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Abstract – This paper describes in detail a Java-based, client-
server architecture specifically conceived to allow a flexible con-
trol of remote devices. The main attributes of the proposed solu-
tion are portability and flexibility. The former feature is assured by 
the employment of the TCP/IP protocol suite and by the Java lan-
guage properties. The latter is due to the high level of abstraction 
of the system implementation, that addresses multi-user issues and 
a wide range of possible applications with a high code reusability. 
In particular, the proposed architecture can be easily upgraded so 
as to fit different kinds of devices, by simply adding a limited 
amount of code on the server-side of the overall system.  
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I. INTRODUCTION 

In recent years, the growing demand for improved inter-
operability between electronic instruments, the increase in PC 
computing and input/output capabilities along with the diffu-
sion of standard buses specifications (e.g. IEEE 488, IEEE 
1394, PCI/PXI and VME/VXI) and network protocols, have 
favoured the development of software tools oriented to the 
implementation of distributed control architectures. Such 
tools represent enabling technologies for the development of 
home automation networks [1], human-robot interactive ap-
plications [2]-[5], real-time collaborative telemedicine sys-
tems  [6] and, more generally, distributed measurement sys-
tems (DMS) both for educational and industrial purposes [7]-
[9]. Unfortunately, many of the commercially available soft-
ware tools devoted to Virtual Instrument (VI) implementation 
(e.g. Labview, Lab Windows and HPVEE) often require spe-
cific applications to be installed on client computers [10]. 
Moreover, since they are based on proprietary technologies, 
remote control applications can not be freely distributed or 
easily extended. Conversely, common object remote brokers 
and interfaces have been defined to create extensible and dis-
tributed programming environments. By using Corba tech-
nology, for instance, each application is the result of a col-
laboration between several objects distributed over commu-
nicating networks and coded using various languages. Thus, 
new programs can easily and quickly be extended to address 
dedicated purposes. A similar goal can also be reached with 
object oriented languages, like Java and C++, without modi-
fying the original structure of the source code [11]. This re-
sult is achieved by using abstract classes and by loading dy-
namically software libraries such as dynamic link libraries 
(dll) on Windows platforms or shared object (so) libraries 
under Unix. 

Even if many solutions have been proposed on this  topic, 
a certain lack of detailed low-level descriptions of possible 
implementations has been observed in literature. So one of 
the aim of this paper is to give a full description of a highly 
abstract Java-based client-server architecture that is able to 
control measurement systems remotely. Unlike other robust, 
highly distributed multi-server architectures [8][10][12], the 
solution presented in this paper focuses mainly on the opti-
mization of the communication systems between multiple 
clients and a single server, whose high flexibility and ease of 
reconfiguration has been considered very important for the 
development of future multi-layered distributed applications. 

In following sections, at first the overall operating envi-
ronment is described and the design choices are explained. 
Then, it is shown that the integration of new instrumentation 
and PC-cards, such as CAN or IEEE 488 controllers, can be 
accomplished without modifying the code of the client-server 
architecture. Finally, an example of system implementation 
devoted to remote calibration purposes is presented. 

II. DESCRIPTION OF THE DISTRIBUTED  
MEASUREMENT SYSTEM  

Because of the rapid evolution of information exchange 
standards, any newly devised architecture for remotely 
controlling instrumentation should include enough features to 
accommodate actual hardware and software specifications, 
possibly anticipating future technological developments. This 
is one of the reasons why the proposed system has been 
designed to be highly abstract, easily extensible and user-
friendly. 

The system architecture is shown in Fig. 1. It consists of a 
group of distributed client-server applications that can be 
upgraded to control general-purpose instrumentation over the 
Internet. These instruments are either plugged directly into 
PCs (e.g. PCI data acquisition boards) or interfaced via a bus 
controller (e.g., IEEE 488 and IEEE 1394 cards). Security 
issues related to client-server communications have been 
addressed by using the Secure Socket Layer (SSL) protocol 
for each connection established between client and server 
ports. Obviously, the server is protected by a password. The 
access and the possible sharing of the available resources are 
managed using the multithreading approach. When a user 
requests the execution of any control operation, the server 
application runs a new dedicated thread. Since more than one 
thread can be run and processed independently, the system 
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Fig. 1. Extensible distributed measurement system. 

allows the execution of multiple operations at the same time. 
A portion of the server application has been conceived to 
engage, release and share the requested resources and to 
manage simultaneous accesses. The client-side application is 
started automatically when a user connects to the server 
homepage using a Java-enabled browser. Users are presented 
with a graphical user interface (GUI) showing the list of 
controllable interface cards and instruments, directly installed 
on the server. Moreover, if a standard bus controller (e.g. 
IEEE 488-PCI bus interfaces) is chosen, an additional search 
is performed to find devices connected to the bus. A list of all 
resources is shown on a graphical panel, enabling selection of 
a specific device. Then, by using secure socket connections 
and the TCP/IP communication protocol, information can be 
exchanged with the server unit (instrument control 
commands, parameters and reports). Finally, obtained 
measurement data can be saved locally or visualized on the 
screen. Notice that, the use of full Java-based graphical 
panels has been preferred over servlet technology, because it 
reduces the loading time of GUI, thus improving system 
performance.  

Unlike other valuable Java-based multithreading 
solutions that need the insertion of several Java server classes 
to manage any instrument newly connected to the server [13], 
the most important feature of the proposed architecture is its 
easy extensibility. In fact it is possible to manage new cards 
and instruments installed on a server unit without 
recompiling or modifying any code component. It is only 
necessary to add a limited portion of upgrading code on the 
server. This operation is feasible either locally or remotely. In 
the following subsections the chosen programming tools will 
be described, along with a functional and temporal analysis 
of the proposed architecture.  

A. Software Tools 

As mentioned in the introduction, several languages are used 
to implement distributed control systems. The architecture 
described in this paper has been coded using the Java and C 

languages. Java simplifies the development of data exchange 
mechanisms between client and server systems, by offering 
graphical user interfaces and client-server communication 
methods based on socket connections and applet executions. 
Moreover, the Java Secure Socket Extension (JSSE) set of 
packages implements a Java version of SSL (Secure Sockets 
Layer) and TLS (Transport Layer Security) protocols and in-
cludes functionality for data encryption, server authentica-
tion, message integrity, and optional client authentication.  

On the other hand, C is the language most frequently 
used to realize drivers and libraries for the low-level control 
of devices at the highest execution speed. In order to translate 
programming elements from Java to C, the Java Native Inter-
face (JNI) and native methods have been employed [14]. 
However, native methods demand knowledge of both Java 
and C languages. Better results and lower development ef-
forts could have been achieved using Microsoft Visual Java 
[13]. However this product was recently withdrawn from 
market. To describe the system at the architectural level, the 
unified modeling language (UML) has been employed. This 
language is useful to describe organizational and technical 
systems. To this purpose it employs 12 types of diagrams di-
vided into 3 main categories: diagrams to model static appli-
cation structures, diagrams to represent different aspects of 
dynamic behaviors and diagrams to organize and manage the 
application modules [15].  

B. Functional Description of the Client-Server Architecture  

The architecture is composed of a client, a server and an 
Internet units. The implementation code is divided in 2 parts: 
an Abstract Client-Server Architecture (ACSA) that repre-
sents the permanent part of the code and an upgrading code 
portion inserted for expansion purposes. The working princi-
ple of the overall architecture is based on 3 main functions 
responsible for client-server communications, abstract man-
agement of the available physical resources and upgrading 
operations. In order to describe the functional and time rela-
tions between objects and classes of the ACSA architecture 
and the upgrading code, a UML collaboration diagram has 
been employed, that is shown in Fig. 2. In this diagram users, 
developers and managers are represented as 3 actors that al-
low data exchange between client and server for remote 
automation purposes.  The sequence of operations is as fol-
lows. The system manager actor or the server operating sys-
tem starts the server application asynchronously by opening 
the AppletServer.htm file. This file contains the number of 
the server port accepting connections and a list of the avail-
able resources. This data is essential to access and to share 
over the Internet the devices connected to the server. Then, 
Appletserver.htm loads an applet that reads the information 
stored in the html file through the getParameter() method. 
Finally, the applet starts the MultiThreading class that allows 
the server to enter a waiting state, expecting connection re-
quests. 



 

2.8:connect(dev- 
Name)  

 2.11:acknowledge 
    2.12:dev. use state  
 

 2.21:wr/rdObject() 
 

 
 2.18:wr/rdObject() 
 2.25:wr/rdObject() 

 2.4:start()  

   CLIENT      SERVER 

 

 Web Server  
 

 (Personal Web Server) 
 

   W W W 
 

1.3:start()  

 INTERNET  

    TCP/IP 

  A 
p 
p 
l 
l 
e 
t  
S 
e 
r 
v 
e 
r 
. 
h 
t  
m 

      2.2:link 

  2.3:load applet 

 2.17:return list2 
 2.23:return 
 results 
 

… 

:UPGRADING 
CODE 

FTP 

System manager 
          actor 

Developer 
actor 

 Web Browser 
 
 

    :AppletServer  

 

1.2:getParam()  

    1.4:loadClass()  

:Protocol 

2.5:show devices list1 
2.19:show control panel 
and devices list2 
2.26:show results  

2.6:action()  
2.20:action()  

 :createCartell() 
 :write()  

F 
i 
l 
e 
S 
y 
s 
t 
e 
m  

1.5:accept() 
2.9:run() 
2.10:new Connection()
 

  :MultiThreading  

             :add code 

 :upgrade 
 1.1:load   

...

dll2 

2.13:engage()  
2.14:loadDriver()                      
2.24:release()  
 

:DeviceMa-

nagement 

 2.1:homepage 
link 

  :add code 

 

:Commu-

nication  

:Control 
Subclass 2  

 
  2.15:loadLibrary()  
  2.16:search instrument  
  2.22:sendCommand()  

MeasureIn -
struments.dll 

… 

2.7:startCon-  
nection(devName) 

 User actors  

:MeasureIn
-struments 

  Link 

Messages 
indicator 

:Class          
name 

Message 

ACSA 
Arc hitecture

Upgrading 
Code 

Actor 

Object           
name 

 

 DID  DOD 

:SendingReceiving() 

:Selection-
Panel  

…  

:UPGRADING CODE 

:Measure
Instrume
ntsPanel 

:Panel2

 GUI :Panels 

 Web Browser 

  :AppletClient 

   
  

 :Connection 

 
Fig. 2. UML collaboration diagram of the client-server architecture.  

 
The user actors load the client application by opening the 
server homepage and executing the AppletClient applet. They 
can establish a link with the server by means of the Connec-
tion class which generates a socket connection to Multi-
Threading. The connection or the disconnection to or from 
the server, can be carried out by the user actors through a 
dedicated menu in several graphical panels. They are used to 
choose the instruments, to insert control commands and pa-
rameters, and to visualize the responses from the server.  

If MultiThreading accepts the connection request, it starts 
the Communication class in a dedicated thread and waits for a 
new request. In this way, more than one user actor can have 
access simultaneously to the server system and control one of  
the available instruments. In order to allow data exchange 
between client and server connection sockets, object in-
put/output streams are defined. Initially, such streams are 
used by the server to send acknowledge messages concerning 
the connection state; then, they are used by the client to re-
ceive the list of the available resources. The selection of re-
sources is performed in 2 stages: at first, user actors have to 
choose one of the devices or controllers in the received list 
shown through SelectionPanel. Then, if a controller for a par-
ticular input/output standard bus is chosen (e.g., IEEE 488, 
IEEE 1394), a search for devices physically connected to the 
bus is started automatically. This mechanism is carried out by 
a native method implemented in the driver of the bus control-
ler. After completing the first selection stage, Connection 

sends to the Communication class the name of the chosen de-
vice and waits for answers about its availability. The rules 
allowing the dialog between Connection and Comunication 
are defined in the Protocol class. If the requested resource is 
available, the corresponding panel, subclass of Panels, will 
be shown to the User actors. Thus, they can select one of the 
instruments found in the second search stage, and can insert 
measurement data and control commands in the panel fields. 
The user requests are sent to the server through the Sendin-
gReceiving class. This operation employs an input serializ-
able object of the DeviceInputData (DID) class whose attrib-
utes are suitable to represent all kinds of device input data. 
Finally, Communication and the subclasses of DeviceMan-
agement, transfer to the instruments the requests received 
from the client and return measurement results, if available. 
This occurs through an output serializable object of the De-
viceOutputData (DOD) class.  

For each new resource installed on the server, the devel-
oper actor has to upgrade the system by adding new 
management code (highlighted in grey in Fig. 2). In 
particular, a new subclass of DeviceManagement has to be 
implemented, as well as one or more dll drivers for the low-
level control of the device and a new dedicated GUI panel. 
Moreover, when the new card or instrument is connected to 
the server, the manager actor has to upgrade the parameters 
list in the AppletServer.htm file. 



III. ABSTRACT MANAGEMENT OF THE 
AVAILABLE RESOURCES 

The easy extensibility of the system depends on the ab-
straction features of the ACSA. This has been achieved on 
the basis of  3 design choices:   

• the declaration of device-independent attributes in 
the DID and DOD classes; 

• the dynamic loading, on the client-side, of the control 
panels inheriting attributes from the Panels super-
class; 

the dynamic loading, on the server-side, of the device spe-
cific subclasses inheriting methods from DeviceManagement. 

The two former features in the list allow to exchange 
management and measurement data through a common inter-
face, regardless of the kind of controlled devices. This means 
that, even if a different virtual front panel is employed for 
each instrument, control messages, either written in text 
fields or set by clicking on checkboxes, are encapsulated in a 
unique data record before being transferred. A dual mecha-
nism is used to return measurement  results to the client. All 
of the fields of these records are declared inside the Panels 
superclass as shown in Fig. 3(a), in which a UML class dia-
gram describes the hierarchic relationship between Panels 
and its device-dependent subclasses. 

As regards the third feature in the list, DeviceManagement 
allows the management of any controllable resource. This is 
accomplished by declaring abstract methods such as share-
able(), engaged(), engage(), release() and loadDriver(object: 
Object). As shown by the UML class diagram plotted in fig. 
3(b), all of these methods are implemented in the Device-
Management subclasses whose structure depends on the dif-
ferent characteristics of devices connected to the server. The 
device-dependent methods, unknown to the ACSA, are called 

by the Communication class through an instance variable of 
DeviceManagement.  
Methods shareable() and engaged() are devoted to detect the 
device availability following a specific user request. Instead, 
engage() and release() allow to employ such device if it is 
available and to release it when the user stops controlling the 
resource. Finally, loadDriver(object) loads dynamically the 
dll or so drivers, containing the C native methods necessary 
to control the requested instrument. 

IV.  AN EXPERIMENT OF REMOTE CALIBRATION  

An application of the ACSA architecture has been devel-
oped to carry out remotely calibration procedures [16] on 
some measurement instruments located in the laboratories at 
University of Perugia. In particular, an IEEE 488 card has 
been installed on the server-side of the system to allow the 
remote calibration of a Hewlett Packard 3440A multimeter        
and a Hewlett Packard 54603B oscilloscope by means of a 
Fluke 5500A multifunction calibrator. For this purpose, the 
upgrading code of the client-server architecture needed the 
implementation of three main software units: a subclass of 
the DeviceManagement class, a C programme and a subclass 
of the Panels class. In the first unit the loadDriver method 
call two native methods, implemented in the second unit, that 
allow to look for all measurement instruments connected to 
the IEEE 488 card and to carry out the calibration proce-
dures. The method that execute this last operation must re-
ceive in input some calibration data specified from the re-
mote user of the system on the client-side. This data consist 
of the name of the instrument chosen to be calibrate (Device 
Under Calibration (DUC)), the kind of the measurements that
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Fig. 3.  UML class diagrams of Panels (a), DeviceManagement (b) and theirs subclasses.  



the DUC has to carry out (e.g., volt AC/DC, current AC/DC, 
resistance 2/4 wire, frequency), the range of values of the 
measurements, the number of points per range and the num-
ber of measurements that have to be carried out for each 
point. Then, the same native method analyze the results of the 
measurements, correct in real-time the possible found devia-
tion by some commands of the calibrator and return the cali-
bration report. This contain date, outputs of the calibrator, 
minimum and maximum measurement values permitted from 
the reading and range uncertainty of the DUC, measurements 
executed by the DUC, deviations of the measurements from 
the outputs of the calibrator and the calibration timing.                        

The routine that manage the calibration operations has 
been realized in C, rather than for example in LabView, to 
increase the performance of calibration operations and to al-
low a quick upgrade of the calibration system when new 
measurement instruments need to be calibrate.    

Using the Forte for Java tool, the third unit of the upgrad-
ing code has been implemented to create a graphical user in-
terface for the client-side. In particular, the virtual panel 
shown in Fig. 4 contain the report of a calibration procedure 
executed on the Hewlett Packard 3440A multimeter.  
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The calibration procedure has been carried out in 24 seconds. 

  
 

Fig. 4. Client-side panel for the remote management of cali-
bration operations. 

CONCLUSIONS 
 

In this paper, an abstract client-server architecture has 
been described that controls instrumentation over the Inter-
net. This architecture exploits the flexibility, the portability 
and the network-oriented features of the Java language, thus 
avoiding the use of proprietary software tools. Moreover, it 
has been conceived to allow an easy upgrade of the system 
when new hardware resources are connected to the server 
computer. This results from the high level of abstraction 
characterizing both client- and server-side applications. In 
fact, while the low-level control of devices is performed by 

routines written in C, the use of abstract classes and the dy-
namic loading of native methods allow the client to commu-
nicate with every instrument, regardless of its specific 
properties. This approach to the remote management of 
instrumentation is further improved by the multithreading 
mechanism, allowing more than one user to take 
simultaneous measurements independently. 

Exploiting the extensibility features of the system, a dedi-
cated application based on the ACSA architecture has been 
developed to carry out calibration procedures remotely. In 
particular, an experimentation of this application has been 
dedicated to the calibration of some measurement instru-
ments located in the laboratories at University of Perugia and 
connected to the server of the system by an IEEE 488 bus 
controller.  
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