the arrays for the i-th session if all sessions 1, ...,
are terminated (and so cannot receive new upcoming events) [12]. However, we
must store ¢ if some j < i is still active because the value of global operators
may change on 7. The corresponding algorithm is shown in Figure9.

The key idea is that the algorithm will only have to use

e pre[l], I € RunningSessions,

User Game ‘ User

MMS limit exceeded yes no

ask

Fig. 10. Diagrams representing the desired behavior of the game applet

e now(l], for all sessions in min(RunningSessions)—1 <1 <l

Then for the formal proof of correctness of the monitoring algorithm we sim-
ply make the assumption that destroyed vectors continue to hold the values
they stored at the time of destruction but simply cannot be accessed by the
algorithm (for details see Appendix C).

5 Overview of UML sequence diagrams

UML sequence diagrams are used to represent interactions between applica-
tions. Each session of the application is represented at the diagram as a lifeline
(vertical line) with a sequence of events on it. Events represent transmitting
and receiving the messages. A message is a triple m = (s, tr,re), where s is
a unique name of the message, and tr, re are correspondingly transmitting
and receiver events. The transmitter of a message m is denoted as !m, and
the receiver as ?m. The events on each lifeline are ordered. Nothing can be
said about ordering of the events from different lifelines except when they
are a transmitter and a receiver of the same message. Then the transmitter
must necessarily precede the receiver. For more information about sequence
diagrams see [16].

Now let us construct sequence diagrams representing our simple example sce-
nario. It includes two acceptable variants of execution: when the user decides
to continue playing and the program resumes, and when he prefers the pro-
gram to be terminated. Both these scenarios have one part in common — after
the limit of MMS is exceeded, the applet must suspend execution and ask
a user, whether he wants to continue the game. Therefore, we represent the
example scenario by three diagrams, as can be seen at Figure 10. Diagram d;
represents the common part, while dy and dy represent differing variants of
execution.

These diagrams are combined into a single whole by application by UML op-

sd example J
User Game

seq T L_MMS limit exceeded

i

,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 11. The combined diagram representing the desired behavior of the game applet

erators. UML operators can specify both interconnections between diagrams
(seq, strict, alt) and the meaning of the diagram in the description of the
interaction (as refuse). In this paper we consider the following UML 2.0 oper-
ators:

seq[<list of interactions> | the weak sequencing operator combines the
operands by preserving ordering of events on each lifeline with respect to
the ordering of the operands. Does not put any constraints on the ordering
of events from different lifelines.

alt[<list of interactions> | All enumerated variants of behavior are accept-
able (possibly, depending on some constraints).

refuse[<interaction> [*] The behavior is unacceptable.

The three diagrams from Figure 10 can be merged in one as shown in Figure 11:
d = seq|[dy,alt[ds, ds]]. Tt means that after the first part took place, it is
obligatory for a program to follow one of the two branches.

Further in the paper we assume, that every message and every event is unique
both throughout the diagram and the execution, and not pay attention to
checking it (though such properties can be modelled in 2D-LTL).

6 From UML interaction diagrams to 2D-LTL

The goal of this section is to demonstrate how a security policy in 2D-LTL can
be defined for every UML interaction. We only describe here the translation

4 For the reason, why we use refuse operator, and not neg, see [8].

of interaction diagrams because state diagrams can be easily translated into
finite state automata.

In our interpretation of UML sequence diagrams we rely on the STAIRS se-
mantic [7]. In this semantic UML interaction diagrams imply two kinds of
constraints on the execution: those defining the acceptable (positive) traces of
execution, and those defining the unacceptable (negative) ones. Some traces
cannot be put in any category and are called inconclusive. A simple message
diagram can only specify positive traces; negative traces appear as a result of
applying UML operators to the diagram (e.g the refuse operator).

Let us establish a correspondence between STAIRS traces and our bi-dimensional
histories. First we must create a link between states of our histories and events
that form traces. For this reason we define the set of states S as F x L, the
predicates eq, . .., e, corresponding to all the events in the system and [, ..., [,
corresponding to the lifelines.

To encode every UML interaction (either a single diagram or a composition of
diagrams) we will use seven 2D-LTL formulae. Three of them represent respec-
tively the precondition, the postcondition, and the invariant of the positive
constraints, and three others in a same way define the negative constraints.
An auxiliary synchronization formula represents the lifelines of the diagrams.
After the encoding of d is completed, these 7 formulae will be combined in a
single formula that is going to be monitored.

Definition 7 A positive constraint (resp. negative constraint) for a UML
diagram d is a 2D-LTL formula that must be satisfied (respectively constantly
dissatisfied) by the execution of a system which meets the UML specification
described in d. Constraints describing interaction diagram d are denoted by
[|d|] where:

()= (1l [l [l (ldlly [l 1l (),

[|d|];r/_ = true/false immediately when the interaction begins

[|d|]:/7 = true/false immediately when the interaction ends

[|d\]f/_ = true/false/ during the whole process of the execution
[|d|], = enumerates all the lifelines present in the diagram

Our goal is to find such set of constraints that the following conditions are
satisfied:

o if for trace ¢ history H(t) satisfies the constraints then a trace is well-formed,
that is the transmitter always precedes the receiver of the same message
e the trace of the execution t is positive for diagram d iff for all its prefixes

t[..i] H(¢[..7]) satisfies the following 2D-LTL formula:
N} = He (<Ye T = [dl) Al A He (<Ye 1)) A Ho Hy (d]]

e similarly, the trace of the execution ¢ is negative iff for all its prefixes t[..i]
H(t[..i]) satisfies the following formula:

ldll” = He (<Y T —[ldll,) Alldll; A He (<Y2 [ldl];) A He Hy [ldl)
We will denote these accumulated formulae as [|d|]™ and [|d|]” respectively.

Let us start defining these constraints from a primitive single-message dia-
gram. A primitive diagram (message m between lifelines [; and l,) is encoded
S0:

e the first global event must be the first event of some lifeline,

e the last global event must be the last event of one of the lifelines,

e the invariant requires that the transmitter of the message must precede the
receiver,

e all negative constraints must be set to false,

e the synchronization formula is a simple enumeration of the lifelines.

Formally this is captured by the following formulae:

g [|d]], = L,
Hde = LAMV LATM .
d]T = LAIm V IbA?m HdHe_ = L,
Hde = Og (IaAN?m) — Og Op (I1A!m) Lo
[d]], = L Vi

So the accumulated formula that defines the positive traces is

HdH+ :HG (ﬁYL T — (ll/\!m V l2/\7m)) VAN
N (OG (l2A7m) — O¢ Oy, (ll/\'m)) A\
A HG’ (ﬁYL (ll/\‘m V l2/\7m)) VAN HG HL (ll V lg)

Let us now describe, how to represent weak sequencing by 2D-LTL formulae.
Construction of the positive constraint is fairly simple. The precondition must
be equivalent to the precondition of the first argument with addition of the
first events from those second argument’s lifelines, that are not involved in the
first interaction. The postcondition can be constructed in a similar manner:
it includes the last events of all the lifelines of the second argument together
with the last events of those lifelines of the second argument that are not

present in the first diagram. During the interaction the invariants of both
arguments must hold, and the following additional constraint is introduced: if
the first event of some lifeline of the second diagram occurs, and this lifeline
participates in the first interaction, then the last event of the first interaction
from the same lifeline must have already occurred.

To represent the alternative choice we have to introduce an auxiliary pair of
predicates p1, po. Only one of these predicates can be true in the same time, and
since the execution of the diagram started its value cannot be changed. These
predicates serve to synchronize precondition, postcondition and invariant. The
predicate that is true denotes, which branch of two was chosen in the current
execution.

We illustrate the algorithm on an example from Figure 11.

Example 8 Let us calculate positive constraints [|d|],7, [|d]]], [|d|]; and a
constraint [|d|], for diagram d representing the behavior of the game applet
when limit of MMS messages was exceeded:

[|d|]) = userA?ask V game A MM S limit_exceeded
[|d]] =p1 A userAlyes v
V p1 A\ game A resume V
V pa A userAlno VvV
V p2 A game N terminate
[|d]7 = (Y (game A MM S limit_exceeded) — game A suspend) A
A (YL (game A suspend) — gameAlask) A
A (p1 A (YL (gameA?yes) — game A resume) V
Vo pa A (Y (gameA?no) — game A terminate)) A
A (YL (userA?ask) — (p1 A userAlyes V ps A userAlno))
(YL (gamenlask) — (p1 A gameATyes V py A gameA?no)) A
(O¢ (userA?ask) — Og O (gameAlask)) A
(O¢ (gameN?yes) — Og Or, (userAlyes)) A
O¢ (gameA?no) — Og Or (userAlno))

(
[|d]] = game V user

> > > >

To monitor if the trace of execution is positive for UML specification defined
by diagram d we must use an accumulated formula

ldl) = He (=Yp T = [ld]}y) Alldll A He (=Ye [[dl))) A He Hy [|d]),

7 Related work

Run-time monitors are security policy enforcement mechanisms that work by
monitoring execution steps of a system, called the target, and performing
some specified actions (e.g. terminating the target’s execution) if it is about
to violate the security policy. They can be loosely classified as follows:

Each instance of every application is monitored individually. This ap-
proach by Erlingsson and Schneider [5] is simple and enables full in-lining
of the monitor in the code of the program. However, some useful security
policies, such as “one-out-of-k” by Edjlali et al.[3], cannot be captured.

All instances of each application are monitored at once. This approach
is used in Krukow et al.’s work [12] and makes history-based decisions possi-
ble. Yet, monitoring the interactions among applications remains impossible.

All instances of all applications are monitored globally. The last ap-
proach behind our proposal has the advantage of being suitable for han-
dling application interactions. It is very important to control this kind of
properties in the mobile device environment, where applets must exchange
information between each other or with the system. However, this approach
makes full monitor in-lining difficult.

Schneider [19] introduced the notion of a security automaton, which takes as
input a program’s requested actions and determines whether a legal transi-
tion can be made from the current state. If no transition can be made, then
the requested action is illegal and the target program is terminated. Security
policies are represented by automata: easy to inline and process, less easy to
write. Additional practical details can be found in Erlingsson’s PhD Thesis
[4]. Ligatti et al.[14] extended the automaton’s behavior. They represent it as
a transformation mechanism that can edit the stream of actions produced by
the target. Their edit automaton can either terminate the target in response on
illegal actions or modify its execution in order to respect the desired property.

Run-time monitoring can be applied not only for comparing a program’s be-
havior with a prescribed one. It is also widely used for implementing various
history-based policies. For instance, Fong [6] uses monitors to track a shallow
history of previously granted access events. Such monitors can enforce useful
policies, such as Chinese Wall and one-out-of-k [3].

Besides a mechanism for enforcement we need a language for policy writing,
which is expressive enough to handle real-life policies and formal enough to
enable effective enforcement [20]. Yet, writing directly a security automaton
for a given security property is not easy. When looking for alternatives it is
worth noting that only safety properties [19] can be enforced by monitors be-
cause monitors observe only single executions and cannot speculate on future

executions. For instance, access control restrictions define safety properties,
but not information flow (it does not mean that it cannot be controlled by
other means [2,18]).

Thus, pure-past Linear Temporal Logic (pLTL) seems to be a good candidate
for these properties. The idea and the practical implementation of run-time
monitoring based on the recursive evaluation of pLTL formulae belong to
Havelund and Rosu [9]. They write policies as pLTL formulae with predicates
depending on the state of the execution, propositional and temporal logic
operators and proposed an efficient way to monitor a program by using the
recursive semantics of pLTL. Yet, they consider only single executions of the
program.

Krukow et al. [12] extend this idea to multiple executions by replacing the
notion of event with the notion of session, which intuitively corresponds to
a single run of the program. A session is a set of events composed accord-
ing to certain rules but the order of events within a session is not recorded.
The intuitive distinction between event and session is that a session may be
possibly updated with events even after the succeeding session has started.
So this model is close to a single threaded suspend-and-resume execution of
“concurrent” processes. Temporal operators are used for policy writing, but
are applied to sessions rather than to events.

In [12] Krukow et al. make an example of a eBay bidder policy bid only to
the auctions where the seller has never provided negative feedback in auctions
where payment was made. To capture this policy by their language they intro-
duce the ignore event that states that the bidder did not make payment. This
policy would be more naturally formulated as bid only to the auctions where
the seller has never provided negative feedback after payment was made. Yet
this policy cannot be captured by their language.

While Havelund and Rosu allow any computable predicates on the execu-
tion states in pLTL formulae, Krukow et al. restrict them to the statements
concerning the presence of events in the session. These latter statements are
computationally convenient but are not enough for expressing useful policies.
For this reason Krukow et al. extend their language and monitoring algorithm
to handle parameterized events, quantified and quantitative properties.

Among the attempts to simplify policy writing, Hoagland et al.in [11] propose
to specify access control policies in a graph-based policy language. However,
hey do not provide the possibility to reason about temporal behavior of the
program. Further, this proposed language does not rely on an widely used
standard.

8 Conclusions

Venkatakrishnan et al.[20] enumerates a number of desired features of a pol-
icy framework for mobile applications: flexibility to state policies in terms of
externally observable operations, ability to express policies involving tempo-
ral sequencing of operations, modular specifications with precise and simple
semantics, and efficient enforcement.

Our framework has these features because it is based on a refined bi-dimensional
model. It allows distinguishing between local and global policy constraints
and therefore more fine-grained decision making with an efficiently enforce-
able monitoring mechanism. Technically, one could obtain the same results
by using plain LTL and a global security monitor, which keeps track of all
actions in a heap. However this solution leads to cumbersome, unreadable
policies with a blow up of the formula due to the need of explicitly mentioning
all sessions. Further it poses a limit on the maximum number of sessions that
can be captured.

We also sketched how UML sequence diagrams can be mapped to 2D-LTL for-
mulae, providing a possibility to specify properties in a more friendly graphical
manner.

In the future we plan to study the optimizations of logical representation of
policies by introducing different cost notions for predicates and in-lining the
monitoring algorithm within the code..

References

[1] M. Abadi and C. Fournet. Access control based on execution history. In 10th
Annual Network and Distributed System Symposium (NDSS’03), 2003.

[2] P. Bieber, J. Cazin, P. Girard, J. Lanet, V. Wiels, and G. Zanon. Checking
secure interactions of smart card applets. In Proc. of ESORICS-00, pages 1-16,
2000.

[3] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for
mobile code. In Proc. of CCS-98, pages 38-40. ACM Press, 1998.

[4] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy
Enforcement. PhD thesis, Cornell University, 2004.

[5] U. Erlingsson and F. Schneider. SASI enforcement of security policies: a
retrospective. In Proc. of NSPW-99, 1999.

[6] P. Fong. Access control by tracking shallow execution history. In Proc. of IEEE
SSP-04, pages 43-55. IEEE Press, 2004.

[7] O.Haugen, K. Husa, R. Runde, and K. Stgélen. STAIRS towards formal design
with sequence diagrams. J. of Sys. and Software Mod., 2005.

[8] O. Haugen, R. Runde, and K. Stglen. How to transform UML neg into a useful
construct. Technical report, University of Oslo, 2005.

[9] K. Havelund and G. Rosu. Efficient monitoring of safety properties. Int. J. of
STTT, 2004.

[10] K. Havelund and G. Rosu. Efficient monitoring of safety properties.
International Journal on Software Tools for Technology Transfer, 2004.

[11] J. A. Hoagland, R. Pandey, and K. Levitt. Security policy specification using a
graphical approach. Technical Report CS-98-3, University of California, Dept.
of Computer Science, Davis, California, 1998.

[12] K. Krukow, M. Nielsen, and V. Sassone. A framework for concrete
reputationsystems with applications to historybased access control. In Proc.
of CCS-05, 2005.

[13] D. Kushner. Engineering EverQuest: online gaming demands heavyweight data
centers. IEEE Spectrum, 42(7):34-39, July 2005.

[14] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms
for run-time security policies. IJIS, 2003.

[15] F. Massacci and K. Naliuka. Towards practical security monitors of UML
policies for mobile applications. Submitted to FOSSACS’07.

[16] Object Management Group. UML 2.0 Superstructure Specification, document:
ptc/04-10-02 edition, 2004.

[17] J. Park and R. Sandhu. The UCON gpc usage control model. TISSEC, 7(1),
2004.

[18] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEFE
JSAC, 21(1), 2003.

[19] F. Schneider. Enforceable security policies. J. ACM, 3(1):30-50, 2000.

[20] V. N. Venkatakrishnan, R. Peri, and R. Sekar. Empowering mobile code using
expressive security policies. In NSPW °02: Proceedings of the 2002 workshop on
New security paradigms, pages 61-68, New York, NY, USA, 2002. ACM Press.

[21] A. Zobel, C. Simoni, D. Piazza, X. Nuez, and D. Rodrguez. Business case
and security requirements. Public Deliverable of EU Research Project D5.1.1,
S3MS- Security of Software and Services for Mobile Systems, Report available
at www.s3ms.org, October 2006.

A Proof of correspondence between serialized executions and his-
tories

Proposition 1 If H(t) = (S, s, T,F,L,P,V) is a valid history then H(t o
(e)) = <S/7S},T’,.7:’,L’, P, V’>z’3 also a history.

Proof. 1f e=new(l) then let us show that for H' = H(t o (e)) all properties
of a history hold:

(1) Session past determinism If 77 (s) =t o (s_1,s) then
(a) 5= sy
T (s) = <s(()l)> = T'(s) #t o(s_1,s) - the situation is impossible
(b) s # sy
T (s)=T'(s) =t o(s_1,5) = (because H is a history) 7' (s_1) =
T (s-1) =1 o(s-1)
Consequently the property of session past determinism holds.
(2) Final past determinism If F’ (3}) = f1 o(s')o fo then

!
(a) & —sé)—sf

F' (Sf) =f1 o <S/f> o (y=1f1 o <s’f>
(b) s # s
F' () = F(sy) o(sh) = Flsy)=fr o(s)o fy=
F(s') = F(s') = fr o(s)
(3) Mutual past determinism If 77 (s) =t o (s_1,s), F'(s) = f o(s,s)
then
(a) 5 = sy
T (s) = <5(()l)> = T'(s) #t o(s_,s) - the situation is impossible
(b) s # sy’
T(s)=T"(s) =to(s_q,8), F(s)=F'(s) = fo(s,s) = (because
H is a history) exists s” € 7 (s') = 7' (s') such that F' (s_1) =
F(s-1) = [o(s",5-1)

Therefore the property of session past determinism holds.

Then let us check the properties if e=update(P,ew, lk):

(1) Session past determinism If 77 (s) =t o (s_1,s) then
@w—ﬁi
7 (38 = T (s09) o (s81) =1 o (s, o)
T'(s1) =T (s\V) =T (s*)) =t
(b) s # st

T (s)=T'(s) =t o(s_1,s) = (because H is a history) 7" (s_;) =
T (s-1) =t o(s)

Consequently the property of session past determinism holds.
(2) Final past determinism If F’ (s}) =F (sgi’“_‘ll)) o <s§i’f%, Ce ii")>
fi o(s’)o fy then

(a) & = sgjj), j>k
fr=F (s57) o (sl osi))
F/(/) _ F(Sz(ik 11)) o <SE{|’-€%7 . ,Sz(jj)> T (S/) =f o <ng)>

(b) & =7 j <k

%

F(sy) =]—“(sgi’“’;)) o <s§l’“), . ,sgi")> =f1 o <sgj)> o f”, where
"= <5g,f11), st sgi”)>

Therefore the property of final past determinism holds.
(3) Mutual past determinism If 7' (s) =t o (s_y,s), F'(s) =

then

(a) s = sl(fi =54 = S(Ik) 5 — S(zk,l)

ih—1
(k)

s,* € F(sg). By final past determinism property if F (sf) =
S;

f o<s<lk>>o fo then F (s}) = fi o (s") = fi o (s{0 s
= exists " = s*) ¢ ’T’((l’“’l)) such that F' (s_1) = f" o(s",s4

k—1 lkl

= (because H is a history) F' (s') = F (s(l) =f1 o <s ’ >
f

_ (k1) _ (k1) (Ix)
(b) s =38, = s1=1s5;," 01, 8 = 5,14

F(s) = f O<Sik 75>, T(s) =T'(s) =t o(s_q,s) = exists
s’ e T(Sz(»lk)> such that F (s ;) = f(s(lk“) fh o < n o gllesn) >

iggp1—1) zk+1 1
But 7’ (sfﬂf%) =T (sglk)) o < fﬂ’:b = s eT (sfi’f%) = exists §” €

7 (sE) smeh that 7 (s0) = F (s1) = £ ()

(c)s—s yk+1<j<n=s_ 1_S§l_)175—5£§1)

() f' o < Jl), >wheref/:}"(3§jﬁ;)),’f(s)—T’():
t o(s_1,s) = exists 8" € T (s(lj_l)) such that F (s_;) = .7-"((L)1) —

ZJ

f" o <s s(2 > But ’]”()) = T(s%‘”) = exists s € T' (¢)

ij_1
such that F (s—1) = F (s) f” (8", s_1).
(d) s—s(j) Il<j<k=s_ 1:s(l 1S —sl(lill)
T(s)=T'(s)=to(s- 1,5),]:() .7-"’(3) fo(s',s) = (because
H is a history) exists s € T (s') = 7' (s') such that F'(s_1) =
F(s_1)= [o(s" s4)

Therefore the property of session past determinism holds.

If e=end(l) then the properties are obviously preserved because the history
does not change. a

B Correctness of the monitoring algorithm

As stated for the proof of the main theorem we must first prove a technical
lemma concerning the correctness of the Evaluate function (Figure 7).

Lemma 1 Let H and F (sf) = (s1,...,s) and T (s;) = t[..ij] for some
s; € F(sy). Then if

e pre_loc/0..m] array contains the evaluation of all subformulae of 2D-LTL
formula in state t[..i; — 1], F (t[..i; — 1]). Subformulae are placed in such
order that if nowfk,] is a subformula of now[ks] then ki > ky. If i; = 1 then
pre_loc[0..m]= nil,

e pre_gl[0..m] contains the evaluation of the formula in state T (s;—1) , F (sj-1).
If 5 =1 then pre_gl[0..m]= nil,

e P is a set of predicates true in s;, or P = nil and predicates values are
stored in the corresponding elements of now[0..m].

Then after executing Evaluate (Figure 7) now[0..m] array contains the eval-
uation of the formula in state T (s;),F (s;).

Proof. We will prove the lemma by structural induction. First let us assume
that the element of the array now[k] corresponds to the subformula ¢ = p,
p € P that is ¢ is a predicate. Let us evaluate this subformula in s;. By
recursive semantics (see Figure 5) 7 (s;), F (s;) = ¢ iff pholdsin s;. If P # nil
then predicates that hold in this state are stored in P. Then by steps 17-18 of
Evaluate value of predicate p in state s; is stored in now[k]. From the other
hand if P = nil the value of the predicate p in nowlk] is left unchanged (step
16). Thus the base of induction is proven.

If the element of the array now[k;] corresponds to the subformula ¢ = —
then there is an element now[ks|, ko > ki, which contains the value of the
subformula v in s;. As evaluation proceeds from greater indexes to smaller this
element will be already evaluated by the time when we evaluate nowl[k;]. But
T (sj),F () =~ iff T (s;),F (s;) ¥ 1. Therefore by step 20 of Evaluate
the value of subformula ¢ is stored in now[k;|. Similarly we can prove the
cases when now[k;| stores value of subformulae ¢ = ¢1 A g3 or ¢ = ¢1 V ¢ by
observing lines 22, 24 of the algorithm.

If the element of the array now[k;] corresponds to the subformula ¢ = Y7, v
then there is an index ko, ko > kq such that elements of arrays with this in-
dex store the value of subformula ¢. If i; > 1 we say that 7 (s;),F (s;) =
tlg], flJlEYLwifft[.i; — 1], F (t[i; — 1]) = +. But the values of the sub-
formulae evaluated in state t [..i; — 1], F (¢ [i; — 1]) are stored in the pre_loc[0..m]
array. Therefore at step 27 we put a correct evaluation of ¢ in now|[k;]. Else
if i; = 1 then s; ¥ Yy, 9. In this case pre_loc[0..m]= nil and by step 26 of the

algorithm we store false in now|[k;].

Similarly we can prove the case when now|[k;| stores the subformula ¢ = Y 9.
By recursive semantic 7 (s;),F (s;) = t[..4;], f.J EYo v T (f[j —1]),
flg—1] = T (sj-1),F (sj—1) = . Then we must only notice that array
pre_gl[0..m] stores the values of subformulae evaluated in 7 (s;_1),F (s;_1),
and the rest of the proof is identical to the previous case (see steps 29-30 of
Evaluate).

For ¢ = ¢1 S ¢2, ¢ = ¢1 Si ¢2 we apply exactly the same argument (recall
that the recursive semantic allows evaluating these subformulae by referring
only to states ¢ [..i; — 1], F (t[i; — 1]) and 7 (sj—1), F (sj_1) respectively). The
result of the evaluation is also stored in now[k;| (see lines 32-32 and 35-36 of
the Evaluate function).

As this computation is performed for all elements of now|[0..m| array, in the
end of the function it stores the correct result of evaluation in state s;. O

The next and key part of the proof is an invariant property of the monitoring
algorithm from Figure 8).

Lemma 2 Let {(eq,...,e,) be a serialized trace of execution and let also H =
H({e1,...,en)) be a corresponding history on it according Def. 6. Let also a
number of sessions in the execution be equal to Iy and F (sy) = (s1,...,51).
Then if now/[1..1;][0..m], pre[1..1;][0..m] are arrays created by algorithm MON-
ITOR for evaluation of a 2D-LTL function ¢ then for all j = 1.1y the following
properties hold:

(1) now[j| contains the result of the formula evaluation in state s;,
(2) if T (sj) = t]..i;] then pre[j] contains the result of the formula evaluation

in state sg-_l) =t[i; — 1],
(3) now[ls][0..m] is evaluated in sy.

Proof. To prove that this invariant is maintained by the algorithm we will use
induction. The base of induction, for the empty trace, is obvious because there
is no array and therefore the claim is vacuously true.

For the inductive case we assume that (1)-(3) hold for trace (ey,...,e,) and
show that they hold for (ey,..., e, eni1)-

If e,41 = new(ly + 1) then by construction of H = H({e1,...,€n,€nt1)) We
have a new final state s’ = 5,4, and F’ (Slf+1) =]—"(slf) o <Slf+1>- Since
T'(s) = T (s), F'(s) = F(s) for all s # s;,41 claims (1) and (2) hold for
S1,--+,51,- We must also show that they hold for Iy + 1.

By induction hypothesis the prerequisite of Lemma 1 hold. So we can conclude
that after step 17 of the MONITORING algorithm (1) holds for s;, ;. Also
pre[l + 1] is correctly equal to nil because there is no previous state so (2)
also holds. Finally (3) holds because the final state of the new history is exactly

Slerl'

If e,.1 = update(P,l) then by construction of the new history we add a new
state s;. For all s;, j = [+ 1,...,l; the frontier changes: in F (s;) s is
replaced with s;. For this new state we have 77 (s;) =7 (s;) o (s}), F' (s]) =
F (s1) o (s}). By construction for all s;, j <[we do not change any element
of the frontiers: F' (s;) = F (s;). So for these states (1) holds by the inductive
hypothesis and therefore now[l — 1] contains the evaluation of the formula in
state 77 (s;-1), F' (s1-1).

By step 19 of the algorithm pre[l] contains the evaluation of the formula in
state 7 (s7), F (s;) (because of the inductive hypothesis (1) applied to s;). But
by construction 77 (s;) = 7 (s;) o (s;) and therefore (2) holds for pre[l] with
respect to sj.

Now the hypothesis of Lemma 1 holds for s; and therefore after step 20 claim
(1) also holds for s;. Then by induction on j for j =14 1...[; the hypothesis
of Lemma 1 holds for s;. Then after execution of the cycle 21-22 claim (1) is
true for all s;. But (2) is also true since we have not changed neither 7 (s;)
nor pre[j] and therefore the inductive step is performed for claims (1)-(2).

After step 22 the claim (3) also holds. Therefore the inductive step is com-
pleted. O

The proof of the main theorem follows from this lemma as simple corollary by
observing that by the preceding Lemma now|l¢][0] contains the truth value of
the monitored formula in the final state sy and the main algorithm throws an
exception and terminates if the monitored formula is not satisfied.

C Correctness of the optimized monitoring algorithm

Lemma 3 Let us assume that destroyed vectors continue to hold the values
they stored at the time of destruction but simply cannot be accessed by the
algorithm. Then we claim that the algorithm will only have to use

e prefl/, | ERunningSessions,
o nowfl], for all sessions in min(RunningSessions)—1 <[<y

Proof. For (1) we simply note that by Definition 2 of a serialized trace no
events of the form update(P,l) can occur after end(/) and therefore the algo-

rithm does not make use of pre[l] in any other place.

For (2) if the terminating session | #min(RunningSessions) then cycle at
lines 29-30 will not run and therefore now|[l] will be still available. However if
[=min(RunningSessions) then by Definition 2 we can only receive events of
the form update(!’) for I’ >min(RunningSessions—{(}). So step 23 and cycle
24-25 will make use only of now[j] for I’ — 1 < j < ;. Therefore step 30 will
make inaccessible only those elements that the algorithm will not use.

The remaining argument of Lemma 2 will remain unchanged as the values
now|j|, pre[j] will be the correct ones needed by the inductive algorithm. O

	Introduction
	Our Contribution

	Motivating Application
	A bi-dimensional model of execution
	A traditional linear model
	A bi-dimensional natural model

	Run-time verification
	Overview of UML sequence diagrams
	From UML interaction diagrams to 2D-LTL
	Related work
	Conclusions
	References
	Proof of correspondence between serialized executions and histories
	Correctness of the monitoring algorithm
	Correctness of the optimized monitoring algorithm

