

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

MANAGEMENT OF DISTRIBUTED MEASUREMENT SYSTEMS
BASED ON ABSTRACT CLIENT-SERVER PARADIGMS

Fernando Pianegiani, David Macii, Paolo Carbone

April 2004

Technical Report # DIT-04-049

.

Management of Distributed Measurement Systems
Based on Abstract Client-Server Paradigms

F. Pianegiani, D. Macii, P. Carbone
DIEI – Dipartimento di Ingegneria Elettronica e dell’Informazione

Università degli studi di Perugia, via G. Duranti 93 – 06125 Perugia, Italy
Phone: +39 075–5853629, Fax: +39 075–5853654, Email: carbone@diei.unipg.it, macii@diei.unipg.it

Abstract – This paper describes in detail a Java-based, client-
server architecture specifically conceived to allow a flexible con-
trol of remote devices. The main attributes of the proposed solu-
tion are portability and flexibility. The former feature is assured by
the employment of the TCP/IP protocol suite and by the Java lan-
guage properties. The latter is due to the high level of abstraction
of the system implementation, that addresses multi-user issues and
a wide range of possible applications with a high code reusability.
In particular, the proposed architecture can be easily upgraded so
as to fit different kinds of devices, by simply adding a limited
amount of code on the server-side of the overall system.

Keywords – Internet, Java, distributed measurement system, cli-
ent-server architecture, remote calibration.

I. INTRODUCTION

In recent years, the growing demand for improved inter-
operability between electronic instruments, the increase in PC
computing and input/output capabilities along with the diffu-
sion of standard buses specifications (e.g. IEEE 488, IEEE
1394, PCI/PXI and VME/VXI) and network protocols, have
favoured the development of software tools oriented to the
implementation of distributed control architectures. Such
tools represent enabling technologies for the development of
home automation networks [1], human-robot interactive ap-
plications [2]-[5], real-time collaborative telemedicine sys-
tems [6] and, more generally, distributed measurement sys-
tems (DMS) both for educational and industrial purposes [7]-
[9]. Unfortunately, many of the commercially available soft-
ware tools devoted to Virtual Instrument (VI) implementation
(e.g. Labview, Lab Windows and HPVEE) often require spe-
cific applications to be installed on client computers [10].
Moreover, since they are based on proprietary technologies,
remote control applications can not be freely distributed or
easily extended. Conversely, common object remote brokers
and interfaces have been defined to create extensible and dis-
tributed programming environments. By using Corba tech-
nology, for instance, each application is the result of a col-
laboration between several objects distributed over commu-
nicating networks and coded using various languages. Thus,
new programs can easily and quickly be extended to address
dedicated purposes. A similar goal can also be reached with
object oriented languages, like Java and C++, without modi-
fying the original structure of the source code [11]. This re-
sult is achieved by using abstract classes and by loading dy-
namically software libraries such as dynamic link libraries
(dll) on Windows platforms or shared object (so) libraries
under Unix.

Even if many solutions have been proposed on this topic,
a certain lack of detailed low-level descriptions of possible
implementations has been observed in literature. So one of
the aim of this paper is to give a full description of a highly
abstract Java-based client-server architecture that is able to
control measurement systems remotely. Unlike other robust,
highly distributed multi-server architectures [8][10][12], the
solution presented in this paper focuses mainly on the opti-
mization of the communication systems between multiple
clients and a single server, whose high flexibility and ease of
reconfiguration has been considered very important for the
development of future multi-layered distributed applications.

In following sections, at first the overall operating envi-
ronment is described and the design choices are explained.
Then, it is shown that the integration of new instrumentation
and PC-cards, such as CAN or IEEE 488 controllers, can be
accomplished without modifying the code of the client-server
architecture. Finally, an example of system implementation
devoted to remote calibration purposes is presented.

II. DESCRIPTION OF THE DISTRIBUTED
MEASUREMENT SYSTEM

Because of the rapid evolution of information exchange
standards, any newly devised architecture for remotely
controlling instrumentation should include enough features to
accommodate actual hardware and software specifications,
possibly anticipating future technological developments. This
is one of the reasons why the proposed system has been
designed to be highly abstract, easily extensible and user-
friendly.

The system architecture is shown in Fig. 1. It consists of a
group of distributed client-server applications that can be
upgraded to control general-purpose instrumentation over the
Internet. These instruments are either plugged directly into
PCs (e.g. PCI data acquisition boards) or interfaced via a bus
controller (e.g., IEEE 488 and IEEE 1394 cards). Security
issues related to client-server communications have been
addressed by using the Secure Socket Layer (SSL) protocol
for each connection established between client and server
ports. Obviously, the server is protected by a password. The
access and the possible sharing of the available resources are
managed using the multithreading approach. When a user
requests the execution of any control operation, the server
application runs a new dedicated thread. Since more than one
thread can be run and processed independently, the system

 CAN Card

 Robot

 CAN Fieldbus

 Client

 Client

 Client

Server/Client

 Server/Client

 LAN

 GPIB 488 Card

 Functions Generator

 Oscilloscope

Amp0.1Freq
4..56

 IEEE 488 BUS

 Serial Port

 Web Cam

 Server/Client

 LAN

INTERNET

Fig. 1. Extensible distributed measurement system.

allows the execution of multiple operations at the same time.
A portion of the server application has been conceived to
engage, release and share the requested resources and to
manage simultaneous accesses. The client-side application is
started automatically when a user connects to the server
homepage using a Java-enabled browser. Users are presented
with a graphical user interface (GUI) showing the list of
controllable interface cards and instruments, directly installed
on the server. Moreover, if a standard bus controller (e.g.
IEEE 488-PCI bus interfaces) is chosen, an additional search
is performed to find devices connected to the bus. A list of all
resources is shown on a graphical panel, enabling selection of
a specific device. Then, by using secure socket connections
and the TCP/IP communication protocol, information can be
exchanged with the server unit (instrument control
commands, parameters and reports). Finally, obtained
measurement data can be saved locally or visualized on the
screen. Notice that, the use of full Java-based graphical
panels has been preferred over servlet technology, because it
reduces the loading time of GUI, thus improving system
performance.

Unlike other valuable Java-based multithreading
solutions that need the insertion of several Java server classes
to manage any instrument newly connected to the server [13],
the most important feature of the proposed architecture is its
easy extensibility. In fact it is possible to manage new cards
and instruments installed on a server unit without
recompiling or modifying any code component. It is only
necessary to add a limited portion of upgrading code on the
server. This operation is feasible either locally or remotely. In
the following subsections the chosen programming tools will
be described, along with a functional and temporal analysis
of the proposed architecture.

A. Software Tools

As mentioned in the introduction, several languages are used
to implement distributed control systems. The architecture
described in this paper has been coded using the Java and C

languages. Java simplifies the development of data exchange
mechanisms between client and server systems, by offering
graphical user interfaces and client-server communication
methods based on socket connections and applet executions.
Moreover, the Java Secure Socket Extension (JSSE) set of
packages implements a Java version of SSL (Secure Sockets
Layer) and TLS (Transport Layer Security) protocols and in-
cludes functionality for data encryption, server authentica-
tion, message integrity, and optional client authentication.

On the other hand, C is the language most frequently
used to realize drivers and libraries for the low-level control
of devices at the highest execution speed. In order to translate
programming elements from Java to C, the Java Native Inter-
face (JNI) and native methods have been employed [14].
However, native methods demand knowledge of both Java
and C languages. Better results and lower development ef-
forts could have been achieved using Microsoft Visual Java
[13]. However this product was recently withdrawn from
market. To describe the system at the architectural level, the
unified modeling language (UML) has been employed. This
language is useful to describe organizational and technical
systems. To this purpose it employs 12 types of diagrams di-
vided into 3 main categories: diagrams to model static appli-
cation structures, diagrams to represent different aspects of
dynamic behaviors and diagrams to organize and manage the
application modules [15].

B. Functional Description of the Client-Server Architecture

The architecture is composed of a client, a server and an
Internet units. The implementation code is divided in 2 parts:
an Abstract Client-Server Architecture (ACSA) that repre-
sents the permanent part of the code and an upgrading code
portion inserted for expansion purposes. The working princi-
ple of the overall architecture is based on 3 main functions
responsible for client-server communications, abstract man-
agement of the available physical resources and upgrading
operations. In order to describe the functional and time rela-
tions between objects and classes of the ACSA architecture
and the upgrading code, a UML collaboration diagram has
been employed, that is shown in Fig. 2. In this diagram users,
developers and managers are represented as 3 actors that al-
low data exchange between client and server for remote
automation purposes. The sequence of operations is as fol-
lows. The system manager actor or the server operating sys-
tem starts the server application asynchronously by opening
the AppletServer.htm file. This file contains the number of
the server port accepting connections and a list of the avail-
able resources. This data is essential to access and to share
over the Internet the devices connected to the server. Then,
Appletserver.htm loads an applet that reads the information
stored in the html file through the getParameter() method.
Finally, the applet starts the MultiThreading class that allows
the server to enter a waiting state, expecting connection re-
quests.

2.8:connect(dev-
Name)

 2.11:acknowledge
 2.12:dev. use state

 2.21:wr/rdObject()

 2.18:wr/rdObject()
 2.25:wr/rdObject()

 2.4:start()

 CLIENT SERVER

 Web Server

 (Personal Web Server)

 W W W

1.3:start()

 INTERNET

 TCP/IP

 A
p
p
l
l
e
t
S
e
r
v
e
r
.
h
t
m

 2.2:link

 2.3:load applet

 2.17:return list2
 2.23:return
 results

…

:UPGRADING
CODE

FTP

System manager
 actor

Developer
actor

 Web Browser

 :AppletServer

1.2:getParam()

 1.4:loadClass()

:Protocol

2.5:show devices list1
2.19:show control panel
and devices list2
2.26:show results

2.6:action()
2.20:action()

 :createCartell()
 :write()

F
i
l
e
S
y
s
t
e
m

1.5:accept()
2.9:run()
2.10:new Connection()

 :MultiThreading

 :add code

 :upgrade
 1.1:load

...

dll2

2.13:engage()
2.14:loadDriver()
2.24:release()

:DeviceMa-

nagement

 2.1:homepage
link

 :add code

:Commu-

nication

:Control
Subclass 2

 2.15:loadLibrary()
 2.16:search instrument
 2.22:sendCommand()

MeasureIn -
struments.dll

…

2.7:startCon-
nection(devName)

 User actors

:MeasureIn
-struments

 Link

Messages
indicator

:Class
name

Message

ACSA
Arc hitecture

Upgrading
Code

Actor

Object
name

 DID DOD

:SendingReceiving()

:Selection-
Panel

…

:UPGRADING CODE

:Measure
Instrume
ntsPanel

:Panel2

 GUI :Panels

 Web Browser

 :AppletClient

 :Connection

Fig. 2. UML collaboration diagram of the client-server architecture.

The user actors load the client application by opening the
server homepage and executing the AppletClient applet. They
can establish a link with the server by means of the Connec-
tion class which generates a socket connection to Multi-
Threading. The connection or the disconnection to or from
the server, can be carried out by the user actors through a
dedicated menu in several graphical panels. They are used to
choose the instruments, to insert control commands and pa-
rameters, and to visualize the responses from the server.

If MultiThreading accepts the connection request, it starts
the Communication class in a dedicated thread and waits for a
new request. In this way, more than one user actor can have
access simultaneously to the server system and control one of
the available instruments. In order to allow data exchange
between client and server connection sockets, object in-
put/output streams are defined. Initially, such streams are
used by the server to send acknowledge messages concerning
the connection state; then, they are used by the client to re-
ceive the list of the available resources. The selection of re-
sources is performed in 2 stages: at first, user actors have to
choose one of the devices or controllers in the received list
shown through SelectionPanel. Then, if a controller for a par-
ticular input/output standard bus is chosen (e.g., IEEE 488,
IEEE 1394), a search for devices physically connected to the
bus is started automatically. This mechanism is carried out by
a native method implemented in the driver of the bus control-
ler. After completing the first selection stage, Connection

sends to the Communication class the name of the chosen de-
vice and waits for answers about its availability. The rules
allowing the dialog between Connection and Comunication
are defined in the Protocol class. If the requested resource is
available, the corresponding panel, subclass of Panels, will
be shown to the User actors. Thus, they can select one of the
instruments found in the second search stage, and can insert
measurement data and control commands in the panel fields.
The user requests are sent to the server through the Sendin-
gReceiving class. This operation employs an input serializ-
able object of the DeviceInputData (DID) class whose attrib-
utes are suitable to represent all kinds of device input data.
Finally, Communication and the subclasses of DeviceMan-
agement, transfer to the instruments the requests received
from the client and return measurement results, if available.
This occurs through an output serializable object of the De-
viceOutputData (DOD) class.

For each new resource installed on the server, the devel-
oper actor has to upgrade the system by adding new
management code (highlighted in grey in Fig. 2). In
particular, a new subclass of DeviceManagement has to be
implemented, as well as one or more dll drivers for the low-
level control of the device and a new dedicated GUI panel.
Moreover, when the new card or instrument is connected to
the server, the manager actor has to upgrade the parameters
list in the AppletServer.htm file.

III. ABSTRACT MANAGEMENT OF THE
AVAILABLE RESOURCES

The easy extensibility of the system depends on the ab-
straction features of the ACSA. This has been achieved on
the basis of 3 design choices:

• the declaration of device-independent attributes in
the DID and DOD classes;

• the dynamic loading, on the client-side, of the control
panels inheriting attributes from the Panels super-
class;

the dynamic loading, on the server-side, of the device spe-
cific subclasses inheriting methods from DeviceManagement.

The two former features in the list allow to exchange
management and measurement data through a common inter-
face, regardless of the kind of controlled devices. This means
that, even if a different virtual front panel is employed for
each instrument, control messages, either written in text
fields or set by clicking on checkboxes, are encapsulated in a
unique data record before being transferred. A dual mecha-
nism is used to return measurement results to the client. All
of the fields of these records are declared inside the Panels
superclass as shown in Fig. 3(a), in which a UML class dia-
gram describes the hierarchic relationship between Panels
and its device-dependent subclasses.

As regards the third feature in the list, DeviceManagement
allows the management of any controllable resource. This is
accomplished by declaring abstract methods such as share-
able(), engaged(), engage(), release() and loadDriver(object:
Object). As shown by the UML class diagram plotted in fig.
3(b), all of these methods are implemented in the Device-
Management subclasses whose structure depends on the dif-
ferent characteristics of devices connected to the server. The
device-dependent methods, unknown to the ACSA, are called

by the Communication class through an instance variable of
DeviceManagement.
Methods shareable() and engaged() are devoted to detect the
device availability following a specific user request. Instead,
engage() and release() allow to employ such device if it is
available and to release it when the user stops controlling the
resource. Finally, loadDriver(object) loads dynamically the
dll or so drivers, containing the C native methods necessary
to control the requested instrument.

IV. AN EXPERIMENT OF REMOTE CALIBRATION

An application of the ACSA architecture has been devel-
oped to carry out remotely calibration procedures [16] on
some measurement instruments located in the laboratories at
University of Perugia. In particular, an IEEE 488 card has
been installed on the server-side of the system to allow the
remote calibration of a Hewlett Packard 3440A multimeter
and a Hewlett Packard 54603B oscilloscope by means of a
Fluke 5500A multifunction calibrator. For this purpose, the
upgrading code of the client-server architecture needed the
implementation of three main software units: a subclass of
the DeviceManagement class, a C programme and a subclass
of the Panels class. In the first unit the loadDriver method
call two native methods, implemented in the second unit, that
allow to look for all measurement instruments connected to
the IEEE 488 card and to carry out the calibration proce-
dures. The method that execute this last operation must re-
ceive in input some calibration data specified from the re-
mote user of the system on the client-side. This data consist
of the name of the instrument chosen to be calibrate (Device
Under Calibration (DUC)), the kind of the measurements that

 engaged(): Boolean {abstract}
 share able(): Boolean {abstract}
 engage() {abstract}
 release() {abstract}
 loadDriver (object: Object): Object {abstract}

DeviceManagement
{Abstract}

MeasureInstruments

 engaged(): Boolean
 share a ble(): Boolean
 engage()
 release()
 loadDriver (object: Object): Object

…
…

Subclass n

…

MeasurementInstruments -
Pane l

 setBounds()
 add()
 reshape()
 …
 action()

…

…

Subclass n

…

Panels

 textField1: TextField
 …
 textFieldN: TextField
 menu1: Choice
 …
 menuN: Cho ice
 …
 saveCheckBox: CheckBox
 repor tCheckBox: CheckBox

 (a) (b)

Fig. 3. UML class diagrams of Panels (a), DeviceManagement (b) and theirs subclasses.

the DUC has to carry out (e.g., volt AC/DC, current AC/DC,
resistance 2/4 wire, frequency), the range of values of the
measurements, the number of points per range and the num-
ber of measurements that have to be carried out for each
point. Then, the same native method analyze the results of the
measurements, correct in real-time the possible found devia-
tion by some commands of the calibrator and return the cali-
bration report. This contain date, outputs of the calibrator,
minimum and maximum measurement values permitted from
the reading and range uncertainty of the DUC, measurements
executed by the DUC, deviations of the measurements from
the outputs of the calibrator and the calibration timing.

The routine that manage the calibration operations has
been realized in C, rather than for example in LabView, to
increase the performance of calibration operations and to al-
low a quick upgrade of the calibration system when new
measurement instruments need to be calibrate.

Using the Forte for Java tool, the third unit of the upgrad-
ing code has been implemented to create a graphical user in-
terface for the client-side. In particular, the virtual panel
shown in Fig. 4 contain the report of a calibration procedure
executed on the Hewlett Packard 3440A multimeter.

Mon Feb 18 2002 14:33:40

Calibrator: Fluke 5500A

Device under calibration: Hewlett Packard 3440A, Multimeter

Measurement kind: DC VOLTAGE

Range: 10 VOLT

Number of points per range: 3

Number of measurements per point: 2

CAL.
OUTPUT

 INF.
UNCERTAINTY

DUC
READINGS

SUP.
UNCERTAINTY

DEVIATION
(ppm)

DEVIATION
(%)

 PASS/
 FAIL

0,000000 -0,000040 0,000002 0,000040 2,000000 X PASS
5,000000 4,999885 4,999985 5,000115 15,000000 0,007564 PASS
10,000000 9,999810 9,999938 10,000190 61,900000 0,000619 PASS

0,000000 -0,000040 0,000003 0,000040 3,000000 X PASS
5,000000 4,999885 4,999989 5,000115 11,000000 0,000228 PASS
10,000000 9,999810 9,999941 10,000190 58,700000 0,000587 PASS

The calibration procedure has been carried out in 24 seconds.

Fig. 4. Client-side panel for the remote management of cali-
bration operations.

CONCLUSIONS

In this paper, an abstract client-server architecture has
been described that controls instrumentation over the Inter-
net. This architecture exploits the flexibility, the portability
and the network-oriented features of the Java language, thus
avoiding the use of proprietary software tools. Moreover, it
has been conceived to allow an easy upgrade of the system
when new hardware resources are connected to the server
computer. This results from the high level of abstraction
characterizing both client- and server-side applications. In
fact, while the low-level control of devices is performed by

routines written in C, the use of abstract classes and the dy-
namic loading of native methods allow the client to commu-
nicate with every instrument, regardless of its specific
properties. This approach to the remote management of
instrumentation is further improved by the multithreading
mechanism, allowing more than one user to take
simultaneous measurements independently.

Exploiting the extensibility features of the system, a dedi-
cated application based on the ACSA architecture has been
developed to carry out calibration procedures remotely. In
particular, an experimentation of this application has been
dedicated to the calibration of some measurement instru-
ments located in the laboratories at University of Perugia and
connected to the server of the system by an IEEE 488 bus
controller.

REFERENCES

 [1] T. Saito, I. Tomoda, Y. Takabatake, K. Teramoto, K. Fujimoto,
 “Gateway technologies for home network and their implementations,” in

Workshop Distributed Computing Systems (DCS), pp. 175-180, 2001.
 [2] D. Buhler, W. Kuchlin, G. Grubler, G. Nusser, “The Virtual Automation

Lab-Web based teaching of automation engineering concepts,”
in Proc. Engineering of Computer-Based Systems (ECBS), pp. 156-
164, 2000.

 [3] A. Speck, H. Klaeren, “RoboSiM: Java 3D robot visualization,” in
Proc. International Conference on Industrial Electronics, Control and
Instrumentation (IECON) , Vol. 2, pp. 821-826, 1999.

 [4] A. S. Sekmen, Z. Bingul, V. Hombal, S. Zein-Sabatto, “Human-robot
interaction over the Internet,” in Proc. IEEE Southeastcon, pp. 223-
228, 2000.

 [5] P. G. Backes, K. S. Tso, J. S. Norris, G. K. Tharp, J. T. Slostad, R.G.
Bonitz, K. S. Ali “Internet -based operations for the Mars Polar Lander
mission,” in Proc. International Conference on Robotics and Automa-
tion (ICRA), Vol. 2, pp. 2025-2032, 2000.

 [6] Mee Young Sung, Moon Suck Kim, Myung-Whun Sung, Eom Joon
Kim, Jae Hong Yoo, “CoMed: a real-time collaborative medicine sys-
tem,” in Proc. Computer Based Medical Systems (CBMS), pp. 215-220,
2000.

 [7] Wang Lihui, B. Wong, Shen Weiming, Sherman Lang, “A Web-based
collaborative workspace using Java 3D,” in Design Computer Sup-
ported Cooperative Work (CSCW), pp. 77-82, 2001.

 [8] L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M. Par-
vis, V. Piuri, “A Web-based distributed virtual educational labora-
tory,” IEEE Trans. Instrum. and Meas., Vol. 49, no. 2, pp. 349-356,
Apr. 2000

 [9] K. Michal., W. Wieslaw, “A new Java-based software environment for
distributed measurement systems designing,” in Proc. Instr. and Meas.
Tech. Conf. (IMTC) , Vol. 1, pp. 397-402, 2001.

 [10] P. Arpaia, A. Baccigalupi, F. Cennamo, P. Daponte, “A measurement
laboratory on geographic network for remote test experiments,” IEEE
Trans. Instrum. and Meas., Vol. 49, no. 5, pp. 992-997, Oct. 2000.

 [11] D. Buhler, G. Nusser, W. Kuchlin, G. Gruhler, “The Java Fieldbus
 Control Framework-object oriented control of fieldbus devices,” in
 Proc. Object-Oriented Real-Time Distributed Computing (ISORC), pp.
 153-160, 2001.
 [12] M. Bertocco, M. Parvis, “Platform Independent Architecture for
 Distributed Measurement Systems,” in Proc. Instr. and Meas. Tech.
 Conf. (IMTC) , Vol. 1, pp. 648-651, 2000.
 [13] D. Grimaldi, L. Nigro, F. Pupo, “Java-based distributed measurement
 systems,” IEEE Trans. Instrum. and Meas. , Vol. 47, no. 1, pp. 100-103,
 Feb. 1998.
 [14] Sun Microsystems, web address: http://java.sun.com .
 [15] Object Management Group, web address: http://www.omg.org/uml.
 [16] A. Carullo., M. Parvis, A. Vallan “A travelling standard for the cali-

bration of data-acquisition boards” in Proc. Instrumentation and Meas-
urement Technology Conference (IMTC) , Vol. 3, pp. 1625-1629, 2001

