
Fast-Inf: Ultra-Fast Embedded Intelligence
on the Batteryless Edge

Leonardo Lucio Custode
leonardo.custode@unitn.it

University of Trento
Povo, Trento, Italy

Pietro Farina
pietro.farina@studenti.unitn.it

University of Trento
Povo, Trento, Italy

Eren Yıldız
eren.yildiz@ege.edu.tr

Ege University
Izmir, Turkey

Renan Beran Kılıç
renanberan.kilic@unitn.it

University of Trento
Povo, Trento, Italy

Kasım Sinan Yıldırım∗

kasimsinan.yildirim@unitn.it
University of Trento
Povo, Trento, Italy

Giovanni Iacca∗
giovanni.iacca@unitn.it
University of Trento
Povo, Trento, Italy

Abstract

Batteryless edge devices are extremely resource-constrained com-
pared to traditional mobile platforms. Existing tiny deep neural
network (DNN) inference solutions are problematic due to their
slow and resource-intensive nature, rendering them unsuitable for
batteryless edge devices. To address this problem, we propose a
new approach to embedded intelligence, called Fast-Inf, which
achieves extremely lightweight computation and minimal latency.
Fast-Inf uses binary tree-based neural networks that are ultra-fast
and energy-efficient due to their logarithmic time complexity. Ad-
ditionally, Fast-Inf models can skip the leaf nodes when necessary,
further minimizing latency without requiring any modifications
to the model or retraining. Moreover, Fast-Inf models have sig-
nificantly lower backup and runtime memory overhead. Our ex-
periments on an MSP430FR5994 platform showed that Fast-Inf
can achieve ultra-fast and energy-efficient inference (up to 700×
speedup and reduced energy) compared to a conventional DNN.

CCS Concepts

• Computing methodologies → Machine learning; Neural
networks; • Computer systems organization→ Embedded

software.

Keywords

Batteryless embedded systems, fast feedforward networks

ACM Reference Format:

Leonardo Lucio Custode, Pietro Farina, Eren Yıldız, Renan Beran Kılıç, Kasım
Sinan Yıldırım, and Giovanni Iacca. 2024. Fast-Inf: Ultra-Fast Embedded
Intelligence on the Batteryless Edge. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’24), November 4–7, 2024, Hangzhou, China.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3666025.3699335

∗Both authors contributed equally to this research.

SenSys ’24, November 4–7, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0697-4/24/11
https://doi.org/10.1145/3666025.3699335

1 Introduction

Today’s Internet of Things (IoT) applications require embedded
intelligence on resource-constrained edge devices to obtain timely,
accurate, energy-efficient, and privacy-preserving inferences based
on data sensed in situ [82]. However, embedded intelligence is
resource-hungry, while most edge devices are battery-powered and
need to operate for extended periods without maintenance [1, 2].
Running energy-hungry deep neural network (DNN) models on
these devices can rapidly deplete their batteries, reducing their
operational time and effectiveness [65, 71, 72, 75]. Thanks to the
latest breakthroughs in electronics and energy harvesting, a new
generation of edge devices that can operate without batteries is
now a reality [62, 69]. Batteryless operation promises embedded
intelligence forever without maintenance by using exclusively the
energy harvested from the ambient [32].

Compared to conventional mobile platforms, batteryless edge
devices are extremely resource-constrained. For instance, they are
built around 16-bit ultra-low-power microcontroller units (MCUs)
with a few kB-sized memory [5, 25, 48]. Furthermore, they have
tight energy budgets since they rely solely on energy harvested
from the environment to charge their tiny capacitors. Due to scarce
and transient ambient energy, they quickly consume stored en-
ergy and experience frequent power failures, leading to intermittent
computation [3, 33]. Several recent studies have focused on battery-
less intelligence and demonstrated the intermittent execution of
tiny DNN models under resource constraints and stringent energy
budgets [15, 32, 81]. However, in our view, these studies have two
significant problems, as listed below:
P1: Very slow and energy-hungry inference. Batteryless edge
devices may face power failures while executing even a single DNN
layer, due to their tiny energy storage capacitors [32, 81]. Thus, sev-
eral charge/compute cycles (power cycles) are required to complete
the inference. It is worth mentioning that there is no one-size-fits-
all energy storage architecture for DNN inference. Using a capacitor
large enough to complete a DNN inference in one power charge
cycle will significantly increase charging time. Therefore, this is
avoided in energy storage architectures for batteryless systems,
since it degrades reactivity to handle time-sensitive events [76, 77].
Furthermore, sensing and preprocessing operations might still in-
terrupt the DNN inference and lead to power failures, even with
larger capacitors. At the end of each power cycle, the device backs
up the computational state in nonvolatile memory. When it turns

239

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-1652-1690
https://orcid.org/
https://orcid.org/0000-0002-4631-7834
https://orcid.org/
https://orcid.org/0000-0002-9528-6923
https://orcid.org/0000-0001-9723-1830
https://doi.org/10.1145/3666025.3699335
https://doi.org/10.1145/3666025.3699335
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3666025.3699335&domain=pdf&date_stamp=2024-11-04

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

Inputs

1

2

3

4

Harvest 1

Ultra-Lightweight Task

Feedforward
Layer

Ultra-Lightweight Backup
only variable path is logged

Harvest

power
failure

Ultra-Lightweight Recovery
only variable path is recovered

2 3 3 4: Leaf

Figure 1: Conceptual scheme of Fast-Inf functioning.

on, it recovers the computational state and resumes the DNN in-
ference. The limited processing capabilities of these devices and
overheads due to frequent backup/recovery make compute- and
memory-intensive DNN computations extremely slow and energy-
inefficient. For instance, running even simple models takes on the
order of several seconds to minutes [32, 45, 81], preventing timely
responses.
P2: No response to charging time dynamics. Harvested energy
can often be unstable due to the sporadic and uncontrollable na-
ture of ambient energy sources. This can lead to longer charging
times and increased latency during computations [27, 38, 52]. Un-
fortunately, DNN models are latency-agnostic as their layers are
executed sequentially till the last layer. Some studies have proposed
augmenting DNN models with early exit branches [45, 46], which
allow the model to terminate early and still provide outputs with
reasonable accuracy for the application. However, these solutions
are not lightweight since they can introduce significant memory
and computational overhead due to the additional parameters of
the augmented exit branches‹[28].
Problem statement. Existing DNN-based inference solutions are
computationally heavy and energy-hungry (P1) and latency-agnostic
(P2), making them unsuitable for batteryless edge devices. These
devices must output accurate results in a few power cycles by
consuming only a minimal amount of energy stored in their tiny ca-
pacitors [60]. This calls for a new embedded intelligence approach
with extremely lightweight computational characteristics, minimal
latency, and satisfactory inference accuracy for the application at
hand.
Contributions. We introduce Fast-Inf (Fast Inference), a novel
ultra-fast embedded intelligence solution specifically tailored to
extremely resource-constrained systems. As depicted in Figure 1,
Fast-Inf models are binary tree-based neural networks where each
inner node of the tree is a single neuron, while the leaves are
tiny feedforward layers. An inner node of the tree computes an
intermediate output that is then used to decide whether to take
the left or the right branch. The inference concludes by executing
a feedforward layer when a leaf node is reached. This operation
is extremely energy- and time-efficient with significantly lower
backup and runtime memory overhead.

To ensure that Fast-Inf models can fit in the extreme edge and
executed efficiently, we introduced several novel mechanisms that
can summarized as follows. (1) Fast-Inf networks yield a mem-
ory/inference time and accuracy trade-off as deeper networks re-
main computationally lightweight but with an increased memory
footprint. To address this challenge, we devised a specific pruning

approach, which truncates less important leaves and imposes spar-
sity to eliminate weights that have minimal impact on accuracy.
(2) Furthermore, we introduced truncated inference, a novel ap-
proach to make Fast-Inf models adaptive and energy-aware (i.e.,
aware of the energy harvesting dynamics). (3) Besides, to improve
the accuracy, we adopt a custom training procedure that includes
regularization in the loss function. (4) Finally, we introduced an
energy- and memory-efficient inference engine that enables fast
and efficient intermittent inference with minimal overhead on the
MSP430FR5994 [40] platform, which is the de facto computational
platform for batteryless systems.

These contributions make Fast-Inf the first pure software-based
solution that achieves ultra-fast inference, introduces minimal mem-
ory overhead, and offers energy-adaptive latency. In short, Fast-Inf
comes with the following features:
(1) Tiny memory footprint. Compared to the corresponding DNN

architectures, Fast-Inf achieves a significant memory footprint
reduction (up to approximately 6× fewer parameters and 4420×
less runtime buffer requirements), making Fast-Inf models fit
in the small memory of batteryless devices.

(2) Ultra-fast tiny inference. Running Fast-Inf models is ultra-fast
and energy-efficient due to their logarithmic time complexity.
We observed up to approximately 700× speedup and less energy
consumption compared to DNNs during our experiments on
the MSP430FR5994 MCU.

(3) Tiny runtime. Fast-Inf inference engine has approximately 6×
less code size and 1000× less runtime overhead compared to the
de facto inference engine for batteryless devices [32]. Fast-Inf
inference tasks have significantly lower backup and runtime
memory overheads.

(4) Adaptable latency. Fast-Inf can truncate (i.e., skip) the leaves
when necessary, minimizing latency without degrading the
accuracy significantly, adapting inference to sporadic energy
conditions and dynamic constraints.
We are excited to share Fast-Inf with the research community

and will release it as an open-source project [21]. We believe that
Fast-Inf acts as a solid baseline for future research and leaves a
rich design space for future works aimed at further exploration and
improvements.

2 Zero-Energy Tiny Inference

Enabling intelligence on the batteryless edge offers intelligence
using the “free” ambient energy [32, 33], but comes with several
challenges due to extreme resource constraints and intermittent
operation. We summarize these challenges and highlight Fast-Inf’s
unique features to address them.

2.1 Addressing Resource Constraints

Various techniques have been proposed to reduce the parameters of
DNN models to make them suitable for memory and computation-
ally constrained embedded devices [10, 14, 35, 50]. These techniques
include quantization [31, 34, 47], pruning [35, 36, 54, 55, 57], and
separation [10, 32, 73], and have been already implemented in mul-
tiple studies targeting batteryless edge devices. For instance, Gob-
ieski et al. [32] utilized pruning, separation, and neural architecture
search [56] to obtain a DNN model that can meet the memory and
energy requirements of the target device. However, the intermittent

240

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

execution of these models still results in substantial overheads, as
we explain shortly.

2.2 Challenges of Intermittent Inference

Although energy is an abundant resource, its availability can be
affected by various factors, such as the inefficiency of energy har-
vesting techniques and the erratic nature of ambient energy. These
factors, along with the increasing computational demand, often re-
sult in energy shortages and power failures [5, 23, 25, 37]. A power
failure leads to the loss of the computation state, i.e., a failure
typically clears the contents of the CPU registers and the volatile
memory. Consequently, the computation returns back to its main
entry point when power is restored, but it might not progress for-
ward. Furthermore, the re-execution of a code block after a power
failure might keep persistent variables (i.e., variables kept in non-
volatile memory) in an inconsistent state due to Write-After-Read
(WAR) dependencies [67]. Several software solutions have been pro-
posed to address these issues [7, 11, 18, 19, 52, 58, 59, 79, 81]. Briefly,
these solutions run computations intermittently across multiple
power cycles by backing up the computational state in non-volatile
memory when power failure is imminent and restoring it when
sufficient energy becomes available for resumption.

In this work, we consider the task-based model [7, 19, 58, 59, 79],
a lightweight intermittent computing approach that requires the
computation to be defined as a set of failure-atomic and idempotent
tasks that can be safely re-executed upon power failures [19, 58, 59,
79, 80]. Several recent works focused on the task-based implemen-
tation of custom DNN workloads and their efficient intermittent
execution [15, 32].
Computationally heavy tasks. Gobieski et al. [32] tested a task-
based implementation of a DNN for the MNIST dataset [24]. This
implementation involves 18 complex computational tasks, with
the convolution task alone requiring several hundred thousand
multiply-and-accumulate (MAC) operations (e.g., o+=w*x+b). Un-
fortunately, performing these tasks on MCUs with limited process-
ing power on batteryless platforms results in significant delays,
and any energy spent is wasted if computation is interrupted by
a power failure [32, 81]. While low-power hardware accelerators
found in batteryless platforms could speed up the process, they still
consume a significant amount of energy and lose computational
state in the event of a power failure [15, 32, 49, 53].
Backup and runtime memory overhead.MAC operations exe-
cuted by DNN tasks have WAR dependencies. To preserve idem-
potency and enable failure-atomic execution of these tasks, their
inputs and outputs are separately maintained in non-volatile mem-
ory in a runtime buffer (a.k.a. working buffer) [32]. Consequently,
the runtime buffer requirement of a layer is the sum of its input
and output sizes. Thus, the runtime memory overhead of a DNN
model is determined by the layer with the highest input/output
requirements. Unfortunately, DNNs introduce large runtime mem-
ory overhead due to the large number of (typically, large) layers
being used. Besides, DNN tasks need to back up their outputs upon
completion. This is needed to avoid losing their computational re-
sults due to a power failure, but it introduces significant energy
and time overhead. Tasks with larger runtime buffer requirements
have considerably larger backup overheads.

Table 1: Prior works on batteryless intelligence.

Solutions Features

Rehash [7], AdaMICA [4],
Camaroptera [25],

ImmortalThreads [81],
Neuro.ZERO [53], Protean [5],
SONIC [32], SoundSieve [60]

Compressed DNN models, slow inference, high energy
overhead, no adaptable latency.

HarvNet [46], Zygarde [45],
ePerceptive [61], FreeML [28]

Compressed DNN models, slow inference, high energy
overhead, adaptable latency via early-exit branches.

Fast-Inf (this work)
tree-based networks, ultra-fast inference, very-low

energy overhead, truncated inference.

LatencyAdaptationOverhead. Priorworks used early exit branches
to adapt inference time considering the available energy [28, 45,
46, 61]. However, these branches introduce memory, backup, and
computational overhead w.r.t. a conventional DNN model, since
their inputs need to be computed and preserved in non-volatile
memory during inference.

2.3 Unique Features of Fast-Inf

Table 1 presents a qualitative comparison of the prior works on
batteryless intelligence. We identify four main features that make
Fast-Inf distinct from the current state of the art.

1 Fast-Inf employs a novel tree-based network architecture
that allows conditional execution during inference [9], allowing
ultra-fast and energy-efficient inference thanks to its logarithmic
time complexity.

2 Fast-Inf runtime executes its models very efficiently under
sporadic ambient energy. Its tasks are lightweight and require just
a few bits to store the state of each intermediate node. This allows
us to significantly reduce the backup/recovery overhead during
intermittent execution.

3 Fast-Inf combines structured and unstructured pruning to
further reduce the memory footprint of models. It “truncates” the
leaves which are mostly responsible for a single class (structured
pruning). Moreover, it imposes sparsity while retraining the model,
eliminating the weights that have minimal impact on its accuracy
(unstructured pruning). This also enables adaptive inference time,
allowing the real-time choice of whether to use the pre-computed
values for each leaf or compute the actual output.

4 Fast-Inf employs a custom loss function during training,
which encourages “specialization” of leaves, i.e., it forces the leaves
to just concentrate on a subset of the output classes. This allows us
to minimize the accuracy drop when pruning Fast-Inf models to
fit them on batteryless edge devices.

3 Fast-Inf on the Extreme Edge

At the core of Fast-Inf is the tree-based Fast Feedforward (FFF)
network architecture [8], which has a binary tree structure depicted
in Figure 1. Each inner node of the Fast-Inf tree can be seen as a
single neuron, while the leaves are small feedforward layers with a
single hidden layer.

3.1 Performing Fast Inference

Formally, each inner node 𝑖 of the tree computes an intermediate
output 𝑜𝑖 that is then used to decide whether to take the left or the
right branch. The intermediate output is computed as 𝑜𝑖 = 𝑤𝑇

𝑖
𝑥 +𝑏𝑖 ,

where 𝑜𝑖 is the output of the 𝑖-th inner node, 𝑥 is the input,𝑤 is the
weight vector of the 𝑖-th neuron, and 𝑏𝑖 is the bias term of the node.
After computing the neuron’s output 𝑜𝑖 , we move the computation

241

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

to the left branch if 𝑜𝑖 < 0, otherwise, we go to the right branch.
This procedure is re-iterated for all the nodes encountered. When
a leaf 𝑙 is reached, we compute the tree output. We do so in two
steps: first, we compute the output of a hidden layer in the leaf:
ℎ𝑙 =𝑊𝑇

𝑙,ℎ
𝑥 + 𝑏𝑙,ℎ where ℎ𝑙 is the output of the hidden layer for the

𝑙-th leaf,𝑊𝑙,ℎ is the weight matrix of the hidden layer of the 𝑙-th
leaf, and 𝑏𝑙,ℎ is the array of biases for layer. Finally, we compute
the logits of the model by computing 𝑦 =𝑊𝑇

𝑙,𝑦
𝑥 + 𝑏𝑙,𝑦 .

3.2 Applicability

As we show in Section 5, Fast-Inf is suitable for problems that
can be addressed using fully connected networks (FCNs). This is
because this kind of model can be viewed as a tree-based decom-
position of FCNs. As a result, Fast-Inf performs comparably to
FCNs where the goal is to map instantaneous measurements to a
specific class, such as in the case of human activity recognition
(HAR) [39], which is a popular embedded application that classifies
activities using accelerometer data. On the other hand, for tasks that
involve spatiotemporal structure (e.g., audio samples), FCNs typi-
cally perform worse than convolutional neural networks (CNNs) in
terms of accuracy. However, Fast-Inf can still achieve satisfactory
performance on tasks with reasonably small input sizes, such as
keyword spotting (KWS) [74]. This is another common embedded
application that performs speech recognition to identify a set of
target keywords through a microphone.

3.3 Training Fast-Inf Models

The Fast-Inf training process aims to build a tree-based neural
network with minimal depth that achieves the target accuracy. The
training is iterative: it starts with a network of depth 1, trains it,
and checks if the target accuracy is achieved. If not, the depth of the
network is increased and the training procedure is repeated. This
procedure stops when a network with the given target accuracy is
obtained.

During training, the output of the model is a weighted sum of
the outputs of each leaf, as initially introduced in [30]. Practically,
the outputs of the inner nodes are converted to probabilities (of
taking the right branch):

𝑝𝑖 = P(𝑟𝑖𝑔ℎ𝑡 |𝑖) = 𝜎 (𝑜𝑖) (1)

where 𝜎 represents the sigmoid function. Thus, the probabilities of
the inner nodes are combined to use them as weights for a leaf 𝑙 :

𝑃𝑙 = P(𝑝𝑎𝑡ℎ |𝑟𝑜𝑜𝑡). (2)

This means that, during training, the output of the model is:

𝑦 = 𝑃0𝑦0 + 𝑃1𝑦1 + ... + 𝑃𝑁𝑦𝑁 (3)

where 𝑁 is the number of leaves.
At each training step, 𝑦 is used to compute the loss for the back-

propagation as:
L = L𝑥ℎ +𝑤𝐿2 · L2 . (4)

whereL𝑥ℎ is the cross-entropy loss between the logits𝑦 and the real
classes 𝑦 and L2 is the norm of the parameters used in the leaves.
The L2 loss on the leaves’ parameters pushes unnecessary weights
to 0, yielding several advantages: (1) it facilitates compression by
means of pruning based on the magnitude of the weights [29, 32],

because the unnecessary weights already have very low magni-
tude; and (2) it leads to learning simpler input-output functions,
which perform as few operations as possible on the input data to
compute the output. Indirectly, this loss forces the model to learn
a more effective tree structure, where each leaf is responsible for
the prediction for just a few classes, instead of all of them. The loss
function is optimized using Adam [51].

After training, the tree is “discretized” by allowing it to perform
inference in logarithmic time w.r.t. the total number of neurons in
the leaves. This is done by simply taking the path with the highest
likelihood, i.e.:

P(𝑟𝑖𝑔ℎ𝑡 |𝑖) =
{
0 𝑜𝑖 < 0
1 otherwise.

(5)

Implementation-wise, this can be seen as a tree traversal: when
𝑜𝑖 < 0, the computation continues to the left branch, otherwise, it
continues to the right branch.

3.4 Boosting Inference Efficiency

Given a binary Fast-Inf with leaf width𝑤 , depth 𝑑 , input size 𝑠𝑖
on output size 𝑠𝑜 , we can compute:
• the inference cost as 𝜃 (𝑑 · 𝑠𝑖 + 𝑠𝑖 ·𝑤 +𝑤 · 𝑠𝑜);
• the memory footprint as 𝜃 (2𝑑−1 · 𝑠𝑖 + 2𝑑 · 𝑠𝑖 ·𝑤 + 2𝑑 ·𝑤 · 𝑠𝑜).
Intuitively, deeper networks lead to an increased memory footprint
and inference cost. As mentioned earlier, to remedy this, Fast-Inf
combines structured and unstructured pruning by 1 truncating
less important leaves (structured pruning) and 2 imposing spar-
sity to eliminate weights that have minimal impact on accuracy
(unstructured pruning).

3.4.1 Leaf Truncation. In Fast-Inf, the leaves carry out a signif-
icant portion of the computation and hold most of the weights.
As such, it is crucial to determine when a leaf’s computation is
needed and when it can be reduced. To address this aspect, we
introduce a leaf truncation mechanism, which can be seen as a
form of structured pruning. Our approach takes into account the a
priori probabilities of each class for each given leaf. The underlying
assumption is simple: if the a priori probability of the most likely
class in a given leaf is higher than a threshold, then we “cut” the
hidden layers in the leaf and replace them with constant logits.
Formally, if:

𝑚𝑎𝑥
𝑖
(P(𝑖 |𝑙)) > 𝜉 (6)

then we can set:

𝑦∗
𝑙
= {P(0|𝑙), . . . , P(𝑛 |𝑙)} (7)

where 𝜉 is a hyperparameter, and 𝑛 is the number of classes.
Note that the introduction of this truncation mechanism intro-

duces a dual advantage. In fact, one may either:
(1) eliminate the truncated leaves, significantly reducing both the

inference time and the memory consumption of the model;
(2) or, keep the truncated leaves in the model and choose, at run-

time, whether to use the pre-computed values for the leaf or to
compute the actual output of the leaf.
It is important to stress once again that the introduction of this

mechanism is made possible by the introduction of the L2 loss
during training. In fact, as specified in the previous subsection, this
loss encourages learning simpler input-output models in the leaves

242

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

and, as a consequence, learning better structure for the trees, so
that each leaf has to predict just a few classes from the whole set
of classes. Thus, when a given leaf “receives” (i.e., is queried for)
samples from a given class, it can be replaced with a “pre-computed”
prediction, which uses the a priori probability for each class.

Note that this loss is needed because of the way the trees are
trained. Since during training all leaves participate in each predic-
tion, their weights are usually updated to increase the performance
of the whole model (i.e., the weighted sum of the leaves). By using
an L2 loss on the leaves’ parameters, we enforce a “specialization”
of the leaves, which in turn allows us to learn tree structures that
try to “route” a given sample to the leaf specialized for its corre-
sponding class.

3.4.2 Depth-by-depth Compression by Imposing Sparsity. The leaf
truncation mechanism can greatly help in reducing both the mem-
ory cost and the inference cost. However, not always it is possible to
truncate leaves, which may limit the application of these systems in
resource-constrained devices. Moreover, as model depth grows, the
child nodes also introduce non-negligible memory overhead. For
this reason, we introduce another specific compression mechanism
that can further reduce the amount of memory used by Fast-Inf
models. This approach, which can be seen as a form of unstructured
pruning, works as follows.
Compression Iteration. Our compression method employs an
iterative pruning technique, which compresses the entire tree in a
depth-wise manner until it can fit into the targeted device’s memory.
The procedure initiates with the largest leaves (i.e., the nodes at
depth 𝑙), where a certain percentage of elements of their weight
matrixW𝑙 are set to 0. The model is subsequently retrained, and
this process is repeated until the accuracy drop is insignificant. Our
algorithm then moves to the largest nodes at the next depth 𝑙 − 1,
sparsifying the weight matrixW𝑙−1, and so on.
Pruning Weights. At each epoch, our algorithm selects a batch
of samples from the dataset and applies projected gradient descent
(PGD) to update the weights and remove the unnecessary ones. This
involves two steps. 1 Firstly, we calculate gradients in relation
to the weights of the nodes at depth 𝑙 , which we denote asW𝑙 .
We then update the weight matrix by moving in the direction of
the negative gradient. 2 Secondly, we sparsify the weight matrix
using a hard thresholding procedure that sets S% of the weights
with smaller magnitudes to 0. These steps can be formalized as:

W𝑙 ←W𝑙 − 𝜂
∑︁
𝑖

∇W𝑙
L𝑖 (8)

W𝑙 ← hardThreshold(S,W𝑙). (9)

Note that the weights set to 0 in an epoch might re-appear in the
next epoch. Through multiple iterations, the weight matrix tends
to stabilize (keeping only some specific non-zero weights), so that
W𝑙 satisfies the given sparsity without degrading the accuracy of
the Fast-Inf model significantly.

4 Implementation

We implemented the Fast-Infmodel training and pruning in Python
using the PyTorch framework. Moreover, we implemented a tiny
task-based inference engine to run Fast-Inf models intermittently.
The engine can adapt the inference latency by skipping leaf compu-
tations when power failure is imminent and provide an immediate

value that represents an approximation of these computations. We
selected the MSP430FR5994 [40] MCU, the state-of-the-art micro-
controller used in batteryless platforms, as the target hardware plat-
form for our experiments. ThisMCU offers 256 kB of FRAM [43] and
8 kB of SRAM memory. The FRAM stores the Fast-Inf inference
code, the parameters of the Fast-Inf model, the computational state
to be logged, and the runtime buffer used to execute the Fast-Inf
model intermittently.

4.1 Leaf Truncation and Compression

After training, to perform leaf truncation, we execute a script that
reloads the dataset and checks the a priori probabilities as discussed
earlier. We obtain a wrapped version of the model that allows us to
have both the pre-computed values for the simplified leaves and the
parameters of the truncated leaves, enabling us to choose whether
to keep the truncated leaves or not. Then, we apply unstructured
pruning described in Section 3.4.2. We start the compression pro-
cess by setting the sparsity to 45%, i.e., S = 0.45, and gradually
increase it to reach the required size. We monitor the accuracy
during retraining and decrease sparsity if the accuracy drop ex-
ceeds 3-5%, to prevent over-pruning. To address overfitting during
retraining, we use the L2 regularization term.

4.2 Model Representation

After truncation and compression, we use a script that automati-
cally translates the parameters of the Fast-Inf model into C arrays
and stores them in a single header file. This header file is used by
the intermittent execution runtime, explained in Section 4.3, which
navigates the tree, reaches the leaves, and computes the output
in a power failure-resilient manner. The arrays in this header file
include the weights and biases of the inner nodes of the tree (node
array), the hidden layers of the leaves (hidden array), and the out-
put layers of the leaves (output array). The Fast-Inf utilizes the
Compressed Sparse Row (CSR) representation, which creates sparse
arrays by keeping only the non-zero values and their corresponding
indices [35], which is computationally efficient when performing
arithmetic operations.

We also extract a fast_inference array that contains the pre-
computed values for each leaf. The advantage of this representation
is twofold. 1 We can obtain the smallest model architecture by only
keeping the fast_inference array and excluding the parameters
of the truncated leaves (hidden and output arrays). This speeds up
the computation and reduces memory consumption, making it ideal
for extremely resource-constrained systems. 2 We can keep all the
arrays, allowing the runtime choice between using pre-computed
values or re-computing the outputs for the current input adaptively
considering the energy and latency requirements, as mentioned
earlier in Section 3.4.1.

4.3 Intermittent Inference Engine

The Fast-Inf inference engine utilizes a task-based programming
model [7, 19, 79] to execute Fast-Inf models in a power-failure-
resilient manner. Tasks have lightweight computational character-
istics and minimal backup overhead. Fast-Inf preserves a structure
of type model_t in non-volatile memory, which encapsulates the
binary tree-based neural network by maintaining the tree depth,

243

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

the leaf shapes, and pointers to the arrays that hold the model
parameters.

4.3.1 Inference Engine. The Fast-Inf inference engine includes
four core tasks: runModel_t, neuron_t, tree_t, and leaf_t, which
are described below.
Starting inference. The runModel_t task is the entry point of the
inference procedure. The application invokes this task by providing
a pointer to the model_t structure that holds the Fast-Inf model.
Computations. The neuron_t task is the main computational task
that carries out the essential dot product operation by performing
MAC operations. Since these tasks have all-or-nothing semantics,
their computational progress and the energy used are lost if they
are interrupted by power failures [81]. In order to prevent this
issue, we incorporated loop continuation in our implementation,
introduced by Gobieski et al. [32]. This feature enables the compu-
tation to resume from the latest iteration in the loop nests when
the interrupted task is restarted.
Traversing the model. The tree_t task navigates the tree by
iteratively invoking the neuron_t task to select the next child node
on the path. When a leaf node is reached, the leaf_t task comes
into play, executing the feedforward model by iteratively invoking
the neuron_t task.
Result. Upon completion, Fast-Inf writes the output to the desig-
nated address in nonvolatile memory.

1 task_t leaf_t{
2 if(fast){ // if flag is set, then fast inference
3 result = fast_inference[node_id];
4 next_task(tree_t);
5 }else{
6 ... // run the feedforward layer
7 }
8 }

Figure 2: Pseudocode of the truncated inference.

4.3.2 Fast and Adaptive Inference Mode. Fast-Inf maintains a
Boolean flag fast to adapt the inference latency in a simple but
effective way. The leaf_t task, whose pseudocode is presented
in Figure 2, checks this flag. In case the fast flag is set, the task
sets the result variable by using the pre-calculated value in the
fast_inference array and finalizes the inference by setting tree_t
as the next task in the control flow. Otherwise, the task executes
the feedforward model by invoking the necessary tasks. It is worth
mentioning that next_task is used to set the next task in the task-
based control flow, which is a keyword forming the basic building
blocks of the task-based programming model in intermittent com-
puting [79]. The fast flag can be set by an interrupt service routine
or explicitly by the application. Potential triggers for the fast infer-
ence may occur when a deadline or power failure is imminent. This
adaptable method allows for the selection of an optimal inference
approach that can be modified to suit different runtime conditions.

5 Evaluation

We conducted the first part of our experiments on our testbed
using the MSP430FR5994 launchpad. This microcontroller is the
de facto computational platform for batteryless systems since it
utilizes an embedded FRAM as non-volatile memory. Compared

to Flash memory, FRAM has fast read/write times (roughly 1000x
faster), nearly unlimited read/write cycles (100 trillion), and oper-
ates with low-power consumption [42]. Furthermore, since FRAM
is an embedded component of the MSP430FR5994’s internal archi-
tecture, the processor can access it energy-efficiently using the op-
timized interconnecting bus, also making the backup and recovery
operations energy-efficient. We present the results obtained with
MSP430FR5994 in Section 5.1. In the second part of our evaluations,
as detailed in Section 5.2 and Section 5.3, we examine Fast-Inf’s
accuracy in more detail, particularly studying the impact of model
structure, adaptation, and compression on accuracy through simu-
lations. Finally, in Section 5.4, we compare Fast-Inf to established
models from the state-of-the-art.
Datasets. We evaluated Fast-Inf by testing it on three datasets,
which have been selected for being representative of three different
application domains. The first dataset is MNIST [24], which can
be seen as an instance of a simple, yet plausible image-based ap-
plication. Secondly, we considered the Google Speech Commands
v2 dataset with 10 classes for Keyword Spotting (KWS) [74] as an
instance of an audio-based application. For KWS, we used as inputs
to the model 13 Mel-Frequency Cepstral Coefficients (MFCCs), ob-
tained by applying Short-Time Fourier Transformation with a win-
dow size of 25ms and a hop size of 16ms, which gives 793 (61 × 13)
features for a 1-second sample. Finally, we utilized HAR [39], which
classifies activities using accelerometer data, as an example of a
wearable application. For each dataset, we used the training/test
splits proposed in the original papers [24, 39, 74], to prevent data
leaking.

Table 2: The structures of CNNs and Fast-Inf models in

evaluations. “D” stands for depth, “L” stands for leaf width,

“C” and “F” indicate convolutional and fully connected layers,

respectively (with their size).

Dataset MNIST KWS [74] HAR [39]
Model Fast-Inf CNN Fast-Inf CNN Fast-Inf CNN

Layers D:3 C:2 D:4 C:4 D:3 C:6
L:4 F:3 L:4 F:3 L:16 F:5

Parameters
(kilo) 31 444 335 102 42 413

Baseline Model Structures. Table 2 presents the model struc-
tures considered in our evaluations. Our CNNs are similar to those
presented in [5, 28, 32], targeting constrained embedded systems.
We selected the depths of the Fast-Inf models and leaf widths to
achieve comparable accuracy to these CNN models. Since Fast-Inf
can be viewed as a tree-based decomposition of FCNs [8], we also
included FCNs in our evaluations (not shown in Table 2). These
FCNs have the same number of parameters as Fast-Inf models,
i.e., the hidden layer width of the FCN model is set equal to the
training width (2𝑑𝑤) of the corresponding Fast-Inf model. We ex-
cluded binary neural networks and decision trees from our testbed
experiments due to their poor accuracy, see our results presented
in Section 5.4.
Obtaining Ultra-Tiny Models. We compressed all our models
(CNNs, Fast-Inf models, and FCNs) using the unstructured pruning
approach described in Section 3.4.2 to fit them in the memory of
our target platform: as mentioned earlier, the MSP430FR5994 MCU

244

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

Powercast
Transmitter

ADXL
345 MSP430FR5994

Powercast
Receiver

Figure 3: Energy harvesting hardware setup.

has only 256 kB FRAM to store model parameters and runtime
buffers. We used these compressed versions in our evaluations. It
is worth mentioning that the accuracies of the compressed models
were similar to the model accuracies we report in Figure 12, see
Section 5.4.

5.1 Testbed Experiments

We ran the compressed models on an MSP430FR5994 microcon-
troller (MCU) and compared their performances using various met-
rics. The MCU clock frequency was set to 1 MHz. To ensure con-
sistency, we simulated controlled power failures by triggering the
brown-out-reset mechanism of the MCU at regular intervals rang-
ing from 5 to 20 ms. For real energy harvesting-based experiments,
we utilized the Powercast TX91501-3W-ID power transmitter [64]
and the P2110-EVB harvester [63] equipped with a 1mF energy
storage supercapacitor. Our setup is presented in Figure 3.

The P2110-EVB has an output pin that supplies regulated 3.3V
to power our system. It operates in a way that when the capacitor
voltage reaches 1.25V, the output pin provides 3.3V, and when
the voltage drops to 1.05V, the output decreases to 0V, causing
a power failure. Consequently, its onboard 1mF capacitor stores
approximately 230𝜇J of energy in each power cycle. We used the
logic analyzer mode of Analog Discovery 2 [26] and a GPIO pin of
MSP430FR5994 set high at the end of the inference to measure the
inference time. We used the Energy Trace tool [41] to measure the
consumed energy during inference.
Model Implementations.We implemented the CNN models in
Table 2 using Sonic [32], the de facto DNN-based intermittent in-
ference engine for the extreme edge based on the Alpaca [58] task-
based model. We implemented the Fast-Inf and FCN models using
the task-based Fast-Inf inference engine presented in Section 4.3.
Evaluation Metrics. We considered the following evaluation met-
rics. (1) Runtime Overhead, i.e., the time overhead introduced by the
intermittent computing engine to execute models intermittently,
in particular, due to the backup/recovery operations. (2) Inference
Latency and (3) Energy Consumption, which represent the time and
energy required to complete the whole model execution. (4) Mem-
ory Overhead, which indicates the memory requirements for storing
the inference engine code, the model parameters, and the memory
space for maintaining intermediate computational results.

5.1.1 Latency and Energy Consumption. We evaluated the execu-
tion time and energy consumption of Fast-Inf and the baseline
models during both continuous (Cont) and intermittent execution

Table 3: Total execution time in seconds during the continu-

ous and intermittent execution.

Dataset

Continuous Intermittent

CNN FCN Fast-Inf CNN FCN Fast-Inf

MNIST 93.7 1.9 0.4 108.3 2.1 0.42
HAR 74.6 2.1 0.31 83.4 2.4 0.33
KWS 184.6 1.3 0.32 218.7 1.4 0.36

Table 4: Total energy consumption during the continuous

and intermittent execution in mJ.

Dataset

Continuous Intermittent

CNN FCN Fast-Inf CNN FCN Fast-Inf

MNIST 143.7 2.0 0.62 207.9 3.78 0.76
HAR 135.8 3.27 0.59 152.3 4.11 0.71
KWS 355.2 3.27 0.5 419.9 4.11 0.71

with controlled power failures (Int). Our results are presented in Fig-
ure 4 and Figure 5, which show, respectively, the latency and energy
requirements of the baselines normalized w.r.t. those of Fast-Inf
models. Additionally, we present the absolute execution time and
energy consumption values in Table 3 and Table 4. We observe
that Fast-Inf models executed by our runtime can significantly
reduce inference latency and energy consumption. For instance,
concerning the KWS application, Fast-Inf reduced the inference
latency approximately by 607× during intermittent execution com-
pared to the corresponding CNN model executed by Sonic runtime.
While this result may seem counterintuitive (due to the fact that
our Fast-Inf network has 3× more parameters than the CNN) it is
important to note that, in Fast-Inf, each parameter is used only
once during inference, while a CNN reuses some parameters more
than once (namely, the convolutional filters are applied to all the
patches of the image). Besides, considering the total energy that
can be stored in our setup, which is 230𝜇J, Fast-Inf can complete
the inference in a few power cycles. Similarly, concerning the HAR
application, Fast-Inf reduced the inference latency by 7.27× dur-
ing intermittent execution compared to the corresponding FCN
model. These observations are also aligned with the measured en-
ergy consumption.

Table 5: Detailed execution time profile of the nodes and

leaves in Fast-Inf models.

Dataset

Nodes (ms) Leaf (ms)

Min. Avg. Max. Min. Avg. Max.

MNIST 55.8 70.3 85.5 68.2 148.0 234.9
HAR 27.0 29.4 31.9 141.9 222.1 285.5
KWS 3.0 29.6 87.2 9.3 89..4 299.0

Latency of the Nodes and Leaves. The execution time of each
branch in a Fast-Inf model is affected by the sparsity of the weights
of the nodes and the leaves since sparse matrix multiplications in
software take varying amounts of time. Table 5 shows the min-
imum, maximum, and average computation times for the leaves
and nodes in Fast-Inf models. Depending on the sparsity level,
the compressed model representation might introduce a negligible
computational overhead for the inner nodes due to the cost of indi-
rection introduced by CSR representation mentioned in Section 4.2.
However, this cost is significantly compensated by the skipped mul-
tiplications thanks to the sparsity. We observed that compressing
leaves significantly reduces their computation time, e.g., up to 4×
for MNIST.

245

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

Cont Int

MNIST

10−1

101

103

Ti
m

e
 (n

or
m

al
iz

ed
)

234.25 257.86

4.75 5.00
1.00 1.00

Cont Int

HAR

240.65 252.73

6.77 7.27
1.00 1.00

Cont Int

KWS

576.88 607.50

4.06 3.89
1.00 1.00

CNN FCN Fast-Inf

Figure 4: Testbed Experiments: Total execution time during the continuous and intermittent execution. Data are normalized

w.r.t. the execution time of Fast-Inf models.

Cont Int

MNIST

10−1

101

103

E
ne

rg
y

 (n
or

m
al

iz
ed

)

231.77 273.55

3.23 4.97
1.00 1.00

Cont Int

HAR

230.17 214.51

5.54 5.79
1.00 1.00

Cont Int

KWS

710.40 591.41

6.54 5.79
1.00 1.00

CNN FCN Fast-Inf

Figure 5: Testbed Experiments: Total energy consumption during the continuous and intermittent execution. Data are normal-

ized w.r.t. the energy consumption of Fast-Inf models.

Table 6: Time overheads (sec) and number of tasks of Sonic

and Fast-Inf inference engines.

Dataset

Fast-Inf Sonic

Pure C Runtime Ov. Tasks Pure C Runtime Ov. Tasks

MNIST 0.22 0.08 (275×) 5 74 22 22
HAR 0.24 0.07 (257×) 5 56 18 22
KWS 0.18 0.06 (1020×) 5 123 61 22

0 10 20 30 40

KWS

HAR

MNIST

150 200 250
Memory Usage (kB)

.text CNN
data CNN

.text FCN
data FCN

.text Fast-Inf
data Fast-Inf

Figure 6: Memory overhead (in kB) of Fast-Inf and com-

pressed base-line models.

Inference Engine Overheads. To understand the backup/restore
overhead introduced by the Sonic and Fast-Inf inference engines,
we implemented a “Pure C” version of the CNN, FCN, and Fast-Inf
models and ran them continuously without any power failures.
We subtracted the execution time of the Pure C versions from
the execution time of the Fast-Inf and Sonic models to obtain
the runtime overhead introduced to run them intermittently, as
presented in Table 6 under the “Runtime Ov.” column. Thanks to the
energy-efficient and lightweight characteristics of Fast-Inf models,
the Fast-Inf inference engine has a minimal runtime overhead that
is up to 1020× smaller than that of the Sonic. This is also due to
the fewer number of tasks required to be implemented to run the

MNIST HAR KWS
100

103

106

M
em

or
y

U
sa

ge

 (b
yt

es
) 35840 9830

194560

2355 922 2458
34 50 44

CNN FCN Fast-Inf

Figure 7: Runtime buffer requirements.

models, i.e., the Fast-Inf requires only 5 tasks, while the Sonic
requires 22 tasks to be implemented.

5.1.2 Memory Footprint and Runtime Memory Requirements. We
analyzed the .text and .data segments of the target binary to
asses the memory footprint of the models and summarize our mea-
surements in Figure 6. Compared to the Sonic inference engine,
the Fast-Inf inference engine, designed to operate with only 5
tasks, significantly reduces the code size by up to 5×, bringing it
down to about 2.5 kB. Besides, the Sonic inference engine requires
storing intermediate results of the computation in addition to the
model parameters, since each layer’s output serves as the input
for the next layer. Therefore, Sonic requires a buffer that must be
large enough to accommodate the input and output activations of
the largest layer. Contrarily, Fast-Inf tasks are minimal and their
runtime buffer requirements are extremely small as explained in
Section 4.3. As shown in Figure 7, Fast-Inf reduces the runtime
buffer requirement by up to 4420×.

5.1.3 Fast-Inf Adaptive Inference. The Fast-Inf inference engine
can employ adaptive execution by skipping the leaves (as mentioned
in Section 3.4.1), which can further reduce the execution time. We
evaluatedFast-Inf adaptive inference in our testbed shown in Fig-
ure 3, using a Powercast transmitter and receiver. We implemented

246

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

an activity-tracking application using the HAR model. The main
application loop consists of sampling the ADXL45 accelerometer
every 1 second and performing activity classification by executing
the Fast-Inf inference. If a power failure occurs during inference,
Fast-Inf skips the leaf after power recovery by applying leaf trun-
cation. If no power failure occurs, the relevant leaf of the model is
executed, and the system moves on to the next loop iteration. We
deployed our board at different distances from the energy transmit-
ter to increase the rate of power outages, forcing Fast-Inf to skip
leaves and employ truncated inference. We observed that Fast-Inf
engine executed almost 20% of the inference iterations by employ-
ing truncated inference when we placed our board 1.5 meters from
the transmitter. Thanks to the truncated inference, Fast-Inf could
boost its inference speed and adapt to different energy conditions
by providing a fast inference response. Section 5.2 presents more
details on the impact of leaf truncation and its hyperparameter 𝜉
on inference accuracy.

Summary of Testbed Evaluations. Fast-Inf can speed up the
intermittent inference and reduce its energy requirements by
two orders of magnitude with comparable accuracy to state-
of-the-art models and significantly reduced runtime memory
requirements.

5.2 Fast-Inf Network Structure and Adaptation

In this section, we will explore how the accuracy of the Fast-Inf
is impacted by the structural characteristics of the tree it’s built
on (i.e., the depth of the tree and the width of the leaves) and their
adaptive execution through leaf truncation.

5.2.1 Impact of the Tree Structure. The structural characteristics of
the tree have a significant impact on the accuracy of the Fast-Inf
model. Recall that, by depth, we refer to the number of maximum
nodes in the path from the root to a leaf, while by width, we refer to
the number of hidden neurons in each leaf. In Figure 8, we observe
the following phenomena: (1) in most cases, larger models (in both
depth and width) perform better than smaller models, except for
KWS, where we observe that there is a peak after which accuracy
starts to decay; and (2) when the width of the leaves is too small (e.g.,
4, 8 in MNIST, 4 in HAR, and all in KWS), having deeper trees does
not help in achieving better performance. Thus, there is no globally
optimal choice for the depth and width parameters, but these are
task-dependent hyperparameters, as often happens in machine
learning models [78]. In our experiments, we selected the depth and
width of our models by performing several simulations to evaluate
their accuracy and memory requirements after compression.

5.2.2 Impact of the Adaptive Leaf Truncation Leaf truncation is a
form of structured pruning that helps to adapt inference computa-
tions concerning the available energy. As explained in Section 3.4.1,
if the a priori probability of the most likely class in a given leaf is
higher than a threshold 𝜉 , then we skip the hidden layers in the leaf
and replace them with constant logits. This helps with reducing
the computational complexity of the inference by sacrificing its
accuracy. Essentially, depending on the 𝜉 parameter, it can draw
a trade-off between accuracy and inference speed and energy re-
quirements. A small 𝜉 truncates a significant portion of the leaves

(potentially, all of them). On the other hand, using large 𝜉 can poten-
tially prevent the truncation of any leaf, resulting in an unchanged
model.

Figure 9 shows how 𝜉 affects performance of Fast-Inf networks
on the MNIST dataset, for 3 different depths and 4 different widths.
Note that 𝜉 allows us to navigate the trade-off between test accuracy
and inference time by specifying the minimum fraction of samples
that belong to the majority class for the leaf to be replaced with a
constant choice of that class. Intuitively, the lower 𝜉 , the less accu-
rate the classification will be (and the cheaper the inference). We
observe the following phenomena: when 𝜉 ∈ [0.7, 1], there is no sig-
nificant loss in performance, meaning that we are trading inference
speed for better accuracy; when 𝜉 ∈ [0.2, 0.7), the accuracy can
vary significantly depending on the depth and width of the model,
meaning that we are giving more importance to inference speed
than to accuracy. Finally, when 𝜉 ∈ [0, 0.2), the accuracy tends
to reach the minimum value for all the configurations. The fact
that we can safely remove some of the leaves without significantly
affecting performance may indicate that there is an imbalance in
the frequency of use associated to each leaf. Further investigation
highlighted that, in some cases, the usage rate of the most used leaf
can be up to 60%, which makes these leaves become the bottleneck
for inference time.

Finally, our choice of 𝜉 = 0.7 is motivated by the fact that, as
shown in Figure 9, this value represents a good trade-off between
the number of truncated leaves and performance.

5.3 Fast-Inf Model Compression

Truncation alone can significantly improve the expected inference
speed of the resulting models, but still, the problem of fitting these
models in a tiny device’s memory exists. To this end, the depth-by-
depth compression algorithm presented in Section 3.4.2 becomes
crucial.

5.3.1 Evaluation of Depth-by-depth Compression We evaluate the
performance of our compression algorithm, using the accuracy con-
cerning the model’s size reduction as the main evaluation metric.
For this analysis, we select a Fast-Inf model with depth 4 and leaf
width 8 and start the compression by defining the target size as
32 kB. The algorithm increases, at each iteration, the sparsity con-
straint to compress the model, and fine-tunes the model accuracy
to reduce the accuracy degradation. In Figure 10, we display the
accuracy at each compression iteration. It can be seen how this
approach maintains, during compression, stable accuracy values
up to significantly reduced model size. In short, our unstructured
pruning approach can significantly reduce model size (up to 90%)
without significant losses in performance, while more aggressive
compression can be achieved by trading off accuracy for smaller
models.

5.3.2 Optimal Models via Combined Compression and Truncation.

To further reduce energy consumption, memory usage, and infer-
ence time, we can utilize leaf truncation for model compression.
Essentially, instead of storing the parameters of the hidden layers
in the leaves, we can just keep a truncated model in memory by
storing only the constant logits. Therefore, we combined leaf trun-
cation and pruning, to achieve maximum compression. These two
mechanisms are complementary and allow for massive savings in

247

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

4 8 16 32
0.8

0.85

0.9

Te
st
A
cc
ur
ac
y

MNIST

4 8 16 32

0.7

0.72

Leaf width

HAR

4 8 16 32
0.5
0.55
0.6
0.65
0.7

KWS

Depth 2 Depth 3 Depth 4

Figure 8: Accuracy vs leaf width of Fast-Inf models.

0 0.5 1
0

0.2
0.4
0.6
0.8
1

Te
st
A
cc
ur
ac
y

0 0.5 1
0

0.2
0.4
0.6
0.8
1

𝜉

Leaf width 4 Leaf width 8 Leaf width 16 Leaf width 32

0 0.5 1
0

0.2
0.4
0.6
0.8
1

Figure 9: Accuracy for various values of 𝜉 at depth 2 (left), 3 (center), and 4 (right), computed on MNIST.

0200400600800
75
80
85
90
95

Size (kB)

Te
st
A
cc
ur
ac
y
(%
)

Figure 10: Gradual compression of anMNISTmodel: accuracy

is stable up to a significant reduction in size.

0 1 2 3 4
0

200
400
600
800

FLOPs (×104)

M
em

or
y
(k
B)

Full
T
T+C

Figure 11: Memory size vs FLOPs for Fast-Inf models with

depth 4 on the MNIST dataset. “Full” stands for the full Fast-

Inf model, “T” stands for the model after truncation, and

“T+C” stands for themodel after truncation and compression.

terms of both FLOPs and memory. We applied them simultaneously
to Fast-Inf models of depth 4 on the MNIST dataset, as shown by
the “T+C” points in Figure 11. We could successfully compress the
models to the 7.5% of the original size, without any significant loss
in performance.

5.4 Fast-Inf versus SOTA Models

In this section, we compare Fast-Inf to well-established models
from the state-of-the-art. We included CNN-based and FCN-based
networks as well as binary fully-connected neural networks (BNNs)
and decision trees (DTs).We chose to include BNNs because they are

MNIST HAR KWS

75

100

Te
st

 A
cc

ur
ac

y
 (%

)

99
92

82
97

86
78

97

73
66

88

65

47

97

80 77

CNN
FCN

BNN
DT

Fast-Inf

MNIST HAR KWS

100

102

104

M
AC

 N
um

be
rs

(n
or

m
al

iz
ed

)

1867 1067
5120

8 8 1622 12 44

0.03 0.02 0.05

1 1 1

Figure 12: Comparison of Fast-Inf against baseline models

with an approximate model size of 60 kB.

also an extremely energy and memory-efficient class of DNNs [16,
17, 66, 68]. Our BNNs have the same architecture as FCNs. We
included DTs [13] since they are similar to Fast-Inf in terms of
their structure, even though DTs have much simpler comparisons
in the inner node (they compare variables to constants instead of
comparing linear combinations of the inputs to constants). To train
them, we used the Gini impurity as the splitting criterion. We set
the minimum number of samples to create a new split to 2.

For fairness, we considered same-size models and compared
their accuracy. We compressed all models to obtain an approx-
imate model size of 60𝑘𝐵. For DTs, we have an exception since
fixing the size is not feasible with standard DT induction algorithms.
Therefore sizes of our DTs vary from approximately 16kB to 47kB.
Figure 12 presents our results, in which the top plot presents the

248

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

Table 7: Energy consumption and execution time of the total

number of MAC operations in mJ and seconds, respectively.

Dataset

CNN FCN BNN DT Fast-Inf

Energy Time Energy Time Energy Time Energy Time Energy Time

MNIST 186.4 159.49 2.98 2.55 11.01 9.41 0.0026 0.0022 0.40 0.341
HAR 106.54 91.14 2.98 2.55 6.26 5.35 0.0076 0.0066 0.40 0.341
KWS 255.69 218.73 3.19 2.73 11.25 9.62 0.0024 0.0021 0.19 0.171

model accuracy. The bottom plot presents instead the number of
MAC operations in each model, in order to highlight the models’
computational complexity. Furthermore, we also present the mod-
els’ approximate energy and latency requirements in Table 7, to
understand how such models can be sustained by our energy har-
vesting setup. Note that we did not perform end-to-end hardware
measurements to calculate these values, but we approximated them
by measuring the time and energy cost of a single MAC operation
on MSP430FR5994, which are 45,57 𝜇s and 53,27 nJ, respectively.

Our plots concerning CNNs and FCNs are consistent with the
results reported in Section 5.1. Fast-Inf showed comparable per-
formance w.r.t. FCNs while being significantly energy-efficient.
On the other hand, Fast-Inf (and FCNs, as well) performs worse
than CNNs with an average drop in accuracy of about 6% while
being about an order of magnitude energy-efficient (i.e., faster), on
average.

Besides, same-size BNN models performed poorly compared
to Fast-Inf, especially for more challenging tasks (compared to
MNIST) such as HAR and KWS. For such tasks, the network needs
more capacity (computations/parameters/depth) to recover the per-
formance loss introduced by the binarized weights. Therefore, in
our case, getting a network with low size and high performance was
not feasible. Besides being more accurate, Fast-Inf has relatively
up to 13× better energy consumption compared to BNNs.

Concerning DTs, their energy consumption was significantly
lower not only due to their inherently lightweight characteristics
but also because they were relatively smaller in size. However, DTs
performed even worse compared to other models. This is because
DTs use single variables in the inner nodes, while Fast-Inf uses
linear combinations of the inputs, leading to significantly higher
expressivity.

Considering the energy harvesting capabilities of our testbed
setup, a power cycle corresponds to 230 𝜇J and Fast-Inf requires
approximately 2–3 power cycles to perform a single inference.
Therefore, a batteryless edge can easily sustain this energy con-
sumption level for inference. This is a significant improvement
considering SOTA models that require at least an order of magni-
tude more power cycles to complete an inference, justifying the
ultra-lightweight characteristics of Fast-Inf.

5.4.1 Detailed Comparison Against Vanilla FFFs. Since FFF net-
works [8] are the basic building block for Fast-Inf, we made a
head-to-head comparison to highlight Fast-Inf’s advantages over
the vanilla approach. In Figure 13, we compare the best FFF net-
works obtained with the Fast-Inf models used in Figure 12. We
observe that Fast-Inf achieves comparable or better accuracy while
reducing inference time. In our opinion, this is because the ℓ2 loss fa-
cilitates the specialization of the leaves, which allows for truncation
and for a better decomposition of the input space than FFFs.

MNIST HAR KWS

75

100

Te
st

 A

cc
ur

ac
y

(%
)

94

79 75

97

80 77

FFFs Fast-Inf

MNIST HAR KWS
0.0

0.5

In
fe

re
nc

e
 T

im
e

(s
) 0.47 0.51

N/A

0.42
0.33 0.36

Figure 13: Comparison of Fast-Inf’s 60kB models against

the best FFF models obtained. N/A means that we could not

fit the models in the device’s memory.

Summary of Performance Evaluations. Fast-Inf can achieve
comparable performance w.r.t. state-of-the-art techniques while
greatly reducing inference time, energy consumption, and mem-
ory requirements.

6 Discussion and Future Works

Even though Fast-Inf brought many benefits for the embedded
intelligence on the extreme edge, our experience has also brought
to light that there remains ample room for exploration and advance-
ment regarding this kind of networks.
Decision Trees.While Fast-Inf produces models that can be seen
as decision trees, it is important to note that each inner node of the
corresponding tree does not compute a simple comparison opera-
tion (e.g. comparing a variable to a constant). Instead, it compares
a linear combination of the inputs to a threshold (often referred to
as an oblique split). This allows for trees that are significantly more
expressive than traditional (i.e., orthogonal) decision trees.
N-ary Differential Trees. In our experiments, we have only con-
sidered differential binary trees as this is the default setting of
FFF [8]. Yet, it may be interesting to extend this approach to N-ary
trees, to observe the complexity, memory, energy, and accuracy
trade-offs. We believe this may potentially improve the accuracy,
although at the cost of increasing the memory footprint, but this
can be especially beneficial for more complex tasks.
Missing convolutional layers. One limitation of our current
approach is that, while it performs effectively on time series data
(such as HAR) or properly pre-processed speech data (such as KWS),
when it comes to handling image classification its performances can
be limited by the lack of convolutional layers, which as known allow
for the possibility of recognizing and composing simple, local pat-
terns (obviously, this also holds true for the other non-convolutional
models, such as FCNs and FFF models). This ability is crucial to
achieving state-of-the-art performance in complex computer vision
tasks. While the results of a simple vision task as MNIST are en-
couraging, further investigation is needed to understand how to
unroll (and prune) the convolutional operations in an effective way
into the Fast-Inf architecture, e.g., based on multipartite graph

249

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

representations [20]. Future work should also investigate the use
of vision Transformers based on Fast-Inf, similarly to what has
been proposed in [8].
Input Size Overhead. One of the main sources of the computa-
tional overhead of Fast-Inf models is the input size. The larger
the input, the more computations must be performed. We plan to
explore solutions such as pre-computing high-level input features,
inserting pooling layers, using convolutional filters (as done e.g.
in [22]), or using dimensionality reduction techniques such as PCA.
HardwareAcceleration. Fast-Inf is a software-based and portable
approach, but it can be further enhanced by incorporating hardware
acceleration to improve inference efficiency. The MSP430FR series
MCUs, equippedwith the LowEnergyAccelerator (LEA) [32, 44, 53],
offer energy-efficient vector-based signal processing. LEA can be
leveraged to offload MAC operations, especially in the leaf nodes of
Fast-Inf models, to exploit parallelism and energy efficiency. How-
ever, LEA loses its computational state when there is a power failure,
which requires repeated hardware reconfiguration and data transfer
between volatile and non-volatile memory. Moreover, the sparsity
introduced by the compression provides significant benefits for the
software implementation, however, it introduces significant chal-
lenges for hardware acceleration [70]. We plan to explore hardware
acceleration of Fast-Inf models in the future.
Other Resource-Efficient Inference Approaches. Various ap-
proaches, such as spiking neural networks [12] and Tsetlin ma-
chines [6], offer intelligence with lower resource requirements.
However, it remains unclear which solution is superior in terms of
accuracy, memory footprint, and energy efficiency, as there is no
clear consensus in the literature. To make a fair comparison with
such models, we contacted the authors of [6] to obtain the mod-
els used in their paper; unfortunately, they could not open-source
their code. Furthermore, they did preprocessing on the open-source
datasets they mentioned in their paper, but the modified datasets
are also not open-source. Therefore, it is difficult to present a head-
to-head comparison with those options in the literature. Still, Fast-
Inf is superior concerning the reported evaluation in [6, Table 5]
since they reported inference times on the order of seconds, while
Fast-Inf completes inference on the order of milliseconds. To
demonstrate the superiority of Fast-Inf over these approaches, it
is necessary to conduct extensive research that employs different
datasets, applications, and hardware platforms. We leave this as a
topic for future exploration.
Other Compression Approaches. In Fast-Inf models, there is
a trade-off between accuracy and memory consumption (as they
are both related to the depth of the tree). Future work should aim
to reduce the memory footprint of deep Fast-Inf models, to allow
for larger depths and better accuracy on the extreme edge. Finally,
future work should also focus on improving leaf utilization in Fast-
Inf models.

7 Conclusions

In this paper, we introduced Fast-Inf, a new embedded intelligence
solution for extremely resource-constrained batteryless edge de-
vices. Fast-Inf uses binary tree-based neural networks that are
ultra-fast and energy-efficient due to their logarithmic time com-
plexity. We introduced adaptation and compression techniques to
make Fast-Inf models energy-responsive and memory-efficient.

We demonstrated that Fast-Inf models are significantly superior
than existing approaches for batteryless systems, as they introduce
much lower backup and runtime memory overhead during intermit-
tent execution. We believe that Fast-Inf serves as a robust baseline
for future research and provides a wide design space for further
exploration and enhancements.

Acknowledgments

Funded by the European Union (project no. 101071179). Views and
opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or EISMEA.
Neither the European Union nor the granting authority can be
held responsible for them. We thank the anonymous reviewers
of MobiSys 2024, MobiCom 2024, and SenSys 2024 for their valu-
able comments and feedback. We are also grateful to the SenSys
shepherd for shepherding our final draft.

References

[1] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer, Brad-
ford Campbell, and Prabal Dutta. 2018. The signpost platform for city-scale
sensing. In Proceedings of the 17th ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks. IEEE, New York, NY, USA, 188–199.

[2] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,
Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, et al. 2020. Battery-less zero-
maintenance embedded sensing at the mithræum of circus maximus. In Pro-
ceedings of the 18th ACM Conference on Embedded Networked Sensor Systems.
ACM, New York, NY, USA, 368–381.

[3] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling, Prze-
mysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia, Luca Mottola,
Jacob Sorber, and Josiah Hester. 2024. The Internet of Batteryless Things. Com-
mun. ACM 67, 3 (2024), 64–73.

[4] Khakim Akhunov and Kasım Sinan Yıldırım. 2022. AdaMICA: Adaptive Multicore
Intermittent Computing. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 6, 3 (2022), 1–30.

[5] Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima
Islam, Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2022. Pro-
tean: An energy-efficient and heterogeneous platform for adaptive and hardware-
accelerated battery-free computing. In Proceedings of the 20th ACM Conference
on Embedded Networked Sensor Systems. ACM, New York, NY, USA, 207–221.

[6] Abu Bakar, Tousif Rahman, Alessandro Montanari, Jie Lei, Rishad Shafik, and
Fahim Kawsar. 2022. Logic-based intelligence for batteryless sensors. In Proceed-
ings of the 23rd Annual International Workshop on Mobile Computing Systems and
Applications. ACM, New York, NY, USA, 22–28.

[7] Abu Bakar, Alexander G Ross, Kasım Sinan Yıldırım, and Josiah Hester. 2021.
REHASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for
Intermittently Powered Computing. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 5, 3 (2021), 1–42.

[8] Peter Belcak and Roger Wattenhofer. 2023. Fast Feedforward Networks. arXiv
preprint arXiv:2308.14711.

[9] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. 2015.
Conditional computation in neural networks for faster models. arXiv preprint
arXiv:1511.06297.

[10] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and separation
of deep learning layers for constrained resource inference on wearables. In
Proceedings of the 14th ACM Conference on Embedded Networked Sensor Systems.
ACM, New York, NY, USA, 176–189.

[11] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instru-
mentation for transiently-powered embedded sensing. In Proceedings of the 16th
ACM/IEEE International Conference on Information Processing in Sensor Networks.
IEEE, New York, NY, USA, 209–219.

[12] Sizhen Bian and Michele Magno. 2023. Evaluating Spiking Neural Network on
Neuromorphic Platform For Human Activity Recognition. In Proceedings of the
2023 ACM International Symposium on Wearable Computers. ACM, New York, NY,
USA, 82–86.

[13] Leo Breiman. 2017. Classification and regression trees. Routledge, London, UK.
[14] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu,

and Song Han. 2022. Enable deep learning on mobile devices: Methods, systems,
and applications. ACM Transactions on Design Automation of Electronic Systems
27, 3 (2022), 1–50.

250

Fast-Inf: Ultra-Fast Embedded Intelligence on the Extreme Edge SenSys ’24, November 4–7, 2024, Hangzhou, China

[15] Luca Caronti, Khakim Akhunov, Matteo Nardello, Kasım Sinan Yıldırım, and
Davide Brunelli. 2023. Fine-grained hardware acceleration for efficient batteryless
intermittent inference on the edge. ACM Transactions on Embedded Computing
Systems 22, 5 (2023), 1–19.

[16] Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Elisabetta Farella, Michele
Magno, and Luca Benini. 2020. Sound event detection with binary neural net-
works on tightly power-constrained IoT devices. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. IEEE, New York,
NY, USA, 19–24.

[17] Gianmarco Cerutti, Lukas Cavigelli, Renzo Andri, Michele Magno, Elisabetta
Farella, and Luca Benini. 2022. Sub-mW keyword spotting on an MCU: Analog
binary feature extraction and binary neural networks. IEEE Transactions on
Circuits and Systems I: Regular Papers 69, 5 (2022), 2002–2012.

[18] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
directed high-performance intermittent computation with power failure immu-
nity. In Proceedings of the IEEE 28th Real-Time and Embedded Technology and
Applications Symposium. IEEE, New York, NY, USA, 40–54.

[19] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, New York, NY, USA, 514–530.

[20] Elia Cunegatti, Doina Bucur, and Giovanni Iacca. 2023. Peeking inside Sparse
Neural Networks using Multi-Partite Graph Representations. arXiv preprint
arXiv:2305.16886.

[21] Leonardo Lucio Custode, Pietro Farina, Eren Yıldız, Renan Beran Kılıç,
Kasım Sinan Yıldırım, and Giovanni Iacca. 2024. Github Repo. https://github.
com/DIOL-UniTN/Fast-Inf-FFF.

[22] Leonardo Lucio Custode and Giovanni Iacca. 2022. Interpretable pipelines with
evolutionary optimized modules for reinforcement learning tasks with visual
inputs. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, New York, NY, USA, 224–227.

[23] Jasper DeWinkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020.
Battery-free game boy. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 4, 3 (2020), 1–34.

[24] Li Deng. 2012. The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[25] Harsh Desai, Matteo Nardello, Davide Brunelli, and Brandon Lucia. 2022. Ca-
maroptera: A long-range image sensor with local inference for remote sensing
applications. ACM Transactions on Embedded Computing Systems 21, 3 (2022),
1–25.

[26] Digilent. [n. d.]. Analog Discovery 2 (Legacy). https://digilent.com/reference/test-
and-measurement/analog-discovery-2/start

[27] Ferhat Erata, Eren Yildiz, Arda Goknil, Kasım Sinan Yıldırım, Jakub Szefer, Ruz-
ica Piskac, and Gokcin Sezgin. 2023. ETAP: Energy-aware timing analysis of
intermittent programs. ACM Transactions on Embedded Computing Systems 22, 2
(2023), 1–31.

[28] Pietro Farina, Subrata Biswas, Eren Yıldız, Khakim Akhunov, Saad Ahmed,
Bashima Islam, and Kasım Sinan Yıldırım. 2024. Memory-efficient Energy-
adaptive Inference of Pre-Trained Models on Batteryless Embedded Systems.
arXiv preprint arXiv:2405.10426.

[29] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin.
2020. Linear mode connectivity and the lottery ticket hypothesis. In International
Conference on Machine Learning. PMLR, Vienna, Austria, 3259–3269.

[30] Nicholas Frosst and Geoffrey Hinton. 2017. Distilling a Neural Network Into a
Soft Decision Tree. arXiv preprint arXiv:1711.09784.

[31] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network
inference. In Low-Power Computer Vision. Chapman and Hall/CRC, Boca Raton,
FL, USA, 291–326.

[32] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
beyond the edge: Inference on intermittent embedded systems. In Proceedings
of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, New York, NY, USA, 199–213.

[33] ArdaGoknil and Kasım Sinan Yıldırım. 2022. Toward Sustainable IoTApplications:
Unique Challenges for Programming the Batteryless Edge. IEEE Software 39, 5
(2022), 92–100.

[34] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019.
Compiling KB-sized machine learning models to tiny IoT devices. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, NY, USA, 79–95.

[35] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman coding.
arXiv preprint arXiv:1510.00149.

[36] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in Neural Information
Processing Systems 28 (2015), 9.

[37] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded

Networked Sensor Systems. ACM, New York, NY, USA, 1–13.
[38] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely execution on inter-

mittently powered batteryless sensors. In Proceedings of the 15th ACM Conference
on Embedded Networked Sensor Systems. ACM, New York, NY, USA, 1–13.

[39] Andrey Ignatov. 2017. Real-time human activity recognition from accelerometer
data using Convolutional Neural Networks. https://github.com/aiff22/HAR

[40] Texas Instruments Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev.
F). https://www.ti.com/lit/ds/symlink/msp430fr5969.pdf

[41] Texas Instruments Inc. 2019. EnergyTrace User Guide. https://software-
dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/4.10.00.78/exports/docs/
ble5stack/ble_user_guide/html/energy-trace/energy-trace.html

[42] Texas Instruments Inc. 2020. FRAM FAQs. https://www.ti.com/lit/wp/slat151/
slat151.pdf

[43] Infineon. 2020. 8MB EXCELON LP Ferroelectric RAM. https:
//www.infineon.com/dgdl/Infineon-CY15B108QN_CY15V108QN_Excelon(TM)
_LP_8-Mbit_(1024K_X_8)_Serial_(SPI)_F-RAM-DataSheet-v10_00-
EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee7134b6ff4

[44] Texas Instruments. 2016. Low-Energy Accelerator (LEA) Frequently Asked
Questions (FAQ). https://www.ti.com/lit/an/slaa720/slaa720.pdf

[45] Bashima Islam and Shahriar Nirjon. 2020. Zygarde: Time-Sensitive On-Device
Deep Inference and Adaptation on Intermittently-Powered Systems. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 3 (2020),
1–29.

[46] Seunghyeok Jeon, Yonghun Choi, Yeonwoo Cho, and Hojung Cha. 2023. HarvNet:
Resource-Optimized Operation of Multi-Exit Deep Neural Networks on Energy
Harvesting Devices. In Proceedings of the 21st International Conference on Mobile
Systems, Applications, and Services. ACM, New York, NY, USA, 42–55.

[47] Jeff Johnson. 2018. Rethinking floating point for deep learning. arXiv preprint
arXiv:1811.01721.

[48] Kyle Johnson, Zachary Englhardt, Vicente Arroyos, Dennis Yin, Shwetak Patel,
and Vikram Iyer. 2023. MilliMobile: An Autonomous Battery-free Wireless
Microrobot. In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking. ACM, New York, NY, USA, 1–16.

[49] Chih-Kai Kang, Hashan Roshantha Mendis, Chun-Han Lin, Ming-Syan Chen,
and Pi-Cheng Hsiu. 2020. Everything leaves footprints: Hardware accelerated
intermittent deep inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39, 11 (2020), 3479–3491.

[50] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2015. Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint arXiv:1511.06530.

[51] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980.

[52] Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah Hester,
and Przemysław Pawełczak. 2020. Time-sensitive intermittent computing meets
legacy software. In Proceedings of the 25th International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ACM, New
York, NY, USA, 85–99.

[53] Seulki Lee and Shahriar Nirjon. 2019. Neuro.ZERO: a zero-energy neural network
accelerator for embedded sensing and inference systems. In Proceedings of the
17th ACM Conference on Embedded Networked Sensor Systems. ACM, New York,
NY, USA, 138–152.

[54] Seulki Lee and Shahriar Nirjon. 2020. Fast and scalable in-memory deep multitask
learning via neural weight virtualization. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services. ACM, New York, NY,
USA, 175–190.

[55] Seulki Lee and Shahriar Nirjon. 2022. Weight Separation for Memory-Efficient
and Accurate Deep Multitask Learning. In Proceedings of the IEEE International
Conference on Pervasive Computing and Communications. IEEE, New York, NY,
USA, 13–22.

[56] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. MCUNet:
Tiny Deep Learning on IoT Devices. Advances in Neural Information Processing
Systems 33 (2020), 11711–11722.

[57] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270.

[58] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent exe-
cution without checkpoints. Proceedings of the ACM on Programming Languages
1, OOPSLA (2017), 1–30.

[59] Amjad Yousef Majid, Carlo Delle Donne, KiwanMaeng, Alexei Colin, Kasım Sinan
Yıldırım, Brandon Lucia, and Przemysław Pawełczak. 2020. Dynamic task-based
intermittent execution for energy-harvesting devices. ACM Transactions on
Sensor Networks 16, 1 (2020), 1–24.

[60] Mahathir Monjur, Yubo Luo, Zhenyu Wang, and Shahriar Nirjon. 2023. Sound-
Sieve: Seconds-Long Audio Event Recognition on Intermittently-Powered Sys-
tems. In Proceedings of the 21st International Conference on Mobile Systems, Appli-
cations, and Services. ACM, New York, NY, USA, 28–41.

[61] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah,
Lorena Qendro, and Fahim Kawsar. 2020. ePerceptive: energy reactive embedded
intelligence for batteryless sensors. In Proceedings of the 18th ACM Conference on

251

https://github.com/DIOL-UniTN/Fast-Inf-FFF
https://github.com/DIOL-UniTN/Fast-Inf-FFF
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start
https://digilent.com/reference/test-and-measurement/analog-discovery-2/start
https://github.com/aiff22/HAR
https://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/4.10.00.78/exports/docs/ble5stack/ble_user_guide/html/energy-trace/energy-trace.html
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/4.10.00.78/exports/docs/ble5stack/ble_user_guide/html/energy-trace/energy-trace.html
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/4.10.00.78/exports/docs/ble5stack/ble_user_guide/html/energy-trace/energy-trace.html
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.infineon.com/dgdl/Infineon-CY15B108QN_CY15V108QN_Excelon(TM)_LP_8-Mbit_(1024K_X_8)_Serial_(SPI)_F-RAM-DataSheet-v10_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee7134b6ff4
https://www.infineon.com/dgdl/Infineon-CY15B108QN_CY15V108QN_Excelon(TM)_LP_8-Mbit_(1024K_X_8)_Serial_(SPI)_F-RAM-DataSheet-v10_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee7134b6ff4
https://www.infineon.com/dgdl/Infineon-CY15B108QN_CY15V108QN_Excelon(TM)_LP_8-Mbit_(1024K_X_8)_Serial_(SPI)_F-RAM-DataSheet-v10_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee7134b6ff4
https://www.infineon.com/dgdl/Infineon-CY15B108QN_CY15V108QN_Excelon(TM)_LP_8-Mbit_(1024K_X_8)_Serial_(SPI)_F-RAM-DataSheet-v10_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee7134b6ff4
https://www.ti.com/lit/an/slaa720/slaa720.pdf

SenSys ’24, November 4–7, 2024, Hangzhou, China Custode et al.

Embedded Networked Sensor Systems. ACM, New York, NY, USA, 382–394.
[62] Tushar S Muratkar, Ankit Bhurane, and Ashwin Kothari. 2020. Battery-less

internet of things–A survey. Computer Networks 180 (2020), 107385.
[63] Powercast. 2016. The Powercast P2110B Powerharvester. https://www.

powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
[64] Powercast. 2018. The Powercast TX91501B Powercaster. https:

//www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-
915-01B-Rev-A-1.pdf

[65] Shvetank Prakash, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete
Warden, Brian Plancher, and Vijay Janapa Reddi. 2023. Is TinyML Sustainable?
Commun. ACM 66, 11 (2023), 68–77.

[66] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu
Sebe. 2020. Binary neural networks: A survey. Pattern Recognition 105 (2020),
107281. https://doi.org/10.1016/j.patcog.2020.107281

[67] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile memory is a broken
time machine. In Proceedings of the Workshop on Memory Systems Performance
and Correctness. ACM, New York, NY, USA, 1–3.

[68] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks. In
European Conference on Computer Vision. Springer, Cham, Switzerland, 525–542.

[69] Teodora Sanislav, George Dan Mois, Sherali Zeadally, and Silviu Corneliu Folea.
2021. Energy harvesting techniques for internet of things (IoT). IEEE Access 9
(2021), 39530–39549.

[70] Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Bran-
don Lucia. 2023. Pipestitch: An energy-minimal dataflow architecture with
lightweight threads. In 2023 56th IEEE/ACM International Symposium on Microar-
chitecture (MICRO). ACM, New York, NY, USA, 14.

[71] Bharath Sudharsan, Sonu Prasad, Dan Jose, and John G Breslin. 2022. TMM-
TinyML: tensor memory mapping (TMM) method for tiny machine learning
(TinyML). In Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking. ACM, New York, NY, USA, 865–867.

[72] Bharath Sudharsan, Simone Salerno, and Rajiv Ranjan. 2022. TinyML-CAM: 80
FPS image recognition in 1 kB RAM. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. ACM, New York, NY, USA,

862–864.
[73] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. 2015. Convolutional

neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067.
[74] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv preprint arXiv:1804.03209.
[75] Pete Warden and Daniel Situnayake. 2019. TinyML: Machine Learning with

TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly Media,
Sebastopol, CA, USA.

[76] Harrison Williams and Matthew Hicks. 2024. Energy-adaptive Buffering for
Efficient, Responsive, and Persistent Batteryless Systems. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 268–282.

[77] Fan Yang, Ashok Samraj Thangarajan, Sam Michiels, Wouter Joosen, and Danny
Hughes. 2021. Morphy: Software defined charge storage for the iot. In Proceedings
of the 19th ACM Conference on Embedded Networked Sensor Systems. 248–260.

[78] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.
https://doi.org/10.1016/j.neucom.2020.07.061

[79] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink: Reactive kernel for tiny
batteryless sensors. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM, New York, NY, USA, 41–53.

[80] Eren Yildiz, Saad Ahmed, Bashima Islam, Josiah Hester, and Kasım Sinan Yıldırım.
2023. Efficient and Safe I/O Operations for Intermittent Systems. In Proceedings
of the 18th European Conference on Computer Systems. ACM, New York, NY, USA,
63–78.

[81] Eren Yıldız, Lijun Chen, and Kasim Sinan Yıldırım. 2022. Immortal Threads:
Multithreaded Event-driven Intermittent Computing on {Ultra-Low-Power}
Microcontrollers. In Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, Berkeley, CA, USA,
339–355.

[82] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
Proc. IEEE 107, 8 (2019), 1738–1762.

252

https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1016/j.neucom.2020.07.061

	Abstract
	1 Introduction
	2 Zero-Energy Tiny Inference
	2.1 Addressing Resource Constraints
	2.2 Challenges of Intermittent Inference
	2.3 Unique Features of Fast-Inf

	3 Fast-Inf on the Extreme Edge
	3.1 Performing Fast Inference
	3.2 Applicability
	3.3 Training Fast-Inf Models
	3.4 Boosting Inference Efficiency

	4 Implementation
	4.1 Leaf Truncation and Compression
	4.2 Model Representation
	4.3 Intermittent Inference Engine

	5 Evaluation
	5.1 Testbed Experiments
	5.2 Fast-Inf Network Structure and Adaptation
	5.3 Fast-Inf Model Compression
	5.4 Fast-Inf versus SOTA Models

	6 Discussion and Future Works
	7 Conclusions
	References

