
Received: 20 February 2023 Revised: 2 November 2023 Accepted: 16 November 2023

DOI: 10.1112/plms.12579

Proceedings of the London
Mathematical SocietyRESEARCH ARTICLE

Waring identifiability for powers of forms via
degenerations

Alex Casarotti Elisa Postinghel

Dipartimento di Matematica, Università
degli Studi di Trento, Povo di Trento (TN),
Italy

Correspondence
Alex Casarotti, Dipartimento di
Matematica Università degli Studi di
Trento via Sommarive 14 I-38123 Povo di
Trento (TN), Italy.
Email: alex.casarotti@unitn.it

Abstract
We discuss an approach to the secant non-defectivity of
the varieties parametrising𝑘th powers of forms of degree
𝑑. It employs a Terracini-type argument along with cer-
tain degeneration arguments, some of which are based
on toric geometry. This implies a result on the identifia-
bility of the Waring decompositions of general forms of
degree kd as a sum of 𝑘th powers of degree 𝑑 forms, for
which an upper bound on theWaring rankwas proposed
by Fröberg, Ottaviani and Shapiro.
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1 INTRODUCTION

Identifiability problems arise naturally in many fields of both applied and classical algebraic
geometry. A variety 𝑋 ⊂ ℙ𝑁 is said to be ℎ-identifiable if the general point of its ℎ-secant vari-
ety has a unique decomposition as a sum of ℎ points of 𝑋. A classical application of identifiability
concerns particular polynomial decompositions. TheWaring problem for forms asks for a unique
decomposition of a homogeneous polynomial 𝐹𝑑 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑 as a sum of 𝑑th powers of linear
forms, that is,

𝐹𝑑 = 𝐿
𝑑
1 +⋯ + 𝐿

𝑑
ℎ
, (1.1)

with 𝐿𝑖 ∈ ℂ[𝑥0, … , 𝑥𝑛]1. A necessary condition for identifiability is secant non-defectivity: a vari-
ety 𝑋 ⊂ ℙ𝑁 of dimension dim(𝑋) = 𝑛 is said to be not ℎ-(secant) defective if the ℎ-secant variety
𝕊𝑒𝑐ℎ(𝑋), defined as the Zariski closure of points in ℙ𝑁 lying in the span of ℎ points of 𝑋, has the
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expected dimensionmin{𝑁, ℎ(𝑛 + 1) − 1}. In [10], the authors proved that, for the Veronese case
𝑋 = 𝜈𝑑(ℙ

𝑛) and for all subgeneric ranks ℎ (i.e. such that 𝕊𝑒𝑐ℎ(𝑋) ⊆ ℙ𝑁 does not fill up the space),
a general form 𝐹 of rank ℎ is identifiable, with a fewwell-known exceptions. In the case of generic
rank, the situation is almost the opposite: in [14], it is proved that all forms of generic rank are not
identifiable with the following exceptions: (𝑛, 𝑑, ℎ) = (1, 2𝑘 − 1, 𝑘), (3, 3, 5), (2, 5, 7).
In [12], the authors initiated the investigation of a generalisation of the classical Waring prob-

lems for forms. In particular, they showed that a general form𝐹𝑘𝑑 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑𝑘 can bewritten
as a sum of at most 𝑘𝑛 𝑘-th powers of forms 𝐺𝑖 ’s of degree 𝑑

𝐹𝑘𝑑 = 𝐺
𝑘
1 +⋯ + 𝐺

𝑘
ℎ
, (1.2)

and that this bound is sharp, that is, when 𝑑 is sufficiently large, 𝑘𝑛 computes the generic rank.
The secant defectivity of the varieties parametrising 𝑘th powers of forms of degree 𝑑 remains an
open problem in general.
In this paper, we address both the secant defectivity and the identifiability problems for such

Waring decompositions. Denote with 𝑉𝑘
𝑛,𝑑

the variety parametrising 𝑘th powers of homogeneous
degree 𝑑 forms in 𝑛 + 1 variables:

𝑉𝑘
𝑛,𝑑
∶= {[𝐹𝑘]|𝐹 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑}.

Our first main result about secant non-defectivity is the following.

Theorem 1.1. The variety𝑉𝑘
𝑛,𝑑

is not ℎ-defective if 𝑘 ⩾ 3 and ℎ ⩽ 1
𝑁+1

(𝑁+𝑘−3
𝑁

)
, where𝑁 =

(𝑛+𝑑
𝑑

)
−

1.

Our second result is about identifiability. A bridge from non-defectivity to identifiability was
built in [8] first and then generalised in the recent [18]: whenever 𝑋 is a sufficiently regular vari-
ety (with non-degenerate Gauss map), then if 𝑋 is not ℎ-defective, then 𝑋 is (ℎ − 1)-identifiable.
Using this and Theorem 1.1, we obtain what follows.

Theorem 1.2. A general form 𝐹 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑𝑘 of rank ℎ with 𝑘 ⩾ 3 is identifiable whenever

ℎ ⩽ min

⎧⎪⎨⎪⎩
1

𝑁 + 1

(
𝑁 + 𝑘 − 3

𝑁

)
− 1,

⎢⎢⎢⎣
(𝑛+𝑘𝑑
𝑛

)
𝑁 + 1

⎥⎥⎥⎦ − 1
⎫⎪⎬⎪⎭

We remark that in [19], the author showed that the secant defectivity of 𝑉𝑘
𝑛,𝑑

can be bounded
asymptotically, using a direct algebro-computational argument, to 𝑘𝑛 − 𝑑𝑛. In Section 6, we show
that, for 𝑑 ≫ 𝑘, our bound of Theorem 1.1 extends the latter.
In order to prove Theorem 1.1, we brought together a Terracini-type argument and several dif-

ferent degeneration techniques. By a classical application of Terracini’s lemma, non-defectivity
problems for secant varieties translate into the study of particular linear systems of hypersurfaces
of projective space with prescribed singularities. The first systematic study was used in the proof
of the celebrated Alexander and Hirschowitz Theorem for the case of classical Waring problems
(1.1), where secant varieties of Veronese embeddings of ℙ𝑛 correspond to linear systems of hyper-
surfaces of ℙ𝑛 with prescribed double points in general position. In the setting of the generalised
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Waring problem, as in (1.2) for 𝑘 ⩾ 2, a direct translation to linear systems of hypersurfaces with
only double-point singularities is not possible. In order to prove secant non-defectivity in this
case, it is necessary to impose a larger base locus to our linear systems. In particular, we will be
interested in studying the dimensions of linear systems ∶= 𝑁,𝑘(𝑉, 2ℎ) of hyperurfaces ofℙ𝑁 of
degree 𝑘 that are singular at ℎ general points and that contain the 𝑑thVeronese embedding of ℙ𝑛,
𝑉 ⊂ ℙ𝑁 . The study of such linear systems is carried out by combining two types of degenerations
introduced in [21] and in [11] and [22], respectively. We start by degenerating the ambient space
ℙ𝑁 to a scheme with two components and, in turn, the linear system  to a fibred product of two
linear systems, one on each component, which are somewhat easier to deal with than the original
one. In fact, one of them consists of hypersurfaces containing a linear subspace and a collection
of double points, the other one consists of hypersurfaces containing 𝑉 and just one fat point of
relatively large multiplicity with support on 𝑉. Now, in order to study the latter, we perform a
toric degeneration of the Veronese 𝑉 to a union of 𝑛-dimensional linear spaces, which will have
the effect of reducing further the study of the limit linear system.
It is worth mentioning that the study of Waring-type problems and identifiability of symmet-

ric tensors has been implemented also in the applied fields, from chemistry, biology to algebraic
statistics. Recently, in [6], the problem of identifiability for 𝑘th powers of forms was linked to the
identifiability of centred Gaussian mixture models in applied statistics.

1.1 Organisation of the paper

Section 2 contains all definitions and our Terracini-type result that translates non-defectivity
of 𝑉𝑘
𝑛,𝑑

to the study of , Proposition 2.16. In Section 3, we explain in detail the degenerations
techniques, both in the classical and in the toric setting. In Section 4, we analyse two auxiliary
linear systems arising from the degeneration of , Proposition 4.3 and Corollary 4.8. Section 5 is
devoted to the proof of the main technical result, that is, Theorem 5.2. Finally, in Section 6, we
explain to what extent our bounds are asymptotically better than the ones known before in the
literature.

2 POWERS OF FORMS

In order to give a coherent and self-contained treatment of the subject, in this section, we recall
some preliminary definitions and results.
We will work over the field of complex numbers ℂ.

2.1 Veronese embeddings

Let𝑊 ∶= ℂ𝑛+1 and𝑊∗ the dual vector space. With ℙ𝑛 = ℙ(𝑊), we denote the projective space
over ℂ of dimension 𝑛. We introduce the following integers:

𝑁𝑑 ∶=

(
𝑛 + 𝑑

𝑛

)
− 1, 𝑁𝑘

𝑑
∶=

(
𝑁𝑑 + 𝑘

𝑁𝑑

)
− 1.

We will indicate 𝑁𝑑 simply by 𝑁, when no confusion may arise.
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Notice that the following identities hold:

h0(ℙ𝑛,ℙ𝑛(𝑑)) = 𝑁𝑑 + 1,

h0(ℙ𝑁𝑑 ,ℙ𝑁𝑑 (𝑘)) = 𝑁
𝑘
𝑑
+ 1,

whereh0(ℙ𝑎,ℙ𝑎 (𝑏)) denotes the number of global sections of the twisting sheafℙ𝑎 (𝑏) onℙ𝑎, for
any integers 𝑎 ⩾ 1, 𝑏 ⩾ 0. In other terms,

(𝑎+𝑏
𝑏

)
is the dimension of the linear systems of hypersur-

faces of degree 𝑏 of ℙ𝑎 which, in turn, is the projectivisation of the complex vector spaces of forms
of degree 𝑏 in 𝑎 + 1 variables. With this in mind, we can make the following identifications:

ℙ𝑁𝑑 = ℙ(Sym𝑑(𝑊∗)), ℙ𝑁
𝑘
𝑑 = ℙ(Sym𝑘(Sym𝑑(𝑊∗))).

Now we consider the following Veronese embeddings:

𝜈𝑑 ∶ ℙ
𝑛 ⟶ 𝑉𝑑𝑛 ⊂ ℙ(Sym

𝑑(𝑊∗))

[𝐿]⟼ [𝐿𝑑]

and

𝜈𝑘 ∶ ℙ
𝑁𝑑 ⟶ 𝑉𝑘𝑁𝑑

⊂ ℙ(Sym𝑘(Sym𝑑(𝑊∗))),

[𝐹]⟼ [𝐹𝑘]

where 𝐿 ∈ ℂ[𝑥0, … , 𝑥𝑛]1 is a linear form and 𝐹 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑 is a form of degree 𝑑. The image
of the embeddings are called Veronese varieties.

Remark 2.1. Note that both 𝜈𝑑 and 𝜈𝑘 are the maps corresponding to the complete linear systems
associated with the line bundles ℙ𝑛(𝑑) and ℙ𝑁𝑑 (𝑘), respectively. As elements of ℙ(Sym

𝑑(𝑊∗))

(respectively, ℙ(Sym𝑘(Sym𝑑(𝑊∗)))), the image of 𝜈𝑑(𝑝) (respectively, 𝜈𝑘(𝑝)), with 𝑝 a point, cor-
responds to the hyperplane parametrising hypersurfaces of degree 𝑑 in ℙ𝑛 (respectively, of degree
𝑘 in ℙ𝑁𝑑 ) passing through 𝑝.

Wewant to parametrise forms inℙ𝑛 of degree 𝑑𝑘, that is, elements inℂ[𝑥0, … , 𝑥𝑛]𝑑𝑘, which can
be written as 𝑘th powers of forms of degree 𝑑.

Remark 2.2. Note that the Veronese varieties 𝜈𝑑𝑘(ℙ𝑛) are always contained in the set of all 𝑘th
powers of forms of degree 𝑑 because, trivially, 𝐿𝑑𝑘 = (𝐿𝑑)𝑘.

Now, we let

𝜙𝑑𝑘 ∶ ℙ
𝑁𝑑 ⟶ ℙ𝑁𝑑𝑘 = ℙ(Sym𝑑𝑘(𝑊∗))

[𝐹]⟼ [𝐹𝑘]

be the map that assigns to each form 𝐹 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑 its 𝑘th power.



WARING IDENTIFIABILITY FOR POWERS OF FORMS VIA DEGENERATIONS 5 of 30

Definition 2.3. We call the scheme theoretic image

𝑉𝑘
𝑛,𝑑
= 𝜙𝑑𝑘(ℙ

𝑁𝑑) ⊆ ℙ𝑁𝑑𝑘

the (𝑑, 𝑘)-Veronese variety.

Under the previous identification, the classical Veronese varieties correspond to the (𝑑, 1)-
Veronese varieties. On the other hand, for 𝑘 > 1, 𝑉𝑘

𝑛,𝑑
is not a standard Veronese variety; indeed,

it is easy to see that the target of 𝜙𝑑𝑘 has dimension
(𝑛+𝑑𝑘
𝑑𝑘

)
, which is never equal to

(𝑁𝑑+𝑎
𝑎

)
for any

𝑎. A priori we do not know if the map 𝜙𝑑𝑘 is an isomorphism, as it happens for classical Veronese
varieties, see Lemma 2.11 below.

2.2 Secant varieties and identifiability

In this subsection, we recall the definition of secant variety and the notion of identifiability,
following [8].
Let 𝑋 ⊂ ℙ𝑁 be a non-degenerate reduced variety. Let 𝑋(ℎ) be the ℎth symmetric product of 𝑋,

that is, the variety parameterising unordered sets of ℎ points of 𝑋. Let 𝑈𝑋
ℎ
⊂ 𝑋(ℎ) be the smooth

locus, given by sets of ℎ distinct smooth points.

Definition 2.4. A point 𝑧 ∈ 𝑈𝑋
ℎ
represents a set of ℎ distinct points, say {𝑧1, … , 𝑧ℎ}. We say that

a point 𝑝 ∈ ℙ𝑁 is in the span of 𝑧, 𝑝 ∈ ⟨𝑧⟩, if it is a linear combination of the 𝑧𝑖 ’s.
With this in mind, one can define the following object.

Definition 2.5. The abstract ℎ-secant variety is the (ℎ𝑛 + ℎ − 1)-dimensional variety

𝑠𝑒𝑐ℎ(𝑋) ∶= {(𝑧, 𝑝) ∈ 𝑈
𝑋
ℎ
× ℙ𝑁|𝑝 ∈ ⟨𝑧⟩} ⊂ 𝑋(ℎ) × ℙ𝑁.

Let 𝜋 ∶ 𝑋(ℎ) × ℙ𝑁 → ℙ𝑁 be the projection onto the second factor. The ℎ-secant variety is

𝕊𝑒𝑐ℎ(𝑋) ∶= 𝜋(𝑠𝑒𝑐ℎ(𝑋)) ⊂ ℙ
𝑁,

and 𝜋𝑋
ℎ
∶= 𝜋|𝑠𝑒𝑐ℎ(𝑋) ∶ 𝑠𝑒𝑐ℎ(𝑋) → ℙ𝑁 is the ℎ-secant map of 𝑋.

If the variety 𝑋 is irreducible and reduced, we say that 𝑋 is h-defective if

dim𝕊𝑒𝑐ℎ(𝑋) < min{dim 𝑠𝑒𝑐ℎ(𝑋),𝑁}.

The following is a classical result.

Theorem 2.6 (Terracini’s lemma). Let𝑋 ⊂ ℙ𝑁 be an irreducible variety. Then, the following holds.

∙ For any 𝑝1, … , 𝑝𝑘 ∈ 𝑋 and 𝑧 ∈ ⟨𝑝1, … , 𝑝𝑘⟩, we have
⟨𝑇𝑝1𝑋,… , 𝑇𝑝𝑘𝑋⟩ ⊆ 𝑇𝑧𝕊𝑒𝑐𝑘(𝑋).
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∙ There is a dense open set𝑈 ⊂ 𝑋(𝑘) such that

⟨𝑇𝑝1𝑋,… , 𝑇𝑝𝑘𝑋⟩ = 𝑇𝑧𝕊𝑒𝑐𝑘(𝑋),
for any general point 𝑧 ∈ ⟨𝑝1, … , 𝑝𝑘⟩ with (𝑝1, … , 𝑝𝑘) ∈ 𝑈.
The following notions are related to the notion of secant variety.

Definition 2.7. Let𝑋 ⊂ ℙ𝑁 be a non-degenerate subvariety. We say that a point 𝑧 ∈ ℙ𝑁 has rank
ℎ with respect to 𝑋 if 𝑧 ∈ ⟨𝑝⟩, for some 𝑝 ∈ 𝑈𝑋

ℎ
and 𝑧 ∉ ⟨𝑝′⟩ for any 𝑝′ ∈ 𝑈𝑋

ℎ′
, with ℎ′ < ℎ.

Definition 2.8. A point 𝑧 ∈ ℙ𝑁 is ℎ-identifiable with respect to 𝑋 ⊂ ℙ𝑁 if 𝑧 is of rank ℎ and
(𝜋𝑋
ℎ
)
−1
(𝑧) is a single point. The variety 𝑋 is said to be h-identifiable if the ℎ-secant map 𝜋𝑋

ℎ
is

birational, that is, if the general point of 𝕊𝑒𝑐ℎ(𝑋) is ℎ-identifiable.

It is clear, by Theorem 2.6, that when 𝑋 is ℎ-defective, or more generally, when 𝜋𝑋
ℎ
is of fibre

type, then 𝑋 is not ℎ-identifiable.
We now recall the recent result in [18], in which the authors generalise the approach in [8]

relating identifiability with the non-defectivity of the secant variety.

Theorem 2.9. Let 𝑋 ⊂ ℙ𝑁 be an irreducible and non-degenerate variety of dimension 𝑛, ℎ ⩾ 1 an
integer, and assume that:

∙ (ℎ + 1)𝑛 + ℎ ⩽ 𝑁,
∙ 𝑋 has non-degenerate Gauss map,
∙ 𝑋 is not (ℎ + 1)−defective.

Then 𝑋 is ℎ-identifiable.

In the next sections, we will see how to rephrase this theorem in the setting of powers of forms
in order to give identifiability results for 𝑘-th powers of forms of degree 𝑑.

2.3 Geometric construction of (𝒅, 𝒌)-Veronese varieties

Let us recall some facts from apolarity theory; the main reference is [16].

Notation 2.10 (Apolarity). We consider two polynomial rings in 𝑛 + 1 variables, both endowed
with the standard grading:

𝑅 = ℂ[𝑥0, … , 𝑥𝑛] =
⨁
𝑖∈ℕ

𝑅𝑖 ∶= ℂ[𝑥0, … , 𝑥𝑛]𝑖,

𝑆 = ℂ[𝑦0, … , 𝑦𝑛] =
⨁
𝑖∈ℕ

𝑆𝑖 ∶= ℂ[𝑦0, … , 𝑦𝑛]𝑖.

Interpreting the elements of 𝑆 as partial derivatives in the 𝑥𝑖 ’s, the pairing 𝑆𝑘 × 𝑅𝑙 → ℂ sends
(𝐹𝑘, 𝐺𝑙) to the derivative 𝐹𝑘◦𝐺𝑙 ∈ 𝑅 of 𝐺𝑙. If 𝑘 = 𝑙 and if  ⊂ 𝑅 is a homogeneous ideal, the
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orthogonal ⟂
𝑘
⊂ 𝑆𝑘 is the following space of polynomials:

⟂
𝑘
= {𝐹 ∈ 𝑆𝑘|𝐹◦𝐺 = 0, ∀𝐺 ∈ 𝑘}.

It is a standard fact of representation theory for the linear group 𝐺𝐿(𝑊), see, for instance,
[17], that the space Sym𝑘(Sym𝑑(𝑊∗)) can be decomposed as direct sum of 𝐺𝐿(𝑊)-modules in
the following way:

Sym𝑘(Sym𝑑(𝑊∗)) = Sym𝑑𝑘(𝑊∗) ⊕ 

where

 = H0(ℙ𝑁,𝑉𝑑𝑛
(𝑘))

is the 𝑘-th homogeneous part of the ideal of forms that vanish on the Veronese vari-
ety 𝑉𝑑𝑛 = 𝜈𝑑(ℙ

𝑛), cf. notation of Section 2.1. In slightly different terms, we can describe
 = H0(ℙ𝑁,ℙ𝑁 (𝑘) ⊗ 𝑉𝑑𝑛

) as the space of global sections of the linear system of degree-𝑘
hypersurfaces of ℙ𝑁 containing 𝑉𝑑𝑛 . We have the following exact sequence:

0 → 𝑉𝑑𝑛
(𝑘) → ℙ𝑁𝑑 (𝑘) → 𝑉𝑑𝑛

(𝑘) → 0

Considering the long exact sequence in cohomology and using the fact that every Veronese variety
is projectively normal, we have:

0 → H0(𝑉𝑑𝑛
(𝑘)) → H0(ℙ𝑁𝑑 (𝑘)) → H

0(𝑉𝑑𝑛
(𝑘)) → 0,

where we omit the indication of the underlying space in the expressions 𝐻0(⋅), since it is clear
from the context. This shows that

dim() =

(
𝑁𝑑 + 𝑘

𝑘

)
−

(
𝑛 + 𝑑𝑘

𝑑𝑘

)
.

It is easy to show that 𝐺𝐿(𝑉)-modules Sym𝑑𝑘(𝑊∗) and  are apolar, that is, for every pair of
forms 𝐹,𝐺 ∈ ℂ[𝑥0, … , 𝑥𝑁𝑑] with 𝐹 ∈ Sym

𝑑𝑘(𝑊∗) and 𝐺 ∈  , one has that 𝐹◦𝐺 = 0.
The constructions above fit into the following commutative diagram:

where the map 𝜋𝔼 is the linear projection from the (projective) linear space 𝔼 = ℙ(). We now
prove that the map 𝜙𝑑𝑘 is, in fact, an isomorphism.
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Lemma 2.11. With the above notations, we have 𝕊𝑒𝑐2(𝑉𝑘𝑁𝑑) ∩ 𝔼 = ∅. In particular, the map 𝜙𝑑𝑘 is
an embedding.

Proof. Note that an element 𝐹 ∈ 𝕊𝑒𝑐2(𝑉𝑘𝑁𝑑) is either of the form 𝐹 = 𝐿
𝑘, 𝐹 = 𝐿𝑘−1𝑀 or 𝐹 = 𝑀𝑘 +

𝑁𝑘, where 𝐿,𝑀,𝑁 ∈ ℂ[𝑥0, … , 𝑥𝑁𝑑]1 are linear forms in ℙ(Sym
𝑘(Sym𝑑(𝑊∗))), or equivalently

degree 𝑑 hypersurfaces in ℙ𝑛. In particular, if there exist such an 𝐹 with 𝐹 ∈  = H0(𝑉𝑛,𝑑 (𝑘)),
then𝑉𝑛,𝑑 would be contained in the vanishing locus of 𝐹. Moreover, the zero locus of 𝐹 is either a
hyperplane ({𝐿 = 0}), a union of two hyperplanes ({𝐿 = 0} ∪ {𝑀 = 0}) or the union of a hyperplane
and a subscheme 𝑆 of degree 𝑘 − 1 ({𝑀 + 𝜁𝑁 = 0} ∪ 𝑆), where 𝜁 is a 𝑘th root of unity. Finally, since
𝑉𝑛,𝑑 is non-degenerate and irreducible, the claim follows. □

2.4 Identifiability for (𝒅, 𝒌)-Veronese varieties

From now on we will work with the projective notation, in particular, 𝔼 has to be intended as the
projectivisation of the affine space  introduced in the previous section. Let us start by character-
ising hyperplanes in 𝔼 as particular linear subsystems of hypersurfaces in ℙ𝑁𝑑 . Denote by 𝜋𝑑𝑘 the
linear projection from the linear space ℙ(Sym𝑑𝑘(𝑊∗)) to 𝔼, that is,

𝜋𝑑𝑘 ∶ ℙ(Sym
𝑘(Sym𝑑(𝑊∗))) ⤏ 𝔼.

Lemma 2.12. Let H0(
ℙ
𝑁𝑘
𝑑
(1) ⊗ ℙ(Sym𝑑𝑘(𝑊∗))) be the complete linear system of hyperplane

sections of ℙ(Sym𝑘(Sym𝑑(𝑊∗))) containing the linear space ℙ(Sym𝑑𝑘(𝑊∗)). Then,

𝜈∗
𝑘
(H0(

ℙ
𝑁𝑘
𝑑
(1) ⊗ ℙ(Sym𝑑𝑘(𝑊∗)))) ≅ H

0(ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑
).

Proof. Let𝐻 ∈ H0(ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑
) be a degree 𝑘 hypersurface inℙ𝑁𝑑 that contains the Veronese

𝑉𝑛,𝑑. Then, the linear span 𝐻 of (𝜈𝑘)∗(𝐻) is a hyperplane in ℙ𝑁
𝑘
𝑑 that contains 𝑉𝑛,𝑑𝑘 ∶=

(𝜈𝑘)∗(𝑉𝑛,𝑑). Since ⟨𝑉𝑛,𝑑𝑘⟩ = ℙ(Sym𝑑𝑘(𝑊∗)), we have that
H0(ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑

) ⊆ 𝜈∗
𝑘
(H0(

ℙ
𝑁𝑘
𝑑
(1) ⊗ ℙ(Sym𝑑𝑘(𝑊∗))).

To conclude, it is enough to observe that

h0(ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑
) = dim() = codim(ℙ(Sym𝑑𝑘(𝑊∗))),

where codim here indicates the codimension in ℙ(Sym𝑘(Sym𝑑(𝑊∗))), and 𝜈∗
𝑘
induces an

isomorphism of global sections. □

We need the following easy technical lemma.

Lemma 2.13. The linear projection

𝜋𝑑𝑘 ∶ ℙ(Sym
𝑘(Sym𝑑(𝑊∗))) ⤏ 𝔼 = ℙ(H0(𝑉𝑛,𝑑 (𝑘)))

is generically finite when restricted to 𝑉𝑁𝑑,𝑘 = 𝜈𝑘(ℙ(Sym
𝑑(𝑊∗))).
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Proof. The map

𝜋𝑑𝑘|𝜈𝑘(ℙ(Sym𝑑(𝑊∗))) ∶ 𝑉𝑁𝑑,𝑘 ⤏ 𝔼

is induced by a linear subsystem  of the line bundle  = 
ℙ
𝑁𝑘
𝑑
(1) with

𝜈∗
𝑘
() = |Sym𝑑(𝑊∗)(1) ⊗ 𝑉𝑛,𝑑

(𝑘)|.
Now the claim follows easily from the fact thatH0(𝑉𝑛,𝑑 (𝑘)) defines the Veronese variety 𝑉𝑛,𝑑 set
theoretically. □

Let𝑝1, … , 𝑝ℎ ∈ 𝑋 ⊂ ℙ𝑁 be general points. ByLemma2.6,wehave that𝕊𝑒𝑐ℎ(𝑋)has the expected
dimension if and only if H0(𝑋(1) ⊗ 𝑝2

1
,…,𝑝2
ℎ
) has the expected dimension, that is,

dimH0(𝑋(1) ⊗ 𝑝2
1
,…,𝑝2
ℎ
) = max{0,𝑁 + 1 − (𝑛 + 1)ℎ}.

Notation 2.14. If 𝑝1, … , 𝑝ℎ ∈ 𝑋 are general points, then we denote ℎ,𝑋 ∶= |𝑋(1) ⊗ 𝑝2
1
,…,𝑝2
ℎ
|.

Before moving on to the explicit description of the identifiability for 𝑉𝑘
𝑛,𝑑
, let us first prove a

general proposition about linear systems of projected varieties.

Proposition 2.15. Let 𝑋 ⊂ ℙ𝑁 be a smooth non-degenerate projective variety. Moreover, let ℙ𝑁 =⟨𝔽, 𝔼⟩with𝔽, 𝔼 skew linear subspaces. Let𝜋𝔼 ∶ ℙ𝑁 → 𝔽and𝜋𝔽 ∶ ℙ𝑁 → 𝔼 be the natural projections.
If the projections restricted to 𝑋 are generically finite and ℎ,𝑋 has the expected dimension, then
ℎ,𝜋𝔽(𝑋)

has the expected dimension if and only if ℎ,𝜋𝔼(𝑋) has the expected dimension.

Proof. Note that by symmetry of 𝔼 and 𝔽, it suffices to prove only one of the implications. Let
𝑞1, … , 𝑞ℎ be general points on 𝜋𝔼(𝑋), 𝑥𝑖 ∈ 𝜋−1𝔼 (𝑞𝑖) a general point in every fibre and 𝑧𝑖 = 𝜋𝔽(𝑝𝑖).
By the generality assumption, we have that 𝑥1, … , 𝑥ℎ are general and so are 𝑧1, … , 𝑧ℎ. Since
𝜋𝔽 restricted to 𝑋 is generically finite, the space of hyperplanes ℎ,𝜋𝔽(𝑋)

= |𝔼(1) ⊗ 𝑧2
1
,…,𝑧2
ℎ
|

corresponds to ℎ,𝑋 ⊗ 𝔽. Now the splitting ℙ𝑁 = ⟨𝔽, 𝔼⟩ induces the linear projection
𝜋 ∶ ℎ,𝑋 ↦ ℎ,𝑋 ⊗ 𝔼

such that 𝐾𝑒𝑟(𝜋) = ℎ,𝜋𝔽(𝑋). Since, by assumption, both the source and the kernel have the
expected dimension by the rank-nullity theorem the assertion follows. □

We are finally able to characterise the identifiability properties for the case of powers of forms.
Consider the following linear system of all hypersurfaces of ℙ𝑁𝑑 of degree 𝑘 containing the
Veronese variety𝑉𝑛,𝑑 ⊂ ℙ𝑁𝑑 and double at the points 𝑝1, … , 𝑝ℎ that lie in general position inℙ𝑁𝑑 :

𝑁𝑑
(𝑉𝑛,𝑑, 2

ℎ) ∶= ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑
⊗ 𝑝2

1
,…,𝑝2
ℎ
.

Proposition 2.16. In the above notation, let 𝑝1, … , 𝑝ℎ be general points in ℙ𝑁𝑑 = ℙ(Sym𝑑(𝑊∗)).
The linear system 𝑁𝑑

(𝑉𝑛,𝑑, 2
ℎ) has the expected dimension if and only if 𝕊𝑒𝑐ℎ(𝑉𝑘𝑛,𝑑) has the

expected dimension.
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Proof. With the notations of Proposition 2.15, we have 𝔼 = ℙ(H0(𝑉𝑛,𝑑 (𝑘))) and 𝔽 = Sym
𝑑𝑘(𝑊∗).

We have that𝜋𝔼 restricted to𝑋 = 𝑉𝑘𝑁𝑑 is an isomorphism by Lemma 2.11, in particular, it is generi-
cally finite. The same holds for 𝜋𝔽 = 𝜋𝑑𝑘 by Lemma 2.13. Nowℎ,𝑉𝑘

𝑁𝑑

has the expected dimension

by Alexander–Hirschowitz (see Theorem 4.1 below) and

ℎ,𝜋𝑑𝑘(𝑉
𝑘
𝑁𝑑
) = |ℙ𝑁𝑑 (𝑘) ⊗ 𝑉𝑛,𝑑

⊗ 𝑝2
1
,…,𝑝2
ℎ
|

by Lemma 2.12. □

3 DEGENERATION TECHNIQUES

In this section, we will discuss two types of degenerations that will provide main tools for the
proofs of the results of this article.

3.1 The 𝔽ℙ-degeneration

In this section, we recall a degeneration procedure introduced in [21], which consists in degen-
erating the projective space ℙ𝑁 to a reducible variety with two components, and then studying
degenerations of line bundles on the general fibre.

3.1.1 Degenerating the ambient space

Let Δ be a complex disc centred at the origin and consider the product  = ℙ𝑁 × Δ with the nat-
ural projections 𝜋

1
∶  → ℙ𝑁 and 𝜋

2
∶  → Δ. The second projection is a flat morphism and

we denote by 𝑌𝑡 ∶= ℙ𝑁 × {𝑡} the fibre over 𝑡 ∈ Δ. We will refer to 𝑌0 and to 𝑌𝑡, with 𝑡 ≠ 0, as the
central fibre and the general fibre, respectively. Let 𝑓 ∶  →  denote the blow-up of  at a point
(𝑝, 0) ∈ 𝑌0 in the central fibre. Consider the following diagram, where𝜋𝑖 ∶= 𝜋



𝑖
◦𝑓, for 𝑖 = 1, 2:

The morphism 𝜋
2
∶  → Δ is flat with fibres denoted by 𝑋𝑡, 𝑡 ∈ Δ. For the general fibre, we

have 𝑋𝑡 ≅ 𝑌𝑡 = ℙ𝑁 , whereas the central fibre 𝑋0 is the reduced union of the strict transform of
𝑌0, that we shall denote with 𝔽, and the exceptional divisor ℙ ≅ ℙ𝑁 of 𝑓. The two components ℙ
and 𝔽 meet transversally and we will denote by 𝑅 the intersection: 𝑅 ∶= 𝔽 ∩ ℙ ≅ ℙ𝑁−1. We will
say that ℙ𝑁 degenerates to 𝑋0 = ℙ ∪ 𝔽.
We will now endow the general fibre𝑋𝑡 with a line bundle, and wewill describe its limits on𝑋0

via this degeneration. In order to do so, we will give bases for the Picard groups of the components
of 𝑋0.
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Notation 3.1. We denote by 𝐻ℙ the hyperplane class of ℙ, so that the Picard group of the excep-
tional component is generated by 𝐻ℙ. Moreover, we denote with 𝐻𝔽 the hyperplane class of 𝔽,
pull-back of a general hyperplane of 𝑌0 ≅ ℙ𝑁 , and with 𝐸 ∶= ℙ|𝔽 the exceptional class in 𝔽: 𝐻𝔽
and 𝐸 generate the Picard group of 𝔽.

In these bases, 𝑅 has class𝐻ℙ in N1(ℙ) and 𝐸 in N1(𝔽). A line bundle on 𝑋0 will correspond to
a line bundle on ℙ and a line bundle on 𝔽, which match on the intersection 𝑅. In other terms, we
can describe the Picard group of 𝑋0 as a fibre product

Pic(𝑋0) = Pic(ℙ) ×Pic(𝑅) Pic(𝔽).

Consider the line bundle (𝑘) = (𝜋

1
)
∗
(ℙ𝑁 (𝑘)) and the following twist by a negativemultiple

of the exceptional divisor:

 (𝑘, 𝑎) ∶=  (𝑘) ⊗  (−𝑎ℙ).

The line bundle (𝑘, 𝑎) will induce a line bundle on each fibre 𝑋𝑡 by restriction:

𝑡(𝑘, 𝑎) ∶= (𝑘, 𝑎)|𝑋𝑡 , 𝑡 ∈ Δ.
For 𝑡 ≠ 0, since ℙ ∩ 𝑋𝑡 = ∅, we have

𝑡(𝑘, 𝑎) = 𝑋𝑡 (𝑘),

while on the components of the central fibre, we have

ℙ(𝑘, 𝑎) ∶= (𝑘, 𝑎)|ℙ = ℙ(𝑎𝐻ℙ),
𝔽(𝑘, 𝑎) ∶= (𝑘, 𝑎)|𝔽 = 𝔽(𝑘𝐻𝔽 − 𝑎𝐸).

The resulting line bundle on 𝑋0 is a flat limit of the bundle 𝑋𝑡 (𝑘) ≅ ℙ𝑛(𝑘), for 𝑡 → 0.

3.1.2 Degenerating the Veronese variety

We will use the same notation as in Section 3.1.1. Let us set

𝑁 ∶= 𝑁𝑑 =

(
𝑛 + 𝑑

𝑛

)
− 1,

and let 𝑉 ∶= 𝑉𝑛,𝑑 = 𝑣𝑑(ℙ𝑛) ⊂ ℙ𝑁 denote the 𝑑th Veronese embedding of ℙ𝑛 in ℙ𝑁 , and consider
the 1-parameter family  = 𝑉 × Δ ⊂  with the natural projections 𝜋

1
| ∶  → ℙ𝑁 and 𝜋2 | ∶

 → Δ. The second projection is a flat morphism and we denote by 𝑉𝑡 ∶= 𝑉 × {𝑡} the fibre over
𝑡 ∈ Δ. We pick a general point (𝑝, 0) ∈ 𝑉0 ⊂ 𝑌0 in the central fibre of 𝜋



2
∶  → Δ supported on

the Veronese variety, and we consider the blow-up 𝑓 ∶  →  at (𝑝, 0). This induces the blow-
up 𝑓| ∶ ̃ →  of  at (𝑝, 0) and the fibres of (𝜋

2
◦𝑓)|

̃
are as follows: the general fibre is a
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Veronese variety

𝑉𝑡 ≅ 𝑉,

while the central fibre is the reduced union of two components,

𝑉0 = 𝑉𝔽 ∪ Λ,

where 𝑉𝔽 is the strict transform of 𝑉0 under the blow-up at 𝑝, whereas Λ ≅ ℙ𝑛 is the exceptional
divisor on 𝑉. Moreover, we can write

Λ𝑅 ∶= 𝑉𝔽 ∩ Λ ⊂ Λ,

and observe that Λ𝑅 ≅ ℙ𝑛−1.
Consider the line bundle (𝑘, 𝑎) and twist it by the ideal sheaf of ̃ :

 (𝑘, 𝑎; ̃) ∶= (𝑘, 𝑎) ⊗ 
̃
=  (𝑘) ⊗  (−𝑎ℙ) ⊗ 

̃
.

This restricts to the following line bundles on the fibres 𝑋𝑡:

𝑡(𝑘, 𝑎; 𝑉) = 𝑋𝑡 (𝑘) ⊗ 𝑉𝑡
, 𝑡 ∈ Δ ⧵ {0},

ℙ(𝑘, 𝑎; Λ) = ℙ(𝑎𝐻ℙ) ⊗ Λ,

𝔽(𝑘, 𝑎; 𝑉) = 𝔽(𝑘𝐻𝔽 − 𝑎𝐸) ⊗ 𝑉.

The resulting line bundle on 𝑋0 is a flat limit of the bundle ℙ𝑛(𝑘) ⊗ 𝑉 on the general fibre.

3.1.3 Degenerating a collection of points in general position

We continue to use the notation of Sections 3.1.1–3.1.2. On the general fibre of  → Δ, that is, for
𝑡 ≠ 0, we consider a collection of points {𝑥1,𝑡 … , 𝑥ℎ,𝑡} ⊂ 𝑌𝑡 in general position and that, in particu-
lar, lie off theVeronese variety𝑉𝑡 ⊂ 𝑌𝑡. After choosing a point that lies generically on theVeronese
variety in the central fibre, 𝑝 ∈ 𝑉0 ⊂ 𝑌0, we degenerate each point 𝑥1,𝑡 ∈ 𝑌𝑡 to an infinitely near
point to 𝑝 ∈ 𝑉0 as follows. For every 𝑖 ∈ {1, … , ℎ}, consider the curve (𝜋



1
)
−1
(𝑥𝑖) ⊂  and its pull-

back 𝐶𝑖 on . The union
⋃
𝑖 𝐶𝑖 intersects each fibre𝑋𝑡 transversally in ℎ distinct points. For 𝑡 ≠ 0,

the points
⋃
𝑖 𝐶𝑖 ∩ 𝑋𝑡 are in general position. Moreover, by the generality assumption, the curves

(𝜋
1
)
−1
(𝑝𝑖) ⊂  are not tangent to 𝑉0 ∈ 𝑌0; therefore, the intersection points 𝐶𝑖 ∩ 𝑋0 lie on ℙ but

not inside Λ.
Consider the blow-up of  along the union of curves

⋃ℎ
𝑖=1 𝐶𝑡, gℎ ∶ ̃ →  , with exceptional

divisors 𝐸𝐶𝑖 . Since these curves are disjoint, the result does not depend on the order of blow-up.
The general fibre, that we continue to call𝑋𝑡 by abuse of notation, is isomorphic to aℙ𝑁 blown-up
at ℎ points in general position and its Picard group will be generated by the hyperplane class and
by the classes of the exceptional divisors:

Pic(𝑋𝑡) = ℤ⟨𝐻,𝐸1,𝑡, … , 𝐸ℎ,𝑡⟩.



WARING IDENTIFIABILITY FOR POWERS OF FORMS VIA DEGENERATIONS 13 of 30

The central fibre has two components, the pull-back of𝔽 and the strict transformofℙ ≅ ℙ𝑁 , which
is isomorphic to a ℙ𝑁 blown-up at ℎ points in general position: abusing notation, we call 𝔽 and ℙ
the two components, so that 𝑋0 = ℙ ∪ 𝔽. The Picard group of ℙ̃ is

Pic(ℙ) = ℤ⟨𝐻ℙ, 𝐸1,𝑡, … , 𝐸ℎ,𝑡⟩.
For a vector𝐦 = (𝑚1,… ,𝑚ℎ) ∈ ℕ𝑛, consider the following sheaf on ̃ :


̃
(𝑘, 𝑎; ̃ ,𝐦) ∶= (𝑘) ⊗ (−𝑎ℙ) ⊗ (−(𝑚1𝐸𝐶1 +⋯ +𝑚ℎ𝐸𝐶ℎ)) ⊗ 𝑉.

It restricts to

𝑡(𝑘, 𝑎; 𝑉,𝐦) = (𝑘) ⊗ (−(𝑚1𝐸1,𝑡 +⋯ +𝑚ℎ𝐸ℎ,𝑡)) ⊗ 𝑉𝑡
, 𝑡 ≠ 0,

on the general fibre, and to

ℙ(𝑘, 𝑎; Λ,𝐦) = ℙ(𝑎𝐻ℙ − (𝑚1𝐸1 +⋯ +𝑚ℎ𝐸ℎ)) ⊗ Λ,

𝔽(𝑘, 𝑎; 𝑉,𝐦) = 𝔽(𝑘𝐻𝔽 − 𝑎𝐸) ⊗ 𝑉.

on the components of the central fibre. The resulting line bundle on𝑋0 is a flat limit of the bundle
on the general fibre.

3.1.4 Matching conditions

We will abbreviate the notation of the previous sections by setting


̃
∶=

̃
(𝑘, 𝑎; ̃ ,𝐦)

and

𝑡 ∶=𝑡(𝑘, 𝑎; 𝑉,𝐦)

ℙ ∶=ℙ(𝑘, 𝑎; Λ,𝐦)

𝔽 ∶=𝔽(𝑘, 𝑎; �̃�,𝐦).

We are interested in computing the dimension of the space of global sections of the line bundle
on the central fibre which, by semicontinuity, gives an upper bound to the dimension of the space
of global sections of the line bundle on the general fibre:

h0(𝑋0,0) ⩾ h
0(𝑋𝑡,𝑡). (3.1)

In order to do so, we consider the natural restrictions to the intersection 𝑅 = ℙ ∩ 𝔽 of the central
fibre:

0 → ̂ℙ →ℙ →ℙ|𝑅 → 0,
0 → ̂𝔽 →𝔽 →𝔽|𝑅 → 0,
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where ̂ℙ = ̂ℙ(𝑘, 𝑎; Λ,𝐦) and ̂𝔽 = ̂𝔽(𝑘, 𝑎; �̃�,𝐦) denote the kernels of the restriction
maps. Since 𝑅 = 𝐻ℙ on ℙ and 𝑅 = 𝐸 on 𝔽, we have

̂ℙ = ℙ((𝑎 − 1)𝐻ℙ − (𝑚1𝐸1 +⋯ +𝑚ℎ𝐸ℎ) ⊗ Λ

̂𝔽 = 𝔽(𝑘𝐻𝔽 − (𝑎 + 1)𝐸) ⊗ �̃� .

Consider the restriction maps of global sections:

𝑟ℙ ∶ H
0(ℙ,ℙ) → H

0(𝑅,ℙ|𝑅),
𝑟𝔽 ∶ H

0(ℙ,𝔽) → H
0(𝑅,𝔽|𝑅).

We notice that the spaces of global sections of the restricted systems are both subspaces of the
space of global sections of the degree-𝑎 line bundle on 𝑅 ≅ ℙ𝑁−1:

H0(𝑅,ℙ|𝑅), H0(𝑅,𝔽|𝑅) ⊆ H0(𝑅,𝑅(𝑎)).
A global section of0 consists of an element ofH0(ℙ,ℙ) and an element ofH0(𝔽,𝔽) which
match in H0(𝑅,𝑅(𝑎)), that is, the space of global sections 𝐻0(𝑋0,0) is described as a fibre
product via the following commutative diagram:

This yields the formula for the dimension of the spaces of global sections

h0(𝑋0,0) = h
0(ℙ,̂ℙ) + h

0(𝔽,̂𝔽) + h
0(𝑅,ℙ|𝑅 ∩𝔽|𝑅),

which, in terms of dimensions of line bundles, reads as follows:

dim0 = dim̂ℙ + dim̂𝔽 + dimℙ|𝑅 ∩𝔽|𝑅 + 2. (3.2)

Remark 3.2. There is an obvious isomorpshism between𝑡(𝑘, 𝑎; 𝑉,𝐦), line bundle on𝑋𝑡 and the
line bundle 𝑁,𝑘(𝑉,𝐦) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉 ⊗ 𝑍 on ℙ𝑁 , where 𝑍 is a union of fat points in general
position in ℙ𝑁 with multiplicities, respectively, 𝑚1,… ,𝑚ℎ. Such isomorphism is given by taking
strict transforms of elements of 𝑁,𝑘(𝑉,𝐦).
Similarly, since ℙ is the blow-up of ℙ𝑁 at ℎ points in general position and Λ ⊂ ℙ is a general

linear subspace, then there is an isomorphismsℙ(𝑘, 𝑎; Λ,𝐦) ≅ 𝑁,𝑎(Λ,𝐦) ∶= ℙ𝑁 (𝑎) ⊗ Λ ⊗

𝑍 .
Finally, since 𝔽 is a ℙ𝑁 blown-up at a point 𝑝 on the Veronese variety 𝑉 ⊂ ℙ𝑁 and since �̃�

is the strict transform of 𝑉 via this blow-up, then there is an isomorphisms 𝔽(𝑘, 𝑎; �̃�,𝐦) ≅
𝑁,𝑘(𝑉, 𝑎) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉 ⊗ 𝑝𝑎 .
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F IGURE 1 A regular triangulation of 3Δ2.

3.2 Toric degeneration of the Veronese variety

We refer to [13] for details on projective toric varieties associated with convex lattice polytopes and
to [15] for details on coherent triangulations. Let Δ𝑛 ⊂ ℝ𝑛 be the 𝑛-dimensional simplex obtained
as the convex hull of the points (0, … , 0), (1, 0, … , 0), … , (0, … , 0, 1). Consider 𝑑Δ𝑛 = Δ𝑁 +⋯ +
Δ𝑁 , where + denotes the Minkowski sum of polytopes in ℝ𝑛. The polytope 𝑑Δ𝑛 defines the 𝑑th
Veronese embedding of ℙ𝑛 in ℙ𝑁 , with𝑁 = 𝑁𝑑 =

(𝑁+𝑑
𝑁

)
− 1, that we shall call 𝑉 = 𝑉𝑛,𝑑 as in the

previous section. Consider the lattice ℤ𝑛 ⊂ ℝ𝑛 and the set of lattice points  ∶= 𝑑Δ𝑛 ∩ ℤ𝑛. We
have ♯ = 𝑁 + 1 and each such point corresponds to a coordinate point of the ambient space ℙ𝑁 .

3.2.1 Degenerating the Veronese to a union of linear spaces

Take a regular triangulation of 𝑑Δ𝑛, which is a decomposition of 𝑑Δ𝑛 into a finite union of
simplices

𝑑𝑛⋃
𝑖=1

𝑆𝑖,

where

∙ each 𝑆𝑖 is obtained as the convex hull of 𝑛 + 1 non-aligned points of,
∙ ♯𝑆𝑖 ∩ ℤ

𝑛 = 𝑛 + 1,
∙ for 𝑖 ≠ 𝑗, 𝑆𝑖 ∩ 𝑆𝑗 is a common faces of 𝑆𝑖 and 𝑆𝑗 (possibly empty),
∙ there is a strictly convex piecewise linear function 𝜆 ∶ ℝ𝑛 → ℝ whose domains of linearity are
precisely the 𝑆𝑖 ’s.

We can always assume that 𝑆1 is the convex hull of the lattice points (0, … , 0),
(1, 0, … , 0), … , (0, … , 0, 1), so that it lies at a corner of 𝑑Δ𝑛. Consider, for example, for 𝑛 = 2
and 𝑑 = 3, the subdivision into nine triangles and the piecewise linear function inducing it, as
shown in Figure 1. In this figure, 𝑆1 is the triangle with vertices (0,0),(1,0),(0,1).
Each 𝑆𝑖 defines a ℙ𝑛 as a toric variety, which we will call Π𝑖 , for 𝑖 = 1, … , 𝑑𝑛. Since a regular

triangulation of 𝑑Δ𝑛 induces a 1-parameter embedded degeneration of 𝑉𝑛,𝑑 ⊂ ℙ𝑁 to the union of
toric varieties described by the 𝑆𝑖 ’s (see [11] and [22] for details on the 2-dimensional case), we
have a degeneration of the 𝑛-dimensional Veronese variety 𝑉𝑛,𝑑 to a union of 𝑑𝑛 𝑛-planes:

𝚷 ∶=

𝑑𝑛⋃
𝑖=1

Π𝑖.
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The intersection table of these planes is encoded in the combinatorial data described by the
triangulation, that is: if 𝑆𝑖 ∩ 𝑆𝑗 is 𝑟-dimensional, then Π𝑖 ∩ Π𝑗 ≅ ℙ𝑟, for 0 ⩽ 𝑟 ⩽ 𝑛 − 1.

Remark 3.3. Because of the choice of 𝑆1made, we will say thatΠ1 is a sink. In practice, this means
that it is possible to choose a hyperplane of ℙ𝑁 that contains every 𝑆𝑖 , 𝑖 > 1, but that does not
contain 𝑆1.

Moreover, the union of planes 𝚷 ⊂ ℙ𝑁 is a torus invariant subscheme. In fact, consider the
simplex Δ𝑁 , which defines ℙ𝑁 as a toric variety, with an action of the algebraic torus (ℂ∗)

𝑁 . Each
𝑟-dimensional face of Δ𝑁 corresponds to a torus invariant linear subspace of dimension 𝑟 of ℙ𝑁 .
In particular, vertices of Δ𝑁 are in one-to-one correspondence with 𝑁 + 1 linearly general points
of ℙ𝑁 , which we may assume to be the coordinate points, after a suitable change of coordinates.
Each 𝑟-dimensional face ofΔ𝑁 corresponds to aℙ𝑟 spanned by 𝑟 + 1 coordinate points. Since each
Π𝑖 is the linear span of 𝑛 + 1 coordinate points of ℙ𝑁 , then the union𝚷 is embedded in a copy of
ℙ𝑁 and it is invariant under the action of the torus (ℂ∗)𝑁 . In particular, each Π𝑖 will correspond
to amarked 𝑛-dimensional face of Δ𝑁 and we have 𝑑𝑛 such marked faces.

3.2.2 Degenerating a linear system intepolating the Veronese

We now consider the linear systems on ℙ𝑁 of degree−𝑘 hypersurfaces containing the Veronese
variety on the one hand, and the union of 𝑛−planes𝚷 on the other hand:

𝑁,𝑘(𝑉𝑛,𝑑) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉𝑛,𝑑
,

𝑁,𝑘(𝚷) ∶= ℙ𝑁 (𝑘) ⊗ 𝚷.

Lemma 3.4. In the above notation, we have

dim𝑁,𝑘(𝑉𝑛,𝑑) ⩽ dim𝑁,𝑘(𝚷).

Proof. Since𝚷 is a flat degeneration of 𝑉𝑛,𝑑, then the statement follows by semi-continuity of the
function dim. □

4 SOME AUXILIARY LINEAR SYSTEMS

4.1 Hypersurfaces containing a linear subspace and 𝒉 double points
in general position

It is a well-celebrated result of Alexander and Hirschowitz that if we impose ℎ double points in
general position to the hypersurfaces of degree 𝑑 of ℙ𝑁 , there is only a finite list of cases where
the dimension is larger than that obtained via a parameter count, that is,

edim𝑁,𝑑(2
ℎ) = max

{
−1,

(
𝑁 + 𝑑

𝑁

)
− ℎ(𝑁 + 1) − 1

}
⩽ dim𝑁,𝑑(2

ℎ),

where the expression on the left-hand side is the expected dimension of the linear system.
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Theorem 4.1 (Alexander–Hirschowitz theorem). The linear system 𝑁,𝑑(2
ℎ) has the expected

dimension, except in the following cases:

∙ 𝑑 = 2 and𝑁 ⩾ 2, 2 ⩽ ℎ ⩽ 𝑁;
∙ 𝑑 = 3 and (𝑁, ℎ) = (4, 7);
∙ 𝑑 = 4 and (𝑁, ℎ) = (2, 5), (3, 9), (4, 14).

The interested reader may see [1–5] for the original proof based on specialisation of points
(Horace method), and [7] and [9] for a simplified proof. An alternative proof via a different
degeneration construction can be found here [20, 21]. This inspired the degeneration approach
developed in Section 3.1 that will be used to prove the main result, Theorem 1.1.
In this section, we want to present an analogous result about linear systems with ℎ imposed

double points in general position and a linear subspace. Let Λ ⊂ ℙ𝑁 be a general linear subspace
of dimension 𝑛 and let 𝑍 ⊂ ℙ𝑁 be a double-point scheme with support of a set of points in general
position. Let Λ be the ideal sheaf of Λ ⊂ ℙ𝑁 and let 𝑍 be the ideal sheaf of 𝑍 ⊂ ℙ𝑁 . Consider
the sheaf

𝑁,𝑘(Λ, 2
ℎ) ∶= ℙ𝑁 (𝑘) ⊗ Λ ⊗ 𝑍.

Since the Hilbert polynomial of Λ ⊂ ℙ𝑁 at degree 𝑘 is

(
𝑛 + 𝑘

𝑛

)

or, in other terms,

h0(ℙ𝑁 (𝑘) ⊗ Λ) =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘

𝑛

)
, (4.1)

and since the scheme given by ℎ double points in general position of ℙ𝑁 has length ℎ(𝑁 + 1), we
can give the following definitions.

Definition 4.2. The virtual dimension of the linear system𝑁,𝑘,Λ(2
ℎ) of hypersurfaces of ℙ𝑛 that

vanish along a linear subspace of dimension 𝑛,Λ ⊂ ℙ𝑁 , and double at ℎ points in general position
is the following integer:

vdim𝑁,𝑘(Λ, 2
ℎ) =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘

𝑛

)
− ℎ(𝑁 + 1) − 1.

The expected dimension of 𝑁,𝑘(Λ, 2ℎ) is

edim𝑁,𝑘(Λ, 2
ℎ) = max

{
−1, vdim𝑁,𝑘(Λ, 2

ℎ)
}
.

Since Λ and the scheme of double points are disjoint, the virtual dimension provides a lower
bound to the actual dimension:

edim𝑁,𝑘(Λ, 2
ℎ) ⩽ dim𝑁,𝑘(Λ, 2

ℎ). (4.2)
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Proposition 4.3. Let Λ ⊂ ℙ𝑁 be a linear subspace of dimension 𝑛 and let 𝑍Λ ⊂ ℙ𝑁 be a double
point scheme supported on a collection of points in general position in ℙ𝑁 . Then, if

ℎ ⩽
1

𝑁 + 1

(
𝑁 + 𝑘 − 1

𝑁

)
, (4.3)

and (𝑁, 𝑘 − 1, ℎ) is not in the list of exceptions of Theorem 4.1, and 𝑘 ⩾ 2, then

dim𝑁,𝑘(Λ, 2
ℎ) = edim𝑁,𝑘(Λ, 2

ℎ). (4.4)

Proof. If 𝑘 = 2 and ℎ = 0, the conclusion follows from (4.1). If 𝑘 = 2 and ℎ = 1, it is easy to see
that all elements of 𝑁,2(Λ, 2) are pointed quadric cones containing Λ, and hence, we have the
isomorphism 𝑁,2(Λ, 2) ≅ 𝑁−1,2(Λ). By (4.1), we have that dim𝑁−1,2(Λ) =

(𝑁+1
2

)
−
(𝑛+2
2

)
. We

conclude noticing that the latter equals the expected dimension of 𝑁,2(Λ, 2).
Now, assume 𝑘 ⩾ 4 and consider the following exact sequence obtained by restricting

𝑁,𝑘(Λ, 2
ℎ) to a general hyperplane𝐻 ⊂ ℙ𝑁 such that Λ ⊆ 𝐻:

0 → 𝑁,𝑘−1(2
ℎ) → 𝑁,𝑘(Λ, 2

ℎ) → 𝑁,𝑘(Λ, 2
ℎ)|𝐻 ⊆ 𝑁−1,𝑘(Λ). (4.5)

Under the assumption (4.3) and using Theorem 4.1, the kernel system 𝑁,𝑘−1(2
ℎ) has dimension

equal to its virtual dimension:

dim𝑁,𝑘−1(2
ℎ) =

(
𝑁 + 𝑘 − 1

𝑁

)
− ℎ(𝑁 + 1) − 1,

and, in particular, 𝐻1(ℙ𝑁, dim𝑁,𝑘−1(2ℎ)) = 0, so that we have the following exact sequence in
cohomology:

0 → H0(ℙ𝑁,𝑁,𝑘−1(2
ℎ)) → 𝐻0(ℙ𝑁,𝑁,𝑘(Λ, 2

ℎ)) → H0(𝐻,𝑁,𝑘(Λ, 2
ℎ)|𝐻) → 0.

Moreover, by (4.1),

h0(ℙ𝑁−1,𝑁−1,𝑘(Λ)) =

(
𝑁 − 1 + 𝑘

𝑁 − 1

)
−

(
𝑛 + 𝑘

𝑛

)
,

and so,

h0(𝐻,𝑁,𝑘(Λ, 2
ℎ)|𝐻) ⩽ (𝑁 − 1 + 𝑘𝑁 − 1

)
−

(
𝑛 + 𝑘

𝑛

)
.

From the exact sequence of global sections, we obtain:

h0(ℙ𝑁,𝑁,𝑘(Λ, 2
ℎ)) = h0(ℙ𝑁,𝑁,𝑘−1(2

ℎ)) + h0(𝐻,𝑁,𝑘(Λ, 2
ℎ)|𝐻)

⩽

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘

𝑛

)
− ℎ(𝑁 + 1).

We conclude the proof of this case using (4.2).
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Finally, assume that 𝑘 = 3. In this case, the bound on the number of points is ℎ ⩽ 𝑁
2
+ 1. We

consider the restriction to a general hyperplane containing Λ as in (4.5). The kernel system is
special by Theorem 4.1, and one can easily check that it has dimension

dim𝑁,2(2
ℎ) =

(
𝑁 + 2

2

)
− ℎ(𝑁 + 1) +

(
ℎ

2

)
− 1,

see, for instance, [20, Section 1.2.1]. Moreover, as a simple consequence of Bézout’s theorem, the
linear system 𝑁,3(Λ, 2

ℎ) contains in its base locus the lines spanned by pairs of points, each of
which intersects 𝐻 in a point. We claim that the base locus of 𝑁,3(Λ, 2ℎ) is supported on the
union of Λ and these lines. This implies that the restricted system is the complete linear system
of cubics containing Λ and passing simply through the

(ℎ
2

)
trace points:

𝑁,3(Λ, 2
ℎ)|𝐻 = 𝑁−1,3(Λ, 1(ℎ2)).

We claim that the linear system on the right-hand side of the above expression is non-special,
namely that the scheme given by Λ and the simple points impose independent conditions to the
cubics of ℙ𝑁−1. This shows that

dim𝑁,3(Λ, 2
ℎ) = dim𝑁,2(2

ℎ) + dim𝑁−1,3(Λ, 1
(ℎ2)) + 1

=

((
𝑁 + 2

2

)
− ℎ(𝑁 + 1) +

(
ℎ

2

)
− 1

)

+

((
𝑁 + 2

3

)
−

(
𝑛 + 3

3

)
−

(
ℎ

2

)
− 1

)
+ 1,

which implies that 𝑁,3(Λ, 2ℎ) is non-special.
We are left to proving the two claims. For the second claim, first of all notice that there is a

hyperplane inside𝐻, containing all
(ℎ
2

)
points. This can be taken to be the intersection with𝐻 of

a hyperplane of ℙ𝑁 containing the ℎ original points. Call𝐻1 ⊂ 𝐻 the intersection and restrict the
linear system 𝑁−1,3(Λ, 1

(ℎ2)) to it, giving rise to the following exact sequence:

0 → 𝑁−1,2(Λ) → 𝑁−1,3(Λ, 1
(ℎ2)) → 𝑁−2,3(1

(ℎ2)).

Both external linear systems are non-special (for the restricted, one see, e.g., [21, Proposition 3.12]),
then so is the middle one, concluding the proof of the claim.
As for the first claim: we show that 𝑁,3(Λ, 2ℎ) has no additional base locus other than Λ and

the lines spanned by pairs of points. Let us call 𝑝1, … , 𝑝ℎ the ℎ assigned pints in general position.
Assume that 𝑞 is a point in ℙ𝑁 in linearly general position with respect to 𝑝1, … , 𝑝ℎ. Since ℎ ⩽
𝑁

2
+ 1 < 𝑁, there is a hyperplane𝐴 containing 𝑝1, … , 𝑝ℎ but not containing 𝑞. Since 𝑛 < 𝑁, there

is a hyperplane 𝐵 containing Λ but not containing 𝑞. The cubic 2𝐴 + 𝐵 belongs to 𝑁,3(Λ, 2
ℎ)

proving that 𝑞 cannot be a base point. Assume now that 𝑞 is a point in ℙ𝑁 not in linearly general
positionwith respect to𝑝1, … , 𝑝ℎ, whichmeans that there is a linear space spanned by some of the
𝑝𝑖 ’s containing 𝑞, but such that 𝑞 does not belong to any of the lines ⟨𝑝𝑖, 𝑝𝑗⟩. Let ⟨𝑝𝑖 ∶ 𝑖 ∈ 𝐼𝑞⟩ be
the minimum such linear span and choose two distinct indices 𝑗1, 𝑗2 ∈ 𝐼𝑞. Let𝐴1 be a hyperplane
containing all 𝑝𝑖 ’s with 𝑖 ≠ 𝑗1 and let 𝐴2 be a hyperplane containing all 𝑝𝑖 ’s with 𝑖 ≠ 𝑗2. Let 𝐵 be
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a hyperplane containing Λ, 𝑝𝑗1 and 𝑝𝑗2 and not containing 𝑞. The cubic 𝐴1 + 𝐴2 + 𝐵 belongs to
𝑁,3(Λ, 2

ℎ), proving that 𝑞 cannot be a base point. Finally, since the multiplicity of the general
element of the linear system of cubics along the line 𝑞 ∈ ⟨𝑝𝑖 ∶ 𝑖 ∈ 𝐼𝑞⟩ is exactly 1, then the above
cases are exhaustive and this conclude the proof of the claim. □

4.2 Hypersurfaces containing the Veronese variety and a fat point

Let 𝑉 = 𝑉𝑛,𝑑 ⊂ ℙ𝑛 be the 𝑑th Veronese embedding of ℙ𝑛 and let {𝑝𝑎} ⊂ 𝑉 ⊂ ℙ𝑛 be a fat point
scheme with support on 𝑉. Let 𝑉 be the ideal sheaf of 𝑉 ⊂ ℙ𝑁 and let 𝑝𝑎 be the ideal sheaf of
𝑍 ⊂ ℙ𝑁 . Consider the sheaf

𝑁,𝑘(𝑉, 𝑎) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉 ⊗ 𝑝𝑎 .

We are interested in computing the dimension of the space of global sections. The Hilbert
polynomial of 𝑉 ⊂ ℙ𝑁 at degree 𝑘 is (

𝑛 + 𝑘𝑑

𝑛

)

or, equivalently, we have

dimℙ𝑁 (𝑘) ⊗ 𝑉 =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
− 1.

The scheme given by a point of multiplicity 𝑎 of ℙ𝑁 imposes(
𝑁 + 𝑎 − 1

𝑁

)
(4.6)

conditions to the hypersurfaces of ℙ𝑁 of degree 𝑘. Therefore, the virtual dimension of 𝑁,𝑘(𝑉, 𝑎),
obtained by a parameter count, is

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
−

(
𝑁 + 𝑎 − 1

𝑁

)
− 1.

It does not yield a satisfactory notion of expected dimension for the linear system 𝑁,𝑘(𝑉, 𝑎),
due to the fact that the two subschemes 𝑉 and {𝑝𝑎} of ℙ𝑁 have nonempty intersection so that
some of the conditions imposed by them individually to the hypersurfaces of degree 𝑘 of ℙ𝑁
will overlap. For instance, if we first impose 𝑉, and then {𝑝}, clearly, the latter will not give any
independent condition, because, by the containment relation 𝑝 ∈ 𝑉, 𝑝 is a base point of the lin-
ear system 𝑁,𝑘(𝑉) = ℙ𝑁 (𝑘) ⊗ 𝑉 . When the support of a fat point subscheme 𝑍 = {𝑝𝑎} ⊂ ℙ𝑁 ,
whose length is given in (4.6), lies on the 𝑛-dimensional subvariety 𝑉, the restriction 𝑍|𝑉 ⊂ 𝑉 is
a subscheme of length

(
𝑛 + 𝑎 − 1

𝑛

)
.

Therefore, we may define the following notion of expected dimension.
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4.2.1 A notion of expected dimension

We introduce the following refined parameter count.

Definition 4.4. Let 𝑉 ⊂ ℙ𝑁 be the 𝑑th Veronese embedding of ℙ𝑁 and let {𝑝𝑎} ⊂ ℙ𝑁 be a fat
point scheme supported on𝑉. The expected dimension of 𝑁,𝑘(𝑉, 𝑎), denoted by edim𝑁,𝑘(𝑉, 𝑎),
is the following integer:

max

{
−1,

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
−

[(
𝑁 + 𝑎 − 1

𝑁

)
−

(
𝑛 + 𝑎 − 1

𝑛

)]
− 1

}
.

That the integer of Definition 4.4 is a lower bound to the actual dimension of 𝑁,𝑘(𝑉, 𝑎) is not
an obvious statement. We will show that it does when 𝑎 ⩽ 𝑘.

Proposition 4.5. Let 𝜈𝑑 ∶ ℙ𝑛 → ℙ𝑁 be the 𝑑th Veronese embedding. Let𝑉 = 𝑉𝑛,𝑑 ∶= 𝜈𝑑(ℙ𝑛) ⊂ ℙ𝑁
and let 𝑍𝑉 = {𝑝𝑎} ⊂ ℙ𝑛 be an ordinary fat point of multiplicity 𝑎 ⩽ 𝑘 supported on 𝑉. Then

dim𝑁,𝑘(𝑉, 𝑎) ⩾ edim𝑁,𝑘(𝑉, 𝑎). (4.7)

Proof. We consider the linear system 𝑁,𝑘(𝑎) = ℙ𝑁 ⊗ 𝑍𝑉
of the degree-𝑘 hypersurfaces of ℙ𝑁

with a point of multiplicity 𝑎 with support on 𝑉. Restriction to 𝑉 gives the following Castelnuovo
sequence:

0 → 𝑁,𝑘(𝑉, 𝑎) → 𝑁,𝑘(𝑎) → 𝑁,𝑘(𝑎)|𝑉.
It is an easy observation that a fat point of multiplicity 𝑎 imposes independent conditions to
the hypersurfaces of fixed degree of ℙ𝑁 , as long as the multiplicity does not exceed the degree.
Therefore, we can obtain the dimension of the linear system 𝑁,𝑘(𝑎) by a parameter count:

dim𝑁,𝑘,𝑉(𝑎) =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑁 + 𝑎 − 1

𝑁

)
− 1

In particular, h1(ℙ𝑁,𝑁,𝑘(𝑎)) = 0, so that we have the following sequence in cohomology:

0 → H0(𝑁,𝑘(𝑉, 𝑎)) → H
0(𝑁,𝑘(𝑎)) → H

0(𝑁,𝑘(𝑎)|𝑉) → H1(𝑁,𝑘(𝑉, 𝑎)) → 0.
Since the Veronese morphism 𝜈𝑑 ∶ ℙ𝑛 → ℙ𝑁 gives an isomorphism of ℙ𝑛 to its image 𝑉, then the
pull-back of 𝑁,𝑘(𝑎)|𝑉 is a linear system of degree-𝑘𝑑 hypersurfaces of ℙ𝑛:

𝜈∗
𝑑
(𝑁,𝑘(𝑎)|𝑉) ⊆ ℙ𝑛(𝑘𝑑) ⊗ 𝑍′ =∶ 𝑛,𝑘𝑑(𝑎),

where 𝑍′ ⊂ ℙ𝑛 is a fat point of multiplicity 𝑎 with support a general point of 𝑉. Since 𝑛𝑘 ⩾ 𝑎 by
the assumption, the linear system 𝑛,𝑘𝑑(𝑎) has dimension

dim𝑛,𝑘𝑑(𝑎) =

(
𝑛 + 𝑘𝑑

𝑛

)
−

(
𝑛 + 𝑎 − 1

𝑛

)
− 1.
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From this, we obtain

dim𝑁,𝑘(𝑎)|𝑉 ⩽ (𝑛 + 𝑘𝑑𝑛
)
−

(
𝑛 + 𝑎 − 1

𝑛

)
− 1.

Putting everything together gives the following inequalities:

h0(𝑁,𝑘(𝑉, 𝑎)) = h
0(𝑁,𝑘(𝑎)) − h

0(𝑁,𝑘(𝑎)|𝑉) + h1(𝑁,𝑘(𝑉, 𝑎))
⩾ h0(𝑁,𝑘(𝑎)) − h

0(𝑁,𝑘(𝑎)|𝑉)
⩾

((
𝑁 + 𝑘

𝑁

)
−

(
𝑁 + 𝑎 − 1

𝑁

))
−

((
𝑛 + 𝑘𝑑

𝑛

)
−

(
𝑛 + 𝑎 − 1

𝑛

))
,

which conclude the proof. □

4.2.2 Dimensionality via apolarity and toric geometry

Let 𝑉 = 𝑉𝑛,𝑑 ⊂ ℙ𝑁 be the Veronese variety and let𝚷 ⊂ ℙ𝑁 be a union of 𝑛-planes, degeneration
of 𝑉, as in Section 3.2. Let 𝑝 ∈ 𝑉 and 𝑝0 ∈ Π1 ⊂ 𝚷 be general points. Consider the linear systems
on ℙ𝑁

𝑁,𝑘(𝑉, 𝑎) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉 ⊗ 𝑝𝑎 ,

𝑁,𝑘(𝚷, 𝑎) ∶= ℙ𝑁 (𝑘) ⊗ 𝑣 ⊗ 𝑝𝑎
0
.

Building on Lemma 3.4, we obtain the following result.

Proposition 4.6. In the above notation, we have

dim𝑁,𝑘(𝑉, 𝑎) ⩽ dim𝑁,𝑘(𝚷, 𝑎).

Proof. Since 𝑝 is a general point on 𝑉, we may assume that it degenerates to a general point
𝑝0 ∈ 𝑆1. Since𝚷 ∪ {𝑝𝑎0 } is a flat degeneration of the scheme𝑉 ∪ {𝑝

𝑎}, then the Hilbert function of
the former is at most that of latter, by semi-continuity. This concludes the proof. □

Proposition 4.7. In the above notation and for any 1 ⩽ 𝑎 ⩽ 𝑘, then

dim𝑁,𝑘(𝚷, 𝑎) =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
−

(
𝑁 + 𝑎 − 1

𝑁

)
+

(
𝑛 + 𝑎 − 1

𝑛

)
− 1.

Proof. Given the union 𝚷 ∶=
⋃𝑑𝑛
𝑖=1 Π𝑖 of torus invariant 𝑛-planes of ℙ

𝑛, with Π1 a sink and 𝑝0
supported generically on Π1, there is a torus invariant hyperplane 𝐻 such that Π1 ∩ 𝐻 is an (𝑛 −
1)-plane andΠ𝑖 ⊂ 𝐻 for 2 ⩽ 𝑖 ⩽ 𝑑𝑛 (cf. Remark 3.3). We can always assume that 𝑝0 is a coordinate
point of ℙ𝑁 and we can call 𝑝1, … , 𝑝𝑁 the other coordinate (torus invariant) points of ℙ𝑁 . Hence,
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we can choose, without loss of generality, thatΠ1 = ⟨𝑝0, … , 𝑝𝑛⟩ and𝐻 = ⟨𝑝1, … , 𝑝𝑁⟩, so that 𝑝0 ∈
Π1 and 𝑝𝑖 ∉ Π𝑖 for 𝑖 ⩾ 2.
Let 𝑅 = ℂ[𝑥0, … , 𝑥𝑁] be the homogeneous polynomial ring of ℙ𝑁 and consider the ideals 𝑝0 ⊂
ℂ[𝑥0, … , 𝑥𝑁] and Π𝑖 ⊂ ℂ[𝑥0, … , 𝑥𝑁]

𝑝0
= ⟨𝑥1, … , 𝑛𝑁⟩,

Π1
= ⟨𝑥𝑛+1, … , 𝑛𝑁⟩,

Π𝑖
= ⟨𝑥𝑖𝑛+1 , … , 𝑛𝑖𝑁 ⟩, 𝑖 ⩾ 2,

𝐻 = ⟨𝑥0⟩.
By construction, for 𝑖 ⩾ 2, we have 0 ∈ {𝑖𝑛+1, … , 𝑖𝑁}. Using Notation 2.10, we compute:[

−1
𝑝𝑎
0

]
𝑘
= {𝑦𝑘−𝑙0 𝐹𝑙(𝑦1, … , 𝑦𝑁) ∶ 𝐹𝑙 ∈ 𝑆𝑙, 0 ⩽ 𝑙 ⩽ 𝑎 − 1},[

−1Π1

]
𝑘
= {𝐹𝑘(𝑦0, … , 𝑦𝑛) ∶ 𝐹𝑘 ∈ 𝑆𝑘},[

−1Π𝑖

]
𝑘
= {𝐹𝑘(𝑦𝑖0 , … , 𝑦𝑖𝑛 ) ∶ 𝐹𝑘 ∈ 𝑆𝑘}, 𝑖 ⩾ 2,

where for 𝑖 ⩾ 2, the index set {𝑖0, … , 𝑖𝑛} is the complement of {𝑖𝑛+1, … , 𝑖𝑁} ⊂ {0, … ,𝑁}. We have the
following intersections:

[
−1
𝑝𝑎
0

]
𝑘
∩
[
−1Π𝑖

]
𝑘
= ∅, 𝑖 ⩾ 2,

[
−1
𝑝𝑎
0

]
𝑘
∩
[
−1Π1

]
𝑘
= {𝑦𝑘−𝑙0 𝐹𝑙(𝑦1, … , 𝑦𝑛) ∶ 𝐹𝑙 ∈ 𝑆𝑙}.

We compute the dimension of the latter intersection:

dim
[
−1
𝑝𝑎
0

]
𝑘
∩
[
−1Π1

]
𝑘
= dim

{
𝑦𝑘−𝑙0 𝐹𝑙(𝑦1, … , 𝑦𝑛) ∶ 𝐹𝑙 ∈ 𝑆𝑙, 0 ⩽ 𝑙 ⩽ 𝑎 − 1

}

=

𝑎−1∑
𝑙=0

dim{𝐹𝑙(𝑦1, … , 𝑦𝑛) ∶ 𝐹𝑙 ∈ 𝑆𝑙}

=

𝑎−1∑
𝑙=0

(
𝑛 − 1 + 𝑙

𝑛 − 1

)

=

(
𝑛 + 𝑎 − 1

𝑛

)
,

where the last equality follows a standard relation of Newton coefficients, commonly known as
the hockey stick identity.
The number of conditions imposed to the linear system of degree-𝑘 hypersurfaces of ℙ𝑁 by the

scheme {𝑝𝑎
0
} ∪ 𝚷 is the dimension of the linear span of [−1

𝑝𝑎
0

]𝑘 and [−1Π𝑖 ]𝑘, for 𝑖 = 1… , 𝑑
𝑛, which
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is the following integer:

dim
[
−1
𝑝𝑎
0

]
𝑘
+ dim

⟨[
−1Π𝑖

]
𝑘
, 𝑖 = 1… , 𝑑𝑛

⟩
− dim

[
−1
𝑞𝑎
0

]
𝑘
∩
[
−1Π1

]
𝑘

=

(
𝑁 + 𝑎 − 1

𝑁

)
+

(
𝑛 + 𝑘𝑑

𝑛

)
−

(
𝑛 + 𝑎 − 1

𝑛

)
.

□

Corollary 4.8. The linear system dim𝑁,𝑘(𝑉, 𝑎) has the expected dimension according to
Definition 4.4.

Proof. It follows from Propositions 4.5 and 4.7. □

5 PROOF OF THEMAIN THEOREM

We are ready to prove our main theorem, Theorem 1.1. Thanks to Proposition 2.16, computing
the dimension of the ℎ-secant varieties of the (𝑑, 𝑘)-Veronese variety 𝑉𝑘

𝑛,𝑑
⊂ ℙ𝑁𝑑𝑘 is equivalent to

computing the dimension of the linear system in ℙ𝑁 of hypersurfaces containing the Veronese
variety and double at ℎ general points.
Let 𝑉𝑛,𝑑 ⊂ ℙ𝑁 be the 𝑑th Veronese embedding of ℙ𝑛 and let 𝑍 ⊂ ℙ𝑛 be a double point scheme

with support a set of points in general position. Let 𝑉 be the ideal sheaf of 𝑉 ⊂ ℙ𝑁 and let 𝑍 be
the ideal sheaf of 𝑍 ⊂ ℙ𝑁 . Consider the sheaf

𝑁,𝑘(𝑉, 2
ℎ) ∶= ℙ𝑁 (𝑘) ⊗ 𝑉 ⊗ 𝑍.

Since the Hilbert polynomial of 𝑉 ⊂ ℙ𝑁 in degree 𝑘 is
(𝑛+𝑘𝑑
𝑛

)
or, in other terms,

dimℙ𝑁 (𝑘) ⊗ 𝑉 =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
− 1, (5.1)

and since ℎ double points in general position of ℙ𝑁 impose ℎ(𝑁 + 1) conditions to the
hypersurfaces of ℙ𝑁 of degree 𝑘, we can give the following definitions.

Definition 5.1. The virtual dimension of the linear system 𝑁,𝑘,𝑉(2
ℎ) of hypersurfaces of ℙ𝑛 that

vanish along the Veronese variety𝑉 = 𝑉𝑛,𝑑 ⊂ ℙ𝑁 and double at ℎ points in general position is the
following integer:

vdim𝑁,𝑘(𝑉, 2
ℎ) =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
− ℎ(𝑁 + 1) − 1.

The expected dimension is

edim𝑁,𝑘(𝑉, 2
ℎ) = max

{
−1, vdim𝑁,𝑘(𝑉, 2

ℎ)
}
.

Since 𝑉 and the scheme of double points are disjoint, the virtual dimension provides a lower
bound to the actual dimension:

dim𝑁,𝑘(𝑉, 2
ℎ) ⩾ edim𝑁,𝑘(𝑉, 2

ℎ). (5.2)
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Using a degeneration argument, we shall show that if the number of points ℎ is not too large,
then the linear system 𝑁,𝑘,𝑉(𝑉, 2

ℎ) has dimension equal to the expected dimension.

Theorem 5.2. Let 𝜈𝑑 ∶ ℙ𝑛 → ℙ𝑁 be the 𝑑th Veronese embedding. Let 𝑉 = 𝑉𝑛,𝑑 ∶= 𝜈𝑑(ℙ𝑛) ⊂ ℙ𝑁
and let 𝑍𝑉 ⊂ ℙ𝑛 be a double-point scheme supported on ℎ points in general position of ℙ𝑁 . Then, if
𝑘 ⩾ 3 and

ℎ ⩽
1

𝑁 + 1

(
𝑁 + 𝑘 − 3

𝑁

)
, (5.3)

then

dim𝑁,𝑘(𝑉, 2
ℎ) = edim𝑁,𝑘(𝑉, 2

ℎ). (5.4)

Proof. Using (5.2), it is enough to prove that the inequality dim𝑁,𝑘(𝑉, 2ℎ) ⩽
edim𝑁,𝑘(𝑉, 2

ℎ) holds.
If 𝑘 = 3, then ℎ = 0, so the statement follows from Equation (5.1). For 𝑘 ⩾ 4, we will prove the

statement bymeans of the 𝔽ℙ-degeneration introduced in Section 3.1.2, applied to the line bundle


̃
∶=

̃
(𝑘, 𝑘 − 1; ̃ , 2, … , 2).

By Remark 3.2, the line bundle on the general fibre is isomorphic to

𝑡 ∶= 𝑁,𝑘(𝑉, 2
ℎ),

while on the central fibre, the linear systems on the two components are the following:

ℙ ∶=𝑁,𝑘−1(Λ, 2
ℎ),

𝔽 ∶=𝑁,𝑘(𝑉, 𝑘 − 1).

We consider the restriction to 𝑅 = ℙ ∩ 𝔽: the kernels on the two components are, respectively:

̂ℙ ∶=𝑁,𝑘−2(Λ, 2
ℎ),

̂𝔽 ∶=𝑁,𝑘(𝑉, 𝑘).

Since 𝑅 ≅ ℙ𝑁−1, the two restricted systems satisfy the following:

ℙ ∶=ℙ|𝑅 ⊂ 𝑁−1,𝑘−1(Λ𝑅),
𝔽 ∶=𝔽|𝑅 ⊂ 𝑁−1,𝑘−1(Λ𝑅),

where we recall that Λ𝑅 = Λ ∩ 𝑅 ≅ ℙ𝑛−1.
We first look at the exceptional component ℙ. By Proposition 4.3, since 𝑘 − 2 ⩾ 2 and

ℎ ⩽
1

𝑁 + 1

(
𝑁 + 𝑘 − 3

𝑁

)
,
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both linear systems ℙ and ̂ℙ have the expected dimension, that is,

dimℙ =

(
𝑁 + 𝑘 − 1

𝑁

)
−

(
𝑛 + 𝑘 − 1

𝑛

)
− ℎ(𝑁 + 1) − 1

dim ̂ℙ =

(
𝑁 + 𝑘 − 2

𝑁

)
−

(
𝑛 + 𝑘 − 2

𝑛

)
− ℎ(𝑁 + 1) − 1. (5.5)

Moreover, we have a short exact sequence of spaces of global sections:

0 → H0(ℙ, ̂ℙ) → H
0(ℙ,ℙ) → H

0(𝑅,ℙ) → 0.

In particular, we can compute

dimℙ = dimℙ − dim ̂ℙ + 1

=

(
𝑁 + 𝑘 − 2

𝑁 − 1

)
−

(
𝑛 + 𝑘 − 2

𝑛 − 1

)
− 1

= dim𝑁−1,𝑘−1(Λ𝑅).

We conclude thatℙ is the complete linear system

ℙ = 𝑁−1,𝑘−1(Λ𝑅).

On the component 𝔽, using Corollary 4.8, we have that both 𝔽 and ̂𝔽 have the expected
dimension, that is,

dim𝔽 =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
−

((
𝑁 + 𝑘 − 2

𝑁

)
−

(
𝑛 + 𝑘 − 2

𝑛

))
− 1

dim ̂𝔽 =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
−

((
𝑁 + 𝑘 − 1

𝑁

)
−

(
𝑛 + 𝑘 − 1

𝑛

))
− 1. (5.6)

We claim that

𝔽 = 𝑁−1,𝑘−1(Λ𝑅),

so that, together with the above argument, we have

ℙ ∩𝔽 = ℙ𝑁−1(𝑘 − 1) ⊗ Λ𝑅
. (5.7)

In order to prove the claim, we observe that by semicontinuity, and precisely, Formula (3.1), and
by (5.2), we have

dim0 ⩾ dim𝑡 ⩾ edim𝑡 =

(
𝑁 + 𝑘

𝑁

)
−

(
𝑛 + 𝑘𝑑

𝑛

)
− ℎ(𝑁 + 1) − 1. (5.8)
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Using Formula (3.2), that is,

dim0 = dim ̂ℙ + dim ̂𝔽 +ℙ ∩𝔽 + 2 (5.9)

and observing thatℙ ∩𝔽 = 𝔽, we obtain

dim𝔽 ⩾ edim𝑡 − dim ̂ℙ − dim ̂𝔽 − 2 =

(
𝑁 + 𝑘 − 2

𝑁 − 1

)
−

(
𝑛 + 𝑘 − 2

𝑛 − 1

)
− 1;

the proof of the latter equality is easy and left to the reader. Since

dim𝔽 ⩽ dimℙ𝑁−1(𝑘 − 1) ⊗ Λ𝑅
=

(
𝑁 + 𝑘 − 2

𝑁 − 1

)
−

(
𝑛 + 𝑘 − 2

𝑛 − 1

)
− 1,

the claim follows and we have

dimℙ ∩𝔽 =

(
𝑁 + 𝑘 − 2

𝑁 − 1

)
−

(
𝑛 + 𝑘 − 2

𝑛 − 1

)
− 1, (5.10)

Using (5.5), (5.6), (5.9) and (5.10), we obtain dim0 = edim𝑡. We conclude using (5.8). □

Theorem 1.1 is now just a corollary of what we just proved.

Corollary 5.3. For 𝑘 ⩾ 3, if (5.3) holds, then the (𝑑, 𝑘)-Veronese variety𝑉𝑘
𝑛,𝑑
⊂ ℙ𝑁𝑑𝑘 is non-defective.

Proof. It follows from Theorem 5.2 and Proposition 2.16. □

Theorem 1.2 is an easy consequence of Theorems 1.1 and 2.9.

Corollary 5.4. For 𝑘 ⩾ 3, if

ℎ ⩽ min

⎧⎪⎨⎪⎩
1

𝑁 + 1

(
𝑁 + 𝑘 − 3

𝑁

)
− 1,

⎢⎢⎢⎣
(𝑛+𝑘𝑑
𝑛

)
𝑁 + 1

⎥⎥⎥⎦ − 1
⎫⎪⎬⎪⎭

then the (𝑑, 𝑘)-Veronese variety 𝑉𝑘
𝑛,𝑑
⊂ ℙ𝑁𝑑𝑘 is ℎ-identifiable.

Proof. It follows from Corollary 5.3 and Theorem 2.9. □

Remark 5.5. Note that the bound given in Theorem 1.1 can be strictly larger than the expected
generic rank for the (𝑑, 𝑘)-Veronese𝑉𝑘

𝑛,𝑑
, see, for example, the computations in Section 6 below. In

this case, Theorem 1.1 proves the non-defectivity of𝑉𝑘
𝑛,𝑑

up to the generic rank. The identifiability
property instead is more subtle and in order to be able to use Theorem 2.9, we must ensure that
the embedded secant variety 𝕊𝑒𝑐ℎ(𝑉𝑘𝑛,𝑑) has the same dimension as the abstract secant variety
𝑠𝑒𝑐ℎ(𝑉

𝑘
𝑛,𝑑
), see Definition 2.5. Equivalently, we require that the (ℎ + 1)-secant map is generically

finite. Because of this assumption, we are not able to prove generic identifiability and we must
restrict ourselves to the range given in Theorem 1.2.
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6 ASYMPTOTICAL BOUND

In this section, we relate our bound in Theorem 1.1 with the one given in [19]. For the sake of
completeness, we recall Nenashev’s result first.

Theorem 6.1 [19, Theorem 1]. Let 𝐼 be a homogeneous ideal generated by ℎ ∈ ℕ ⧵ {0} generic
elements of some nonempty variety  ⊆ Sym𝑟(ℂ𝑛) of 𝑟-forms that is closed under linear transfor-
mations. Fix an integer 𝑠 ⩾ 0. If

ℎ ⩽

((
𝑟 + 𝑠 + 𝑛 − 1

𝑛 − 1

)
∕

(
𝑠 + 𝑛 − 1

𝑛 − 1

))
−

(
𝑠 + 𝑛 − 1

𝑛 − 1

)
,

then the dimension of 𝐼 in degree (𝑟 + 𝑠) is maximal, that is, it equals ℎ
(𝑠+𝑛−1
𝑛−1

)
.

Note that when 𝑟 = 𝑑(𝑘 − 1) and 𝑠 = 𝑟, the component of 𝐼 of degree 𝑟 + 𝑠 = 𝑑𝑘 gives exactly
the dimension of the ℎ-secant variety 𝕊𝑒𝑐ℎ(𝑉𝑘𝑛,𝑑), where  is the tangential variety of 𝑉𝑘

𝑛,𝑑
, that

is,

 = {𝐹𝑘−1𝐺|𝐹,𝐺 ∈ ℂ[𝑥0, … , 𝑥𝑛]𝑑}.
We have the following consequence.

Corollary 6.2. The dimension of 𝕊𝑒𝑐ℎ(𝑉𝑘𝑛,𝑑) is the expected one, that is,

dim𝕊𝑒𝑐ℎ(𝑉
𝑘
𝑛,𝑑
) = ℎ

(
𝑛 + 𝑑

𝑑

)
− 1

for ℎ ⩽ (
𝑛+𝑑𝑘
𝑑𝑘 )

(𝑛+𝑑𝑑 )
−
(𝑛+𝑑
𝑑

)
.

Note that if we fix 𝑘, 𝑛 and let 𝑑 ≫ 0, we have that

(𝑛+𝑑𝑘
𝑑𝑘

)
(𝑛+𝑑
𝑑

) −(𝑛 + 𝑑
𝑑

)
∼ 𝑘𝑛 − 𝑑𝑛,

and if 𝑑 ≫ 𝑘, the bound is trivial. In Theorem 1.1 and under the same assumptions, we get

1

𝑁 + 1

(
𝑁 + 𝑘 − 3

𝑁

)
∼ 𝑑𝑛(𝑘−4),

which gives non trivial bounds for 𝑑 ≫ 𝑘 when 𝑘 > 4.
Figure 2 shows in red the bound given by Nenashev, in blue the bound of Theorem 1.2 as a

function of 𝑑 and in green the expected generic rank
(𝑛+𝑘𝑑
𝑘𝑑

)
∕
(𝑛+𝑑
𝑑

)
of 𝑉𝑘
𝑛,𝑑
. In this case, we have

set the values 𝑘 = 5 and 𝑛 = 2. For 𝑑 > 3, our bound overtakes Nenashev’s and it continues to
give information also in the range 𝑑 > 4.
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F IGURE 2 Asymptotic bounds for 𝑉5
2,𝑑
.

We also notice that for 𝑑 big enough, our bound in Theorem 1.1 exceeds the expected generic
rank

(𝑛+𝑘𝑑
𝑘𝑑

)
∕
(𝑛+𝑑
𝑑

)
of 𝑉𝑘
𝑛,𝑑
, as predicted in Remark 5.5. This shows that under the hypothesis of a

very high degree re-embedding of ℙ𝑛, the variety 𝑉𝑘
𝑛,𝑑

is never defective for every 𝑘 ⩾ 3.
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