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Abstract: In this paper, we present a linear parameter-varying (LPV) model of an electrostatic
loudspeaker driven by dielectric elastomer (DE) actuators. Because of its numerical simplicity,
this LPV model represents a convenient tool to develop real-time control strategies for the
speaker. Starting from a non-linear reduced model of the device, we assume that the control
input can be broken into two components: a small-amplitude high-frequency component,
responsible for the sound generation, and a slowly-varying bias component, which can be used
as a free control parameter to tune and adjust the speaker response. We thus build an LPV
model, treating the dynamic response to the high-frequency input component as linear, and
parametrising the coefficients of such linear system with respect to the low-frequency input
component. We present a validation of the model against experiments, and show that the
proposed LPV formulation captures the most relevant non-linearities involved in the DE speaker

operation.
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1. INTRODUCTION

Dielectric elastomers (DEs) are a class of multifunc-
tional materials that exploit deformations induced by
the Coulomb forces in a variable capacitor made of
a deformable polymeric dielectric (see, e.g., Hajiesmaili
and Clarke (2021)). Among other applications, DEs can
be used to build lightweight loudspeakers, in which an
electrode-covered dielectric membrane, vibrated by elec-
trostatic forces, plays the double role of the actuator and
the sound radiating surface. Because they do not make use
of bulky electromagnetic actuators, DE loudspeakers are
interesting candidates for the development of integrated
devices for textiles and soft mechatronics. Examples of DE
loudspeakers have been provided by Heydt et al. (2000);
Sugimoto et al. (2013); Garnell et al. (2020).

The non-linear input-voltage vs. output-deformation rela-
tionship of DE actuators (DEAs), together with the non-
linear elastic behaviour of DE membranes, renders the
response of a DE loudspeaker intrinsically non-linear. In
this paper, we present an alternative modeling approach
for DEA loudspeakers based on the linear parameter-
varying (LPV) framework (Mohammadpour and Scherer
(2012)). LPV theory has already proven as an effective
tool to simplify non-linear models of DEAs and, in turn,
make their control system design easier (see, e.g., Rizzello
et al. (2016)). Here, we extend for the first time the
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LPV approach to the case of DEA speakers. In this case,
challenges arise due to the higher system dimensionality
as well as the presence of additional acoustic dynamics.
We build upon the assumption that the driving signal fed
as input into the DEA, corresponding to the square of the
applied voltage, can be expressed as the sum of two com-
ponents: a larger-amplitude slowly-varying bias compo-
nent, and a smaller-amplitude high-frequency component.
Whereas the high-frequency component is responsible for
the generation of the sound pressure, the low-frequency
component modifies the dynamic parameters of the system
and can be used to regulate and adjust the sound intensity
over time, or to concurrently generate two different out-
puts (linear actuation and soud generation) with a single
DEA, as proposed in one of our recent works (Gratz-
Kelly et al. (2022)). Building upon a physical model of the
system, we propose an LPV reformulation in which the
low-frequency input component is treated as the variable
parameter, while control input and output are represented
by the high-frequency input component and the generated
acoustic pressure, respectively. We present an experimen-
tal validation of our approach, based on measurements of
the acoustic pressure from a DEA speaker prototype, and
a comparison between fully-non-linear (FNL) and LPV
versions of the model. The LPV approach presented and
validated here provides a computationally convenient tool
for the analysis and real time-control of DE loudspeakers
and multi-mode DEAs.

2. DYNAMIC MODEL OF A DE LOUDSPEAKER

We set our attention on a DEA system with the topol-
ogy shown in Fig. 1. This device, known as cone DEA,
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Fig. 1. Cone DEA loudspeaker: layout and model variables.

is largely used as actuator for low-frequencies (Rizzello
et al. (2016)), and its application as DE loudspeaker has
been studied by Sugimoto et al. (2013) and Gratz-Kelly
et al. (2022), who recently proposed to use it as a multi-
function interface to concurrently produce linear actuation
and sound. The cone DEA consists of an electrode-covered
incompressible DE membrane, with initial thickness hq,
mounted (with a certain degree of equi-biaxial pre-stretch
Ap) on a rigid annular frame (with radius r,), holding a
rigid disc (with radius r;) at its centre. The central disc is
connected to a pre-loaded mechanical spring, which causes
the DE membrane to deform out-of-plane in a conical fash-
ion. When a voltage is statically applied on the electrodes,
the membrane further deforms out-of-plane, causing an
axial displacement of the central disc. In our previous
work (Moretti et al. (2022)), we demonstrated that this
pumping motion disappears in the high frequency range,
where the device follows complex deformation patterns
associated with the DE membrane’s structural dynamics.
In loudspeakers applications, such high-frequency defor-
mations are responsible for the generation of the acoustic
pressure field.

With the aim of investigating the cone DEA’s response
at high-frequencies as loudspeakers, in the following we
make reference to a FNL electro-elasto-acoustic model,
first presented by Moretti et al. (2022), of which we present
a reduced reformulation in Sect. 2.1, and we then present
an LPV reformulation in Sect. 2.2.

2.1 Fully-non-linear model

The model of a cone DEA loudspeaker can be schemat-
ically represented, in a simplified manner, as a cascade
of two sub-blocks (see Fig 2a): a block describing the
DEA dynamics, which takes the square of the applied
voltage v as input and returns the motion profiles over the
membrane surface; and an acoustic block, which calculates
the generated acoustic pressure p at a target point in space.
We hereby make reference to a non-linear model of the
cone DEA that relies on the following assumptions and
simplifications: 1) statically, the DE can be modelled as
an axial-symmetrical hyperelastic lossless dielectric con-

tinuum (see Dorfmann and Ogden (2014)); 2) the sound
pressure field generated by the membrane vibration is
related to the accelerations of the membrane points via
a linear transfer function (similar to Rayleigh theory - see
Quaegebeur et al. (2010)); 3) elasto-acoustic interactions
(i.e., the contribution of the sound pressure p on the
membrane dynamics) are accounted for in a simplified
way, through a suitable choice of the dynamic parameters
(i.e., no feedback coupling is present between the two sub-
blocks in the model in Fig. 2a); 4) the total damping
on the system can be approximately modelled as linear;
5) the continuum deformations of the membrane can be
approximately represented via a finite number of degrees of
freedom (Rizzello et al. (2016); Moretti et al. (2022)). Here,
we parametrise the membrane’s deformation kinematics
via a finite superposition of mode shapes (see Fig. 1),
which approximately describe the deformation patterns
followed by the membrane over different frequency ranges.
The equation of motion of the membrane can be expressed
in the following compact form:

Maé + Dod + ko (@) = ho(a)v?, (1)

where @ € R” is a modal coordinate (here playing the
role of a lagrangian variable), which allows mapping the
position of a set of points on the DE surface via a linear
relationship. Denoting ¢ = [r1,21...,7,2,]7 € R?" a
vector holding the radial and axial coordinates of a given
combination of n target points (in general, with n > r)
on the membrane surface (see, e.g., Fig. 1), « allows
expressing the position of the points as follows:

q=qo+ Qac, (2)
where qqg represents the equilibrium configuration, and
Qo € R?2™X7 is a matrix inducing a change of coordinates.
The columns of @), represent mode shape functions, whose
linear combination provides an approximated representa-
tion of . M, D, € R™" are mass and damping matrices;
ko () is a vector of non-linear elastic forces; h, () is an
excitation coefficient. Similar to Moretti et al. (2022), we
assume that M, includes two contributions: a contribution
due to the membrane mass, and a contribution due to
the acoustic added mass, which is not negligible for thin
lightweight membranes vibrating in air (Garnell et al.
(2020)). Analogously, D,, is here assumed to account for
both the DE viscous dissipation and the damping due
to sound radiation. Although the acoustic added mass
and damping are, in principle, complex functions of the
frequency, here for simplicity we assume that M, and D,
are diagonal and constant. This assumption is motivated
by the observation (confirmed by experiments in Moretti
et al. (2022)) that the each of the different mode shape
functions used to parameterise the kinematics is only ex-
cited over a rather narrow frequency band, which allows
neglecting the dependency of the modal added mass and
damping on frequency. An explicit calculation of M, and
D, (including the acoustic contributions) is non trivial
and would demand for complex numerical approaches.
Therefore, in this work, such matrices are identified using
experimental data. In contrast to that, the terms rendering
the DE static response (kq(c) and h,(«)) are computed
using a physics-based model of the DEA (Moretti et al.
(2022)). The following relationships hold:
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Fig. 2. Structure of the (a) FNL and (b) LPV model.

where U(«) is the (scalar) elastic potential energy of the
system (i.e., the sum of the DE membrane hyperelastic
energy and the energy of the biasing spring); and C(«)
is the capacitance of the DE (scalar). We calculate U(«)
and C(a) based on the energy-based model of cone DEAs
presented in our previous works (Moretti et al. (2022),
Moretti et al. (2022)). That model allows calculating the
DEA capacitance and elastic energy by considering a finite
set of points over the mmebrane profile and parametrising
the geometry through the coordinates of such points (i.e.,
variable ¢ in Eq. (2)). Detailed passages for the calculation
of the cone DEA capacitance and potential energy are
discussed in the reference and omitted here for conciseness.
The same model (Moretti et al. (2022)) can be also used
to define the mode shapes used to parametrise the kine-
matics (i.e., to build jacobian matrix @, and establish a
relationship between geometrical coordinates ¢ and modal
coordinates «). This is done by calculating the uncou-
pled eigenmodes of the undamped DEA (i.e., neglecting
the acoustic added mass and all damping contributions,
and using linearised analytical expressions for the DEA
stiffness and inertia, as given by Moretti et al. (2022)) and
using them to infer the coordinate change in (2). Although
the mode shapes identified with this procedure do not
represent the eigenmodes of system (1) (i.e., coordinate
change (2) does not represent an exact modal transcription
of the dynamics), they still provide an effective parametri-
sation of the DEA kinematics. In fact, the contributions
of acoustic coupling terms and damping in (1) are not ex-
pected to significantly affect the shape of the DEA’s eigen-
modes compared to the undamped uncoupled scenario (as
observed in Moretti et al. (2022)), but just their eigen-
frequencies. We also remark that the parametrisation of
the kinematics used here has the advantage of 1) reducing
the model dimension, compared to using the coordinates
of a set of target points on the DE as the coordinates;
2) describing the dynamics by means of shape functions
that are close to the system eigenfrequencies (which allows
calibrating the unknown parameters, M., D,, based on
the measured modal response of the system, as explained
in Sect. 3.2).

For simplicity, we further assume that the acoustic pres-
sure output is related linearly (i.e., through a linear
transfer function) to the accelerations of the points on
the membrane surface, as stated by Rayleigh theory (see
Quaegebeur et al. (2010)). Analytical expressions to put

the acoustic pressure p at receptor point in relation to
the acceleration of the radiating surface can only be ob-
tained for simple geometries (i.e., pulsating spheres or rigid
pistons). For convenience, in this work, we assume that
the sound pressure at the receptor point is expressed by
means of a linear state-space model, whose parameters are
identified based on experimental data (see Sect. 3):

£ =F¢+ Ga 4
{ p=HE “)

where £ represents a state vector describing the acoustic

response, and F, GG, H are suitably identified matrices.

The combination of (1) and (4) is hereby denoted as
the FNL DE loudspeaker model, as opposed to the LPV
formulation discussed in the following.

2.2 LPV model

With the aim of developing the LPV reformulation, the
following assumptions are introduced:

Assumption 1. The control input of the DE loudspeaker
is given as the sum of two terms:

V2(t) == u(t) = a(t) + a(t), la@)| < |a@)|vt.  (5)
Term u represents a slowly-varying, large-amplitude bias,
which can be adjusted over time to tune and regulate the
speaker response. Term @ represents the high-frequency,
low amplitude acoustic input responsible for the sound
pressure generation.

Assumption 2. Upon application of input (5), the mem-
brane deformation can be expressed as the sum of two
components, namely:

alt) = alt) + a(t), |alt)] < |a)| vt (6)
Here, @ is the solution to (1) obtained for v? = @, namely
Madi + Dadi + Fa(@) = ha(@)a 7)

while & is a residual term appearing in case (1) is driven
by v? = @ + @; & is expected to be much slower than a.

Assumption 8. Term « varies on a significantly slower
time-scale than any of the eigenfrequencies of the system.
Therefore, on the time-scale of &, deformation component
@ can be considered as practically stationary, and can
be tightly approximated with the static response of the
system to u:

a ~ as(a), with ko (as) — ho(as)a = 0. (8)
Assumption 4. The acoustics pressure p, as given by (4),

only depends on the high-frequency component &, as @ is
slower than any acoustically relevant dynamics.

The choice of an excitation input as in (5) (Assumption
1) has been recently proved to enable the employment of
cone DEAs as multi-function interfaces, capable of con-
currently producing a linear actuation and sound (Gratz-
Kelly et al. (2022)). Note that, since (1) is a nonlinear
system, the superposition principle does not hold, thus &
formally depends on both @ and w. Nevertheless, due to
the characteristics of signals @ and @, it is reasonable to
assume that Assumptions 2-4 hold true as well.
Linearising (1) around trajectory & as given by (7), and
considering Assumptions 1-3, we obtain the following;:

My 4 Dot + So(s(@)) & = ho (1)) , with
_ Okala) _Oha() (9)
T da b Oa

Sao(a)
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Fig. 3. Pictures of the cone DEA speaker prototype.

We define x = [&T aTl §T] T and, thanks to Assumption 4,
we rewrite (9) and (4) in a compact LPV form as follows:

T =As(u)x + Bs(u)u .

(2 d0e BT
[ —M'D, —M;'S,(as(@)) 0

A, (1) = I 0 A
|—GM_'D, —GM;'So(ay(n) F
[ M ho(@s())

By(a) = 0 , Cy =100 HJ
| GM  ho (o (1))

where I is an identity matrix of appropriate dimension,
and u plays the role of the varying parameter.

Combining (7) (dynamics of @) and (10) (dynamics of &),
the DE speaker model can be recast as the combination
of a slow dynamics for & and a faster dynamics for & (see
Fig 2b). For the aim of the output pressure calculation,
only the LPV part of the model is relevant, whereas slow
dynamics (7) are only relevant to the calculation of the
total membrane deformation « (see (6)). Compared to
the FNL model (1), the proposed LPV formulation is
computationally more convenient, and features a structure
which allows for control-oriented model inversion.

3. VALIDATION AND DISCUSSION
3.1 FExperimental setup and measurements

We developed a and characterised a prototype of a cone
DEA (see Fig. 3), similar to that presented by Moretti
et al. (2022). The device consists of a 100-um thick DE
membrane (silicone Elastosil 2030), covered by carbon-
loaded screen-printed silicone electrodes (Fasolt et al.
(2017)). The features of the system are summarised in
Tab. 1. The DEA prototype was electrically driven with
a high-voltage amplifier Trek 609E-6. The prototype was
mounted in a vertical position by means of a rigid frame
(see Fig. 3). A microphone (MM210 by Microtech Gefell)
was located in front of the prototype, at a distance of 300
mm from the holding frame, aligned with the cone DEA
axis. Measurements of the velocity/displacement at target
points over the DEA were performed using a 3D Doppler
laser vibrometer PSV-500 3D by Polytec.

For the aim of exemplification and validation, we consid-
ered the system response in a restricted frequency range.
With the aim of identifying the natural frequencies and

Table 1. Reference DEA parameters

DE material
Inner and outer radii

Silicone Elastosil 2030
r; = 17 mm, r, = 35.5 mm

Unstretch. membr. thickness ho = 100 pm
Pre-stretch Ap =12
Elastic shear modulus (undeform.) 1 = 600 kPa
Relat. dielect. permittivity er = 2.8
Initial out-of-plane displ. z =15 mm
Disc mass Myg=53g
Spring stiffness kq =52 N/m
Membrane mass My, =03g

deformation modes of the DEA, we measured the dis-
tribution of the velocity over the DEA surface through
the 3D vibrometer, similar to Moretti et al. (2022). We
performed velocity measurements at 80 points equally
distributed points along 16 equally-spaced radii over the
DE’s electrode surface, and 4 points on the DEA central
disc. We used a periodic chirp with constant bias of 2
kV and amplitude of 100 V as the voltage input. Fig.
4 shows the resulting spectra for the axial and radial
velocity components. In the plots, average spectra (av-
eraged over all points) are considered, which represent
standard metrics (directly computed by the vibrometer
proprietary software) that provide a general understand-
ing of the membrane modal behaviour (see also Nalbach
et al. (2019)). The peaks in the spectra correspond to
system’s resonances. There are two main peaks within
the considered range. The first peak (corresponding to a
natural frequency of approximately 55 Hz) is only present
in the axial velocity spectrum, and it is associated with
the pistonic out-of-plane motion of the DEA (i.e., axial
motion of the central disc), hereafter called the pumping
mode. The second peak (at 395 Hz) is characterised by
transversal motions of the membrane (both in the radial
and axial direction), which reach maximum amplitude
close to the membrane average circumference (see Fig.
1). Because the mass of the central disc is much larger
than the membrane’s mass (see Tab. 1), the central disc
motion is negligible at this frequency. This second mode is
hereby called a structural mode. Since the pumping mode’s
pass-band lies low in the frequency range, the acoustic
response is mainly governed by the structural mode (see
also Moretti et al. (2022)). Other peaks with much smaller
amplitude are also visible in the spectra. These are either
due to dynamic contributions from the biasing spring, or
non-axial-symmetrical structural modes of the membrane,
and they are neglected in our model, as they play a minor
role in the average spectral velocity and acoustic response
(see Moretti et al. (2022)), and they are only excited as a
result of inhomogenieites and asymmetries in the system,
which are difficult to model.

3.2 Model validation

In the following, comparisons between experiments, FNL
model (1), and LPV model (10) results are presented, with
the aim of validating the presented model and estimating
the accuracy of the LPV reduction. The dynamic model
(FNL and LPV versions) was implemented in Matlab and
Simulink. Calculation of the mode shape functions used
to describe the kinematics (see (2)), K(«) and h(a) were
performed using the approach presented by Moretti et al.
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the DEA membrane surface.

(2022), using a discretisation of the membrane into 7
rings. M, and D, have been calibrated using the spectral
results of Fig. 4. Their elements (diagonal) are calculated
in such a way that the peaks in the spectrum match the
experimental data (both in terms of frequency abscissa and
magnitude). For the aim of calibration and comparison
with the spectral measurements in Fig. 4, a linearised ver-
sion of the model was used, since in this test the excitation
amplitude is much smaller than the (constant) bias, and
the FNL and LPV versions of the model are practically
equivalent.

To validate the model, we used voltage waveforms in
the same form as (5), where @ and @ represent periodic
waveforms with fundamental frequency of f; and f;, re-
spectively. The time-series of the input u (i.e., the square
of the applied votlage v), the central disc displacement z,
and the time-varying sound pressure level (SPL) produced
by the DEA (experiments vs. model) are shown in Fig. 5,
for different tests. The SPL is defined as follows:

SPL = 20logy,, (p ’”) :
Po

where pg = 20 pPa is a reference pressure, and p.,s is
the root-mean-square value of p calculated on a moving
window with length of 20 ms (i.e., mach larger than the
high-frequency signal period). In the different tests, the
slow component % has bias of 5 kV? and amplitude of 4
kV?2, whereas its frequency and waveform were changed
throughout the different tests. A fundamental frequency
frn = 390 Hz (close to the resonance frequency of the
structural mode - see Fig. 4) was used for 4. The amplitude
of 7 is constant and equal to 0.4 kV? in Figs. ba-c, whereas
a time-varying amplitude is used in Fig. 5d. The acoustic
model matrices (F, G, H in (4)) have been identified via
Matlab command ssest based on the dataset in Fig. 5c,
using & from the FNL model simulations as the input,
and the experimentally measured pressure as the output.
A second-order model (namely, ¢ € R?) was used for the
identification.

Using constant-amplitude sinusoidal waveforms for @ and
@ (Fig. 5a) results in a SPL whose amplitude is not
constant over time. In particular, the sound level is max-
imum (minimum) when the low frequency component %
has maximum (minimum) amplitude. This is a non-linear
effect due to a variation in the DE stiffness induced by

(11)

Table 2. Model accuracy evaluation

Test Error Error
(Fig. 5) LPV-FNL LPV-exp.
z SPL z SPL
(a) <01% 02% 02% 1.0%
(b) <01% 05% 03% 1.5%
(c) <01% 05% 0.3% 0.8%
(d) 0.1% 0.6% 05% 1.5%

the applied voltage. Increasing the applied voltage causes
a decrease in the stress on the DE membrane (due to elec-
trostatic stress contributions) and, hence, larger amplitude
vibrations in response to the high-frequency stimulus ,
which result in larger values of p. This effect is correctly
captured by both the FNL and the LPV implementations
of the model. Similar trends are also observed by consider-
ing a higher value of f; (Fig. 5b), or a different waveform
for u (Fig. 5¢). In particular, using a square wave, the trend
of the SPL sensibly changes compared to using sinusoidal
@ (compare Figs. ba and 5¢). Whereas the SPL trend in
Fig. 5a closely follows the profile of @, the SPL in Fig. 5¢
has a smoother profile than @, as a result of the system
low-pass dynamics.

In Fig. 5d, @ is recast as a sine waveform with modulated
amplitude. In particular, the amplitude of @ varies linearly
following the same trend as @, it is minimum (and equal to
0.4 kV?) when @ is maximum, and it is maximum (equal to
0.7 kV?) when % is minimum. By doing so leads to a more
uniform amplitude of the acoustic output (as compared
to Fig. 5a), as the amplitude of the acoustically relevant
input, @, is larger in the phases in which the DE is stiffer.
The model consistently predicts the reduction in the SPL
fluctuation obtained by using an amplitude modulation for
the high-frequency input (Fig. 5d).

The axial displacement of the central disc is only affected
by @, i.e., the dynamics of the central disc filters out the
higher frequency contribution of @, because of the small
passband of the pumping mode. Whereas z in Figs. 5a, b, d
simply follows the trend of @, higher-frequency vibrations
are present in Fig. 5c. These are free oscillations at the
natural frequency of the pumping mode, and are triggered
by jumps in the input. The LPV model produces results
that are in close agreement with the FNL model, and it is
able to capture the main features of the system dynamics
response, including non linear effects triggered by the
DEA’s stiffness variations. A quantitative evaluation of
the LPV model accuracy (in terms of the estimated axial
position z and the SPL) is presented in Tab. 2. The error
is computed as follows:

eIT. = ||¢LPV - QbrefH7 (12)
||¢ref‘|

where ¢ represents a generic signal (here, z or the SPL) ob-
tained through the LPV model (subscript SPL) as opposed
to the same signal obtained in a reference scenario (test
or FNL model - subscript ref), and [|.|| is the L£o-norm.
The differences between the LPV and the FNL model are
always below 0.5%, and the maximum error with respect
to the experiments is below 2%.

In conclusion, we proved that an LPV model is able to
accurately describe the dynamics of a cone DEA loud-
speaker. By building upon an assumption of the deforma-
tion kinematics, the model allows determining the acoustic
response of the DEA when multiple modes are excited at
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Fig. 5. Time-series of input u (i.e., the squared applied voltage u = v?), central disc displacement z, and SPL for different
tests with different inputs. The lines in the top sub-plots represent u (total excitation signal) and @ (low-frequency
trend). The different lines in the other sub-plots refer to the tests, the FNL and the LPV model.

the same time. Moreover, the model consistently captures
the non-linear effect (namely, modulation of the SPL) of
slowly varying the applied bias voltage, while preserving
a simple and computationally-convenient structure. In the
future, we will employ this LPV approach to investigate
advanced control strategies for multi-mode DEAs, with
the aim of exploring their combined application as linear
actuators and loudspeakers (Gratz-Kelly et al. (2022)).
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