
Doctoral programme — XXXVI cycle

Algebraic Construction for Multi-Party
Protocols with Focus on Threshold

Signatures

Michele Battagliola

PhD thesis in Mathematics

Supervised by Nadir Murru

Board:

Ranise Silvio, Prof Università di Trento
Bazzanella Danilo, Prof Politecnico di Torino
Andrea Visconti, Prof Università degli Studi di Milano Statale



Abstract

Secure multi-party computation (MPC) is a field of cryptography that aims
to provide methods for parties to jointly compute a function over their inputs
while keeping those inputs private. Unlike of traditional cryptography where
adversary is outside the system of participants, the main task (and challenge)
of MPC is to protect participants from internal adversaries, who participate
in protocol and can therefore send corrupted.

The results presented in this thesis are three-fold. First, we study MPC
from a theoretical standpoint, designing a new heuristic and a new proof
system useful for proving the security of threshold signatures, a particular
kind of MPC protocol. Next, we present new MPC primitives: a novel secret
sharing scheme, a threshold version of Schnorr signature, a post quantum
secure group action based threshold signature and finally a post quantum
oblivious transfer. Lastly, we designed a coercion resistant e-voting protocol,
that allows voters to freely votes without being afraid of external adversaries
trying to pressure them to vote in a particular way.



Contents

1 Introduction 5
1.1 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Threshold Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Notation and convention . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Forking Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Sigma Protocols and Identification Schemes . . . . . . . . . . . . . 17
2.6 Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Threshold Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Security Model for MPC . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Generalized Fiat-Shamir Transform 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Distributed Identification Schemes and Fiat-Shamir Transform . . . 32
3.3 Security of the Distributed Fiat-Shamir Transform . . . . . . . . . . 41
3.4 Threshold Sigma Protocols . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Conclusions and future works . . . . . . . . . . . . . . . . . . . . . 58

4 Decentralized Secret Sharing and Threshold Signatures 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Extensible Decentralised Verifiable Secret Sharing Protocol . . . . . 65
4.4 Threshold Schnorr Signature . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Conclusions and future works . . . . . . . . . . . . . . . . . . . . . 79

5 Group Action Cryptography 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3



Chapter 0 – CONTENTS

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Threshold Signature . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Optimizations and Performance Evaluation . . . . . . . . . . . . . . 102
5.5 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 E-Voting 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Conclusions and future works . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusions 131

Bibliography 133

A Combinatorial properties of multidimensional continued fractions149
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.3 Counting the number of tilings using multidimensional continued

fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4



Chapter 1

Introduction

1.1 Multi-Party Computation

Secure multi-party computation (MPC) is a branch of modern cryptography
that focuses on the design of interactive protocols that allow a set of parties, each
with its own input, to jointly compute a function over their inputs without revealing
any information about them.

MPC was first informally theorised in 1979 by A. Shamir, R. Rivest and L.
Adleman in their work on mental poker [SRA81]. A few years later, A. Yao formally
introduced the theory of secure two-party computation for the Millionaires’ Problem
and then presented a generalisation to any feasible computation in [Yao82; Yao86].
The case where the involved parties are more than two was firstly considered by O.
Goldreich, S. Micali and A. Wigderson in 1987 [GMW87].

The recent development of new technologies, such as cloud computing, mobile
computing and the Internet of Things, coupled with the advent of more efficient
infrastructures (in terms of bandwidth and latency) and more powerful devices,
has sparked considerable interest in MPC cryptosystems. As a result, increas-
ingly efficient MPC protocols have been proposed since the late 2000s, and MPC
can now be considered as a viable solution for several real-world scenarios, such
as privacy-preserving data analysis [Bog+ j; PBS12; Bog+16; Bog13; MKO16;
KKB18; Tso+17], cloud computing [Ala+18], genomic sequence comparison [ZH17;
BB17], distributed voting [JCJ10; ABR23], private bidding and auctions [Cho+12],
distributed signatures [CKM23] or decryption functions and private information
retrieval [Cho+95].

Given the growing interest in the subject, at the time of writing the literature on

5



Chapter 1 – Introduction

it is quite extensive and an accurate taxonomy of existing protocols seems difficult.
Nevertheless, it is possible to distinguish two main classes of MPC protocols:
Boolean and Arithmetic MPC. In the cryptographic schemes of the former class,
the function to be evaluated is represented by a Boolean circuit, while the protocols
of the latter class are based on a variety of algebraic tools, such as homomorphic
encryption or secret sharing techniques. In this work, we focus on arithmetic MPC,
with particular attention to threshold signature schemes.

1.2 Threshold Cryptography

In many real-life situations, we cannot be sure whether a single entity (e.g. a
single server) is trustworthy, but we can be reasonably sure that the majority of
them are honest. Therefore, it may be a good idea to distribute computations
among many parties, so that an adversary would have to corrupt many of them in
order to successfully perform an attack.

The idea of threshold cryptography is to distribute sensitive cryptographic
operations, such as decryption or signatures. In this setting, the secret key is split
among a group of cooperating parties in such a way that a minimum number of them,
the threshold, is required (and sufficient) to perform the operation successfully.

1.2.1 Threshold Signatures

A (t, n)-threshold digital signature scheme is a protocol designed to distribute
the right to sign messages to any subset of at least t out of n key owners1. In order
to streamline the introduction of the new protocol into the cryptographic landscape,
threshold schemes usually translate a well-established signature scheme in a multi-
party setting, producing signatures that are compatible with the centralized version.
For this reason, much effort is devoted to finding efficient and secure algorithms
for threshold versions of the most well-known digital signature schemes, namely
ECDSA, EdDSA and Schnorr.

In 1996, a first (T + 1, 2T + 1)-threshold digital signature scheme was pro-
posed [Gen+96]. A few years later, the same authors discuss the security of
distributed key generation for the case of schemes based on the Discrete Logarithm
Problem [Gen+07a; Gen+07b]. Since 2001, several authors started working first

1During this thesis we use “threshold t” to denote the minimum number of parties required
to perform the operation. Notice that in literature this term sometimes refers to the maximum
number of parties that are not allowed to perform the task.

6



Chapter 1 – Introduction

on two-party variants of digital signatures [MR04] and then on ECDSA [Doe+18;
Lin17]. The first general (T,N)-threshold scheme was proposed in 2016 [GGN16],
improved first in 2017 [BGG17], and then again in 2018 [GG18]. In 2019, the
work of [Doe+18] has been generalized by the same authors to the multi-party
case [Doe+19]. Recently, the first adaptively secure2 Schnorr signature protocol
was proposed by Crites, Komlo, and Maller in [CKM23]. In Chapter 4 we show a
threshold version of ECDSA and EdDSA with a particular key distribution algo-
rithm that allows for offline participants, i.e. participant who do not participate in
the protocol actively and instead delegate the generation of their secret share to
the other parties.

Recently, driven by both the NIST call for Post-Quantum Standardization
[NIS17] and the call for Multi-Party Threshold Schemes [BP], many researchers
have started to wonder whether it could be possible to design post-quantum versions
of threshold digital signature schemes. Since most of the existing literature for
threshold schemes focuses on trapdoors that rely on the difficulty of the Discrete
Logarithm Problem, new methods have to be investigated, likely starting with tools
already utilized to design plain signatures, such as lattices, codes, multivariate
equations etc. In [CS19], the (round 2) proposals of the standardization process
were analyzed in order to determine ways to define threshold variants, eventually
identifying multivariate schemes as the most suitable starting point, with UOV-
based schemes being the most promising. Even though, from a theoretical point
of view, it appears to be indeed possible to obtain a threshold version of UOV by
exploiting LSSS-based MPC protocols, this approach remains, at the present time,
only theoretical.

Notably, threshold signature schemes for cryptographic cyclic group actions
have been already discussed in 2020 and applied to isogeny-based schemes [DFM20],
where they proposed a way to apply a group actions in a threshold like way by
using the classical Shamir Secret sharing on a group action induced by a cyclic
group. They showed how to apply this for an El Gamal like encryption schemes
and a signature based on Σ-protocols proving their simulatability, however this
schemes are only secure in the honest-but-curious model and miss a distributed
key generation mechanisms. In [CS20b] they showed a way to combine the use of
zero-knowledge proofs and replicated secret sharing to obtain a secure threshold
signature scheme from isogeny assumptions. The work is an important step for
the research and can be extended to more general group actions, but the main
drawbacks are the number of shares necessary to implement replicated secret
sharing and the important slow down caused by the additional ZKPs required. In

2In this context, adaptively secure means that the adversary can decide which parties corrupt
during the protocol and it is not asked to corrupt them beforehand.

7



Chapter 1 – Introduction

[Beu+21] they showed how to define a distributed key generation algorithm by
using a new primitive called piecewise verifiable proofs ; proving their security in the
quantum random oracle model. All previous techniques are then incorporated in
[CM22] to have actively secure attributed based encryption and signature schemes,
in which threshold signature are a particular case. In Chapter 5 we show a group
action based threshold signature scheme which make no additional assumption
over the group action, using it in black box way. This will allow our frameworks to
be instantiated with a wider variety of candidates, such as code-based signature
schemes.

1.3 Organization

In Chapter 2 we provide the mathematical background and the notation used
in this work. Only the more general definitions are provided here, while the more
technical ones are provided in the introductory section at the beginning of the
relevant chapter.

Chapters 3 through 6 contain the core of the thesis. In Chapter 3 we describe a
generalisation of the Fiat-Shamir transform in the multi-party setting. We introduce
the concept of distributed identification protocol and we analyze its relations with
threshold signatures.

In Chapter 4 we describe a new decentralised secret sharing scheme based on
the classical Shamir scheme. We then show a threshold Schnorr signature, that use
it for the key generation protocol, which is proved secure using the aforementioned
generalised Fiat-Shamir transform.

In Chapter 5 we study group action cryptography, one of the most promising
research areas for post-quantum cryptography. In particular, we show a threshold
digital signature that makes black-box use of the group action and an oblivious
transfer for commutative group actions.

In Chapter 6 we focus our attention on MPC protocols for e-voting. We describe
one of the most secure and fast e-voting protocols currently proposed.

Finally, in Chapter 7 we draw conclusions from this work, summarizing the
most relevant results and suggesting further research area arising from it.

We also included Appendix A, where we described a side project carried out
during the PhD about mutidimensional continued fraction.

8



Chapter 2

Preliminaries

The purpose of this chapter is to provide the reader with the basic definitions
and notation necessary to understand the rest of the thesis. Later on, each chapter
have its own preliminaries, containing the specific information relevant to that
chapter. In this way, with the exception of Chapter 4, each chapter is self-contained
and can be read and understood without needing reference to the previous ones.

2.1 Notation and convention

In the following we present the notation used in the thesis. Individual chapters
may have additional notation convention that are specified when needed.

2.1.1 Font

We use bold notation (\mathbb) to denote sets and algebraic structures.
We use calligraphic notation (\mathcal) to denote named entities in definitions
and proofs, such as the forger F or the simulator S.
We use serif font (\mathsf) to denote algorithms. Notice that the aforementioned
simulator and forger are algorithms as well, but they have a different notation for
the sake of clarity.
We use typewriter typestyle (\mathtt) to denote named cryptographic variables
output of cryptographic protocols, such as the secret key sk and a commitment
cmt.

9



Chapter 2 – Preliminaries

2.1.2 Assignment, declaration and equality

If S is a set, s $←− S means that s is sampled uniformly at random from S.

y ← A(x1, x2, . . . ) is a deterministic algorithm taking in input the values
x1, x2, . . . and returning the value y. If A(x1, x2, . . . ) is a probabilistic algo-
rithm then we can use two notations for assigning to a variable y the output
of A(x1, x2, . . . ):

• y
$←− A(x1, x2, . . . ) where the symbol $←− emphasizes the probabilistic nature

of the algorithm A(x1, x2, . . . );

• y ← A(x1, x2, . . . ;R) when the randomness R is set and thus the output y is
uniquely determined.

When writing pseudocode we reserve the equality symbol = for the boolean
operation, while we use := to denote the declaration of a variable (i.e. y :=
Enc(x, pk)).

2.1.3 Miscellanea

We omit to explicitly write the randomness used or the input of a protocol
when not strictly required. We indicate the concatenation of strings x1, x2 . . . , xn as
x1||x2|| . . . ||xn. We also assume that, given a context, any string x can be uniquely
parsed as a the concatenation of substrings.

For the sake of readability, when having an index set J ⊆ {1, ..., n} we write
{ai}J in place of {ai}i∈J .

In the following when we say that an algorithm is efficient we mean that it runs
in (expected) polynomial time in the size of the input, possibly using a random
source.

We say that a publicly-accessible algorithm is an oracle if parties are only given
“black-box” access to it. For this reason, while still being an algorithm, it can be
see as an “additional entity” in the proof, thus we always use O to denote oracles.

10



Chapter 2 – Preliminaries

2.2 Mathematical Background

Definition 2.1. Let f : N→ R be a function. We say that f is negligible in λ if
for every c ∈ N there exists m ∈ N such that

|f(λ)| < 1

λc
∀λ > m.

Informally, we often state that an event happens with overwhelming probability
in λ. That means that it happens with probability 1 − f(λ) where f(λ) is a
negligible function in λ.

Definition 2.2. Let f : N→ R. We say that f is super-logarithmic if and only if
f = ω(log n).

In the same way of Definition 2.2, we can define also super-polynomial functions.

A useful way to analyze the output distribution of a probabilistic algorithm A
is to consider the min-entropy, which provides an upper bound to the probability
that A()̇ generates a specific output in the output space. More formally we have:

Definition 2.3 (Min-entropy). Let A : X→ S be a probabilistic algorithm. Let

α(x) = max
s∈S
{Pr[A(x;R) = s|R $←− Coins(λ)]}

be the probability that A, executed on input x, outputs the most likely output s.
The min-entropy function associated to A is defined as

β(λ) = min
x

{
log2

1

α(x)

}
.

Usually we require algorithms having a uniformly distributed output in the
output space S. In this case α(x) = 1

|S| and the min-entropy β(λ) = log2 |S|.
Finally, we often say that data sampled from one distribution D1 are indis-

tinguishable from data sampled from a second one D2. Informally speaking that
means that it is impossible to decide whether the original distribution is D1 or D2.
Formally we have the following definition:

Definition 2.4 (Indistinguishability). Let D1 and D2 be two probability distribu-
tions. We say that D1 and D2 are indistinguishable if, for any algorithm A, there
exists a negligible function ν such that for all n ∈ N

Pr[A(D1(n)) = 1]− Pr[A(D2(n)) = 1] ≤ ν(n).

11



Chapter 2 – Preliminaries

The algorithm A in Definition 2.4 is often called distinguisher.

An immediate consequence of this definition, is that no algorithm behaves more
than negligibly differently when given inputs sampled according to D1 or D2.

2.2.1 Basic Cryptography

In this section we provide some basic cryptography definitions, that are used
during the whole paper.

Key Generation Algorithms Informally speaking, the goal of a key generation
is to provide a secret-public key pair in a secure way, such that it is hard to recover
the secret key key knowing only the public one. Formally:

Definition 2.5. Let KeyGen a key generation algorithm for a relation L ⊆ W× Y.
Define the following experiment

ExpowA (λ) :

1 : (pk, sk)
$←− KeyGen(λ)

2 : sk′
$←− A(pk)

3 : return (sk′, pk) ∈ L

Define the advantage of A as

Advow
A (λ) = Pr(ExpowA (λ) = 1)

We say that KeyGen is one-way if and only if Advow
A is negligible for every

probabilistic polynomial time adversary A.

From now on, when speaking about key generation algorithms, we always
implicitly consider algorithms for which the one-way property holds.

Encryption Schemes There are two families of encryption schemes: symmetric
cryptography, where the sender and the receiver share a common secret key, and
asymmetric or public-key cryptography, where the receiver holds a secret-public
key pair while the sender only knows the public key. In this thesis we only use
public-key cryptography. Formally we have:

12



Chapter 2 – Preliminaries

Definition 2.6 (Public-Key Encryption). A public-key encryption scheme is defined
by the tuple

(Setup,KeyGen,Enc,Dec)

where:

• Setup(λ), on input a security parameters λ, it outputs public parameters pp.

• KeyGen(pp, λ) is a probabilistic key generation algorithm that takes as input
the public parameters pp, the security parameter λ and outputs a public key
pk and the corresponding secret key sk

• Enc(pk, m;R) is a probabilistic algorithm called encryption algorithm that
takes as input a public key pk and a message m, called plaintext, and outputs
an encryption ct, called ciphertext;

• Dec(sk, ct) is a deterministic algorithm, called decription algorithm, which
takes as input a secret key and a ciphertext ct and outputs a message m or
failure ⊥.

We ask that Pr(Dec(sk, ct) = m|Enc(pk, m;R) = ct) = 1.

With abuse of notation, in this thesis we refer to an encryption scheme as simply
the couple (Enc,Dec).

The main security definition we ask for encryption schemes is indistinguishability
under chosen plaintext attacks (IND-CPA). Informally, an encryption scheme is
IND-CPA secure if it is impossible to distinguish encryption of different messages
having access only to the public key. Formally:

Definition 2.7 (indistinguishability under chosen plaintext attacks). Consider an
encryption scheme (Setup,KeyGen,Enc,Dec). Consider the following experiment:

Expind−cpa
Enc,A (λ)

1 : pp
$←− Setup(λ)

2 : (pk, sk)
$←− KeyGen(λ)

3 : b
$←− {0, 1}

4 : (m0, m1)← A(λ, pk)

5 : ct
$←− Enc(pk, mb)

6 : b′ ← Adv(pk, ct, m0, m1)

7 : return b = b’

13



Chapter 2 – Preliminaries

Define the advantage of A as

Advind−cpa
Enc,A (λ) = Pr(Expind−cpa

Enc,A (λ) = 1)

We say that (Enc,Dec) is indistinguishable under chosen plaintext attacks if and
only if Advind−cpa

Enc,A is negligible for every probabilistic polynomial time adversary A.

Hash Functions Roughly speaking, a (cryptographic) hash function is a function
that takes as input an arbitrary long string and outputs string with a fixed length
that is hard to invert. More formally we have

Definition 2.8 (Hash Functions). A cryptographic hash function with output
length l is a function H : {0, 1}∗ → {0, 1}l satisfying the following properties:

• Preimage Resistant Given a digest digest it is hard to find m such that
H(m) = digest.

• Second Preimage Resistant Given a message m it is hard to find m′ ̸= m

such that H(m′) = H(m).

• Collision Resistant It is hard to find m0, m1 with m0 ̸= m1 such that H(m0) =
H(m1).

Commitment Schemes Commitment schemes are a cryptographic primitive
that allows a sender to commit to a chosen value while keeping it hidden to others
(sending the so called commitment). Later, by sending the decommitment, the
sender is able to reveal (open) the commited value to the receiver. Commitment
schemes are designed so that a party cannot change the value inside the commitment:
for this reason they are usually used to achieve synchronous communications over
an asynchronous channel.

Definition 2.9 (Commitment Schemes). A commitment scheme is defined by the
tuple (Com,Decom) where:

• Com(m;R) is a probabilistic algorithm called commitment algorithm that takes
as input a public key a message m and outputs a commitment, decommitment
pair cmt, dcmt to it.

• Decom(cmt, dcmt) is a deterministic algorithm, called decommitment algo-
rithm, which takes as input a commitment cmt and a decommitment dcmt
and outputs a message m or failure ⊥.

14



Chapter 2 – Preliminaries

We ask that Pr(Decom(cmt, dcmt) = m|Com(m;R) = (cmt, dcmt)) = 1.

With abuse of notation we often refer to a commitment scheme (Com,Decom)
as simply Com.

We ask that a commitment scheme is binding and hiding, namely that it is
difficult to change a commited value once cmt is sent and that cmt do not reveal
anything about the original message m. Formally:

Definition 2.10 (Hiding and Binding). Let (Com,Decom) be an commitment
scheme. Consider the following experiment:

ExphideCom,A(λ)

1 : b
$←− {0, 1}

2 : (m0, m1)← A(λ)

3 : cmt
$←− Com(mb;R)

4 : b′ ← Adv(cmt, m0, m1)

5 : return b = b′

ExpbindCom,A(λ)

1 : m
$←− A(λ)

2 : cmt
$←− Com(m;R)

3 : dcmt← A(m, cmt)
4 : m′ ← Decom(cmt, dcmt)

5 : return m′ ̸= m and m′ ̸=⊥

Define the advantage of A in the hiding (binding) game as

Advhide
Com,A(λ) = Pr(ExphideCom,A(λ) = 1)

Advbind
Com,A(λ) = Pr(ExpbindCom,A(λ) = 1)

We say that (Com,Decom) is hiding (binding) if and only if Advhide
Com,A(λ)

(Advbind
Com,A(λ) is negligible for every probabilistic polynomial time adversary A.

Observation 2.1. When referring to the security of commitment scheme we often
say “statistically ” hiding (binding) or “perfectly ” hiding (binding). The difference is
about the computational power of A. When A is computationally unbounded then
the scheme is perfectly secure, otherwise is only statistically secure. Notice that
for a commitment scheme is impossible to be both perfectly hiding and perfectly
binding.

2.3 Random Oracle Model

Introduced by Bellare and Rogaway in [BR93], the Random Oracle Model
(ROM) is an idealised security model useful to analyze and prove the security of
many cryptographic protocols.

15



Chapter 2 – Preliminaries

Roughly speaking, let S,X be two sets. A random oracle is a publicly-accessible
oracle OH : S→ X that behaves as a perfectly random function. From a theoretical
point of view no efficient algorithm can possibly be used as random oracle, since a
truly random function would have a description that is exponentially large. For
this reason random oracles are often substituted by hash functions in real world
applications.

In particular, a protocol is secure in the random oracle model if it is secure
when all the pseudo-random functions (usually hash functions) are replaced by
random oracles, which returns truly random values upon invocation.

This model is in opposition with the Standard Model in which the adversary is
only limited by the amount of time and computation available. A scheme is secure
in the standard model if it can be proven secure only using complexity assumptions.

In this paper we always assume to work in the ROM.

2.4 Forking Lemma

First introduced by Pointcheval and Stern in [PS96], the Forking Lemma is
one of the most used lemma in cryptography. In particular, it is the basis for all
the proofs that require rewinding an adversary (i.e. halting the computation and
restarting it from a previous state, usually changing some input data) in order to
prove the security of a protocol.

Let A be an adversary initialized with a random tape and having access to a
random oracle (modeled by an hash function, as explained in Section 2.3). While
the behavior of the adversary is generally not defined, the adversary outputs some
value that either satisfy some pre-defined conditions (thus winning the security
game), or not. If A completes its attack successfully, the Forking Lemma gives a
lower bound for the probability that A again win the security game in a second
execution with the same random tape but with different outputs from the random
oracle [Kom]. More formally we have the following lemma, by Bellare and Neven
in [BN06]:

Lemma 2.1 (General Forking Lemma). Let q ∈ Z with q ≥ 1, H be a set with
|H| ≥ 2. Let IG be a randomized algorithm called input generator and let A be a
randomized algorithm that, on input x

$←− IG, h1, ..., hq ∈ H, returns a pair (J, σ)

with J being an integer 0 ≤ J ≤ q and σ a side output. The accepting probability p

of A, is defined as the probability that J ≥ 1 in the experiment

x
$←− IG;h1, ..., hq

$←− H; (J, σ)
$←− A(x, h1, ..., hq)

16



Chapter 2 – Preliminaries

The forking algorithm FA associated to A is the randomized algorithm that takes
as input x and proceeds as follows:

FA(x) :

R
$←− {0, 1}∗

h1, ..., hq
$←− H

(J, σ)
$←− A(x, h1, ..., hq;R)

if J = 0 then
return (0, ϵ, ϵ)

h′
J , ..., h

′
q

$←− H

(J ′, σ′)
$←− A(x, h1, ..., hJ−1, h

′
J , ..., h

′
q;R)

if (J = J ′ ∧ hJ ̸= h′
J) then

return (1, σ, σ′)

else
return (0, ϵ, ϵ)

Then we have

Pr[b = 1|x $←− IG; (b, σ, σ′)
$←− FA(x)] ≥ p

(
p

q
− 1

|H|

)
.

2.5 Sigma Protocols and Identification Schemes

A sigma protocol for a relation L ⊆ W× Y is a three moves interactive protocol
between a prover, holding a witness-statement pair (w, y) ∈ L, and a verifier,
knowing only the statement y. Roughly speaking, sigma protocols work as follows
(see Figure 2.1):

(i) In the first step, the prover sends commitment cmt ∈ X to the verifier.

(ii) Then verifier returns a challenge ch consisting of a random string of fixed
length c(λ) which depends on the security parameter λ.

(iii) Lastly, the prover answer with a response rsp that the verifier verifies accord-
ing to y, cmt, ch.

At the end of the interaction we want that an honest prove is able to convince
the verifier about it, without leaking any extra information. On the other hand, we
want that a dishonest prover (not knowing w) is not able to convince the verifier.
Formally we have:

17



Chapter 2 – Preliminaries

Prover(w, y) Verifier(y)

Compute cmt cmt

ch ch
$←− {0, 1}c(λ)

Compute rsp rsp V (y, cmt, ch, rsp)

Figure 2.1: Structure of a sigma protocol

Definition 2.11 (Sigma protocol). A three-moves protocol Π as Figure 2.1 between
a Prover P and a Verifier V is said to be a sigma protocol for a relation L if:

• Completeness: if P follows the protocol on input (w, y), with (w, y) ∈ L,
the verifier accepts with overwhelming probability.

• Special Soundness: there exists an efficient deterministic algorithm E ,
called extractor, with the following property: whenever E is given as input
y ∈ Y, two accepting conversations (cmt, ch, rsp) and (cmt, ch′, rsp′), with
ch ̸= ch′, E outputs w ∈ W such that (w, y) ∈ L.

• Honest-Verifier Zero Knowledge: There exists a polynomial-time algo-
rithm S, called simulator, which on input y ∈ Y and a random challenge ch,
outputs an accepting conversation (cmt, ch, rsp), with the same probability
distribution as conversations between an honest P and V on input y.

When the relation L is hard (i.e. given only y ∈ Y is hard to compute w ∈ W
such that (w, y) ∈ L) we can use sigma protocols to build identification schemes.
Informally speaking, we can imagine an identification scheme as a sigma protocol
equipped with a secure key generation algorithm for the relation L that provides in
a secure way the couple (w, y) ∈ L to the prover. In the context of identification
protocols we say that w is the secret key, denoted by sk, while y is the public key,
denoted by pk.

Definition 2.12. A canonical identification protocol is an interactive protocol
between a prover P and a verifier V and is defined by the tuple

Id = (Setup,KeyGen,Pcmt,Prsp,V)

where:

18



Chapter 2 – Preliminaries

• Setup(λ), on input a security parameters λ, it outputs public parameters pp.

• KeyGen(pp, λ) is a probabilistic key generation algorithm that takes as input
the public parameters pp, the security parameter λ and outputs a public key
pk and the corresponding secret key sk

• Pcmt(sk;R) is a probabilistic algorithm called prover commitment that takes
as input a secret key sk and outputs a commitment cmt ∈ X;

• Prsp(sk, cmt, ch;R) is a probabilistic algorithm called prover response that
takes as input a private key sk, a commitment cmt and a challenge ch and
outputs a response rsp;

• V(pk, cmt, ch, rsp) is a deterministic algorithm, called Verifier, which takes
as input a public key, a commitment cmt, a challenge ch and a response rsp,
and outputs accept or reject.

Moreover we also need an additional property on the commitment:

Definition 2.13 (Non-triviality). A canonical identification scheme is called non-
trivial if the min-entropy of the commitments is super-logarithmic in the security
parameter λ.

Observation 2.2. If the commitment cmt is picked uniformly at random from
X, requiring a super-logarithmic min-entropy is equivalent to requiring a super-
polynomial size of X

To an identification scheme Id and a pair (pk, sk) it is associated a randomized
transcript generation oracle OTrGen which takes no inputs and returns a random
transcript of an honest execution.

An important notion of security for canonical identification schemes is the
security against impersonation under passive attack or (eavesdropping attack). In
this notion we assume that the impersonator can see a polynomial number of
transcripts of the real prover interacting with an honest verifier (in the security
game, this is modeled by giving the access to the transcript generation oralce
OTrGen), then it must produce its impersonation attempt. More formally:

Definition 2.14 (Security against impersonation under passive attack). Let Id be
a canonical identification scheme and let I be an impersonator, st be its state and
λ be the security parameter. Define the advantage of I as:

19



Chapter 2 – Preliminaries

Advimp−pa
Id,I (λ) = Pr(Expimp−pa

Id,I (λ) = 1)

where the experiment is:

Expimp−pa
Id,I (λ) :

1 : pp
$←− Setup(λ)

2 : (pk, sk)
$←− KeyGen(pp)

3 : st||cmt $←− IOTrGen(pk)

4 : ch
$←− {0, 1}c(λ)

5 : rsp
$←− I(st, ch)

6 : return V(pk, cmt, ch, rsp)

We say that Id is polynomially secure against impersonations under passive
attack if Advimp−pa

Id,I (λ) is negligible for every probabilistic polynomial time imper-
sonator I.

A standard way to prove a canonical identification scheme secure against
impersonation under passive attacks is to show that (Pcmt,Prsp,V) forms a sigma
protocol (i.e. proving the completeness, the special soundness and the honest-verifier
zero knowledge).

2.6 Digital Signature Schemes

Digital Signature Schemes are cryptographic protocols used to provide integrity,
authenticity and non-repudiation to electronic documents.

Definition 2.15. [Digital Signature Scheme] A digital signature scheme is defined
by the tuple

DS = (Setup,KeyGen, Sign,V)

where:

• Setup(λ), on input a security parameters λ, it outputs public parameters pp.

20



Chapter 2 – Preliminaries

• KeyGen(pp, λ) is a probabilistic key generation algorithm that takes as input
the public parameters pp, the security parameter λ and outputs a public key
pk and the corresponding secret key sk

• Sign(sk, m;R) is a probabilistic algorithm called signature algorithm that
takes as input a private key sk and a message m and outputs a signature σ;

• V(pk, m, σ) is a deterministic algorithm, called verification, which takes as
input a public key, the commitment m and signature σ, and outputs accept

or reject.

We ask that Pr(V(pk, m, σ) = accept|Sign(sk, m;R) = σ) = 1.

A relevant notion of security for digital signature schemes is the notion of
unforgeability under chosen message attacks, where an adversary has as many
couple message-signature as it wish and is asked to produce a forgery (i.e. a valid
signature without having direct access to the private key). Formally

Definition 2.16 (Existential unforgability under chosen message attack). Let
DS = (Setup,KeyGen, Sign,V) be a digital signature scheme. Let F be a forger
having access to a signing oracle OH

DS(·) and to the random oracle OH(·). Define
the following experiment where M represents the set of messages queried by F , to
OH

DS(·).

Expeuf−cma
DS,F (λ) :

1 : pp
$←− Setup(λ)

2 : (pk, sk)
$←− KeyGen(pp)

3 : m||σ $←− FOH
DS(·),OH(·)(pk)

4 : if m ∈ M

5 : return 0

6 : else

7 : return V (pk, cmt, ch, rsp)

Define the advantage of F as Adveuf−cma
DS,F (λ) = Pr(expeuf−cma

DS,F (λ) = 1). DS is
existential unforgeable against chosen message attacks if Adveuf−cma

DS,F (λ) is negligible
for every probabilistic polynomial time forger F .

21



Chapter 2 – Preliminaries

Sign(sk, m)

1 : R
$←− Coins(λ)

2 : cmt← Pcmt(sk;R)

3 : ch← H(cmt||m)
4 : rsp← Prsp(sk, cmt||ch;R)

5 : return cmt||rsp

V(pk, m, σ)

1 : Parse σ as cmt|rsp
2 : ch← H(cmt||m)
3 : return V(pk, cmt||ch||rsp)

Figure 2.2: Signature agorithm from Fiat Shamir

The inclusion of the random oracle OH(·) is not strictly required and its inclusion
depends on whether the digital signature requires the ROM or not. Since this is
the case for most signatures with provable security and for reasons that will more
be clear in Chapter 3 we included it in Definition 2.16.

2.6.1 Fiat-Shamir Transform

Firstly introduced in [FS87], the Fiat-Shamir Transform is a widespread heuristic,
used to design digital signature schemes starting from canonical identification
schemes. Intuitively, the idea is to replace the challenge communication step with
an hash function, taking as input the message and the commitment. Formally we
have the following definition:

Definition 2.17 (Fiat-Shamir transform). Let Id be a canonical identification
scheme, let c be the challenge length’s function and let H : {0, 1}∗ → {0, 1}c(k) be
a public hash function. The signature scheme DS uses the same setup and key
generation algorithm as the identification scheme, while the signing and verification
algorithms are the one of Figure 2.2, where, with abuse of notation, we called V

both the signature verification and the identification scheme verification.

In [Abd+02] it is proved that, if a non-trivial canonical identification scheme is
secure against eavesdropping attack, then the digital signature scheme obtained by
applying the Fiat-Shamir Transform is unforgeable under chosen message attacks1.

1In case the min-entropy of the commitments is less than super-logarithmic, it is always
possible to consider a modified version of the protocol where ch = H(cmt||Rcmt||m), where Rcmt is
a random string of appropriate length, such that cmt||Rcmt have the desired min-entropy. For
more details about this, see [Abd+02].

22



Chapter 2 – Preliminaries

2.7 Threshold Cryptography

2.7.1 Secret Sharing

Threshold Protocols are methods for distributing a “privilege” among a group
of participants, such that a minimum number of them (the threshold) is required
to exert it.

This can be done by sharing some values among the multiple parties using a
secret sharing schemes.

Informally speaking, a (t, n)- secret sharing scheme allows one dealer to share a
secret among n participants in a such a way that every set of at least t participants
is able to recover the secret, while any other smaller set do not get any information
about the secret.

We formalize the security of a secret sharing scheme with the following definition:

Definition 2.18. A (t, n)-secret sharing scheme between a dealer D, holding a
secret s and parties P1, ..., Pn, each of them holding a share si of s, is (perfectly)
secure if and only if

Pr(secret = s|{si}J) = Pr(secret = s′|{si}J)

for all J ⊆ {1, ..., n} such that |J | < t.

In the following, we implicitly suppose that any secret sharing scheme is secure
according to this definition.

A detailed discussion about secret sharing algorithm, their application and the
possibility of removing the dealer, obtaining a fully decentralized algorithm, is done
later in Chapter 4.

2.7.2 Thresold Signature

In a nutshell, a (t, n)-threshold signature is a multi-party protocol that allows
any t parties out of a total of n to compute a signature that may be verified against
a common public key.

23



Chapter 2 – Preliminaries

Definition 2.19 (Threshold Signature Scheme). A threshold signature scheme is
defined by the tuple

TDS = (Setup,KeyGen,TSign,V).

where:

• Setup(λ), on input a security parameters λ, it outputs public parameters pp.

• KeyGen(pp, n, t, λ), on input the number of participants n, the threshold t

and the security parameter λ, it outputs a public key pk and a secret sharing
ski of the corresponding secret key sk, having each participant Pi holding
ski.

• TSign(m, {ski}J) is a multi party protocol run by parties in J. On input an
agreed upon message m and shards ski from various players, it outputs a valid
signature σ if |J| ≥ t,

• V(pk, m, σ), on input a public key pk, a message m and a signature σ, it
outputs accept if the signature is valid, reject if not.

We ask that Pr(V(pk, m, σ) = accept|Sign({ski}J, m;R) = σ) = 1 when |J| ≥ t.

Informally, after an initial setup, any set of t parties who agree on a common
message m is able to jointly perform TSign to sign it. The resulting signature is
verifiable against the public key pk via the centralized verification algorithm V.

Depending on the nature of the KeyGen algorithm, one can distinguish:

• Threshold signatures with dealer: where a trusted dealer is in charge of
creating (sk, pk) and distributing the share ski to each player.

• Fully decentralized threshold signatures: where the KeyGen is a decen-
tralized protocol,

This existential unforgeability defined in Definition 2.16 can be extended also
for threshold digital signature schemes, making a distinction between active chosen
message attacks and passive chosen message attacks. This distinction is relevant
because the creation of the signatures requires the parties executing the algorithm
TSign to interact, and the two security notions capture distinct powers of the
adversary.

24



Chapter 2 – Preliminaries

(i) passive chosen message attacks : the adversary follows the protocol honestly
and do not deviate from it. It can learn all the information stored, sent
and received by the corrupted parties. This adversary is often referred as
“Honest-but-Curious ” or “Semi-Honest ” .

(ii) active chosen message attacks : this attack model captures an adversary who
can take full control over the device of the corrupted parties who might
take part in the signing process. This adversary can deviate from an honest
protocol execution.

Formally we have the following definitions:

Definition 2.20. Let TDS = (Setup,KeyGen,TSign,V) be a (t, n)-threshold digital
signature scheme with challenge length c and security parameter λ. Let F be a
forger having access to a signing oracleOH

view−TSign(·) and to the random oracleOH(·).
Define the experiment Expp−euf−cma

TDS,F (λ) as per Figure 2.3. Define the advantage of
F as:

Advp−euf−cma
TDS,F (λ) = Pr(Expp−euf−cma

TDS,F (λ) = 1)

We say that TDS is existentially unforgeable under passive chosen message
attacks if Advp−euf−cma

TDS,F (λ)(·) is negligible for every probabilistic polynomial time
forger F .

Definition 2.21. Let TDS = (Setup,KeyGen,TSign,V) be a (t, n)-threshold digital
signature scheme with challenge length c and security parameter λ. Let F be a
forger having access to a signing oracle OH

TSign(·) and to the random oracle OH(·).
Define the experiment Expa−euf−cma

TDS,F (λ) as per Figure 2.3. Define the advantage of
F as:

Adva−euf−cma
TDS,F (λ) = Pr(Expa−euf−cma

TDS,F (λ) = 1)

We say that TDS is existentially unforgeable under active chosen message attacks
if Adva−euf−cma

TDS,F (λ)(·) is negligible for every probabilistic polynomial time forger F .

Roughly speaking, F is able to corrupt at most t−1, receiving their private keys.
Then it can interact with an hash oracle OH(·) and with a signing oracle playing
the role of the honest players in Jh, not controlled by F . After a polynomially
large number of query, F outputs a signature (m, σ) and wins the game if and only
if it is a new valid signature.

Informally, the difference between the active and the passive security is that in
the passive case F queries a view oracle OView−TSign(J,Jh, ·)H that provides F of

25



Chapter 2 – Preliminaries

Expp−euf−cma
TDS,F (λ) :

1 : (pp)
$←− Setup(λ)

2 : ({ski}, pk)
$←− KeyGen(pp, n, t)

3 : (J, {ski}i∈J)
$←− F(pp, pk, n, t)

4 : // |J| < t

5 : (m, σ)← FOview−TDS(pk,J,Jh)
OH(·),OH(·)

6 : if m ∈ M

7 : return 0

8 : else

9 : return V(pk, m, σ)

Expa−euf−cma
TDS,F (λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}, pk)
$←− KeyGen(pp, n, t)

3 : (J, {ski}i∈J)
$←− F(pp, pk, n, t)

4 : // |J| < t

5 : (m, σ)← FOTDS(pk,J,Jh)
OH (·),OH(·)

6 : if m ∈ M

7 : return 0

8 : else

9 : return V(pk, m, σ)

Oview−TDS(pk,J,Jh)

Provides F with the view of parties in J who

interact with the parties in Jh in a honest

execution.

OTDS(pk,J,Jh)

Controls the parties in Jh, and

interacts with F controlling the

parties in J.

Figure 2.3: Experiments for the unforgeability of a threshold digital signature
against active and passive attacks. Jh ⊂ {1, ..., n} \ J denotes the set of honest
parties that the oracle controls and that the adversary can choose adaptively before
each query. M is the set of messages queried by F to the sign oracle.

the view of executions of TSign on input a polynomially large number of messages
which the adversary chooses adaptively. The views comprise every state of each
party i with i ∈ J and every public message. In the active case, the adversary is
allowed to interact with the oracle OTDS(pk,J,Jh) and participate in the signature
computation: in particular at every step prescribed by the signing algorithm the
adversary sends messages of its choice on behalf of the corrupted party to the
oracle, acting as the honest parties.

Unless otherwise specified, we always mean active security when we talk about
unforgeability in the context of threshold signatures.

26



Chapter 2 – Preliminaries

2.8 Security Model for MPC

Informally, the goal of MPC protocols is to enable a set of parties, each having
its own input, to jointly compute a function f over their inputs without leaking
information about them. As such, adversarial models should assume the corruption
of some parties, with the purpose, for example, of discovering the inputs of some of
the remaining parties or to cause errors in the output computation.

Numerous security definitions for MPC protocols have been proposed so far.
Arguably, the main security guarantees required by the distinct definitions are the
following.

• Privacy: no party should be able to obtain any information other than the
output of the function f .

• Correctness: the output received by each party should be correct, under the
assumption that all of them behave honestly.

• Guarantee of output: corrupted parties should not be able to prevent honest
parties from receiving a correct output.

• Fairness: malicious parties should receive the correct output of f if and only
if the honest parties receive the correct output of f .

• Independence of input: the input chosen by a corrupted party should be
independent from those of honest parties.

Whether the list above is complete or not is difficult to assess. For this reason,
the Ideal/Real World paradigm has been introduced.

Suppose that parties P1, ..., Pn want to jointly compute the output of a function
f on their inputs x1, . . . , xn. Let y1, . . . , yn be the outputs viewed by parties
P1, . . . , Pn, respectively. In the Ideal World, they securely compute it by privately
sending their inputs to a fully-trusted third party F, called functionality. Then F
simply computes f(x1, ..., xn) and returns the result to all parties. In particular,
y1 = · · · = yn. In this scenario, an adversary that controls only a subset J ⊂
{P1, .., Pn} of the parties can learn no more than their inputs and f(x1, ..., xn).

In the Real World, however, all parties communicate with each other using a
protocol and there is not any fully-trusted third party. In this scenario an adversary
can corrupt parties and act in many different ways (according to the threat models,
which we will cover below). In this scenario, the yi’s may be distinct (so there might
be an incorrect output). The Ideal World is then used as a “benchmark" against

27



Chapter 2 – Preliminaries

which evaluating security of MPC protocols. More precisely, an MPC protocol is
considered secure if any effect that an adversary can achieve in the Real World can
also be achieved by a corresponding adversary in the Ideal World. In other words,
the security of an MPC protocol in the real world (under a set of assumptions)
should be equivalent to that in the ideal world.

Several security models have been introduced so far, depending on the adver-
sary’s behaviour and power. In this document, we focus on the most common
scenarios: the semi-honest-adversary security and the malicious-adversary security.
The former is usually the minimum security requirement for MPC protocols, even
though the latter represents a compromise between enhanced security and efficiency.

Semi-Honest-Adversary Security A semi-honest adversary A is supposed
to corrupt parties, but must follow the protocol. For this reason, semi-honest
adversaries are also said to be passive (or honest but curious), in the sense that
they cannot deviate from the prescribed execution of the protocol and may only
try to learn as much as possible from the messages they receive from other parties.
Note that this may imply that several colluding corrupt parties pool their views
together in order to learn information.

Definition 2.22. An MPC protocol π securely computes a function f in the
presence of a semi-honest adversary if there exists a simulator S such that, for every
proper subset of corrupted parties J and all inputs x1, ..., xn, the two distributions

Realπ(λ,J, x1, ..., xn)

and
IdealF,S(λ,J, x1, ..., xn)

are indistinguishable, where

• λ is the security parameter,

• F is the functionality that computes f ,

• IdealF,S(λ, J, x1, ..., xn) outputs both S(J, (xi, yi)|i ∈ J), with yi the Pi’s out-
put produced by F on input (x1, . . . , xn),

• Realπ(λ, J, x1, ..., xn) outputs {viewi|i ∈ J}, (ȳ1, ..., ȳn), with
viewi the final view of the party Pi, and ȳi its final output (obtained by
running the protocol honestly).

28



Chapter 2 – Preliminaries

Malicious Adversary A malicious adversary may instead corrupt parties and
deviate arbitrarily from the protocol. It is important to notice that when corrupted
parties deviate from the protocol there is the possibility that honest parties’ outputs
are affected. No guarantees can be made on the final outputs of corrupted parties,
since they can output whatever they like.

With the same notation of definition Definition 2.22 we have:

Definition 2.23. A protocol π securely computes a function f in the presence of a
malicious adversary if for every Real World adversary A there exists a simulator S
with corrupt(S) = corrupt(A) = J (where corrupt(A) denotes the set of parties
that are corrupted, while corrupt(S) denotes the set of parties that are corrupted
by the ideal adversary, i.e. S) such that, for all honest parties possible inputs
{xi|i ̸∈ J}, the distributions:

Realπ(λ,J, {xi|i ̸∈ J})

and
IdealF,S(λ,J, {xi|i ̸∈ J})

are indistinguishable.

29





Chapter 3

Generalized Fiat-Shamir Transform

3.1 Introduction

The concept of distributed identification protocol has very few example in cryp-
tography: it was firstly introduced in [BO+88], by Ben-Or, Goldwasser, Kilian, and
Wigderson who introduced the concept of multi prover zero knowledge proof.They
are quite limited in scope and deal with protocols with only two provers who do
not communicate after interacting with the verifier. The concept was later revised
by Desmedt, Di Crescenzo, and Burmester in [DDCB95], who maintained the
setting of no communication between the provers, and by Pedersen in [Ped91],
which introduced the concept of multiple provers in the context of undeniable
signatures. Pedersen focuses on robustness of the obtained signature and does not
make any consideration about the security of threshold identification schemes and
their relation with threshold signatures. Lastly, Keller, Mikkelsen, and Rupp in
[KMR12] introduced the concept of multiple prover with combiner : each of these
provers communicates with a combiner, a trusted party that combines the received
messages and handle the communication with the verifier, effectively playing the
role of the prover in a standard ZKP. In a certain sense, the idea of using a combiner
can be seen more as an ideal functionality in the Ideal World than a feasible protocol
in the Real World Section 2.8.

Finally, a completely different approach is presented in [Bau+22] by Baum,
Jadoul, Orsini, Scholl, and Smart. Authors introduce the concept of multiple
verifiers that cooperate to verify a proof made by a single prover.

In this chapter we flip the last approach [Bau+22] generalizing the work in
[KMR12], introducing the notion of distributed identification protocol. In this

31



Chapter 3 – Generalized Fiat-Shamir Transform

context, the knowledge of the witness is shared among multiple provers cooperating
to produce a proof, that will be later verified by a single verifier. Contrary to the
previous works such as [BO+88; DDCB95], we allow for communication between
the provers even after the challenge step and we do not rely on the presence of
combiner. Indeed we formalize the concept of identification protocol in the MPC
setting, where each prover engage in an MPC protocol with the other provers and
the verifier. In this setting we define the concept of security against impersonation
under passive (and active) attacks Definition 2.14 and we show that our definitions
can lead to secure threshold signature schemes, miming the approach used in the
centralized case in [Abd+02].

Finally, we propose a convenient way to prove the security of a threshold
identification protocol: in the same way that centralised identification protocols are
usually proved secure by proving the honest verifier zero knowledge and the special
soundness of the underlying sigma protocol, we provide analogous definitions for
the distributed case and obtain similar results.

The results of this chapter are contained in [BF24], that is currently under
review for CRYPTO2024.

3.2 Distributed Identification Schemes and Fiat-
Shamir Transform

In this section, we extend the definition of identification scheme to threshold
identification scheme and propose a generalisation of the Fiat-Shamir Transform
for threshold signature schemes. The generalisation is not straightforward and
requires additional hypotheses about the structure of the threshold identification
scheme, this is formalised in Section 3.2.2.

3.2.1 Threshold identification schemes

We generalise Definition 2.12 and define protocols that allow multiple provers
P1, ..., Pn, holding a secret sharing of a secret sk, to prove their joint knowledge
of sk. The idea is to replace both Pcmt and Prsp with multi-party protocols that
fulfill the same role (called TPcmt and TPrsp). In particular TPcmt is run by a set
J of provers to jointly produce a common commitment cmt, then, after receiving
a challenge ch, the parties in J jointly run TPrsp to produce a response rsp. We
emphasise that, as with threshold signatures, the verifier remains centralised in
this setting.

32



Chapter 3 – Generalized Fiat-Shamir Transform

Definition 3.1 (Canonical (t, n)− identification protocol). Let P1, . . . , Pn be a set
of players. A threshold identification protocol is defined by the tuple

TId = (Setup,KeyGen,TPcmt,TPrsp,V)

• Setup(λ): on input a security parameter λ, it outputs public parameters pp.

• KeyGen(n, t, pp;R): is a probabilistic key generation algorithm that takes
as input the public parameters pp, the number of participants n and the
threshold t, and outputs a public key pk and a secret sharing {ski}[n] of the
secret key sk, with each participant Pi holding ski;

• TPcmt({ski}J;R)1: is a probabilistic multi-party protocol run by parties in J
called threshold prover commitment. On input the private keys ski it outputs
a common commitment cmt;

• TPrsp({ski}J, cmt, ch;R): is a probabilistic multi-party protocol run by par-
ties in J called threshold prover response. It takes as input shards ski from
the various player, a commitment cmt and a challenge ch, and outputs a
valid response rsp if |J| ≥ t;

• V(pk, cmt, ch, rsp): is a centralised protocol called Verifier which takes a
public key, a commitment cmt, a challenge ch and a response rsp as inputs,
and outputs accept or reject.

We ask that

Pr(V(pk, cmt, ch, rsp) = accept|TPrsp({ski}J, cmt, ch) = rsp) = 1

when |J| ≥ t and where we omitted the randomness R for the sake of readability.

From now on, we suppose the presence of a trusted dealer, thus both the Setup
and KeyGen are not considered in our discussion. We show later, in Chapter 4 a
possible way to achieve a secure decentralised secret sharing. We do this since we
want to obtain general results about the security of threshold identification scheme,
making as little hypotheses as possible about its structure. For this reason, we put
ourselves in a situation where parties have a secure sharing of the secret sk and we
analyze how to keep the security during the proof systems.

1to be precise, R should be a vector, since each party in J must have its own randomness.
For sake of readability we simply write R. For the sake of readability we always write a single
randomness, the correct meaning will be clear from the context.

33



Chapter 3 – Generalized Fiat-Shamir Transform

3.2.2 Requirements on TPcmt

Just as we need commitment with high min entropy in the centralised case, we
need an analogous idea for the distributed case. However, it is not enough to ask
for a super-polynomial challenge space, since the adversary can now participate in
the TPcmt protocol and thus can bias the distribution. This is especially important
for active security, as we will see later.

First of all, we want to characterise protocols that produce “good” commitments
when at least one party involved is honest. This captures the idea of the non-
triviality of the identification protocols in the centralised case. We refer to this
class of TPcmt as unpredictable.

Definition 3.2 (Unpredictable TPcmt). Let TId be a (t, n)-threshold identification
scheme with TId = (Setup,KeyGen,TPcmt,TPrsp,V). We say that TPcmt is unpre-
dictable, if and only if the output cmt has super-logarithmic min-entropy when at
least one party is honest.

Observation 3.1. Notice that, at best, the distribution of cmt is uniform in the
commitment space X, so also for the distributed case we need |X| to be super
polynomial. However this is not enough, indeed suppose that X = Fp, the finite
field having p elements, for a large enough p. Suppose that TPcmt works as follows:
first each party Pi chooses xi ∈ Fp and then sends it to the other parties. Define
cmt =

∏
i xi. This is clearly not unpredictable, since an adversary sending 0 can

force cmt = 0 whatever the other xi are. While this is a problem in the active case,
when the adversary is able to decide its own input, this would not be a problem
in the passive one, where each party choose xi randomly. Still, asking for simply
super polynomial size of X is not enough even in the passive case. Indeed, suppose
that cmt = mini({xi}J), where we fixed an order over Fp (it is enough to consider
Fp as Z and consider Z = [p]. This protocols clearly does not outputs data with
uniform distribution and thus, depending on p, could have min-entropy lower than
super-logarithmic.

One way to design an unpredictable TPcmt algorithm is to require each party Pi

to produce and simultaneously publish a partial commitment cmti. Then cmt is
computed using with an agreed upon function such that if at least one party Pj in
the group is honest, then cmt has high min-entropy.

Formally we have the following definition:

Definition 3.3 (Commit-Release TPcmt). Let TId be a threshold identification
scheme with TId = (Setup,KeyGen,TPcmt,TPrsp,V). We say that TPcmt is commit-

34



Chapter 3 – Generalized Fiat-Shamir Transform

release if and only if the TPcmt protocol is unpredictable and has the following
structure:

• TPCom
cmt (ski;R): a non interactive protocol run locally by each party that

outputs a one-way binding commitment (Definition 3.4) Com(ssid||cmti)
where cmti is picked uniformly at random in X, and ssid is a session identifier
shared among all the parties involved in the execution.

• TPDecom
cmt ({Com(ssid||cmti)}J): an interactive deterministic protocol run by

all the parties involved in the threshold identification execution that re-
lease cmti, opening Com(ssid||cmti), and output a common cmt obtained
deterministically by combining the partial commitments cmti.

Note that it is required for the commitment scheme to be binding, so that
once created the cryptographic commitment to cmti, Pi can only reveal its partial
commitment, but the hiding property is not required [KL20]. Indeed, we ask
for a weaker privacy property, namely the one-way property. A commitment
with randomness length r is one-way when if, when considering the relation L ⊆
(M× {0, 1}r)× X such that ((m, R), x) ∈ L if and only if Com(m, R) = x, it can be
modeled as a (one-way) key generation algorithm for L, as per Definition 2.5. In
particular we have the following definition:

Definition 3.4 (One-way commitment scheme). Let (Com,Decom) be a commit-
ment scheme. We say that (PGen,Com,Open). Consider the following experiment:

ExpowCom,A(λ) :

1 : m
$←− M

2 : R
$←− {0, 1}r

3 : x
$←− Com(m, R)

4 : m′
$←− A(c)

5 : return m′ = m

Define the advantage of an adversary A playing the game above as

Advow
Com,A(λ) = Pr[ExpowCom,A(λ) = 1].

We say that Com is one way if Advow
Com,A is negligible for every probabilistic

polynomial time adversary A.

35



Chapter 3 – Generalized Fiat-Shamir Transform

It is pretty easy to see that an hiding commitment is also one-way. Formally:

Proposition 3.1. If (Com,Decom) is an hiding commitment scheme as per Defi-
nition 2.10, then it is one-way.

Proof. A′
ow Ahide Chide

x0, x1
$←− X x0, x1

b←$ {0, 1}

c c← Com(pp, xb)

c forward c to A′

Guess x′ x′

If: x′ = xB

set b′ = B

Else: b′
$←− {0, 1}

b′ Accept if b = b′

Figure 3.1: Description of the adversary A of the hiding game which uses the
adversary A′ of the one-way experiment as a subroutine.

We show that an adversary A′ who wins the experiment ExpowCom,A(λ) : (λ)

with non-negligible advantage ν(λ) can be used as a subroutine of an adversary A
capable to win the hiding experiment with non-negligible advantage.

Figure 3.1 shows the reduction schematically. First A generates two messages
m0, m1 and sends them to the challenger of the hiding game, receiving cmt =

Com(xb, R) for a random unknown bit b. A can simulate the challenger of the
one-way experiment by sending the commitment to A′ which returns m′ to A. If
m′ = mi for some i, A sets b′ = i. Otherwise A picks a random bit b′.

Clearly the simulation is correct, the only difference is that A does not know
the commited value inside cmt, however this is indistinguishable from the real game
since cmt is generated honestly by the challenger for the hiding game.

36



Chapter 3 – Generalized Fiat-Shamir Transform

Now we show that A wins the hiding experiment with non-negligible advantage.
When m′ ̸= mi, A′ has lost the one-way game, and this happens with probability
at most p1 < 1− ν for a non-negligible function ν. With probability greater ν(λ)

instead A′ returns m′ = mb. In this case either A′ wins the one-way experiment, and
thus A wins the hiding experiment, or it looses its experiment but guesses x1−b,
the other message that A randomly picked during the hiding experiment. The
second case, where A′ does not win and outputs the other message m1−b happens
with probability 1

|X| , that is negligible when X has super-polynomial size.

To summarize,

Pr(A wins) = Pr((b = b′ ∧ ((x′ ̸= x0) ∧ (x′ ̸= x1))) ∨ x′ = xb) =

= Pr(b = b′ ∧ ((x′ ̸= x0) ∧ (x′ ̸= x1))) + Pr(x′ = xb) =

= Pr(b = b′|(x′ ̸= x0) ∧ (x′ ̸= x1)) Pr(((x
′ ̸= x0) ∧ (x′ ̸= x1))) + ν =

=
1

2

(
1−

(
ν +

1

|X|

))
+ ν =

1

2
+

1

2
ν − 1

2|X|

therefore the advantage of A in winning the hiding experiment is 1
2
ν − 1

N
which is

non-negligible.

Security notions for threshold identification schemes.

Let TId be a threshold identification protocol, with public key pk and secret
keys {ski}i∈[n], we associate to TId two oracles that will be used in the experiments
that define the security notions below:

• a transcript generation oracle Oview−TId(pk,J,Jh) that takes as input the
public key, two non-empty sets of parties J and Jh such that |J ∪ Jh| = t
and returns random transcript of an honest execution of TId, including all
the public messages and the internal state of parties in J.

• a threshold identification oracle OTId(pk,J,Jh) that takes as input the public
key, two non-empty sets of parties J and Jh such that |J ∪ Jh| = t. When
an adversary A queries OTId, the oracle interacts with A in an execution of
TId. In particular, A controls the parties in J, while OTId controls both the
parties in Jh and the verifier in real execution of the protocol.

These two oracles aim to capture the differences between a passive adversary
and an active one. In particular, when A queries Oview−TId, it is not able to

37



Chapter 3 – Generalized Fiat-Shamir Transform

decide the messages sent by the corrupted parties (J), it simply learns all their the
internal states and the messages they received. Instead OTId allows the adversary
to participate in the execution of TId, controlling all the parties in J, while the
oracle controls all the honest parties (Jh).

Definition 3.5 (Security against impersonation under passive attacks). Let TId be
a (t, n)-threshold identification scheme with TId = (Setup,KeyGen,TPcmt,TPrsp,V),
having challenge length c and security parameter λ. Let A be an impersonator
having access to a threshold transcript generation oracle Oview−TId(·).

We define the advantage of A in winning the experiment Expp−imp
TId,A (λ) described

in Figure 3.2 as
Advp−imp

TId,A (λ) = Pr(Expp−imp
TId,A (λ) = 1)

We say that TId is secure against impersonation under passive attack if Advp−imp
TId,A

is negligible for every probabilistic polynomial time impersonator A.

Definition 3.6 (Security against impersonation under active attack). Let TId be a
(t, n)-threshold identification scheme with TId = (Setup,KeyGen,TPcmt,TPrsp,V),
having challenge length c and security parameter λ. Let A be an impersonator
having access to a threshold identification oracle OTId(·).

Define the advantage of A in winning the experiment Expa−imp
TId,A (λ) described in

Figure 3.2 as
Adva−imp

TId,A (λ) = Pr(Expa−imp
TDS,A(λ) = 1)

We say that TId is secure against impersonation under active attack if Adva−imp
TId,A

is negligible for every probabilistic polynomial time impersonator A.

There are two main differences between the two definitions: one is about the
oracle A can interact with and the second one is about when they can interact
with it.

Indeed, in both cases A can corrupt at most t − 1 parties and obtain their
private keys. However, in the active case, A interacts with the identification
oracle OTId(pk,J,Jh) that plays the role of the honest parties (that the adversary
can adaptively choose), while in the passive case it can only query the transcript
generation oracle Oview−TId(pk,J,Jh), that provides A with transcripts of honest
executions of the identification protocol.

The second difference is that, whereas in the passive case A can be assumed to
receive all the transcripts from the Oview−TId(·) before it creates the commitment

38



Chapter 3 – Generalized Fiat-Shamir Transform

Expp−imp
TId,A (λ) :

1 : (pp)
$←− Setup(λ)

2 : ({ski}, pk)
$←− KeyGen(pp, n, t)

3 : (J, {ski}i∈J)
$←− A(pp, pk, n, t)

4 : // |J| ≤ t− 1

5 : st||cmt $←− AOview−TId(pk,J,Jh)

6 : ch
$←− {0, 1}c(λ)

7 : rsp
$←− A(st, ch)

8 : return V(pk, cmt||ch||rsp)

Expa−imp
TId,A (λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}, pk)
$←− KeyGen(pp, n, t)

3 : (J, {ski}i∈J)
$←− A(pp, pk, n, t)

4 : // |J| ≤ t− 1

5 : st||cmt $←− AOTId(pk,J,Jh)

6 : ch
$←− {0, 1}c(λ)

7 : st′
$←− AOTId(pk,J,Jh)

8 : rsp
$←− A(st′, ch)

9 : return V(pk, cmt||ch||rsp)
Oview−TId(pk,J,Jh)

Provides I with the view of parties in

J who interact with the parties in Jh.

OTId(pk,J,Jh)

Controls the parties in Jh, and

interacts with I controlling J.

Figure 3.2: Experiments of active and passive impersonation attacks. Jh ⊂
{1, ..., n} \ J denotes the set of honest parties that the oracle controls and that the
adversary can choose adaptively before each query.

39



Chapter 3 – Generalized Fiat-Shamir Transform

TSign(m, {ski}i∈J):

1 : R
$←− Coinst(λ)

2 : cmt← TPcmt({ski}i∈J;R)

3 : ch← H(cmt||m)
4 : rsp← TPrsp({ski}i∈J, cmt, ch;R)

5 : return cmt||rsp

V(pk, m, σ):

1 : Parse σ as cmt|rsp
2 : ch← H(cmt||m)
3 : return V(pk, cmt, ch, rsp)

Figure 3.3: Signing and verification algorithm for a threshold signature obtained
by using the distributed Fiat-Shamir transform

cmt of the impersonation attempt, in the active case A is allowed to interact
with the identification oracle OTId(·) even after it has sent the commitment of
the impersonation attempt and has received the challenge ch from the verifier
(Figure 3.2, Expa−imp

TId,A (λ), line 7). This choice is intended to broaden the options of
an attacker running the experiment as much as possible.

3.2.3 Distributed Fiat-Shamir Transform

We are now ready to generalise the definition of Fiat-Shamir transform presented
in [Abd+02] to the distributed case. The definitions above allows for a very
natural and intuitive construction: to sign a message, the provers run the prover
commitment protocol TPcmt, compute the challenge as H(cmt||m) as in the centralised
case and finally they jointly compute the signature performing TPrsp. Notice that,
as expected, the threshold signature obtained maintains the same threshold, since
TPrsp require t participants. The verification step is adapted in the same way as
the standard Fiat-Shamir Transform.

Definition 3.7 (Distributed Fiat-Shamir transform). Let TId be a canonical
threshold identification scheme with TId = (Setup,KeyGen,TPcmt,TPrsp,V).

We define the threshold digital signature TDS derived from the canonical
(t, n)−identification scheme TId using the Fiat-Shamir transform as the tuple
TDS = (Setup,KeyGen,TSign,V) where the Setup and KeyGen algorithms are the
same as the identification scheme, the output length of the hash function is equal to
the challenge length of the identification scheme and the signing and the verification
algorithms are defined as per Figure 3.3 (J ≥ t).

40



Chapter 3 – Generalized Fiat-Shamir Transform

3.3 Security of the Distributed Fiat-Shamir Trans-
form

In this section, we state and prove the main result of this chapter: the relation
between the security of the threshold identification protocol and the security of the
threshold signature obtained by applying the distributed Fiat-Shamir Transform.
First, we analyse the security against active adversaries in Section 3.3.1 , then we
deal with the passive case in Section 3.3.2, for which we only provide a proof sketch,
since it is almost identical to the active one.

3.3.1 Active security

The need to deal also with active adversaries is the main difference between the
multi-party setting and the centralised one from [Abd+02]. In the centralised case,
we do not need to consider adversaries who are able to influence the distribution of
messages during the sign requests (in fact, the adversary only receives the signatures
of the requested messages), while in the distributed case we must also consider this
possibility. For this reason we are not able to treat the identification protocol in a
“black-box” way, but we need to make some assumptions about the how the parties
interact, namely about the TPcmt protocol, as anticipated in Section 3.2.2. This
leads to a security theorem that is not an equivalence result, as is possible in the
centralised case instead. While we are not able prove that our hypothesis about
the structure of the protocol is the minimal one, the proposed structure is perfectly
reasonable and shared by the vast majority of threshold signatures [CKM23; Lin22;
Bat+22a].

Theorem 3.1 (Active security). Let TId = (Setup,KeyGen,TPcmt,TPrsp,V) be
a canonical threshold identification scheme. Consider the associated signature
scheme TDS = (Setup,KeyGen,TSign,Ver) as per Definition 3.7. Then the following
implications hold:

(i) (TId =⇒ TDS): if TPcmt satisfies the commit-release property as per
Definition 3.3 and TId is secure against impersonation under active attacks,
then TDS is secure against active chosen-message attacks.

(ii) (TDS =⇒ TId): If TDS is secure against active chosen-message attacks,
then TId is secure against impersonation under active attacks.

We prove the two implications separately, providing a game-based proof.

41



Chapter 3 – Generalized Fiat-Shamir Transform

Lemma 3.1 (TId =⇒ TDS). Under the assumptions of Theorem Theorem 3.1, if
TPcmt satisfies the commit-release property and TId is secure against impersonation
under active attacks, then TDS is unforgeable against active chosen-message attacks.

First, we give an intuitive idea of the proof, with the help of Figure 3.4. The
impersonator I who participates in the experiment Expa−imp

TId,I interacts with a
challenger CTId, who initialises the experiment sends the challenge ch∗ during the
impersonation attempt, and the oracle OTId, which plays the role of the honest
parties when I asks to take part in the threshold identification protocol.

The goal is to use the forger F for the distributed signature to win Expa−imp
TId,I . To

do so, I must simulate the experiment Expa−euf−cma
TDS,F , therefore it should simulate the

challenger CTDS, the random oracle OH and the signature generation oracle OTDS.
In the picture they are denoted with a bar, to better visualize that I simulates
them and are not real interaction with the oracles.

The simulation comprises four parts, each of them denoted by a different
enumeration system. Namely

Numbers (1)-(6): the initialisation of the security game of TId. I uses the
same data in the initialisation of TDS for F . This allows I to correctly simulate
CTDS. Notice that I corrupts the same parties chosen by F .

Lower case letters (a)-(o): the simulation of the sign queries made to OTDS

by F . In particular. F sends to I a sign query for m, asking for the cooperation
of the parties in Jh. I, to simulate the sign oracle, starts an interaction with
OTId asking for the same Jh. F forwards the messages received by OTId to
F (steps (c-d) and (g-h)) and vice versa (steps (e-f) and (i-j)). In step (k),
when I receives the challenge ch from OTId, it updates the hash table setting
HT[m||cmt] = ch. Finally I carries out the whole signing protocol with the
support of OTId.

Greek letters (α)− (β): the simulation of the hash queries. I can safely
answer randomly, except when asked multiple times on the same message. For
this reason I populates an hash table HT to keep track of all the previous
queries and responds accordingly..

The only exception is during the fp-th hash query. In this case I parses x as
m∗||cmt∗ and starts the impersonation attempt (Capital letters).

Capital letters (A)-(D): I starts the impersonation attempt during the fp-th
hash query of F (step (A) and (B)). After a polynomial number of hash queries
and sign queries the forger F outputs a forgery (ĉmt, ĉh, r̂sp) (step (C)). At

42



Chapter 3 – Generalized Fiat-Shamir Transform

this point I uses it in its impersonation attempt. In particular I sends r̂sp to
CTId (step (D)) as response.

Proof. Let F be a forger that wins the Expa−euf−cma
TDS,F (λ) with non-negligible advan-

tage ϵ(λ). First, we require that F some additional properties, as in [Abd+02]:

• all of its hash queries have the form cmt||m with cmt ∈ X, m ∈ {0, 1}∗;

• before outputting a forgery (m, cmt||rsp), F has performed an hash query for
(cmt||m);

• if F outputs (m, cmt||rsp), m was never a sign query.

It is easy to see that if there exists a forger F ′ which does not satisfy these
requirements, it is possible to build a forger F which does satisfy the requirements
using F ′ as a subroutine, as discussed in [Abd+02], Proof of Lemma 3.5.

The proof is structured as follows: first we describe how the simulation works,
in particular we show how I can simulate the challenger of the experiment
Expa−euf−cma

TDS,F (λ) both in the initialisation and in the training phase. Then, we
show that the simulation is successful with overwhelming probability, and we show
how I can exploit F ’s forgery to carry out its impersonation attempt. Finally, we
show the advantage that I has in winning Expa−imp

TId,I (λ).

Initialisation. I receives from CTId the public parameters pp of the identification
protocol and the public key pk. I forwards this information to F and initializes
the hash query counter hc = 0, the sign query counter sc = 0, an empty hash table
HT = ∅ and an empty query table QT = ∅. Lastly, I generates a random forge
pointer fp ∈ [qh(λ)].

The hash table and the query table are used by I to maintain the coherence
during the simulation, avoiding contradictions in the simulation (e.g. to avoid
answering different hash queries with the same input with two different digests).
The forge pointer is guess made by I. Since F performs an hash query with input
the message it decides to forge, I guesses ahead of time the position of this query.
We show later that the guess is correct with non negligible probability and that a
correct guess leads to the successful execution of the impersonation attack.

43



Chapter 3 – Generalized Fiat-Shamir Transform

Figure 3.4: High level description of the impersonator I using a forger F as a
subroutine.

44



Chapter 3 – Generalized Fiat-Shamir Transform

Training phase. F chooses the the set J (with |J| ≤ t− 1) of actors it wants to
control. I chooses the same set J and sends it to CTId, receiving the secret keys of
the players in J, finally I forwards this information to F . This simulate perfectly
the first three lines of the Expa−euf−cma

TId,F game of Figure 2.3 of Definition 2.21.

Now we need to show how can I can simulate the random oracle OH and the
sign oracle OH

TDS in the EUF-CMA security game. In the first case I uses the hash
table HT to answer, while in the second I performs an identification query to its
oracle OTId using the same input as part of the Expa−imp

TId,I (λ) game. Specifically, the
simulation works as follows:

• Hash Query: when F performs an hash query to OH on input x, I returns
HT[x] if it is already defined. Otherwise, I increases the counter hc by 1 and
sets QT[hc] = x, then, if hc ̸= fp, I picks uniformly at random d ∈ {0, 1}c(λ),
sends it to F and sets HT[x] = d. If hc = fp, instead of answering randomly,
I starts the impersonation attempt. In particular, it parses x as cmt∗||m∗,
sends cmt∗ to the challenger CTId as the first move of the impersonation
attempt of the Expa−euf−cma

TDS,F (λ) game and receives back a challenge ch∗. In
this case, I sets HT[x] = ch∗ and sends ch∗ to F . This procedure allows
I to perfectly simulate the random oracle OH. Indeed, the only difference
between a real execution and the simulation is during the fp-th query. In this
case, instead of choosing a random value, as a real random oracle, I forwards
the value ch∗ received from CTId. However, since ch∗ is chosen uniformly at
random in the challenge space, this is indistinguishable from a real execution.

• Sign Query: to start a sign query, F chooses Jh, the set of the honest
players who participates in the computation of a signature of m alongside
parties in J. In theory, F could include only a proper subset of J in the query,
instead of the whole J. Since the simulation is identical in both cases, we
suppose that F decides to include the whole set J, for the sake of readability.

After receiving J,Jh and m, I increases the signature counter sc and sends
to OTId(pk,J,Jh) a request to perform the threshold identification protocol.
The impersonator I acts as a “man-in-the-middle” between F and OTId, and
repeats the following operations for each step prescribed by the algorithm
TPcmt:

(i) OTId produces the messages for the participants in Jh and sends them
to I in the execution of the steps prescribed by TPCom

cmt ;

45



Chapter 3 – Generalized Fiat-Shamir Transform

(ii) I forwards to F the messages received from OTId;

(iii) F produces the messages executing TPCom
cmt on behalf of the corrupted

participants in J.

(iv) I forwards the messages received from F to OTId(pk, J,Jh).

These steps are repeated for the protocol TPDecom
cmt , leading to the computation

of the shared cmt. Notice that, in general, we should assume that the
adversary F always speaks last and thus obtains the output before I. This
could lead to collision, however this happen with negligible probability thanks
to the structure of TPcmt, as we show later. After obtaining cmt, I forwards
it to OTId, outputs a random challenge ch. I sets HT[cmt||m] = ch. The
simulation is then repeated during the computation of TPrsp.

This concludes the description of the simulation EUF-CMA game. Since
TId and TDS are identical, the messages sent by I to F forms a perfect
simulation and are indistinguishable from messages in a real execution. The
only exception is when I update the hash table, setting HT[cmt||m] = ch. We
now show that this step leads to failure with negligible probability, making
the simulation indistinguishable from a real execution.

Simulation failure. We have shown that the simulation of I fails only if
I is forced to overwrite the hash table HT during a sign query performed by
F . This can be due to a previous sign query or a previous hash query, we
treat the two cases separately.

(i) During a sign query: this means that before producing the commit-
ment cmt during the current sign query for m, F has performed another
sign query for m, having the same cmt. For n ∈ [qs(λ)], let Xn ⊂ X the
set of commitments cmt generated during the previous n−1 sign queries,
then the failure probability of the simulation during sign query n for a
collision of the commitment with the commitment of a previous query
is:

Pr[cmt ∈ Xn] =
n− 1

2β(λ)
.

(ii) During an hash query: this means that F has already performed an
hash query for cmt||m. This can happen in three circumstances, either
before the sign query, during the sign query but before the execution of
TPDecom

cmt or after the execution of TPDecom
cmt .

46



Chapter 3 – Generalized Fiat-Shamir Transform

– The first case happens with negligible probability. Since TPcmt has
high min-entropy, the probability of guessing cmt is negligible.

– The third case also happens with negligible probability. Indeed,
since Com is one-way, the probability of guessing cmt is negligible
even after knowing Com(cmti) at the end of TPCom

cmt .

– The second case is the trickier one. Indeed, at the end of TPDecom
cmt ,

F knows the value of cmt before I and thus can ask for a sign query
on m||cmt without I realizing it and causing a collision with high
probability. To avoid that, I rewinds the adversary. In particular, I
follows the simulation normally,and stores the challenge ch received
from the oracle OTId. If F ask for m||cmt, when I learns cmt it
rewinds the forger to the moment in which it performs the random
oracle query for m||cmt. This time I sets the digest to ch, and
since the algorithm TPDecom

cmt is deterministic, when F will complete
the algorithm TPcmt releasing its partial commitments, the final
commitment will result to be cmt again. This means that after the
rewinding of F the simulation does not fail and is correct since the
value ch was picked uniformly at random by OTId.
If the commitment scheme used in TPcmt is done via a random
oracle (e.g. Com(pp, x) = HCom(x)) then the simulation does not
require any rewind. Indeed, in order to create its cryptographic
commitment to cmti, F must have previously sent to the random
oracle a query for cmti. This allows I to extract all the partial
commitments of F and thus it can compute the value cmt ahead of
time. Notice that if the value sent by the adversary after TPCom

cmt is
not a previously outputted value the adversary would not be able to
produce the decommitment with overwhelming probability, causing
a failure.
While this requirement is not necessary for a game based proof, it is
required for proving the protocol secure in the UC model, as noted
later in Section 3.3.3.

Therefore the probability that I fails its simulation and overwrites the hash
table is:

47



Chapter 3 – Generalized Fiat-Shamir Transform

Pr[I fails] ≤
qs(λ)∑
n=1

(n− 1) + qh(λ)

2β(λ)
=

=
qh(λ)qs(λ)

2β(λ)
+

qs(λ)∑
n=1

(n− 1)

2β(λ)
=

=
qh(λ)qs(λ) + qs(λ)(qs(λ)− 1)/2

2β(λ)
.

Therefore it holds that

Pr[I fails] ≤ qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)
. (3.3.1)

which is negligible in λ.

Exploit of F ’s forgery. Once F has concluded the training phase, F outputs a
forgery (ĉmt, r̂sp) of a message m̂ not previously queried. Then I concludes its
impersonation attempt by sending the message r̂sp as a response to the challenge
ch∗ received after the fp-th hash query, associated to the commitment cmt∗.

Note that if ĉmt = cmt∗, m̂ = m∗ and (ĉmt, r̂sp) is a valid forgery of m̂ = m∗,
which happens if fp was guessed by I, then the impersonator will be successful in
its impersonation attempt.

Evauation of I’s advantage. In order to win the game I needs

• to successfully simulate;

• to guess correctly the forge pointer fp;

• that F outputs a valid forgery.

Finally we can find a lower bound to the probability of success of the imperson-
ator I in playing the experiment:

Pr[Expa−imp
TId,I = 1] ≥ Pr[FI wins ∧ I guesses fp ∧ I simulates] =

=Pr[FI wins ∧ I guesses fp| I simulates] · Pr[I simulates] =

=Pr[FI wins | I simulates] · Pr[fp is guessed | I simulates] · Pr[I simulates] ≥

≥ϵ(λ) 1

qh(λ)

(
1− qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)

)

48



Chapter 3 – Generalized Fiat-Shamir Transform

which is non-negligible in the security parameter λ.

Notice that in the second equality we used the fact that fp is sampled uniformly
at random by I before it starts interacting with F and the value of fp does not
affect the simulation of the experiment with F , and in the third equality we used
the lower bound to the probability that I fails the simulation described in Equation
Equation (3.3.1).

This is a contradiction, since TId was assumed secure against impersonation
under active attacks. Therefore the digital signature TDS is unforgeable under
active attacks, and this concludes the proof.

Observation 3.2. The hypothesis about the structure of TPcmt is crucial to
reproduce the simultaneity of the exchange of messages between the parties involved
in the creation of cmt. Without this structure the simulator would not be able to
extract the adversary cmti, either by rewind or by simulating the random oracle.

This is not only needed from a “formal ” standpoint. Indeed, let us consider the
following a TPcmt in which each party choose randomly cmti and publishes it, then
all the parties set cmt =

∑
i∈J cmti. This protocol is clearly not secure, indeed

F might force two consecutive signing sessions on different messages to have the
same cmt, while the challenge will be different with high probability. This can
cause attacks, in particular it leads to key recovery attacks if the protocol has the
analogous property of the standard special soundness defined in Definition 2.11.

We now prove the opposite implication, showing that secure digital signatures
lead to secure identification schemes.

Lemma 3.2 (TDS =⇒ TId). Under the assumptions of Theorem 3.1, if TDS
is unforgeable against active chosen-message attacks then TId is secure against
impersonation under active attacks in the random oracle model.

The proof is very similar to the previous one and follows the same blueprint.

Proof. Let I be an impersonator which wins the experiment Expa−imp
TId,I (λ) with

non-negligible probability, then we build a forger F which uses I as a subroutine
who wins the experiment Expa−euf−cma

T DS,F (λ) with non-negligible probability.

F needs to simulate the identification oracle, by interacting with OH
TDS(·) and

OH(·). Notice that, since I do not have access to a random oracle, F do not need
to simulate it. This makes the proof easier, since it removes the main issue in the
proof of Lemma 3.1.

49



Chapter 3 – Generalized Fiat-Shamir Transform

Initialisation F receives from CTDS the public parameters pp and the public key
of the n F simulates OTId(·) and forwards this information to I.

Training phase I chooses the set J of parties it wants to corrupt. F chooses
the same set J and sends it to CTDS, receiving the secret keys of the players in J.
Finally F forwards this information to I. This simulate perfectly the first three
line of Expa−imp

TId,I (λ) in Figure 3.2.

Now we need to show how F can simulate the identification queries.

To start an identification query I chooses Jh, the sets of honest players who
participates in the threshold identification protocol alongside players in J. As
before we can suppose that all the parties in J takes part in the protocol. F
generates a random message m and performs a sign query to OH

TDS(m,J,Jh).

In the same way of the previous proof, F acts as “man-in-the-middle ” during
the execution of TPcmt, forwarding every message received by OH

TDS to I and vice
versa. When it comes the time for F to send the challenge ch to I, F queries
OH(·) on (m||cmt) and obtains ch which forwards to I. Since it is the first time
that F queries the random oracle on (m||cmt), ch is uniformly random and thus F
correctly simulates the oracle OTId. Finally as with the protocol TPcmt, F acts as a
man in the middle in the execution of TPrsp between I and OH

TDS(·).

Simulation failure The simulation never fails because F always receives new
random challenges from OH since it provides OH always with different inputs
obtained by increasing m every time it performs a new sign query.

Exploit of I’s impersonation When I produces its impersonation attempt, it
sends to F a commitment cmt∗ as if it were produced by executing TPcmt. Then F
starts preparing its forgery by sending to OH an hash query with input (m∗||cmt∗)
fresh new m∗ that has never been used before and that will be the message that will
be signed in the forgery. The oracle OH returns to F the challenge ch∗ that F sends
to I correctly simulating the transcript oracle OTId in the generation of a random
challenge. When I concludes its impersonation by sending the response rsp∗, F
use the same rsp∗ to produce a forgery. It is easy to see that F wins with the
same probability of I, leading to a contraddiction, since TDS is unforgeable.

The proofs of Lemma 3.1 and Lemma 3.2 prove Theorem 3.1.

50



Chapter 3 – Generalized Fiat-Shamir Transform

3.3.2 Passive security

In this section we present the security result which considers passive adversaries.
The ideas behind the proofs in this case are similar to the ones proposed in the
active case, therefore a sketch

Theorem 3.2 (Passive security result). Let TId be a canonical threshold iden-
tification scheme, with TId = (Setup,KeyGen,TPcmt,TPrsp,V) and let TDS =

(Setup,KeyGen,TSign,Ver) be the associated signature scheme as per Definition 3.7.
Then the following implications hold:

(i) (TId =⇒ TDS): if TId is secure against impersonation under passive attacks
and TPcmt is unpredictable as per Definition 3.2, then TDS is secure against
active chosen-message attacks.

(ii) (TDS =⇒ TId): if TDS is secure against impersonation under passive
attacks, then TId is secure against active chosen-message attacks.

As before, we show the two implications separately:

Lemma 3.3 ((TId =⇒ TDS)). Under the assumptions of Theorem 3.2, if TId is
secure against impersonation under passive attacks and TPcmt is unpredictable as
for Definition 3.2, then TDS is secure against passive chosen-message attacks.

Proof Sketch. We assume that there exists a forger F with non-negligible advantage
in winning the Expp−euf−cma

TDS,F . Without loss of generality we require that F satisfies
the following properties, as it was required in Lemma 3.1:

• all of its hash queries have the form cmt||m with cmt, m ∈ {0, 1}∗;

• before outputting a forgery (m, cmt||rsp), F has performed an hash query for
(cmt||m);

• if F outputs (m, cmt||rsp), m was never a sign query.

Now we show how to define the impersonator I starting from the forger F . I
will act as a “man-in-the-middle” between F and the challenger CTId. In particular
it forwards the initial message containing the public parameters and the public keys
of the parties received by CTId to F . Then, when F decides the set J to corrupt
during the experiment, and during each sign query the set Jh of honest parties

51



Chapter 3 – Generalized Fiat-Shamir Transform

who contribute, I makes the same choices. Now I needs to simulate the sign query
and the hash query. To do so, F initialise an empty hash table HT and:

• when F performs an hash query with input x ∈ {0, 1}∗, I returns HT[x] if
it is defined, otherwise it returns a random value and saves it in HT[x] for
all but one query. In that specific query for x = cmt∗||m∗, the fp-th query,
where fp is randomly selected in [qh(λ)] at the beginning of the experiment,
F forwards cmt∗ to CTId as part of the impersonation attempt of Expp−imp

TId,I (λ)

and get a challenge ch∗. It then returns ch∗ to F and updates HT setting
HT[cmt∗||m∗] = ch∗.

• When F performs a sign query for m and Jh, I queries the oracleOview−TId who
provides it with a transcript of an identification scheme execution performed
by the parties in J∪Jh. Being cmt and ch the commitment and the challenge
included in the transcript, I updates the hash table HT setting HT[cmt||m] =
ch and forwards it to F .

The simulation may fail if I must overwrite the hash table HT but this happens
with negligible probability being TPcmt unpredictable, therefore the commitments
are generated with super-logarithmic min-entropy. After at most qh hash queries and
qs sign queries, F will eventually output a forgery (ĉmt, r̂sp) of m̂. If F successfully
produce a forgery and I correctly guessed the hash query corresponding to it, i.e.
cmt∗ = ĉmt and m∗ = m̂, I also wins the impersonation game.

Observation 3.3. Note that, since the transcript oracle generates honest tran-
scripts, where all the parties involved behave honestly, we would not necessarily
need an unpredictable TPcmt, which guarantees a sufficiently random output if at
least one party is honest, but it would be enough a TPcmt that returns a random
output when all the parties involved are honest (e.g. the toy TPcmt described in
Observation 3.2 could be suitable for a passive secure signature).

Lemma 3.4 ((TDS =⇒ TId)). Under the assumptions of Theorem 3.2, if
TDS is secure against active chosen-message attacks, then TId is secure against
impersonation under active attacks in the random oracle model.

Proof Sketch. Let I be an impersonator which wins the experiment Expp−imp
TId,I (λ)

with non-negligible probability, then we build a forger F which uses I as a subroutine
who wins the experiment Expp−euf−cma

TDS,F (λ) with non-neligible probability.

52



Chapter 3 – Generalized Fiat-Shamir Transform

Initialisation. F interacts with Oview−TDS(·) and OH(·) who provides it with the
public parameters pp and the public key of the n parties among which t− 1 can be
corrupted by F . F simulates Oview−TId(·) and forwards these information to I.

Training phase. The impersonator I selects the set J of parties it wants to
corrupt and sends it to F , who makes the same choice and sends it to Oview−TDS(·).
The oracle sends to F the secret keys of the parties in J, and F forwards it to I who
can start the training phase in which it asks F for transcripts of the identification
scheme executed with the parties in Jh ⊂ [n] \ J such that |J ∪ Jh| = t. F
simulates the oracle Oview−TId(pk, pp) by querying, for each identification transcript
query, a digital signature query to Oview−TDS(·) for message m ∈ {0, 1}λ. The oracle
Oview−TDS(pk, pp) answers with a signature of m together with the public messages
exchanged between the parties in J and Jh and the state of the parties in J, the
ones corrupted by F . F forwards the messages received from Oview−TDS(pk, pp)

which are indistinguishable from a real execution of the threshold identification
scheme since, according to Definition 3.7 the creation of cmt is exactly the same as
in the associated canonical identification scheme, the challenge is the output of a
random oracle on input (cmt||m) which is a random element, and the response is
again computed as in the canonical identification scheme. F every time it must
provide I with a new identification transcript must query the sign oracle with
a new sign query, every time for a different message. One way to do this is the
following: F can treat the message m used in the sign query by F as an element in
Z2λ and for new identification transcript queries performed by I, F always updates
m setting m← m+ 1. Therefore, for each transcript query from I, F will provide it
with a transcript with challenge which is the output of the random oracle OH(·)
always on distinct inputs.

Exploit of I’s impersonation. When I starts its impersonation attempt, it
sends a commitment cmt∗. F computes a fresh new m∗ and sends a random oracle
query to OH(·) with input cmt∗||m∗ receiving ch∗. F sends ch∗ to I, correctly
simulating the oracle Oview−TId(·) being ch∗ the output of a random oracle of an
input that has never been queried before. I generates a valid response rsp∗ and F
use it to generate its forgery (cmt∗||rsp∗) to the message m which has never been
queried in a sign query. Whenever the impersonator succeeds in its impersonation
attempt, also F succeeds and creates a valid forgery.

53



Chapter 3 – Generalized Fiat-Shamir Transform

The proofs of Lemma 3.3 and Lemma 3.4 prove Theorem Theorem 3.2.

3.3.3 UC Security

Introduced by R. Canetti in [Can01], Universal Composability (UC) is a widely
used framework for the design and analysis of protocols due to the very strong
security guarantees it provides. In particular, a protocol that is UC secure maintains
its security properties when run together with other protocols and allows for both
parallel and sequential composition. With regards of threshold digital signature,
different UC security definitions are used, in particular we can distinguish a stronger
definition, that essentially states that a threshold signature is a UC secure MPC
protocol that outputs a signature [Lin22]. This means that the distribution of output
signatures must be the same as the distribution output by the centralised (non-
threshold) signing algorithm, except for whatever bias the adversary can introduce
by aborting. On the other hand, a weaker definition is often used, designing a
threshold signature functionality that models both signing and verification. There
is no requirement that the threshold signature algorithm should produce the same
distribution as the centralised one. Instead, it is only required not to allow forgeries
[Can+20], in the same way as in the centralised definition [Can04].

In this work we tackle for the first time the problem of adapting the Fiat-
Shamir Transform to a distributed setting, which already requires defining several
new cryptographic protocols. For this reason, we favour a more straightforward
approach both in terms of security definitions and security proofs. In particular
our security analysis is game based, as the ones in [Abd+02; BR06], and provides
security guarantees about a specific property, namely the unforgeability.

It is worth noticing that, under particular hypothesis, the proof of Theorem 3.1
does not require any rewinding, which suggests that it should be easy to adapt
our proof in the UC setting, proving the weaker version of UC secure signature
[Can+20]. Proving our approach secure in the stronger version would require more
work and a completely different approach, since it would require to consider the
centralised version of the distributed protocol and compare its output distribution
and the one of the distributed protocol, while we focused on the distributed protocol
on its own.

54



Chapter 3 – Generalized Fiat-Shamir Transform

3.4 Threshold Sigma Protocols

In the same way we defined canonical identification schemes by adding a key
generation algorithm to sigma protocols, we can adapt Definition 3.1 to define
threshold sigma protocol by considering only TPcmt,TPrsp and V. Formally we have

Definition 3.8 (Sigma protocol). Let L ⊆ W× Y be a relation. A (t, n)-passive
(active) threshold sigma protocol Σ for L is defined by the tuple

ΣL = (TPcmt,TPrsp,V

where the algorithms TPcmt,TPrsp,V are defined as for threshold identification
schemes ( Definition 3.1) satisfying the following properties:

• Completeness: if a set J of players, with |J| ≥ t follows the protocol
on input ({wi}J, y), with {wi} being valid shares of a witness w such that
(w, y) ∈ L, then verifier accepts with overwhelming probability.

• Special Soundness: there exists an efficient deterministic algorithm E , called
extractor, with the following property: whenever E is given as input a state-
ment y ∈ Y, two accepting conversation (cmt, ch, rsp) and (cmt, ch′, rsp′),
with ch ̸= ch′, E outputs w ∈ W such that (w, y) ∈ L.

• Passive (Active) Zero Knowledge, see below Definition 3.9 and Defini-
tion 3.10.

Definition 3.9 (Passive Zero Knowledge). Let S be an efficient probabilistic
algorithm, called simulator that takes as input y ∈ Y, a random challenge ch and a
set J of parties with |J| < t as well as their shares {wi}J.

A threshold sigma protocol is passive zero knowledge if, for any set of parties JS

such that |J|+ |JS | ≥ t and JS ∩J = ∅, S can generate (cmt, rsp) and a transcript
Π for all messages exchanged in the execution of TPcmt and TPrsp by parties in
J ∪ JS , as well as the internal state of the parties in J such that:

• (cmt, ch, rsp) form an accepting conversation for y;

• for all (w, y) ∈ L, (cmt, rsp,Π) $←− S(y, ch, {wi}i∈J) has the same distribution
as that of transcript of a conversation between the parties in J ∪ JS acting
honestly.

55



Chapter 3 – Generalized Fiat-Shamir Transform

Definition 3.10 (Active Zero Knowledge). Let S be an efficient probabilistic
algorithm, called simulator that takes as input y ∈ Y, a random challenge ch and a
set J of parties with |J| < t as well as their shares {wi}J.

A threshold sigma protocol is active zero knowledge if S, controlling any set of
parties JS such that |J|+ |JS | ≥ t and JS ∩ J = ∅, can interact with an adversary
A controlling the parties in J executing TPcmt,TPrsp producing (cmt, rsp) and
transcript Π for all the messages sent by party in JS to party in J such that

• if A acts honestly, (cmt, ch, rsp) is an accepting conversation for y.

• for all (w, y) ∈ L, the following two distributions

(cmt, rsp,Π)
$←− SA(y, ch, {wi}i∈J)

(cmth, rsph,Πh)
$←− A{Pi}JS (ch, {wi}i∈J)

are indistinguishable, where A{Pi}JS denotes a real execution between the
adversary A and honest parties in JS , with challenge ch, while SA denotes
the simulation performed by S and A.

Informally speaking, passive zero knowledge requires the existence of a simulator
that, having received the challenge ch in advance, is able to produce accepting
conversations between all the parties in J ∪ JS , knowing only the secret shares of
those in J, thus simulating the execution for those in JS . The idea is that having
access to accepting transcripts does not reveal any information about the parties
involved, either from the point of view of the verifier or from the point of view of
the other parties involved.

For the case of active zero knowledge, the key difference is that S is not allowed
to compute the transcript by itself but instead it needs to to simulate a real
execution of the protocol, controlling parties in JS , interacting with an adversary,
controlling parties in J. The idea is that participating in executions of the protocol
does not leak any information about the private input to the other participants.
Notice that in this case we do not require (cmt, ch, rsp) to be always an accepting
conversation. Indeed, if this would be the case, the simulator should produce
accepting conversation even when the adversary is malicious and sends wrong
data. This would badly formalise the concept of “the simulator simulates honest
participants” , since it would have more power (it is clearly impossible for an honest
participant to force correct execution when interacting with malicious adversary).
Moreover this would clash with the second conditions, indeed when the adversary
sends wrong data the two distributions are different: in the first one rsp is an
accepting response, in the second one it is not.

56



Chapter 3 – Generalized Fiat-Shamir Transform

Theorem 3.3. Let Σ = (TPcmt,TPrsp,V) be a (t, n)− active (passive) threshold
Sigma protocol for a relation L ⊆ W× Y with super-polynomial challenge space C.
Let

TId = (Setup,KeyGen,TPcmt,TPrsp,V)

be the threshold identification scheme obtained by equipping Σ with a setup protocol
Setup and a key generation algorithm KeyGen. If KeyGen is one-way, then the TId

is secure against active (passive) impersonator attack.

We show only the active case, the passive case can be done in the same way.

Proof. We want to show that if there exists an impersonator I able to win the
Expa−imp

TId,I game, then it is possible to build an attacker S that is able to win the
ExpowKeyGen,S game.

Firstly, S receives a challenge y ∈ Y, having the goal of finding w ∈ W such
that (w, y) ∈ L. S sets y as the public key pk for the Expa−imp

TId,I and sends it to I,
who answers with the set J of participants it desires to corrupt.

Then S sends to I random shares wi to simulate the secret sharing of w′ ∈ W such
that (w′, y) ∈ L. By the security property of Definition 2.18, this is indistinguishable
from an execution of a real secret sharing, since I controls less than t parties. Then
S needs to simulate the oracle OTId(·) for I. This is possible thanks to the active
zero knowledge property of Σ.

I will eventually perform a successful impersonation. At this point S rewinds
I and changes the challenge sent. Since the challenge space C is super-polynomial,
with non-negligible probability this yields the two required accepting conversation
(by the Forking Lemma, see Section 2.4), thus S can use the extractor E from the
special soundness to extract a witness w, breaking the one-way assumption on the
key generation.

Theorem 3.4. Let Σ = (TPcmt,TPrsp,V) be a (t, n)− threshold sigma protocol for
a relation L ⊆ W× Y, with super-polynomial challenge space C. Let

TId = (Setup,KeyGen,TPcmt,TPrsp,V)

be the threshold identification scheme obtained by equipping Σ with a setup protocol
Setup and a key generation algorithm KeyGen. If KeyGen is one-way, then TPcmt

is unpredictable as per Definition 3.2.

57



Chapter 3 – Generalized Fiat-Shamir Transform

We show the proof only for the passive case, the active one follows immediately
as well.

Proof. Suppose that the output cmt of TPcmt has low min-entropy even if at least
one of the parties involved in the execution behaves honestly. Since TId has Passive
Zero Knowledge, there exists a simulator S that outputs accepting conversations
having the same distribution as real conversations. By querying a polynomial
number q(λ) of time S(·, chi, ·), i ∈ [q(λ)] with chi ̸= chj ∀i ̸= j, with non-
negligible probability we obtain two transcripts with the same cmt∗. By the special
soundness property it is possible to retrieve the secret key w.

3.5 Conclusions and future works

Although threshold signature schemes have been known for some time and
are more popular than ever, the concept of threshold identification schemes has
received very little attention. In particular, previous works focused their attention
on protocols that do not allow communication between provers, relying either on
some pre-computation or on the presence of a trusted third party (the combiner).

In this chapter we propose a new definition for threshold identification schemes,
with the aim of capturing their multi-party nature. We model our definition to
mimic the traditional structure of threshold signature schemes in order to establish
a link between the two worlds, thanks to a generalised version of the Fiat-Shamir
transform.

Next, following the footprint of M. Abdalla et al. in [Abd+02], we show that
threshold signatures obtained by applying the Fiat-Shamir transform are secure,
under similar conditions of the centralised case.

Finally, we turn our attention to threshold sigma protocols and their connection
to threshold identification schemes. Similar to the centralised case, we define
properties of the sigma protocols which, if satisfied, guarantee that the associated
identification schemes are secure.

In the next chapter we show the power of our definitions and results, showing
an easy proof for a threshold Schnorr Signature.

Future Works Our approach could streamline the security analysis of many
threshold signatures, however it covers only static corruptions, where the adversary
decide which party to corrupt at the beginning of the protocol. While this is a

58



Chapter 3 – Generalized Fiat-Shamir Transform

relevant security notion, often used as in [Bat+23b; Lin22; Chu+23], many protocols
are also proved secure in the adaptive case, where the adversary can, at any time,
corrupt parties and learn their state [CKM23]. It would be interesting to extend our
analysis to the adaptive case. The structure of the proof of Theorem 3.1 suggests
that if a threshold identification scheme is secure against adaptive adversaries
(this can be done by adding an additional oracle OCorrupt that can be adaptively
called to learn honest parties input) also the derived threshold signature scheme is
secure against adaptive attacks. In this case, the real challenge would be to define
properties on the threshold sigma protocol, in the same vein of the zero knowledge
properties, to achieve the adaptive security of the threshold identification scheme.

59





Chapter 4

Decentralized Secret Sharing and
Threshold Signatures

4.1 Introduction

In Chapter 3 we propose a framework for designing threshold signature schemes,
focusing on the signature generation algorithm. To complete the work, the key
generation algorithm should also be considered. In particular, it is desirable to
have distributed key generation instead of relying on a trusted third party.

A common way to achieve a fully decentralised system is to use a variant of the
Shamir secret sharing scheme, where the dealer is not a single authority, such as
the scheme described in [Ped92, Section 5.2], but is a subset of the participants.

In this chapter we present a completely decentralised extensible and verifiable
secret sharing scheme based on Shamir’s, and we enhance it with the possibility
of having offline participants, firstly introduced in [Bat+22b]. In particular, the
proposed protocol allows for the addition of new parties after the initial secret
sharing, a property that can be useful to increase the resilience of the secret
reconstruction, providing additional protection against the loss of shares.

Extensible secret sharing schemes can be seen as a generalization of repairable
secret sharing schemes, that instead allow a participant that lost its share to retrieve
it with the help of other parties. In particular our protocol is a generalization of the
Enrolment Protocol presented in [SW18], that we enhanced with the verifiability
property, i.e. the added participant is able to verify that the received share is
correct.

61



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Lastly, we use show a potential application for our scheme, presenting a
(t, n)−threshold Schnorr Signature, that use it during the Key Generation. The
resulting key generation is similar to the one presented in [Gen+07a], however our
signature is secure for an arbitrary t instead of requiring t ≤ n

2
, thanks also to the

usage of additional ZKPs. Moreover, we also show that the resulting signature can
support the addition of an arbitrary number of new participants, thanks to the
extensible property of the Secret Sharing Scheme used. We prove the signature
unforgeable as per Definition 2.16, using the heuristic proposed in the previous
chapter.

Notice that the proposed Secret Sharing Scheme is suitable algorithm for
performing the Key Generation in many Discrete Logarithm based threshold
signature, such as ECDSA or EdDSA [Bat+22b; Bat+23b], however we decided to
focus our attention on the Schnorr’s one, due to the increasing interest in this field.
Our approach is similar to [BDN18], [Max+19] and [Nic+03]. However, these three
signatures work only in the (n, n) case, while ours works works for an arbitrary
threshold. More recently a general (t, n) Schnorr Signature was proposed, FROST,
however their assumptions are not classical, while we only rely on classical ones.
Lastly, concurrently with this work, Sparkle [CKM23] was proposed, that require
only standard assumptions in the static case and it is very similar to our work.
The two works were made independently, we discuss the small difference between
them in Section 4.5.1.

The results of this chapter are contained in [BLM22], that is currently under
review for WCC2024 and was presented at CANS2022. The signature presented
here is a generalisation of [Bat+22a] presented during at DLT2022. It is immediate
to apply the heuristic here to the ECDSA and the EdDSA algorithm presented in
[Bat+23b] and [Bat+22c], published at the beginning of the PhD.

4.2 Preliminaries

4.2.1 From MDS Codes to Secret Sharing

Let Fq be the finite field with q elements and let α be an agreed-upon primitive
element of Fq. Let {p(i)}i=1,...,τ ⊆ Fq[x] be a set of τ polynomials of degree t− 1,
so p(i) =

∑t−1
k=0 p

(i)
k xk, where p

(i)
k ∈ Fq is the k-th coefficient of the polynomial p(i).

Let p =
∑τ

i=1 p
(i), with coefficients pk =

∑τ
i=1 p

(i)
k for k = 0, . . . , t − 1, and

define βj = p(αj). Note that, if we define βi,j = p(i)(αj) for i ∈ {1, . . . , τ} and
j ∈ {1, . . . , q − 1}, then we have that βj =

∑τ
i=1 βi,j.

62



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Definition 4.1. Let J = [j1, . . . , jn] be a list of 1 ≤ n ≤ q − 1 distinct integers in
{1, . . . , q − 1}. We define GJ as the (t× n) matrix:

GJ =
[
αj·k
]
k∈{0,...,t−1}, j∈J

If n = 1 then J = [j] and we sometimes simply use Gj instead of G[j].

Lemma 4.1. For any t ≤ n ≤ q − 1 and for any J = [j1, . . . , jn], the matrix GJ is
the generator matrix of a punctured [n, t]q Reed-Solomon code. In particular:

• GJ has maximum rank for any J = [j1, . . . , jn];

• if n = t then GJ is invertible;

• if n = q− 1 then GJ is a standard generator matrix (given as a Vandermonde
matrix) of a [q − 1, t]q Reed-Solomon code.

Lemma 4.1 summarises the properties of the matrix defined in Definition 4.1 and
the link with Reed-Solomon codes [RS60]. An interested reader can refer to [Rot06]
for a comprehensive introduction to Coding Theory with a focus on Reed-Solomon
codes and algebraic codes. We remark that the link with Reed-Solomon codes
derives from the matrix in Definition 4.1.

An alternative and more general approach would be to use any t× n matrix
with coefficients in Fq. In this case Lemma 4.1 would become a summary of the
required properties that the matrix should satisfy in order to achieve similar results.
In particular, we remark that it is possible to substitute our definition with the one
of Extended Generalised Reed-Solomon codes, a choice that would allow a broader
set of acceptable parameters (e.g. in Definition 4.1 n can be at most q + 1 instead
of q − 1). We focus however on Vandermonde matrices to exploit the link between
Reed-Solomon codes and the classical version of Shamir’s Secret Sharing Scheme
[MS81].

Now we show that, since p has degree at most t−1, given a list J ⊆ {1, . . . , q − 1}
of cardinality at least t, with the list of evaluations [βj ]j∈J it is possible to interpolate
the polynomial p. That is, the coefficients pk can be reconstructed and therefore
the evaluation p(γ) in any element γ ∈ Fq can be computed.

Proposition 4.1. Let J = [j1, . . . , jt] be a list of t distinct integers in {1, . . . , n},
and let GJ be the square matrix constructed as in Definition 4.1. Then:

(p0, . . . , pt−1) = (βj1 , . . . , βjt) ·G−1
J .

63



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Proof. For any j ∈ {1, . . . , q} we have that βj = p(αj) =
∑t−1

k=0 pk · (αj)k =

(p0, . . . , pt−1)Gj, thus:

(p0, . . . , pt−1) ·GJ = (βj1 , . . . , βjt). (4.2.1)

By Lemma 4.1, since J has cardinality t, then GJ is invertible, so we can multiply
both sides of Equation (4.2.1) by G−1

J and conclude our proof.

Proposition 4.2. Let h be any integer in {1, . . . , n}, let J = [j1, . . . , jt] be a list
of t distinct integers in {1, . . . , n}, and let eℓ be the ℓ-th element of the standard
basis of Ft

q. Then:

βh =
t∑

ℓ=1

f(βjℓ , h,J, ℓ),

where for any ℓ ∈ {1, . . . , t} we define the function f as:

f(x, h,J, ℓ) = x · eℓG−1
J Gh. (4.2.2)

Proof. Observe that eℓ·G−1
J is the ℓ-th row of G−1

J . By linearity, from Proposition 4.1
we have:

(p0, . . . , pt−1) =
t∑

ℓ=1

βjℓeℓ ·G−1
J .

So:
t∑

ℓ=1

f(βjℓ , h,J, ℓ) =
t∑

ℓ=1

βjℓeℓG
−1
J Gh = (p0, . . . , pt−1)Gh = βh,

as shown in the proof of Proposition 4.1.

Observation 4.1. An interesting consequence of Proposition 4.2 is that t distinct
shares are sufficient to compute any other share. However, observe that it is possible
to obtain βjℓ from f(βjℓ , h,J, ℓ), since both GJ and Gh can be easily computed even
without knowing anything about the polynomials. This means that Proposition 4.2
should not be used directly to distribute new shares of a secret, in order to preserve
the privacy of the old shares.

A simple workaround is to split these secret values. Let bh,J,ℓ,k be chosen at ran-
dom in Fq for k ∈ {1, . . . , t}\{ℓ}, and set bh,J,ℓ,ℓ = f(βjℓ , h,J, ℓ)−

∑t
k=1,k ̸=ℓ bh,J,ℓ,k.

If we define bh,J,k =
∑t

ℓ=1 bh,J,ℓ,k, then we have that:
t∑

k=1

bh,J,k =
t∑

k=1

(
t∑

ℓ=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

(
t∑

k=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

f(βjℓ , h,J, ℓ) = βh

(4.2.3)

64



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Note that the random values are completely canceled out only when summing all
the bh,J,k, this means that the values βjℓ remain hidden, so this is a safe way to
generate new shares.

4.2.2 Homomorphic Commitment

For our Extensible Decentralised Verifiable Secret Sharing Scheme, described in
Section 4.3, we need a homomorphic commitment, that is a commitment HCom for
which the following properties hold for all m0,m1, z0, z1, γ ∈ Fq:

HCom(m0; z0) · HCom(m1; z1) = HCom(m0 +m1; z0 + z1),

HCom(m0; z0)
γ = HCom(γ ·m0; γ · z0).

The Pedersen commitment [Ped92], based on the difficulty of the discrete
logarithm, is a perfectly hiding homomorphic commitment scheme which works as
follows:

Setup let G be a group of prime order q where the DLOG problem is hard (for
the binding property to hold), and g, h be random generators of G, then the
message space of the commitment scheme is Zq, the randomiser space is Zq and
the commitment space is G;

Commitment to commit to m ∈ Zq using the randomiser z ∈ Zq, the com-
mitter computes C = HCom(m, z) = gm · hz;

Verification the decommitment is the pair (m, z), and Ver(C,m, z) simply
outputs m if C = gm · hz, ⊥ otherwise.

4.3 Extensible Decentralised Verifiable Secret Shar-
ing Protocol

In this section we give a description of our decentralised variant of the verifiable
secret sharing scheme (VSSS) by Pedersen [Ped92], which includes the feature of
adding new users.

Let P1, . . . , Pn be n parties participating in the secret sharing scheme, and let
t ≤ n be the chosen threshold.

We assume that q is big enough that, given n polynomials of degree d sampled
uniformly at random from Fq[x], the probability of their sum to be of degree d′ < d

65



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

SecGen(pp)

1 : p(i)
$←− Fq[x], deg(p

(i)) = t− 1

2 : z(i)
$←− Fq[x],deg(z

(i)) = t− 1

3 : Publish C0,i,k := HCom(p
(i)
k ; z

(i)
k )

4 : Sends to Pj βi,j := p(i)(αj), γi,j := z(i)(αj)

5 : // To all j ∈ [n]

6 : if HCom(βj,i; γj,i) ̸=
∏t−1

k=0
(C0,j,k)

(αi)k then

7 : return ⊥
8 : βi :=

∑τ

j=1
βj,i; γi :=

∑τ

j=1
γj,i

9 : return βi, γi

Figure 4.1: Secret Generation algorithm

is negligible. Finally, we use a homomorphic commitment HCom as defined in
Section 4.2.2.

4.3.1 Secret Generation

First, all the parties agree on some public parameters pp, namely a prime q
defining a finite fields Fq, a primitive element α and the parameters of HCom (e.g.
G and the generators g, h for Pedersen commitment of Section 4.2.2)

The distributed secret generation algorithm is carried out by τ ≤ n parties,
WLOG we can assume {P1, . . . , Pτ}.

The detailed algorithm is presented in Figure 4.1. First each party chooses
two random polynomials p(i) and z(i), implicitly defining its own secret as p(i)(0).
Then, each party publishes homorphic commitments to all the coefficient, using
the polynomial z(i) as randomness. Finally, each party distributes its own secret,
sending βi,j = p(i)(αj) and γi,j := z(i)(αj). If the received value are consistent
with the commitment published each party can obtain its private share βi for the
common secret

∑τ
i=0 p

(i)(0).

We remark that the τ parties involved in the secret generation algorithm are
always capable of determining the secret p0, regardless of the value t. We have two
possible cases:

• τ ≥ t: in this case we have a standard (t, n)-VSSS, and no group of less than

66



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

t parties can work together to reconstruct the secret;

• τ < t: in this case, P1, . . . , Pτ can reconstruct the secret, no matter what t is.

In particular, observe that if τ = 1 then our protocol behaves as a VSSS in which
the shares are created and distributed by a centralised authority.

4.3.2 Secret Reconstruction

If J ⊆ {1, . . . , q} is a set of t distinct indexes, then with the vector of shares
(βj)j∈J it is possible to reconstruct the secret p0 as follows:

p0 = (βj)j∈J ·G−1
J · e

T
1 ,

which is a direct consequence of Proposition 4.1. Let ℓ ∈ {1, . . . , t} be the position
of j inside the list J, note that the Shamir share βj can be converted into an
additive share ωj:

ωj = βjeℓ ·G−1
J · e

T
1 , (4.3.1)

p0 =
∑
j∈J

ωj.

4.3.3 Addition of New Parties

Let J be a set of t parties. Figure 4.2 how can they add a new party Pn+1 (i.e.
generate its share βn+1). Initially each party Pi generates a (t, t)-additive secret
sharing of its own secret value f(βi, n + 1,J, i), as described in Proposition 4.2
and in the Observation 4.1 below. This values allows for the computation of the
new share βn+1 of Pn+1. The correctness of the computation of the additive secret
sharing is then checked in Lines 6,8 and 11. If all the checks are correct, the values
are then sent to Pn+1.

Pn+1 retrieves its share as: βn+1 =
∑t

j=1 bn+1,J,j, and the checking value as:
γn+1 =

∑t
j=1 zn+1,J,j. Then it checks their consistency with the commitments by

verifying:

HCom (bn+1,J,j; zn+1,J,j)
?
=

t∏
k=1

Cn+1,J,k,j, (4.3.2)

for j ∈ {1, . . . , t}.

67



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

PAdd(J, {βi}J, {γi}J)

1 : bn+1,J,i,j , zn+1,J,i,j
$←− Fq, k ∈ [t], j ̸= i

2 : bn+1,J,i,i := f(βi, n+ 1,J, i)−
∑t

j=1,j ̸=i
bn+1,J,i,j

3 : zn+1,J,i,i := f(γi, n+ 1,J, i)−
∑t

j=1,j ̸=i
zn+1,J,i,j

4 : // f as per Equation (4.2.2)

5 : Publish Cn+1,J,i,j = HCom (bn+1,J,i,j ; zn+1,J,i,j)

6 : if
∏t

j=1
Cn+1,J,i,j ̸=

(∏t−1

j=0

(∏τ

k=1
C0,k,j

)(αi)j
)eiG

−1
J Gn+1

then

7 : return ⊥

8 : if
∏t

j=1

∏t

i=1
Cn+1,J,i,j ̸=

∏t−1

j=0

(∏τ

k=1
C0,k,j

)(αn+1)j

then

9 : return ⊥
10 : Sends to Pj bn+1,J,i,j and zn+1,J,i,j

11 : if HCom (bn+1,J,j,i; zn+1,J,j,i) ̸= Cn+1,J,k,i then

12 : return ⊥

13 : bn+1,J,i :=
t∑

j=1

bn+1,J,j,i zn+1,J,i :=
t∑

j=1

zn+1,J,j,i

14 : Sends to Pn+1 bn+1,J,i and zn+1,J,i

15 : return 0

Figure 4.2: Algorithm for the addition of new parties

68



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Note that at the end of the procedure, Pn+1 has its own secret values just like
the other parties, so it can participate in the secret reconstruction or the addition
of further parties.

4.3.4 Security of the Secret Sharing

In this section we prove the correctness and security of the secret sharing scheme
described in Section 4.3.1, reducing it to the correctness and security of a centralised
version, which are a direct consequence of the binding and hiding properties of
the commitment scheme. For the correctness we refer to Definition 4.1 of [Ped92]
which includes the verifiability, for the security we refer to Definition 2.18.

We start by defining a centralised version of the protocol:

Definition 4.2 (centralised Secret Sharing). The centralised version of the scheme
described in Section 4.3.1 between a dealer D and players P1, . . . , Pn with threshold
t of a secret s ∈ Fq proceeds as follows:

(i) D chooses two random polynomials p, z ∈ Fq[x] of degree t − 1 such that
p0 = s;

(ii) D computes and publishes Ck = HCom(pk, zk) for k = 0, . . . , t− 1;

(iii) D sends βj = p(αj) and γj = z(αj) to Pj;

(iv) each Pj checks that their share is correct by verifying:

HCom(βj, γj)
?
=

t−1∏
k=0

C
(αj)k

k (4.3.3)

The secret s can be reconstructed as usual by interpolating {βj}j∈J where J is a
set of at least t indexes.

Lemma 4.2 (Correctness). If HCom is binding then the secret sharing scheme
of Definition 4.2 is correct. If HCom is perfectly binding then the secret sharing
scheme of Definition 4.2 is correct even if D has unbounded computational power.

Proof. For the homomorphic properties of HCom when the dealer is honest then
Equation (4.3.3) holds so an honest Pj accepts.

69



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

In order to make the players reconstruct a different secret s′, there should be a
player Pj such that D has sent to Pj a wrong share βj ̸= p(αj). Pj accepts βj only
if Equation (4.3.3) holds. this means D was able to find γj such that HCom(βj, γj) =

HCom(p(αj), z(αj)), contradicting the binding property of HCom.

The correctness of the decentralised protocol follows trivially, since it comprise
τ parallel and independent execution of the centralised protocol, each of them
having a different dealer Pi.

Lemma 4.3 (Security). If HCom is hiding then the secret sharing scheme of Def-
inition 4.2 is secure. If HCom is perfectly hiding then the secret sharing scheme
of Definition 4.2 is secure even if the adversary has unbounded computational power.

Proof. To prove that an adversary with the views of up to t − 1 players does
not gain any information about the secret s, we prove that, for any s′ ̸= s this
adversary cannot distinguish a view of the sharing of s from a view of the sharing
of s′. To achieve this, we prove that the existence of an adversary that has more
than negligible advantage in winning the game defined below breaks the hiding
property of HCom.

Expss−dist
SecGen,A(λ)

1 : pp
$←− Setup()

2 : s0, s1
$←− Fq

3 : b
$←− {0, 1}

4 : J← A((sb, s1−b)) // |J| ≤ t− 1

5 : p(0), p(1), z(0), z(1)
$←− Fq[x]

6 : // p(i)(0) = si and p(0)(αj) = p(1)(αj) and z(0)(αj) = z(1)(αj) for all j ∈ J

7 : C
(0)
k := HCom(p

(0)
k , z

(0)
k ) C

(1)
k := HCom(p

(1)
k , z

(1)
k )

8 : b′ ← A({C(0)k }, {C
(1)
k }, {p

(0)(αj)}J, {z(0)(αj)}J)
9 : return b = b′

The advantage of A is

Advss−dist
SecGen,A(λ) = Pr(b′ = 1|b = 1)− Pr(b′ = 1|b = 0).

Let A be an adversary that has a non-negligible advantage ε in winning the
game Expss−dist

SecGen,A(λ), then we can violate the hiding property of HCom as defined

70



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

in Definition 2.10 by simulating a game for A. Notice that we use a slightly modified
game, where instead of receiving only cmt = Com(mb;R), the adversary receive
both Com(mb;R) and Com(m1−b;R) and need to guess the order. The simulator S
sets s0 = m0 and s1 = m1, C0 = cmt, C1 = cmt1, and chooses randomly βj, γj ∈ Fq

for j ∈ J (WLOG we can suppose that |J| = t − 1). During the simulation, S
force βj, γj to be the evaluation respectively of p(0) (and thus p(1)) and z(0) (and
thus z(1)) on αj, for all j Note that if we implicitly define p(0), p(1) ∈ Fq[x] as
the polynomials such that p(0)(0) = m0, p(1)(0) = m1, p(0)(αj) = p(1)(αj) = βj,
then ∃λj,k for k = 1, . . . , t − 1 such that pk = λ0,k · m0 +

∑
j∈J′ λj,k · βj and

p′k = λ0,k · m1 +
∑

j∈J′ λj,k · βj. So, for all k = 1, . . . , t− 1 if we define:

Ck = C
λ0,k

0 ·
∏
j∈J′

HCom(βj, γj)
λj,k , C1k = C10

λ0,k ·
∏
j∈J′

HCom(βj, γj)
λj,k

then we implicitly set γj = z(0)(αj) = z(1)(αj) where the coefficients of the polyno-
mials z(0), z(1) ∈ Fq[x] are defined as the coefficients of p, p′ using γj instead of βj,
r1 instead of m1 and r2 instead of m2. This means that the Equation (4.3.3) holds
for both sets of commitments {C0, . . . , Ct−1}, {C10, . . . , C1t−1}. So S can simulate
the game by sending to A the ordered pair (s0, s1), then if A answers with 0 the
simulator guesses that s0 = m0 and s1 = m1, otherwise the simulator guesses the
reverse order. Note that the simulation is perfect so we have the same non-negligible
advantage ε in breaking the hiding property.

Theorem 4.1. If HCom is hiding, then the secret sharing scheme described in
Section 4.3.1 is secure.

Proof. For the sake of simplicity we suppose that τ = t but the same proof can be
adapted for an arbitrary τ .

Since HCom is hiding, then the secret sharing scheme of Definition 4.2 is secure.

Let us suppose that the adversary controls P2, ..., Pt. We show that after the
Secret Generation (Section 4.3.1) it has no information about the secret p0.

First of all, notice that p
(1)
0 is uniformly distributed, thus p0 is uniformly

distributed as well.

Then notice also that steps 1 to 6 are t independent executions of the Verifiable
Secret Sharing scheme described in Definition 4.2 with n participants and threshold
t, each having as dealer a different Pi, i = 1, ..., t, thus the adversary does not gain

71



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

any information about p(1)0 , the secret of the honest player. Moreover the last step
does not involve any new message exchange, thus does not reveal anything.

Hence, the adversary has no information about p0.

Now we need to prove the security of the Addition of New Parties. Informally,
we need to show that an adversary controlling at most t − 1 participants is not
able to learn anything about the secret of the other parties or the secret itself.
More formally we have the following definition (WLOG we suppose that the parties
involved are P1, ..., Pt and Pn+1):

Definition 4.3. Let S ⊆ {1, ..., t, n+ 1} be a set such that |S| = t− 1 and viewS

be the set of all the messages that parties in S see. Then

Pr(Pi has secret ωi|viewS) = Pr(Pi has secret ωi)

for i ̸∈ S. Moreover

Pr(The shared secret is p0|viewS) = Pr(The shared secret is p0).

Theorem 4.2. If HCom is hiding, then the Addition of New Parties described in
Section 4.3.3 is secure.

Proof. Initially we suppose that the adversary does not control Pn+1, but only
t− 1 out of the t parties which perform the protocol to add Pn+1. WLOG we can
suppose that these parties are P1, . . . , Pt and that the adversary controls P2, . . . , Pt.

Since HCom is hiding, then the secret sharing scheme of Definition 4.2 is secure.

We can notice that Lines 1, 2 and 3 are a (t, t) additive secret sharing of
f(β1, n+ 1,J, 1), with dealer P1, verified with a homomorphic commitment. This
is secure and does not leak any information about β1 or βn+1.

The following steps do not require any additional computation or communication
involving the secret bn+1,J,1,1, so the security is trivial.

Now we need to deal with the case of the adversary controlling Pn+1 and t− 2

among P1, . . . , Pt. WLOG we can suppose that the adversary controls P3, . . . , Pt.

The same considerations as before hold for lines 1,2 and 3. However, now the
adversary is also able to learn bn+1,J,1 and bn+1,J,2 in the last line. In the computation
of each bn+1,J,1 and bn+1,J,2 there are two unknown and uniformly distributed

72



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

addends, that is the adversary learns bn+1,J,1,1 + bn+1,J,2,1 and bn+1,J,1,2 + bn+1,J,2,2,
but these sums give no information on the addends, so the adversary is not able to
learn anything more.

Theorem 4.3. If HCom is binding, then the Addition of New Parties described in
Section 4.3.3 is robust, i.e. an adversary controlling at most t− 1 parties is not
able to corrupt the protocol without being noticed.

Proof. Suppose that the adversary controls P2, ..., Pt. To prevent the correct
execution of the protocol the adversary could send wrong data either during Lines
10 or 14.

In the first case a cheating behaviour is caught thanks to the check in Lines 6
and 8 unless the adversary is able to produce b̃n+1,J,j,1 ≠ bn+1,J,j,1 and z̃n+1,J,j,1 ̸=
zn+1,J,j,1 such that HCom(b̃n+1,J,j,1, z̃n+1,J,j,1) = HCom(bn+1,J,j,1, zn+1,J,j,1). This is
impossible due to the binding property of HCom.

In the second case a cheating behaviour is caught in the same way thanks to
Equation (4.3.2).

4.4 Threshold Schnorr Signature

In this section we describe a possible use case of our extensible secret sharing
scheme and the framework presented in Chapter 3: a (t, n)-threshold variant of
Schnorr’s digital signature algorithm with offline participants.

In particular, we need to design a secure key generation and a secure threshold
identification protocol, such that, after applying the Fiat-Shamir transform, we
obtain a threshold version of Schnorr signature.

We require that at least τ ≥ t users are online for the setup, in the following we
suppose there are exactly τ = t online parties in the key generation phase, namely
P1, . . . , Pt.

4.4.1 Setup and Key Generation

All the parties need to agree on a group G of prime order q with generator g
where the DLOG problem is assumed to be hard. Note that this means that the

73



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

KeyGen(pp):

1 : yi
$←− Zq

2 : Yi := gyi

3 : (Ci, Di)← Com(Yi)

4 : Publishes Ci
5 : Publishes Di

6 : Y :=
t∏

i=1

Yi

7 : Use Schnorr protocol to prove the knowledge of yi
8 : Perform the distributed secret sharing of Section 4.3 for the secret yi

9 : wi :=

t∑
j=1

βi,j

10 : // βi,j is the share received by Pi from Pj during the secret sharing

11 : return Y,wi

Figure 4.3: Key-generation algorithm for the threshold Schnorr Signature

field Fq is isomorphic to the ring Zq. Moreover the hardness of DLOG implies that
the size of q is exponential in the security parameter, thus any practical application
necessarily has a number of users n≪ q. They also need to agree on a commitment
scheme Com and an hash function Hcom.

Figure 4.3 shows the key-generation algorithm.

We now show that the protocol is secure in the presence of a malicious adversary,
as per Section 2.8. We suppose that the adversary corrupt P2, ..., Pt. In particular,
we need to show that there exist a simulator S that, on input a public key Yc

received from the trusted third party, is able to interact with the adversary A of
the real protocol of Figure 4.3, forcing the execution to end with output Yc.

In the simulation we need an equivocal commitment scheme, i.e. a commitment
scheme having a secret trapdoor, known only by S, that allows to easy violate
the binding properties (equivocate). In case of the Pedersen commitment scheme
described in Section 4.2.2, knowing the discrete logarithm k of h = gk allows to
equivocate the commitment.

(i) S randomly chooses y1 ∈ Zq and follows the protocol normally until line 7;

(ii) during the Schnorr proofs, S rewind the adversary to extract y2, ..., yn.

74



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

(iii) S rewinds the adversary to step 5.

(iv) S computes Ŷ = Yc∏τ
2 gyi

, computes the commitment (Ĉ1, D̂1) = Com(Ŷ ).

Implicitly define the discrete logarithm of Ŷ as ŷ

(v) Pi follows the protocol normally. Due to the value chosen, in step 5, Y = Yc.

(vi) S simulates the Schnorr ZK proof of knowledge of â, since it does not know
this value.

(vii) S generates uniformly at random β̂1,j for j = 2, . . . , t, then simulates a fake
Decentralised Secret Sharing Protocol since it cannot compute a polynomial
p̂(1) such that p̂(1)(j) = β̂1,j and p̂(1)(0) = ŷ:

(i) similarly as in the proof of Lemma 4.3, ∃λj,k for k = 1, . . . , t− 1 such
that p̂

(1)
k = λ0,k · â+

∑t
j=2 λj,k · β̂1,j;

(ii) S sets the commitment Ĉ0,1,0 of Line 3 of Figure 4.1 as the commitment to
a random value (for the hiding property of HCom this is indistinguishable
to a real commitment since it does not need to be opened)1

(iii) S computes the commitments to the other coefficients of its unknown
secret polynomial p̂(1) as:

Ĉ0,1,k = (Ĉ0,1,0)
λ0,k ·

t∏
j=2

HCom(β̂1,j, γ̂1,j)
λj,k

where γ̂1,j ∈ Zq for j = 2, . . . , t are randomly chosen.

(iv) note that by interpolating at the exponent Ŷ and gβ̂1,2 , . . . , gβ̂1,t , S is
able to compute gβ̂1,1 where β̂1,1 is implicitly defined as p̂(1)(1);

(viii) S sends β̂1,j, γ̂1,j to Pj.

The proof of the correctness of the simulation is stated in the following lemmas.
The proofs are trivial and use the same argument of the one presented in [Bat+22c].

Lemma 4.4. If the Decisional Diffie-Hellman assumption holds, then the simula-
tion terminates in expected polynomial time and is indistinguishable from the real
protocol.

1Note that if HCom is Pedersen’s commitment [Ped92], then S can compute a real commitment
as HCom(ŷ, z

(1)
0 ) = Ŷ · hz

(1)
0 , where z

(1)
0 ∈ Zq is chosen randomly.

75



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

Proof. Let ϵ be the (non negliglible) probability that the adversary correctly
decommits in step 5. Due to the Forking Lemma the rewinding is performed at
most a polynomial number of times. The only difference from the real protocol
is that S does not know the discrete logarithm of Ŷ and so it performs a fake
verification protocol. However, this is indistinguishable due to the honest verifier
zero knowledge property.

Lemma 4.5. For a polynomial number of inputs the simulation terminates with
output Yc except with negligible probability.

Proof. This is because of the binding property of the commitment scheme: if A
correctly decommits twice it must do so to the same string, no matter what P1

decommits (except with negligible probability). Because of the construction of Ŷ ,
the output is Yc.

Thus the key generation is secure.

4.4.2 Threshold identification protocol

We now proceed with the identification protocol. The idea is to design a
threshold version of the standard Schnorr protocol.

Theorem 4.4. If the discrete logarithm is hard in G, then the threshold identification
protocol of Figure 4.4 is secure against impersonation under active attacks.

Proof. Our goal is to use Theorem 3.3.

We start by proving that the threshold sigma protocol is special sound and then
we prove the active and passive zero knowledge property.

• Special soundness. The special soundness property is trivial and follows
immediately from the special soundness of the standard Schnorr protocol
[Sch91].

Indeed, suppose to have two accepting transcripts (R, ch, z) and (R, ch′, z′)

with ch ̸= ch′. Then it would be possible to compute the discrete logarithm
of pk = y by simply computing w = (z − z′)(ch− ch′)−1.

• Active zero knowledge. To prove that the protocol is active zero knowledge,
we must show that it can be simulated by a simulator S taking in input

76



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

TPCom
cmt (ssid, {wi}i∈S;R)→ {cmti}i∈S

1 : ri
$←− Zp

2 : Ri ← gr

3 : cmti ← Hcom(ssid,S, Ri)

4 : return cmti

TPrsp({wi}i∈S, cmt, ch)→ (rsp)

1 : zi ← ri + ch(λixi)

2 : // λi is the Lagrange

3 : // coefficient of i w.r.t. S

4 : Party Pi sends zi

5 : z ←
∑
i∈S

zi

6 : return (R, z)← σ

TPDecom
cmt (ssid, {wi}i∈S, {cmti}i∈S)→ cmt

1 : Party Pi sends Ri

2 : if cmtj ̸= Hcom(ssid,S, Rj), j ∈ S

3 : return ⊥

4 : R =
∏
i∈S

Ri

5 : return cmt← R

6 :

V (y, σ)→ 0/1

1 : Parse (R, z)← σ

2 : if RY ch = gz then

3 : return accept

4 : return reject

Figure 4.4: Threshold sigma protocol for Sparkle.

(y = gw, ch∗) and the t−1 shares of the private key controlled by the adversary.
Without loss of generality we suppose that the adversary controls P1, . . . , Pt−1

and w1, . . . , wt−1 are their shares of the witness which are given also to the
simulator S who must impersonate Pt without knowing wt.

The simulation resembles the simulation of the classical Schnorr protocol.

The simulator S samples uniformly at random zt ∈ Zq and defines

Rt = gzty−ch∗
t−1∏
j=1

gλjwjch
∗
,

where ch∗ is the challenge it received in input and λj is the Lagrange coefficient
of j.

Note that, even if S does not know wt, by definition of Shamir secret shar-
ing w =

∑
i∈[t] λiwi and y−ch∗ = gw(−ch∗), therefore y−ch∗

∏t−1
j=1 g

λjwjch
∗
=

gλtwt(−ch∗), then it holds that gzt = Rtg
λtwtch

∗ .

77



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

This means that the transcript (Rt, ch
∗, zt) is valid and, being zt sampled

uniformly at random, and Rt being uniquely determined from (zt, ch
∗),

(Rt, ch
∗, zt) is indistinguishable from an honest transcript (generated starting

from Rt).

Finally S executes TPCom
cmt computing comt = Hcom(m,S, Rt), then it executes

TPDecom
cmt by revealing Rt. The commitments are aggregated computing R,

then the challenge ch∗ will be used as the challenge of the protocol and S
simulates the algorithm TPrsp by broadcasting the responses rspt = zt it
sampled randomly at the beginning of the simulation.

Note that the transcripts (R, ch∗, z), together with the transcript generated
by the messages sent by S, form an accepting transcript as long as the other
parties act correctly. Also, the transcripts of S are indistinguishable from a
real execution since the messages that S must send are independent of the
messages sent by the adversary who could be potentially malicious. Therefore
the sigma protocol is active zero-knowledge according to Definition 3.10.

To derive a secure signature we also need to prove that TPcmt is secure.

Lemma 4.6. The threshold identification protocol of Figure 4.4 has commit release
TPcmt as per Definition 3.3.

Proof. It is immediate to see that TPCom
cmt does not require any interaction between

the parties and outputs Hcom(ssid,S, Ri) that is a one-way commitment as long as
Hcom is a secure cryptographic hash function. The function used to reconstruct the
commitment cmt = R is R =

∏
i∈S Ri where the computations are executed in G,

therefore if at least one party in S is honest, the value R will be uniformly distributed
in G. Lastly, due to the binding property of Hcom, TPDecom

cmt is a deterministic
protocol.

By equipping the threshold sigma protocol with the Setup and KeyGen explained
before we obtain a threshold identification scheme TId which has a one-way KeyGen,
a super-polynomial challenge space and is special sound, active zero-knowledge and
passive zero knowledge. Therefore by Theorem 3.3, TId is secure against active and
passive impersonation attacks.

78



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

4.4.3 Finishing the Proof

Combining Lemma 4.4 and Lemma 4.5, as well as Lemma 4.6 and Theorem 4.4
we obtain a secure signature with distributed key generation, as per Theorem 3.1.

The security of the addition of new user, that follows directly from the security
of the Participant Addition Protocol of Section 4.3.3, stated in Theorem 4.2.

4.5 Conclusions and future works

The main result presented in this chapter in the context of decentralised secure
protocols is twofold: on one hand we describe and prove the security of a variant
of Shamir’s Linear Secret Sharing Scheme, on the other hand we develop a (t, n)-
threshold variant of the Schnorr Signature Scheme which allows to add participants
after the Key Generation.

Our variant of Linear Secret Sharing is based on the link between Shamir’s
scheme and linear MDS codes and it allows two interesting properties: there is
no need for an authority that manages and learns the shares of a common secret,
moreover any group of at least t authorised parties can extend the Secret Sharing
Scheme by adding new participants who have the same powers as those belonging
to the initial set of n parties.

Due to the properties of the decentralised VSSS, the threshold Schnorr signature
protocol described in this work is completely decentralised and is proven secure
under standard hypotheses (i.e. the centralised Schnorr signature protocol is
unforgeable, the commitment schemes are secure, and the Decisional Diffie-Hellman
Assumption holds).

Notice that, by adopting an extensible decentralised VSSS, it is possible to
modify other existing schemes in order to obtain secure (t, n)-threshold variants in
which new participants can be added at any time by a legitimate group of users. In
particular, since our VSSS scheme can be seen as a generalization of the techniques
adopted in [Bat+22b], it is possible to obtain (t, n) threshold variants of ECDSA.

Finally, we remark that, by further decentralising the role of the parties
P1, . . . , Pτ , it is possible to design a VSSS with complex access-policies to the
secret p0. However, the attempt of creating a decentralised VSSS generic enough
to define any possible access control structure seems to present several difficulties,
and the feasibility of this line of research is still under investigation.

79



Chapter 4 – Decentralized Secret Sharing and Threshold Signatures

4.5.1 Comparison with Concurrent Works

As mentioned in Section 1.1, the core of this chapter is contained in [BLM22],
a follow up of [Bat+22a], presented as a poster at CANS2022 and currently under
review for WCC2024. During Crypto2023, Crites, Komlo, and Maller proposed
Sparkle [CKM23], a new (t, n)−threshold Shnorr Signature. The two protocols are
very similar and have almost the exact structure.

In [CKM23] there is a deep security analysis focused on adaptive corruption of
parties after the key generation. However, a key difference between our and their
proofs is that Sparkle’s security proof does not allow the adversary to participate
in the key generation phase, and thus the adversary is not able to choose its secret
key freely. One may see our analysis as covering adversaries that participate in the
key generation and Sparkle’s analysis as covering adversaries that corrupt parties
afterwards, thus the two somewhat complete each other.

We remark that the two works were made independently, roughly at the same
time (the original preprint of this work and the first presentation at CANS 2022
both predate the first appearance of Sparkle online) with no communication or
plagiarism between the teams.

80



Chapter 5

Group Action Cryptography

5.1 Introduction

With the threat of quantum computers looming ever closer, the community
has moved to develop alternative cryptographic solutions that will be resistant to
quantum algorithms, particularly with the NIST call for standardization [NIS17].
While the first standards covering key encapsulation and signatures are about to be
drafted, the situation with the latter is not considered fully satisfactory, so NIST
has launched an “on-ramp” process to standardise new signature designs [NIS23].
there is a lack of threshold friendly schemes among the current solutions, which
is prompting more research in this area and will lead to its own standardisation
process [BP].

Group actions are one of the most promising areas in post-quantum cryptography.
Long used, often without the “explicit label” , with the discrete logarithm problem,
group actions gained traction in post quantum cryptography with isogeny-based
schemes, due to the flexibility of group based constructions. Recently, Code
Equivalence and other Isomorphism Problems have also been (re)discovered as
(non-abelian) group actions suitable for cryptographic use. Non-commutative
actions have advantages from a security point of view, since they prevent quantum
attacks on commutative group actions, such as Kuperberg’s algorithm for the
dihedral hidden subgroup problem [Kup13]. However, this significantly limits
the possible cryptographic primitives based on them, since, for example, they do
not allow for an immediate Diffie-Hellman-like key exchange. This sparked the
interest of the community in studying cryptographic group actions in a more general
framework. Not only to improve current schemes and understand their limitations,
but also to design new functionalities such as threshold signatures.

81



Chapter 5 – Group Action Cryptography

In [CS19], the (round 2) proposals of the standardization process were analyzed
in order to determine ways to define threshold variants, eventually identifying
multivariate schemes as the most suitable starting point, with schemes based on
the Unbalanced Oil and Vinegar (UOV) framework being the most promising.
Even though, from a theoretical point of view, it appears to be indeed possible
to obtain a threshold version of UOV by exploiting MPC protocols using Linear
Secret Sharing Schemes (LSSS), this approach remains, at the present time, only
theoretical.

Notably, threshold signature schemes for cryptographic cyclic group actions
have been already discussed in 2020 and applied to isogeny-based schemes [DFM20],
where they proposed a way to apply a group actions in a threshold like way by
using the classical Shamir Secret sharing on a group action induced by a cyclic
group. They showed how to apply this for an El Gamal like encryption schemes
and a signature based on Σ-protocols proving their simulatability, however this
schemes are only secure in the honest-but-curious model and miss a distributed
key generation mechanisms. In [CS20b] they showed a way to combine the use of
zero-knowledge proofs and replicated secret sharing to obtain a secure threshold
signature scheme from isogeny assumptions. The work is an important step for
the research and can be extended to more general group actions, but the main
drawbacks are the number of shares necessary to implement replicated secret
sharing and the important slow down caused by the additional ZKPs required. In
[Beu+21] they showed how to define a distributed key generation algorithm by
using a new primitive called piecewise verifiable proofs ; proving their security in the
quantum random oracle model. All previous techniques are then incorporated in
[CM22] to have actively secure attributed based encryption and signature schemes,
in which threshold signature are a particular case.

In this chapter, we investigate constructions for post-quantum threshold signa-
ture schemes using cryptographic group actions as the main building block. Our
work takes a black-box approach, making no additional assumptions, such as com-
mutativity, on the group action beyond its security. This allows our frameworks to
be instantiated with a wider variety of candidates, such as the code-based signature
schemes mentioned above.

The first contribution, is construction for a “full” (n, n)-threshold signature
scheme with a distributed key generation mechanism. We then prove its security
via a reduction to the original centralised signature, since the approach of Chapter 3
is not suitable due to the round robin structure of the protocol, which is tipical
(and in some sense, necessary) when dealing with group action in a black box way
[CG23]

Next, we show a (t, n) version of scheme. Since we cannot assume any properties

82



Chapter 5 – Group Action Cryptography

on the groups (except the security of the group actions), our construction is quite
inefficient in terms of memory required, since we have to rely on replicated secret
sharing instead of the linear one. Nevertheless, our construction remains practical
for certain use cases, especially for low values of t and n, or whenever t and n are
close, i.e. with very high or low threshold.

The results of this chapter are contained in [Bat+23a], that is currently accepted
at CT-RSA 2024.

5.2 Preliminaries

For all the chapter we use multiplicative notation for groups, that are usually
denoted as G.

Definition 5.1 (Group Action). Let G be a group and X be a set. A group action
is a function ⋆:

⋆ : G× X→ X

(g, x)→ g ⋆ x
(5.2.1)

with the following properties:

• for all x ∈ X we have e ⋆ x = x;

• for all g, h ∈ G, it holds that h ⋆ (g ⋆ x) = (h · g) ⋆ x.

We indicate it by the tuple (G,X, ⋆) and we say that G acts on X.

Often, we ask for additional properties, namely:

Definition 5.2. We say that a group action is:

• Transitive, if for every x, y ∈ X, there exists g ∈ G such that y = g ⋆ x;

• Faithful, if g ∈ G is such that x = g ⋆ x for all x ∈ X, then g = e;

• Free, if g ∈ G and there exist x ∈ X such that x = g ⋆ x, then g = e;

• Regular, if it is free and transitive.

83



Chapter 5 – Group Action Cryptography

Definition 5.3. Given a group action (G,X, ⋆) for a set element x ∈ X we can
define its orbit as

Ox := {g ⋆ x | g ∈ G}

and its stabilizer as
Gx := {g ∈ G | g ⋆ x = x} .

For finite groups we have a classical result called Orbit-Stabilizer Theorem that
states

|G| = |teleOx| · |Gx| ∀x ∈ X .

Notably, we can always have a transitive group action by restricting X to an
orbit Ox. If the action is also free we get by the theorem the equality |G| = |X|,
that is trivially implied by the bijection g 7→ g ⋆ x. This bijection implies that for
any pair x, y of elements in X there exists one and only one group element g with
g ⋆ x = y, we label this group element as δ⋆(x, y).

5.2.1 Group Action in Cryptography

We need additional properties for a group action to be useful for cryptographic
tasks. First of all we need to be able to efficiently perform operations on the group
G, the set X and their interactions.

Definition 5.4. A group action (G,X, ⋆) is said effective if:

(i) It is possible to work efficiently on the group G, in particular we can perform
efficiently:

(i) given g, h ∈ G; compute their product gh;

(ii) given g ∈ G, compute the inverse g−1;

(iii) sample an element g from G from a uniform distribution (or a distribution
statistically close to the uniform one;

(iv) given g, h ∈ G, compute g = h;

(v) Testing if one string represent a valid group element in G.

(ii) It is possible to verify efficiently that a string corresponds to an element in X
and compute efficiently a unique representation for it;

(iii) There exists at least on element x0 ∈ X we can represent using a finite length
string;

84



Chapter 5 – Group Action Cryptography

(iv) Given any g ∈ G and x ∈ X we can efficiently compute g ⋆ x.

Furthermore, for a group action to be useful for cryptographic purposes, there
must be some hard problem associated with it.

The natural problem that arises from group action is the Group Action Inverse
Problem (GAIP), sometimes called vectorization problem, that basically states that
a group action is a one-way function.

Definition 5.5 (GAIP). Let (G,X, ⋆) be an effective group action. Define the
following experiment

ExpGAIPA (λ) :

1 : x, y
$←− X

2 : g
$←− A((x, y))

3 : return g ⋆ x = y

Define the advantage of A as

AdvGAIP
A (λ) = Pr(ExpGAIPA (λ) = 1)

We say that GAIP is difficult in (G,X, ⋆) if and only if AdvGAIP
A is negligible

for every probabilistic polynomial time adversary A.

It can also be useful to define the decisional version of Definition 5.6:

Definition 5.6 (d-GAIP). Let (G,X, ⋆) be an effective group action. Define the
following experiment

Expd−GAIP
A (λ) :

1 : x
$←− X

2 : b
$←− {0, 1}

3 : if b = 0 then

4 : y
$←− Ox

5 : else

6 : y
$←− X \ Ox

7 : b′
$←− A((x, y))

8 : return b = b′

85



Chapter 5 – Group Action Cryptography

Define the advantage of A as

Advd−GAIP
A (λ) = Pr(Expd−GAIP

A (λ) = 1)− 1

2

We say that d-GAIP is difficult in (G,X, ⋆) if and only if Advd−GAIP
A is negligible

for every probabilistic polynomial time adversary A.

Another related problem is the parallelization problem, that is the generalization
of the classic computational Diffie-Hellman problem.

Definition 5.7 (c-GAIP). Let (G,X, ⋆) be an effective group action. Define the
following experiment

Expc−GAIP
A (λ) :

1 : x
$←− X

2 : g, h
$←− G

3 : y
$←− A((g ⋆ x, h ⋆ x))

4 : return gh ⋆ x = y

Define the advantage of A as

Advc−GAIP
A (λ) = Pr(Expc−GAIP

A (λ) = 1)

We say that c-GAIP is difficult in (G,X, ⋆) if and only if Advc−GAIP
A is negligible

for every probabilistic polynomial time adversary A.

This problem is particularly interesting if G is an abelian group, since it trivially
imply a key exchange à la Diffie-Hellman. Note that if c-GAIP is hard, then so is
GAIP.

It is important to notice that in all the three definitions above, the adversary A
only sees a single pair x, y. In many algorithms, the participants often compute the
same action several times over different elements xi ∈ X, so the above definitions
are not suitable for modelling the security of these algorithms.

In this case, we need to provide to the adversary an oracle Og that, on input a
set element x, returns g ⋆ x. We have the following two definitions:

Definition 5.8 (Weak Unpredictability). Let (G,X, ⋆) be an effective group action.
Define the following experiment

86



Chapter 5 – Group Action Cryptography

Expw−unp
A (λ) :

1 : x
$←− X

2 : g
$←− G

3 : y
$←− AOg(x)

4 : return g ⋆ x = y

Define the advantage of A as

Advw−unp
A (λ) = Pr(Expw−unp

A (λ) = 1)

We say that (G,X, ⋆) is weakly unpredictable if and only if Advw−unp
A is negligible

for every probabilistic polynomial time adversary A.

Definition 5.9 (Weak Pseudorandomness). Let (G,X, ⋆) be an effective group
action. Define the following experiment

Expw−prand
A (λ) :

1 : g
$←− G

2 : b
$←− {0, 1}

3 : if b = 0 then

4 : Og ← OX

5 : b′
$←− AOg()

6 : return b′ = b

where OX is a Random Oracle in X. Define the advantage of A as

Advw−prand
A (λ) = Pr(Expw−prand

A (λ) = 1)

We say that (G,X, ⋆) is weakly pseudorandom if and only if Advw−prand
A is

negligible for every probabilistic polynomial time adversary A.

Hard Homogeneous Spaces Especially in isogeny-based cryptography, it is
often used the term Hard Homogeneous Spaces (HHS), that is an effective group
action (G,X, ⋆) where c-GAIP is difficult, as per Definition 5.7.

87



Chapter 5 – Group Action Cryptography

5.2.2 Examples of Group Actions

The most classic example of a group action is the discrete logarithm, which is
unfortunately not secure in a post-quantum setting, since Schorr’s algorithm solves
it in polynomial time (and thus solves the GAIP).

Isogenies of supersingular elliptic curves Isogenies are one of the most
famous and used group actions, since they are the only commutative one. Thanks
to that, they allow for an easy construction of a post-quantum Diffie-Hellman
like key exchanges. We now briefly explain the CSIDH group action, that was
introduced in [Cas+18] and has several example, such as [BKP20; BKV19; CS20b].

Let Fp be a prime field, with p ≥ 5. In the following E and E0 denote elliptic
curves defined over Fp. An isogeny ϕ : E→ E0 is a non-constant morphism mapping
0E to 0E0 . Each coordinate of ϕ(x, y) is then the fraction of two polynomials in
F̄p[x, y], where F̄ denotes the algebraic closure of Fp.

We restrict our attention to separable isogenies between supersingular elliptic
curves, i.e. curves E defined over Fp whose set of rational points has cardinality p+1.
The set End(E) of all endomorphisms of E that are defined over Fp together with
the zero map form a commutative ring under pointwise addition and composition,
which is isomorphic to an order O of the quadratic field K = Q(

√
−p). A fractional

ideal a of O is a finitely generated O-submodule of K. We say that a fractional
ideal a is invertible if there exists another fractional ideal b such that ab = O, and
that it is principal if a = αO for some α ∈ K. The invertible fractional ideals of O
form an abelian group whose quotient by the subgroup of principal fractional ideals
is finite. This quotient group is called the ideal class group of O, and denoted
by Cℓ(O). The ideal class group Cℓ(O) acts freely and transitively on the set
Eℓℓp(O, π), which contains all supersingular elliptic curves E over Fp - modulo
isomorphisms defined over Fp - such that there exists an isomorphism between O
and End(E) mapping

√
−p ∈ O into the Frobenius endomorphism (x, y)→ (xp, yp)

[Cas+18].

Isomorphism Problems The task of finding an isomorphism, if any, between
two category objects can be seen as a particular instance of GAIP. In general, these
classes of problems do not rely on abelian isomorphism groups. For the scope of
this work, the most important is the code equivalence problem.

Definition 5.10. A map ϕ : Fn
q → Fn

q is said an isometry for the distance d if it
leaves the metric invariant, i.e.

d(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ Fn
q .

88



Chapter 5 – Group Action Cryptography

If ϕ it is also linear we call it linear isometry. Two [n, k]-codes C,C′ are said
equivalent with respect to the metric d if it exists a linear isometry for the relative
metric that maps C to C′.

We often omit to explicit write the metric when not necessary. We can now
define define a general version of the code equivalence problem:

Definition 5.11 (General Code Equivalence). Consider two equivalent linear codes
C and C′ over Fq. Compute the isometry between them.

We can see this as a particular instance of GAIP (Definition 5.5), where the
group of isometries act on the set of codes. Indeed, to prove that isometries forms
a group under the composition, it is sufficient to notice that clearly the identity is
an isometry and the composition of two isometries is still an isometry. Also they
are invertible since the set Fn

q is finite and the maps are injective, in fact by the
definition of distance:

x ̸= y ⇔ 0 ̸= d(x, y) = d(ϕ(x), ϕ(y))⇒ ϕ(x) ̸= ϕ(y) .

Define X as the set containing [n, k]-codes and I the group of isometries, we can
consider the following group action associated to the linear code equivalence:

⋆ : I× X→ X

(ϕ,C)→ ϕ ⋆ C := ϕ(C)
(5.2.2)

In the following we work with Hamming metric, thus the code equivalence
problem of definition 5.11 can be stated as follows:

Definition 5.12 (Linear Code Equivalence). Let C be a [n, k]-linear code over Fq,
with generator matrix G. Consider the following problem

ExpLCEA (λ) :

1 : S,Q
$←− GLk(q)×Mn(q)

2 : G′ ← SGQ

3 : S′, Q′ ∈ GLk(q)×Mn(q)
$←− A((x, y))

4 : return G′ = S′GQ′

Define the advantage of A as

AdvLCE
A (λ) = Pr(ExpLCEA (λ) = 1)

89



Chapter 5 – Group Action Cryptography

Prover(x0, x1, g) Verifier(x0, x1)

r
$←− G

cmt← r ⋆ x1 cmt

ch ch
$←− {0, 1}

if ch = 1 then

rsp← r

else rsp return cmt = rsp ⋆ xch

rsp← gr

Figure 5.1: Structure of a sigma protocol

We say that the linear code equivalence problem is hard if and only if AdvGAIP
A

is negligible for every probabilistic polynomial time adversary A.

There is no formal proof about the hardness of the linear code equivalence
problem. On the contrary, it was shown in [PR97] that the permutation equivalence
problem is unlikely to be NP-complete, since this would imply a collapse of the
polynomial hierarchy. However, while the problem can be solved efficiently for
some families of codes, there are many cases that remain intractable after nearly
40 years of study [Bia+20].

Lastly, it is possible to prove that instead of S we can always choose G and G′

to be in systematic form, i.e. G = [I|R] where I is the k × k identity matrix.

5.3 Threshold Signature

In this section we show how it is possible to obtain a group action based
threshold signature.

Consider the sigma protocol of Figure 5.1. It is easy to see that if GAIP is
hard then the above sigma protocol is honest verifier zero knowledge, has special
soundness and completeness. Thus, it is possible to obtain a signature by simply
considering parallel repetition of it and applaying the Fiat-Shamir Transform.

In this section we design a threshold signature of it.

90



Chapter 5 – Group Action Cryptography

KeyGen(pp):

1 : gi
$←− G

2 : Publishes cmti := Com(gi)

3 : for i in{1, ..., n} do

4 : Pi computes xi = gi ⋆ xi−1

5 : Pi publishes a ZKP xi = Decom(cmti) ⋆ xi−1

6 : Pi sends xi to Pi+1 // when i < N

7 : return y := xN // The private key of Pi is gi

Figure 5.2: Key-generation for the group action threshold signature. The public
parameters pp comprise the origin x0, the group G and an order among the players.

5.3.1 Full Threshold

We start our discussion by showing an algorithm for the full threshold cases,
where all the users are required to produce a signature (i.e. t = n).

Decentralised Key Generation Algorithm The goal of this protocol is to
produce a common public key y = g ⋆ x0 with g = g1 · ... · gN , where each party
holds one gi, in the same way of [Bas+23; CS20b]. To do so the users sequentially
apply a previously committed random group element to the origin x and add a
non-interactive Zero-Knowledge proof to show the correctness of the computation.
The resulting protocol is shown in Figure 5.2. The main difference with [CS20b]
is that our scheme is specialised for non-abelian group actions and we are able to
prove the security with only one ZKP per user, compared to the two required by
[CS20b].

At first glance, the fact that each user Pi needs to receive the set element xi−1 by
Pi−1 before starting its computation is a big limitation, since it does not allow for
any parallelization. However, it was recently shown, that the round robin structure
is optimal, when dealing with group actions in a black box way[CG23].

We now show two possible ZKPs for line 2 and 5. The most immediate idea
is to define x′

i = gi ⋆ x0 and set Com(gi) = x′
i. Then the relation of line 5 is the

following

x′
i = gi ⋆ x ∧ xi = gi ⋆ xi−1 . (5.3.1)

91



Chapter 5 – Group Action Cryptography

Prover(x, x′i, xi, xi−1, gi) Verifier(x, x′i, xi, xi−1)

g̃
$←− G

x̃← g̃ ⋆ xi−1

x̃′ ← g̃ ⋆ x

cmt← H(x̃||x̃′) cmt

ch ch
$←− {0, 1}

if ch = 0 then

rsp← g̃

else

rsp← g̃g−1
i

rsp if ch = 0 then

return H(rsp ⋆ xi−1||rsp ⋆ x) = cmt

else

return H(rsp ⋆ xi||rsp ⋆ x′i) = cmt

Figure 5.3: Sigma protocol for the relation of Equation (5.3.1)

The ZKP is shown in Figure 5.3.

Proposition 5.1. If the action is weakly pseudorandom then the protocol in
Figure 5.3 is complete, sound and computationally zero-knowledge. Moreover, it
can be rendered to a non interactive computationally zero-knowledge quantum proof
of knowledge in the QROM.

Proof. First we prove that the underlying protocol is complete, sound and compu-
tationally zero-knowledge. The completeness is straightforward. We need to prove
soundness and zero knowledge.

• Soundness: suppose that the prover is able to answer both challenges with
u0 and u1, by the collision resistance of the hash function at this point we
would retrieve g as u−1

1 u0 against the one wayness of the group action and
having that the public keys are generated by the same group elements.

• Zero Knowledge: to simulate the protocol without knowing the secret g

and for any pairs of elements (x′
i, x), (xi, xi−1) the simulator S flips a coin c.

If c = 0, then S follows the protocol normally and is able to answer if b = 0.
If c = 1, it computes x̄′ = ḡx and x̄ = ḡxi−1 and sends them in place of x̃′ and

92



Chapter 5 – Group Action Cryptography

x̃. In this way it is able to answer when b = 1. Thus, if c = b the prover can
convince the verifier, otherwise it rewinds the verifier and try again. Since
at every iteration the prover has probability 1

2
of guessing the correct c the

simulation ends in expected polynomial time. Note that this transcript is
indistinguishable from the honestly-obtained one if the action is the weakly
pseudorandomn.

For the quantum resistance we can observe that since the automorphisms are all
trivial the sigma protocol has perfect unique responses (see [Blä+22, Lemma 1])
then by [Don+19, Theorem 25] the protocol is a quantum proof of knowledge. Then
the protocol has completeness, high min entropy and HVZK and is zero-knowledge
against quantum adversaries thanks to [Unr17].

The problem of the above protocol is that it requires a weakly pseudorandom
group actions. It was recently shown that many commonly used group actions,
such as the linear code equivalence, are not weakly pseudorandom and having
access to (x, g ⋆ x, y, g ⋆ y) allows to easily recover g [Bud+24]. In this case we
need a different and less efficient zero knowledge proof. The strategy is basically to
prepare the whole proof before the key generation, commiting to both the possible
response. Then, finishing the proof during the key generation phase, opening
only the relevant response. Formally, in line 2, Pi picks {g̃k}[λ] randomly from G,
compute rooti = Merkle({(g̃k, g̃kgi)}k), the root of a Merkle Tree having the set of
all (g̃k, g̃kgi) as leafs and define Com(gi) = rooti. Later, in line 5, Pi performs the
protocol of Figure 5.4.

Observation 5.1. The zero knowledge property is trivial to prove, the simulator
can simply adopt the strategy used for the previous protocol. The special soundness
is more tricky. The problem is that the protocol does not ensure that all the leaf
of rooti are correctly formed, indeed suppose that an adversary cheat on one leaf,
then probability of being detected is only 1

2
, since half of the time that leaf is not

open. What the protocol ensure, is that in the majority of the leaf the correct gi
is used. Moreover, if two accepting transcript are different on one bit, then both
leaves must be correct, thus the above extractor works fine.

Signing Algorithm The signing protocol generalises the one presented in [CS20b;
DFM20] for non-abelian group actions.

In the commitment phase, each user Pi receives xj
i−1, computes xj

i = g̃ji ⋆ x
j
i−1

for random g̃i and outputs it. During the response phase Pi get uj
i−1 and outputs

93



Chapter 5 – Group Action Cryptography

Prover(rooti, xi, xi−1, gi) Verifier(rooti, xi, xi−1)

{x̃k}[λ] ← {g̃kxi}[λ]
cmt← {x̃k}[λ] cmt

ch ch
$←− {0, 1}λ

if chk = 0 then

rspk ← g̃k||H(g̃kg−1
i )

else

rspk ← g̃kg
−1
i ||H(g̃k)

rsp← rsp1||...||rspk rsp Check all rspk and

the Merkle Tree.

Figure 5.4: Sigma protocol for a non pseudorandom group action.

uj
i = g̃jiu

j
i−1g

−chj
i . For the challenge chj = 0 the parties verify that x̃j

i = uj
i ⋆ x,

while in the other case they check x̃j
i = uj

i ⋆ xi.

The idea of this multiparty protocol is illustrated in Figure 5.5.

x0 x1 xN−1 xN

x̃1

x̃N−1

x̃N

g̃1 ⋆

g1 ⋆ gN ⋆

g̃N ⋆

Figure 5.5: Scheme representing the idea behind the protocol in Figure 5.6. In
blue are the ephemeral group elements revealed on ch = 0, while in red the map
reconstructed for ch = 1.

A detailed description of the algorithm is given in Figure 5.6.

A key feature of Figure 5.6, with respect to the previous literature, is the use
of secure salt during the challenge evaluation (line 12 and 13), a technique used
also in [Cha22]. The salt is crucial to reduce the number of ZKPs in the signing
protocol while maintaining security in the presence of malicious users.

94



Chapter 5 – Group Action Cryptography

TSign({gi}[n], m):

1 : xj0 ← x for j ∈ {1, ..., λ}
2 : for i ∈ {1, ..., n} do

3 : Pi picks salti
$←− {0, 1}c(λ)

4 : CMTi ← Com(salti)

5 : for i ∈ {1, ..., n} do

6 : if i > 1 then Pi receives all xji−1 from Pi−1

7 : for j ∈ {1, ..., λ} do

8 : Pi picks g̃ji
$←− G, and sets xji ← g̃ji ⋆ x

j
i−1

9 : Pi sends xji

10 : xj ← xjN for j ∈ {1, ..., λ}
11 : Each party publishes Decom(CMTi)

12 : salt←
⊕

i
salti

13 : ch← H(x1||...||xλ||salt||m)

14 : P1 set uj0 ← efor j ∈ {1, ..., λ}
15 : for i ∈ {1, ..., n} do

16 : if i > 1 then Pi receives all uji−1 from Pi−1

17 : for j ∈ {1, ..., λ} do

18 : Pi computes uji ← g̃ji u
j
i−1g

−chj
i

19 : Pi outputs uji and all users verify it

20 : rspj ← ujN for j ∈ {1, ..., λ}

21 : σ = ch||salt||rsp1||...||rspλ
22 : return σ

Figure 5.6: Signature algorithm

Indeed, without the salt verification, the scheme can be attacked by an adversary
opening several concurrent sessions. Intuitively, suppose that the adversary is in
control of the N -th user and wants to sign the message m for the public key y = g⋆x,
knowing only gN . He can proceed in the following way:

(i) The adversary starts λ signing sessions for any messages m1,...,mλ.

95



Chapter 5 – Group Action Cryptography

(ii) For every session s, he receives by PN−1 x1
N−1, ..., x

λ
N−1. At this point he

evaluates x1
N = g̃1N ⋆ x1

N−1 for each session s as described in the protocol. Let
us call this element x̂s for each session.

(iii) He evaluates the challenge ch = H(x̂1||...||x̂λ||m).

(iv) For each session s, the adversary then evaluates x2
N , ..., x

λ−1
N legitimately, then

chooses g̃λN so that the first bit of H(x1
N ||...||xλ

N ||mi) is equal to the s-th bit of
ch. This would not be possible if we had a secure salt.

(v) Finally, the adversary closes all the concurrent sessions obtaining, for the ses-
sion s, the response u1

N−1 received from PN−1, which is used to evaluate rsp1.
This can be used to answer chs and obtain a valid signature ch|| ˆrsp1||...|| ˆrspλ.

We now prove the security of the scheme.

Theorem 5.1. Let (G,X, ⋆) be a group action such that GAIP is hard, if the
centralised signature is unforgeable in the quantum random oracle model, then the
full-threshold signature scheme composed by KeyGen, TSign is EUF-CMA secure in
the quantum random oracle model.

First of all, we need to prove the security of KeyGen.

Lemma 5.1. Let (G,X, ⋆) be a group action such that GAIP is hard, the protocol
KeyGen can be simulated in the quantum random oracle model in polynomial time
so that any probabilistic polynomial time adversary is convinced that the public key
is any fixed pair x, y ∈ X.

The main idea of the proof is to use the ZKPs to extract the secret from the
adversary and use them to simulate a view of the protocol. Unlike [CS20b], here
we only have one ZKP for any user, thus we rely in rewinding the tape to change
the set element sent by the simulator in line 4. Notice that depending on whether
the action is weakly pseudorandom or not we can use the protocol of Figure 5.3 or
Figure 5.4.

Proof. Figure 5.7 shows the simulation strategy. We need to prove that the
simulation terminates in expected polynomial time, it is indistinguishable from a
real execution, and outputs y. The simulation terminates in polynomial time with
non-negligible probability, indeed we have to carry over:

• one rewind of A;

96



Chapter 5 – Group Action Cryptography

KeyGen simulation:

1 : S sends Com(gS) to A
2 : S follows the protocol normally

3 : S sends a random x′iS instead of the correct one

4 : S simulate the ZKP

5 : S follows the protocol normally and use the ZKP to extract gi, i > iS

6 : S rewinds the adversary before sending x′iS

7 : x′iS ← (g−1
iS+1....g

−1
n ) ⋆ y

8 : S follows the protocol normally with the new x′iS simulating the ZKP

Figure 5.7: KeyGen simulation

• at most N − 1 extractions of secrets from the ZKPs, that can be carried
over in polynomial time using the Forking Lemma on the single ZKP. The
probability for the adversary to fake the ZKP where a share does not exists
is negligible, assuming that GAIP is hard.

Note that the rewinding can be performed since the adversary has already
committed to the values gi before the rewinding phase. In addition, thanks to the
ZKPs, these group elements must exist, and the adversary is forced to apply them
on xi0 = (g−1

i0+1...g
−1
N ) ⋆ y, so that the output of the simulation is the public key x, y

as desired.

The proof of Theorem 5.1 follows the game-based argument proposed in [Gri+21,
Theorem 3]. The key idea is to reduce the security of the full threshold signature
to the security of the centralised one.

Proof Theorem 5.1. Consider an adversary A that make up to qs sign queries and
qh quantum call to the random oracle OH that wins the Expa−euf−cma

TDS with non
negligible advantage ϵ. By in Lemma 5.1 we can simulate the KeyGen on any public
key x, y.

Since the protocol TSign and KeyGen are executed in multiparty, if by any
reason the protocol is aborted because of A misbehaviour, the game ends and
returns ⊥. We now describe a sequence of game, game G0 is the EUF-CMA game,
while game G2 is the real execution of the protocol.

97



Chapter 5 – Group Action Cryptography

Game G0. This game is the same one played for the EUF-CMA security in
Definition 2.21, thus Pr(GA

0 → 1) = ϵ by definition.

Game G1. In this game we set ch at random and we reprogram the random
oracle, instead of obtaining ch from the random oracle. We can observe that any
statistical difference between the games can be used to build a distinguisher for the
reprogramming of the oracle; in particular we can adapt the distinguisher from the
proof of [Gri+21, Theorem 3]. In total, we reprogram the oracle qs times (one for
every signature) and A performs qh quantum calls. Moreover, note that x1, ..., xλ, m

are (at least partially) controlled by the adversary, while salt is randomly sampled
thanks to the initial commitments and the secure aggregation. This ensure us that
the probability of having a collision is negligible and that A is not able to guess
the input H, except with negligible probability (for a more detailed discussion, see
the proof Lemma 3.1, in particular the paragraph about simulation failures during
has queries. Notice that the commitment to salti is done via a random oracle, so
the simulation is simpler and does not require rewinding, as noted in the last part
of the proof). Thus, by [Gri+21, Proposition 1] we have:

|Pr[GA
0 → 1]− Pr[GA

1 → 1]| ≤ 3gs
21+λ

√
qh (5.3.2)

Game G2. First of all, note that during the computation of the response, it
is possible to check whether the received uj

i is correct or not, if the user i + 1

saved all the xi during the key generation step. We exploit this property in our
simulation. Indeed, to simulate a signature, the simulator first acts honestly and
follows the protocol. Upon receiving all the responses uj

i of P1, ..., Pi0−1, it checks
the correctness of all of them. If they are all correct, it rewinds the adversary up
until receiving x̃i0−1 and chooses x̃i0 according to challenge chj (Figure 5.8 shows
schematically of how the simulation strategy works). In particular:

• linking x̃i0−1 and x̃i0 on challenge chj = 0;

• linking xi0 and x̃i0 on challenge chj = 1;

The idea is that every time the adversary acts honestly until Pi0 , the simulator
produces an indistinguishable transcript that will not be rejected during the response
computation. When, instead, the adversary sends something wrong before Pi0 , the
simulation is perfect. Indeed, even if Pi0 is not able to answer to the challenge, the
error spotted allows for an early abort and the simulation is indistinguishable.

98



Chapter 5 – Group Action Cryptography

x0 x1 x2 x3

x̃1

x̃2

x̃3

g̃1 ⋆

g1 ⋆ gi0 ⋆ g3 ⋆

ch=1
ch=0

g̃3 ⋆

Figure 5.8: Example of simulation for N = 3 and i0 = 2, in red the missing link,
while in blue the elements used to generate xi0 and to answer the challenge.

We have shown that G2 simulates the multiparty signature protocol TSign, thus
we need to bound the distance between the two last games. We are able to prove
that the two views have the same distribution, implying null game distance.

If the simulator spots an error and aborts, the simulation is correct and in-
distinguishable from the real execution, since Pi0 followed the protocol normally.
If the simulator rewind the adversary, then the view is given by salti0 , x

j
i0
, g̃ji0

for all j = 1, ..., λ. The salt and the group elements are uniformly distributed
both in the signature and in the simulation, so they are indistinguishable even
for an unbounded adversary. Also for j with chj = 0 the set elements xj

i0
are

indistinguishable since the simulator is just following the protocol TSign.

For j with chj = 1 we consider the tuples (x̃j
i0−1, x̃

j
i0
) with x̃j

i0
= g̃ji0 ⋆ x̃

j
i0−1 in

the honest execution and x̃j
i0
= g̃ji0 ⋆ xi0 in the simulated ones.

After the rewinding, we know that x̃j
i0−1 = uj

i0−1 ⋆ xi0−1 ∈ Oxi0−1
= Ox. Since

the group action is free, there exists a unique h̃ with x̃j
i0
= h̃ ⋆ x̃j

i0−1. The element h̃
has the same distribution as g̃ji0 thanks to the uniqueness of the solution; it follows
that these pairs are again indistinguishable.

Finally, we observe that game G2 is executed entirely without the use of the
secret share gi0 , thanks to the simulation, and so succeeding in the game implies
being able to forge a signature for the centralised scheme in the quantum random
oracle. Since we assumed quantum unforgebility for the centralised signature, this
probability is negligible. Combining all the game distances we prove the desired

99



Chapter 5 – Group Action Cryptography

reduction by the resulting equivalence:

Adva−euf−cma
TDS,A ≤ 3gs

21+λ

√
qh + negl(n)(λ) .

Observation 5.2. A thoughtful reader may be wondering why we have not used
the results of Chapter 3 to prove the security of our scheme. While this is a suitable
strategy for the passive case (that follows trivially from the active one), we are not
able to use Theorem 3.1 in this context, since we are not able to design a secure
TPcmt protocol, according to Definition 3.3. This is an immediate consequence
of the round robin structure: we are not able to produce commitment and the
combine them, since no operation is defined on the set, and we also are not able to
simply commit to g̃ji and then reveal it, otherwise the scheme would be trivially
insecure. The presence of the salt solves the issue, allowing the simulator to act on
it without the need of extracting all the ephimeral secrets g̃ji from A, nevertheless
this is not enough to use Theorem 3.1.

This is a further testament to the fact that we were not able to prove the
minimal conditions, but instead our conditions were only sufficient. However, being
able to exactly capture the proof strategy adopted in this proof is non trivial and
difficult to generalise.

5.3.2 General Scheme

We can now explain how to obtain a t, n scheme from the full threshold one,
via replicated secret sharing1 [ISN89]. Our approach was first proposed in [CS20b].

Definition 5.13. A monotone access structure A for the parties P := {P1, .., PN}
is a family of subsets S ⊂ P that are authorised (to sign a message) such that
given any S ∈ A and S′ ⊃ S then S′ ∈ A. We sometimes call A the authorised
set (or authorised parties). To each access structure we can associate a family of
unqualified sets U that satisfies that for all S ∈ A, SU ∈ U then S∩ SU = ∅. For all
the section we will define the unqualified sets in the canonical way as U = 2P \ A.

If we want to share a secret s for a monotone access structure A, we need to
consider the family U+ of the maximal unqualified set with respect to inclusion

1Unfortunately, while standard linear secret sharing would be more efficient, it is difficult to
use in a non-abelian setting.

100



Chapter 5 – Group Action Cryptography

and define I as the family of complements for U+, i.e.

I := {SI ∈ A | ∀SU ∈ U . SU ⊇ P \ SU =⇒ SU = P \ SI} .

Having fixed M = #I, we sort the elements in I as I1, I2, ... and for each l ∈ {1, ...,M}
we define the shares sl so that s = s1 · · · sM ; each party Pi is then given access to
sl if and only if Il ∋ i. This leads to the following (already known) result.

Proposition 5.2. Any authorised subset of users can get the secret s, whilst any
non-authorised set of users cannot retrieve at least one share.

By using this proposition, the parties in the authorised set can recover the
secret just by agreeing on which one of them should be the one sharing each share,
i.e. by agreeing on a turn function τ .

For the t, n scheme, the authorised sets are the ones having cardinality at least
t. In this way, U+ are all the subsets with at most t − 1 element, I the ones of
cardinality N − T + 1 and M = #I =

(
N

T−1

)
.

Distributed key generation. The distributed key generation protocol of Fig-
ure 5.2 can be used also in this threshold case. The main difference is that during
the generation each share gi should be known to multiple users, so to apply it on
xi−1 they can either:

(i) jointly generate a shard of it and then combine the shard. Since the element
gi should be known to all the party involved, a simply commit-release protocol
is suitable for the task;

(ii) delegate one of the users that should know a share to apply it; said user then
share it with the others, who can check the correctness of the received shard
easily by simply compute the action.

We prefer the second option since it has a lower latency for the non-abelian
case, but still achieves the same security, assuming that all the users take part to
at least one generation round, thanks to the zero-knowledge proofs.

Signature algorithm The signature algorithm is also performed in the same
way as the full threshold scheme, using the turn function τ to determine which
party sends which messages at each round. The proof of security for this scheme
is practically equal to the full threshold one: in fact, one can imagine that, after
an initial phase to see who has the required shares, the scheme is essentially an
(M,M)-threshold scheme.

101



Chapter 5 – Group Action Cryptography

Theorem 5.2. Let (G,X, ⋆) a free group action where GAIP is hard. If the
centralised signature is unforgeable in the quantum random oracle model, then
the (t, n)-threshold signature scheme composed by KeyGen, TSign adjoined with
replicated secret sharing is EUF-CMA secure in the quantum random oracle model.

Sketch. The proof is very similar to that of the full threshold case (Theorem 5.1).
First of all, note that, since the adversary controls at most t− 1 players, there must
be at least a set Ih ∈ I composed only by honest players on which the adversary
has no control. Thus we just use the strategies from the full threshold case using
users in Ih as non corrupted users.

Number of shares The main drawback of replicated secret sharing is that the
number of shares grows proportionally to the cardinality of U+, which is usually
exponential in the number of parties. In particular, in the threshold case, there are(

n
t−1

)
shares in total, and each party needs to save

(
n
t

)
shares. Since the group is

non-abelian, the number of rounds cannot be reduced and it is equal to the total
number of shares.

For this reason, the protocol has several usability limitations and is feasible
only for particular t and n, like t = n (full threshold) or small n. For the case
t = n−1 and n > 3, the number of the shares is already linear in n and the number
of rounds is quadratic in n. Nevertheless, we would like to point out that for the
most used combinations of (t, n) such as (2, 3) or (3, 5), the number of shares (and
rounds) is manageable and the protocol maintains an acceptable level of efficiency.

5.4 Optimizations and Performance Evaluation

In this section, we show a couple of optimizations typically used with group
action that can also be used for our threshold protocol. We later show the
parameters of the protocol, when considering the LESS signature, based on the
linear code equivalence problem [Bar+21]. We will denote by ξ the bit-weight of
an element of X, and γ to denote that of an element of G.

5.4.1 Multi-bit Challenges

Multi-bit challenges are a way to reduce the computational time at the price of
bigger keys and are widely used in signature design (e.g. [DFG19]). In a nutshell,

102



Chapter 5 – Group Action Cryptography

this method consists in replacing a binary challenge space with a larger one, where
each challenge value corresponds to a different public key. In this way, it is possible
to amplify soundness, at the cost of an increase in public key size. Security is then
based on a new problem:

Pr[[]mGAIP: Multiple Group Action Inverse Problem] Given a collection
x0, ..., xr−1 in X, find, if any, an element g ∈ G and two different indices j ̸= j′ such
that xj′ = g ⋆ xj.

It is possible to prove that this problem is equivalent to GAIP [Bar+21]. We
can then consider r − 1 public keys x1, ..., xr−1 generated from the initial element
x0 by r−1 shared keys g(1), ..., g(r−1) (with the notation g(0) = e). At this point the
challenge is generated as an integer ch ∈ {0, ..., r−1}, thus to evaluate the response
Pi computes uj

i = g̃jiu
j
i−1(g

(chj)
i )−1. As mentioned above, the soundness error is

reduced to r−1, thus in the signing algorithm we only need to execute ⌈ λ
log2(r)

⌉
rounds, reducing both signature size and computational cost, but increasing the
public key size.

5.4.2 Fixed-weight challenges

When there is a meaningful difference between the size of rsp when ch = 0 and
ch = 1, a common idea is to choose an hash function having a fixed number 0 and
1, minimizing the occurrence of the bigger response, at the cost of increasing the
challenge length [BKP20; Bar+21]. In our case, while ch = 1 requires to send a
group element, in the case ch = 0 the prover can simply send the PRNG seed used
to generate the random group element g̃, that is usually much shorter than a a
group element.

Let consider an hash function H that returns a vector of fixed weight ω and
length t. To avoid a security loss we need to have a preimage security (the difficulty
of guessing in the challenge space) of still λ bits, thus t, ω are such that:

(
t
ω

)
≥ 2λ.

In this way, we can obtain shorter signature size at the price of an higher number
of rounds.

To further reduce the signature size, it is possible to send multiple seeds at
the same time by using a seed tree. This primitive uses a secret master seed to
generate t seeds recursively exploiting a binary structure: each parent node is used
to generate two child nodes via a PRNG. When a subset of t−ω seeds is requested
for the signature, we only need to send the appropriate nodes, reducing the space
required for the seeds from λ(t− ω) to a value bounded above by λNseeds, where

Nseeds = 2⌈log(ω)⌉ + ω(⌈log(t)⌉ − ⌈log(ω)⌉ − 1) ,

103



Chapter 5 – Group Action Cryptography

as shown in [GPS22; Cho+23]. In [Cha22], the author noted that, to avoid collisions
attacks, a fresh salt should be used in combination of the seed tree structure.

Applying this optimization to a threshold signature is not straightforward and
requires particular parameters to be used. Indeed, the parties can not share a single
seed used for the generation of the ephemeral map g̃, but have to share M =

(
N

T−1

)
of them. Thus, if the challenge bit is 0, the parties need to send all the M bits,
and the total communication cost becomes M · λ. So, for this strategy to make
sense, we need Mλ to be smaller than the weight of the group element.

5.4.3 Scheme Parameters

When the two approaches are combined, the final signature weight is (nseedsM +
2)λ+ ωγ + t with t the number of rounds (#rounds) satisfying(

t

ω

)
(r − 1)ω ≥ 2λ .

In our signing algorithm, for each of the
(

n
t−1

)
iteration of the for loop over

1, ...,M , each user needs to send the following quantities to the next user:

• #rounds · ξ bits for the commitment phase,

• #rounds·γ+2λ bits in general and (NseedsM+2)λ+ωγ when using fixed-weight
challenges.

At this point, we can see specific choices for LESS. In our analysis, we choose
the public parameters that satisfy the requirement of 128 bits of classical security
and at least 64 bits of quantum security, and evaluate ξ and γ accordingly. We
include here the data for the original signature schemes, as well as parameters that
we found in order to optimize the sum |pk|+ |σ| for the cases (2, 3), (3, 5) and the
case without fixed-weight challenges.

Instantiations with LESS.

From [Bal+23] we have taken the secure balanced LESS parameters for the
NIST Security Category 1 N = 252, K = 126 (length and dimension of the code),
Fq = F127. We obtain that the size of a single code in systematic form is given by
(N −K)K⌈log2(q)⌉ bits, so ξ = 13.7KiB. Instead, to send a monomial map, we can
use the IS-LEP technique from [PS23]. This recent optimization requires the use of

104



Chapter 5 – Group Action Cryptography

Case Variant t ω |pk| (KiB) |sig| (KiB) Exc. (MiB)

centralised Fixed 247 30 13.7 8.4 -

(2,3) Fixed 333 26 13.7 10.59 13.30

(3,5) Fixed 333 26 13.7 21.09 44.43

(N,T) [440, 50]127 - - 16.68 12.55
(

N
T−1

)
2.19

Table 5.1: Parameters for the threshold version of LESS

a new canonical representation of the generator matrices via information sets. In
this way, the equality can be verified using only the monomial map, truncated on
the preimage of the information set, thus nearly halving the communication cost to
K(⌈log2(q − 1)⌉+ ⌈log2(N)⌉) bits for each group element. This optimization (and
any other possible new optimization based leveraging modified canonical forms,
such as [CPS23]) can be used also for the threshold protocol since:

• for the commitment phase, the last user can simply commit using the modified
canonical form, then store the additional information received (the information
set used);

• for the response phase, when the monomial map g−1g̃ is recovered, it can be
truncated again by the last user by using the additional information from
the commitment.

For the cases in which fixed-weight cannot be used, we simply send all the
truncated monomial maps. In this case, we can cut the signature size without
enlarging too much the public key, by decreasing the code dimension to K = 50 at
the price of a longer code with N = 440 for q = 127 leading to a public key size
of 17.1KiB and truncated monomial map size of 100B. Numbers are reported in
Table 5.1, where we report, in the last column, also the total size of the exchanged
data.

5.5 Oblivious Transfer

An oblivious transfer (OT) protocol is a 2-party protocol in which a sender
sends one among many pieces messages to a receiver, but remains oblivious as
to what message has been sent. On the other hand, the receiver does not learn
anything about the other messages.

105



Chapter 5 – Group Action Cryptography

In this section we present a group action based oblivious transfer (OT). While
requiring communication during the key generation phase, our OT require a single
group action evaluation per input message and the communication of a single
set element per message, making it way faster and compact compared to the one
presented in [Ala+], which instead require log(λ) group action evaluation per input
message. Moreover, our construction allows for a straightforward generalization
to n input messages and t received ones, while the one in [Ala+] is limited to the
classical 1-out-of-2.

We can define an OT and its usual security requirements as follows.

Definition 5.14 (Statistically Sender-Private OT). A two-message statistically
sender-private OT is a triple of algorithms (OTR,OTS,OTD), such that:

• OTR(λ, b): on input a security parameter λ and a bit b, outputs a message
ot1 and a secret sk.

• OTS(λ, m0, m1, ot1): on input a security parameter λ, a pair of messages (m0, m1)
and a message ot1, outputs a message ot2.

• OTD(λ, sk, b, ot2): on input a security parameter λ, a secret sk, a bit b and
a message ot2 it outputs the message m′.

that satisfies the following properties:

• Correctness: for any bit b ∈ {0, 1}, any pair of messages (m0, m1) and

(ot1, sk) = OTR(λ, b), ot2 = OTS(λ, m0, m1, ot1), m
′ = OTD(λ, sk, b, ot2)

we have m′ = mb except with negligible probability.

• Receiver privacy: the output distributions of (ot1, sk) = OTR(λ, 0) and
(ot′1, sk

′) = OTR(λ, 1) are indistinguishable.

• Statistical sender privacy: for any bit b, any message ot1 and two pairs of
messages (m0, m1), (m′0, m′1) such that mb = m′b, we have that the ouptut distri-
butions of OTS(λ, m0, m1, ot1) and OTS(λ, m′0, m

′
1, ot1) are indistinguishable.

From now on, let (G,X, ⋆) be a group action where cGAIP is hard. Suppose now
that the receiver owns a public key (x, x0, x1) for which it knows a group element
that maps x to one among x0 and x1 but it does not know a map from x to the

106



Chapter 5 – Group Action Cryptography

Receiver(x, x0, x1, gs) Sender(x, x0, x1, m0, m1)

b
$←− {0, 1}

ot1 ← (xs⊕b, x1−(s⊕b)) ot1

g̃0, g̃1
$←− G

X̃i = (g̃i ⋆ ot1,i)⊕ mi // i=1,2

ri = g̃i ⋆ x // i=1,2

ot2 ot2 ← (X̃0, X̃1, r0, r1)

return mb ← (g0 ⋆ rb)⊕ X̃b

Figure 5.9: Structure of a sigma protocol

other element. We refer to this group element as gs and the xs = gs ⋆ x. Moreover,
the sender does not know whether s = 0 or s = 1. We deal with how to obtain
such a key and how to prove the “ignorance” of g1−s later. Figure 5.9 shows the
protocol.

We now prove the security of the described OT.

Theorem 5.3. Let (G,X, ⋆) be a group action for which cGAIP is hard. Then the
protocol of Figure 5.9 is a statistically sender-private OT as per Definition 5.14.

Proof. The correctness is straightforward and follows from basic arithmetic. We
prove now receiver privacy and statistical sender privacy.

Receiver privacy. Since the sender does not knows whether the receiver knows
g0 or g1, the two couple (x0, x1) and (x1, x0) have trivially the same distribution.
Indeed Pr(ot1 = (x1, x0)|b = 0 ∧ s = 0) = Pr(ot1 = (x1, x0)|b = 1 ∧ s = 1).

Statistical sender privacy. Let A be a malicious receiver, that can distinguish
between OTS(λ, m0, m1, ot1) and OTS(λ, m′0, m

′
1, ot1), with mb = m′b. Without loss of

generality we can suppose that A knows only g0, we show later how to prevent a
malicious adversary from knowing both g0 and g1. Suppose that b = 0, we show
that X̃1 is indistinguishable from a random string. Indeed, since the the cGAIP
is hard, we have that, for a fixed g, (g ⋆ x, r ⋆ x, gr ⋆ x) and (g ⋆ x, r ⋆ x, y) with
y sampled uniformly at random from X have the same distribution. From the
security of H, it follows immediately that also H(gr⋆x) and H(y) are both uniformly

107



Chapter 5 – Group Action Cryptography

Receiver((x, xa, x0, x1, g0), gb) Sender(x, xa, x0, x1, ga)

g̃i
$←− G // i=1,2

x̃i ← g̃i ⋆ xi // i=1,2

cmt← (x̃1||x̃2) cmt

ch ch
$←− {0, 1}

if ch = 0 then

rsp← (g̃0, g̃1)

else

rsp← g̃1gb rsp if ch = 0 then

return (rsp ⋆ x0||rsp ⋆ x1) = cmt

else

return x̃0 = rsp ⋆ xa ∨ x̃1 = rsp

Figure 5.10: Sigma protocol for the knowledge of gb, and thus the “ignorance” of g1.

distributed in {0, 1}l(H), the output domain of H. Lastly, notice that X̃1 is simply
a one-time pad encryption of m1 with key H(gr ⋆ x), which is uniformly distributed.
Thus, also X̃1 is indistinguishable from a uniformly distributed random string.

We now need to prove how is it possible to create a valid pubic key, such that
the receiver knows only one among the two actions and the sender is not able to
detect which one. WLOG we suppose that the receiver knows g0. The idea is that
the sender generates a random ga and sends xa = ga ⋆ x to the receive. At this
point the receiver computes x0 = g0 ⋆ x and x1 = gb ⋆ xa, then prove the knowledge
of gb by doing the equivalent of a ring signature with ring of keys formed by (xa, x0)
and (xa, x1). Since it knows gb but not ga, this is enough to prove that it does not
know g1 such that x1 = g1 ⋆ x.

It is easy to prove that the above protocol is a sigma protocol for the relation
((x, xa, x0, x1, g0), gb) ∈ L if and only if (x0 = gb ⋆ xa) ∨ (x1 = gb ⋆ xa).

Sketch. The completeness is trivial. Moreover, it is clear that having both g̃0,g̃1 and
g̃1gb allows to immediately compute gb. To prove the honest verifier zero knowledge
is enough to notice that on challenge ch = 0 the prover can act honestly, while on
challenge ch = 1 it can simply compute x̃1 = g ⋆ xa and then set rsp = g.

Lastly, we need to prove that the receiver does not learn anything about the

108



Chapter 5 – Group Action Cryptography

action g1 that links x and x1. This is an immediate consequence of the GAIP.

Sketch. Let A be an adversary that after the protocol can output g1 such that
x1 = g1 ⋆ x. Let x, y be a GAIP challenge. The simulator S sets xa = y and
forwards it to adversary to start the proof. When the adversary outputs g1, S
rewinds the adversary, changes the challenge and obtains the secret gb. From g1
and gb it computes ga = g−1

b g1 and wins the GAIP game.

5.5.1 Remarks

It is easy to see that the above protocol can easily be adapted to a t-out-ofn
OT, where the sender has n messages and the receiver obtains only t of them. To
do so it is enough to modify the protocol of Figure 5.10 such that the receiver
generates t keys starting from x and n− t keys starting from xa, the proof and the
remaining part of the protocol can be generalized trivially.

Notice that the protocol requires the action to be commutative, otherwise the
last step, when the receiver retrieve the message, fails, since gbr ⋆ x ̸= rgb ⋆ x.
Generalizing this protocol to non commutative group action is still a work in
progress and the task of obtaining an OT protocol from black box group action is
still an open problem.

109





Chapter 6

E-Voting

6.1 Introduction

Internet voting is a type of electronic voting (e-voting) that allows voters to
cast their ballot remotely through the Internet, without the need of physically
going to a polling station. Since the first attempts of introducing the Internet as a
legally binding way of casting votes in Estonia and the United States in the early
2000’s, Internet voting solutions increased in popularity and are currently used
to varying degrees in several countries around the world [Ifesa; Idea]. Prominent
examples include Switzerland [HPT22], Canada [CAE19] Australia [HT15] and
Estonia, where recently becomes the favourite voting methods [Eest].

As with other electronic voting initiatives, the promises of Internet voting
are higher voter turnout, lower cost and accessibility [Lic+21]; potentially at the
expense of simplicity, transparency and privacy. Cryptographic protocols are
particularly suited to the task, and in recent years many protocols were designed to
achieve secure Internet-based elections that ensure voter privacy, vote verifiability
and the correctness of the outcome [Adi08; CCM08; RRI16].

There is one additional threat, however, that is equally crucial to address in a
fair and democratic election process: coercion resistance. Informally, a coercion-
resistant protocol must defend voters from attackers that pressure them to vote
in a specific way, either through threats or rewards. Because of its remote nature,
Internet voting substantially increases the attacker option, since the safety offered
by the polling station is not present anymore. These include forcing voters to reveal
the voting material, or monitoring their behavior during the election day.

Juels, Catalano and Jakobsson [JCJ10] proposed one of the first formal defini-

111



Chapter 6 – E-Voting

tions of coercion resistance and designing a protocol to achieve it. To this date,
JCJ still remains the reference point for research on the topic, however recently,
the security definition presented in JCJ was disputed, in [HS19] and particularly
in [CGY22b], who proposed a stronger security notion and a coercion resisntance
e-voting protocol.

In this chapter we present an e-voting protocol that, at the state of the art,
achieve the stronger security notion and the better efficiency among the peers.

The results presented in this chapter were presented at EVote-ID 2023 and
are published in the proceedings of the conference [ABR23]1. During CIFRIS23 a
possible improvement of this protocol was discussed, regarding the usage of Class
Group Encryption to achieve better performance from a memory standpoint, as
hinted in Section 6.6. Research in this direction is not yet finished and is currently
in progress but is bringing, for now, interesting preliminary results, not contained
in this thesis, that we plan to finalize and send to EVote-ID 2024.

6.2 Preliminaries

6.2.1 Internet Voting

Internet voting protocol are generally divided in three phases:

(i) Registration Phase: voters authenticate themselves with the relevant
authorities and receive voting materials, usually containing their voting
credentials and a proof about their correctness.

(ii) Voting Phase: voters vote using the obtained credentials. Voters can vote
more than once and thus change their previous vote, depending on the election
policy (usually a revote invalidates previous votes). During this phase voters
should be able to verify the correctness of the protocol, checking that the
vote was casted-as-intended and recorded-as-casted. This is usually done
via a combination of ZKP, the usage of a public board and device auditing
techniques like the Benaloh Challenge [Ben06].

(iii) Tally Phase: the election result is calculated and published. Note that it
is often required that no partial result is ever published or known, so the
tallying protocol is usually a multi-party protocol that revolves around a

1The proceedings are not yet published, but they will be published soon.

112



Chapter 6 – E-Voting

threshold encryption scheme. The result is usually published along with a
ZKP about the correctness of the calculation.

The participants in the protocol are:

• The public board B, an append-only list of data, where all the other partici-
pants can write. The contents of the board can be read by anyone at any
time, and the board is assumed to be honest.

• The election trustees, a set of nT authorities that performs the cleansing and
the tally. In our protocol, we assume that there are most t dishonest trustees,
where t < nT is the threshold of the encryption protocol used.

• The voters. There are nV voters and we assume that the adversary is able to
control at most nV − 2 of them.

• The auditors, a set of parties that check the consistency of the data published
on the board. In particular auditors need to check the validity of all the
ZKPs. We only need one auditor to be honest. Since every check involves
only public data, any party could serve as auditor.

• The registrars, a second set of nR authorities that provide credentials to
voters. In our protocol, we assume that all the registrars are honest.

We define a voting protocol as follows:

Definition 6.1 (Voting Protocol). A voting protocol is defined by the tuple

(Setup,Register,Vote,Tally)

where:

• Setup(λ, t, nT ), is a multi party protocol run by the trustees. On input a
security parameters λ, the number of trustees nT and the threshold t it
outputs public parameters pp, a public key sk and shares of the private key
pki, one for each trustees.

• Register() is a multi party protocol run by the registrars, which take no input
and generates the private credentials {si}V of the voters and outputs their
public part R.

• Vote(ν, s̃, pk) which takes a voting choice ν, a credential s̃ and a public key
pk and returns a ballot.

113



Chapter 6 – E-Voting

• Tally(B,R, {ski}) a multi party protocol run by at least t trustees. On input
the public board B, the public credentials R and at least t shares of the private
key, it outputs the election result.

Note that the above definition is deliberately vague and not exhaustive. In
fact, there are many voting protocols that do not fit precisely this definition. The
aim is to provide a relatively formal description of the algorithms that make up
the protocol presented in this chapter, and that are necessary to understand the
definition of security below.

6.2.2 Coercion Resistance

The most common definition of coercion resistance is by Juels, Catalano and
Jakobsson [JCJ10]. Roughly speaking, a voting protocol is coercion resistant if
and only if voters are able to generate some kind of fake credential that could be
handed over to the coercer in case of attack, preserving the original legitimate ones
and thus their ability to vote [JCJ10]. Votes with fake credentials are discarded
later, in the cleansing phase of the election process.

Recently, the security definition presented in JCJ was disputed [CGY22b; HS19],
due to its limitation in handling revotes and ballots cast under invalid credentials.
Ideally, the only types of leakage that should be allowed are those that inevitably
arise from the election result, namely the number of discarded votes (that is
unavoidable, since it is the difference between the total processed ballots and the
number of valid votes). Cortier, Gaudry, and Yang, in [CGY22b], showed that the
JCJ protocol leaks significantly more than this simple difference. In particular,
during the tallying phase of the election, votes with duplicate credentials (i.e. the
revotes) and votes with invalid credentials are handled separately, thus leaking the
size of both sets individually, instead of leaking only the size of their union. The
most up to date security definition for coercion resistance is the following:

Definition 6.2 (Coercion Resistance [CGY22b]). We say that a voting proto-
col (Setup,Register,Vote,Tally) is coercion resistance if there exist an algorithm
FakeCred that, on input a credential s outputs a random credential s̃ such that for
every adversary A, for all parameters nT , t, nV , nA, nC and for all distribution D,
there exists a simulator S such that

Pr(IdealCRS (λ, nV , nA, nC , D) = 1)− Pr(RealCRA (λ, nT , t, nV , nA, nC , D) = 1)

is negligible, where IdealCR and RealCR are as defined in Figure 6.1.

114



Chapter 6 – E-Voting

Figure 6.1: Security game of coercion-resistance. λ is the security parameter, nT

the number of talliers, t the threshold, nV the number of voters, nA the number of
corrupted voters, nC the number of voting options and D the distribution.

Informally, in the real game, the adversary takes part of the setup process (line
2) and decides the set of voters VA it controls and the coercion target (lines 4-5),
receiving its index j and its voting choice β. Afterwards, votes are drawn according
to a distribution D and added to the list B, containing all the votes in order, this
models the voting process, see Observation 6.1 for further details. Lines 13-19
model the coercion: if b = 1, the coerced voter obeys, hence any vote from j is
removed from B and the real credential sj is handled to the adversary. If b = 0 the

115



Chapter 6 – E-Voting

voter follows the evasion strategy, i.e. they cast a vote for their intended preference
β and give to the adversary a fake credential s̃ = FakeCred(sj).

Votes are then added to B, according to the sequence B (lines 20-25). After each
vote the adversary is allowed to see the board and add votes. Lastly A participate
in the tally, controlling at most t− 1 trustees, and finally the adversary guesses
whether the evasion strategy was followed or not.

In the ideal world, the adversary only selects the set of voters VA it controls
and the coercion target (4- 5). Then votes from VA (line 20) and, possibly, the
coerced votes (line 21-22) are directly added to B. Then B is handled to the tally
functionality that publishes the result of the election X, without revealing anything
else.

Observation 6.1. Notice that in Definition 6.2 and also in Definition 6.1 we avoid
to discuss how each voter receive its own credential s from the registrars. Indeed,
this is a separate issue we talk about later, since it is crucial when discussing about
the evasion strategy and the protocol FakeCred. However, it requires some extra
notion and can be vastly different between voting protocols, since it often relies on
external authentication methods.

Moreover, this allows for a more abstract definition, since the “real” voting
process is replaced by a random distribution that outputs all the ballots.

6.2.3 Cryptographic Primitives

We now list some of the cryptographic primitives needed for our protocol.

ElGamal Encryption Scheme. Due to its homomorphic properties, the ElGa-
mal encryption scheme [Gam85] is a popular choice for designing voting schemes.

Let G be a multiplicatively written group of order q, with generator g, for which
solving the Decisional Diffie Hellman (DDH) problem is hard. The private key sk

is sampled at random from Zq, while the public key pk is gsk. The encryption of
a message m is defined as Enc(m, pk; r) = (gr, gm · pkr) ∈ G2 where r ∈ Zq is a
random value. We omit the randomness when not explicitly necessary.

Let E0 = (1, 1), E1 = (1, g), and E−1 = (1, g−1) be the respective encryptions of
0, 1,−1 with randomness 0. Re-encryption can be done by multiplying a ciphertext
by an encryption of 0. In particular, let X ∈ G2 be an ElGamal ciphertext, then
we define ReEnc(X, pk; r) = X · Enc(0, pk; r), where the multiplication operation is
component-wise.

116



Chapter 6 – E-Voting

For a number nT of election trustees, we use a (t, nT ) threshold version of
ElGamal, so pk is produced via a distributed key generation, and a minimum of
t+ 1 parties are required to jointly decrypt.

Designated-Verifier Zero-Knowledge Proof. Similarly to JCJ and CHide,
our protocol uses Designated-Verifier Zero Knowledge Proofs (DVZKPs) [JSI96].
Roughly speaking, a DVZKP is a zero-knowledge proof (ZKP) in which only the
verifier designated by the prover is able to be convinced about the correctness of the
proof. In particular the verifier V holds a key pair. Using the public key, the prover
produces a proof for a statement, such that only V is convinced that the statement
is true. This is achieved by allowing V to produce fake but valid DVZKPs for any
statement, using their private key. The basic construction for designing DVZKP
for a relation L ⊆ W × Y is to consider the a new relation L′ ⊆ W′ × Y′ such
((w, skV ), (y, pkV )) ∈ L′ if and only if “(w, y) ∈ L or (sk, pk) is a valid secret-public
key pair” . In this way, the original prover can prove that (w, y) ∈ L, since it does
not know the secret key skV of the verifier. Later, the verifier can produce a proof
for any (x′, w) ∈ W× Y (thus even for (x′, w) ̸∈ L) since it knows skV and thus can
prove the second branch of the “or” .

In particular, the usage of a DVZKP instead of a traditional ZKP is crucial for
the evasion strategy, since it allows voters to be sure about the credentials received
and, at the same time, they are able to produce fake credentials alongside fake
proofs to hand over in case of attacks.

Circuits over encrypted bits. The basic building block for our tallying algo-
rithm is the CGate protocol, originally presented in [ST04], in the re-randomized
version [CGY22a]. Informally, on input of two encryptions X, Y of x and y, respec-
tively, with y ∈ {0, 1} it outputs a ciphertext Z which is the encryption of xy. If
both x and y are bits, this allows to compute the conjunction And. Since the Not
operator can be computed as Not(X) = E1 ·X−1, every other Boolean operator
can be easily implemented by combining these two.

In particular we need equality Eq(X, Y ) = Not(XY/CGate(X, Y )2) and a less-
than operator Less(X, Y ) = Y/CGate(X, Y ). These allow to build a circuit able
to compute the less-than operator over strings encrypted bit by bit. Indeed, let
a, b be two k−bit values and A1, ..., Ak and B1, ..., Bk their bitwise encryptions. To
check securely compute a < b we use this recursive formula: L0 = 0 and

Li = Less(Ai, Bi) · CGate(Li−1,Eq(Ai, Bi)) (6.2.1)

for i = 1, ..., k.At the end Lk is the encryption of a < b.

In [ST04] the authors proved that the CGate algorithm is UC-secure.

117



Chapter 6 – E-Voting

Distributed Random Bit Generation. In the same way as CHide, credentials
are generated by a particular set of authorities and are encrypted bit by bit. In
order to do so, they need to use a distributed random bit generation protocol.
In particular, they jointly produce an encrypted bit Enc(b, pk), for which each
participant knows only a share bi of b. Furthermore, the transcript of the protocol
communication is used as a DVZKP for the correctness of the protocol. We use
the RandBit protocol proposed in [CGY22b].

Mixnet. Mixnets are widely used in secure e-voting systems. Informally, a
mixnet allows a set of participants to shuffle and re-encrypt a set of ciphertexts,
without needing to know the secret key (or a secret sharing of it). On a high level,
participants privately shuffle all inputs and eventually publish them re-encrypted
in random order. Informally, we say that a mixnet is secure if, given at least one
honest participant, the permutation from the input to the output remains secret
for all the participants involved.
In the protocol we will need a verifiable mixnet, that ensures the correctness of the
output (i.e. the output is indeed a permutation and re-encryption of the input). A
suitable candidate for our protocol is the mixnet presented in [Wik09] or [Wik04],
which is UC-secure.

6.3 Protocol Description

Our protocol is an improved version of the original CHide, presented in
[CGY22b]2. The participants, the Setup phase, the Registration phase and the
Voting phase are essentially the same, while we changed both the Tallying phase,
to substantially reduce the computational complexity.

The main difference is that for each ballot, CHide requires to compare the
encrypted credential to every successive one and to every credentials in the register
(thus having quadratic complexity), while in our protocol we first perform a sorting
algorithm on the encrypted votes. At the end of the protocol, votes with the
same credentials and authorized credentials are consecutive, allowing the election
authorities to recognize valid votes faster.

2Authors of CHide independently updated their work, using a similar technique to achieve
comparable performances. More about this in Section 6.5

118



Chapter 6 – E-Voting

6.3.1 Overview

Setup Phase A security parameter λ is chosen. The election trustees jointly run
the distributed key generation protocol presented in [Gen+07a], obtaining a public
key pk at the appropriate security level. Each trustee publishes a commitment hi

to its private share of pk on the public board, as well as pk. The private shares are
denoted ski for i = 1, ..., nT .

Registration phase As in CHide, credentials are created by a designated set of
registrars, encrypted bitwise, sent to the voters and published on the public board.
Let s = (s1, . . . , sk) be the k-bit credential of voter V and let S = (S1, ..., Sk) the
bitwise encrypted values published on the board. Each credential is sent privately
to the voter, with designated zero-knowledge proofs to guarantee voters that their
credential is valid.3 Let R be the list of all the authorized credentials, we sometimes
call R as the “public credentials” .

Voting Phase To cast a vote for candidate ν, voter V computes an encryption
of their voting choice ct1 = Enc(ν, pk) and a bitwise encryption of their credential
ct2 = (Enc(s1, pk), ...,Enc(sk, pk)), as well as two ZKPs: one to prove that ct2

contains encryptions of bits, and a second one proving knowledge of the randomness
used in ct1 and that ν is a valid voting option. These ZKPs are also used to link
together ct1 and ct2, making the tuple C = (ct1, ct2) non-malleable. The tuple
and the corresponding ZKPs are published on the public board using an anonymous
channel.

During the Voting Phase, each voter can vote multiple times, for simplicity the
policy we implement is that only the last vote is counted. During this step the
auditors verify the uniqueness of each ballot and that every ZKP is valid.

Tally Phase Once the Voting Phase is finished, the election trustees count the
votes. Let B = {Ci} the list of all the votes, listed in chronological order, and
R = {Si} the public credentials.

First of all, all the invalid votes marked by the auditors are discarded. Then
the election trustees parse each element ei of B||R as (Datai, σi, fi, ci) where:

• Datai ← ct1i if ei ∈ B; otherwise Datai is set to be a random encryption.

3Voter authentication is out of the scope of this paper but, for example, could be done via a
digital signature by the user with a long-term key pair.

119



Chapter 6 – E-Voting

• σi ← ct2i if ei ∈ B; σi ← Si otherwise.

• fi ← Enc(0, pk) if ei ∈ B; fi ← Enc(1, pk) otherwise.

• ci is the bitwise encryption of an increasing counter and represents the
chronological order of the votes.

Then the trustees apply a mixnet protocol (for example [Wik09] or [Cha81])
on B||R and produce a verification transcript. For simplicity we will refer to each
element after the mixnet using the same notation as before, i.e. each element is in
the form (Datai, σi, fi, ci).

The election trustees perform a sorting algorithm on the set, with the following
relation:

ei <Tally ej ⇔ Dec(σi)||Dec(fi)||Dec(ci) <Lex Dec(σj)||Dec(fj)||Dec(cj) (6.3.1)

where, with an abuse of notation, Dec(σi) and Dec(ci) denote the concatenation
of the decryptions of every ciphertext in σi and ci and <Lex is the lexicographical
order. It is important to note that:

• If two votes ei, ej ∈ B have the same credentials, then they are sorted
chronologically thanks to the counters ci, cj. Moreover if eh is such that
ei <Tally eh <Tally ej then eh has the same credential of both ei and ej.

• If ei ∈ B and ej ∈ R have the same credentials (i.e. ei is a ballot cast
with an authorized credential) then ei <Tally ej. Moreover if eh is such that
ei <Tally eh <Tally ej then eh has the same credential of both ei and ej.

• No two distinct elements ei, ej will compare equally in this ordering, thanks
to the counter ci in each ballot.

Informally, the ordered list is formed by blocks of consecutive ballots cast with
the same credential, ending with the corresponding element in R if they were made
with an authorized one.

In order to prove the correctness of the sorting algorithm, the trustees add the
proofs of the correctness of every CGate computation as well the correctness of the
decryption.

After the sorting, for every pair of consecutive elements (ei, ei+1) in the ordered
list, the election trustees check whether Dec(σi) = Dec(σi+1). This produces an
encrypted bit I1i . Trustees the compute Ii = CGate(I1i , fi+1), obtaining encryption
of the conjunction between the bits encrypted in I1i and fi+1. In particular Ii is

120



Chapter 6 – E-Voting

Tally(B,R, {ski}):

1 : Parse each element in B||R as described

2 : BUnsort,Π
Mixnet
1

$←− Mixnet(B||R)
3 : BSort,Π

Sort ← Sort(BUnsort)

4 : for ei ∈ BSort do

5 : Ii ← CGate(Eq(σi, σi+1), fi)

6 : Datai ← CGate(Datai, Ii)

7 : BMixnet,Π
Mixnet
2

$←− Mixnet(BSort)

8 : return X = Dec(Data), Data ∈ BMixnet and Π = ΠMixnet
i ||ΠSort||ΠCGate

9 : // where ΠCGate is the verification transcript of all CGate computations in the cycle.

Figure 6.2: Tally protocol. The sorting algorithm can be any comparison sort, see
Observation 6.2.

an encryption of 1 if and only if ei is a vote with a valid credential and the last
vote with that credential. At this point the trustees multiply the plaintext in Ii
and Datai, computing CGate(Datai, Ii), apply a second mixnet on the resulting list,
and decrypt every vote. Figure 6.2 shows the tally protocol.

Observation 6.2. The Sort algorithm can be any suitable comparison sort, such as
Quicksort or Mergesort, thanks to the mixnet (the stability property is guaranteed
by the flag fi and the counter ci, that also ensures that all elements are different).
The crucial part is the evaluation of the comparison, done using the circuit presented
in Section 6.2.3 in Equation (6.2.1).

The result of every comparison can then be decrypted and used according
to the chosen sorting algorithm, without leaking anything because of the mixing.
Sorting B||R without mixing would leak the number of votes between two authorized
credentials and could lead to potential attack (for example, if an attacker votes
with a fake credential that is greater than any authorized one it would easily detect
the lie). In fact, due to the mixnet, any adversary would have no information about
the terms of each comparison, thus the result of the comparison is meaningless and
can be simulated, as shown in the next section.

Evasion Strategy To evade coercion a voter can simply lie about their credential
s, giving a fake credential s̄ to the coercer, and manipulating the DVZKP accordingly.

121



Chapter 6 – E-Voting

In this way, voters are also able to vote with their correct credentials. So, the
algorithm FakeCred of Definition 6.2, simply output a random string s̄ with the
correct length and produce a DIVZKP about its correctness.

6.4 Security Proof

The proof is very similar to the one presented in [CGY22b]. We consider a
distribution D of sequence of pairs (j, ν) where j is a voter and ν is a voting option.
Additionally, fake votes are modeled as pairs where j ̸∈ [1, nV ].

Theorem 6.1. Under the DDH assumption and in the Random Oracle Model, the
voting system presented in Section 6.3 is coercion resistant according to Defini-
tion 6.2.

Proof. Let A be an adversary for the real game. We give to A the power to
impersonate t among nT election trustees and up to nA voters. Our goal is to build
an adversary S for the ideal game. S use A as a subroutine, simulating the real
game, in order to win the ideal one. In particular, S control the remaining nT − t

trustees and need to simulate the Setup as well as the Tally.

First of all, S and A run the Setup algorithm to generate a common public
key pk, secret shares of the private key sk1, ..., sknT

and the public commitments
h1, ..., hnT

. During this step S is also able to reconstruct the secret key sk by
extracting A’s secrets.

Then S follows the real game normally, getting VA, j and β from the adversary.
In the ideal game S sends the same choices for VA, j, β.

When asking for the credential of voter j, S provides to A the real credential
sj. From the ideal game S learns the size |B| of the ideal board and uses it to
simulate the voting process. For |B| times:

• S calls A with input B getting M

• S decrypts all the valid votes and credentials in M . For every authorized
credential si, S saves the tuple (si, ν) or updates a previously saved (si, ν ′).

• S adds all valid ballots in M to B

122



Chapter 6 – E-Voting

• S chooses a random voter and a valid voting option and casts a valid vote,
adding it to B.

At the end of the voting process, S add the same votes in the ideal game.

S learns X and its at the end of the ideal game and use it to simulate the
tallying process in the real game:

• S runs the first mixnet for the honest authorities, while A uses the dishonest
ones.

• To perform the sorting, S simulates all the CGate operations. This can be
done since CGate is a UC-secure protocol, as shown in [CGY22a]. S also
simulates the decryption step and thus randomly sorts the list.

• S runs the second mixnet for the honest authorities, whileA uses the dishonest
ones.

• S chooses |X| entries at random and simulates its partial decryption: every
entry not chosen is decrypted to 0, while such |X| entries are decrypted such
that the result is exactly X.

At this point A makes its guess b and S forward the same guess in the ideal
game.

The differences between a real execution and the simulation are:

• In the real game A can get either the real credential sj or a fake one. In
the simulation A always receives sj. Since in both the real and ideal worlds
fake credentials have uniformly random distribution and the DVZKP could
be simulated, A can only distinguish a real execution from a simulated one
if and only if it is able to distinguish whether the received credential is a
plaintext of one of the encrypted credentials in R or not. Since the ElGamal
encryption is IND-CPA secure under the DDH Assumption this is impossible,
and thus the simulation is indistinguishable from a real execution.

• During the simulation of the voting loop S adds random ballot, while in the
real game ballots are drawn according to D. As before, since the ballots are
encrypted, the simulation is indistinguishable from the real game under the
DDH Assumption. Notice that decrypting the votes is not possible, since

123



Chapter 6 – E-Voting

after the eventual decryption A would learn the real distribution of the votes.
For this reason the votes are not decrypted and instead S use the same result
of the ideal game, as we discuss later.

• During the tally S simulates the execution of the CGate protocol. By the
security of the CGate, the simulation is indistinguishable from the real
game[CGY22a].

• In the real game, the ballots are sorted as per relation 6.3.1, while in the ideal
game each comparison is simulated and thus the order is random. Being able
to distinguish between the correct order and a fake one would mean either
being able to distinguish the ballots, that is unfeasible due to the IND-CPA
security of the encryption scheme, or being able to recognize the ballots after
the mixnet, that is unfeasible thanks to the security of the mixnet.

• In the simulation the result always include all the last valid ballots cast by
honest voters. In a real execution the adversary may change it by casting
ballots on behalf of an honest voter. However, to do so, the adversary must be
able to create a valid ZKP about the credential used, and this is unfeasible.

• S simulates the decryption protocol at the end. This simulation is indistin-
guishable from the real world under the DDH assumption in the ROM.

6.4.1 Note about Privacy and Verifiability

In this chapter we focus our attention to coercion resistance, however privacy
and verifiability are crucially important as well. We provide here an informal
discussion about them, since the proofs are trivial. Before discussing them however,
we first need to define IND-PA0 security, that is indistinguishability under parallel
chosen plaintext attack.

Definition 6.3 (indistinguishability under parallel chosen ciphertext attacks).
Let (Setup,KeyGen,Enc,Dec) be an encryption scheme. Consider the following
experiment:

124



Chapter 6 – E-Voting

Expind−pa0
Enc,A (λ)

1 : pp
$←− Setup(λ)

2 : (pk, sk)
$←− KeyGen(λ)

3 : b
$←− {0, 1}

4 : (m0, m1)← A(λ, pk)

5 : ct
$←− Enc(pk, mb)

6 : {ct′i}
$←− A(ct)

7 : {m′i} ← {Dec(cti, sk)}
8 : b′ ← A{pk, ct, m0, m1, {ct′i}, {m′i}}b′ ← Adv(pk, ct, m0, m1)

9 : return b = b′

Define the advantage of A as

Advind−pa0
Enc,A (λ) = Pr(Expind−pa0

Enc,A (λ) = 1)

We say that (Enc,Dec) is indistinguishable under chosen plaintext attacks if and
only if Advind−pa0

Enc,A is negligible for every probabilistic polynomial time adversary A.

It is possible to show that the voting map of Section 6.3

(s, ν)→ (Enc(ν, pk),Enc(s1, pk), ...,Enc(sk, pk),Π1,Π2)

where Π1 is a proof that Enc(s1, pk), ...,Enc(sk, pk) are encryptions of bit, Π2 is a
proof that ν is a valid voting option and Π1 and Π2 are linked together to make
the tuple non malleable is an IND-PA0 encryption scheme.

Privacy informally, privacy means that it is impossible to guess which option a
voter chose. Formally, in the privacy game, the adversary A chooses two voting
options ν0, ν1 and an “observed voter” vo, who picks a random bit b and vote νb.
The adversary, controlling t − 1 trustees, wins if guesses b, see Appendix C of
[CGY22b]. The proof is an immediate reduction to the IND-PA0 security of the
encryption protocol used, indeed, suppose that A is an adversary that wins the
privacy game non negligible advantage, we show how to build an adversary S for
the IND-PA0 that wins with non negligible advantage. Indeed, S chooses ν0, ν1
as the plaintext for the IND-PA0 game. Before the tally, S use the whole board
B as query in the IND-PA0 game, except for the vote casted by vo, for which S
choose randomly one of the two voting option. At this point, S can simulate the

125



Chapter 6 – E-Voting

whole tally knowing the end result and guesses whatever bit b A guesses. When
S choose correctly the vote for vo the simulation is perfect and S win every time
A win, which happens with probability 1

2
+ ε for a non negligible ε. If it chooses

wrongly, that happens half of the time, S wins with probability 1
2
. Overall the

winning probability of S is 1
2
+ ε

2
that is non negligible.

Verifiability the universal verifiability is granted by the ZKPs produced by the
trustees and by the honesty of the bulletin board. Cast-as-intended instead is
more tricky, since it should require to design algorithms for voters to inquire their
own devices. Many protocols, such as the Benaloh challenge [Ben06], are suitable,
however they usually relies more on ” a responsible behaviour“from the user, instead
of solid security proof. Moreover they often fall short when analyzed from a game
theory standpoint, like in [Jam23] where Jamroga suggests that the optimal strategy
is to (almost) always ignore the audit step and cast the vote immediatly. For
this reason we heve left cast-as-d out of the discussion and therefore assumed the
existence of a trusted device.

6.5 Performance

The main goal of the paper is to improve the performance of the tallying
protocol in CHide and JCJ. This is achieved by performing a preliminary sorting
step, that reduces the complexity of the tallying from quadratic to quasi-linear.

A performance comparison between our protocol and CHide can be performed
by couting the number of CGate operations. We use as example the recent Estonian
election, where for the first time more than half of the voters used a remote voting
system, for a total of a little more than 3 × 105 valid votes. [Eest]. Since the
Estonian voting system does not track the number of revotes and removed ballots,
we suppose that a total of 6 × 105 votes where submitted (i.e. only half of the
total votes are valid votes) and that every registered voter voted (i.e. the list of
authorized credentials |R| contains 3× 105 registered credentials). In the following
k is the bit-length of voters’ credentials.

Each comparison during the sorting algorithm requires 3k CGate computations,
as explained in Section 6.2. Thus for the sorting phase our algorithm requires
3k(9×105×log2(9×105)) ≈ 54k×106 CGate computations and 18×106 decryptions.
Then, to compute the check bit Ii for every pair of votes the protocol requires
2k × 9× 105 CGate computations. In total, our protocols require around 56k × 106

CGate computations, 18×106 intermediate decryptions and two mixnet applications.

126



Chapter 6 – E-Voting

Table 6.1: Performance comparison between CHide and our protocol with respect
of the security parameter k.

CGate Mixnet Preliminary Decryptions
CHide 720k × 109 1 -

Our Protocol 56k × 106 2 18× 106

The CHide protocol instead requires to check that the credentials of each
casted votes unique, comparing it with each subsequent vote, and that it is an
authorized one, comparing it with every registered credentials. Each equality
operation requires only k CGate computations, thus for finding duplicates CHide
requires k(2× 6× 105 × 3× 105) = 360k × 109 CGate computations and the same
number of computations for checking authorized credentials. Then a mixnet is
applied and the votes are decrypted. Thus, CHide requires a total of 720k × 109

CGate computations and one mixnet application.

Recent Updates. The CHide preprint was independently updated by the authors
to address the quadratic complexity of the protocol. Their solution is quite similar
to our solution, leveraging the CGate protocol to sort all the votes and achieve a
quasi-linear complexity.

While sharing the same philosophy and the same asymptotic complexity, the two
protocols have a meaningful difference that could lead to different running times.
Updated CHide avoids the preliminary mixnet by using a swap operation between
ciphertexts, instead of simply decrypting the output of each comparison. This
restricts their choice of sorting algorithms to be data-oblivious, with complexity
O(n log2 n). Moreover, instead of using a single bit, they use a fixed “special”
counter for registered credentials, thus performing more comparisons in the last
part of the tally (the computation of Ii, as per our notation).

6.5.1 Comparison with related works

During the last years many different coercion resistant protocols have been
proposed, usually with the goal of reducing the quadratic complexity that is typical
of protocols descending from JCJ. Notable examples of more efficient protocols
are VoteAgain [LQT20], AFT [AFT10], Athena [Smy19] and protocols based on
hash tables like [Røn+20] and [WAB07]. The linear-time version of the JCJ
protocol proposed in [Røn+20] also uses fully homomorphic encryption. Table 6.1
summarizes the comparison between this and related work in terms of security and

127



Chapter 6 – E-Voting

Table 6.2: Comparison with other coercion resistant protocols.

Protocol Complexity Security
JCJ[JCJ10] O(n2) JCJ

Civitas [CCM08] O(n2) JCJ
AKLM [Ach+15] O(n2) AKLM
Revote [LHK16] O(n2) AKLM
CHide[CGY22b] O(n2) or O(n log2 n) CHide

VoteAgain [LQT20] O(n log n) VoteAgain
AFT [AFT10] O(n) JCJ

Athena [Smy19] O(n) JCJ + Dups
Hash-based [Røn+20; WAB07] O(n) JCJ + Dups

This work O(n log n) CHide

complexity.
In the table, the security levels are defined as:

• JCJ is the security level achieved by the original JCJ protocol.

• JCJ+Dups is at lower security level than JCJ, where the number of votes for
each credential also leak.

• AKLM is at lower security than JCJ, in which it is assumed that voters revote
at the end of the voting period to escape from adversarial control.

• CHide is the security level achieved by CHide, higher than JCJ.

• VoteAgain follows its own coercion resistance definition introduced in [LQT20]
and it is not comparable with the others.

From the state of the art, achieving a better or equivalent complexity than our
protocol requires to either change the security definition (as per [LQT20]) or to
increase the leakage.

6.6 Conclusions and future works

In this work we presented an enhanced version of CHide, that drastically reduces
the computational complexity of the tallying from O(n2) to O(n log n), which is
currently the best efficiency among voting protocols satisfying a stronger notion of
coercion resistance.

128



Chapter 6 – E-Voting

A possible way to speed up the tally even further is amortizing the process
through the whole voting phase, instead of waiting until the end of the election.
A possible approach would consist of using a bucket sorting algorithm, like the
one presented in [Ash+20]. As votes come in, they are assigned to buckets. When
the first two buckets are full, the first step of bucket sorting is performed. When
the next two buckets are full, the authorities perform the first step of the sorting
process on them and the second step on the whole for the bucket, and so on. While
maintaining the same asymptotic complexity, this approach could lead to a vastly
reduced delay between the end of the voting phase and the publication of the result.
However, bucket sorting is usually susceptible to “overflow” attacks. Indeed, typical
bucket sorting algorithms like [Ash+20] allow for a fixed maximum number of
elements in each bucket, thus an attacker could vote multiple time with the same
credential, causing the corresponding bucket to overflow and making the sorting
fail. In the end we not find any solution to this problem but it is a topic worthy of
further examination.

Unfortunately, our protocol still has the same issue of CHide regarding the
dimension of the credentials, that are encryptions of individual bit instead of a
single encrypted string. The bitwise encryption is required to realize a secure tally,
since it allows to multiply plaintexts using the CGate algorithm. As a way to reduce
the credentials length we are currently studying class group encryption (CGE).
Introduced in 2015 by G. Castagnos and F. Laguillaumie [CL15], CGE is the first
discrete logarithm based scheme that allows for an unlimited number of linear
operations over plaintexts. Recently, the work by L. Braun et al. [BDO22] intro-
duced the notion of threshold CGE, which allows efficient plaintext multiplication
using a multiparty protocol. This feature is particularly helpful to design e-voting
protocols since it allows for efficient equality testing, a crucial step for schemes
that adhere to the security definition given by JCJ [JCJ10]. More in detail, we are
currently adapting the mixnet protocol from [BG12] to be used with CGE and we
are designing Zero Knowledge Proofs useful for the protocol. However, the main
drawback of CGE is the lack of an “easy and natural” ordering algorithm. A work
in progress version of this work was presented at CIFRIS23, as a short abstract.

129





Chapter 7

Conclusions

The recent surgence of new technologies like cloud computing and the Internet
of Things paved the way for many new applications, such as privacy-preserving data
analysis, online voting and distributed key management. The increasing request
for more complex applications caused the need of of new MPC protocol.

In this thesis we presented result from three area of MPC: first, in Chapter 3
we study “abstract” MPC, studying a new heuristic for threshold signature design.
Unlike in the centralised case, where the security of digital signatures is typically
demonstrated according to well-established frameworks (mainly the Fiat-Shamir
heuristic), in the MPC world each threshold signature security proof “follows its
own scheme” , often adhering to different security definitions and flavour, from
classical game based ones to the most recent UC ones. Our is aim is two-fold, on
one hand we want to streamline the security analysis of many systems and on the
other hand we want to provide a common framework for proving the security of the
signature, that resembles as much as possible the classic Fiat-Shamir transform .

Next, in Chapter 4 and Chapter 5 we showed two threhsold signature, the first
using classical assumption and the second one with post quantum security. Besides
the importance of the two protocols on their own, these two chapter constitute
a good example about bot the power and the current limitations of the heuristic
proposed in Chapter 3. Indeed, while the in Chapter 4 we could prove the security
of the signature very easily thanks, in Chapter 5 we could not use the results of
Chapter 3, showing the unbalance between the necessary and sufficient conditions of
our heuristic. Albeit very small, such unbalance is particularly meaningful for round
robin threshold signature, that are very common in post quantum cryptography.

As an additional result, in Chapter 5 we also showed a group action based OT,
which has competitive parameters with other state-of-the-art protocols. Unfortu-

131



Chapter 7 – Conclusions

nately, our construction does not fill the gap of having an OT based on black box
usage usage group actions (in particular not commutative), which therefore still
remains an open problem.

Lastly, in Chapter 6 we presented a new evoting protocol. Our protocol is an
improved version of CHide, that drastically reduces the computational complexity
from O(n2) to O(n log n), while keeping the highest possible security. Our work
is, as the current literature, the best protocol from an asymptotic computational
complexity standpoint, however it suffers from having an heavy memory complexity.
For this reason we hinted some current work in progress that aim to reduce the
burden of such large memory requirement using a new encryption techniques.

132



Bibliography

[Abd+02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. “From Iden-
tification to Signatures via the Fiat-Shamir Transform: Minimizing
Assumptions for Security and Forward-Security”. In: Advances in
Cryptology — EUROCRYPT 2002. Ed. by L. R. Knudsen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 418–433.

[ABR23] D. F. Aranha, M. Battagliola, and L. Roy. Faster coercion-resistant e-
voting by encrypted sorting. Cryptology ePrint Archive, Paper 2023/837.
https://eprint.iacr.org/2023/837. 2023.

[Ach+15] D. Achenbach, C. Kempka, B. Löwe, and J. Muüller-Quade. “Improved
Coercion-Resistant Electronic Elections through Deniable Re-Voting”.
In: USENIX Journal of Election Technology and Systems (JETS) 3.2
(Aug. 2015), pp. 26–45.

[Adi08] B. Adida. “Helios: Web-based Open-Audit Voting”. In: USENIX Secu-
rity Symposium. USENIX Association, 2008, pp. 335–348.

[AFT10] R. Araújo, S. Foulle, and J. Traoré. “A Practical and Secure Coercion-
Resistant Scheme for Internet Voting”. In: Towards Trustworthy Elec-
tions. Vol. 6000. LNCS. Springer, 2010, pp. 330–342.

[Ala+] N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. “Cryp-
tographic group actions and applications”. In: ASIACRYPT 2020.
Springer.

[Ala+18] M. Alam, N. Emmanuel, T. Khan, A. Khan, N. Javaid, K.-K. R. Choo,
and R. Buyya. “Secure policy execution using reusable garbled circuit
in the cloud”. In: Future Gener. Comput. Syst. 87 (2018), pp. 488–501.

133

https://eprint.iacr.org/2023/837


Chapter 7 – BIBLIOGRAPHY

[Arn+01] P. Arnoux, V. Berthé, H. Ei, and S. Ito. “Tilings, Quasicrystals,
Discrete Planes, Generalized Substitutions, and Multidimensional
Continued Fractions”. In: Discrete Models: Combinatorics, Compu-
tation, and Geometry. 2001. url: https://api.semanticscholar.
org/CorpusID:669324.

[Ash+20] G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi.
“Bucket Oblivious Sort: An Extremely Simple Oblivious Sort”. In:
SOSA. SIAM, 2020, pp. 8–14.

[ATBQ00] F. E. S. Arthur T. Benjamin and J. J. Quinn. “Counting on Continued
Fractions”. In: Mathematics Magazine 73.2 (2000), pp. 98–104. doi:
10.1080/0025570X.2000.11996816.

[Bal+23] M. Baldi et al. Matrix Equivalence Digital Signature. Accessed: 2023-
09-15. 2023. url: https://www.less-project.com/LESS-2023-08-
18.pdf.

[Bar+21] A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. “LESS-FM:
fine-tuning signatures from the code equivalence problem”. In: Post-
Quantum Cryptography: 12th International Workshop, PQCrypto 2021,
Daejeon, South Korea, July 20–22, 2021, Proceedings 12. Springer.
2021, pp. 23–43.

[Bas+23] A. Basso, G. Codogni, D. Connolly, L. De Feo, T. B. Fouotsa, G. M.
Lido, T. Morrison, L. Panny, S. Patranabis, and B. Wesolowski. “Su-
persingular curves you can trust”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer.
2023, pp. 405–437.

[Bat+22a] M. Battagliola, A. Galli, R. Longo, and A. Meneghetti. “A Provably-
Unforgeable Threshold Schnorr Signature With an Offline Recovery
Party”. In: DLT@ITAcSEC. 2022. url: https://ceur-ws.org/Vol-
3166/paper05.pdf.

[Bat+22b] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. “Threshold
ECDSA with an Offline Recovery Party”. In: Mediterranean Journal
of Mathematics 19.1 (2022), pp. 1–29.

[Bat+22c] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. “Threshold
ECDSA with an Offline Recovery Party”. In: Mediterranean Journal
of Mathematics 19.4 (2022).

134

https://api.semanticscholar.org/CorpusID:669324
https://api.semanticscholar.org/CorpusID:669324
https://doi.org/10.1080/0025570X.2000.11996816
https://www.less-project.com/LESS-2023-08-18.pdf
https://www.less-project.com/LESS-2023-08-18.pdf
https://ceur-ws.org/Vol-3166/paper05.pdf
https://ceur-ws.org/Vol-3166/paper05.pdf


Chapter 7 – BIBLIOGRAPHY

[Bat+23a] M. Battagliola, G. Borin, A. Meneghetti, and E. Persichetti. Cutting
the GRASS: Threshold GRoup Action Signature Schemes. Cryptology
ePrint Archive, Paper 2023/859. https://eprint.iacr.org/2023/
859. 2023. url: https://eprint.iacr.org/2023/859.

[Bat+23b] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. “Provably Un-
forgeable Threshold EdDSA with an Offline Participant and Trustless
Setup”. In: Mediterranean Journal of Mathematics 20.5 (2023), p. 253.

[Bau+22] C. Baum, R. Jadoul, E. Orsini, P. Scholl, and N. P. Smart. “Feta:
Efficient Threshold Designated-Verifier Zero-Knowledge Proofs”. In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’22. Association for Computing Ma-
chinery, 2022, 293–306. doi: 10.1145/3548606.3559354. url: https:
//doi.org/10.1145/3548606.3559354.

[BB17] M. Blanton and F. Bayatbabolghani. “Improving the Security and
Efficiency of Private Genomic Computation Using Server Aid”. In:
IEEE Security Privacy 15.5 (2017), pp. 20–28. doi: 10.1109/MSP.
2017.3681056.

[BDN18] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures
for Smaller Blockchains”. In: Advances in Cryptology – ASIACRYPT
2018. Ed. by T. Peyrin and S. Galbraith. Cham: Springer International
Publishing, 2018, pp. 435–464.

[BDO22] L. Braun, I. Damgård, and C. Orlandi. “Secure Multiparty Computa-
tion from Threshold Encryption based on Class Groups”. In: IACR
ePrint Arch. (2022), p. 1437. url: https://eprint.iacr.org/2022/
1437.

[Ben06] J. Benaloh. “Simple verifiable elections”. In: EVT’06. USENIX Associ-
ation, 2006, p. 5.

[Beu+21] W. Beullens, L. Disson, R. Pedersen, and F. Vercauteren. “CSI-RAShi:
distributed key generation for CSIDH”. In: International Conference
on Post-Quantum Cryptography. Springer. 2021, pp. 257–276.

[BF24] M. Battagliola and A. Flamini. Distributed Fiat-Shamir Transform.
Cryptology ePrint Archive, Paper 2024/214. https://eprint.iacr.
org/2024/214. 2024. url: https://eprint.iacr.org/2024/214.

135

https://eprint.iacr.org/2023/859
https://eprint.iacr.org/2023/859
https://eprint.iacr.org/2023/859
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1109/MSP.2017.3681056
https://doi.org/10.1109/MSP.2017.3681056
https://eprint.iacr.org/2022/1437
https://eprint.iacr.org/2022/1437
https://eprint.iacr.org/2024/214
https://eprint.iacr.org/2024/214
https://eprint.iacr.org/2024/214


Chapter 7 – BIBLIOGRAPHY

[BG12] S. Bayer and J. Groth. “Efficient Zero-Knowledge Argument for Cor-
rectness of a Shuffle”. In: Advances in Cryptology – EUROCRYPT
2012. Ed. by D. Pointcheval and T. Johansson. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 263–280.

[BGG17] D. Boneh, R. Gennaro, and S. Goldfeder. “Using level-1 homomorphic
encryption to improve threshold dsa signatures for bitcoin wallet
security”. In: International Conference on Cryptology and Information
Security in Latin America. Springer. 2017, pp. 352–377.

[Bia+20] J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini. “LESS is More:
Code-Based Signatures Without Syndromes”. In: AFRICACRYPT
2020. Springer International Publishing, 2020.

[BJ14] B. Balof and H. Jenne. “Tilings, Continued fractions, Derangements,
Scramblings, And e”. In: Journal of Integer Sequences [electronic only]
17 (Jan. 2014).

[BKP20] W. Beullens, S. Katsumata, and F. Pintore. “Calamari and Falafl:
Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices”.
In: Advances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and
H. Wang. Cham: Springer International Publishing, 2020, pp. 464–492.

[BKV19] W. Beullens, T. Kleinjung, and F. Vercauteren. “CSI-FiSh: efficient
isogeny based signatures through class group computations”. In: ASI-
ACRYPT 2019. Springer. 2019.

[BL11] V. Berthé and S. Labbé. “An Arithmetic and Combinatorial Approach
to Three-Dimensional Discrete Lines”. In: Discrete Geometry for Com-
puter Imagery. 2011. url: https://api.semanticscholar.org/
CorpusID:357989.

[Blä+22] M. Bläser, Z. Chen, D. H. Duong, A. Joux, N. T. Nguyen, T. Plantard,
Y. Qiao, W. Susilo, and G. Tang. “On digital signatures based on
isomorphism problems: QROM security, ring signatures, and applica-
tions”. In: Cryptology ePrint Archive (2022).

[BLM22] M. Battagliola, R. Longo, and A. Meneghetti. “Extensible Decentral-
ized Secret Sharing and Application to Schnorr Signatures”. preprint:
https://eprint.iacr.org/2022/1551. 2022.

136

https://api.semanticscholar.org/CorpusID:357989
https://api.semanticscholar.org/CorpusID:357989
https://eprint.iacr.org/2022/1551


Chapter 7 – BIBLIOGRAPHY

[BMS22] M. Battagliola, N. Murru, and G. Santilli. “Combinatorial properties of
multidimensional continued fractions”. In: Discret. Math. 346 (2022),
p. 113649. url: https://api.semanticscholar.org/CorpusID:
252367238.

[BN06] M. Bellare and G. Neven. “Multi-Signatures in the Plain Public-
Key Model and a General Forking Lemma”. In: Proceedings of the
13th ACM Conference on Computer and Communications Security.
CCS ’06. Association for Computing Machinery, 2006, 390–399. doi:
10.1145/1180405.1180453. url: https://doi.org/10.1145/
1180405.1180453.

[BO+88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. “Multi-Prover
Interactive Proofs: How to Remove Intractability Assumptions”. In:
STOC ’88. Association for Computing Machinery, 1988, 113–131. doi:
10.1145/62212.62223. url: https://doi.org/10.1145/62212.
62223.

[Bog+ j] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste.
“Students and Taxes: a Privacy-Preserving Study Using Secure Com-
putation”. In: Proceedings on Privacy Enhancing Technologies 2016.3
(1Jul. 2016), pp. 117 –135. doi: https://doi.org/10.1515/popets-
2016-0019. url: https://content.sciendo.com/view/journals/
popets/2016/3/article-p117.xml.

[Bog13] D. Bogdanov. “Sharemind: programmable secure computations with
practical applications”. PhD thesis. University of Tartu, 2013. url:
http://hdl.handle.net/10062/29041.

[Bog+16] D. Bogdanov, M. Joemets, S. Siim, and M. Vaht. Privacy-preserving
tax fraud detection in the cloud with realistic data volumes. Tech. rep.
T-4-24. https://cyber.ee/research/reports/: Cybernetica AS,
2016.

[BP] L. Brandão and R. Peralta. “NIST First Call for Multi-Party Threshold
Schemes”. In: doi: 10.6028/NIST.IR.8214C.ipd. url: https:
//doi.org/10.6028/NIST.IR.8214C.ipd.

[BQ03] A. Benjamin and J. Quinn. Proofs That Really Count (The Art of Com-
binatorial Proof). Vol. 58. Jan. 2003. doi: 10.5948/9781614442080.

137

https://api.semanticscholar.org/CorpusID:252367238
https://api.semanticscholar.org/CorpusID:252367238
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/62212.62223
https://doi.org/10.1145/62212.62223
https://doi.org/10.1145/62212.62223
https://doi.org/https://doi.org/10.1515/popets-2016-0019
https://doi.org/https://doi.org/10.1515/popets-2016-0019
https://content.sciendo.com/view/journals/popets/2016/3/article-p117.xml
https://content.sciendo.com/view/journals/popets/2016/3/article-p117.xml
http://hdl.handle.net/10062/29041
https://cyber.ee/research/reports/
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.5948/9781614442080


Chapter 7 – BIBLIOGRAPHY

[BR06] M. Bellare and P. Rogaway. “The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs”. In: Advances
in Cryptology - EUROCRYPT 2006. Ed. by S. Vaudenay. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 409–426.

[BR93] M. Bellare and P. Rogaway. “Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols”. In: Proceedings of the 1st
ACM Conference on Computer and Communications Security. CCS
’93. New York, NY, USA: Association for Computing Machinery, 1993,
62–73. doi: 10.1145/168588.168596.

[BS22] D. Bowman and H. D. Schaumburg. “Combinatorics of continuants
of continued fractions with 3 limits”. In: Journal of Combinatorial
Theory, Series A 186 (2022), p. 105556. doi: https://doi.org/10.
1016/j.jcta.2021.105556. url: https://www.sciencedirect.
com/science/article/pii/S0097316521001552.

[Bud+24] A. Budroni, J.-J. Chi-Domínguez, G. D’Alconzo, A. J. D. Scala,
and M. Kulkarni. Don’t Use It Twice! Solving Relaxed Linear Code
Equivalence Problems. Cryptology ePrint Archive, Paper 2024/244.
https://eprint.iacr.org/2024/244. 2024. url: https://eprint.
iacr.org/2024/244.

[CAE19] A. Cardillo, N. Akinyokun, and A. Essex. “Online Voting in Ontario
Municipal Elections: A Conflict of Legal Principles and Technology?”
In: E-VOTE-ID. Vol. 11759. LNCS. Springer, 2019, pp. 67–82.

[Can01] R. Canetti. “Universally composable security: a new paradigm for
cryptographic protocols”. In: Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. 2001, pp. 136–145. doi: 10.1109/
SFCS.2001.959888.

[Can04] R. Canetti. “Universally composable signature, certification, and au-
thentication”. In: Proceedings. 17th IEEE Computer Security Founda-
tions Workshop, 2004. 2004, pp. 219–233. doi: 10.1109/CSFW.2004.
1310743.

[Can+20] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled.
“UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable
Aborts”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’20. Association for

138

https://doi.org/10.1145/168588.168596
https://doi.org/https://doi.org/10.1016/j.jcta.2021.105556
https://doi.org/https://doi.org/10.1016/j.jcta.2021.105556
https://www.sciencedirect.com/science/article/pii/S0097316521001552
https://www.sciencedirect.com/science/article/pii/S0097316521001552
https://eprint.iacr.org/2024/244
https://eprint.iacr.org/2024/244
https://eprint.iacr.org/2024/244
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.1310743
https://doi.org/10.1109/CSFW.2004.1310743


Chapter 7 – BIBLIOGRAPHY

Computing Machinery, 2020, 1769–1787. doi: 10.1145/3372297.
3423367. url: https://doi.org/10.1145/3372297.3423367.

[Cas+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”.
In: Advances in Cryptology – ASIACRYPT 2018. Ed. by T. Peyrin
and S. Galbraith. Cham: Springer International Publishing, 2018,
pp. 395–427.

[CCM08] M. R. Clarkson, S. Chong, and A. C. Myers. “Civitas: Toward a Secure
Voting System”. In: IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2008, pp. 354–368.

[CG23] D. Cozzo and E. Giunta. “Round-Robin is Optimal: Lower Bounds
for Group Action Based Protocols”. In: Theory of Cryptography. Ed. by
G. Rothblum and H. Wee. Cham: Springer Nature Switzerland, 2023,
pp. 310–335.

[CGY22a] V. Cortier, P. Gaudry, and Q. Yang. “A Toolbox for Verifiable Tally-
Hiding E-Voting Systems”. In: ESORICS (2). Vol. 13555. LNCS.
Springer, 2022, pp. 631–652.

[CGY22b] V. Cortier, P. Gaudry, and Q. Yang. “Is the JCJ voting system really
coercion-resistant?” working paper or preprint. 2022. url: https:
//hal.inria.fr/hal-03629587.

[Cha22] A. Chailloux. “On the (In) security of optimized Stern-like signature
schemes”. In: WCC. 2022.

[Cha81] D. Chaum. “Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms”. In: Commun. ACM 24.2 (1981), pp. 84–88. url:
https://doi.org/10.1145/358549.358563.

[Cho+12] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein.
“Secure Multi-Party Computation of Boolean Circuits with Applica-
tions to Privacy in On-Line Marketplaces”. In: Topics in Cryptology
– CT-RSA 2012. Ed. by O. Dunkelman. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 416–432.

[Cho+23] T. Chou, R. Niederhagen, E. Persichetti, T. H. Randrianarisoa, K.
Reijnders, S. Samardjiska, and M. Trimoska. “Take your meds: Digital
signatures from matrix code equivalence”. In: International Conference
on Cryptology in Africa. Springer. 2023.

139

https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://hal.inria.fr/hal-03629587
https://hal.inria.fr/hal-03629587
https://doi.org/10.1145/358549.358563


Chapter 7 – BIBLIOGRAPHY

[Cho+95] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. “Private in-
formation retrieval”. In: Proceedings of IEEE 36th Annual Founda-
tions of Computer Science (1995), pp. 41–50. url: https://api.
semanticscholar.org/CorpusID:544823.

[Chu+23] H. Chu, P. Gerhart, T. Ruffing, and D. Schröder. “Practical Schnorr
Threshold Signatures Without the Algebraic Group Model”. In: Ad-
vances in Cryptology – CRYPTO 2023. Ed. by H. Handschuh and A.
Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 743–773.

[CKM23] E. Crites, C. Komlo, and M. Maller. “Fully Adaptive Schnorr Threshold
Signatures”. In: Cryptology ePrint Archive (2023).

[CL15] G. Castagnos and F. Laguillaumie. “Linearly Homomorphic Encryp-
tion from DDH”. In: CT-RSA. Vol. 9048. LNCS. Springer, 2015,
pp. 487–505.

[CM22] F. Campos and P. Muth. “On actively secure fine-grained access
structures from isogeny assumptions”. In: International Conference
on Post-Quantum Cryptography. Springer. 2022, pp. 375–398.

[CPS23] T. Chou, E. Persichetti, and P. Santini. On Linear Equivalence, Canon-
ical Forms, and Digital Signatures. https://tungchou.github.io/
papers/leq.pdf. Accessed: 2023-09-20. 2023.

[CS19] D. Cozzo and N. P. Smart. “Sharing the LUOV: threshold post-
quantum signatures”. In: IMA International Conference on Cryptog-
raphy and Coding. Springer. 2019, pp. 128–153.

[CS20a] I. Canacki and R. Schiffler. “Snake graphs and continued fractions”. In:
European Journal of Combinatorics 86 (2020), p. 103081. doi: https:
//doi.org/10.1016/j.ejc.2020.103081. url: https://www.
sciencedirect.com/science/article/pii/S0195669820300020.

[CS20b] D. Cozzo and N. P. Smart. “Sashimi: Cutting up CSI-FiSh Secret
Keys to Produce an Actively Secure Distributed Signing Protocol”. In:
Post-Quantum Cryptography. Ed. by J. Ding and J.-P. Tillich. Cham:
Springer International Publishing, 2020, pp. 169–186.

[DDCB95] Y. Desmedt, G. Di Crescenzo, and M. Burmester. “Multiplicative
non-abelian sharing schemes and their application to threshold cryp-
tography”. In: Advances in Cryptology — ASIACRYPT’94. Ed. by
J. Pieprzyk and R. Safavi-Naini. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 19–32.

140

https://api.semanticscholar.org/CorpusID:544823
https://api.semanticscholar.org/CorpusID:544823
https://tungchou.github.io/papers/leq.pdf
https://tungchou.github.io/papers/leq.pdf
https://doi.org/https://doi.org/10.1016/j.ejc.2020.103081
https://doi.org/https://doi.org/10.1016/j.ejc.2020.103081
https://www.sciencedirect.com/science/article/pii/S0195669820300020
https://www.sciencedirect.com/science/article/pii/S0195669820300020


Chapter 7 – BIBLIOGRAPHY

[DFG19] L. De Feo and S. D. Galbraith. “SeaSign: compact isogeny signatures
from class group actions”. In: EUROCRYPT 2019. Springer. 2019.

[DFM20] L. De Feo and M. Meyer. “Threshold schemes from isogeny assump-
tions”. In: PKC 2020. Springer. 2020.

[Doe+18] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. “Secure two-party thresh-
old ECDSA from ECDSA assumptions”. In: 2018 IEEE Symposium
on Security and Privacy (SP). IEEE. 2018, pp. 980–997.

[Doe+19] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. “Threshold ECDSA from
ECDSA assumptions: The multiparty case”. In: 2019 IEEE Symposium
on Security and Privacy (SP). IEEE. 2019, pp. 1051–1066.

[Don+19] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Security of the Fiat-
Shamir transformation in the quantum random-oracle model”. In:
CRYPTO 20199. Springer. 2019.

[Eest] How did Estonia carry out the world’s first mostly online national
elections. https://e- estonia.com/how- did- estonia- carry-
out-the-worlds-first-mostly-online-national-elections/.
Accessed: 2023-05-06.

[EK13] C. Elsner and A. Klauke. “Transcendence results and continued frac-
tion expansions obtained from a combinatorial series”. In: Journal of
Combinatorial Number Theory 5 (2013), pp. 53–79.

[F82] “On congruences and continued fractions for some classical combina-
torial quantities”. In: Discrete Mathematics 41.2 (1982), pp. 145–153.
doi: https://doi.org/10.1016/0012-365X(82)90201-1.

[Fla80] P. Flajolet. “Combinatorial aspects of continued fractions”. In: Discrete
Mathematics 32.2 (1980), pp. 125–161. doi: https://doi.org/10.
1016/0012-365X(80)90050-3.

[FS87] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology

— CRYPTO’ 86. Ed. by A. M. Odlyzko. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1987, pp. 186–194.

[Gam85] T. E. Gamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms”. In: IEEE Trans. Inf. Theory 31.4 (1985),
pp. 469–472. url: https://doi.org/10.1109/TIT.1985.1057074.

141

https://e-estonia.com/how-did-estonia-carry-out-the-worlds-first-mostly-online-national-elections/
https://e-estonia.com/how-did-estonia-carry-out-the-worlds-first-mostly-online-national-elections/
https://doi.org/https://doi.org/10.1016/0012-365X(82)90201-1
https://doi.org/https://doi.org/10.1016/0012-365X(80)90050-3
https://doi.org/https://doi.org/10.1016/0012-365X(80)90050-3
https://doi.org/10.1109/TIT.1985.1057074


Chapter 7 – BIBLIOGRAPHY

[Gen+07a] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Dis-
tributed Key Generation for Discrete-Log Based Cryptosystems”. In:
J. Cryptol. 20.1 (2007), pp. 51–83.

[Gen+07b] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure dis-
tributed key generation for discrete-log based cryptosystems”. In:
Journal of Cryptology 20 (2007), pp. 51–83.

[Gen+96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust threshold
DSS signatures”. In: International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 1996, pp. 354–
371.

[GG18] R. Gennaro and S. Goldfeder. “Fast multiparty threshold ECDSA with
fast trustless setup”. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. 2018, pp. 1179–
1194.

[GGN16] R. Gennaro, S. Goldfeder, and A. Narayanan. “Threshold-optimal
DSA/ECDSA signatures and an application to Bitcoin wallet security”.
In: International Conference on Applied Cryptography and Network
Security. Springer. 2016, pp. 156–174.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental
Game”. In: Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing. STOC ’87. New York, NY, USA: Association for
Computing Machinery, 1987, 218–229. doi: 10.1145/28395.28420.
url: https://doi.org/10.1145/28395.28420.

[GPS22] S. Gueron, E. Persichetti, and P. Santini. “Designing a Practical Code-
Based Signature Scheme from Zero-Knowledge Proofs with Trusted
Setup”. In: Cryptography 6.1 (2022), p. 5.

[Gri+21] A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. “Tight adap-
tive reprogramming in the QROM”. In: ASIACRYPT 2021. Springer.
2021.

[Her50] C. Hermite. “Extraits de lettres de M. Ch. Hermite à M. Jacobi
sur différents objects de la théorie des nombres.” In: Journal für die
reine und angewandte Mathematik (Crelles Journal) 1850.40 (1850),
pp. 261–278. doi: doi:10.1515/crll.1850.40.261. url: https:
//doi.org/10.1515/crll.1850.40.261.

142

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/doi:10.1515/crll.1850.40.261
https://doi.org/10.1515/crll.1850.40.261
https://doi.org/10.1515/crll.1850.40.261


Chapter 7 – BIBLIOGRAPHY

[HPT22] T. Haines, O. Pereira, and V. Teague. “Running the Race: A Swiss
Voting Story”. In: E-Vote-ID. Vol. 13553. LNCS. Springer, 2022, pp. 53–
69.

[HS19] T. Haines and B. Smyth. “Surveying definitions of coercion resistance”.
In: IACR ePrint Arch. (2019), p. 822. url: https://eprint.iacr.
org/2019/822.

[HT15] J. A. Halderman and V. Teague. “The New South Wales iVote System:
Security Failures and Verification Flaws in a Live Online Election”.
In: VoteID. Vol. 9269. LNCS. Springer, 2015, pp. 35–53.

[Idea] Use of E-Voting Around the World. https://www.idea.int/news-
media/media/use-e-voting-around-world@misc. Accessed: 2023-
05-06.

[Ifesa] Internet Voting: Past, Present and Future. https://www.ifes.org/
news/internet- voting- past- present- and- future. Accessed:
2023-02-18.

[Ifesb] The Negs and Regs of Continued Fractions. https://scholarship.
claremont.edu/hmc_theses/180. HMC Senior Theses.

[IO94] S. ITO and M. OHTSUKI. “Parallelogram Tilings and Jacobi-Perron
Algorithm”. In: Tokyo Journal of Mathematics 17.1 (1994), pp. 33 –58.
doi: 10.3836/tjm/1270128186. url: https://doi.org/10.3836/
tjm/1270128186.

[ISN89] M. Ito, A. Saito, and T. Nishizeki. “Secret sharing scheme realizing
general access structure”. In: Electronics and Communications in
Japan (1989).

[Jac13] C. G. J. Jacobi. “Correspondance mathématique avec Legendre”. In:
C. G. J. Jacobi’s Gesammelte Werke: Herausgegeben auf Veranlassung
der königlich preussischen Akademie der Wissenschaften. Ed. by C. W.
Borchardt. Cambridge Library Collection - Mathematics. Cambridge
University Press, 2013, 385–462.

[Jam23] W. Jamroga. “Pretty Good Strategies for Benaloh Challenge”. In:
Electronic Voting. Ed. by M. Volkamer, D. Duenas-Cid, P. Rønne,
P. Y. A. Ryan, J. Budurushi, O. Kulyk, A. Rodriguez Pérez, and
I. Spycher-Krivonosova. Cham: Springer Nature Switzerland, 2023,
pp. 106–122.

143

https://eprint.iacr.org/2019/822
https://eprint.iacr.org/2019/822
https://www.idea.int/news-media/media/use-e-voting-around-world@misc
https://www.idea.int/news-media/media/use-e-voting-around-world@misc
https://www.ifes.org/news/internet-voting-past-present-and-future
https://www.ifes.org/news/internet-voting-past-present-and-future
https://scholarship.claremont.edu/hmc_theses/180
https://scholarship.claremont.edu/hmc_theses/180
https://doi.org/10.3836/tjm/1270128186
https://doi.org/10.3836/tjm/1270128186
https://doi.org/10.3836/tjm/1270128186


Chapter 7 – BIBLIOGRAPHY

[JCJ10] A. Juels, D. Catalano, and M. Jakobsson. “Coercion-Resistant Elec-
tronic Elections”. In: Towards Trustworthy Elections. Vol. 6000. LNCS.
Springer, 2010, pp. 37–63.

[JSI96] M. Jakobsson, K. Sako, and R. Impagliazzo. “Designated Verifier
Proofs and Their Applications”. In: EUROCRYPT. Vol. 1070. LNCS.
Springer, 1996, pp. 143–154.

[KKB18] H. Kaur, N. Kumar, and S. Batra. “An efficient multi-party scheme for
privacy preserving collaborative filtering for healthcare recommender
system”. In: Future Generation Computer Systems 86 (2018), pp. 297–
307. doi: https://doi.org/10.1016/j.future.2018.03.017.
url: https://www.sciencedirect.com/science/article/pii/
S0167739X17327012.

[KL20] J Katz and Y Lindell. Introduction to modern cryptography book. 2020.

[KMR12] M. Keller, G. L. Mikkelsen, and A. Rupp. “Efficient Threshold Zero-
Knowledge with Applications to User-Centric Protocols”. In: Informa-
tion Theoretic Security. Ed. by A. Smith. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 147–166.

[Kom] C. Komlo. A Note on Various Forking Lemmas. url: https://
www.chelseakomlo.com/assets/content/notes/Forking-Lemma-
Variants.pdf.

[Kup13] G. Kuperberg. “Another Subexponential-time Quantum Algorithm
for the Dihedral Hidden Subgroup Problem”. In: TQC 2013. Ed. by
S. Severini and F. G. S. L. Brandão. Vol. 22. LIPIcs. Schloss Dagstuhl,
2013.

[LHK16] P. Locher, R. Haenni, and R. E. Koenig. “Coercion-Resistant Inter-
net Voting with Everlasting Privacy”. In: Financial Cryptography
Workshops. Vol. 9604. LNCS. Springer, 2016, pp. 161–175.

[Lic+21] N. Licht, D. Duenas-Cid, I. Krivonosova, and R. Krimmer. “To i-
vote or Not to i-vote: Drivers and Barriers to the Implementation of
Internet Voting”. In: E-VOTE-ID. Vol. 12900. LNCS. Springer, 2021,
pp. 91–105.

[Lin17] Y. Lindell. “Fast secure two-party ECDSA signing”. In: Advances
in Cryptology–CRYPTO 2017: 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceed-
ings, Part II 37. Springer. 2017, pp. 613–644.

144

https://doi.org/https://doi.org/10.1016/j.future.2018.03.017
https://www.sciencedirect.com/science/article/pii/S0167739X17327012
https://www.sciencedirect.com/science/article/pii/S0167739X17327012
https://www.chelseakomlo.com/assets/content/notes/Forking-Lemma-Variants.pdf
https://www.chelseakomlo.com/assets/content/notes/Forking-Lemma-Variants.pdf
https://www.chelseakomlo.com/assets/content/notes/Forking-Lemma-Variants.pdf


Chapter 7 – BIBLIOGRAPHY

[Lin22] Y. Lindell. Simple Three-Round Multiparty Schnorr Signing with Full
Simulatability. Cryptology ePrint Archive, Paper 2022/374. https:
//eprint.iacr.org/2022/374. 2022. url: https://eprint.iacr.
org/2022/374.

[LQT20] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. “VoteAgain:
A scalable coercion-resistant voting system”. In: USENIX Security
Symposium. USENIX Association, 2020, pp. 1553–1570.

[Max+19] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. “Simple Schnorr
multi-signatures with applications to Bitcoin”. In: Designs, Codes and
Cryptography 87 (Sept. 2019). doi: 10.1007/s10623-019-00608-x.

[Men21] M. Mendez. “Shift-plethysm, hydra continued fractions, and m-distinct
partitions”. In: European Journal of Combinatorics 95 (2021), p. 103340.
doi: https://doi.org/10.1016/j.ejc.2021.103340.

[MKO16] M. Marwan, A. Kartit, and H. Ouahmane. “Applying secure multi-
party computation to improve collaboration in healthcare cloud”. In:
2016 Third International Conference on Systems of Collaboration
(SysCo) (2016), pp. 1–6.

[MR04] P. MacKenzie and M. K. Reiter. “Two-party generation of DSA sig-
natures”. In: International Journal of Information Security 2 (2004),
pp. 218–239.

[MS81] R. J. McEliece and D. V. Sarwate. “On sharing secrets and Reed-
Solomon codes”. In: Communications of the ACM 24.9 (1981), pp. 583–
584.

[Nic+03] A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. “Proactive
Two-Party Signatures for User Authentication”. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS 2003,
San Diego, California, USA. The Internet Society, 2003.

[NIS17] NIST. Post-Quantum Cryptography Standardization. URL: https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography. 2017.

[NIS23] NIST. Call for Additional Digital Signature Schemes for the Post-
Quantum Cryptography Standardization Process. URL: https://csrc.
nist.gov/projects/pqc-dig-sig/standardization/call-for-
proposals. 2023.

145

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/https://doi.org/10.1016/j.ejc.2021.103340
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals


Chapter 7 – BIBLIOGRAPHY

[Pan12] O. Panprasitwech. “Combinatorial Proofs of Some Identities for Non-
regular Continued Fractions”. In: International Journal of Combina-
torics 2012 (Sept. 2012). doi: 10.1155/2012/894380.

[PBS12] P. Pullonen, D. Bogdanov, and T. Schneider. “The Design and Im-
plementation of a Two-Party Protocol Suite for SHAREMIND 3”. In:
2012.

[Ped91] T. P. Pedersen. “Distributed Provers with Applications to Undeniable
Signatures”. In: Advances in Cryptology — EUROCRYPT ’91. Ed. by
D. W. Davies. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 221–242.

[Ped92] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: Advances in Cryptology — CRYPTO ’91.
Ed. by J. Feigenbaum. Berlin, Heidelberg: Springer Berlin Heidelberg,
1992, pp. 129–140.

[Per07] O. Perron. “Grundlagen fur eine Theorie des Jacobischen Ketten-
bruchalgorithmus”. In: Mathematische Annalen 64 (1907), pp. 1–76.
url: https://api.semanticscholar.org/CorpusID:120134247.

[PR97] E. Petrank and R. Roth. “Is code equivalence easy to decide?” In:
IEEE Transactions on Information Theory 43.5 (1997), pp. 1602–1604.
doi: 10.1109/18.623157.

[PS21] M. Pétréolle and A. D. Sokal. “Lattice paths and branched contin-
ued fractions II. Multivariate Lah polynomials and Lah symmetric
functions”. In: European Journal of Combinatorics 92 (2021). doi:
https://doi.org/10.1016/j.ejc.2020.103235.

[PS23] E. Persichetti and P. Santini. “A New Formulation of the Linear
Equivalence Problem and Shorter LESS Signatures”. In: Cryptology
ePrint Archive (2023).

[PS96] D. Pointcheval and J. Stern. “Security Proofs for Signature Schemes”.
In: Advances in Cryptology — EUROCRYPT ’96. Ed. by U. Maurer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 387–398.

[Røn+20] P. B. Rønne, A. Atashpendar, K. Gjøsteen, and P. Y. A. Ryan. “Short
Paper: Coercion-Resistant Voting in Linear Time via Fully Homo-
morphic Encryption”. In: Financial Cryptography and Data Security.
Ed. by A. Bracciali, J. Clark, F. Pintore, P. B. Rønne, and M. Sala.
Cham: Springer International Publishing, 2020, pp. 289–298.

146

https://doi.org/10.1155/2012/894380
https://api.semanticscholar.org/CorpusID:120134247
https://doi.org/10.1109/18.623157
https://doi.org/https://doi.org/10.1016/j.ejc.2020.103235


Chapter 7 – BIBLIOGRAPHY

[Rot06] R. M. Roth. Introduction to coding theory. Vol. 47. 18-19. IET, 2006,
p. 4.

[RRI16] P. Y. A. Ryan, P. B. Rønne, and V. Iovino. “Selene: Voting with Trans-
parent Verifiability and Coercion-Mitigation”. In: Financial Cryptog-
raphy Workshops. Vol. 9604. LNCS. Springer, 2016, pp. 176–192.

[RS60] I. S. Reed and G. Solomon. “Polynomial codes over certain finite fields”.
In: Journal of the society for industrial and applied mathematics 8.2
(1960), pp. 300–304.

[Sch91] C. Schnorr. “Efficient signature generation by smart cards”. In: Journal
of Cryptology 4 (Jan. 1991), pp. 161–174. doi: 10.1007/BF00196725.

[Smy19] B. Smyth. “Athena: A verifiable, coercion-resistant voting system
with linear complexity”. In: IACR ePrint Arch. (2019), p. 761. url:
https://eprint.iacr.org/2019/761.

[SRA81] A. Shamir, R. L. Rivest, and L. M. Adleman. “Mental Poker”. In: The
Mathematical Gardner. Ed. by D. A. Klarner. Prindle, Weber, and
Schmidt, 1981, pp. 37–43.

[ST04] B. Schoenmakers and P. Tuyls. “Practical Two-Party Computation
Based on the Conditional Gate”. In: ASIACRYPT. Vol. 3329. LNCS.
Springer, 2004, pp. 119–136.

[SW18] D. Stinson and R. Wei. “Combinatorial Repairability for Threshold
Schemes”. In: Designs, Codes and Cryptography 86 (Jan. 2018). doi:
10.1007/s10623-017-0336-6.

[SZ10] H. Shin and J. Zeng. “The q-tangent and q-secant numbers via con-
tinued fractions”. In: European Journal of Combinatorics 31.7 (2010),
pp. 1689–1705. doi: https://doi.org/10.1016/j.ejc.2010.04.
003. url: https://www.sciencedirect.com/science/article/
pii/S0195669810000491.

[Sze68] G. Szekeres. “A Combinatorial Interpretation of Ramanujan’s Con-
tinued Fraction”. In: Canadian Mathematical Bulletin 11.3 (1968),
405–408. doi: 10.4153/CMB-1968-046-x.

[Tso+17] R. Tso, A. Alelaiwi, S. M. M. Rahman, M.-E. Wu, and M. S. Hossain.
“Privacy-Preserving Data Communication Through Secure Multi-Party
Computation in Healthcare Sensor Cloud”. In: Journal of Signal Pro-
cessing Systems 89 (Oct. 2017). doi: 10.1007/s11265-016-1198-2.

147

https://doi.org/10.1007/BF00196725
https://eprint.iacr.org/2019/761
https://doi.org/10.1007/s10623-017-0336-6
https://doi.org/https://doi.org/10.1016/j.ejc.2010.04.003
https://doi.org/https://doi.org/10.1016/j.ejc.2010.04.003
https://www.sciencedirect.com/science/article/pii/S0195669810000491
https://www.sciencedirect.com/science/article/pii/S0195669810000491
https://doi.org/10.4153/CMB-1968-046-x
https://doi.org/10.1007/s11265-016-1198-2


Chapter – BIBLIOGRAPHY

[Unr17] D. Unruh. “Post-quantum security of Fiat-Shamir”. In: Advances in
Cryptology–ASIACRYPT 2017. Springer. 2017.

[WAB07] S. G. Weber, R. Araujo, and J. Buchmann. “On Coercion-Resistant
Electronic Elections with Linear Work”. In: The Second International
Conference on Availability, Reliability and Security (ARES’07). 2007,
pp. 908–916. doi: 10.1109/ARES.2007.108.

[Wik04] D. Wikström. “A Universally Composable Mix-Net”. In: Theory of
Cryptography. Ed. by M. Naor. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 317–335.

[Wik09] D. Wikström. “A Commitment-Consistent Proof of a Shuffle”. In:
ACISP. Vol. 5594. LNCS. Springer, 2009, pp. 407–421.

[Yao82] A. C. Yao. “Protocols for secure computations”. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). 1982,
pp. 160–164. doi: 10.1109/SFCS.1982.38.

[Yao86] A. C. Yao. “How to generate and exchange secrets”. In: 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). 1986,
pp. 162–167. doi: 10.1109/SFCS.1986.25.

[ZH17] R. Zhu and Y. Huang. “Efficient Privacy-Preserving General Edit
Distance and Beyond”. In: 2017.

148

https://doi.org/10.1109/ARES.2007.108
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25


Appendix A

Combinatorial properties of
multidimensional continued fractions

The results of this appendix are published in [BMS22].

A.1 Introduction

Multidimensional continued fractions were introduced by Jacobi [Jac13] (and
then generalized by Perron [Per07]) in the attempt to answer a problem posed by
Hermite [Her50] who asked for an algorithm that provides periodic representations
for algebraic irrationals of any degree, in the same way as continued fractions are
periodic if and only if they represent quadratic irrationals. Unfortunately, the
Jacobi–Perron algorithm does not solve the problem, which is still a beautiful
open problem in number theory, but opened a new and rich research field. Indeed,
there are many studies about multidimensional continued fractions and their
modifications, aiming to generalize the results and properties of classical continued
fractions.

Continued fractions have been widely studied from different points of view.
Several works explore the combinatorial properties of continued fractions giving
many interesting interpretations. In the book of Benjamin and Quinn [BQ03], one
chapter is devoted to continued fractions showing that numerators and denominators
of convergents count some particular tilings, reporting also some results proved in
[ATBQ00]. In [BJ14], the author provided further results regarding the properties
of continued fractions in terms of counting tilings and giving also a combinatorial
interpretation to the expansion of e. A different approach to the combinatorial

149



Chapter A – Combinatorial properties of multidimensional continued fractions

aspects of continued fractions is given in [Fla80], where they are connected to
some labelled paths. Recently, in [CS20a], the authors described a combinatorial
interpretation of continued fractions as quotients of the number of perfect matchings
of snake graphs. Further interesting works in this field are [BS22; EK13; F82;
Men21; Pan12; PS21; SZ10; Sze68].

Regarding multidimensional continued fractions, there are just few works about
their combinatorial properties. In [IO94], the Jacobi–Perron algorithm is used
for giving a generating method of the so-called stepped surfaces. In [BL11],
the authors used multidimensional continued fractions for obtaining a method
of generation of discrete segments in the three-dimensional space. Finally, in
[Arn+01], multidimensional continued fractions have been exploited for obtaining
results about tilings, discrete approximations of lines and planes, and Markov
partitions for toral automorphism.

In this paper, we propose an elementary approach to the study of combinatorial
properties of multidimensional continued fractions, obtaining a natural interpreta-
tion in terms of counting tilings of a board using tiles of length one, two or three,
where we can also stack such tiles. We also give an interpretation to negative
conditions for the height of the stacks. In particular, Section A.2 is devoted to
the preliminary definitions and properties of multidimensional continued fractions,
where we also introduce them from a formal point of view. Section A.3 presents
the main results.

150



Chapter A – Combinatorial properties of multidimensional continued fractions

A.2 Preliminaries

Multidimensional continued fractions (of degree two) represent a pair of real
numbers (α0, β0) by means of two sequences of integers (ai)i≥0, (bi)i≥0 as follows:

α0 = a0 +

b1 +
1

a2 +

b3 +
1

. . .

a3 +

. . .
. . .

a1 +

b2 +
1

a3 +

. . .
. . .

a2 +

b3 +
1

. . .

a3 +

. . .
. . .

, β0 = b0 +
1

a1 +

b2 +
1

a3 +

. . .
. . .

a2 +

b3 +
1

. . .

a3 +

. . .
. . .

where the ai’s and bi’s are called partial quotients and they can be obtained by the
Jacobi algorithm in the following way:

αi = ⌊ai⌋
βi = ⌊bi⌋

αi+1 =
1

βi − bi

βi+1 =
αi − ai

βi − bi

i = 0, 1, 2, ...

We can introduce multidimensional continued fractions also in a formal way, where
the partial quotients are not in general obtained by an algorithm and the numerators
are not necessarily equals to 1, as well as in the classical case, given two sequences
(ai)i≥0, (bi)i≥0, one can introduce and study the continued fraction

a0 +
b1

a1 +
b2

a2 +
. . .

.

151



Chapter A – Combinatorial properties of multidimensional continued fractions

Definition A.1. Given the sequences of integers (ai)i≥0, (bi)i≥0 and (ci)i≥0 (with
c0 = 1), called partial quotients, we define the multidimensional continued fraction
(MCF) as the following couple of objects:

a0 +

b1 +
c2

a2 +

b3 +
c4
. . .

a3 +

. . .
. . .

a1 +

b2 +
c3

a3 +

. . .
. . .

a2 +

b3 +
c4
. . .

a3 +

. . .
. . .

, b0 +
c1

a1 +

b2 +
c3

a3 +

. . .
. . .

a2 +

b3 +
c4
. . .

a3 +

. . .
. . .

. (A.2.1)

In the following, we will write shortly [(a0, a1, ...), (b0, b1, ...), (1, c1, ...)] for such a
MCF.
We also call complete quotients the elements of the sequences of real numbers
(αi)i≥0, (βi)i≥0 and (γi)i≥0 defined by the following relations:

αi = ai +
βi+1

αi+1

, βi = bi +
γi+1

αi+1

, γi = ci

for i = 0, 1, 2, ..., so that (α0, β0) = [(a0, a1, ...), (b0, b1, ...), (1, c1, ...)].

In the following, we will use aj
i for denoting the finite sequence (ai, ai+1, ..., aj),

for i ≤ j integers. Thus, using this notation the finite MCF

[(a0, a1, ...an), (b0, b1, ..., bn), (1, c1, ..., cn)]

can be also written as [an
0 ,b

n
0 , cn0 ].

We define the n–th convergent of a MCF, similarly to the convergents of classical
continued fractions, as the following pair of rationals:(

A(an
0 ,b

n
0 , cn0 )

C(an
0 ,b

n
0 , cn0 )

,
B(an

0 ,b
n
0 , cn0 )

C(an
0 ,b

n
0 , cn0 )

)
:= [an

0 ,b
n
0 , c

n
0 ].

152



Chapter A – Combinatorial properties of multidimensional continued fractions

Sometimes, when there is no possibility of confusion, we will also use the notation(
An

Cn

,
Bn

Cn

)
without making explicit the dependence on the partial quotients.

Observation A.1. We would like to observe that the partial quotient c0 does
not appear in the expansion of the MCF described in (A.2.1). However, we set it
equals to 1 because the convergents can be also evaluated in the following way:a0 1 0

b0 0 1

c0 0 0

 · · ·
an 1 0

bn 0 1

cn 0 0

 =

An An−1 An−2

Bn Bn−1 Bn−2

Cn Cn−1 Cn−2

 .

Since A0

C0
= a0 and B0

C0
= b0, it is a natural choice to set c0 = 1. Moreover, we would

like to highlight that An does not depend on b0, c0, c1 and Bn does not depend on
a0, b1, c0, c2.

Proposition A.1. Given the sequences of integers (ai)i≥0, (bi)i≥0, (ci)i≥0, then for
all n ≥ 3 we have

A(an
0 , b

n
0 , c

n
0 ) = a0A(an

1 , b
n
1 , c

n
1 ) + b1A(an

2 , b
n
2 , c

n
2 ) + c2A(an

3 , b
n
3 , c

n
3 ) (A.2.2)

and

A(an
0 , b

n
0 , c

n
0 ) = anA(an−1

0 , bn−1
0 , cn−1

0 ) + bnA(an−2
0 , bn−2

0 , cn−2
0 ) + cnA(an−3

0 , bn−3
0 , cn−3

0 ).

(A.2.3)

Proof. By definition we have that

A(an
0 ,b

n
0 , cn0 )

C(an
0 ,b

n
0 , cn0 )

= a0 +
B(an

1 ,b
n
1 , cn1 )

A(an
1 ,b

n
1 , cn1 )

,
B(an

0 ,b
n
0 , cn0 )

C(an
0 ,b

n
0 , cn0 )

= b0 + c1
C(an

1 ,b
n
1 , cn1 )

A(an
1 ,b

n
1 , cn1 )

.

Thus, we have the following equalities:

C(an
0 ,b

n
0 , c

n
0 ) = A(an

1 ,b
n
1 , c

n
1 )

B(an
0 ,b

n
0 , c

n
0 ) = c1C(an

1 ,b
n
1 , c

n
1 ) + b0A(an

1 ,b
n
1 , c

n
1 ) (A.2.4)

A(an
0 ,b

n
0 , c

n
0 ) = a0A(an

1 ,b
n
1 , c

n
1 ) +B(an

1 ,b
n
1 , c

n
1 ).

By substitution we get

A(an
0 ,b

n
0 , c

n
0 ) = a0A(an

1 ,b
n
1 , c

n
1 ) + b1A(an

2 ,b
n
2 , c

n
2 ) + c2A(an

3 ,b
n
3 , c

n
3 ).

153



Chapter A – Combinatorial properties of multidimensional continued fractions

Equation (A.2.3) can be proved by induction. The basis of the induction is trivial.
By inductive hypothesis we have that

A(an
1 ,b

n
1 , c

n
1 ) =

anA(an−1
1 ,bn−1

1 , cn−1
1 ) + bnA(an−2

1 ,bn−2
1 , cn−2

1 ) + cnA(an−3
1 ,bn−3

1 , cn−3
1 )

A(an
2 ,b

n
2 , c

n
2 ) =

= anA(an−1
2 ,bn−1

2 , cn−1
2 ) + bnA(an−2

2 ,bn−2
2 , cn−2

2 ) + cnA(an−3
2 ,bn−3

2 , cn−3
2 )

A(an
3 ,b

n
3 , c

n
3 ) =

anA(an−1
3 ,bn−1

3 , cn−1
3 ) + bnA(an−2

3 ,bn−2
3 , cn−2

3 ) + cnA(an−3
3 ,bn−3

3 , cn−3
3 )

Substituting and factoring out an, bn and cn we get

A(an
0 ,b

n
0 , c

n
0 ) =

= an[a0A(an−1
1 ,bn−1

1 , cn−1
1 ) + b1A(an−1

2 ,bn−1
2 , cn−1

2 ) + c2A(an−1
3 ,bn−1

3 , cn−1
3 )]+

+ bn[a0A(an−2
1 ,bn−2

1 , cn−2
1 ) + b1A(an−2

2 ,bn−2
2 , cn−2

2 ) + c2A(an−2
3 ,bn−2

3 , cn−2
3 )]+

+ cn[a0A(an−3
1 ,bn−3

1 , cn−3
1 ) + b1A(an−3

2 ,bn−3
2 , cn−3

2 ) + c2A(an−3
3 ,bn−3

3 , cn−3
3 )].

Finally, by using again (A.2.2) we get the thesis.

A.3 Counting the number of tilings using multidi-
mensional continued fractions

In this section, we give a combinatorial interpretation to the convergents of a
MCF in terms of tilings of some boards, extending the approaches of Benjamin
[BQ03; ATBQ00] and Balof [BJ14] for the classical continued fractions.

In the following, a (n + 1)–board is a 1 × (n + 1) chessboard, a square is a
1× 1 tile, a domino is a 1× 2 tile and a bar is a 1× 3 tile. The n+ 1 cells of the
(n+ 1)–board are labeled from 0 to n (i.e., we refer to the cell of position 0 for the
first cell and so on). A tiling of a n–board is a covering using squares, dominoes
and bars that can be also stacked. In particular, the height conditions for stacking
them are given by finite sequences like (an

0 ,b
n
0 , cn0 ), where

• the element ai of an
0 denotes the number of stackable squares in the i–th

position (e.g., a0 is the number of stackable squares in the cell of position 0
of the (n+ 1)–board);

154



Chapter A – Combinatorial properties of multidimensional continued fractions

• the element bi of bn
0 denotes the number of stackable dominoes covering the

positions i− 1 and i (e.g., b1 is the number of stackable dominoes covering
the positions 0 and 1 of the (n+ 1)–board);

• the element ci of cn0 denotes the number of stackable bars covering the
positions i − 2, i − 1 and i (e.g., c2 is the number of stackable dominoes
covering the positions 0, 1, and 2 of the (n+ 1)–board).

At first glance the first element in bn
0 does not give height conditions, as well as the

first two elements of cn0 , however their role will be important later when discussing
different types of tilings. We will denote by M(an

0 ,b
n
0 , cn0 ) the number of possible

tilings of a (n+ 1)–board with height conditions (an
0 ,b

n
0 , cn0 ).

Example A.1. Consider n = 5 with the following height conditions

(1, 2, 3, 2, 3, 2), (b0, 6, 5, 4, 3, 2), (c0, c1, 1, 2, 3, 1),

where we do not explicit the values of b0, c0, c1 since, in this case, they are not
relevant for the tilings. Examples of valid tilings are represented in fig. A.1, while
in fig. A.2 is represented a non-valid tiling for these height conditions: in this case
there are too many bars covering the last three cells. Given the above sequences of

partial quotients, the sequence of the convergents

(
An

0

Cn
0

)
is the following:

n 0 1 2 3 4 5

Convergents 1 4 30
11

47
16

44
15

202
69

In this case, we have not specified the value of b0, since it does not provide
any height condition, and consequently we can not write explicitly the sequence of

convergents

(
Bn

0

Cn
0

)
.

155



Chapter A – Combinatorial properties of multidimensional continued fractions

0 1 2 3 4 5 0 1 2 3 4 5

Figure A.1: Examples of valid tilings.

0 1 2 3 4 5

Figure A.2: Example of a non-valid tiling.

Theorem A.1. Let
(

A(an
0 ,b

n
0 ,cn0 )

C(an
0 ,b

n
0 ,cn0 )

,
B(an

0 ,b
n
0 ,cn0 )

C(an
0 ,b

n
0 ,cn0 )

)
:= [an

0 , b
n
0 , cn

0 ]. Then we have the
following:

• A(an
0 , b

n
0 , cn

0 ) counts the number of possible tilings of a (n + 1)–board with
height conditions (an

0 , b
n
0 , cn

0 ).

• B(an
0 , b

n
0 , cn

0 ) counts the number of possible tilings of a (n+ 2)–board, where
only in this case the first cell is labelled with -1 (i.e., we add a cell on the left
to a (n+ 1)–board), with height conditions (an

0 , b
n
0 , cn

0 ), such that the first tile
of the tiling is a domino or a bar.

• C(an
0 , b

n
0 , cn

0 ) counts the number of possible tilings of a n–board with height
conditions (an

1 , b
n
1 , cn

1 ).

Proof. We want to show that the number of tilings M(an
0 ,b

n
0 , cn0 ) and A(an

0 ,b
n
0 , cn0 )

have the same initial values and recurrence formula. Clearly, for a 1–board we have

M(a0, b0, c0) = a0 = A(a0, b0, c0),

156



Chapter A – Combinatorial properties of multidimensional continued fractions

and for a 2–board

M(a1
0,b

1
0, c

1
0) = a0a1 + b1 = A(a1

0,b
1
0, c

1
0).

Then for a 3–board we can have tilings with 3 stacks of squares, or 1 stack of squares
in the first position and 1 stack of dominoes in the second and third position, or
one stack of dominoes in the first and second position and one stack of squares in
the third position, or 1 stack of bars:

M(a2
0,b

2
0, c

2
0) = a0a1a2 + a0b2 + a2b1 + c2 = A(a2

0,b
2
0, c

2
0).

For a (n + 1)–board, with n > 2, we can observe that the number of tilings
satisfies the following recursive formula:

M(an
0 ,b

n
0 , c

n
0 ) = a0M(an

1 ,b
n
1 , c

n
1 ) + b1M(an

2 ,b
n
2 , c

n
2 ) + c1M(an

3 ,b
n
3 , c

n
3 ),

since we can count the tilings dividing them in three sets: tilings that start with a
stack of squares, tilings that start with a stack of dominoes and tilings that start
with a stack of bars. Thus, the number of tilings of a (n+ 1)–board starting with
a stack of squares is a0M(an

1 ,b
n
1 , cn1 ) and similarly for the other two situations. So

we have the first point. The third point follows immediately from the first equality
in (A.2.4).

About the second point we can observe that if the board has only one cell (i.e. the
-1 cell) there are no possible tilings (a−1 is implicitly set at 0), and this is consistent
with B−1 = 0 (see the matricial representation of the convergents in observation A.1.
Moreover, M(a0

−1,b
0
−1, c0−1) = b0 = B(a0, b0, c0), since we can tile the 2–board only

with a domino. Similarly, M(a1
−1,b

1
−1, c1−1) = b0a1 + c1 = B(a1

0,b
1
0, c10), because we

only have two possibilities: a tile composed by one domino and one square or a tile
composed by one bar. Now, we can complete the proof by induction with the same
argument used above.

With the same notation as theorem A.1 we have the following corollary for a
(n+ 1)–circular board, which is a (n+ 1)–board where the first and last tile are
bordering.

Corollary A.1. The number of tilings of a n + 1–circular board with height
condition (an

0 , b
n
0 , cn

0 ) with c0 = 0 (i.e. we forbid bars covering the cells 0, n, n− 1)
is A(an

0 , b
n
0 , cn

0 ) +B(an−1
0 , bn−1

0 , cn−1
0 )

157



Chapter A – Combinatorial properties of multidimensional continued fractions

Proof. A(an
0 ,b

n
0 , cn0 ) counts the number of all the possible tilings where the cells

0 and n are not covered by the same stack of dominoes or bars. The tilings that
are missing are the ones where a stack of dominoes covers 0 and n or a stack
of bars covers 1, 0, n, (the only other possible case, where a stack of bars covers
0, n, n− 1) is impossible since c0 = 0). In particular we notice that in both case
the stack begins in the cell n. By the previous theorem B(an−1

0 ,bn−1
0 , cn−1

0 ) counts
the number of tilings of a n+ 1 board starting from cell −1, starting with a stack
of dominoes or bars. We can notice that this is the same of saying that the board
starts with cell n followed by the cell 0.

In the following proposition we show that the numerators of convergents of a
MCF can be also seen in terms of permutations.

Proposition A.2. If a0 = 4, b1 = 1, c2 = 1 and ai = i + 1 for i > 0, bi = i − 1

for i > 1, and ci = i − 2 for i > 2, then An = (n + 2)! + (n + 1)! + n!, i.e.
A0 = 4, A1 = 9, A2 = 32, ....

Proof. We prove the identity by induction. It is straightforward to check the thesis
for A0, A1, A2. We will now suppose Ak = (k + 2)! + (k + 1)! + k! for every k < n

and prove the property for n. By (A.2.3) we have

An = anAn−1 + bnAn−2 + cnAn−3.

From the definition of ai, bi, ci and the inductive hypothesis we get

An = (n+ 1)[(n+ 1)! + n! + (n− 1)!] + (n− 1)[n! + (n− 1)! + (n− 2)!]+

+ (n− 2)[(n− 1)! + (n− 2)! + (n− 3)!].

We will deal with the three addends separately:

(n+ 1)[(n+ 1)! + n! + (n− 1)!] = (n+ 1)(n+ 1)! + (n+ 1)! + n! + (n− 1)!

= (n+ 2)!− (n+ 1)! + (n+ 1)! + n! + (n− 1)! = (n+ 2)! + n! + (n− 1)!,

(n− 1)[n! + (n− 1)! + (n− 2)!] = (n− 1)(n− 2)!(n(n− 1) + (n− 1) + 1) = n!n,

(n− 2)[(n− 1)! + (n− 2)! + (n− 3)!] = (n− 2)![n2 +−2n+ 1] = (n− 1)!(n− 1).

Summing all three equation we get

An = (n+ 2)! + n! + (n− 1)! + n!n+ (n− 1)!(n− 1) = (n+ 2)! + (n+ 1)! + n!

158



Chapter A – Combinatorial properties of multidimensional continued fractions

Observation A.2. The MCF of the previous proposition is

[(4, 2, 3, 4, 5, 6, ...), (b0, 1, 1, 2, 3, 4, ...), (1, c1, 1, 1, 2, 3, ...)]

and the first sequence of convergents
(

An

Cn

)
n≥0

appears to be convergent to the real
number 4.54752..., but we were not able to explicitly determine this real number. In
the case of classical continued fraction a similar situation happens for the continued
fraction

2 +
1

1 +
1

2 +
2

3 +
3

4 +
. . .

whose convergents have as numerator the sequence ((n+ 1)! + n!)n≥0 and in this
case the continued fraction converges to e.

A.3.1 Negative Dominoes and Bars

Now, we want to generalize Theorem A.1 in order to allow negative bi, ci,
following the ideas of [Ifesb].

We notice that a positive bi adds bi number of ways to tile cells i− 1, i. So a
natural way to explain negative coefficient is to impose some restrictions such that
a negative bi give us |bi| less way to cover the cells i− 1, i. An analogous argument
can be done for ci.

Definition A.2 (Mixed Tiling). Let (ai)i≥0 be a sequence of positive integers and
(bi)i≥0, (ci)i≥0 be sequences of integers such that

• if bi < 0 and ci > 0, then ai > |bi|;

• if bi > 0 and ci < 0, then either ai > |ci| or bi > |ci|;

• if bi < 0 and ci < 0, then ai > |bi|+ |ci|.

Then we define a mixed tiling of an (n+1)−board with height condition respectively
given by an

0 , bn
0 and cn0 as follows: for any k ∈ N,

159



Chapter A – Combinatorial properties of multidimensional continued fractions

(i) if bk ≥ 0 and ck ≥ 0, we fall back in the same case defined at the beginning
of Appendix A.3;

(ii) if bk < 0 and ck > 0, when there is a stack of ak−1 squares in the cell k − 1,
we discard the tilings having up to |bk| squares in the cell k and we refer to
them as inadmissible tilings;

(iii) if ck < 0 and bk > 0, we have two cases:

(i) if ak > |ck|, when there is a stack stack of ak−2 squares in the cell
k − 2 and a stack of ak−1 squares in the cell k − 1, then we consider as
inadmissible all the tilings having up to |ck| squares in the cell k;

(ii) otherwise, necessarily bk > |ck|. In this case when there is a stack of
ak−2 squares in the cell k − 2, the inadmissible tilings are those with up
to |ck| dominoes covering the cells k − 1, k;

(iv) if ck < 0 and bk < 0, we have two cases:

(i) when at the same time there is a stack of ak−2 squares in the cell k − 2

and a stack of ak−1 squares in the cell k − 1, we discard all the tilings
having up to |ck|+ |bk| squares in the cell k;

(ii) when there is a stack of ak−1 squares in the cells k − 1, the inadmissible
tilings have up to |bk| squares in the cell k.

Observation A.3. Notice that the last condition applies when there are less than
ak−2 squares in the cell k − 2 to compensate the negative bk as in the case 4a.

Example A.2. Consider the height conditions given by

(2, 3, 1, 2, 2, 3), (b0,−1, 3, 3, 2,−1), (c0, c1,−2, 2, 1,−1).

In this case there are several restrictions given by these choice of conditions:

• Since b1 = −1, then when we have a0 = 2 squares in position 0, we need
to exclude all the tilings having one square in the cell in position 1 (see
fig. A.3a).

• Since c2 = −2 and a2 = 1 < |c2|, then we are in the case 3b and we need to
exclude the tilings having two squares in position 0 and 1 or two dominoes in
the positions 1 and 2 (see fig. A.3b).

160



Chapter A – Combinatorial properties of multidimensional continued fractions

• Finally, b5 = c5 = −1 so we are in the fourth case. Therefore the negligible
tilings are those having a3 = 2 squares in position 3, a4 = 2 squares in
position 4 and one or two squares in position 5 (see fig. A.3c). Moreover
we also need to discard the tilings having a4 = 2 squares in position 4 and
|b5| = 1 square in position 5 (see fig. A.3d).

0 1 2 3 4 5

(a) Negligible tiling (case 2).

0 1 2 3 4 5

(b) Negligible tiling (case 3b).

0 1 2 3 4 5

(c) Negligible tiling (case 4a).

0 1 2 3 4 5

(d) Negligible tiling (case 4b).

Figure A.3: Some examples of negligible tilings.

Theorem A.2. Consider the height conditions given by
(

A(an
0 ,b

n
0 ,cn0 )

C(an
0 ,b

n
0 ,cn0 )

,
B(an

0 ,b
n
0 ,cn0 )

C(an
0 ,b

n
0 ,cn0 )

)
:=

[an
0 , b

n
0 , cn

0 ] such that the conditions in definition A.2 hold. Then A(an
0 , b

n
0 , cn

0 ) is
the number of mixed tilings with height conditions an

0 , bn
0 , and cn

0 .

Proof. In the following proof we will exclude the case of bn and cn being both not
negative, since it follows easily by theorem A.1.

First we want to show that the number of mixed tiling M(an
0 ,b

n
0 , cn0 ) satisfies

the same initial condition and recurrence relations of A(an
0 ,b

n
0 , cn0 ).

• If n = 0 we trivially have M(a0, b0, c0) = a0 = A(a0, b0, c0).

161



Chapter A – Combinatorial properties of multidimensional continued fractions

• If n = 1 we have M(a1
0,b

1
0, c10) = a0a1 + b1 = A(a1

0,b
1
0, c10), since b1 < 0 we

may cover using only squares, that are a0a1, but we need to subtract |b1|
inadmissible tilings, when we have a0 squares in the cell in position 0 and
less than |b1|+ 1 squares in the cell in position 1.

• If n = 2 we have M(a2
0,b

2
0, c20) = a0a1a2 + a0b2 + a2b1 + c2 = A(a2

0,b
2
0, c20),

indeed a0a1a2 is the total number of tilings consisting in only squares, a0b2
and b1a2 are the number of tilings involving a stack of squares and a stack
of dominoes that we need to add (when bi ≥ 0) or subtract (when bi < 0).
Finally c2 is the number of tiling using only bars we need to add (when
c2 ≥ 0)) or the number of tilings we need to subtract (c2 < 0).

We now need to prove that M has the same recurrence property expressed in
Proposition A.1.

• If bn < 0 and cn > 0, then every tiling must finish either with a stack of
squares or a stack of bars. By induction there are cnM(an−3

0 ,bn−3
0 , cn−3

0 )

tilings that end with a stack of bars and anM(an−1
0 ,bn−1

0 , cn−1
0 ) tilings that

end with a stack of squares, ignoring the condition stated in definition A.2.
Among these, we need to subtract |bn|M(an−2

0 ,bn−2
0 , cn−2

0 ) inadmissible tiling,
namely those having a stack of an−1 squares in the cell n− 1 and less than
|bn|+ 1 squares in the cell n.

• If bn > 0 and cn < 0 then every tiling must finish either with a stack
of squares or a stack of dominoes. By induction these are respectively
anM(an−1

0 ,bn−1
0 , cn−1

0 ) and bnM(an−2
0 ,bn−2

0 , cn−2
0 ). Now we need to distin-

guish two possible cases:

– If an > |cn|, then we need to subtract |cn|M(an−3
0 ,bn−3

0 , cn−3
0 ) inadmis-

sible tilings, i.e. those having a stack of an−1 squares in cell n− 1, an−2

squares in the cell n− 2 and less than |cn|+ 1 squares in cell n.

– If an ≤ |cn|, then bn > |cn| by hypothesis and so we need to subtract
|cn|M(an−3

0 ,bn−3
0 , cn−3

0 ) inadmissible tiling, which in this case are those
having stack of an−2 squares in the cell n − 2 and less than |cn| + 1

dominoes covering the cells in positions n− 1, n.

• Finally, if cn < 0 and bn < 0 then every tiling must finish with a stack of
squares. By induction there are anM(an−1

0 ,bn−1
0 , cn−1

0 ) tilings that end with

162



Chapter A – Combinatorial properties of multidimensional continued fractions

a stack of squares. From this we need to subtract |bn|M(an−2
0 ,bn−2

0 , cn−2
0 )

inadmissible tilings, those when there is a stack of an−1 squares in the cell
n− 1 and less than |bn|+ 1 squares in the cell n. Moreover we also need to
subtract (|bn|+ |cn|)M(an−3

0 ,bn−3
0 , cn−3

0 ) inadmissible tilings, i.e. when there
is are stacks of an−1 and an−2 squares in the cells n− 1 and n− 2 respectively
and less than |cn|+ |bn|+1 squares in the cell n. However in this way we have
counted twice the tilings having full stacks of an−1 and an−2 squares in the
cells n− 1 and n− 2, and less than |bn|+1 squares in the last cell, so we have
to add up this coverings again. These are a total of |bn|M(an−3

0 ,bn−3
0 , cn−3

0 )

tiling, obtaining the result stated by the thesis.

Observation A.4. The Jacobi algorithm has been generalized to higher dimensions
by Perron [Per07] as follows:

a
(i)
n = ⌊α(i)

n ⌋

α
(1)
n+1 =

1

α
(m)
n − a

(m)
n

α
(i)
n+1 =

α
(i−1)
n − a

(i−1)
n

α
(m)
n − a

(m)
n

n = 0, 1, 2, ...

starting from m real numbers α
(1)
0 , ..., α

(m)
0 and providing a MCF

[(a
(1)
0 , a

(1)
1 , ...), ..., (a

(m)
0 , a

(m)
1 , ...)]

of degree m which is defined by the following relation
α
(i−1)
n = a

(i−1)
n +

αi
n+1

α
(1)
n+1

, i = 2, ...,m

α
(m)
n = a

(m)
n +

1

α
(1)
n+1

n = 0, 1, 2, ...

Our results about the MCF of degree 2 easily extends to a MCF of degree m by
considering m+ 1 different tiles of length 1, 2, ...,m+ 1. In this paper we deal with
the case of degree 2 for the seek of simplicity about the notation.

163


	Introduction
	Multi-Party Computation
	Threshold Cryptography
	Organization

	Preliminaries
	Notation and convention
	Mathematical Background
	Random Oracle Model
	Forking Lemma
	Sigma Protocols and Identification Schemes
	Digital Signature Schemes
	Threshold Cryptography
	Security Model for MPC

	Generalized Fiat-Shamir Transform
	Introduction
	Distributed Identification Schemes and Fiat-Shamir Transform
	Security of the Distributed Fiat-Shamir Transform
	Threshold Sigma Protocols
	Conclusions and future works

	Decentralized Secret Sharing and Threshold Signatures
	Introduction
	Preliminaries
	Extensible Decentralised Verifiable Secret Sharing Protocol
	Threshold Schnorr Signature
	Conclusions and future works

	Group Action Cryptography
	Introduction
	Preliminaries
	Threshold Signature
	Optimizations and Performance Evaluation
	Oblivious Transfer

	E-Voting
	Introduction
	Preliminaries
	Protocol Description
	Security Proof
	Performance
	Conclusions and future works

	Conclusions
	Bibliography
	Combinatorial properties of multidimensional continued fractions
	Introduction
	Preliminaries
	Counting the number of tilings using multidimensional continued fractions


