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Abstract
Purpose: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific
values remain inconsistent across protocols, sites, and vendors. The ISMRM Repro-
ducible Research and Quantitative MR study groups jointly launched a challenge to
assess the reproducibility of a well-established inversion-recovery T1 mapping technique,
using acquisition details from a seminal T1 mapping paper on a standardized phantom
and in human brains.
Methods: The challenge used the acquisition protocol from Barral et al. (2010).
Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human
brains. Data submission, pipeline development, and analysis were conducted using open-
source platforms. Intersubmission and intrasubmission comparisons were performed.
Results: Eighteen submissions (39 phantom and 56 human datasets) on scanners by
three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of
variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasub-
mission measurements. For humans, the intersubmission/intrasubmission coefficient of
variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard
for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org.
Conclusion: The T1 intersubmission variability was twice as high as the intrasubmission
variability in both phantoms and human brains, indicating that the acquisition details in
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the original paper were insufficient to reproduce a quantitative MRI protocol. This study
reports the inherent uncertainty in T1 measures across independent research groups,
bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

K E Y W O R D S

inversion recovery, open data, quantitative MRI, reproducibility, T1 mapping

1 INTRODUCTION

Significant challenges exist in the reproducibility of
quantitative MRI.1 Despite its promise of improving the
specificity and reproducibility of MRI acquisitions, few
quantitative MRI techniques have been integrated into
clinical practice. Even the most fundamental MR param-
eters cannot be measured with sufficient reproducibility
and precision across clinical scanners to pass the second
of six stages of technical assessment for clinical biomark-
ers.2–4 Half a century has passed since the first quantitative
T1 (spin–lattice relaxation time) measurements were first
reported as a potential biomarker for tumors,5 followed
shortly thereafter by the first in vivo T1 maps6 of tumors,
but there is still disagreement in reported values for this
fundamental parameter across different sites, vendors,
and measurement techniques.7

T1 represents the time constant for recovery of the
equilibrium longitudinal magnetization, and it is one of
the fundamental MRI parameters.8 T1 values will vary
depending on the molecular mobility and magnetic field
strength.9–11 Knowledge of the T1 values for tissue is cru-
cial for optimizing clinical MRI sequences for contrast
and time efficiency12–14 and to calibrate other quantita-
tive MRI techniques.15,16 Inversion recovery (IR)17,18 is
considered the gold standard for T1 measurement due
to its robustness against effects like B1 inhomogeneity,7
but its long acquisition times limit the clinical use of IR
for T1 mapping.7 In practice, it is often used as a refer-
ence for validating other T1 mapping techniques, such as
variable flip-angle imaging (VFA),19–21 Look-Locker,22–24

and MP2RAGE.25,26

In ongoing efforts to standardize T1 mapping meth-
ods, researchers have been actively developing quantita-
tive MRI phantoms.27 The International Society for Mag-
netic Resonance in Medicine (ISMRM) and the National
Institute of Standards and Technology (NIST) collaborated
on a standard system phantom,28 which was subsequently
commercialized (Premium System Phantom; CaliberMRI,
Boulder, CO, USA). This phantom has since been used
in large multicenter studies, such as Bane et al.,29 which

concluded that acquisition protocols and field strength
influence accuracy, repeatability, and interplatform repro-
ducibility. Another NIST-led study30 found no significant
T1 discrepancies among measurements using NIST pro-
tocols across 27 MRI systems from three vendors at two
clinical field strengths.

The 2020 ISMRM reproducibility challenge1 posed a
slightly different question: Can an imaging protocol, inde-
pendently implemented at multiple centers, consistently
measure one of the fundamental MRI parameters (T1)? To
assess this, we proposed using IR on a standardized phan-
tom (ISMRM/NIST system phantom) and the healthy
human brain. Specifically, this challenge explored
whether the acquisition details provided in a semi-
nal paper on T1 mapping31 is sufficient to ensure the
reproducibility across independent research groups.
To evaluate reproducibility within the framework of this
challenge, we explored whether the intersubmission vari-
ability in T1 measurements is the same as intrasubmission
variability.

2 METHODS

2.1 Phantom and human data

The challenge asked researchers with access to the ISM-
RM/NIST system phantom28 (Premium System Phan-
tom) to measure T1 maps of the phantom’s T1 plate
(Table 1). Researchers who participated in the challenge
were instructed to record the temperature before and
after scanning the phantom using the phantom’s internal
thermometer. Instructions for positioning and setting up
the phantom were devised by NIST and were provided
to researchers through the NIST website2. In brief, the
instructions explained how to orient the phantom and how
long the phantom should be in the scanner room before
scanning to achieve thermal equilibrium3.

Researchers were also instructed to collect T1
maps in healthy human brains and were asked to
measure a single slice positioned parallel to the ante-
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T A B L E 1 Reference T1 values of the NiCl2 array of the
standard system phantom (for both phantom versions) measured
at 20◦C and 3 T.

Sphere #

T1 (ms)

Version 1 Version 2

1 1989± 1.0 1883.97± 30.32

2 1454± 2.5 1330.16± 20.41

3 984.1± 0.33 987.27± 14.22

4 706± 1.0 690.08± 10.12

5 496.7± 0.41 484.97± 7.06

6 351.5± 0.91 341.58± 4.97

7 247.13± 0.086 240.86± 3.51

8 175.3± 0.11 174.95± 2.48

9 125.9± 0.33 121.08± 1.75

10 89.0± 0.17 85.75± 1.24

11 62.7± 0.13 60.21± 0.87

12 44.53± 0.090 42.89± 0.44

13 30.84± 0.016 30.40± 0.62

14 21.719± 0.0054 21.44± 0.31

Note: Phantoms with serial numbers 0042 or less are referred to as “Version
1,” and those 0043 or greater are “Version 2.”

rior commissure–posterior commissure (AC-PC) line.
Before imaging, the subjects consented4 to share their
de-identified data with the challenge organizers and on
the Open Science Framework (OSF.io) website. As the
submitted data were a single slice, the researchers were
not instructed to de-face the data of their imaging subjects.
Researchers submitting human data provided written con-
firmation to the organizers that their data were acquired
in accordance with their institutional ethics committee
(or equivalent regulatory body) and that the subjects had
consented to data sharing as outlined in the challenge.

2.2 MRI acquisition protocol

Researchers followed the IR T1 mapping protocol opti-
mized for the human brain as described in the paper
published by Barral et al.,31 which used TR= 2550 ms,
TI= 50, 400, 1100 and 2500 ms, TE= 14 ms, 2-mm slice
thickness, and 1× 1 mm2 in-plane resolution. Note that
this protocol is not suitable for fitting models that assume
TR> 5 T1. Instead, the more general Barral et al.31 fit-
ting model described in Section 2.4 can be used, and this
model is compatible with both magnitude-only and com-
plex data. Researchers were instructed to closely adhere
to this protocol and report any deviations due to technical
limitations.

2.3 Data submissions

Data submissions for the challenge were handled through
a GitHub repository (https://github.com/rrsg2020/data
_submission), enabling a standardized and transparent
process. All data sets were converted to the NIfTI for-
mat, and images for all TIs were concatenated into a
single NIfTI file. Each submission included a YAML file
to store additional information (submitter details, acqui-
sition details, and phantom or human subject details).
Submissions were reviewed5, and following acceptance,
the data sets were uploaded to OSF.io (osf.io/ywc9g/).
A Jupyter Notebook32,33 pipeline using qMRLab34,35 was
used to process the T1 maps and to conduct quality con-
trol checks. MyBinder links to Jupyter Notebooks that
reproduced each T1 map were shared in each submis-
sion’s GitHub issue to easily reproduce the results in
web browsers while maintaining consistent computational
environments. Eighteen submissions were included in the
analysis, which resulted in 39 T1 maps of the NIST/sys-
tem phantom and 56 brain T1 maps. Figure 1 illustrates all
the submissions that acquired phantom data (Figure 1A)
and human data (Figure 1B), the respective MRI scanner
vendors, and the resulting T1 mapping data sets. Some sub-
missions included measurements in which both complex
and magnitude-only data from the same acquisition were
used to fit T1 maps; thus, the total number of unique acqui-
sitions is lower than the numbers reported previously (27
for phantom data and 44 for human data). The data sets
were collected on systems from three MRI manufactur-
ers (Siemens, GE, and Philips) and were acquired at 3T6,
except for one data set acquired at 0.35 T (the ViewRay
Mridian MR-linac).

2.4 Fitting model and pipeline

A reduced-dimension nonlinear least-squares approach
was used to fit the complex general IR signal equation
as follows:

S(TI) = a + be−
TI
T1 (1)

where a and b are complex constants. This approach,
developed by Barral et al.,31 offers a model for the general
T1 signal equation without relying on the long-TR approx-
imation. The a and b constants inherently factor TR in
them, as well as other imaging parameters such as excita-
tion flip angle, inversion-pulse flip angles, TR, TE, TI, and
a constant that has contributions from T2 and the receive
coil sensitivity. Barral et al.31 shared their MATLAB (Math-
Works, Natick, MA, USA) code for the fitting algorithm
used in their paper7. Magnitude-only data were fitted to
a modified version of Eq. (1) (Eq. [15] of Barral et al.31)
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(A)

(C) (D)

(B)

F I G U R E 1 List of the data sets
submitted to the challenge. (A)
Submissions that included phantom
data. (B) Submissions that included
human brain data. For the phantom (A),
each submission acquired its data using
a single phantom, but some researchers
shared the same physical phantom with
each other. Green indicates submissions
used for intersubmission analyses, and
orange indicates the sites used for
intrasubmission analyses. T1 maps used
in the calculations of intersubmission
(green) and intrasubmission (orange)
coefficients of variation are indicated
with asterisks. A more detailed figure
can be found in Figure S1A. Images (C)
and (D) illustrate the region-of-interest
(ROI) choice in phantoms and humans.

with signal-polarity restoration by finding the signal min-
ima, fitting the IR curve for two cases (data points for
TI<TIminimum flipped, and data points for TI ≤ TIminimum
flipped), and selecting the case that resulted in the best fit
based on minimizing the residual between the model and
the measurements8. This code is available as part of the
qMRLab open-source software,34,35 which provides a stan-
dardized application program interface to call the fitting in
MATLAB/Octave scripts.

A data-processing pipeline was written using MAT-
LAB/Octave in a Jupyter Notebook. This pipeline down-
loads every data set from OSF (osf.io/ywc9g/), loads its
configuration file, fits the T1 maps, and then saves them
to NifTI and PNG formats. The code is available on
GitHub (https://github.com/rrsg2020/t1_fitting_pipeline,
filename: RRSG_T1_fitting.ipynb). Finally, T1 maps were
manually uploaded to OSF (https://osf.io/ywc9g/).

2.5 Image labeling and registration

The T1 plate (NiCl2 array) of the phantom has 14 spheres
that were labeled as the regions of interest (ROIs) using

a numerical mask template created in MATLAB, provided
by NIST researchers (Figure 1C). To avoid potential edge
effects in the T1 maps, the ROI labels were reduced to 60%
of the expected sphere diameter. A registration pipeline in
Python using the Advanced Normalization Tools (ANTs)36

was developed and shared in the analysis repository
of our GitHub organization (https://github.com/rrsg2020
/analysis, filename: register_t1maps_nist.py, commit ID:
8d38644). Briefly, a label-based registration was first
applied to obtain a coarse alignment, followed by an affine
registration (gradientStep: 0.1, metric: cross correlation,
number of steps: 3, iterations: 100/100/100, smoothness:
0/0/0, subsampling: 4/2/1) and a BsplineSyN registra-
tion (gradientStep:0.5, meshSizeAtBaseLevel:3, number of
steps: 3, iterations: 50/50/10, smoothness: 0/0/0, subsam-
pling: 4/2/1). The ROI label template was nonlinearly
registered to each T1 map uploaded to OSF.

For the human data, manual ROIs were segmented by a
single researcher (M.B., 12+ years of neuroimaging experi-
ence) using FSLeyes37 in four regions (Figure 1D), located
in the genu, splenium, deep gray matter, and cortical gray
matter. Automatic segmentation was not used because
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the data were single-slice and there was inconsistent slice
positioning between datasets.

2.6 Analysis and statistics

Analysis code and scripts were developed and shared
in a version-controlled public GitHub repository9.
The T1 fitting and data analysis were performed by
M.B., one of the challenge organizers. Computa-
tional environment requirements were containerized
in Docker38,39 to create an executable environment
that allows for analysis reproduction in a web browser
via MyBinder10.40 Backend Python files handled ref-
erence data, database operations, ROI masking, and
general analysis tools. Configuration files handled
data-set information, and the data sets were downloaded
and pooled using a script (make_pooled_datasets.py).
The databases were created using a publicly available
Jupyter Notebook script and subsequently saved in
the repository.

The mean T1 values of the ISMRM/NIST phantom data
for each ROI were compared with temperature-corrected
reference values and visualized in three different types of
plots (linear axes, log–log axes, and error relative to the
reference value). Temperature correction involved nonlin-
ear interpolation11 of a NIST reference table of T1 val-
ues for temperatures ranging from 16◦C to 26◦C (2◦C
intervals) as specified in the phantom’s technical spec-
ifications. For the human data sets, the mean and SDs
for each tissue ROI were calculated from all submis-
sions across all sites. Two of the submissions (one of
phantom data [Submission 6 in Figure 1A] and one of
human data [Submission 18 in Figure 1B]) were much
larger than the others, because they included multiple
acquisitions. Submission 6 consisted of data from one
traveling phantom acquired at seven Philips 3T imaging
sites, and Submission 18 was a large cohort of volunteers
who were imaged on two 3T scanners, one GE, and one
Philips. These data sets (identified in orange in Figures 1,
3, and 4) were used to calculate intrasubmission coef-
ficients of variation (CoVs) (one per scanner/volunteer,
identified by asterisks in Figure 1A,B), and intersubmis-
sion CoVs were calculated using one T1 map from each
of these (orange) along with one from all other submis-
sions12 (identified as green in Figures 1, 3, and 4; the
T1 maps used in those CoV calculations are also indi-
cated with asterisks in Figure 1A,B). All quality assurance
and analysis plot images were stored in the repository.
Additionally, the database files of ROI values and acqui-
sition details for all submissions were also stored in the
repository.

2.7 Dashboard

To widely disseminate the challenge results, a web-based
dashboard was developed (Figure 2, https://rrsg2020
.dashboards.neurolibre.org). The landing page (Figure 2A)
showcases the relationship between the phantom and
brain data sets acquired at different sites/vendors. Select-
ing the icons labeled as “phantom” or “in vivo” and then
clicking a ROI will display whisker plots for that region.
Additional sections of the dashboard allow for displaying
statistical summaries for both sets of data: a magnitude
versus complex data fitting comparison, and hierarchical
shift function analyses.

3 RESULTS

Figure 3 presents a comprehensive overview of the chal-
lenge results through violin plots, depicting intersubmis-
sion and intrasubmission comparisons in both phantoms
(A) and human (B) data sets. For the phantom (Figure 3A),
the average intersubmission CoV for the T1 values in the
human brain (Spheres 1–5, approximately 500 to 2000 ms)
was 6.1%. By addressing outliers from two sites associated
with specific challenges for Sphere 4 (signal null near a TI),
the mean intersubmission CoV was reduced to 4.1%. One
participant (Submission 6, Figure 1) measured T1 maps
using a consistent protocol at seven different sites, and the
mean intrasubmission CoV across the first five spheres for
this submission was calculated to be 2.9%.

For the human data sets (Figure 3B), intersubmission
CoVs for independently implemented imaging protocols
were 5.9% for genu, 10.6% for splenium, 16% for cortical
gray matter (GM), and 22% for deep GM. One partici-
pant (Submission 18, Figure 1) measured a large data set
(13 individuals) on three scanners and two vendors, and
the intrasubmission CoVs for this submission were 3.2%
for genu, 3.1% for splenium, 6.9% for cortical GM, and
7.1% for deep GM. The binomial appearance for the sple-
nium, deep GM, and cortical GM for the sites used in the
intersubmission analyses (green) can be explained by an
outlier measurement, which can be seen in Figure 4E-G
(Submission 3.001).

A scatterplot of the T1 data for all submissions and
their ROIs is shown in Figure 4 (phantom [A–C] and
human brains [D–G]). The NIST phantom T1 measure-
ments are presented in each plot for different axes types
(linear, log, and error) to better visualize the results.
Figure 4A shows good agreement for this data set in com-
parison with the temperature-corrected reference T1 val-
ues. However, this trend did not persist for low T1 values
(T1 < 100–200 ms), as seen in the log–log plot (Figure 4B),
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(A)

(C)

(B)

F I G U R E 2 Dashboard. (A)
Welcome page listing all the sites, the
scan type (phantom/brain), the scanner
vendor, and the corresponding site. (B)
Phantom tab for a selected region of
interest (ROI). (C) In vivo tab for a
selected ROI. Link: https://rrsg2020
.dashboards.neurolibre.org. GM, gray
matter.

which was expected because the imaging protocol is opti-
mized for human-brain T1 values (T1 > 500 ms). Higher
variability is seen for long T1 values (T1 ∼ 2000 ms) in
Figure 4A. Errors exceeding 10% are observed in the phan-
tom spheres with T1 values below 300 ms (Figure 4C),
and 3–4 measurements with outlier values exceeding 10%

error were observed in the human brain tissue range
(∼500–2000 ms).

Figure 4D–F displays the scatter plot data for human
data sets submitted to this challenge, showing mean and
SD T1 values for the white matter (WM; genu and sple-
nium) and GM (cerebral cortex and deep GM) ROIs. Mean
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F I G U R E 3 Summary of results of
the challenge as violin plots displaying
the intersubmission and
intrasubmission comparisons for
phantoms (A) and human brains (B).
Green indicates submissions used for
intersubmission analyses, and orange
indicates the sites used for
intrasubmission analyses. Interactive
figure available at: https://preprint
.neurolibre.org/10.55458/neurolibre
.00023/. cGM, cortical gray matter; GM,
gray matter. (A)

(B)

WM T1 values across all submissions were 828± 38 ms
in the genu and 852± 49 ms in the splenium, and mean
GM T1 values were 1548± 156 ms in the cortex and
1188± 133 ms in the deep GM, with less variations over-
all in WM compared with GM, possibly due to better ROI
placement and less partial voluming in WM. The lower
SDs for the ROIs of human database ID site 9 (Submission
18 in Figure 1, and seen in orange in Figure 4D–G) are due
to good slice positioning, cutting through the AC-PC line
and the genu for proper ROI placement, particularly for
the corpus callosum and deep GM.

4 DISCUSSION

This challenge explored whether different research groups
could reproduce T1 maps based on the protocol informa-
tion reported in a seminal publication.31 Eighteen sub-
missions independently implemented the IR T1 map-
ping acquisition protocol as outlined in Barral et al.,31

and reported T1 mapping data in a standard quanti-
tative MRI phantom and/or human brains at 27 MRI
sites, using systems from three different vendors (GE,
Philips, and Siemens). The collaborative effort produced

an open-source database of 95 T1 mapping data sets,
including 39 ISMRM/NIST phantom and 56 human-brain
data sets. The intersubmission variability was twice as
high as the intrasubmission variability in both phantom
and human-brain T1 measurements, demonstrating that
acquisition details communicated via a paper are not
sufficient for reproducing quantitative MRI mea-
surements. This study reports the inherent uncertainty in
T1 measures across independent research groups, which
brings us one step closer to producing a practical baseline
of variations for this metric.

Overall, our approach did show improvement in the
reproducibility of T1 measurements in vivo compared with
researchers implementing T1 mapping protocols com-
pletely independently (i.e., with no central guidance), as
literature T1 values in vivo vary more than reported here
(e.g., Bojorquez et al.41 reports that reported T1 values in
WM vary between 699 and 1735 ms in published litera-
ture). We were aware that coordination was essential for
a quantitative MRI challenge, which is why the proto-
col specifications we provided to researchers were more
detailed than any public guidelines for quantitative MRI
that were available at the time. Yet, even in combination
with the same T1 mapping processing tools, this level of
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(A) (C)

(D)

(E)

(F)

(G)

(B)

F I G U R E 4 Measured mean T1 values versus temperature-corrected NIST reference values of the phantom spheres are presented as
linear plots (A), log–log plots (B), and plots of the error relative to the reference T1 value (C). Green indicates submissions used for
intersubmission analyses, and orange indicates the sites used for intrasubmission analyses. The dashed lines in (C) represent a± 10% error.
Mean T1 values in two sets of regions of interest (ROIs), white matter (one 5× 5 voxel ROI for genu, one 5× 5 voxel ROI for splenium) and
gray matter (GM; three 3× 3 voxel ROIs for cortex, one 5× 5 voxel ROI for deep GM). (G) The missing datapoints for deep GM for
Submissions 1, 8, and 10 were due to the slice positioning of the acquisition not containing deep GM. Interactive figure available at:
https://preprint.neurolibre.org/10.55458/neurolibre.00023/. cGM, cortical gray matter.
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description (a paper + post-processing tools) leaves some-
thing to be desired.

This analysis highlights that more information is
needed to unify all the aspects of a pulse sequence across
sites, beyond what is routinely reported in a scientific pub-
lication. However, in a vendor-specific setting, this is a
major challenge, given the disparities between proprietary
development libraries.42 Vendor-neutral pulse sequence
design platforms43–45 have emerged as a powerful solu-
tion to standardize sequence components at the imple-
mentation level (e.g., RF pulse shape, gradients). Ven-
dor neutrality has been shown to significantly reduce
the variability of T1 maps acquired using VFA across
vendors.45 In the absence of a vendor-neutral frame-
work, a vendor-specific alternative is the implementation
of a strategy to control the saturation of magnetization
transfer across TRs.46 Nevertheless, this approach can
still benefit from a vendor-neutral protocol to enhance
accessibility and unify implementations. This is because
vendor-specific constraints are known to impose limita-
tions on the adaptability of sequences, resulting in signif-
icant variability even when implementations are closely
aligned within their respective vendor-specific develop-
ment environments.47

After reflecting on our reproducibility challenge
design, we believe there are some improvements that
would give additional insights if the challenge was to be
repeated in the future. One major addition would be to
distribute (1) a full T1 mapping protocol file that can be
imported on the scanners (matched as closely as possi-
ble for each vendor) and (2) a vendor-neutral sequence
file (e.g., using Pulseq,43 Gammastar,44 or RTHawk45),
assuming sufficient sites would have the setup to use it. It
would also be important to standardize the image recon-
struction and postprocessing of the acquired data; this
could be done using open tools such as Gadgetron48 or
BART.49 However, this would require the authors to sub-
mit raw k-space data, which would substantially increase
the dataset sizes and complicate the transfer and storage
of the submissions. These two additions (matched full
protocols and vendor-neutral sequences) would provide
further information on how much each component of the
scanner-to-T1 map pipeline contributes to the variation
across independent sites. Another change to the chal-
lenge framework could be to substitute (or supplement)
the IR T1 mapping protocol with a technique that is used
more widely in practice (i.e., a rapid and 3D technique),
such as MP2RAGE25 or VFA/DESPOT1.19–21 However,
these protocols have greater B1 sensitivity,26,50 requiring
an additional B1 mapping protocol to be established and
distributed to the researchers.

The 2020 Reproducibility Challenge, jointly orga-
nized by the Reproducible Research and Quantitative

MR ISMRM study groups, led to the creation of a large
open database of standard quantitative MR phantom and
human-brain IR T1 maps. These maps were measured
using independently implemented imaging protocols
on MRI scanners from three different manufacturers.
All collected data, processing pipeline code, computa-
tional environment files, and analysis scripts were shared
with the goal of promoting reproducible research prac-
tices, and an interactive dashboard was developed to
broaden the accessibility and engagement of the result-
ing data sets (https://rrsg2020.dashboards.neurolibre.org).
The differences in stability between independently imple-
mented (intersubmission) and centrally shared (intrasub-
mission) protocols observed both in phantoms and in
vivo could help inform future meta-analyses of quan-
titative MRI metrics51,52 and better guide multicenter
collaborations.

By providing access and analysis tools for this multi-
center T1 mapping data set, we aim to provide a bench-
mark for future T1 mapping approaches. We also hope that
this data set will inspire new acquisition, analysis, and
standardization techniques that address non-physiological
sources of variability in T1 mapping. This could lead to
more robust and reproducible quantitative MRI and ulti-
mately better patient care.
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available in this repository: https://github.com/rrsg2020
/analysis (commit: 8d38644), which also contains a Dock-
erfile to reproduce the environment using a tool like
MyBinder. A dashboard was developed to explore the
data set’s information and results in a browser, which
is accessible here: https://rrsg2020.dashboards.neurolibre
.org; the code is also available on GitHub: https://github
.com/rrsg2020/rrsg2020-dashboard (commit: 6ee9321).

ENDNOTES
1 https://blog.ismrm.org/2019/12/12/reproducibility-challenge
-2020-join-the-reproducible-research-and-quantitative-mr-study
-groups-in-their-efforts-to-standardize-t1-mapping/.

2 The website provided to the researchers, https://collaborate
.nist.gov/mriphantoms/bin/view/MriPhantoms
/SimpleImagingInstructions, has since been removed from the
NIST website.

3 Source: https://qmri.com/cmri-product-resources/#premium
-system-resources.

4 This website was provided as a resource to the researchers for best
practices to obtain informed consent for data sharing: https://www
.uu.nl/en/research/research-data-management/guides/informed
-consent-for-data-sharing.

5 Submissions were reviewed by MB and AK. Submission guide-
lines (https://github.com/rrsg2020/data_submission/blob/master
/README.md) and a GitHub issue checklist (https://github
.com/rrsg2020/data_submission/blob/master/.github/ISSUE
_TEMPLATE/data-submission-request.md) were checked. The
submitted data were passed to the T1 processing pipeline and
verified for quality and expected values. Feedback was sent to the
authors if their submission did not adhere to the requested guide-
lines or if issues with the submitted data sets were found, and if
possible, corrected (e.g., scaling issues between TI data points).

6 Strictly speaking, not all manufacturers operate at 3 T. Even though
this is the field strength advertised by the system manufacturers,
there is some deviation in actual field strength among vendors. The
actual center frequencies are typically reported in the DICOM files,
and these were shared for most data sets and are available in our
OSF.io repository (https://osf.io/ywc9g/). From these data sets, the
center frequencies imply that researchers who used GE and Philips
scanners operated at 3 T (∼127.7 MHz), whereas researchers who
used Siemens scanners operated at 2.89 T (∼123.2 MHz). For sim-
plicity, we always refer to the field strength in this article as 3 T.

7 http://www-mrsrl.stanford.edu/~jbarral/t1map.html.
8 https://github.com/qMRLab/qMRLab/blob/master/src/Models
_Functions/IRfun/rdNlsPr.m#L118-L129.

9 https://github.com/rrsg2020/analysis.
10 https://mybinder.org/v2/gh/rrsg2020/analysis/master?filepath

=analysis.
11 The T1 values-versus-temperature tables reported by the phan-

tom manufacturer did not always exhibit a linear relationship. We
explored the use of spline fitting on the original data and quadratic
fitting on the log–log representation of the data. Both methods
yielded good results, and we opted to use the latter in our analy-
ses. The code is found here: https://github.com/rrsg2020/analysis
/blob/master/src/nist.py. A Jupyter Notebook used in tempera-
ture interpolation development is found here: https://github.com
/rrsg2020/analysis/blob/master/temperature_correction.ipynb.

12 Only T1 maps measured using phantom Version 1 were included
in this intersubmission CoV, as including both sets would have
increased the CoV due to the differences in reference T1 values.
There were seven research groups that used Version 1 and six that
used Version 2.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Complete list of the data sets submitted to the
challenge. (A) Submissions that included phantom data.
(B) Submissions that included human brain data. Sub-
missions were assigned numbers to keep track of which
submissions included both phantom and human data.
Some submissions included data sets acquired on multiple
scanners. For the phantom (A), each submission acquired
all their data using a single phantom; however some
researchers shared the same physical phantom with each
other (same color). Some additional details about the data
sets are included in the T1 maps column, if relevant. Note
that for complex data sets in the magnitude/phase for-
mat, T1 maps were calculated both using magnitude-only
data and complex-data, but these were from the same
measurement (branching off arrow).
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