
University of Trento

Department of Physics

Ph.D Thesis

∼ · ∼

Academic Year 2022–2023

Machine-Aware Enhancing of
Quantum Computers

Supervisor
Prof. Francesco Pederiva

Ph.D. Student
Piero Luchi

Final examination date: July 20, 2023

2

i

“Chacun appelle “idées claires” celles qui sont au même degré de confusion que
les siennes propres.” M. Proust

ii

Acknowledgments

This research was partially supported by Q@TN grants ML-QForge (PL). The
Lawrence Livermore work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 with support from Laboratory Directed Research and Develop-
ment grant 19-DR-005 LLNL-JRNL-842516. This work was prepared in part by
LLNL under Contract DE-AC52-07NA27344 with support from the Laboratory
Directed Research and Development grant 19-DR-005.

iii

iv

Abstract

The realization of a computer that exploits quantum - rather than classical -
principles represents a formidable scientific and technological challenge. Today,
superconducting quantum processors are achieving significant results in simula-
tion and computation capabilities. However, the realization of a fault-tolerant
quantum device still poses many technical difficulties. First, it requires the ability
to generate high-fidelity gates by exploiting both hardware and software solutions
and improvements. Second, it requires the ability to perform quantum error cor-
rection. Finally, it is of primary importance to have a high-fidelity qubit readout
to actually extract information from the device.

The thesis will focus on the first and last requirements, proposing advances
in quantum optimal control protocols for high-fidelity gates and machine-learning
based qubit readout. The methods used for these improvements exploit general
mathematical machinery that can be specialized for the specific quantum device
to obtain (reconfigurable) machine-aware protocols. This is easily achieved by
accessing the properties and parameters of the machine. In this dissertation, these
techniques are tested on superconducting qubits.

Optimal control protocols make it possible to tailor control signals (in the form
of electromagnetic or optical fields) that implement arbitrary unitary transforma-
tions in quantum computers. This helps to reduce the depth and hence the noise of
quantum circuits. These protocols replace long gate circuits, which are the result
of decomposing a unitary operator into a sequence of elementary transformations,
with a single application of a customized gate obtained by appropriately optimiz-
ing a microwave pulse. However, optimization algorithms can be computationally
demanding, especially in contexts where many controls related to parametric vari-
ations in the unitary are required. This can negate the benefits of the optimal
control approach.

The most common qubit readout technique today is dispersive readout (in the
circuit QED architecture), in which the qubit is coupled to a readout resonator. In
this approach, the state of the qubit is determined by measuring the quadrature
amplitudes of an electromagnetic field transmitted through the resonator. Hard-
ware random thermal noise, gate errors, or qubit decay processes that occur during
measurements can reduce readout fidelity. Machine learning techniques and classi-
fication schemes could help to restore good fidelity by improving the classification
accuracy of the measurement outputs. The Gaussian Mixture Model is the most
commonly used classification method due to its ease of use. It uses parametric
modeling of the probability distribution of averaged readout output data in terms
of a sum of Gaussians to perform a classification of new measurements. However,
more advanced techniques can be applied. Some authors have proposed and real-
ized various classification methods based on neural networks trained on the entire
output measurement signals instead of their averages, with good results. Another

vi

approach is based on the unsupervised approach of the Hidden Markov Model,
which allows a detailed classification of the measurement results and the detection
of decay processes that the qubit might undergo during the measurement. These
schemes help to improve the accuracy of the classification of the qubit readout
measurements.

The present dissertation will follow these two tracks with the common goal of
improving the performance of quantum computers.

In the case of quantum optimal control, the application of fitting procedures
among a previously computed set of controls could help to reduce computation
time. A new control should not be optimized with slow algorithms but simply in-
terpolated from the set of controls already available. In addition, more advanced
mathematical techniques can be used. Quantum computers can only perform
unitary transformations. Therefore, by pre-computing the controls correspond-
ing to a set of unitary matrices (belonging to SU(2) and SU(4)) constructed by
sampling their generators, machine learning techniques can then be used to inter-
polate between them and reconstruct the control for any unitary matrix (of these
dimensions). These approaches are tested on the simulation of quantum (nuclear)
systems, which is one of the most interesting and promising applications of the ca-
pabilities of quantum computers. Regarding the qubit readout part, we expected
that the measurement output signal of the qubit system can be exploited to im-
prove the readout procedure. In particular, by exploiting the information contained
therein, one can improve the classification of states, making the procedure more
parameter-independent and noise-resistant. Depending on the number of qubits or
qubit levels, the readout signals are divided into different classes. These signals are
noisy and often confused between classes due to thermal fluctuations, instrument
noise, and quantum state decay processes. In this dissertation, we investigate how
these data can be used to infer the state of the qubit more precisely and to improve
the measurements. This can be achieved by applying advanced machine learning
protocols, both with a supervised approach, using different realizations of neu-
ral networks, and with an unsupervised approach (e.g. autoencoders). Machine
learning algorithms, taking advantage of their generalization and universal fitting
capabilities, should allow better handling of hidden correlations in the data and
provide better classification results of the measurements, as already demonstrated
by some preliminary work. Furthermore, the use of unsupervised models paves the
way for further studies on the behavior of the qubit in a more speculative way.

vii

viii

Contents

Glossary xi

Nomenclature list xi

Introduction 1

1 Basics of Quantum Computing 7

1.1 Introduction . 7

1.2 Classical Computer . 7

1.3 Quantum Computer . 8

1.3.1 Measurements . 10

1.3.2 Projective measurements . 10

1.3.3 General formulation of quantum measurements 12

1.4 Advantage of Quantum Computers in Quantum System Simulation 13

2 Elements of Superconducting Qubits and Optimal Control The-
ory 15

2.1 Introduction . 15

2.2 Basic working principle . 16

2.2.1 Linear Quantum LC oscillator 18

2.2.2 Non-Linear Quantum LC Oscillator 19

2.2.3 Qubits Coupling . 21

2.2.4 Noise . 22

2.2.5 Effect of noise on the qubit: the Bloch-Redfield model 26

2.3 Qubit Control . 26

2.3.1 Optimal control problem . 29

2.3.2 Minimization algorithms . 30

2.4 Qubit Readout . 31

2.4.1 Dispersive readout . 31

ix

CONTENTS

3 Quantum Simulations 37

3.1 Introduction . 37

3.2 Quantum Simulations . 38

3.2.1 Quantum Simulation Recipe 42

3.3 An Example: Nulcear System . 44

3.3.1 Nuclear Physics Background 44

3.3.2 Time-independent simulation 46

3.3.3 Time-dependendet simulation 48

4 Machine Learning Techinques 51

4.1 Introduction . 51

4.1.1 Supervised algorithms . 51

4.1.2 Unsupervised . 52

5 Improving Quantum Simulation with Optimal Controls Interpo-
lation 55

5.1 Introduction . 55

5.2 Control Pulse Reconstruction method 56

5.2.1 CPR Method Realization . 57

5.2.2 CPR Method Characterization 58

5.2.3 Time-dependent simulations with CPR Mehtod: Two neu-
trons dynamics . 64

5.3 Lie Group Theory and Control Pulse Reconstruction 69

5.3.1 Lie Algebra Based Control Pulse Reconstruction 70

5.3.2 Results . 71

5.3.3 Application to quantum system simulation 74

6 Qubit Readout with Autoencoders 77

6.1 Introduction . 77

6.2 Heterodyne readout of transmon qubit 78

6.3 Model: Neural Network with Autoencoder type Pre-training 81

6.4 Standard Methods and Metrics . 85

6.4.1 Metrics . 85

6.4.2 Datasets . 85

6.5 Results . 86

6.5.1 Two-state qubit readout . 86

6.5.2 Three-state qutrit . 94

6.6 Conclusion . 98

Conclusions 99

x

CONTENTS

A Derivation of transmon Hamiltonian 101
A.1 Transmon Hamiltonian Derivation 101
A.2 Transmon-Transmon Coupling Hamiltonian Term 103

B Nuclear Theory 105
B.1 Spin Dependent Potential in neutron-neutron potential 105

C PreTraNN Scaling 107
C.1 Numerical Consideration on the Autoencoders 107

C.1.1 Autoencoder’s latent space dimension 107
C.1.2 Dataset size and convergence 109

C.2 Models specifications . 111
C.3 Autoencoder features . 113

Bibliography 128

List of Figures 134

List of Tables 135

xi

CONTENTS

xii

Introduction

The concept of quantum computing finds its origin in the 1980s when some physi-
cists began to hypothesize computational models that integrated the laws of quan-
tum mechanics [1] and with some studies on the quantum Turing machine [2]. Its
development expanded in its natural setting of quantum system simulation with
the pioneering exposition by Feynmann in 1981 [3] and other works [4]. One of
the milestones of its subsequent development is for sure the Shor algorithm, a
quantum algorithm for the factorization in prime numbers of composite integers
[5]. However, the theoretical study of quantum information and of quantum algo-
rithms requires a device that should be stable, reliable, and usable. Qubits need to
be protected from environmental noise that induces decoherence but, at the same
time, their states have to be controlled by external controls. Di Vincenzo, in his
well-known criteria, summarized the characteristics that the experimental setup
should meet to be a ”quantum computer” [6] :

1. A scalable physical system with well-characterized qubits : This means that
the system should be scalable to a large number of qubits, and the qubits
should be well-defined and controllable.

2. The ability to initialize the state of the qubits : This means that the qubits
should be initially set in a known state.

3. Long coherence times : This means that the qubits should be able to maintain
their quantum state for a long time without being perturbed by external
factors.

4. A universal set of quantum gates : This means that the system should be
able to perform any quantum operation on the qubits.

5. The ability to measure the qubits : This means that the system should be able
to extract information from the qubits without destroying their quantum
state.

6. The ability to communicate between the qubits : This means that the qubits
should be able to interact with each other in a controlled way.

1

INTRODUCTION

While progress has been made in developing quantum hardware and software,
there is still much work to be done to achieve a practical quantum computer
that can solve real-world problems. In particular, current quantum computers,
while meeting these requirements, still suffer from noise and decoherence that
degrade their performance. Present devices are commonly referred to as noisy
intermediate-scale quantum (NISQ) devices [7]. These are O(100) qubit devices
that, while having the potential to perform tasks faster than today’s classical
digital computers, still have a noise level that limits the size of quantum circuits
that can be reliably executed. NISQ devices are useful tools for testing current
quantum algorithms and exploring many-body quantum physics. The goal for
future research in this area is the realization of fault tolerant devices that can
support a large number of qubits while maintaining sufficiently high qubit quality
and fidelity in operations such as quantum gate implementation and measurement.

One of the areas in which quantum computers can have a positive impact is
the field of quantum simulation. Classical numerical methods struggle to solve
realistic quantum systems. This is due to the exponential growth of the Hilbert
space dimension with the number of particles or degree of freedom. This makes
it necessary to keep track of the probability amplitudes for all the possible clas-
sical configurations of the system with a consequent exponential increase in the
memory required to store this information. Furthermore, simulating the temporal
evolution of the system requires a number of operations that also increases ex-
ponentially with the size of the system. Moreover, peculiar quantum properties,
such as the superposition principle, entanglement, or quantum tunneling, make
the simulations even more difficult. To tackle these limitations, classical stochas-
tic methods, as quantum Monte Carlo algorithms, have been developed. These
methods allow evaluating the phase space integrals for many-body quantum sys-
tems in a time that scales polynomially with the size of the system. However,
these methods perform well when the functions to be integrated vary sufficiently
slowly with the relevant variables and, most importantly, do not change sign (this
is the well-known ”sign problem” [8]). If this happens, the statistical error grows
exponentially and the simulation time to compensate for it increases, reducing
the advantage of using Monte Carlo methods. There are many other methods
developed to solve the dynamics of quantum many-body systems, such as density
functional theory, mean-field theories, many-body perturbation theories, or Green’s
function-based methods, etc. [9], each of which, however, has its own limits of
applicability. Due to their intrinsic quantum mechanical nature, quantum com-
puters can deal with the quantum behavior of systems under analysis in a natural
way. Entanglement or superposition effects are, in this case, inherently present
in the device which simulate the quantum system, instead of being information
that has to be stored and loaded. To compute the dynamics of a quantum sys-

2

tem, we usually need to compute a time evolution operation, which is expressed
in terms of the Hamiltonian of the system. The decomposition of the evolution
operator with the Trotter-Suzuki expansion into discrete-time steps allows for the
efficient implementation of unitaries on quantum computers [10]. The polynomial
increase in circuit depth with the desired evolving time and target accuracy may
not be feasible on NISQ devices without access to error correction. Nevertheless,
NISQ devices play an important role in testing and validating these techniques
and algorithms.

This thesis presents machine-aware improvements of current NISQ devices
based on superconducting qubits. Tailored mathematical techniques have been
developed to mitigate the impact of noise in circuits and to improve the fidelity of
qubits readout. The methods used for these improvements exploit general math-
ematical machinery that can be specialized for the specific quantum device to
obtain (reconfigurable) machine-aware protocols. This is easily achieved by ac-
cessing the properties and parameters of the specific device in use. This research
represents a link between the theoretical study of quantum computing and its
experimental/practical implementation and could benefit both sides.

The research focuses on improving NISQ devices in the areas that can be
identified with Di Vincenzo’s fourth and fifth criteria. On the one hand, it focuses
on the improvement of quantum circuits and noise mitigation using optimal control
protocols, which can be identified with criterion four. On the other hand, it studies
possible improvements of the qubit readout from a software point of view, thus
addressing criterion five.

It begins with criterion four. Optimal control protocols can design electro-
magnetic or optical control pulses that induce the evolutionary unitary of interest
in the qubit system. This approach helps to reduce the depth and therefore the
noise of quantum circuits. A long circuit, resulting from the decomposition of the
unitary operator into a sequence of elementary quantum gates, can be replaced by
a single or a few applications of customized gates composed by an appropriately
optimized microwave pulse. However, these optimization algorithms can be com-
putationally expensive, especially in contexts where many controls are required due
to parametric variations in the unitary. This can spoil the benefits of the optimal
control approach. However, applying fitting procedures to a previously computed
set of controls could help reduce computation time. A new control should not
be optimized with slow algorithms but simply interpolated from the existing set
of controls. This results in a speed-up for circuit compilation. In addition, more
advanced mathematical techniques can be used. In fact, quantum computers are
designed to perform unitary transformations. Therefore, each transformation nat-
urally belongs to the matrix representation of a SU(2N) Lie group (where N is
the number of qubits). One can sample elements of this group and obtain a set

3

INTRODUCTION

of unitary matrices by exponentiating uniformly distributed elements belonging
to the corresponding Lie algebra. Then, the controls implementing each sampled
transformation can be optimized. Finally, machine learning techniques are used
to interpolate between them and, exploiting their generalization properties, recon-
struct the control for any unitary matrix. These approaches are tested on the
simulation of quantum (nuclear) systems.

The second part focuses on criterion five, the readout. The most common qubit
readout technique today is dispersive readout (in the circuit QED architecture)[11,
12], in which the qubit is dispersively coupled to a readout resonator, which is a
circuit that can store and manipulate microwave photons. The resonator is then
probed with a weak microwave signal, which causes the resonator frequency to
shift depending on the state of the qubit. By measuring the frequency shift of
the resonator, the state of the qubit can be inferred. The advantage of dispersive
readout is that it is a non-destructive measurement, meaning that the qubit can
be measured multiple times without losing its quantum information. However, the
downside is that the measurement is indirect and can be noisy, which can lead
to errors in quantum computing operations. Researchers are working on improv-
ing the accuracy and speed of dispersive readout to make it more practical for
quantum computing applications. Machine learning techniques and classification
schemes could help to obtain good fidelity by improving the classification accu-
racy of the measurement outputs. The Gaussian Mixture Model [13] is the most
commonly used classification method due to its ease of use. It uses parametric
modeling of the probability distribution of averaged readout output data in terms
of a sum of Gaussians to perform a classification of new measurements. However,
more advanced techniques can be applied. Some authors have proposed and real-
ized various classification methods based on neural networks trained on the entire
output measurement signals instead of their averages, with good results. Another
approach is based on the unsupervised approach of the Hidden Markov Model [14],
which allows a detailed classification of the measurement results and the detection
of decay processes that the qubit might undergo during the measurement. These
schemes help to improve the accuracy of the classification of the qubit readout
measurements.

In general, exploiting all the output signals should allow for improved readout
fidelity. Using the information contained therein, one can improve the classifi-
cation of states, making the procedure more parameter-independent and noise-
resistant. Depending on the number of qubits or qubit levels, the readout signals
are divided into different classes. These signals are noisy and often get confused
between classes due to thermal fluctuations, instrument noise, and quantum state
decay processes. In this dissertation, we investigate how these data can be used
to infer the state of the qubit more precisely. This can be achieved by applying

4

advanced machine learning protocols, both with a supervised approach, using dif-
ferent realizations of neural networks, and with an unsupervised approach (e.g.
autoencoders). Machine learning algorithms, taking advantage of their general-
ization and universal fitting capabilities, should allow better handling of hidden
correlations in the data and provide better classification results of the measure-
ments. Furthermore, the use of unsupervised models paves the way for further
studies on the behavior of the qubit in a more speculative way.

The dissertation has the following structure. In chapter 1 some quantum in-
formation basics are introduced. Chapter 2 presents a review of the qubit type
used in the thesis, namely the superconducting qubit. In chapter 3 the quantum
simulation with quantum computers is discussed. In chapter 4 is given a brief sum-
mary of the machine-learning techniques used in the research. Chapter 5 are given
results of the control interpolation studies, together with a theoretical application
to nuclear system simulation. Finally, in chapter 6 is discussed the application of
machine learning algorithm to the superconducting qubit readout and the results
of this protocol.

5

INTRODUCTION

6

Chapter 1

Basics of Quantum Computing

1.1 Introduction

Quantum computers are a type of computing device that use quantum-mechanical
phenomena, such as superposition and entanglement, to perform computations. In
contrast to classical computers, which use bits that can only have a value of 0 or 1,
quantum computers use quantum bits, or qubits, that can exist in a superposition
of states and can represent both 0 and 1 simultaneously. This should, in principle,
allow quantum computers to perform certain calculations exponentially faster than
classical computers.

In this chapter, some basics about quantum computing will be given. We
assume that the reader already has some knowledge of the subject, so the intro-
duction will be concise and will mainly focus on the tools used in the rest of the
dissertation. The chapter begins with an analogy between classical and quantum
computers to highlight the similarities and differences between the two approaches.

1.2 Classical Computer

A classical computer is a machine that takes strings of bits as input and returns
modified strings of bits as output.

The bit is the most basic unit of information in a classical computer. The state
space of a single classical bit is Z2 = 0, 1. Hence, a bit can have only two states,
0 or 1. A realization of a bit is simply a physical system with a two-dimensional
state space. In modern computing devices, a bit is usually represented by the two
distinct voltage or current levels allowed by a wire or circuit.

The state space of n bits is the direct sum of single bits, namely:

Z2 ⊕ Z2 ⊕ ...⊕ Z2︸ ︷︷ ︸
n

≡ {0, 1}n. (1.1)

7

CHAPTER 1. BASICS OF QUANTUM COMPUTING

So, every string y = ynyn−1...y1 of n bits can be in 2n different combination of zero
and one, which are also the number of states that it can represent.

A (classical) computer takes strings of bits as inputs and returns transformed
strings as output. The mathematics of classical computers is grounded in the
principles of Boolean algebra and digital circuit theory. Boolean algebra is a
mathematical framework that deals with true/false or on/off values and logical
operations such as AND, OR, and NOT. In digital circuit theory, these logical
operations are implemented through electronic components like transistors, which
act as switches that can be turned on or off to represent binary values. Formally
it can be represented as a function:

f : {0, 1}n → {0, 1}m, (1.2)

where n(m) is the input (output) string dimension. Actually, f is composed
of smaller functions that take and transform subsets of bitstrings. Function as
”AND”, ”OR”, ”NOT” and ”XOR” are famous examples of these small functions.
They are called gates and, assembled together, can create complex classical circuits
performing complicated computational tasks. Moreover, it can be demonstrated
that a subset of these gates can be used to construct any arbitrary function, hence
they are called universal gate set. An example is the set {”NOT”, ”AND”}.

In programming, algorithms are written in high-level languages like Java, Python,
or C++, which are then compiled into machine code that can be executed by the
computer’s processor.

1.3 Quantum Computer

A quantum computer is a machine that takes as input a collection of qubits in an
initial state and, after a desired manipulation, returns the qubits in a new output
state. The classical information about states can be extracted by performing a
measurement of the qubits’ output state.

The qubit is the basic unit of information of a quantum computer. It is a
controllable and measurable two-level quantum system. Its state space is C2,
where the vector of this space is also required to be normalized. Qubits can be
in a superposition of states, representing 0 and 1 simultaneously. According to
quantum mechanics, an arbitrary state |ψ⟩ of a qubit can be written as a linear
superposition of its basis states, identified by |0⟩ (ground state) and |1⟩ (excited
state), namely:

|ψ⟩ = α |0⟩+ β |1⟩ , (1.3)

with α, β ∈ C subjected to the restriction that |α|2 + |β|2 = 1 or, equivalently,
that ⟨ψ|ψ⟩ = || |ψ⟩ ||2 = 1.

8

1.3. QUANTUM COMPUTER

Figure 1.1: Bloch sphere. The ”north pole” represent the ground state |0⟩, the ”south
pole” the first exited state |1⟩. A state |ψ⟩ [Eq. (1.4))] is a point on the surface of the
sphere as a function of the basis states |0⟩ and |1⟩.

This restriction allows rewriting Eq. (1.3) as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ , (1.4)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. From this rewriting is clear that the qubit state
space is a sphere of radius 1, which has the name of Bloch sphere, see Fig. 1.1.
Hence, a qubit, contrary to the classical bit which has only two possible states,
is a continuous mixture of the two basis states, so it can virtually attain infinite
possible states.

A qubit can be physically realized by many devices, e.g. 1/2-spin particle, ions,
polarization states of photons or quantum superconducting circuits. In general, a
qubit is a quantum system in which distinct quantum states can be generated and
accessed. The state space of n qubits is the tensor product of single qubit spaces,
that is:

C2 ⊗ C2 ⊗⊗ C2︸ ︷︷ ︸
n

. (1.5)

So a general state |ψ⟩ is represented as a superposition of basis states |ψ⟩ =∑n
i=0 ci |i⟩. In general, we need 2n complex coefficients to fully characterize the

state.
A quantum computer manipulates the state of the qubits to obtain results.

The mathematics behind manipulations are linear algebra and quantum mechanics
formalisms. Formally a transformation can be represented by a function F :

F : |ψ⟩ → |ψ⟩′ . (1.6)

9

CHAPTER 1. BASICS OF QUANTUM COMPUTING

For a quantum computer, this function is the action of a unitary operator U
on the initial state, i.e |ψ⟩′ = U |ψ⟩. Analogously to the case of the classical
computer, this function can be broken down into a sequence of simpler functions
acting on a limited number of qubits. These smaller functions are the equivalent
of classical gates and are therefore called quantum gates. Even in this case an
universal (quantum) gate set can be defined, such that any unitary matrix U can be
approximated by a sequence of gates coming from this set. The result is a quantum
algorithm often in the form of quantum circuit which are a set of instruction that
can run on a quantum computer to obtain a certain result. Mathematically, a
gate that acts on n qubits is an element of the SU(2n) special unitary group.
The Solovay-Kitaev theorem [15, 16] states that there is a constant c such that
any unitary transformation U ∈ SU(d) can be approximated by a sequence S of
O(logc(1/ϵ) quantum gates of a universal gate set with an error ϵ < d(U, S) where
d(·, ·) in operator norm. So this result reassures us that the number on gates scales
in a manageable trend with the precision ϵ.

1.3.1 Measurements

To extract the information from the qubits after a manipulation, we need to per-
form a measurement. Generally, in quantum computing, measurement gives us
back the probability distribution of the qubits on a computational basis. So given
an arbitrary qubit state of Eq.(1.3), the measurement will provide the state |0⟩
with probability |α|2 and state |1⟩ with |β|2. A measurement by its nature is a
not-unitary and irreversible operation, hence we cannot go back to the state we
had before the measurement. The general, definition of measurement comes from
the postulates of quantum mechanics [17].

1.3.2 Projective measurements

The most traditional and straightforward description of measurement in quantum
mechanics is projective measurement [18]. A quantum physical quantity O has an
associated operator, or observable, O. This can be diagonalized as:

O =
∑
m

mMm, (1.7)

where {m} are the eigenvalues of O, assumed to be real and discrete, and Mm

are the projection operators onto the subspace of eigenstates of O. We assume
O to have a non-degenerate spectrum so that the projector is simply a rank 1
operatorMm = |m⟩ ⟨m|. These are called von Neumann measurements. Moreover,
projectors form an orthonormal basis, obeying

MmMm′ = δm,m′ . (1.8)

10

1.3. QUANTUM COMPUTER

Now, the outcome of a measurement of O is one of its eigenvalues m. The
probability to measure the eigenvalue m is

Pm = Tr{ρ(t)Mm}, (1.9)

where ρ(t) is the (instantaneous) density matrix (or state matrix). After the
measurement, the conditional a-posteriori state becomes:

ρm(t+ T) =
M †

mρ(t)Mm

Pm
, (1.10)

where T is the time to perform the measurement, assumed to be short enough not
to allow the system to evolve significantly due to other causes. This rewriting is
often called ”wavefunction collapse” since it says that the state has been projected
by Mm into the corresponding subspace of the total Hilbert space. A consequence
of this collapse is that if the measurement is immediately repeated the same result
will be given, in fact:

P(m′|m) = Tr{ρm(t+ T)Mm′} = δm,m′ . (1.11)

In the case of pure state, in which ρ(t) = ⟨ψ(t)|ψ(t)⟩, Eq. (1.9) and (1.10) become:

Pm = ⟨ψ(t)|Mm |ψ(t)⟩ (1.12)

and

|ψm(t)⟩ =
Mm |ψ(t)⟩√
Pm

. (1.13)

Qubit measurement example

As an example let’s take the qubit state |ψ⟩ of Eq. (1.3). A measurement in the
|0⟩, |1⟩ basis, would correspond to have two projectors onto each state, namely
M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1|. The the probability of obtaining state |0⟩ is:

P0 = ⟨ψ|M †
mMm |ψ⟩

= ⟨ψ| ⟨0| |0⟩ |ψ⟩
= (α∗ ⟨0|+ β∗ ⟨1|)(⟨0| |0⟩)(α |0⟩+ β |1⟩)
= α∗α ⟨0|0⟩ = |α|2. (1.14)

Moreover, the state |ψ′⟩ after the measurement in |0⟩ is:

|ψ′⟩ = M0 |ψ⟩√
⟨ψ|M †

0M0 |ψ⟩
=

1

|α|
⟨0| |0⟩ (α |0⟩+ β |1⟩) = α

|α|
|0⟩ . (1.15)

Note that α = |α|eiϕ for some phase angle ϕ = [0, 2π). Consequently, α/|α| = eiϕ

is a complex phase. However, as stated in the previous section, the global phase
does not matter and we can assume that the state is simply |0⟩.

11

CHAPTER 1. BASICS OF QUANTUM COMPUTING

1.3.3 General formulation of quantum measurements

Despite its importance from a theoretical point of view, the projective measure-
ment framework is generally inadequate or too simplified to describe real mea-
surements. In fact, one rarely performs measurements on the quantum system
itself. Instead, one measures the effects on the environment in which the system
is embedded. For example, one does not perform a measurement on a qubit us-
ing theoretical projectors, but, as in the case discussed in this dissertation (see
section.2.4), one relies on the analysis of an electromagnetic field interacting with
the qubit itself. Since the field is coupled to the system, their states are correlated
and one can infer the state of the system by measuring the field. This is why we
need a more general framework.

Assume we have a quantum system we want to measure in an initial state
|ψ(t)⟩ and a second quantum system, the apparatus or meter, in an initial state
|h(t)⟩. We can express the initial global unentangled state as:

|Φ(t)⟩ = |h(t)⟩ |ψ(t)⟩ . (1.16)

If we consider the two systems as coupled for a time ∆t, they are transformed
by a unitary operator U(∆t). The global state Eq. (1.16) after the interaction
becomes:

|Φ(t+∆t)⟩ = U(∆t) |h(t)⟩ |ψ(t)⟩ . (1.17)

Now, in contrast to the previous case, we measure the state of the apparatus
instead of the system itself. We projectively measure the apparatus for a time
∆tM , assuming the evolution of both system and meter is negligible in this time
frame. Let’s assume that the projection operators for the apparatus are rank-1
operators Mr = |r⟩ ⟨r| ⊗ I, where r is the observed value of the quantity R of the
meter. The |r⟩ set forms an orthonormal basis for the apparatus Hilbert space. We
can now define the probability of obtaining a specific value r from the measurement
of the apparatus, namely:

Pr = ⟨h(t)| ⟨ψ(t)|U †(∆t)MrU(∆t) |h(t)⟩ |ψ(t)⟩ . (1.18)

As a consequence, the final state becomes:

|Φ(t+∆t+∆tM⟩) =
|r⟩ ⟨r|U(∆t) |h(t)⟩ |ψ(t)⟩√

Pr
(1.19)

Which can be furthermore be rewritten as:

|Φ(t+∆t+∆tM)⟩ = |r⟩Ar |ψ(t)⟩√
Pr

(1.20)

12

1.4. ADVANTAGE OF QUANTUM COMPUTERS IN QUANTUM SYSTEM
SIMULATION

since the measurement disentangles the system and the meter. Here where we
condensed Ar = ⟨r|U(∆t) |h(t)⟩ which is called measurement operator. This given,
we can rewrite Eq.(1.18) in the more familar form:

Pr = ⟨ψ(t)|A†
rAr |ψ⟩ (1.21)

1.4 Advantage of Quantum Computers in Quan-

tum System Simulation

One of the main topics of this dissertation is the improvement of quantum systems
simulations on quantum computers. Quantum computing has significant potential
for simulating quantum systems (e.g., nuclear systems). Classical computers are
limited in their ability to simulate complex quantum systems due to the exponen-
tial growth of the computational resources required to store all the information
about the quantum state. However, quantum computers can efficiently simulate
quantum systems and offer the potential to explore phenomena that are difficult
to study on classical computers. One of the critical advantages of quantum com-
puting for the simulation of quantum systems is its ability to simulate quantum
entanglement efficiently. Quantum computers can also simulate quantum systems
with many more particles than classical computers can handle. For example, a
quantum computer with only a few hundred qubits could efficiently simulate the
behavior of a small molecule, which would be impossible on a classical computer.
Another advantage of quantum computing for simulating quantum systems is the
ability to simulate quantum systems with continuous variables, such as those found
in quantum optics. Classical computers struggle to simulate these systems because
of their infinite-dimensional Hilbert spaces, but quantum computers can efficiently
simulate these systems with their continuous-variable quantum processors.

In summary, quantum computing has significant potential for the simulation
of quantum systems and is an area of active research in quantum physics and
computer science. As quantum computing technology advances, we can expect
more breakthroughs in quantum simulation and a better understanding of the
fundamental workings of the quantum world.

13

CHAPTER 1. BASICS OF QUANTUM COMPUTING

14

Chapter 2

Elements of Superconducting
Qubits and Optimal Control
Theory

2.1 Introduction

This section will introduce the type of qubit used in the analyses presented in
this work. Qubits can be realized through a wide range of systems. Trapped ions
[19, 20, 21], diamond nitrogen-vacancies [22, 23], quantum dots [24, 25], electron
spins in silicon [26, 27], ultracold atoms [28, 29], polarized photons [30, 31] are
all examples of this. In all these cases, the quantum information (the states |0⟩
and |1⟩) is encoded in natural microscopic quantum systems. Another approach,
employed in this dissertation, is to work with superconducting qubits [32, 33, 34,
35]. These are, in contrast, macroscopic and lithographically defined objects. Here
the information is stored in the degrees of freedom of engineered superconducting
circuits with anharmonic oscillatory behavior. Contrary to other qubits, supercon-
ducting ones can be realized by exploiting present technologies and expertise in
microchip fabrications. So they are relatively easy to obtain and can be controlled
and coupled with present electronic devices. There are several types of supercon-
ducting qubits, including the transmon qubit, the flux qubit, and the phase qubit.
The transmon qubit is the most commonly used superconducting qubit and has
been used in many experimental demonstrations of quantum algorithms. Super-
conducting qubits are typically manipulated using microwave pulses, and read out
using microwave or low-frequency electrical measurements. They are often coupled
to form larger systems, such as quantum processors and quantum communication
networks. They can be built in a broad range of the values of their parameters, e.g.
transition frequencies or anharmonicity, to exhibit different behaviors and work in

15

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

Figure 2.1: Harmonic and anharmonic oscillators. (a) A schematic representation of a
LC circuit. (b) Potential energy of the LC circuit. It presents equidistant levels. (c)
A schematic representation of a non-linear LC circuit (transmon) where a Josephson
junction replaces the classical inductance. (d) Potential energy of the transmon. The
levels are not equidistant and can be addressed individually. Figure taken from [32]

different regimes. This chapter aims to introduce the basic properties of super-
conducting qubits and in particular the behavior of the transmon superconducting
qubit.

2.2 Basic working principle

To obtain quantum mechanical behavior in a microscopic integrated circuit, the
absence of dissipation is the main requirement. Therefore, these devices operate at
ultra-low temperatures and must be made of metals that exhibit superconducting
behavior at these temperatures. The operating temperature of these devices must
be the temperature at which the typical energy kBT of the thermal fluctuations
is less than the energy ℏω01 associated with the transition between the |0⟩ and
|1⟩ states of the qubit. Typically, this energy ranges from 5 to 20 GHz, so the
operating temperature must be around 20 mK. These temperatures are challenging
from an engineering point of view, not only because one has to rely on a dilution
refrigerator, but more importantly because one has to deal with the temperature
gradient of the wires connecting the superconducting qubits at 20 mK to room
temperature. This requires a careful setup of electromagnetic noise filtering [36].

Another requirement for quantum signal processing is the use of nonlinear

16

2.2. BASIC WORKING PRINCIPLE

Figure 2.2: Representation of a Josephson junction. The blue plates represent super-
conducting metal films and the red plane represents an insulating oxide layer. This
insulating layer allows discrete charges to tunnel between the superconducting elements,
making the junction a nonlinear inductor.

components that are also non-dissipative. The only electronic device that is both
nonlinear and non-dissipative at low temperature is the superconducting tunnel
junction or Josephson junction. [34]. This device consists of a sandwich of two
superconducting films separated by a thin insulating layer, as shown in Fig. 2.2.
This barrier is thin enough to allow the tunneling of discrete charges between the
superconducting elements. In particular, the tunneling of Cooper pairs creates an
inductive path with strong nonlinearity. This is responsible for the creation of
energy levels suitable for a qubit. This oxide layer is typically a ∼ 1 nm film of
alumina (amorphous aluminum oxide).

The superconducting circuits that make up these types of qubits are fabricated
using conventional integrated circuit techniques. They are fabricated on silicon
wafers using optical or electron beam lithography and thin film deposition. Thus,
Josephson junctions, capacitors, inductors, etc. are micron- or submicron-sized
elements connected by wires or transmission lines.

All these elements give rise to quantum circuits that do not obey conventional
circuit laws. In fact, collective electronic degrees of freedom such as current and
voltage must be treated here as quantum operators that do not necessarily com-
mute. For example, the charge, which in conventional circuits can be represented
by a number in R, is here represented by a wave function that gives the probability
amplitude of all charge configurations and also the superposition states where the
charge is both positive and negative at the same time. So these are devices that,
although macroscopic, exhibit well-defined quantum behavior [37, 38].

17

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

2.2.1 Linear Quantum LC oscillator

We consider the case of a circuit consisting of an inductor L and a capacitor C
in the superconducting regime. The behavior of this device is governed by the
harmonic oscillator equation of motion. We take as the ”position coordinate” the
flux Φ in the inductor, defined as the integral of the voltage V (t).

Φ(t) =

∫ t

−∞
V (t′)dt′. (2.1)

The ”conjugate momentum” is instead the charge Q on the capacitor. Since we are
in the quantum mechanical regime, Q and Φ are treated as canonically conjugate
quantum operators obeying [Φ, Q] = iℏ.
The energy is:

E(t) =

∫ t

−∞
V (t′)I(t′)dt′. (2.2)

The Hamiltonian of this system is

HLC =
Φ2

2L
+
Q2

2C
. (2.3)

The Hamiltonian can be rewritten in a more convenient form that introduces the
reduced flux ϕ

.
= 2πΦ/Φ0 and the reduced charge n

.
= Q/2e, namely

HLC = 4ECn
2 +

1

2
ELϕ

2, (2.4)

where EC = e2/(2C) and EL = (Φ0/2π)
2/L had to be defined. EC represents

the charging energy to add each electron of the Cooper pair to the island, while
EL is the inductive energy, where Φ0 = h/(2e) is the superconducting magnetic
flux quantum. The operator n represents the excess number of Cooper pairs on
the island, and ϕ is usually called the ”gauge-invariant phase” across the junction.
Moreover, these two operators obey the commutation relation [ϕ, n] = i.

Using the second quantization formalism, the Hamiltonian can be conveniently
written as:

HLC = ℏω0(a
†a+ 1/2), (2.5)

where a†(a) is the creation (annihilation) operator of a single excitation of the
oscillator and ω0 = 1/

√
LC is the resonance frequency of the oscillator.

The limit one encounters in using this device as a qubit is its linear nature.
In fact, the quantum harmonic oscillator presents equidistant energy levels due to

18

2.2. BASIC WORKING PRINCIPLE

the parabolic shape of its potential. See panel (b) of Fig. 2.1. To obtain a qubit,
the transition frequency between |0⟩ and |1⟩ must be sufficiently different from
the transition frequency of higher eigenstates. In this way, the transition between
the first two states can be precisely controlled, and leakage to higher states can
be avoided. To obtain this result, we rely on the previously introduced Josephson
junction, which, by replacing the linear inductor L, introduces a non-parabolic
potential with non-equidistant levels. See panel (d) of Fig. 2.1.

2.2.2 Non-Linear Quantum LC Oscillator

The current I(t) flowing through the linear inductor of the LC oscillator obey the
law:

I(t) =
1

L
Φ(t). (2.6)

In the Josephson junction instead, the current has the following form:

I(t) = I0 sin[2πΦ(t)/Φ0] (2.7)

where I0 is the critical current, a quantity that grows linearly with the tunnel layer
area and diminishes exponentially with the tunnel layer thickness. This sinusoidal
behavior comes from the inertia of Cooper pairs tunneling across the insulator.

Finally, the linear inductance of the LC circuit is replaced by a Josephson junc-
tion, which plays the role of a nonlinear inductor. A schematic representation of
the two circuits is given in panels (a) and (c) of Fig.2.1. Now, using the expression
for the current Eq.(2.7) in the formula for the energy Eq. (2.2), one can find the
nonlinear version of the Hamiltonian in Eq. (2.4):

HnLC = 4ECn
2 − EJ cos(ϕ), (2.8)

where EC = e2/(2(C+CJ)) now includes the Josephson junction self-capacitance,
CJ , and EJ = I0Φ0/2π is the junction energy.

From this expression, it is clear that the energy potential of the system is no
longer parabolic, as for the QHO, but sinusoidal. The two potentials are shown in
panels (b) and (d) of Fig. 2.1. Panel (b) shows the typical energy landscape of a
quantum LC circuit as a function of the gauge-invariant phase ϕ, while panel (d)
shows the energy landscape of the quantum nonlinear LC oscillator. In the latter,
the energy levels are no longer equidistant, so they can be addressed individually.

Transmon superconducting qubit

The dynamics of the system is now governed by the relative value of EC and EJ
in Eq.(2.8) or, equivalently, by their ratio EC/EJ . This ratio can be varied to

19

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

obtain different behaviors and qubits. In general, in the case EJ ≤ EC , the device
becomes very sensitive to charge noise. So-called ”charge qubit” or ”Cooper-pair
box” qubits fall into this case [39, 40, 41, 42]. In this work, instead, we focus on
the most used EJ >> EC regime. This is also called transmon regime. In this
limit, the quantum fluctuations of the superconducting phase ϕ are small, so it
can be used to encode quantum information and use this device as a qubit.

The potential energy in Eq. (2.8) can be Taylor expanded to obtain:

EJ cos(ϕ) =
1

2
EJϕ

2 − 1

24
EJϕ

4 +O(ϕ6). (2.9)

The quartic term on the right hand side is responsible for disrupting the harmonic
energy structure given by the quadratic term. We define anharmonicity as

α = ω12 − ω01, (2.10)

where ω01(ω12) is the transition frequency between the eigenstates |0⟩ and |1⟩
(|1⟩ and |2⟩). This value indicates how different the energies of the two states
are. In addition, the negativity of the quartic term of eq.(2.8) shows that the
anharmonicity α is negative, so careful fabrication of the device is required to
obtain a usable device. In the case of transmons, the anharmonicity is usually set
to α = −EC ∼ 100 − 300 MHz so that the qubit frequency can be kept in the
considerable range ω = (

√
8EJEC−EC)/∼̄3−6 GHZ, while the ratio EJ/EC ≥ 50

is chosen to be stable in the transmon regime.

Substituting the Taylor expanded potential of Eq. (2.9) in the Hamiltonian
(2.8) and passing to the second quantization formalism we can rewrite the Hamil-
tonian as:

Htr = ω01a
†a+

α

2
a†a(a†a+ 1). (2.11)

For a complete derivation of this equation see Appendix A.

If the higher levels of the transmon are suppressed due to large |α| or by
approrpiate optimal control protocols, this system can be further simplified as:

Htr = ω01
σz
2
, (2.12)

where σz is the Z Pauli matrix. Despite this, these additional layers can actually
be used to create qubits with multiple layers, so-called qudits, which have been
proven to be useful for implementing operations efficiently [43, 44, 45]. In this
work the qudits will be extensively used.

20

2.2. BASIC WORKING PRINCIPLE

2.2.3 Qubits Coupling

To truly exploit the properties that distinguish the quantum computer from its
classical counterpart, i.e. entanglement, it is necessary to couple the qubits. In
this section, we will give an insight into the capacitive couplings between qubits
and between qubits and resonators that are necessary to perform readout.

A general Hamiltonian of two coupled qubits is

H = Hq1 +Hq2 +Hint, (2.13)

where Hqi is the ith qubit Hamiltonian and Hint is the interaction Hamiltonian
describing how the qubit variables are connected. In superconducting qubits, the
coupling is physically implemented by an electric or magnetic field. The coupling
can be capacitive or inductive. In this dissertation, we will focus on the capacitive
coupling. To achieve simple capacitive coupling, the two qubits are connected via
a capacitor of capacitance Cg, as shown in Fig. 2.3 (a). In this case, the interaction
Hamiltonian can be written as

Hint = CgV1V2, (2.14)

where Vi is the voltage operator of the ith voltage node to be connected. See Fig.
2.3 (a) for a schematic representation.

Taking Vi = (2e/Ci)ni, where Ci are the qubits capacitance, ni = Qi/2e is the
reduced charge of the ith qubit, and assuming to work in the limit of Cg ≪ C1, C2,
we can write the explicit Hamiltonian of the two-qubit coupled system as:

H =
∑
i=1,2

[
4EC,in

2
i − EJ,i cos(ϕi)

]
+ 4e2

Cg
C1C2

n1n2, (2.15)

where the first term on the right-hand side is the sum of the Hamiltonian of the
individual qubits [See. Eq. (2.8)]. The capacitance needs to be carefully designed
to obtain the desired performances [46].

We can rewrite Eq. (2.15) in the second quantization form:

H =
∑
i=1,2

[
ωia

†
iai +

αi
2
a†iai(a

†
iai + 1)

]
− g(a1 − a†1)(a2 − a

†
2). (2.16)

See Appendix A for more details. In addition to the direct coupling just presented,
superconducting qubits are often coupled by a device that behaves like a quantum
harmonic oscillator. These devices, often called resonator or cavity, have many
applications, the most important of which is high-fidelity qubit readout [see section
2.4 and section 6]. But they also serve as cavity buses [47], quantum memory
[48, 49], quantum error correction [50], and others. The whole system can be

21

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

Figure 2.3: Example of qubits couplings. (a) Direct capacitive coupling between two
qubits. (b) Capacitive coupling of two qubits via a coupler. The qubits coupling is
enforced by capacitively coupling them to the same LC circuit (cavity or resonator).
Figure taken from [32]

described by the cavity quantum electrodynamics (cQED) formalism, a branch of
quantum mechanics that studies the interaction between electromagnetic radiation
and matter at the quantum level [51, 52, 53]. Figure 2.3 (b) shows a schematic
representation of this type of coupling, where two qubits are connected to the same
cavity. Its Hamiltonian is

H =
∑
i=1,2

[
ωia

†
iai +

αi
2
a†iai(a

†
iai + 1)

]
+ ωra

†
rar (2.17)

+g1r(a
†
1ar + a1a

†
r) + g2r(a

†
2ar + a2a

†
r),

where a†r(ar) is the resonator creation (annihilation) operator, ωr is the resonator
frequency, and gir is the coupling constant between the ith qubit and the resonator.

Clearly, the coupling can be extended to an arbitrary number of qubits and
cavities. This will introduce a particular topology in the connectivity, as it is not
possible to create an all-to-all coupling. When performing calculations with such
devices, this topology must be taken into account.

2.2.4 Noise

So far we have treated qubits as perfect, isolated systems. Of course, this is not true
in reality. Qubit states are very fragile systems and suffer from many unintended
environmental interactions. These interactions take the form of noise, and their
effect is generally to reduce the coherence of the qubit and degrade computational
performance. These disturbances can be deterministic, resulting from errors in the

22

2.2. BASIC WORKING PRINCIPLE

Figure 2.4: Effect of different types of noise on the qubit. (a) Bloch sphere representation
of a single qubit state space. (b) Effect of longitudinal relaxation on the Bloch sphere.
(c) Effect of pure dephasing on the Bloch sphere. (d) Effect of transverse relaxation on
the Bloch sphere. Figure taken from [32]

control or measurement system, or stochastic, resulting from random fluctuations
in the device components due to imperfections or temperature. In an attempt to
reduce this noise, one can act on the one hand by improving the materials and
manufacturing of the device, thus reducing the amount of noise produced, and
on the other hand on the design to obtain a device less susceptible to noise. It
will often be necessary to work within a trade-off between noise reduction and
susceptibility to that noise.

Modelling noise

To schematize the influence of noise on the qubit, we use the Bloch sphere repre-
sentation introduced in Sec. 1.3. We recall that in this representation the state of
a qubit is written as a vector pointing to a surface of the unit sphere:

|ψ⟩ = α |0⟩+ β |1⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ . (2.18)

Referring to the Fig. 1.1 and 2.4, the z-axis is the longitudinal axis and represents
the quantization axis of the qubit for the two states |0⟩ and |1⟩ in the eigenbasis of
the qubit. The x-y plane, on the other hand, is the transverse plane. The state |ψ⟩
rotates around the longitudinal axis at the qubit frequency ω, so to simplify the
visualization we consider the Bloch sphere to rotate around the z-axis at the qubit
frequency ω. In this way, the state in the Bloch sphere is stationary, as written in
Eq.(2.18). The state can also be rewritten in the form of a density matrix, which
takes a particularly simple form for the case of a single qubit:

ρ = |ψ⟩ ⟨ψ| = (α |0⟩+ β |1⟩)(α ⟨0|+ β ⟨1|)

=

(
|α|2 αβ∗

α∗β |β|2
)
, (2.19)

23

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

where I is the identity matrix and σi with i = x, y, z the pauli matrices.

Three effects of noise on the qubit can be schematized: longitudinal relaxation,
pure dephasing, and transverse relaxation. These will be discussed separately in
the following paragraphs.

Longitudinal relaxation Longitudinal relaxation, often called ”energy decay”
or ”energy relaxation”, is the depolarization along the qubit quantization axis.
Thus, it consists of the decay from |1⟩ to |0⟩ or the excitation in the opposite
direction. See Fig. 2.4(b) for a schematic representation. The rate of this process
is:

Γ1 =
1

T1
=

1

T 1→0
1

+
1

T 0→1
1

, (2.20)

where T 1→0
1 (T 0→1

1) are the typical exitation times. Due to the low-temperature
operating conditions of superconducting qubits, the exitation process is exponen-

tially suppressed by the Boltzmann distribution, in fact T 0→1
1 = T 1→0

1 e
− ω01

kBT where
ω01 = E1 − E0 is the qubit frequency and T is the temperature (usually in the
range T ∼ 2− 20mK). From this expression, it is clear that in the depolarization
process the rate 1/T 0→1

1 is negligible.

The measurement of T1 is obtained by preparing the qubit in state |1⟩ and
sampling the probability of finding it still in state |1⟩ as a function of time. The
resulting exponential decay will have a characteristic time T1 i.e. the time for
which the qubit’s energy level decays to 63% of its initial value.

Pure dephasing It describes the depolarization in the x-y plane of the Bloch
sphere. It leads to a fluctuation of the qubit frequency ω01 so that it is no longer
equal to the rotation frequency of the Bloch sphere. Thus, the state acquires a
precession frequency. In other words, this process explains the loss of the relative
phase between the |0⟩ and |1⟩ states. Fig.2.4(c) shows the effect of this process on
the Bloch sphere. A state |x⟩ = 1√

2
(|0⟩+ |1⟩), a vector lying on the x-y plane and

perpendicular to the z-axis, is randomly rotated by the dephasing noise and after
certain time results in a cloud of states spread around the equatorial plane of the
Bloch sphere. The relative phase between |0⟩ and |1⟩ is thus completely lost. This
is represented by the angle ϕ in the Bloch sphere.

Unlike longitudinal relaxation, pure dephasing is not a resonant phenomenon,
so it can be triggered by any noise frequency. Moreover, pure dephasing is not
a process involving energy exchange with the environment, so it is in principle
reversible. This means that dephasing can be fixed by applying a unitary operation
[54].

24

2.2. BASIC WORKING PRINCIPLE

Figure 2.5: Characterization of longitudinal (T1) and transverse (T2) relaxation times
of a transmon qubit. (a) Measurement of longitudinal relaxation (energy relaxation).
The qubit is excited with a π−pulse and measured after a waiting time τ . For each
value, τ , this procedure is repeated to obtain the blue point series. From this series
the characteristic decay time T1 can easily be extracted. (b) Measurement of transverse
relaxation (decoherence) by Ramsey interferometry. The qubit is prepared at the equator
with a π/2 pulse that is intentionally detuned from the qubit frequency by δω, causing
the Bloch vector to precess in the rotating frame at a rate of δω around the z-axis. After
a time τ , a second π/2 pulse projects the Bloch vector back to the z-axis, effectively
mapping its former position on the equator to a position on the z-axis. The oscillations
decay with an approximately (but not exactly) exponential decay function, from which
the time T2 can be derived. Figures taken from [32]

Transverse relaxation Transverse relaxation is the union of the two mecha-
nisms just introduced. It generally describes the loss of coherence of a superposi-
tion state. An example is shown in figure 2.4(d). The vector |ψ⟩ fluctuates around
the equator due to pure dephasing and tends to decay to the ground state due to
longitudinal relaxation. This is a phase-breaking process because once the state
has decayed to |0⟩ and no information about the direction it was pointing before
is retained, the relative phase of the superposition state is lost. The rate of this
process is:

Γ2 =
1

T2
(2.21)

where T2 is the typical transverse relaxation time. T2 can be measured by Ramsey
interferometry. A superposition state pointing to the equator is prepared with an
Xπ/2 pulse. The carrier frequency of the pulse is detuned from the qubit frequency
by a small amount δω. This causes the vector to precess around the equator at a
rate of δω. After a time τ another Xπ/2 pulse is applied. This projects the vector
back to the z-axis, then the state is measured. The result for increasing time τ
is an exponentially decaying oscillatory curve. The typical decay time is T2. A

25

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

representation of this measurement is shown in figure Fig.2.5(b)

2.2.5 Effect of noise on the qubit: the Bloch-Redfield model

Considering the standard Bloch-Redfield model [55, 56] for noise, the ”noise-less”
density matrix of Eq. 2.19 can be modified to describe the effect of the noise on
the qubit. This results in the Bloch-Redfield density matrix ρBR:

ρBR =

(
1 + (|α|2 − 1)e−Γ1t αβ∗eiδωte−Γ2t

α∗βe−iδωte−Γ2t |β|2e−Γ1t

)
. (2.22)

This expression incorporates the longitudinal decay function e−Γ1t , which accounts
for longitudinal relaxation of the qubit, the transverse decay function e−Γ2t, which
accounts for transverse decay of the qubit and, in addition, an explicit phase
accrual e−iδωt, where ω = ωq − ωd, which generalizes the Bloch sphere picture
to account for cases where the qubit frequency ωq differs from the rotating-frame
frequency ωd.

2.3 Qubit Control

In this section, it will be described how to actually manipulate the qubits in order
to implement the desired unitary transformations [57].

Physically, this control is implemented through capacitive coupling between a
resonator, or feedline, and the superconducting qubit dipole-field that allows for
microwave pulses that implement single-qubit rotations. The qubits are typically
designed to respond to microwave signals at specific frequencies, which can be
tuned by applying a magnetic field or adjusting the physical parameters of the
qubit.

The quantum processor state |ψ(t)⟩ dynamics can be described by the usual
Schrödinger equation:

|ψ̇(t)⟩ = −iH(u(t)) |ψ(t)⟩ (2.23)

where ℏ = 1. Here H(u(t)) is the Hamiltonian of the device which depends on
a set of control functions u(t) = u1(t), u2(t), ..., un(t). One can then control the
dynamics of the state |ψ(t)⟩ with an appropriate choice of these control functions.
The Schrödinger equation (2.23) can be formally solved as:

|ψ(t)⟩ = e−i
∫ t
0 H(u(t))dt |ψ(0)⟩ (2.24)

= U(u(t), t) |ψ(0)⟩

26

2.3. QUBIT CONTROL

where the whole exponential is the propagator of the system and is denoted by
U(u(t), t). Since H0 and Hk are Hermitian operators, it follows that U(t) is a
unitary operator. In matrix representation, it is an nxn matrix, an element be-
longing to the Lie group U(n) (or SU(n) for traceless Hamiltonians). Now, given
Eq.(2.24), Eq. (2.23) can be rewritten as:

d

dt
U(u(t), t) = −iH(u(t))U(u(t), t) (2.25)

U(u(0), 0) = I (2.26)

where I is the identity.
The reachable set at time T > 0 for system (2.25) is the set R(T) of all unitary

matrices Ũ such that there exists a set of controls u(t) = [u1(t), u2(t), ..., uk(t)] in
some function space F for which U(u(T), T) = Ũ . If we consider all possible
time T the reachable set is R =

⋃
T>0R(T). We can state the controllability

condition in the following way:
Theorem The reachable set R of the system (2.25) is the connected Lie group
associated to the Lie algebra L generated by spanu(t)∈F{−iH(u(t))}. In short,

R = eL.
The Lie algebra L is the dynamical Lie algebra associated with the system.

L is always a subalgebra of u(n) [57]. If dim(L) = n2 = dim(u(n)), it holds
L = u(n) and eL = R = U(n). In particular, the system is said to be controllable.
This means that every unitary matrix U(t), and ultimately every state |ψ⟩ in Eq.
(2.23), can be reached with an appropriate set of controls u(t).

The optimal control problem consists of finding the best shapes of controls
ui(t) such that they transform the system’s state in the desired way.

Controllability of state

Having identified the possible U(t) transformations, we are now interested in un-
derstanding in which cases these transformations allow the quantum states of the
qubits to be manipulated in a desired way.

For this purpose we return to the Schrödinger equation (2.23),

|ψ̇(t)⟩ = −iH(u(t)) |ψ(t)⟩ . (2.27)

This equation is said to be pure state controllable if for each pair of initial and
final states, |ψ(0)⟩ and |ψ(T)⟩, there exists a control u(t) such that the solution of
Eq. (2.27) at time T, with initial condition |ψ(0)⟩, is |ψ(T)⟩.

Since |ψ(t)⟩ and |ψ(t)⟩ eiϕ, where ϕ is a phase in R, represent the same physical
state, another equivalent condition for controllability can be defined. The system
(2.27) is said to be equivalent state controllable if, for each pair of initial and

27

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

final states |ψ(0)⟩ and |ψ(T)⟩, there exists a control u(t) and a phase factor ϕ
such that the solution of Eq. (2.27) at time T, with the initial condition |ψ(0)⟩, is
eiϕ |ψ(T)⟩.

As anticipated, the solution of Eq.(2.27) is:

|ψ(t)⟩ = U(t) |ψ(0)⟩ .

Since U(t) ∈ eL, i.e. the Lie group identified by the ”dynamical Lie algebra”
associated to the system, the set of states |ψ(t)⟩ the can be the solution of Eq.(2.27)
with initial condition |ψ(0)⟩ is:

O|ψ(0)⟩
.
= {U(t) |ψ(0)⟩ |U(t) ∈ eL}. (2.28)

From this point of view, the system is pure state controllable if, for each pair
of initial and final states |ψ(0)⟩ and |ψ(T)⟩, there exists an operator U(t) ∈ eL

such that |ψ(T)⟩ = U(t) |ψ(0)⟩. Thus, the conditions allowing the ”pure state
controllability” of a system can be derived from the analysis of the properties of
eL acting as a Lie transformation group on the space of |ψ(t)⟩ states.

Test for controllability

Referring again to [57], it can be stated that the system (2.27) is pure state control-
lable if L is either su(n) or a Lie algebra conjugate to sp(n/2) (i.e. the symplectic
Lie algebra). The following theorem holds:

Theorem A quantum system (2.27) is pure state controllable if and only if the
corresponding dynamical Lie algebra L satisfies one of the following:

1. L = su(n)

2. L is conjugate to sp(n/2)

3. L = u(n)

4. L = span{iIn×n} ⊕ L̃, with L̃ the Lie algebra conjugate to sp(n/2).

Finally, we consider equivalent state controllability. From a physical point of
view, having equivalent state controllability is equivalent to pure state controlla-
bility. It turns out that mathematically the conditions are the same.

28

2.3. QUBIT CONTROL

2.3.1 Optimal control problem

Now we can state the optimal control problem for quantum systems in general and
specialize it for qubit manipulation.

The dynamics of the system is described by the controlled Schrodinger equation
(2.25). The optimal control problem can be formulated as follows. Given an initial
and a final state, |ψ0⟩ and |ψf⟩, find the set of controls u(t) = u1(t), u2(t), ... in
a set F of functions such that a cost functional J is minimized and Eq. (2.25) is
satisfied.

The general formulation of the cost functional J is [58]:

J [u(t)] = | ⟨ψf | T exp

{
−i
∫ T

0

H(u(t′))dt′
}
|ψ0⟩ |2 + fc(u(t)), (2.29)

where T stands for time-ordered integral, since we are considering a quantum
system. The first term imposes to find the controls u(t) that minimize the distance
between the desired final state |ϕf⟩ and the one obtained by the controls at time
T, i.e. |ψ(T)⟩. The second term, the function fc(u(t)), on the other hand, is a
penalty function that enforces any physical and instrumental constraints of the
device.

Another specific cost function, also used in this work, exploits the propagators
U(t) of the system, see Eq.(2.28), instead of the states. The idea is to find the
controls u(t) such that the propagator U(u(t)) defined by these controls is similar to
a desired propagator UT [59]. A reasonable way to implement this constraint is to
minimize a properly defined distance between the two propagators. An appropriate
distance is the square of the Hilbert-Schmidt norm ||O||2HS = Tr

[
O†O

]
. So the

distance is:

D = ||U(u(t))− UT ||2HS = 2N − 2ReTr
[
U(u(t))†UT

]
, (2.30)

where N is the dimension of the SU(N) group in which the propagators take values,
or equivalently, the dimension of their matrix form. In order to have a minimum
of the norm at 0 instead of 4N , D is normalized, i.e:

D̃ =
1

4N
D =

1

2
− 1

2N
ReTr

[
U(u(t))†UT

]
, (2.31)

which now attains values in [0, 1].
Often in quantum optimal control, instead of minimizing the distance D̃, the
fidelity is maximized, i.e.:

F = 1− D̃ =
1

2
+

1

2N
ReTr

[
U(u(t))†UT

]
, (2.32)

such that if U(u(t)) ≡ UT , F = 1.

29

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

2.3.2 Minimization algorithms

To actually find the optimal control, one can rely on the discretization of the
cost function and then apply standard optimization methods such as Steepest
Grandient Descent (SGD). In this thesis, we introduce the method of GRadient
Ascent Pulse Engineering, GRAPE for short [58, 60, 59]. The Hamiltonian in
H(u(t)) of (2.23) has the general form:

H(u(t)) = H0 +

Nctrl∑
k=1

ϵk(t)Hk, (2.33)

where H0 represents the general Hamiltonian of the quantum processor, which
depends on the qubit properties, the qubit couplings, and the general connectivity
between the qubits. The set of Hk matrices are the external drive Hamiltonians
schematizing the external interaction with the system. These are also device-
specific. Finally, ϵk(t) are a set of Nctrl functions describing how the strength of
each Hk on the system changes as a function of time. The number Nctrl of such
controls depends on the specific hardware or connectivity between qubits.

Plugging Eq. (2.33) into the propagator explicit expression (2.24), it becomes:

U(ϵ(t), t) = exp

{
−i
∫ T

0

H0 +
Nctr∑
k=1

ϵk(τ)Hkdτ

}
. (2.34)

The integral can be broken up into adequately short chunks of duration ∆τ and
the propagator U(ϵ(t), t) can be written as a multiplication of individual matrices
each of duration ∆τ :

U = exp

{
−i∆τ

NT∑
j=1

[
H0 +

Nctr∑
k=1

ϵk(j)Hk

]}
(2.35)

= UNT
UNT−1

...U2U1, (2.36)

with

Un = exp

{
−i∆τ

[
H0 +

Nctr∑
k=1

ϵk(n)Hk

]}
(2.37)

and NT = T/∆τ is the number of time steps the pulse duration T is divided into.
To sketch how this works, consider the special case of a cost function defined by
J [ϵ(t)] = D̃. We simply use the gradient descent algorithm to minimize J [ϵ(t)],
with respect to ϵ(t). The discrete version of the cost function is

J [ϵ(t)] =
1

2
− 1

2N
ReTr

[
U †
targU(ϵ(t))

]
(2.38)

=
1

2
− 1

2N
ReTr

[
U †
targ(UNT

UNT−1...U2U1)
]
, (2.39)

30

2.4. QUBIT READOUT

where we used the idenity (2.35). We compute the derivative of of J with respect
to each control ϵk(tj) and for each time tj as follow:

δJ

δϵk(tj)
= −2ReTr

[
U †
targ(UNT

UNT−1...
δUj

δϵk(tj)
...U2U1)

]
. (2.40)

A short calculation returns that

δUk
δϵk(tj)

= −i∆τHkUj, (2.41)

so we can simply use the usual gradient descend rule to update the value of ϵk(tj)
as:

ϵk(tj)← ϵk(tj)− η
δJ

δϵk(tj)
, (2.42)

with η a numerical parameter to improve the convergence of the algorithm.
Many other optimization algorithms have been developed as Krotov Method[61],

D-MORPH (diffeomorphic modulation under observable-response-preserving ho-
motopy) [62] or CRAB (chopped random basis method)[63].

2.4 Qubit Readout

After implementing the state transformation of the qubits, a reliable and fast
readout is important to actually obtain the results of the computation. This sec-
tion briefly introduces the most common readout framework for superconducting
qubits, namely dispersive readout. This technique consists of coupling qubits to a
readout cavity/resonator. By setting a resonator frequency detuned from that of
the qubit, i.e. working in the dispersive regime, the qubit induces a state-dependent
frequency shift of the resonator, from which the state of the qubit can be inferred
by reading the resonator output signal. In the dispersive readout, the state of
the qubit is found by a classical response of the linear resonator. Therefore, when
designing and optimizing the readout process, it is necessary to obtain the best
signal-to-noise ratio of the microwave signal used to probe the resonator.

2.4.1 Dispersive readout

Instead of interacting directly with the qubit, the readout works by entangling the
qubit with a probe (i.e., the cavity observable) and then inferring the state of the
qubit by analyzing the output of the signal used to probe the cavity. Thus, there
are two conflicting processes to be optimized in the readout process. On the one

31

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

hand, maximizing the signal-to-noise ratio (SNR) of the microwave signal sent into
the cavity and, on the other hand, minimizing the unwanted feedback from the
cavity to the qubit.

From Eq.(2.17) we know how to write the Hamiltonian of a qubit coupled with
a cavity:

H = ωqa
†
qaq +

αq
2
a†qaq(a

†
qaq + 1) + ωra

†
rar (2.43)

+gr(a
†
qar + aqa

†
r),

where ωq and αq are the frequency and the anarmonicity of the qubit, ωr is the
cavity frequency and gr is the coupling constant to the cavity. The dispersive
regime consists of a large detuning between qubit and cavity with respect to the
coupling constant, i.e. ∆ = |ωq − ωr| ≪ gr. In this case, there is no direct energy
exchange between the two systems, and the qubit and the cavity push each other’s
frequencies. To understand this behavior, we find an approximation of Eq.(2.43)
that is valid in the dispersive regime. We perform a Shrieffler-Wolff transformation
to the second order [64] yielding:

Hdisp ≃ ℏωra†rar + ℏωqa†qaq + αa†qa
†
qaqaq

+
∞∑
j=0

ℏ(Λj + χja
†
rar) |j⟩ ⟨j| , (2.44)

where |j⟩ are the eigenstates of the transmon and:

Λj = χj−1,j, χj = χj−1,j − χj,j+1 (2.45)

χj−1,j =
jg2

∆− (j − 1)EC/ℏ
, (2.46)

for j > 0 and with Λ0 = 0 and χ0 = −g2/∆. The constants χj are called the
dispersive shifts and Λj are the Lamb shifts. They are the results of vacuum
fluctuations [65, 66, 67]

Readout

As mentioned earlier, qubit measurement consists of studying the difference in
amplitude and phase that a readout signal acquires when interacting with the
qubit. A short microwave tone is sent into the resonator with a carrier frequency
ωRO. As the result of the interaction with the qubit, the output signal will acquire
a phase θRO and an amplitude ARO, resulting in:

s(t) = ARO cos(ωROt+ θRO). (2.47)

32

2.4. QUBIT READOUT

Figure 2.6: Schematic representation of In-phase and Quadrature extraction from a qubit
readout signal. The figure is taken from [32].

ARO and θRO are the qubit-state dependent values one needs to measure to deduce
in which state the qubit is.

To measure these differences, we rely on calculating the ”in-phase”, I, and
”quadrature”, Q, components of the signal s(t). Homodyne and heterodyne mea-
surements are techniques for finding these components using an analog I-Q mixer.
A schematic representation of this process is shown in Fig.2.6. The mixer has a ref-
erence local oscillator with a signal y(t) = ALO cos(ωLOt). This reference signal and
the readout signal s(t) are fed into a mixer via RF and LO mixer ports. The mixer
splits both signals into two branches and multiplies them. The I branch consists
of the multiplication of the signals sI(t) = s(t)/2 and yI(t) = (ALO/2) cos(ωLOt),
while the Q branch considers the signal sQ(t) = s(t)/2 multiplied for a π/2 phase
shifted reference signal yQ(t) = −(ALO/2) sin(ωLOt).

The signals at the I and Q ports represent a frequency that is the sum and
difference of the original frequencies. This frequency is usually called intermediate
frequency ωIF = ωRO ± ωLO. A low pass filter allows to keep only the difference
frequency ωIF = ωRO − ωLO. The signals are then digitized to obtain the discrete
signals IIF [t] and QIF [t]. From the analysis of these signals the state of the qubit
can be deduced.

Homodyne demodulation

Homodyne measurement is a way to extract I and Q values from the output signal.
In this approach, the local oscillator frequency is chosen to be equal to the carrier
frequency, i.e., ωLO = ωRO. This choice results in I(t) and Q(t) signals that contain

33

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

zero frequency terms, since ωIF = ωLO−ωRO = 0, and twice the carrier frequency,
since ωIF = ωLO + ωRO = 2ωRO. Now we perform a demodulation of the signals,
which acts as a filter. This consists of a time average of the IIF (t) and QIF (t).

I =
1

T

∫ T

0

sI(t)yI(t)dt

=
AROALO

8
cos(θRO), (2.48)

Q =
1

T

∫ T

0

sQ(t)yQ(t)dt

=
AROALO

8
sin(θRO), (2.49)

where T is the time interval on which the measurement is performed. This time
must span an integer number of signal periods to avoid unintended effects in de-
modulation. The values of I and Q thus obtained can be used to find the amplitude
and phase of the output signal:

ARO ∝
√
I2 +Q2, (2.50)

θRO = arctan(Q/I). (2.51)

A more immediate use of the I and Q values is to plot them on a plane. In this
way, the pairs (I-Q) of different states of the qubit are statistically clustered in
different regions of the graph. From the study of this distribution, the state of the
qubits of the following measurements can be inferred.

Heterodyne demodulation

In this second approach, the local oscillator frequency is set to a value different
from the carrier frequency, i.e. ωIF = |ωRO − ωLO| > 0. The signals I(t) and Q(t)
now represent sum and difference terms. Demodulation, which is low pass filtering
with time averaging, produces the IF signals:

IIF (t) =
1

T

∫ T

0

sI(t)yI(t)

=
AROALO

8
cos(ωIF t+ θRO), (2.52)

QIF (t) =
1

T

∫ T

0

sQ(t)yQ(t)

=
AROALO

8
sin(ωIF t+ θRO), (2.53)

34

2.4. QUBIT READOUT

These anlog signals IIF (t) and QIF (t) are now digitalized usign standard analog-
to-digital converters (ADCs), resulting in digital signals:

IIF [tn] =
AROALO

8
cos(ΩIF tn + θRO) (2.54)

QIF [tn] =
AROALO

8
sin(ΩIF tn + θRO), (2.55)

where tn = t/∆t are the sample times of the analog signal with sample period
∆t and ΩIF = ΩIF is the digital frequency. The standard way to deal with these
signals is to perform a digital demodulation by multiplying the signals by a discrete
sine and cosine. In this way, we get a single value for the I and Q signals again,
such as

I =
1

M

M∑
tn=1

IIF [tn] cos(ΩIF tn) =
AROALO

16
cos(θRO) (2.56)

Q =
1

M

M∑
tn=1

QIF [tn] sin(ΩIF tn) =
AROALO

16
sin(θRO). (2.57)

Several solutions can be developed to improve the effectiveness of the readout.
One can improve the build quality of the system, optimize the readout procedure
by trimming the parameters, but also use more complex approaches to readout
and the use of machine learning techniques. These will be analyzed in Sec. 6 of
this dissertation.

35

CHAPTER 2. ELEMENTS OF SUPERCONDUCTING QUBITS AND
OPTIMAL CONTROL THEORY

36

Chapter 3

Quantum Simulations

3.1 Introduction

Quantum mechanics is perhaps the most comprehensive and successful theory
available to describe the behavior of the fundamental building blocks of our uni-
verse. Over the course of the last century, a number of techniques and compu-
tational tools, such as Quantum Monte Carlo [68, 69], molecular dynamics [70],
and tensor networks [71], have been developed to tackle specific theoretical models
framed in the language of quantum mechanics and effectively account for a wide
range of quantum phenomena. Simulating a physical system essentially consists
of creating an artificial replica of its properties and dynamic evolution over time.
This is achieved through precise mathematical modeling, which maps known in-
formation about a system of interest to a set of variables and equations. The
resulting mathematical identities, or a computer program designed to solve them,
can then be called a simulator. This simulator is used to study the behavior of
the real system under various conditions, to make predictions, and to test new
hypotheses, the only limitations being the validity of the original model and the
available computing power.

Due to the exponential scalability of memory and time resources, accurate sim-
ulation of most physical systems remains out of reach. This is especially true for
systems with strong many-body correlations, typical of quantum mechanics and
most interesting situations. In an attempt to address this problem, simulation
with a quantum computer has long been proposed. This is based on the fact that
a quantum system would be simulated with a device that is itself quantum and,
unlike the former, controllable and measurable. There are two paradigms of quan-
tum computer simulation. The first is analogue quantum computing. This is
based on the idea of encoding quantum information in the continuous variables of
a physical system, such as the position or momentum of a particle or the frequency

37

CHAPTER 3. QUANTUM SIMULATIONS

or amplitude of a photon [72, 73, 74]. In this paradigm, the continuous variables
are manipulated using analog circuits, such as waveguides, resonators, or inter-
ferometers, which allow the manipulation of the quantum state without requiring
the discrete control of qubits. This paradigm will not be explored in depth in
this dissertation. The second is the well-known digital quantum computing,
which uses digital circuits to manipulate and process quantum information. Quan-
tum gates are used to manipulate the state of qubits, just as classical gates are
used to manipulate the state of classical bits in classical computing [75, 76, 77].
These devices are programmable and general-purpose quantum devices that offer
the possibility to simulate a wider range of quantum systems. They are called uni-
versal quantum simulator because, in principle, they can simulate with arbitrary
precision the dynamics of any Hamiltonian that can be mapped onto the quantum
register and approximated by a sequence of unitary gates.

This chapter introduces the basics of simulating quantum systems, especially
nuclear systems, on quantum computers, with independent and time-dependent
Hamiltonians, in the context of digital quantum computing.

3.2 Quantum Simulations

As already mentioned in the previous chapters, the dynamical evolution of a generic
quantum system is described by the well-known Schrödinger equation:

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ , (3.1)

where |ψ(t)⟩ is the state of the quantum system at time t, H is the Hamiltonian
operator representing the total energy of the system and where we impose ℏ = 1.
Eq.(3.1) has the usual formal solution:

|ψ(t)⟩ = e−iHt |ψ(0)⟩ , (3.2)

where we call e−iHt
.
= U(t) the propagator of the system.

Matrix exponentiation is a common computational task that arises in various simu-
lation scenarios, especially in the field of quantum mechanics when working in the
matrix representation. However, performing matrix exponentiation on classical
computers can be computationally expensive, especially when simulating quan-
tum mechanical systems. This is due to the exponential growth of the Hilbert
space size of a composite system with the number of subsystems, which leads to
a corresponding exponential demand on time and memory resources. In 1982,
Richard Feynman proposed that using a controllable quantum mechanical sys-
tem as a computational resource, rather than a classical object, would provide
significant advantages in the simulation of quantum systems. Seth Lloyd later

38

3.2. QUANTUM SIMULATIONS

proved this idea to be essentially correct in 1996 [4], with the only limitation that
the systems to be simulated should exhibit only local interactions between their
constituent subsystems. We will therefore restrict ourselves to analyzing systems
whose Hamiltonian can be written as a sum of locally acting Hamiltonians, i.e:

H =
∑
l

Hl. (3.3)

Fortunately, this is the case for a large number of physical phenomena.

Universal Quantum Simulator

We know that a quantum computer with a unversal set of gates is able to ap-
proximate any unitary transformation as mentioned in section.1.3. However, there
is no indication of how efficient this approximation is in terms of the number of
operations. Lloyd actually proved that this can be done in polynomial time and in
memory of the size of the target system if it is a sum of local terms [4]. A general
unitary matrix U = e−iHt acting on N qubits can be implemented by a sequence S
of O(22N) elementary operations. This would be exponentially inefficient with the
size of U . However, if we consider a Hamiltonian like (3.3) and assume that the
dimension ml of each Hl is much smaller than H, ml ≪ 2N , (i.e., involving only
few-body/local interactions), it is clear that the implementation of Ul = e−iHlt

would require only O(m2
l) operations. Now, since

U =
L∏
l

Ul, (3.4)

the total order of operation become O(Lm2
max), where mmax = maxml. Finally,

by using the Suzuki-Trotter decomposition [78, 79] we obtain:

U = e−i
∑

lHlt = lim
n→+∞

(
L∏
l

e−iHlt/n

)n

. (3.5)

In this way, the unitary matrix U can be arbitrarily well approximated by applying
n times the sequence of gates corresponding to the product of local terms for time
slices t/n. Obviously, this procedure accumulates a computational error for n <∞.
It can be shown that ∀n:

U(t) =

(
L∏
l

e−iHlt/n

)n

+O
(
t2

n

)
. (3.6)

39

CHAPTER 3. QUANTUM SIMULATIONS

Mapping

In quantum theory, each system is associated with a set of operators and an algebra
that defines this language. There are three types of particles in nature: fermions,
bosons, and anyons. Fermions and bosons are elementary particles that follow the
Fermi-Dirac and Bose-Einstein statistics, respectively. Anyons are quasiparticles
that exist only in two-dimensional confinement and follow continuous, or anyonic,
statistics. Quantum computers work with qubits, which are a set of spin-1/2
particles. Quantum simulation involves mapping the operator of a physical system
into the language of quantum computing while preserving the underlying statistics
[80, 81]. In this way, an equivalence between the quantum system and the quantum
computer is established, and this allows to deduce the behavior of the quantum
system by transforming the state of the set of qubits.

In the standard case of two-level qubits quantum computing, the qubit is a 1/2
spin quantum system and can be denoted by its spin orientation, i.e. |↑⟩ = |0⟩ =
(1, 0)T and |↓⟩ = |q⟩ = (0, 1)T . A N qubit system is constructed from the usual
Pauli matrices (for each local qubit site i) σix, σ

i
y, σ

i
z. These operators satisfy the

commutation relations [σlµ, σ
m
ν] = 2iδlmϵµνλσ

l
λ for the

⊕N
i=1 su(2)i algebra, where

ϵµνλ is the totally antisymmetric Levi-Civita symbol with µ, ν, λ ∈ {x, y, z}. Now,
depending on what particle constitute the system one can choose between different
mappings.

Fermions Fermions, one of three types of particles in nature, are elementary
particles that follow the Fermi-Dirac statistics. In the second quantized nota-
tion, N fermions are represented by the fermionic operators f †

i and fi, which
create and annihilate a fermion in the ith mode or site. The fermionic operators
obey Pauli’s exclusion principle and the antisymmetric nature of the fermion wave
function, leading to an algebra defined by the anticommutators {fi, fj} = 0 and

{f †
i , fj} = δij. There are several mappings to describe a fermionic system using the

standard model of quantum computers. Examples are the Jordan-Wigner trans-
formation [82], the Bravyi-Kitaev transformation [83], or Ball-Verstraete-Cirac
transformation [84]. We briefly introduce the Jordan-Wigner transformation, the
oldest and most intuitive mapping. This mathematical tool allows us to map a
system of interacting fermions to an equivalent system of of interacting qubits, or
vice versa. Thus, to map a fermionic state to a spin state, e.g. |1100⟩ ↔ |↑↑↓↓⟩,

40

3.2. QUANTUM SIMULATIONS

one must use the following mapping:

fi ↔

(
j−1∏
l=1

−σlz

)
σj−, (3.7)

f †
i ↔

(
j−1∏
l=1

−σlz

)
σj+, (3.8)

where σj± = (σjx ± iσjy)/2.

Bosons Bosonic creation (annihilation) operators b†i (bi) satisfy the commuta-
tion relations [bi, bj] = 0, [bi, b

†
j] = δij in an infinite-dimensional Hilbert space.

Although it is impossible to simulate infinite space on a quantum computer, one
is often interested in studying finite excitation modes above the ground state,
making the use of the entire infinite dimensional Hilbert space unnecessary. In a
finite-dimensional basis, the boson operators obey the commutation relations [85]:

[b̄i, b̄j] = 0, (3.9)[
b̄i, b̄

†
j

]
= δij

[
1− Nb + 1

Nb!
(b̄†i)

Nb(b̄i)
Nb

]
, (3.10)

where Nb is the maximum truncated excitation number corresponding to the ith

bosonic site or mode. Given |ni⟩ the quantum state with n bosons in site i and
b†ibi |ni⟩ = ni |ni⟩ with ni = 0, ..., Nb, the creation operator can be written

b̄†i =

Nb−1∑
n=0

√
n+ 1σn,i− σn+1,i

+ (3.11)

where the pair (n, i) indicates the qubit n that represents the ith site. bi is simply
the complex conjugate of b†i . These operators can be used with a mapping, e.g. a
binary or compact encoding, where each |n⟩ is written in terms of binary strings:

|0⟩i = |↑0, ↓1, ..., ↓Nb
⟩i , (3.12)

|1⟩i = |↓0, ↑1, ..., ↓Nb
⟩i , (3.13)

... (3.14)

|Nb⟩i = |↓0, ↓1, ..., ↑Nb
⟩i , (3.15)

where N(Nb+1) qubits are needed for the simulation (with N the number of sites)
[86, 87].

41

CHAPTER 3. QUANTUM SIMULATIONS

3.2.1 Quantum Simulation Recipe

A generic quantum system can be simulated on a quantum computer using the
following steps.

1. Hamiltonian Definition. Obtain a Hamiltonian H that contains the dynam-
ical information necessary to describe the quantum system to be simulated.

2. Mapping. Find an encoding of the degrees of freedom of the system in the
N qubits. It is necessary to establish a one-to-one relationship between the
states of physical systems and quantum processors, and it is essential to
choose the most efficient mapping that eliminates potential errors. This may
involve, for example, eliminating the effects of quantum noise. This mapping
is usually straightforward for physical systems consisting of collections of
spin-1/2 objects, since they obey Pauli algebra.

3. Suzuki-Trotter decomposition. Choose the appropriate number of Suzuki-
Trotter steps n to obtain the desired precision in implementing U = exp(−iHt)
for a given t as eq. (3.6).

4. Encoding. Translate each Ul = e−iHt/n into smaller unit operations that
can be implemented on the quantum computer. The entire quantum circuit
implementing U will be the iteration of the Suzuki Trotter step n times.

5. Initial state preparation. Select the initial state to start the simulation.
Often the initial state is |0⟩ for all qubits, because this is the most natural
and easiest state to prepare in quantum computers, but other states can be
set.

6. Measurement. After the application of a quantum circuit, it is necessary
to have an appropriate set of measurements at the end of the procedure
to extract expectation values of the relevant observable quantities on the
evolved quantum state of the qubits. The probability distribution of the
quantum processor on some computational basis is usually measured. Then,
thanks to the map between the quantum system and the qubits, the dynamics
of the degrees of freedom of the system under analysis can be traced.

Encoding

Encoding is a rather delicate step and can be done in two ways, which have already
been discussed in previous chapters but will now be more clearly defined for the
specific case of quantum simulations.

42

3.2. QUANTUM SIMULATIONS

Elementary Gate Decomposition In this approach, each propagator Ul(t/n)
is decomposed into a sequence of simpler, elementary gates that can be physically
implemented on a quantum computer [88]. This process is necessary because most
physical quantum computers are limited in the types of gates they can directly
implement, and thus more complex gates must be built from simpler ones. This
set of gates must be a universal gates set (See. Sec. 1.3), meaning that there is a
sequence of these gates that can approximate any arbitrary propagator U .

Examples of such elementary gates that are physically realizable are the Pauli-
X, Pauli-Y, Pauli-Z, Hadamard, and Phase gates. The decomposition of gates can
be done automatically using software tools that use mathematical algorithms to
analyze the structure of the gate and determine an optimal decomposition into
simpler gates. This process is important in quantum circuit design and helps
ensure that quantum algorithms can be executed efficiently and accurately on real
quantum hardware.

This approach is not perfect and has some drawbacks. First of all, gate decom-
position can result in a long sequence of gates, i.e. a large ”circuit depth”. This
can make the circuit more susceptible to errors due to noise and decoherence, as
well as increase the time required to perform the computation.

On the other hand, it can make it difficult to optimize circuits. The process of
gate decomposition can result in a large number of possible gate sequences, which
can make it difficult to find the optimal circuit for a given quantum operation. This
can be particularly challenging for large and complex operations, where finding the
optimal decomposition might require significant computational resources. Third,
it has limited applicability: Gate decomposition is not suitable for all quantum
operations. Certain operations, such as non-unitary operations or unitaries of
highly entangled systems, may not be easily decomposable into a sequence of
simpler gates. In these cases, alternative techniques may be needed. Finally, the
complexity of error correction may increase. This is because errors can occur at
any point in the gate sequence, and correcting these errors requires a more complex
error correction scheme that can detect and correct errors at multiple points in
the circuit.

Optimal Control Techniques Another less used but powerful approach is op-
timal control, which was introduced in section 2.3.1. In the context of quantum
computing, optimal control is used to design and implement quantum gates that
perform specific operations on qubits. The goal is to find the control function
that minimizes a given cost function while satisfying certain constraints. The cost
function is typically a measure of how far the driven quantum state is from the
desired state, and the constraints can be physical limits on the control parameters
due to physical constraints. In the case of quantum simulations, the target unitary

43

CHAPTER 3. QUANTUM SIMULATIONS

propagator is the trotter-suzuki slice from Eq. (3.4):

U(t/n) =
L∏
l=0

e−iHlt/n. (3.16)

Using GRAPE (See Sec. 2.3) or other optimization algorithm one can finally find
the set of controls ϵk(t) which satisfy Eq.(2.35). In the superconducting circuits
the controls ϵk(t) are microwave pulses interacting directly with the kth qubit and
driving it in the desired way.

Quantum optimal control enables the design and implementation of quantum
gates that are more robust and accurate than those based on simpler control tech-
niques. In fact, it can condense the use of many gates into just one, reducing the
amount of time the qubits are subject to noise and decoherence. By optimizing the
control parameters, quantum computers can perform complex computations more
efficiently and accurately, leading to faster and more powerful quantum algorithms.

However, there are some drawbacks to this technique. Quantum optimal con-
trol algorithms can be computationally expensive, especially for large qubit sys-
tems or long gate operations. In addition, quantum optimal control techniques
may not scale well to larger quantum systems because the computational complex-
ity of the optimization problem grows exponentially with the number of qubits.
This may limit the practical utility of these techniques for large-scale quantum
computing applications.

3.3 An Example: Nulcear System

3.3.1 Nuclear Physics Background

We present an example of a quantum simulation of a nuclear system according to
Ref. [89]. This is the spin dynamics of two neutrons interacting with a simple
potential derived from chiral effective field theory (χ-EFT), taking into account
the leading order (LO) of the expansion.

χ-EFT is a theoretical framework for describing the interactions between sub-
atomic particles, particularly those involving the strong nuclear force [90]. The
adjective chiral comes from the fact that this approach is based on the principle
of chiral symmetry, which is a fundamental property of the strong force that arises
from the fact that the masses of the quarks that make up protons and neutrons
are much smaller than the energy scale at which the strong force operates. Chi-
ral EFT is a low-energy, perturbative approach in which the interactions between
particles are expanded in powers of their momenta and masses. This expansion is
controlled by a small parameter called the chiral symmetry breaking scale, which is

44

3.3. AN EXAMPLE: NULCEAR SYSTEM

Figure 3.1: Schematic description of the leading-order nucleon-nucleon interaction. The
first diagram represents a single pion exchange process, the middle diagram depicts a
spin-independent interaction, and the right one a spin-dependent contact term.

related to the mass of the pion, the lightest meson particle. One of the key features
of chiral EFT is that it can be used to systematically calculate the properties of
hadrons (particles made up of quarks) and their interactions with other particles,
such as photons or other hadrons. Chiral EFT has been successful in describing a
wide range of phenomena in nuclear physics, such as the structure of the deuteron,
nucleon-nucleon scattering, and the properties of light nuclei. The forces between
nucleons are a remnant of the color interactions from the underlying quantum
chromodynamics theory.

We are interested in the two-nucleon system. The first-order χ-EFT expan-
sion captures the features of the neutron interaction, including a tensor-like spin-
dependent component, in agreement with experimental measurements [91, 92]. In
general, single pion exchange is the main interaction mechanism at medium dis-
tances (≈ 2e− 15m), while all other processes (multiple pion exchange or heavier
meson exchange) at shorter distances can be recombined into a spin-dependent
contact force. A schematic representation with Feynmann diagrams of this inter-
action is reported in Fig. 3.1. The LO Hamiltonian HLO obtained with EFT is
HLO = T + VSI + VSD, where T is the kinetic energy, VSI is the spin-independent
(SI) part of the two-nucleon potential, acting on the spatial degree of freedom of
the system, and VSD the spin-dependent (SD) part, acting on the spin degrees of
freedom. The SD potential takes into account vector and a tensor force, namely:

VSD(r) = A(1)(r)
∑
α

σ1
ασ

2
α +

∑
αβ

σ1
αA

(2)
αβ(r)σ

2
α, (3.17)

where r represents the two neutrons relative position in Cartesian coordinates, σkα
for α = x, y, z are the Pauli matrices acting on spin k = 1, 2 and the functions
A(1)(r) and A

(2)
αβ(r) are functions coming from EFT expansion. Their explicit form

can be recovered from Ref. [93, 94] and in Appendix B.1 the form used in the
present work is reported.

45

CHAPTER 3. QUANTUM SIMULATIONS

3.3.2 Time-independent simulation

We now consider a quantum simulation in which the Hamiltonian does not depend
on time. In particular, we consider the artificial case where the two neutrons are
fixed in space and we are interested only in the spin dynamics.

The propagator U(δs) = e−iHLOδs of the system under analysis can be decom-
posed into its two components:

U(δs) = [e−i(T+VSI)δs][e−iVSD(r)δs]

= USI(δs)USD(δs, r). (3.18)

Since we are considering fixed particles, the dynamical part can be neglected and
we can only consider the SD propagator:

USD = e−iVSDδs. (3.19)

The simulation is done at a simulated device level, so it simulates the output one
should get with a real device. We will also assume that we are working with a
four-level transmon qubit (i.e. a qudit). Let us now follow the steps in section.3.2.1
to make a quantum simulation on a quantum computer.

Step 1 : In this case the Hamiltonian is simply HLO = VSD.
Step 2 : The map chosen in the case of a two-neutron system on a 4-level qudit

transmon is the one that identifies each level of the transmon with one of the four
spin configurations of the system. Explicitly:

|↑↑⟩ ⇔ |0⟩ , (3.20)

|↑↓⟩ ⇔ |1⟩ , (3.21)

|↓↑⟩ ⇔ |2⟩ , (3.22)

|↓↓⟩ ⇔ |3⟩ . (3.23)

Step 3 : This is already satisfied by having the short time propagator of Eq.
(3.19) with a δt adequate to the simulation. In this case, we use the representa-
tion of USD(δt) in terms of a 4x4 matrix. Step 4 : We use GRAPE algorithm to
find the controls that drive the 4-level transmon in the proper way to implement
the propagator USD(δt). This is done by using the Quantum Toolbox in Python
(QuTiP) [95, 96]. Using the built-in function optimize pulse unitary, implement-
ing GRAPE algorithm, we are able to compute the optimal pulse implementing
USD(δt) in the transmon. See Tab. 3.1 for the algorithm specifications

Step 5 : The initial state is simply one of the four spin configurations, in this
case, ψ(0) = |↑↑⟩ = |0⟩.

Step 6 : No actual measurements are made since this is a simulated device, but
the occupancy probabilities of the transmon levels at each time step are analyzed.

46

3.3. AN EXAMPLE: NULCEAR SYSTEM

Transmon anharmonicity α 200 MHz
Pulse duration 100 ns
Pulse sampling frequency 32 GHz
Number of pulse time-steps 3200
Fidelity error 10−4

initial guess for pulses zero function

Table 3.1: Parameters for GRAPE algorithm implemented in
Qutip

We know that at each time step the state is:

|ψ(jδt)⟩ =

(
j∏

z=0

e−iVSDδt

)
|ψ(0)⟩ , (3.24)

Introducing the computational basis |ξ⟩ , ξ = 0, 1, 2, 3 for measuring the quantum
processor, the ith occupation probability at time-step j is given by:

Pi(jδt) = | ⟨ξ|ψ(jδt)⟩ |2. (3.25)

Now we can run the simulation. We take an arbitrary relative position of the
two neutrons and derive the corresponding Hamiltonian Hsyst. Now we want to
calculate two evolutions. First, the exact reference evolution. To get this, we
calculate the propagator USD = e−iHsystδt for a time step δt of 0.01 [MeV −1]. We
apply it 100 times to the initial state, obtaining for each time step j the state
described by Eq. (3.24). Projecting the |ψ(jδt)⟩ state onto the computational
base, we obtain the occupation probability as a function of time. This is plotted
as solid lines in Fig.3.2. Second, we compute the simulated output of the four-
level transmon implementing the same USD. To do this, we simply optimize the
controls corresponding to the propagator with GRAPE and then reconstruct the
propagator using the right-hand side of Eq.(2.35), which we report here for clarity:

Urecon = exp

{
−iδt

NT∑
j=1

[
H0 +

Nctr∑
k=1

ϵk[j]Hk

]}
. (3.26)

This way we have the propagator that the controls ϵk(t) would implement in the
actual machine. This allows us to test its behavior. Applying Urecon to the initial
state as the exact case, we can find the spin dynamics, again in terms of occupancy
probabilities. This is shown in Fig. 3.2 as dots.

47

CHAPTER 3. QUANTUM SIMULATIONS

Figure 3.2: Spin dynamics for two neutrons fixed in space in terms of occupation prob-
ability. Solid lines represent the exact evolution. Dots represent the subsequent appli-
cation of controls

3.3.3 Time-dependendet simulation

There are cases in which the Hamiltonian depends on time, or on parameters that
are themselves time-dependent. In the two-neutron example just introduced, if one
wants to carry out the complete evolution with the neutrons not fixed in space,
it is necessary to consider that the Hamiltonian changes at each position of the
neutron (i.e. at each time step). To handle this, following always Ref.[89], we
make use of the approximation that the simulation of the SD and SI part can
be carried out separately. Under this approximation, the SI part acts only on
the spatial part of the system, while the SD part acts only on the spin degrees
of freedom. Given a complete set of states |r, s1, s2⟩ ≡ |r⟩ ⊗ |s1, s2⟩, normalized
as ⟨r, s1s2|r′, s′1s′2⟩ = δ(r − r′)δs′1s1δs′2s2 , with |r⟩ the (relative) position state, and
|s1, s2⟩ the spin state of the system, we can project the state |ψ(s)⟩ onto this basis
at an evolved time s+ δs as

⟨r, s1, s2|ψ(s+ δs)⟩ ≃
∑
s′1,s

′
2

∫
d3r′ ⟨r|USI(δs) |r′⟩ × (3.27)

⟨s1, s2|USD(δs, r) |s′1, s′2⟩ ⟨r′, s′1, s′2⟩ψ(s).

Therefore, for an infinitesimal time step, one can advance the spatial part and then,
keeping the neutron position fixed, advance the spin part of the wave function. We
exploit this approximation to use a hybrid computing protocol, or co-processig pro-
tocol, in which the spatial part of the system is simulated with classical algorithms
on a classical computer, while the spin dynamics part is performed by a quan-
tum processor. This protocol relies on the saddle point approximation of the path

48

3.3. AN EXAMPLE: NULCEAR SYSTEM

integral of the SI part [97]. Under this approximation, we neglect the quantum
fluctuations and compute the classical trajectory of the particle, knowing that it
is the most probable.

In the following, we adopt this approach and simulate the trajectory of the
two neutrons using a classical differential equation integrator algorithm. At the
same time, we advance the spin dynamics by a simulation of quantum computer
results as in the previous section of the time-independent simulation. Thus, the
evolved spin state is obtained by applying the short-time propagator USD(r(s))
to the ”instantaneous” spin state at each time step of the spatial trajectory, i.e.,
corresponding to the ”instantaneous” neutrons’ relative position r(s). We are
interested in the occupation probability of each spin configuration at each time
step, starting from an initial configuration |s01, s02⟩,

The hybrid classical-quantum simulation procedure for every time-step starting
from the initial condition is:

1. Update the relative position ri i > 0 of the two neutrons with a classical
algorithm on a classical computer.

2. Evaluate ÛSD(δt, ri) for the new position ri.

3. Optimize the control pulses ϵR(t) and ϵI(t) implementing ÛSD(δt, ri).

4. Update the spin state |si⟩ on the quantum processor using the just optimized
control pulses.

Spatial trajectory is obtained by solving the Newton equation with a simple
Crank–Nicolson algorithm.

An example of this simulation is shown in Fig. 3.3. Panel (a) shows the
trajectory of the second particle with respect to the first (on which the coordinates
are fixed); the colors represent the simulation time. Panel (b) shows the spin
dynamics in terms of the occupation probability (3.24) along the spatial trajectory
shown in panel (a). The total simulation time, taking into account the optimization
time of the controls, is about 980 seconds. In the following chapters, a method to
drastically reduce this time will be presented and tested.

49

CHAPTER 3. QUANTUM SIMULATIONS

(a) Neutrons trajectory (b) Spin dynamics

Figure 3.3: Representation of the neutrons dynamics. Panel (a): A single realization of
a classical spatial trajectory for two neutrons obtained solving their equation of motion
with a simple Euler algorithm. The origin of axes is fixed on one particle. Panel (b):
Spin dynamics for the system following the trajectory of panel (a) in terms of probability
to find a particular spin configuration. In the lower panel is represented the error for
each time step.

50

Chapter 4

Machine Learning Techinques

4.1 Introduction

Machine learning is a subfield of artificial intelligence that focuses on developing
algorithms and statistical models that enable computer systems to automatically
learn and improve from experience without being explicitly programmed for the
specific task at hand. In other words, machine learning algorithms are designed
to analyze and learn from data to make predictions or decisions about new data.
There are three major types of machine learning: supervised learning, unsuper-
vised learning, and reinforcement learning. Supervised learning involves training
an algorithm on labeled data, where the algorithm is given inputs and expected
outputs. Unsupervised learning involves training an algorithm on unlabeled data,
where the algorithm tries to find patterns or structures in the data. Reinforcement
learning involves training an algorithm to make decisions based on feedback from
its environment. Common applications of machine learning include image and
speech recognition, natural language processing, recommendation systems, and
predictive modeling.

In this dissertation, supervised and unsupervised machine learning algorithms
are applied to optimal qubit control and qubit readout. In this chapter, we give a
short summary of the algorithm used in Chapter 5 and 6.

4.1.1 Supervised algorithms

Gaussian mixture model (GMM) is a special case of mixture models. This
algorithm is able to approximate the distribution of data as a weighted superposi-
tion of (multi-dimensional) Gaussian distributions [13, 98]. After the optimization
of the GMM’s parameters on the dataset consisting of N classes, a new (multi-
dimensional) point is attributed to one out of the N classes based on the higher
probability that it belongs to one of the Gaussians of the GMM.

51

CHAPTER 4. MACHINE LEARNING TECHINQUES

Feed-forward Neural Network (FFNN) are the simplest class of neural net-
works. Trained over a labeled dataset, they are capable of classifying new inputs.
Formally the neural network implements a closed-form parametrized function, Nθ,
which maps input in a space X ⊆ Rm into a space Y ⊆ Rn which encodes in some
way the information on the classes the inputs are divided into. Optimal data clas-
sification is obtained by adjusting the parameters θ using optimization algorithms.
This is obtained by minimizing some type of loss function l between the correct
label yi of input xi and the neural network predicted label ŷi = Nϕ(x

i), namely:

min
θ

∑
i

l
(
yi, Nϕ(x

i)
)
. (4.1)

This optimization commonly employs the well-known back-propagation algo-
rithm [99, 100].

4.1.2 Unsupervised

Autoencoders are neural networks designed to learn, via unsupervised learning
procedures, efficient encoding of data [100, 101, 102]. This encoding is achieved
by adjusting the network’s weights and biases to regenerate the input data. It
is composed of a first part, the encoder, which learns to map the input data
into a lower dimensional representation (the latent space), ignoring insignificant
features or noise, and a second part, the decoder, that, conversely, is trained to
reconstruct the original input from the low dimensional encoding in the latent
space. Autoencoders perform dimensionality reduction and feature learning.

Mathematically, the autoencoder is a model composed of two closed-form
parametrized functions, the encoder fθe and the decoder gθd . The parameters
θ = [θe, θd] need to be optimized to perform the correct inputs reconstruction.
These functions are defined as:

fθe : X → L
gθd : L → X .

The function fθe takes an input xi ∈ X ⊆ Rm from the data-set {x1,x2, ...} and
maps it into the feature-vector hi ∈ L ⊆ Rp with p < m i.e. hi = fθe(x

i).
Conversely, the decoder function, gθd maps the feature-vector hi back into the
input space, giving a reconstruction x̃i of the input xi.
The parameters θ of the autoencoder are optimized such that the model mini-
mizes the reconstruction error l(x, x̃), i.e. a measure of the discrepancy of the

52

4.1. INTRODUCTION

reconstructed input from the original one. The general minimization problem is,
therefore:

min
θ

∑
i

l
(
xi, gθd(fθe(x

i)
)
. (4.2)

Again, this is optimized with the already mentioned back-propagation algorithm.

53

CHAPTER 4. MACHINE LEARNING TECHINQUES

54

Chapter 5

Improving Quantum Simulation
with Optimal Controls
Interpolation

5.1 Introduction

The main drawback of using optimization algorithms (such as GRAPE) to compute
optimized control sequences is the computational cost. In fact, the time required
to compute a control grows exponentially with the number of qubits involved, i.e.
the dimension of the propagator matrix. Furthermore, the control pulses are not
transferable, i.e. any change in the unitary operator requires a completely new op-
timization. This is true if there is any parametric dependence of the Hamiltonian,
and a study of the system as a function of the parameter value is required. This
has already been introduced in Sec. 3.3.2, where the simulation of a scattering
process of two nucleons interacting through a spin/isospin dependent interaction,
as captured in the by the leading order (LO) in the Chiral Effective Field Theory
expansion, implies that the control pulses implementing the instantaneous spin
dynamics have to be computed at each time step of the neutron physical trajec-
tory. This tends to neutralize the advantages in terms of computational speedup
that quantum computation brings to the simulation of quantum processes.

To mitigate this problem, one can act in several directions. For instance, one
could improve the optimization algorithms to make them faster, but the exponen-
tial scaling remains. If the physics of the system under analysis permits, one might
decompose the target unitary transformation into a short sequence involving fewer
qubit transformations at a time. This reduces the exponential scaling and one has
to find the optimal counter of several transformations with reduced dimensionality.
However, this does not eliminate the problem of having to recompute the controls

55

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

at each time step in the case of time-dependent simulations.

In this section, we will propose a method to solve, at least partially, this prob-
lem for time-dependent Hamiltonians. In essence, this method simply consists
of computing in advance a set of controls for a set of parameter values of the
Hamiltonian of interest, and then deriving new controls for arbitrary values of
these parameters by appropriately interpolating between the controls in the data
set. This makes it possible to bypass the optimization algorithm after deriving
a sufficient number of controls in advance. This method will be applied to the
neutron-neutron scattering of Sec. 3.3.2. Then, a more general implementation
using neural networks and Lie group theory will also be shown and tested.

5.2 Control Pulse Reconstruction method

We recall from Eq. (2.35) that GRAPE algorithm works by finding the optimal
controls ϵk(t) such that the following relation is satisfied, within an appropriate
threshold:

Utarg = exp

{
−i∆τ

NT∑
j=1

[
H0 +

Nctr∑
k=1

ϵk(j)Hk

]}
, (5.1)

where H0 is the qubits system Hamiltonian, Hk the drive Hamiltonians, Nctr the
number of controls, NT the number of discrete time-steps, of duration ∆τ , into
which the controls are divided and Utarg is the target unitary we want to implement.

An explicit computation of the pulses for each value of the Hamiltonian’s pa-
rameters can be avoided using the following general control pulse reconstruction
(CPR) method. Given the Hamiltonian Hsyst(Λ), where Λ = [λ1, λ2, . . . , λK]
is a point in the K-dimensional space of parameters characterizing the Hamil-
tonian, and assuming that one wants to implement the unitary transformation
Usyst(δs,Λ) = exp {−iδsHsyst(Λ)} on the quantum device, one should:

1. Solve Eq. (5.1) (using GRAPE or another equivalent optimization algorithm)
for a discrete grid of the values of Λ and store the resulting control pulses.
The result is a family of controls, each of which implements the specific
unitary transformation, Usyst(δs,Λ), for a specific value of Λ.

2. Perform a fit of the pulses either in terms of a function (e.g. a polynomial
fitting) or as an expansion over a basis (e.g. Fourier transform of the pulses).
Let us call C = [c1, c2, . . . , cM] theM coefficients of the fit (e.g the polynomial
coefficient or some type of coefficient relative to the expansion over a basis).

56

5.2. CONTROL PULSE RECONSTRUCTION METHOD

3. Find a mathematical relationship between the coefficients of the fit C and
the parameters Λ, i.e. C = f(Λ) = [f1(Λ), f2(Λ), . . . , fM(Λ)].

4. Reconstruct the pulses for an arbitrary Λ̃ via the following procedure: select
the Λ̃ values of interest, recover the fit parameters C̃ through the mathe-
matical relationship C = f(Λ) and reconstruct, finally, the control pulses
identified by C̃ inverting the fit relation.

5. Repeat point 4 in the simulation loop to recover all the needed control pulses.

5.2.1 CPR Method Realization

In this section, we describe in detail the actual implementation of the CPR method
introduced above.

First of all, let’s define the grid of Λ values. Each component λi of Λ, with
i = 1, ..., K, is a continuous parameter of the Hamiltonian Hsyst(Λ) (and the
correspondent propagator Usyst(Λ)) defined on a real interval Ii. Let’s divide
each Ii in Zi discrete values, obtaining Zi discrete values of λi, namely λaii for
ai = 1, ..., Zi. Let’s define Λm to be a K-dimensional grid of all possible combina-
tion of these parameters, i.e Λa1,a2,...,aKm = [λa11 , λ

a2
2 ..., λ

ak
K] with a1 ∈ {1, 2, ..., Z1},

a2 ∈ {1, 2, ..., Z2}, ..., aK ∈ {1, 2, ..., ZK}. Λm is the discrete grid of value of the
parameters Λ.

In the second place, we define the expansion C. The pulses have shapes that
cannot be easily interpreted in terms of elementary functions, since they could
contain multiple frequency components. This is true especially for large Hamilto-
nians where increasingly complex controls are observed. To deal with this type of
signals an obvious choice for the expansion is the use of the Fourier transform. In
this case, the fit parameters C are the components of the control pulse spectra.

Lastly, the mathematical relationship C = f(Λ) is a multi-linear interpolation
of each component of vector C over the grid Λm.

To summarize, in this work the CPR method takes the following form:

1. For each element Λ′ ∈ Λm, corresponding to a single and unique combination
[λa11 , λ

a2
2 ..., λ

ak
K], we can compute, via Eq. (5.1), the Nctrl controls ϵz(t,Λ

′),
with z = 1, ..., Nctrl, implementing the specific transformation identified by
Usyst(Λ

′). Let Ez(t,Λm) be the discrete set of all ϵz(t,Λ
′) for all Λ′ ∈ Λm.

2. Let Cz(ω,Λ
′) = [cz,1(ω1,Λ

′), .., cz,M(ωM ,Λ
′)] be the (discrete) Fourier trans-

form of ϵz(t,Λ
′) truncated to its M th component. Cz(ω,Λ

′) is interpreted as
the expansion coefficients vector over the basis (i.e. the frequency compo-
nents ωi). Obviously, as a result of a Fourier transform, each Cz is a complex
vector Cz = Creal

z + iCimag
z . Let Cz(ω,Λm) be the discrete set of all Cz(ω,Λ′)

for all Λ′ ∈ Λm.

57

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

3. In order to obtain a new vector C̃z(ω, Λ̃) for an arbitrary Λ̃ /∈ Λm, we use a
linear multi-variate interpolation of each component cz,i between the values
of the subset Cz(ωi,Λm) over the K-dimensional grid Λm. This defines the
mathematical relationship C = f(Λ) that links the parameters Λ to the
expansion coefficients Cz. The interpolation is performed separately for the
real and imaginary parts of the vector C̃z(ω, Λ̃) and the results are cast
together. This is carried out for every z = 1, .., Nctrl.

4. The control pulse reconstruction procedure becomes the following: the Nctrl

control pulses for an arbitrary Λ̃ /∈ Λm are recovered by interpolating, for each
control, the real and imaginary part of the new coefficients C̃z(Λ̃) through the
linear multi-variate interpolation of the set Cz(ωi,Λm) for i = 1, ...,M , over
the discrete K-dimensional grid Λm. Then, the so obtained C̃ is transformed
back to the time domain with the inverse Fourier transform obtaining the
correspondent new controls ϵ̃z(t, Λ̃) which are not elements of the original
sets Ek(t,Λm).

The purpose of the Fourier transform of the original data set Ez(t,Λm), in Step
2, is that, in the cased considered, the number of spectral components relevant
to the reconstruction of a control is far less than the number of time steps of the
control. This, even could not be true in general, is true in the case under analysis.
In fact, many spectral components are close to zero, so the expansion over the
Fourier basis offers a significant reduction in the number of elements that need
to be interpolated using the CPR method. In practice, in this work, the spectra
were all truncated at the M th component for which the average (of all spectra)
was three orders of magnitude smaller than the higher averages, and at the same
time when it was less than 0.001. This allowed us to have a M that was two or
three orders of magnitude smaller than the number of time steps of the controls
(depending on the configuration). In addition, the Fourier transform offers the
advantage of being able to use the CPR method with noisy controls by acting as a
high frequency filter. This could be the case for some kind of optimization initial
conditions which, however, are not used in this work.

5.2.2 CPR Method Characterization

Scaling

To test the scaling of the method, we study the fidelity of the interpolated controls
in three cases: 1) the number of quantum levels/qubits involved, 2) the number K
of Hamiltonian parameters and 3) the Λm grid spacing. This will be tested on a
1D transverse-field Ising model with periodic boundary conditions (i.e in a closed
spin chain configuration). We chose the Ising model because it is a simple and

58

5.2. CONTROL PULSE RECONSTRUCTION METHOD

well-known model, easy to be mapped onto the quantum processor, being at the
same time a not trivial system. The transverse-field Ising Hamiltonian is:

HIsing =
N∑
i=1

Jiσ
z
i ⊗ σzi+1 + h

N∑
i=1

σx, (5.2)

with N the number of spins/sites of the chain, σzi and σxi the z and x Pauli
matrices for the ith spin/site, Ji the coupling terms between nearest spins and h
the external field intensity. Note that we set N +1 ≡ 1 to obtain the closed chain.
The propagator is written:

UIsing = e−iHIsingδs. (5.3)

for an arbitrary (small) time interval δs.

The CPR system is here tested on a Nq = 2, ..., 5 qubits system with a closed
ring topology, described by the following Hamiltonian:

H0 =

Nq∑
i=1

ωib
†
ibi +

αi
2
b†ibi(b

†
ibi − 1) + (5.4)

+

Nq∑
i=1

gi,i+1(b
†
ibi+1 + bib

†
i+1),

where ωi are the qubits frquencies, αi are the qubits anharmonicity, gi,i+1 are the
coupling constant between connected qubits and clearly Nq + 1 ≡ 1 to implement
the closed ring topology. The values used in this work are reported in Tab.5.1.

Each spin has two states, the spin up, |↑⟩, and the spin down, |↓⟩. The mapping
of the Ising model in the quantum processor is therefore done simply by identifying
each spin with a single two-level qudit of the quantum processor Hamiltonian H0.
Using Eq. (5.1) is now possible to compute the controls ϵz(t) that implement UIsing
in the quantum device. For this experiment, we use a configuration that considers
a control for each qubit (but many other configurations can be realized).

We consider the parameters Ji,∀i ∈ [1, N] and h all taking values in the same
real interval I = [0.2, 2]. We discretize I in Z discrete values so to have the
discrete values Jaii and hb with ai, b ∈ {1, .., Z}. We can now define Λm as the
N + 1-dimensional grid of all possible combination of Jaii and hb, i.e. Λa1,...,aN ,bm =
[Ja11 , .., J

aN
N , hb]. We can now compute the Nctrl sets of controls, Ez(t,Λm), and

the corresponding set of truncated spectra, Cz(ω,Λm), for z ∈ {1, .., Nctrl}. New
controls can be now finally found following the CPR procedure described above.

59

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

Q 1 Q 2 Q 3 Q 4 Q 5
ω/2π [GHz] 5.114 4.914 4.714 4.614 4.514
α/2π [GHz] -0.33 -0.33 -0.33 -0.33 0.33
gi,j/2π [GHz] 0.0038 0.0038 0.0038 0.0038 0.0038

Table 5.1: Values of qubit parameters for Eq. 5.4 used in the Ising
model analysis.

Fidelity vs. number of qudits Increasing the numberN of spins also increases
the dimension of the matrix UIsing. The optimization becomes harder and the
control pulses incorporate higher and higher frequencies. Therefore is necessary to
study how the CPR method scales with the dimension of the system.

We take Ising models with increasing number N of spins with two parameters,
the values h and Ji = J for every i = 1, ..., N . The number Z of subintervals
of I is set to 9. Hence, in this case, we have a 2-dimensional grid Λa,bm = [Ja, hb]
with a, b = 1, ..., 9. We prepare the CPR method dataset computing ENz (t,Λm)
for N = 2, .., 5. The average fidelity of the datasets computed with GRAPE is
0.981 ± 1.4e − 4 for all N . The scaling is tested with the following analysis. We
sample new values J̃ and h̃ from a uniform probability distribution in the interval
I and, based on that values, we compute the controls both with CPR method,
ϵ̃Nz (t, [J̃ , h̃]), and GRAPE algorithm, ϵNz (t, [J̃ , h̃]). We then compute the mean
square error (MSE), ε, between the two controls. The MSE ε is defined as:

ε =
1

nts

nts∑
i=1

(
ϵ̃Nz (ti, [J̃ , h̃])− ϵNz (ti, [J̃ , h̃])

)2
, (5.5)

where nts is the number of time steps ti into which the signals are actually di-
vided. Moreover, we reconstruct the propagator, ŨIsing([J̃ , h̃]), induced by the
interpolated controls ϵ̃Nz (t, [J̃ , h̃]), plugging them into the right hand side of Eq.
(5.1). In this way we can compute the fidelity (Eq.(2.32)) between the exact prop-
agator UIsing([J̃ , h̃]) defined by Eq.(5.3), and the one induced by the controls, i.e.
ŨIsing([J̃ , h̃]), found with Eq. (5.1), so to check their degree of similarity. This
procedure is repeated 50 times for every N and the results are averaged. In Fig.
5.1 the plot of the reconstruction fidelity vs. the MSE is reported. As expected,
the reconstruction fidelity decreases, on average, as the number of spins increases
while the error increases. However, the MSE remains very limited in absolute value
and the fidelity decrease remains small compared to the dataset’s average fidelity
of 0.981. Moreover, the decreasing trend suggests that fidelity degradation slows
down as the number of spins increases.

60

5.2. CONTROL PULSE RECONSTRUCTION METHOD

Figure 5.1: The x-axis represents the average mean squared error (MSE) between the
controls optimized with GRAPE and the controls interpolated with the CPR method
for the same sampled set of the parameters h and J . The y-axis, instead, represents the
average fidelity between the exact propagator UIsing and the reconstructed one, ŨIsing
with the right-hand side of Eq. (5.1). Each point refers to a chain with a different spin
number N .

Fidelity vs. number of Hamiltonian’s parameters Hamiltonian can depend
on multiple parameters λi so it is of interest to study the scaling of CPR method
with respect to this number. We study its behavior on a 3 spins chain taking
as λi parameters J1, J2, J3 and h. Each of them varies in the interval I divided
in Z = 9 discrete values. We compute the first datasets E1k (t,Λ1

m) varying only
h and fixing J1, J2, J3 equal to 1, the second datasets, E2k (t,Λ2

m), varying only h
and J1 while fixing J2, J3 equal to 1, and so on till all the four parameters are
used. The time for dataset computation grows (exponentially) with the number of
parameters since the number of controls in a dataset is

∏npar

i Z, where npar is the
number of parameters in use. The fidelity of the dataset controls is 0.981 for each
npar. Then, as in the previous paragraph, we take new random values h̃, J̃1, J̃2, J̃3
and we interpolate the new controls ϵ̃

npar
z (t) with CPR method for increasing npar.

We then reconstruct the propagator ŨIsing induced by these controls via Eq.(5.1)
and we compute its fidelity with respect to the exact one obtained via Eq.(5.3)
for the same sampled parameters values. The process is done 50 times for each
npar = 1, 2, 3, 4 and the results are averaged. In Tab. 5.2 the results are reported.
In the first column the average fidelity of the controls in the datasets Enpar

k (t,Λ
npar
m)

61

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

npar
aver. fid.
dataset

aver. fid.
sampling

1 0.981 ± 1.3 e-4 0.981 ± 2.4 e-4
2 0.981 ± 1.2 e-4 0.981 ± 5.4 e-4
3 0.981 ± 6.4 e-4 0.981 ± 1.2 e-3
4 0.981 ± 4.5 e-5 0.982 ± 2.3 e-4

Table 5.2: Average fidelity for a 3-spin Ising chain for increasing
number of Hamiltonian parameters. First column: average fidelity
of the datasets controls. Second column: average fidelity of CPR
interpolated controls with uniformly sampled Ji and h.

is reported. In the second column, the average fidelity of the controls-induced
propagators for random sampling of Ji and h is reported. It can be seen that the
average fidelity for the interpolated controls remains high and comparable with the
fidelity of the dataset (obtained with GRAPE). The data suggest that the CPR
method is capable of obtaining controls with a good fidelity for every configuration,
showing a good behavior for increasing number of Hamiltonian’s parameters.

Fidelity vs. density of Λm grid Another test to characterize the method
concerns the behaviour of the reconstruction fidelity as function of the interval
I discretization density. We take a 3 spins closed chain with two parameters, h
and Ji = J for every i = 1, 2, 3, and we compute the datasets EZk (t,Λm) for the
interval I divided in Z = 3, 5, 10 and 15 subintervals. The dataset fidelity was
again set to 0.981 for every case. As in the previous case we sample a new value
of the parameters, we interpolate a new control and we compute the fidelity of the
reconstructed propagator with respect to the exact one. This is repeated 50 times
for each Z and the results averaged. In Tab. 5.3 the results are reported using
the same format as the previous case. As expected, the CPR method fidelity is
low for small Z as the linear interpolation become imprecise since is performed
over distant grid points. However, the analysis indicates that the fidelity saturates
quickly with increasing discretization density Z.

Computational cost and time

With regard to calculation time, careful considerations must be made. In fact, the
method requires calculating a certain number of controls in advance, and this can
result in a prohibitive calculation time.

The average time tG to obtain a control with GRAPE depends exponentially
on the number of Hamiltonian dimensions (i.e. quantum device levels or qubit in
use) and depends linearly on the number of control’s time-steps (i.e. the sampling

62

5.2. CONTROL PULSE RECONSTRUCTION METHOD

npar
aver. fid.
dataset

aver. fid.
sampling

3 0.981 ± 4.7 e-4 0.952 ± 4.1 e-3
5 0.981 ± 2.7 e-4 0.977 ± 1.9 e-3
10 0.982 ± 1.9 e-4 0.983 ± 3.5 e-4
15 0.982 ± 9.5 e-4 0.983 ± 1.5 e-4

Table 5.3: Average fidelity for a 3-spin chain with two parame-
ters of the Hamiltonian, J = J1 = J2 = J3 and h for increasing
parameters interval I spacing Z. The data format is the same as
the Tab. 5.2.

frequency multiplied by the control time duration). As an example, in Fig. 5.2 the
time tG to compute 1600 time-steps controls for an increasing number of device
quantum levels is reported. Instead, the average time, tCPR, that CPR method
takes to compute a single control is 0.78 seconds regardless of the number of
levels/qubits, since is a simple interpolation. These values refer to a mid-range
computer with a 2.9 GHz processor with 4 cores and 8 GB of RAM.

The total number A of controls in a general controls dataset Ek(t,Λm) is:

A =
K∑
i=1

Zi, (5.6)

with K the number of Hamiltonian parameters λi and Zi the number of discrete
values of interval Ii. The total time TG to compute the A controls with GRAPE
is clearly:

TG = tGA = tG

K∑
i=1

Zi. (5.7)

To gain a computational advantage in using CPR method over using GRAPE, the
total number P of controls one want to get from the use of CPR method in a
simulation must be larger than A. Possibly, this difference should be high.

Let’s make two examples assuming we have an advantage if P > A. Let
tG = 53.6 s (See Fig.5.2) and A = 500. To obtain an advantage, the time to
compute P controls with GRAPE, must be greater than the time to compute
them with the CPR method plus the time to compute in advance A controls of
the dataset. So tGP > (tCPRP + tGA), from which is easy to derive that P > 507.

Conversely, Let P = 1000 be the number of controls one uses in a simulation.
Using GRAPE, one would take tGP = 53, 6s× 1000 = 53600s ≈ 14h. Otherwise,
using the CPR method with A = 500, one takes tGA + tCPRP = 53, 6s × 500 +

63

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

1000 × 0.78s = 27508 ≈ 7.6h. Actually, the advantage is even higher because
thanks to a careful choice of the initial guess of the GRAPE algorithm and by
exploiting parallel computing routines, the time to compute the A controls of the
dataset can be considerably reduced. This is in general not possible without using
the CPR method because the controls are computed in series for the subsequent
values that the parameters of the Hamiltonian take during the dynamics of the
system under analysis.

Thus, in general, the use of the CPR method requires careful consideration
and the choice of the appropriate trade-off between dataset size, precision and
calculation time.

0 5 10 15 20 25 30 35
QC levels

0
1000
2000
3000
4000
5000
6000

Co
m

pu
t.

tim
e

[s
]

5.36 10.34 53.6
307.51

3601.04

expon. fit.

Figure 5.2: Computational time vs. the total number of levels of a quantum device. The
single time data (diamond markers) are computed for 2N QC levels with N = [1, 2, 3, 4, 5]
(which identify the total number of levels for 1,2,3,4 or 5 qubits). Computational time
grows exponentially with the number of levels, as exponential fitting highlights (dashed
line).

5.2.3 Time-dependent simulations with CPRMehtod: Two
neutrons dynamics

Having defined and characterized the CPR method, we now wish to present its
application to a concrete case of quantum simulation. Let us therefore consider the
two-neutron system introduced in Sec. 3.3 and in particular the time-dependent
case of Sec.3.3.2.

For the scope of this work, we assume to work with a single four-level qubit,
as in Ref [89, 44]. The Hamiltonian of whole the system takes a particular form:

Hqd = ωb†b+
α

2
b†b(b†b− 1) + ϵ(t)(b† + b) (5.8)

64

5.2. CONTROL PULSE RECONSTRUCTION METHOD

where we used ω = 5.114/2π GHz and α = −0.33 GHz. To simplify the opti-
mization procedure, we move to the rotating frame close to the drive frequency ωd
[103, 44, 89] obtaining the Hamiltonian:

Hqd = ∆b†b+
α

2
b†b(b†b− 1) +

ϵI(t)(b
† + b) + iϵQ(t)(b− b†), (5.9)

where ∆ = ω−ωd is the detuning of the qubit frequency ω from the drive frequency
ωd and ϵI(t) (ϵQ(t)) is the in-phase (quadrature) component of the original control
ϵ(t) in the rotating frame. ∆ = 0 since we choose ωd = ω.

The use of this qudit approach aims to demonstrate how this optimal control
protocol is particularly useful in the case of multi-level devices, where standard
gate-based approach is not naturally applicable. Multi-level qudits, although tech-
nically more difficult to realize, offer the advantage of having more levels to encode
information [104, 105]. This makes it possible to reduce the total number of usual
qubits since more space is already available in the icreased number of levels. Con-
sequently less couplings between qudis are needed, which are often source of noise
and error. Furthermore, with the analysis of the present section, we would like
also to show how CPR method can be applied naturally to this type of devices.

As already presented in those sections, the hybrid classical-quantum simulation
procedure, for every time-step starting from the initial condition, is:

1. Update the relative position ri i > 0 of the two neutrons with a classical
algorithm on a classical computer.

2. Evaluate ÛSD(δt, ri) for the new position ri.

3. Optimize the control pulses ϵR(t) and ϵI(t) implementing ÛSD(δt, ri).

4. Update the spin state |si⟩ on the quantum processor using the just optimized
control pulses.

Where the spatial trajectory of the particles is obtained by solving the New-
ton equation with a simple Crank–Nicolson algorithm relying on the saddle point
approximation.

In the aforementioned procedure, Step 3 is the bottleneck of the simulation. In
fact, the optimization algorithm is computationally expensive depending exponen-
tially on the dimension of the unitary propagator. Moreover, specifically in this
application, USD(δs, r) depends on the position of the particles and, consequently,
the correspondent controls must be computed each time-step of the simulation.
Furthermore, since many simulations with different initial positions, momenta and

65

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

spin states must be performed to fully characterize the dynamics of the system,
the number of these controls increases considerably. To mitigate this problem, we
replace, in Step 3, the GRAPE optimization with the CPR method.

First of all, we fix the origin of the coordinates system on one particle. We
use the spherical coordinate (r, ϕ, θ) to represent the relative position r of the
second particle. In this way, the dependence of the spin propagator shift from r
to (r, ϕ, θ). We need now to define the grid Λm to compute the sets Ez(t,Λm) with
z = I,Q indicating respectively the dataset of ϵI(t) and ϵQ(t). In this case, the
radial distance, r, is taken in the interval Ir = [0.001, 2.8] fm, where most of the
interesting part of the neutron-neutron dynamics takes place, and the interval is
discretized in Zr = 20 equidistant points. The azimuthal angle ϕ is taken in its
natural domain Iϕ = [−π/2, π/2] divided in Zϕ = 25 points. The longitudinal
angle θ, instead, takes value in the range Iθ = [0, π/2] discretized in Zθ = 13
points. The range of θ is narrowed to [0, π/2] instead of the usual [−π, π] because
we exploit the symmetries of the quantum system. In fact, the controls of the
interval [−π/2,−π] sector are the same as the Iθ interval, while the controls of
the [0,−π/2] and [π/2, π] sectors have the same controls as the Iθ interval but
reversed. Finally, Λm the three-dimensional grid of all possible combinations of
Λ′ = [ra1 , ϕa2 , θa3] with a1 ∈ {1, ..., Zr}, a2 ∈ {1, ..., Zϕ} and a3 ∈ {1, ..., Zθ}.

We compute with GRAPE the datasets Ez(t,Λm) with an average fidelity of
0.9999 ± 0.00007. We exploit parallel computing routines to optimize multiple
controls at once. The first control is computed for Λ′ = [r1, ϕ13, θ1] = [0.001, 0, 0]
taking a all zero initial guess. All the other controls are found using the first
optimized control as the initial guess. This makes it possible to obtain a continu-
ously varying family of controls, avoiding the solutions falling into different local
minima. This makes the interpolation more effective.

We test this procedure at a device-simulation level so once we have recon-
structed the appropriate controls ϵ̃I(Q)(t), we do not send them into an actual
quantum computer but we reconstruct the corresponding U rec

SD, with the appropri-
ate form of the right-hand side of Eq. (5.1), and we use it to advance the spin state
as |si−1⟩ = U rec

SD |si⟩. The simulation is performed without adding a noise model.
This is done to isolate the effect of the introduced method on the simulation and
to better evaluate and characterize the results. In principle, however, the optimal
control approach could be set to optimize the controls with the noise model to
obtain noise-resistant controls, but this is beyond the scope of this work. The
Eq.(5.1) to obtain U rec

SD in this case specializes as:

66

5.2. CONTROL PULSE RECONSTRUCTION METHOD

U rec
SD(δs, [ri, ϕi, θi]) = exp

{
−iδτ

Nτ∑
ti=0

α

2
b†b(b†b− 1) + ϵ̃R(ti)(b

† + b)

+iϵ̃I(ti)(b− b†)
}
. (5.10)

Finally, concerning the initial conditions, in this work we chose r0 = [rx0 , r
y
0 , r

z
0] =

[0.5,−2, 0.5] fm, an initial velocity of the particle of v = [vx0 , v
y
0 , v

z
0] = [0.5,−1, 0]

fm/MeV and |s0⟩ = |0⟩ ≡ |↑↑⟩.
Summarizing, the complete simulation procedure with CPR method, for each

time-step starting from initial conditions, becomes:

1. Update the particles relative position ri+1 with a classical algorithm.

2. Use the CPR method to interpolate the controls correspondent to new posi-
tion ri+1 (expressed in terms of the parameters (ri+1, ϕi+1, θi+1)).

3. Obtain U rec
SD(δs, [ri+1, ϕi+1, θi+1]) with Eq. (5.10)

4. Use U rec
SD to update the spin state as |si+1⟩ = U rec

SD |si⟩.

Spatial trajectory is obtained by solving the Newton equations of motion of the
particles with a simple Crank–Nicolson algorithm.

Results

We carry out the simulation, following the procedure just introduced, for a 100
timesteps trajectory with a δs = 0.01 MeV−1. The results of this simulation are
shown in Fig. 5.3. The panel (a) reports the trajectory of the second particle
with respect to the first (on which the coordinates are fixed). The colors represent
the quantum system’s time. The panel (b) reports the spin dynamics in terms
of occupation probability, computed with Eq. (3.25), along the spatial trajectory
represented in panel (a). The solid lines represent the exact spin dynamics found
using the exact propagators USD(δs, ri), instead the dots represent the spin state
for subsequent applications of U rec

SD(δs, [ri, ϕi, θi]) starting from initial state |s0⟩
with the controls obtained with CPR method. It therefore represents the dynam-
ics we would obtain using the controls in the quantum processor (without the
noise of the real device). As can be seen, the dotted spin dynamics follows the
exact reference dynamics till half of the simulation. This is due the fact that in
that position, the velocity of the particles is high and the reconstruction becomes
imprecise. This results in a an accumulation of errors at the end of the simulation

67

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

(a) Neutrons spacial trajectory (b) Spin dynamics

Figure 5.3: Representation of the neutrons dynamics. Panel (a): A single realization
of a classical spatial trajectory for two neutrons obtained by solving their equation of
motion with a Crank-Nicolson scheme starting from a specified initial condition. The
origin of axes is fixed on one particle. Panel (b): Spin dynamics in terms of occupation
probability corresponding to the trajectory of the panel (a). For every timestep the
values are found using Eq. (3.24), as for the case in Sec. 3.3.2

which however does not spoil the dynamic itself but only the delay. This trea-
sure us that this imprecision can be reduced with shorter δs. The average fidelity
between the reconstructed and exact propagators is 0.9997± 0.0005.

In general, the accuracy of the method can be modulated using different con-
figurations of the CPR method elements. A finer discretization of the intervals
results in a increased accuracy. This discretization can also be not evenly spaced.
It can be finer only in correspondence of points where Hamiltonian changes most
rapidly with respect to its parameters and coarser otherwise. In addition, as in
the case just presented, one can take advantage of the symmetries of the quan-
tum system under study to greatly reduce the number of controls to be computed
beforehand. In general then, one can find a good trade-off between accuracy and
computational cost.

As we mentioned earlier, the main advantage of CPR method is the shorter time
required to derive the controls necessary to implement a unitary transformation.
We report the data of the simulation. We use 800 time-step controls (i.e. controls
with a duration of 50 ns and a signal sampling frequency of 16 GHz). The GRAPE
computation time for this case is tG = 5.12 s. The total number A of controls in
the datasets EI(Q)(t,Λm) is ZrZϕZθ = 6500. The total computational time for
this dataset, using parallel computing on a medium-level computer with 2.9 GHz
CPU, 4 cores and 16 GM of RAM, is TG = 10400 seconds. This means that
each control took on average 1.6 seconds instead of the 5.12 seconds that would

68

5.3. LIE GROUP THEORY AND CONTROL PULSE RECONSTRUCTION

take in a serial computation. This means that by exploiting parallel computing
and using the same initial condition for every control optimization, we are able
to reduce, on average, this time making the CPR method even more efficient.
Having more CPU cores, it would be even more efficient. The time to compute
a single step of the simulation with GRAPE in this setup, for controls of 800
time-steps and fidelity of 0.9999 , is 6.43 ± 0.02 seconds. CPR method shrinks
this time to 0.913 ± 0.002 seconds. Hence, from the computational time point of
view, we gain approximately an order of magnitude in using CPR method (for this
specific configuration). The CPR method however becomes preferable to GRAPE
optimization if the time TG to compute in advance the whole dataset plus the
time tCPR to compute the P controls needed in the simulation is less than the
time to compute the same P controls using GRAPE. Formally, P should satisfy
TG + tCPRP < tGP . This is true if P > TG/(tG − tCPR) ≈ 2396. So, in this
configuration, we obtain a net advantage in using CPR method if the number
of needed control during the simulation is greater than 2396. This amount is
not prohibitive since, to characterize the dynamics of the system, or to calculate
quantities such as the cross-section, one needs to calculate many trajectories with
different initial conditions of position and spin, so this limit is easily reached.

5.3 Lie Group Theory and Control Pulse Recon-

struction

Let us now consider the problem of control interpolation from a more abstract and
general point of view. It is known that the propagators U(δt) of a quantum system
belong to the unitary group U(N), or, neglecting a global phase which does not
change the expected values of operators, to its subgroup, the special unitary group
SU(N) [106, 107]. If these groups are represented as matrix groups, SU(N) is the
group of all unitary matrices with determinants equal to one. The theory of Lie
groups says that the Lie group SU(N) has an associated Lie algebra su(N). This
algebra has a basis of elements, {gi}. Given this basis, we can construct every
element of the su(N) algebra as a linear combination of {gi}. An element of the
corresponding Lie group SU(N) can be found by exponentiating the arbitrary sum
of this basis set, explicitly:

U = ei
∑Ng

l clgl (5.11)

where Ng is the number of generators and cl are constants taking values in the real
interval [−π, π].

Now it is also known that the propagators of closed quantum systems belong to
the SU(n) groups with the appropriate dimension n determined by their Hilbert

69

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

space [106]. The idea is therefore to exploit this property to build a method
capable of providing the control pulses for any arbitrary propagator. Since, by
definition, all propagators of a quantum system are naturally contained in the
corresponding SU(n) group, we can consider the elements of the group abstractly
and later give them a physical meaning. So we randomly sample a set of group
elements, compute the corresponding controls, and then train a neural network to
connect them. In this way, the neural network should learn how to generate the
controls for each element of the group and, consequently, for each quantum system
propagator, we want to implement. This method is therefore system-independent
and, after a training process, could help to speed up the compilation of quantum
circuits for the simulation of quantum systems in the optimal control framework.

5.3.1 Lie Algebra Based Control Pulse Reconstruction

The group theory framework can be exploited to set up a method to reconstruct the
controls of an arbitrary propagator U(δt) in matrix form for a set of qubits. This
method will be called Lie Algebra based Control Pulse Reconstruction (LA-CPR).

The idea works as follows:

1. Compute a set of group elements {Uj} using Eq. (5.11) sampling each cj
from a uniform distribution in [−π, π].

2. Compute the controls ϵkj (t) for each propagator Ui to obtain a dataset of con-
trols {ϵkj (t)} (with k = 1, ..., Nc where Nc is the number of device’s controls).

3. Define a feed-forward neural network and train it using, as input, the prop-
agator’s dataset {Uj} and, as output, the controls dataset {ϵzj(t)}.

4. Given a new arbitrary propagator Ũ not present in the original dataset, we
can find its controls ϵ̃z(t), by plugging it into the neural network just trained.

The initial guess for every optimization is the control corresponding to the ma-
trix obtained imposing all cl = 1. With this choice a group element U consisting of
a equally weighted sum of generators is obtained. This appears to be a reasonable
choice to have the basic control from which to derive all others.

The actual implementation of the method requires a preparation phase before
its use. These are stated explicitly in the following:

Preparation : As the CPR method described in previous section, LA-CPR
needs some information in advance. We need to provide the experimental param-
eters of the device in use, i.e. the specific Hamiltonian H0 of the qubits system
and the Nc control Hamiltonians Hc. Let assume the system has dimension N , so
its propagators are elements of SU(N) group. Its associated Lie algebra is su(N).

70

5.3. LIE GROUP THEORY AND CONTROL PULSE RECONSTRUCTION

1. Define the basis set {gl} of su(N). E.g. for su(2) the basis set consist of
{gl}l=1,...,3 = {iσ1, iσ2, iσ3} where σl are the Pauli matricex. Instead, for
su(3), {gl}l=1,...,8 is the set of Gell-Mann matrices λl.

2. Using Eq. (5.11) compute a set of matrices {Uj} sampling cl elements from
a uniform distribution in the interval [−π, π]

3. Using GRAPE algorithm Eq. (5.1), compute the controls ϵkj (t) for k =
1, ..., Nc for each Uj in the dataset of matrices. We thus obtain Nc datasets
of controls.

4. Prepare the inputs and the outputs for the neural network. Since the neural
network can only take vectors as inputs, each matrix Ui is flattened stack-
ing the real and the imaginary part of the matrix in a single vector, i.e.
U flat
j = [ReU1,1

j , ...ReUN,N
j , ImU1,1

j , ... ImUN,N
j]. The outputs instead are

the controls themselves, which are already in the shape of single vectors.
All data are normalized between 0 and 1, as common practice in machine
learning application.

5. Define Nc feed-forward neural network,fk(x) with appropriate architecture.
This network is then trained to link each U flat

j to the corresponding control

ϵkj (t), i.e. ϵ
k
i = fk(U

flat
i).

Use After the preparation of the method, its use is straightforward.

1. Take any arbitrary matrix Ũ ∈ SU(N) not in the training dataset.

2. Flatten it in a vector, Ũ → Ũ flat.

3. Plug Ũ flat in the Nc neural networks to obtain the corresponding controls
ϵ̃k = fk(Ũ

flat) with k = 1, ..., Nc.

5.3.2 Results

We report here some results and analysis of the LA-CPR method.

We test this method on a system Nq = 1, 2, 3 qubits with one control for each
qubit in a closed ring configuration. Hence we have Nc = Nq. The Hamiltonians
are:

71

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

H0 =

Nq∑
i=1

ωib
†
ibi +

1

2
αib

†
ibi(b

†
ibi − 1) + (5.12)

gi,i+1(b
†
ibi+1 + b†i+1bi),

Hc =
Nc∑
k=1

ϵk(t)(b
†
k + bk) (5.13)

where the values of the variables are the same of Tab. 5.1.
To test the performance of the LA-CPR method in the different configurations,

we use the fidelity with the following procedure. After training a neural network
(with a given architecture), we use it to reconstruct the controls ϵjk(t) for a set of
propagators Uj not present in the training dataset, we compute the propagators
U recon
j that ϵik(t) implement by plugging them into Eq. 5.1 and finally we com-

pute the fidelity F(Ui, U recon
i) between each pair (Ui, U

recon
i). In this way, we can

quantify the quality of the controls reconstructed by the neural network.

Study of the Neural Network Architecture

To identify the best neural network architecture for any number Nq of qubits, the
performance of neural networks with different depths and widths is studied. A
neural network with Nl = {1, 2, 3, 4, 5} layers of size ND = {10, 100, 500, 1000}
is built and trained on a dataset of 2000 elements. Then the average fidelity of
the reconstructed controls is computed on a test dataset of 250 elements. This
procedure is repeated 5 times for each combination of Nl and ND and the results
are averaged. For each repetition, the training dataset is randomly sampled from
a 20000-element dataset, the test dataset is computed using Eq. (5.11), and the
neural networks are initialized with random weights. The values of the input and
output data sets are normalized in the interval [0, 1]. The activation functions are
the sigmoid for the output layer and the swish function for all others. Training
is performed by minimizing a mean square error loss function using the Adam
algorithm. Also, the maximum number of epochs is set to 100, but an early
stopping callback is set to stop the training if the loss does not decrease for 6
epochs in a row. The results of this procedure for different numbers of qubits are
shown in Fig. 5.4. Different architectures give different results, especially for 2 and
3 qubits. In the case of one qubit, Fig. 5.4a, the worst results are obtained with a
single-layer neural network, but with a large size. Instead, the best combination is
2 layers of 500 neurons each, or (2,500) for short. Instead, in the case of two and
three qubits, Fig. 5.4b5.4c, the worst results are obtained for a deep network with
10 neurons for each layer. This is probably due to inefficient training. The best
combination is (3,100) for the two-qubit case and (2,500) for the three-qubit case.

72

5.3. LIE GROUP THEORY AND CONTROL PULSE RECONSTRUCTION

(a) One-qubits case. Best architecture: 3
layers of 500 neurons each.

(b) Two qubits case. Best architecture: 3
layers of 100 neurons each.

(c) Three qubits case. Best architecture: 2
layers of 500 neurons each.

Figure 5.4: Average fidelity for neural networks with different combinations of layer size
and number of layers in the case of 1,2 and 3 qubits. The architecture that produces the
highest average fidelity can be clearly spotted in each case.

73

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

Dataset analysis

After identifying the best architecture for each neural network, we can study how
the fidelity of the reconstructed control varies for datasets of different sizes. To
do this, we take the neural network with the optimal architecture and train it
with datasets of increasing size D = {100, 500, 2000, 10000, 20000}. As in the
previous case, we do this 5 times for each dataset size and average the results.
Each time, the training data set is randomly sampled from the entire data set of
20000 elements. All other training specifications are the same as in the previous
case. The results are shown in Fig. 5.5. The x-axis shows the size of the dataset
(in logarithmic scale). The dataset dimension used for training is highlighted in
the lower part of the graph. The y-axis instead shows the average fidelity. The
three lines represent the fidelity for the three cases as a function of the dataset
dimension. The red text on the left reports the optimal architecture used for each
case. The one-qubit case shows good fidelity for all values. This is due to the shape
of the control, which is not too complicated. In this case, the dataset dimension is
stopped at 2000 elements because the fidelity performance was already saturated.
The two-qubit case achieves good results for the largest dataset. The three-qubit
case achieves worse results than the other cases due to the more complex form of
the controls. The controls present in the dataset have been optimized by setting
a fidelity of 0.99, so the results obtained by the LA-CPR method are good since
the decrease in performance is very limited for all cases. In general, as expected,
all the behaviors show an increasing trend with the dimension of the dataset but
with a decreasing speed.

5.3.3 Application to quantum system simulation

The purpose of the LA-CPR method is to quickly and easily obtain the control
pulses that implement an arbitrary unitary propagator on a quantum computer.
Random propagators were tested in the previous section, but the real interest
would be in implementing propagators that describe the dynamics of quantum
systems. To test this, we consider again the case of the two-neutron system in-
troduced in Sec. 3.3 and tested with the CPR method in Sec. 5.2.3. We recall
that the spin-dependent part of the propagator, USD(δt, r), depends on the rela-
tive position, r, of the two particles. The matrix USD(δt, r) is, by construction,
a unitary matrix belonging to SU(4), so the ability of the LA-CPR method to
provide the controls corresponding to this propagator can be tested. To do this,
we use the usual procedure: we construct a set of N propagators, {U i

SD(δt, r)},
randomly sampling the positions {ri = [rix, r

i
y, r

i
z]} from a uniform distribution for

each rx, ry and rz (but such that the norm is less than 1.5 nm). We then plug these
propagators into the neural networks of the LA-CPR method, flattening them ap-

74

5.3. LIE GROUP THEORY AND CONTROL PULSE RECONSTRUCTION

Figure 5.5: Average fidelity and dataset dimension for the one, two and three qubit setup
using the optimal architecture (red text on the left). The one qubit case is stopped at
2000 elements because the fidelity was already saturated.

propriately to fit into the input layer, and thus derive the set of corresponding
controls {ϵi(t; ri)}k, where k = [1, ..., Nctrl], as always the index of the number of
controls present in the qubit system used. Plugging the controls into Eq. (5.1),
one can reconstruct the set of propagators, {U i

recon}, that these controls implement
in the qubit system, and consequently calculate the fidelity between the original
propagators and the reconstructed ones.

We followed this procedure with a set of N = 1000 propagators and obtained
an average fidelity of 0.97± 0.05, which is only 0.01 off the average fidelity of the
LA-CPR method for the case of two qubits (i. e. SU(4) matrices) for random
matrices, see Fig. 5.5, and only 0.03 from the average fidelity of the training
dataset for the same configuration, which is 0.99.

This analysis confirms that the LA-CPR method allows to obtain the controls
that implement any unitary transformation belonging to a SU(2Nq) group on a set
of Nq qubits. Thus, LA-CPR emerges as a promising method to achieve speedup
in the simulation of quantum systems, where a large number of controls related to
different propagators are required.

75

CHAPTER 5. IMPROVING QUANTUM SIMULATION WITH OPTIMAL
CONTROLS INTERPOLATION

76

Chapter 6

Qubit Readout with
Autoencoders

6.1 Introduction

In order to have a working quantum computer, an important requirement is a high-
fidelity readout of the qubits. This corresponds to Di Vincenzo’s fifth criterion.
The measurement of the qubits is necessary to extract the information about the
state of the qubits after a computation, especially for observables that are very
sensitive to it (see e.g. [108] for an extreme case of this).

The currently most common qubit readout technique for superconducting qubits
is the dispersive readout which couples the qubit to a readout resonator. In this
approach, the state of the qubit is determined by measuring the changes in phase
and amplitudes of an electromagnetic field transmitted through the resonator [109,
110, 12, 11]. Hardware, random thermal noise, decoherence introduced by the mea-
surement process itself, or qubit decay processes that occur during measurements
may reduce the readout fidelity. In addition to a careful design of the system
parameters [111, 112] or improvement in fabrication processes extending qubits
coherence time [113, 114], readout fidelity can be enhanced through the use of
machine-learning techniques that works by improving the classification accuracy
in assining the readout signal to the right state of the qubit. Many different tech-
niques and architectures can be used at this scope. Gaussian mixture model [98]
is the most commonly used classification method given its ease of use. It exploits
parametric modeling of the averaged readout signals probability distribution in
terms of a sum of Gaussians to perform a classification of each measurement. In
[115, 116, 117, 118], instead, the authors developed and implemented various clas-
sification methods based on neural networks trained on the full dynamics of the
measurement, instead of on their averages, obtaining good results. Another more

77

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

speculative approach uses the hidden Markov model proposed in [14], which allows
for a detailed classification of the measurement results and detection of the decay
processes that the qubit could undergo during the measurement.

In this chapter, a novel semi-unsupervised machine learning classification method
based on autoencoder pre-training applied to the heterodyne readout signal of a
superconducting qubit [109, 119] (See Sec. 2.4) is presented. As mentioned in
Chapter 4, autoencoders are a type of artificial neural network designed to encode
efficiently a set of data by learning how to regenerate them from a synthetic en-
coded representation [120, 121]. The encoding process automatically isolates the
most relevant and representative features of the input dataset, i.e. those features
which allow for the most faithful reconstruction of input data while neglecting noise
and non-relevant details [122, 123]. Hence, this method exploits this characteristic
of autoencoders and performs data classification not on the readout signals or on
their time average, but on their encoded representation produced by autoencoder
training. In this chapter, the performance of this method is presented, together
with a comparison with the other most common classification method. It is shown
how this method can enhance the state classification of readout signals, especially
for short readout times where other more traditional methods have worse per-
formance and, in general, shows a more stable performance for a broad range of
measurement time lengths. Clearly, the most significant improvements are ob-
tained with a combination of hardware and software improvements, as obtained
by the authors in Ref. [124], however, in this dissertation, the focus will be only
on software improvement on present machines.

6.2 Heterodyne readout of transmon qubit

We consider a transmon-type qubit coupled to a detuned resonator (i.e. a quantum
harmonic oscillator) in the context of a strong projective dispersive measurement
scheme [110, 12]. Due to the qubit interaction, the readout resonator undergoes a
frequency shift whose value depends on the qubit state. This dependency can be
exploited to perform measurements of the qubit state in the dispersive regime i.e.
when the detuning of qubit and resonator is large relative to their mutual coupling
strength [125]. Once the resonator is irradiated with a specific microwave pulse,
the registered transmitted signal will incorporate different amplitude and phase
shifts based on the qubit’s state. The demodulation procedure can extract such
information from the signal, discriminating between qubit states.

Our setup consists of a superconducting qubit controlled by the Quantum Or-
chestration Platform (QOP) programming environment (Q.M Technologies Ltd.)
through the QUA programming language based on python [126]. In this setup,
a signal of amplitude A and frequency ωr is sent into the readout resonator. In

78

6.2. HETERODYNE READOUT OF TRANSMON QUBIT

Figure 6.1: Pictorial representation of qubit readout data. Panel a Example of in-
phase, I(t), and quadrature, Q(t), components of heterodyned signal of a single shot
obtained via sliced demodulation (as described in Sec.6.3). The average of these signals
is a single point in the I-Q plane below. Panel b Example of the whole dataset. Each
point is the time average of a measurement represented in the I-Q plane for qubit states
0,1, and 2. The lines represent the 2D Gaussian contour plot (see Sec. 6.4) for the 3
Gaussian distribution. The dotted red-yellow line is an example of a measurement signal
represented in the I-Q plane. The colors represent the time evolution (in nanoseconds).

interacting with the system, this signal is modulated by the resonator’s response.
The output signal is then filtered, amplified, and down-converted to an interme-
diate frequency ωIF = ωr − ωLO through a signal mixer, with ωLO the frequency
of the local oscillator (an electronic component needed by the mixer to change
signals frequency). Finally, it has to be demodulated to extract information about
the qubit state that the readout signal acquired in the interaction. To do this we
recall the demodulation equations 2.52 defined in Sec. 2.4 i.e.:

I =
1

Tm

∫ Tm

0

r(τ) cos(ωIF τ)dτ (6.1)

Q = − 1

Tm

∫ Tm

0

r(τ) sin(ωIF τ)dτ, (6.2)

where the readout signal is denoted by r(τ) and Tm is the integration time.

79

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

This will be denoted full demodulation because it is performed by integrating
over time intervals Tm and returns a single value for the I and Q components for
each qubit readout signal. In this way, each measurement can be represented as a
point in the I-Q plane. Thanks to the qubit state-dependent frequency shift, these
points will accumulate in different zones of the I-Q plane. An example is displayed
in panel (b) of Fig. 6.1 where the points for a three-level qutrit are reported.

(a) In-phase, I(t) signals (b) Quadrature, Q(t) singals

Figure 6.2: Average readout trajectories for state |0⟩ and |1⟩ in both quadrature. Solid
lines represent the mean of all trajectories in the data set for state |0⟩ (blue) and state
|1⟩ (orange). The shaded regions represent the standard deviation of the average for
each timestep. The dashed line instead represents an example of a single trajectory.

However, an alternative approach can be employed. This is denoted sliced
demodulation and it collect the digitalized I(t) and Q(t) signals (See Eq (2.54)) so
it retains ”slices” of the full demodulation. In this way, instead of having a single
point (I,Q) we have the full dynamics of the measurement (I(t), Q(t)).

From the practical point of view, each measurement is obtained by preparing
the device in states (e.g. |0⟩ or |1⟩) and then by measuring it immediately, storing
the obtained signals. The selection of the time windows ∆t for the sliced demodu-
lation requires careful consideration. The demodulation time-step ∆t should span
an integer number of periods of the readout signal to avoid imprecise demodu-
lation. The frequency of the readout signal is ωIF = 60 MHz, so its period is
1/ωIF ≈ 16 ns. For this reason, in this work, we took a time window ∆t = 16 ns.
Hence, each readout signals (I(t), Q(t)) have a point every 16 ns. The length of the
measurement, Tm is also an essential parameter. Here we choose to consider mea-
surements of increasing length starting from 800 ns up to 8000 ns, corresponding
to discrete signals whose number of elements spans from 50 to 500, to study the
efficiency of the classification methods in different configurations. The collection
of I(t) and Q(t) signals are then smoothed with a window smoothing algorithm
with a Hanning window of 50 timestep length to remove some noise.

80

6.3. MODEL: NEURAL NETWORK WITH AUTOENCODER TYPE
PRE-TRAINING

In Fig. 6.1, panel (a), the I(t) and Q(t) signals of a single readout signal
are represented as examples. Averaging these signals we obtain a single point in
the I-Q plane as represented in the panel (b). The red-yellow line in panel (b)
represents the I(t) and Q(t) signals plotted together as a trajectory (state-path
trajectory). The color gradient represents time. In Fig. 6.2, instead, the average
signals ⟨I(t)⟩⟩ and ⟨Q(t)⟩ (solid lines) are reported together with the standard
deviation for each timestep (shaded range). The same graph also shows individual
readout signals (dashed lines). As can be seen, the machine’s noise is high as the
standard deviation zones heavily overlap. One of the aims of this work, however,
is to show how the proposed method can deal with this noise and improve, in any
case, the classification of the measures.

In principle, the sliced demodulation should retain information that otherwise
is lost in the averaging process of the full demodulation. This information will be
exploited in this work to increase state detection accuracy. Usually, in full demod-
ulation, the readout accuracy is adjusted and maximized by tuning the readout
length, i.e. the demodulation integration time Tm. The aim is to obtain clouds of
points (as in Fig. 6.1) with a distribution that is as Gaussian as possible to use the
Gaussian Mixture Model to perform the classification. In fact, short integration
times produce poorly distinguishable states, while for long times, the qubit states
tend to decay during the measurement, which produces a non-Gaussian data dis-
tribution and, again, low classification accuracy. In contrast to full demodulation,
sliced demodulation retains more information about the qubit state measurements
and, in principle, allows for increased accuracy of the state classification. More-
over, as will be observed in this work, it reduces the dependence of the classification
result on Tm since the data do not need to be Gaussian distributed.

It should be mentioned that data preparation is not error-free. Indeed, it may
happen that, due to control errors or environmental coupling, the state (|0⟩,|1⟩
or |2⟩) that is expected is not actually prepared. There will therefore be cases in
which a state, although labeled with a certain state, actually belong to another
one. So the classification will not be 100% accurate even with very sofisticated
method because the device, and hence the dataset, suffers from this flaw.

6.3 Model: Neural Network with Autoencoder

type Pre-training

In this work, we propose a classification model based on a neural network with
an autoencoder pre-training which we denote ”PreTraNN ”. It is composed of two
sections.

81

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

The first section consists of an encoder fθe whose parameters θe are pre-trained
in advance as an autoencoder over the input dataset. The encoder consists of
two layers with L1 and L2 neurons and a third layer, the latent layer, with LH
neurons. The decoder gθd necessary for the pre-training has the same structure
as the encoder but is in reverse order. Given a input of dimension d, we always
set L1 = 3

4
d, L2 = 2

4
d and LH = 1

4
d. The activation functions are the sigmoid

for the first layer of the encoder (and the last layer of the decoder) and the tanh
function for all the internal layers. The choice of internal layer size is explained in
Appendix C.1.1 while the complete specifications of the autoencoder are reported
in Appendix C.2.

The second section is a feed-forward neural network, Nϕ, dependent on a set of
parameters ϕ which works as a classifier taking as inputs the feature-vector of the
encoder and, as outputs, the exact labels of the readout signals. It is composed of
two hidden layers with LN1 and LN2 neurons, respectively, and an output layer with
a number of neurons equal to the number of data classes. Given d the dimension
of the input, we set LN1 = 2d and LN2 = d. The activation functions are tanh
for the internal layers and the softmax for the last layer, commonly employed for
classification purposes.

The assignment of the label yi to a qubit readout signal xi(t) works as follows:

1. The discrete signal xi is flattened by stacking the I and Q components in a
single one-dimensional vector, i.e Xi = [xiI ,x

i
Q] so it can be plugged into the

neural network.

2. The inputXi is transformed in the feature-vector hi via the encoder function,
i.e. hi = fθe(X

i).

3. The feature-vector hi is plugged into the feed-forward neural network Nϕ to
be assigned to one out of the three classes. Formally, Nϕ(h

i) = ŷi where ŷi

is the predicted label for the input Xi.

A pictorial representation of the PreTraNN classification working principle is dis-
played in Fig. 6.3.

Training

The training is performed separately for the two sections that compose the Pre-
TraNN model.

The autoencoder is trained first. The dataset is composed by inputs xi with
i = 1, 2, ...,M , representing the 2D trajectories in the I-Q plane. The neural
network architecture requires a one-dimensional vector input so xi need to be
flattened, stacking the I and the Q components in a single one-dimensional vector.

82

6.3. MODEL: NEURAL NETWORK WITH AUTOENCODER TYPE
PRE-TRAINING

Figure 6.3: Pictorial representation of the working principle and the architecture of the
PreTraNN method described in Sec. 6.3. Section 1 : Example of the measurement signal
x(t) we want to classify with PreTraNN. Section 2 : The input x(t)i is flattened to obtain
Xi, plugged into the encoder, previously trained as an autoencoder, and transformed
into its encoded representation hi. Section 3 : The latent layer of the encoder,hi is
passed into a feed-forward neural network trained to assign the label ŷi.

So we compose a new dataset of Xi = [xiI x
i
Q]. The parameters θ = [θe, θd] of the

autoencoder Aθ(x
i) = gθd(fθe(X

i)) are trained by minimizing Eq. (4.2) where we
choose as loss function l the mean square error

l =
1

d

d∑
t=1

(
X i[t]− X̂ i[t]

)2
, (6.3)

with d the length of the input data Xi and X̂i = Aθ(X
i) the reconstructed input.

In a second step, the neural network Nϕ is trained taking as inputs the feature-
vectors hi of the encoder fθe and, as output, the real labels y

i of the corresponding
xi(t). The optimal network’s parameters ϕ are obtained by minimizing Eq. (4.1)
where the loss function l is chosen to be the cross entropy loss function, widely
used in classification.

83

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

Figure 6.4: Pictorial representation of PreTraNN training described in Sec. 6.3. Section
1 : The autoencoder is trained to reconstruct the measurement signals. This should train
the network to extract the relevant features from each temporal chunk. Section 2 : After
the training, the decoder part of the network is removed, and the encoded representation
of data (represented in the plot at the top right) is used as the train input dataset for
the second section of the PreTraNN model which is trained to classify them into the
correct class yi

A pictorial explanation of the PreTraNN training procedure is depicted in
Fig. 6.4 while a complete specification of the autoencoder structure is reported in
Appendix C.2.

Note that although the use of the term ’pre-training’, PreTraNN is not a pre-
trained model in the general sense. We do not use a bulk neural network pre-
trained on a vast quantity of data, attaching to it new layers which are then trained
on our specific classification problem. In PreTraNN model, we take as “pre-trained
neural network” the encoder part of an autoencoder that was previously trained
over our specific readout data.

84

6.4. STANDARD METHODS AND METRICS

6.4 Standard Methods and Metrics

The result of the proposed PreTraNN model are compared with two state-of-the-
art methods introduced above: the Gaussian mixture model (GMM) and a simple
feed-forward neural network (FFNN).

The GMM is trained directly on I-Q points, averages of the readout signal.
The FFNN is, instead, trained over the readout signals dataset, taking as

input the flattened vectors Xi = [xiI ,x
i
Q] and, as outputs, their labels yi. The

architecture of the FFNN consists of two inner layers of dimension LFF1 = 2d
and LFF2 = d, with d the input dimension, and an output layer. The activation
functions are the tanh for the internal layer and the softmax for the output layer.
The structure of the FFNN is the same as the second section of the PreTraNN.
The only difference is that while the PreTraNN neural network takes as input the
readout signal encoded in the latent space, the hi vector, the FFNN takes directly
the signals Xi.

6.4.1 Metrics

To measure the accuracy of the classification systems, we utilize the ”classification
accuracy”, i.e. the probability that each signal is attributed to the correct label
(i.e. the correct state of the qubit). This classification is obtained as a percentage
of correctly attributed signals out of their total number (for each state). The global
accuracy is the average of the accuracies of each state.

6.4.2 Datasets

As already mentioned, two versions of the same dataset are used in this work. Each
measurement is a two-dimensional xi(t) = [I i(t), Qi(t)] trajectory that, flattened
to form the Xi inputs (See Sec. 6.3), will form the dataset for the PreTraNN and
FFNN. The dataset for the GMM, on the other hand, is obtained by time-averaging
each xi(t) measurement so as to obtain two values that can be represented in I-Q
space (an example of which is shown in panel (b) Fig. 6.1). The dataset is then
shuffled and split into train and test datasets in a 75% - 25% proportion.

The size of the dataset impacts the accuracy of the method and needs some
consideration to avoid under-fitting or unnecessarily long training times. Such
considerations are drawn in Appendix C.1.2.

We emphasize that the readout data all come from the same device. Although
it may be interesting to study a multi-device classification system, in general, dif-
ferent devices may show differences in the average behavior of readout trajectories,
due to construction or control differences. This clearly makes the training more
challenging and it could spoil the results.

85

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

6.5 Results

The purpose of this section is to demonstrate how the feature extraction capability
of the autoencoder helps improve the effectiveness of qubit readout. So, specifically,
how the PreTraNN method performs better than other commonly used methods
for readout, namely GMM and a simple FFNN. In this section, PreTraNN and
the benchmark methods are compared in terms of classification accuracy and their
overall performance is studied.

In addition, to deepen the analysis, the application of the models is extended
to two readout configurations. The first is the readout of the usual two-level qubit
and the second is the readout of a three-level qutrit. This analysis will give an
idea of the good scalability of PreTraNN for multiple levels readout.

6.5.1 Two-state qubit readout

In this case, the qubit is prepared and immediately measured in state |0⟩ and |1⟩.
The dataset consists of 16000 readout signals (8000 for each state) and it is split
into train and test subsets in 75%/25% proportions. Consideration on the choice
of the dataset are drawn in Appendix C.1.2. The PreTraNN, FFNN and GMM
setup is the one defined in Sec. 6.3 and Sec. 6.4.

Classification accuracy

We start by showing our results for the classification accuracy of the three methods
for increasing measurement length Tm to compare their performance in different
cases. All experiments are computed 10 times and averaged. We report the state
classification accuracy for each state separately in Fig. 6.5 and the global classifi-
cation between state |0⟩ and |1⟩ in Fig. 6.6.

86

6.5. RESULTS

(a) Upper panel : Classification accuracy for state |0⟩ by the three methods as a function of the
measurement time. Lower panel : a zoom on the 2400-8000 ns part of the plot.

(b) Upper panel : Classification accuracy for state |1⟩ of the three methods as a function of the
measurement time. Lower panel : a zoom on the 2400-8000 ns part of the plot.

Figure 6.5: Classification accuracy comparison, for state |0⟩ and |1⟩ separately, between
Gaussian Mixture Model (GMM), the simple feed-forward neural network (FFNN) and
the PreTraNN method . The readout time Tm spans from 800 ns to 8000 ns.

We start by considering Fig. 6.5. In the upper figure, the classification ac-
curacy of |0⟩ state for the three models as a function of measurement length is
shown, in the lower figure, the same information is reported but for |1⟩ state.
First of all, it can be noted that, for short measurements, all models deteriorate
their performance. This behavior should be attributed to the fact that, for short
measurement times, the points distributions heavily overlap, preventing all meth-
ods, and especially GMM, from fitting them appropriately with two Gaussians

87

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

(see Fig. 6.7 for an illustrative example). For middle and long measurement times,
instead, the GMM performs, respectively, better and worse for state |0⟩ and state
|1⟩ than the other two methods. Moreover, the state |0⟩ classification accuracy
remains high and stable for long measurements, while that of state |1⟩ presents
a descending trend at longer times. This behavior has a simple explanation: the
pure qubit excited state (e.g. the |1⟩ state) have leakage to the ground state (the
|0⟩ state) at a much higher rate than the opposite direction. As a consequence,
there is an asymmetry in the data points distributions. This results in states pre-
pared as |1⟩ to be spotted on state |0⟩ distribution due to the decay process, while
the reverse is much more unlikely. Therefore the GMM, fitting the distribution
with two Gaussians, can not handle this asymmetry performing very differently in
the two cases. The number of signals decaying during the measurement procedure
increase with the measurement time and, in fact, the accuracy of state |1⟩ drops
for long times. Instead, FFNN has a fluctuating trend, and it performs often worse
than GMM. We can speculate that this behavior derives from the fact that, for
very large inputs, the training is more difficult, and a simple FFNN does not con-
verge adequately. This suggests that FFNN is not completely adequate for this
purpose. On the contrary, the PreTraNN method shows very stable behavior for
both states even for long measurement times. It not only uses all the ”histoy” of
the measurements but also exploit the feature extraction of the autoencoder.

Figure 6.6: Global classification accuracy between state |0⟩ and |1⟩ for increasing mea-
surement time Tm. The accuracy obtained with PreTraNN method is higher (or at most
equal) to the ones obtained with GMM and FFNN.

In Fig. 6.6, the global discrimination accuracy between state |0⟩ and |1⟩ is

88

6.5. RESULTS

reported. It is obtained averaging the accuracies of |0⟩ and |1⟩ states. In this global
case, the PreTraNN method outperforms the GMM and the FFNN methods for
every measurement time (except for a measurement time of 3200 ns where GMM’s
an PreTraNN’s accuracies coincide). The considerations of the previous case also
apply here.

It can also be noted that GMM accuracy has a global maximum at 3200 ns.
As mentioned before, for the GMM to work well, the distribution of I-Q points for
each qubit state must be as ”Gaussian” and distinguishable as possible. It happens
that, for short measurement times, the points distributions overlap since the qubit-
resonator response is still in a transient state, while, for long times, decaying
processes come into play which makes the distribution skewed. Therefore, we can
deduce that the length of 3200 ns produces the least overlapping distributions
that allow the GMM to reach the greatest accuracy. This measurement time is
therefore the one that should be set for the readout in case of GMM use. The
PreTraNN method makes the need for this adjustment less strict since it works
well for a larger interval of the experimental parameters Tm. In general, it can be
seen that, in PreTraNN method, the classification accuracy is only increasing or
constant. As a consequence, the trimming is faster and easier since the need of
finding the maximum accuracy is removed.

We want also to stress that in other works, such as Ref. [115], the readout
accuracy may be greater than the one reported here. As described above, the
machine used for this work has a certain level of error in preparing state |1⟩. This,
however, is of secondary importance since the purpose of the present work was not
to present new hardware over-performing the current state-of-the-art one, but only
to propose a method to improve readout in the present machines. Thus, interest
was primarily focused on improving the performance of a given machine from the
software point of view.

The classification obtained with PreTraNN, not only improves the classification
accuracy but also better reproduces the actual distribution of data. In Fig. 6.7 the
comparison of the GMM and PreTraNN labeling result on data with different read-
out times is reported. The labeling for the FFNN is similar to the PreTraNN one,
so it was omitted for clarity purposes. The first column shows data with the actual
labels (represented by colors) as they were prepared in the quantum device. The
second and third columns, instead, represent the same data but labeled according
to GMM and PreTraNN, respectively. The same analysis is performed for short,
medium and long times (rows of the figure). As anticipated, we conclude again
that the GMM misses the classification for short times, dividing simply in half
the overlapping distributions, while the PreTraNN provides a considerably more
realistic and accurate classification. The two distributions of points overlapping

89

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

Figure 6.7: Pictorial representation of the dataset with exact, GMM’s and PreTraNN’s
labeling. Each point is the time average of the I(t) and Q(t) signals. The actual label,
i.e. the prepared state, is represented in the first column. The GMM and PreTraNN
methods labels are represented in the second and third columns.

can now be spotted again.

The exact labels show the asymmetry in the data distribution due to the decay
of the excited state: many |1⟩-labeled points lay in |0⟩ distribution. The compar-
ison between the labels highlights that there are many points belonging to state
|1⟩ that even PreTraNN fails to recognize. Probably many of those points result
from the imperfect calibration of the π-pulse used to prepare the state |1⟩ on the
machine.

Another important measure to take into account is the confusion matrix, which
helps to visualize the classification performances of the three methods in compari-
son. In Fig. 6.8 are reported the confusion matrices for the three methods in three
different measurement length setups. Each row reports the confusion matrices of

90

6.5. RESULTS

the three models for a specific measurement length. Clearly, the best confusion
matrices are those obtained for long times and with PreTraNN model.

Figure 6.8: Confusion matrices for classification between states |0⟩ and |1⟩ for the three
methods for short, medium and long readout times.

Computational cost and scaling

The higher structural complexity of the PreTraNN architecture means training
and classification times longer than those required by GMM. In the following, we
report the results together with some consideration on the scaling of the method.

The training for every neural network is performed with the ”early stopping”
approach to avoid over- or under-fitting. Instead of fixing the number of epochs,
the training is stopped when the accuracy of the model does not increase for two
epochs in a row. In Fig. 6.9 the results are reported. The upper table shows the
training time of each model with respect to the readout length Tm for a 16000
elements dataset. The lower table, instead, shows the average time for a single
input classification for each method. In both cases, the times are represented in

91

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

input batch size 1 100 10000
Classif. time
PreTraNN [s]

0.04200 0.04300 0.22400

Classif. time
GMM [s]

0.00012 0.00013 0.00043

Table 6.1: Classification times for PreTraNN and GMM as a func-
tion of inputs batch size. Every reported time is the result of an
average of 100 experiments. The FFNN method is not reported
because its behavior follows PreTraNN’s.

logarithmic scale to better spot possible trends. Times are reported in seconds
and refer to a mid-range laptop computer with 4 cores and 8 GB of RAM.

Considering the training time, it can be noted that the PreTraNN method
takes a significantly longer time than the parameter estimation for GMM (from
2 to 3 orders of magnitude) but not much more than the FFNN, despite the two
training stages of the PreTraNN. As one might expect, the training time of non-
GMM methods increases as the inputs measurement time increases. In fact, long
measurement times correspond to wider neural networks and, therefore, longer
optimizations.

From the classification time point of view, we see that the times of the Pre-
TraNN to label a single data (0.039 and 0.042 seconds, respectively) are almost
equal and much longer than GMM’s (0.00013 seconds). Moreover, for each method,
the classification time does not depend on the measurement length.

It is important to specify that the classification time of an inputs batch of size
S is not S times the classification time of a single input. We report the actual
classification times as a function of batch size in Tab. 6.1.

Based on this data, some considerations can be made. First of all, we can
assert that the training for PreTraNN and FFNN remains easily manageable by
any computer, even for the longest measurement times. In fact, the training
times, although much larger than the GMM, remain very small in absolute value.
In general, the training process is not a problem since is done in advance.

Instead, more careful considerations are needed on the classification time side.
If only an offline classification is needed, there are no stringent time constraints,
and the model could be considered fast enough for some applications. If one
instead needs a real-time or online readout on the machine, the classification times
must be below the qubit lifetime. Since state-of-the-art superconducting transmon
qubits have a lifetime of 200-500 microseconds [127, 128], in principle, we want
a classification time that is well below these values, possibly on the order of tens
or hundreds of nanoseconds. For this goal, neither the GMM nor PreTraNN have

92

6.5. RESULTS

Figure 6.9: Training and classification times for GMM, FFNN and PreTraNN methods.
The times are reported in seconds for a middle-range laptop computer. Upper panel :
Training time in function of the measurement time (i.e. the length of the inputs). Lower
panel : Classification time. The average time is 0.00013 seconds for GMM, 0.039 seconds
for FNN and 0.037 seconds for PreTraNN.

the necessary characteristics, under the conditions used in this work. Of course,
the use of more powerful computers, might be reduced the classification time by a
few orders of magnitude. Moreover, an FPGA or an ASIC implementation could
improve even more the efficiency of the classification step or also improve the
training process by implementing it in an online way. See Ref. [129, 130, 131,
132].

In general, the ability to perform short-time measurement classification (with
higher accuracy) is of great interest in quantum computing. The proposed ap-
proach allows for a good accuracy for short measurements compared to GMM.
This can be exploited for real-time control systems, e.g., quantum orchestration
platforms, leading to measurement speed-up or reducing computational time in
error correction routines. Attention must be paid to the classification speed of the
system. However, the longer time required to perform classification can be com-
pensated, at least partially, by shorter measurements (as short as 1000 ns) than
those of the GMM (4000 ns) while achieving the same classification accuracy. The
PreTraNN performs well regardless of readout time, allowing one to potentially

93

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

skip the readout time Tm trimming. Moreover, this method can be utilized for
standard two-level qubits or, conversely, extended to arbitrary numbers of levels
or qubits with slight modifications in its structure and by simply using different
datasets. All this considered, the proposed method offers a promising approach to
exploit short measurements that disturb the device as little as possible with less
computational effort.

6.5.2 Three-state qutrit

In this case study, we exploit the possibility of accessing the higher quantum
levels of superconducting qubits. We prepare and measure the qubit in |0⟩,|1⟩
and |2⟩ state and store the obtained data. The whole dataset consists of 24000
elements (8000 for each state) divided into 75% train data and 25% test data. The
architecture of the models is the same as in the previous case (and as defined in
Sec. 6.3 and Sec. 6.4). The only difference between the two cases is the number
of classes in the dataset. This allows to show the good scaling properties of the
model.

Figure 6.10: Global classification accuracy for |0⟩,|1⟩ and |2⟩ states classification for a
qutrit.

Classification accuracy

In Fig. 6.10 the results for the global accuracy are presented. The PreTraNN
method achieves better classification performance for every measurement time.

94

6.5. RESULTS

Again the GMM accuracy presents an increasing and decreasing trend with a
maximum located at 4000 ns, while the FFNN, notwithstanding a reduction in
the fluctuating trend, obtains a lower classification accuracy than the other two
methods possibly due to training difficulties for high dimensional datasets. The
PreTraNN instead presents a stable accuracy as a function of measurement time.

In Fig. 6.11a,6.11b,6.11c we show the classification accuracy for, respectively,
state |0⟩,|1⟩ and |2⟩. The lower panel of each figure is a zoom on the 2400-8000
ns part of the plot to better see the details. Even in this configuration, we can
see the same trends as in the 2-level case. All methods show bad results for short
times, especially GMM, and the FFNN still exhibits a seesaw pattern that makes
it poorly suited to the task. Again, GMM performs better than PreTraNN in state
|0⟩ and worse in state |1⟩ classification due to the data distribution asymmetry.
For state |2⟩ the difference between GMM and PrTranNN is even higher since the
state |2⟩ can decay not only on the state |0⟩ but also on state |1⟩.

We can also study the performances of PreTraNN as a function of the number
of qudit levels. This will show us of how the method scales with the number of
points clouds. To achieve this, we compute the difference in percentage points
(p.p.) between the global classification accuracy of the PreTraNN and that of the
other methods. In Fig. 6.12 the difference in (p.p.) between the PreTraNN global
accuracy and GMM’s global accuracy for the two and three-level cases for every
measurement time Tm is reported. The lower panel zooms on the middle and long
times range. The average values for all Tm are highlighted on the right panels. An
increasing value of this difference, as the system levels increase, suggests a possible
increasing advantage in using the PreTraNN method for increasing system levels.
In this case, we see that this trend can be clearly seen. Fig. 6.13 reports the same
calculation referred to FFNN method. Here, the trend is also clear for both the
whole set of measurement times and the medium-long range.

95

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

(a) Upper panel : State |0⟩ classification accuracy for the
three methods as a function of the measurement time in
the case of a qutrit. Lower panel : zoom on the medium-
long times.

(b) Upper panel : State |1⟩ classification accuracy for the
three methods as a function of the measurement time in
the case of a qutrit. Lower panel : zoom on the medium-
long times.

(c) Upper panel : State |2⟩ classification accuracy for the
three methods as a function of the measurement time.
Lower panel : zoom on the medium-long times.

96

6.5. RESULTS

Figure 6.12: Difference in percentage points [p.p.] between the accuracy of PreTraNN
and GMM for the qubit and qutrit cases for different measurement time Tm. The lower
panel reports the analysis only for medium-long times. The small panels on the right
show the average of all values of the respective plot on the left.

Figure 6.13: Difference in percentage points [p.p.] between the accuracy of PreTraNN
and FFNN for the 2 or 3 qubit state case. The lower panel reports the analysis only
for medium-long times. The small panels on the right show the average value of the
respective plot on the left.

This analysis suggests the existence of a marginal increase in the effectiveness of
PreTraNN compared to the other two methods as the classes of the dataset increase

97

CHAPTER 6. QUBIT READOUT WITH AUTOENCODERS

(i.e., as the dataset complexity rises). In other words, the difference in the global
classification accuracy between PreTraNN and GMM or between PreTraNN and
FFNN is bigger, on average, in the case of the three classes dataset, corresponding
to qutrit readout data.

This analysis, although limited to 2 and 3 classes problem, suggests that the
PreTraNN method should scale well as the qudit dimension increase. We can
assume that it also scales well with the number of qubits since it also reduces to a
multiclass dataset, but further analysis to better characterize the performance is
needed.

Furthermore, PreTraNN requires only minimal structural modifications for dif-
ferent qudit dimensions. One only needs to adjust the number of output nodes
in the last stage of the network and use an appropriate dataset with a different
number of classes. While the training times rise due to the increased dataset size
(training time grows linearly with the dataset dimension), the classification time
remains the same as the previous 2-state case.

6.6 Conclusion

In this chapter, it has been shown that a feed-forward neural network with au-
toencoder pre-training allows a robust qubit readout classification scheme with
high accuracy and low dependence on the experimental device feature values. It
allows for a consistent classification performance even for short readout times, un-
like the more traditional schemes affected by overlapping measurement results. It
obtains good results also for longer measurement time where GMM method de-
crease its efficiency due to energy relaxation processes and a simple feed-forward
neural network becomes difficult to train properly resulting in fluctuating results.

In addition, the proposed method allows for good classification on shorter mea-
sures, achieving a measurement speedup. More importantly, this measurement
speedup is helpful for real-time control systems, e.g., quantum orchestration plat-
forms or quantum error correction, where we need to disturb the system as little
as possible.

In general, it was shown that the proposed method performs well for all mea-
surement times, helping in increasing classification results from a software point
of view. On the other side, the classification times for a single measure are higher
than standard methods but can be improved with more optimized FPGA and
ASIC implementations. Lastly, the proposed approach can be readily extended
to an arbitrary number of states (or, possibly, a number of qubits) with minimal
modification of the model structure and obtaining marginally increasing perfor-
mances.

98

Conclusions

In this thesis, we presented strategies for machine-aware improvement of present
NISQ quantum computers based on superconducting qubits. We focused on im-
provements related to two quantum computing requirements that we can identify
with two of Di Vinceno’s six quantum computing criteria.

First, we described quantum optimal control (QOC) algorithms that allow find-
ing customized pulses that transform the state of qubits without resorting to deep
circuits based on standard gates. This can be identified as the fourth criterion.
In this context, we have also introduced two methods to speed up the genera-
tion of these pulses, the Control Pulse Reconstruction (CPR) method and the Lie
Algebra-based Control Pulse Reconstruction (LA-CPR) method. The general idea
of both is to compute in advance a finite set of controls corresponding to a dis-
cretization of the parameter values of the system, and then to interpolate between
them to extract new controls for new parameter values. The CPR method is based
on a multidimensional interpolation of the controls on the grid of parameters on
which the unit work to be implemented in the quantum computer depends. The
second method, on the other hand, is more general and is based on describing the
propagators as elements of the Lie group SU(n), and the interpolation is done by
training a feed-forward neural network. These methods have been applied to cases
of quantum simulations, in particular the spin dynamics of a two-neutron system,
and it has been shown how the optimal control approaches, extended by pulse re-
construction methods, can be a powerful framework for quantum computations. In
the second part of the paper, however, we address Di Vincenzo’s fifth criterion, i.e.,
how to achieve high-fidelity readout of superconducting qubits. This was done not
by hardware improvements, but by using machine learning methods to improve the
classification of individual readout measurements. The most common classifica-
tion methods based on Gaussian Mixture Model (GMM) and Feed Forward Neural
Networks (FFNN) and a new method based on autoencoder-type pre-training of
a neural network (PreTraNN) were presented. These methods were applied to
the heterodyned readout signals of a three-level transmon qubit (i.e., a ”qutrit”).
In general, the PreTraNN method allows for a robust qubit readout classification
scheme with high accuracy and low dependence on the experimental device feature

99

CONCLUSIONS

values. This improvement can be attributed to the feature extraction capability
of the autoencoder-type pre-training. The comparison was made with FFNN and
GMM methods, which in all cases performed worse than PreTraNN. In general,
the new method is presented as a promising approach to improve the readout of
NISQ computers without hardware modification, but with a highly reconfigurable
algorithm adaptable to a wide range of machines, provided they rely on the same
readout method.

100

Appendix A

Derivation of transmon
Hamiltonian

A.1 Transmon Hamiltonian Derivation

In Sec. 2.2 we introduced the Hamiltonian of a transmon device in Eq.(2.8) and
we gave its representation in terms of the second quantization formalism. This
result is not straightforward and it requires careful manipulation of the equation,
taking into account the non-commutativity of the creation, a†, and annihilation,
a, operators.

We start by defining the creation and annihilation operators of the transmon
in terms of phase and charge zero-point fluctuations:

n = inzpf (a
† − a) with nzpf =

(
EJ

32EC

) 1
4

(A.1)

ϕ = ϕzpf (a
† + a) with ϕzpf =

(
2EC
EJ

) 1
4

. (A.2)

Plugging the just introduced equation and the Taylor expansion of the potential
Eq.(2.9) into Eq.(2.8), we obtain:

H = −4ECn2
zpf (a

† − a)2 − EJ(1−
1

2
ϕ2
zpf (a

† + a)2 (A.3)

+
1

24
ϕ4
zpf (a

† + a)4 + ...). (A.4)

The previous expression can be recast as:

H ≈
√

8ECEJ

(
a†a+

1

2

)
− EJ −

EC
12

(a† + a)4. (A.5)

101

APPENDIX A. DERIVATION OF TRANSMON HAMILTONIAN

Now, the quartic term on the right-hand side has to be carefully considered. Taking
into account that we are in a non-commutative algebra, it becomes:

(a† + a)4 = (a† + a)2(a† + a)2 (A.6)

= (a†a† + a†a+ aa† + aa)(a†a† + a†a+ aa† + aa).

This can be further expanded in :

= a†a†a†a† +

+aa†a†a† + a†aa†a† + a†a†aa† + a†a†a†a+

+a†aa†a+ aa†aa† + a†a†aa+ aaa†a† + a†aaaa† + aa†a†a+

+a†aaa+ aa†aa+ aaa†a+ aaaa† +

+aaaa (A.7)

We use the rotating wave approximation (RWA) consisting in neglecting the rotat-
ing terms (i.e. the one with an unbalanced number of a† and a). This can alterna-
tively be seen as a first-order perturbation theory in which we neglect second-order
terms. In the RWA, Eq. (A.7) reduces to the third row of Eq. (A.7):

≈ a†aa†a+ aa†aa† + a†a†aa+ aaa†a† + a†aaaa† + aa†a†a. (A.8)

Now, recalling that the operators obey the relations:

[a†, a] = 1 ⇒ a†a = aa† + 1 (A.9)

[a, a†] = −1 ⇒ aa† = a†a− 1, (A.10)

we can rewrite each term of Eq.(A.8) as:

a†aa†a = (a†a)2

aa†aa† = (a†a)2 + 2a†a+ 1

a†a†aa = (a†a)2 − a†a
aaa†a† = (a†a)2 + 3a†a+ 2
†aaaa† = (a†a)2 + a†a

aa†a†a = (a†a)2 + a†a

Summing all the terms we finally obtain the desired approximation for the quartic
term, namely:

(a† + a)4 ≈ 6(a†a)2 + 6a†a+ 3. (A.11)

Plugging Eq.(A.11) into the transmon Hamiltonian Eq. (A.5), neglecting constant
terms and fixing the anharmonicity α = −EC , we finally obtain the transmon
Hamiltonian in:

Htr = ω0a
†a+

α

2
a†a(a†a+ 1) (A.12)

102

A.2. TRANSMON-TRANSMON COUPLING HAMILTONIAN TERM

A.2 Transmon-Transmon Coupling Hamiltonian

Term

In Sec. 2.2.3, Eq. (2.15), which considers a capacitive coupling between two
transmons, is transformed into its second quantization representation. The first
term corresponds to the case already discussed in this Appendix A. The second
term, the coupling term, is transformed as follows. Considering again the phase
and charge zero point fluctuation expression of eq. (A.1), and inserting it into the
corresponding term of (2.15), we obtain:

4e2
Cg
C1C2

n1n2 = 4e2
Cg
C1C2

(inzpf)(inzpf)(a
†
1 − a1)(a

†
2 − a2)

−g(a†1 − a1)(a
†
2 − a2), (A.13)

where g = 4e2 Cg

C1C2
n2
zpf . Hence, we obtain the coupling term of Eq.(2.16).

103

APPENDIX A. DERIVATION OF TRANSMON HAMILTONIAN

104

Appendix B

Nuclear Theory

B.1 Spin Dependent Potential in neutron-neutron

potential

We rely on Ref. [94] to obtain the explicit form of A(1)(r) and A
(2)
αβ(r) of the

SD neutron-neutron interaction at LO of chiral EFT in coordinate space given by
Eq.(3.17). They are:

A(1)(r) = C1δR0(r)− Yπ(r)
(
1− e−(r/R0)4

)
, (B.1)

A
(2)
αβ(r) = Tπ(r)

(
3
rαrβ
r2
− δαβ

)(
1− e−(r/R0)4

)
, (B.2)

The SI part instead can be written as VSI = C0δR0(r). In all these expressions, C0

and C1 are experimental constants fit to reproduce some quantity (e.g. the s-wave
nucleon-nucleon phase shifts),

δR0(r) =
1

πΓ(3/4)R3
0

exp{(−r/R0)} (B.3)

is the regulated Dirac function, Yπ(r) is the Yukawa function, i.e.:

Yπ(r) =
m3
π

12π

(
ga
2fπ

)2
exp(−mπr)

mπr
, (B.4)

and

Tπ(r) =

(
1 +

3

mπr
+

3

m2
πr

2

)
Yπ(r) (B.5)

where ga, fπ and mπ are the axial-vector coupling constant, the pion exchange
decay constant and the pion mass.

105

APPENDIX B. NUCLEAR THEORY

106

Appendix C

PreTraNN Scaling

C.1 Numerical Consideration on the Autoencoders

C.1.1 Autoencoder’s latent space dimension

Figure C.1: PreTraNN global classification accuracy for the 3-state case with 2400 ns
readout inputs as a function of the latent space dimension. The higher accuracy is
reached at 1/4 the input dimension.

In the design of the architecture of a neural network, there is no solid the-
oretical guidance. However one might rely on a heuristic and ”trial and error”
attitude based on experience. To make the procedure more quantitative, one can
also vary the structure in an automated way and study how its metrics change ac-
cordingly. In this way, one can identify, within a certain degree of approximation,
the architecture that works best for some specific problem.

In the case of the autoencoder, the main parameter is its latent space size. In
principle, a latent space that is too small is not sufficient to perform expressive
encoding, while too large of a latent space increases the computational cost without

107

APPENDIX C. PRETRANN SCALING

Figure C.2: Autoencoder training loss function as a function of training epochs for
different latent space relative dimensions. Too large latent dimensions (1, 1/1.3 1/2 times
the input size) present a fluctuating behavior and are useless for feature extraction, while
too small latent dimensions do not allow an effective encoding and their loss function
remains high (1/8 and 1/10 the input size).

extracting in a compact way information from the dataset. In the limiting case of
a latent space equal to the input space, the neural network becomes equivalent to
applying an identity to the inputs.

In this appendix, we describe the procedure used in our work to identify the best
autoencoder structure. We took the PreTraNN with trajectories of 2400 ns (150
time-steps of 16 ns, i.e. inputs dimension of 300 values), and trained it for different
values of latent space. We started from a latent dimension equal to the input
dimension and gradually went down to one-tenth of it. The dimension of the other
two inner layers was set linearly interpolating between the size of the input and
latent space. The decoder had the same structure but reversed. Contextually, three
properties of PreTraNN were studied as a function of latent dimension: the global
classification accuracy, the autoencoder training loss and autoencoder training
time. To obtain more consistent results, for each latent dimension the training
was repeated 10 times with different samplings of the dataset and the properties
values was averaged.

In Fig. C.1 the PreTraNN global classification accuracy for decreasing latent
space dimension is reported. The abscissa shows the size of the latent space in
terms of fractions of the input length (so that the information extracted from this
case can be scaled directly to the other input lengths). The greatest accuracy,
moreover with the smallest error bars, is achieved with a latent space whose size is
one-fourth that of the input space. In absolute terms, the classification accuracy
is quite stable for every latent space dimension but an increasing trend from 1 to
1/4 can be clearly spotted.

108

C.1. NUMERICAL CONSIDERATION ON THE AUTOENCODERS

Figure C.3: Autoencoder training time in function of latent space relative dimension.
Clearly larger latent spaces correspond to neural networks with more parameters and
thus longer training times.

In Fig.C.2 the loss function values (mean squared error) during the training of
the autoencoder for different latent space dimensions is represented. For large la-
tent space sizes, the training converges faster for the first epochs but then assumes
a fluctuating trend. For latent spaces that are small (e.g. 1/10, 1/8 the size of
the input), on the other hand, convergence stalls at much higher values of the loss
function. Thus the best values are 1/2, 1/4 and 1/6 of the input length.

In Fig. C.3 the training time in seconds is reported. Clearly, the training time
decreases as the latent space decreases, since the number of network parameters
decreases. A short training time is preferable.

Given this PreTraNN behavior, we can choose the latent space dimension mak-
ing a trade-off between the reported metrics. The value which maximizes the clas-
sification accuracy having at the same time good loss function convergence and
(relatively) short training time is a latent dimension of 1/4 the size of the inputs.
This is the value chosen to carry out the analysis in this work. The dimension of
the 2 internal layers is set linearly interpolating between the latent space and the
input dimensions.

C.1.2 Dataset size and convergence

In order to obtain a good training convergence that maximizes classification accu-
racy an adequate dataset is needed. Small datasets are fast to train but usually
produce inadequate classification accuracies, while large ones have the opposite
behavior. At the same time, the growth of the classification accuracy capability is
marginally decreasing with increasing dataset size. Here we report some analysis
on the behavior of the PreTraNN as a function of the dataset dimension studying
the same three properties introduced in the previous section i.e. loss function,

109

APPENDIX C. PRETRANN SCALING

Figure C.4: Global classification accuracy of the PreTraNN as a function of the number
of dataset elements.

Figure C.5: Autoencoder loss (mean square error) as a function of the epochs for in-
creasing dataset size.

classification accuracy and training time. Even in this case we took the PreTraNN
with 2400 ns measurement signals (150 time-steps of 16 ns, i.e. inputs dimension
of 300 values) with a latent space of 75 neurons, and trained it for different dataset
dimensions. We started from a training dataset of 3000 elements (1000 elements
for each class) and gradually increase its dimension to 60000 elements (with 75%
of them dedicated to training). For each dataset dimension, the training was re-
peated 10 times with different sampling of the dataset and the properties values
were averaged.

In Fig. C.4 the global classification accuracy as a function of the dataset size
is reported. It can be seen that the accuracy increases as the dataset grows even
if with decreasing speed.

Fig. C.5 represents the loss function values (mean squared error) during the
training of the autoencoder for different configurations. The trend is quite neat.

110

C.2. MODELS SPECIFICATIONS

Figure C.6: Training time for increasing dataset dimension.

The larger the dataset the better the convergence, although for large data sets the
convergence becomes more unstable.

In Fig. C.6 the training time in seconds is reported. As expected, the train-
ing time increase linearly with the dataset dimension. A short training time is
preferable.

Given these results, the trade-off between accuracy, loss function, and training
time, in order to maximize effectiveness and minimize cost, was identified in the
24000-item dataset for the three-state case and the 16000-item dataset for two-
state case.

C.2 Models specifications

We report here the complete characterization of the autoencoder, the PreTraNN,
the FFNN and the GMM models and their procedure of training.

In this work, the building and training of the neural network are performed
via the python package Keras [133]. For the GMM instead the sklearn python
package [134].

Autoencoder In every configuration employed in this work, the encoder is com-
posed of an input layer, a first hidden layer and a second hidden layer connected
to the latent layer. The decoder, on the other hand, has the same structure but
is mirrored. So it has a first hidden layer connected to the latent layer, a second
hidden layer and finally an output layer. We employ a full connectivity network
implemented with the Dense layer specification in Keras. In Tab. C.1 all the
information on the network is reported.

The training is performed using the Adam stochastic optimization algorithm
[135] with the standard configuration implemented in Keras. The loss function

111

APPENDIX C. PRETRANN SCALING

Layer Size
Activ.
funct.

Keras
type

Encoder
input L sigmoid Dense
1th hidden L3/4 tanh Dense
2nd hidden L2/4 tanh Dense
latent L/4 tanh Dense

Decoder
1th hidden L2/4 tanh Dense
2nd hidden L3/4 tanh Dense
output L sigmoid Dense

Table C.1: Autoencoder’s specifications. The ”Size” column rep-
resents the number of neurons for each layer in a fraction of the
input dimension L. The ”Keras type” column reports the type of
Keras layer employed.

is the mean square error. The training is performed with the Early Stopping
procedure that stops the training if the loss does not decrease for two epochs in a
row.

FFNN and PreTraNN’s second stage The second stage of the PreTraNN is
a simple feed-forward neural network. It is composed of an input layer (of the same
dimension as the latent layer of the autoencoder), a first hidden layer and a second
hidden layer connected to the output layer. The dimension C of the output layer
depends on the number of classes we are doing the classification with. Hence, C = 2
for qubit classification of Sec. 6.5.1, while C = 3 for qutrit classification of Sec.
6.5.2. The connectivity between the neurons is full. The optimization algorithm
is the Adam. The loss function is the cross-entropy, suitable for classification
purposes. The training is performed with the Early Stopping procedure that stops
the training if the loss does not decrease for two epochs in a row. Other information
is summarized in Tab. C.2. The structure of FFNN model is the same but with
a number of input neurons equal to the dataset dimension instead of the latent
layer dimension.

Gaussian Mixture Model The GMM is implemented with sklearn package
with the standard build-in parameters specifying only the number of classes of the
input dataset.

112

C.3. AUTOENCODER FEATURES

Layer Size
Activ.
funct.

Keras
type

Input L/4 (L) tanh Dense
1th hidden L2/4 (2L) tanh Dense
2nd hidden L/4 (L) tanh Dense
Output C softmax Dense

Table C.2: Structure and specifications of PreTraNN’s second sec-
tion (FFNN) network with Keras. L is the dataset inputs length,
C is the dimension of the output layer which change based on the
number of classes.

C.3 Autoencoder features

In this Appendix, we give examples of the two important autoencoder features:
input regeneration and latent space values. Fig. C.7 shows an example of 3200 ns
(i.e. 400 components) input reconstruction done by the autoencoder. The solid
lines represent the original input (divided into the two quadratures), while the lines
with markers represent the output of the autoencoder, i.e., the regeneration of the
input from its synthetic representation in the latent space of the autoencoder. It
can be seen that the reconstruction is quite faithful to the original.

Figure C.7: An example of input regeneration made by the autoencoder. In both panels,
the solid lines represent the measurement signal divided into its two quadratures, respec-
tively In-phase (I) and In-Quadrature (Q). The lines with markers, instead, represent
the input reconstruction made by the autoencoder.

The latent space representation is presented in Fig. C.8. The thin colored lines

113

APPENDIX C. PRETRANN SCALING

represent the latent space values of different inputs while the thick black line is
the average of such lines. It can be seen that the latent space vectors for the two
states are somewhat different on average. Both have 0 on average but those for |0⟩
have larger fluctuations and a bit of structure. In particular, in both plots specific
points where all the hi vectors follow a definite trend (e.g., the points around 20
and 60 for state |0⟩) can be spotted. These differences are the ones that allow the
increase in classification performance shown in Sec 6.5.

Figure C.8: Representation of latent space of the autoencoder for state |0⟩ (upper) and
|1⟩ state (lower). In both panels, the colored lines are the latent space representation
(i.e. hi vector) of inputs for state |0⟩ or |1⟩. The solid black lines represent instead the
average of these values.

One might wonder how inputs reconstruction varies as the latent representation
varies. To answer this question we can proceed as follows. We use the encoder to
obtain the latent representation of an input, we then vary slightly only one of its
values, and finally, we plug the modified latent vector into the decoder to obtain
its ”reconstruction”. We do this several times by varying slightly the input each
time. Fig. C.9 depicts the result of this procedure. The thick lines represented the
correct reconstruction of an input (divided into I and Q components) while the
thin lines represent the reconstruction for increasing values of the 20th component
of the latent representation. We can see that by slowly varying this value, we
obtain a slowly varying family of reconstructions.

114

C.3. AUTOENCODER FEATURES

Figure C.9: The figure depicts an example of how the input reconstruction varies if a
single value of the latent representation is varied slightly. The upper panel represents
the in-phase component, lower panel the quadrature one. In both panels, the thick
lines are the original ”correct” input reconstruction, and the thin lines represent the
reconstructions obtained by slowly varying a single value of the latent representation. In
both panels, arrows are used to indicate the direction of changes induced by increasing
the latent value.

115

APPENDIX C. PRETRANN SCALING

116

Bibliography

[1] David Kaiser. How the hippies saved physics: science, counterculture, and
the quantum revival. WW Norton & Company, 2011.

[2] David Deutsch. “Quantum theory, the Church–Turing principle and the
universal quantum computer”. In: Proceedings of the Royal Society of Lon-
don. A. Mathematical and Physical Sciences 400 (1985), pp. 117–97.

[3] Richard Phillips Feynman. “Simulating physics with computers”. In: Inter-
national Journal of Theoretical Physics 21 (1999), pp. 467–488.

[4] Seth Lloyd. “Universal Quantum Simulators”. In: Science (New York, N.Y.)
273 (Sept. 1996), pp. 1073–8. doi: 10.1126/science.273.5278.1073.

[5] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. 1994. doi: 10.1109/SFCS.1994.365700.

[6] David DiVincenzo and IBM. “The Physical Implementation of Quantum
Computation”. In: Fortschritte der Physik 48 (Mar. 2000). doi: 10.1002/
1521-3978(200009)48:9/113.0.CO;2-E.

[7] John Preskill. “Quantum Computing in the NISQ era and beyond”. In:
Quantum 2 (Jan. 2018). doi: 10.22331/q-2018-08-06-79.

[8] Matthias Troyer and Uwe-Jens Wiese. “Computational Complexity and
Fundamental Limitations to Fermionic QuantumMonte Carlo Simulations”.
In: Phys. Rev. Lett. 94 (17 May 2005), p. 170201. doi: 10.1103/PhysRevLett.
94.170201. url: https://link.aps.org/doi/10.1103/PhysRevLett.
94.170201.

[9] David J Thouless. The quantum mechanics of many-body systems. Courier
Corporation, 2014.

[10] Andrew Daley et al. “Practical quantum advantage in quantum simulation”.
In: Nature 607 (July 2022), pp. 667–676. doi: 10.1038/s41586- 022-
04940-6.

117

BIBLIOGRAPHY

[11] Jay Gambetta et al. “Quantum trajectory approach to circuit QED: Quan-
tum jumps and the Zeno effect”. In: Phys. Rev. A 77.1 (2008), p. 012112.
doi: 10.1103/PhysRevA.77.012112.

[12] R Bianchetti et al. “Dynamics of dispersive single-qubit readout in circuit
quantum electrodynamics”. In: Phys. Rev. A 80.4 (2009), p. 043840. doi:
10.1103/PhysRevA.80.043840.

[13] Brian Everitt. Finite mixture distributions. Springer Science & Business
Media, 2013. doi: 10.1002/9781118445112.stat06216.

[14] Luis A Martinez, Yaniv J Rosen, and Jonathan L DuBois. “Improving
qubit readout with hidden Markov models”. In: Phys.Rev. A 102.6 (2020),
p. 062426. doi: 10.1103/PhysRevA.102.062426.

[15] Christopher M. Dawson and Micheal A. Nielsen. “The Solovay-Kitaev al-
gorithm”. In: Quant. Info. Compt. 6 (1 Jan. 2006), pp. 81–95. url: https:
//dl.acm.org/doi/10.5555/2011679.2011685#sec-ref.

[16] Tien Trung Pham, Rodney Van Meter, and Clare Horsman. “Optimiza-
tion of the Solovay-Kitaev algorithm”. In: Phys. Rev. A 87 (5 May 2013),
p. 052332. doi: 10.1103/PhysRevA.87.052332. url: https://link.aps.
org/doi/10.1103/PhysRevA.87.052332.

[17] David J Griffiths and Darrell F Schroeter. Introduction to quantum me-
chanics. Cambridge university press, 2018.

[18] Howard M Wiseman and Gerard J Milburn. Quantum measurement and
control. Cambridge university press, 2009.

[19] J. I. Cirac and P. Zoller. “Quantum Computations with Cold Trapped Ions”.
In: Phys. Rev. Lett. 74 (20 May 1995), pp. 4091–4094. doi: 10.1103/
PhysRevLett.74.4091. url: https://link.aps.org/doi/10.1103/
PhysRevLett.74.4091.

[20] D. Leibfried et al. “Quantum dynamics of single trapped ions”. In: Rev.
Mod. Phys. 75 (1 Mar. 2003), pp. 281–324. doi: 10.1103/RevModPhys.75.
281. url: https://link.aps.org/doi/10.1103/RevModPhys.75.281.

[21] R. Blatt and Christian Roos. “Quantum Simulations with Trapped Ions”.
In: Nature Physics 8 (Apr. 2012), pp. 277–284. doi: 10.1038/nphys2252.

[22] R. Hanson, O. Gywat, and D. D. Awschalom. “Room-temperature manip-
ulation and decoherence of a single spin in diamond”. In: Phys. Rev. B
74 (16 Oct. 2006), p. 161203. doi: 10.1103/PhysRevB.74.161203. url:
https://link.aps.org/doi/10.1103/PhysRevB.74.161203.

118

BIBLIOGRAPHY

[23] Jingfu Zhang, Swathi S. Hegde, and Dieter Suter. “Efficient Implementa-
tion of a Quantum Algorithm in a Single Nitrogen-Vacancy Center of Di-
amond”. In: Phys. Rev. Lett. 125 (3 July 2020), p. 030501. doi: 10.1103/
PhysRevLett.125.030501. url: https://link.aps.org/doi/10.1103/
PhysRevLett.125.030501.

[24] A. Imamog¯lu et al. “Quantum Information Processing Using Quantum
Dot Spins and Cavity QED”. In: Phys. Rev. Lett. 83 (20 Sept. 1999),
pp. 4204–4207. doi: 10.1103/PhysRevLett.83.4204. url: https://
link.aps.org/doi/10.1103/PhysRevLett.83.4204.

[25] Jason R. Petta et al. “Coherent Manipulation of Coupled Electron Spins
in Semiconductor Quantum Dots”. In: Science 309 (2005), pp. 2180–2184.
doi: 10.1126/science.1116955.

[26] Bruce E. Kane. “A silicon-based nuclear spin quantum computer”. In: Na-
ture 393 (1998), pp. 133–137. doi: 10.1038/30156.

[27] Rutger Vrijen et al. “Electron-spin-resonance transistors for quantum com-
puting in silicon-germanium heterostructures”. In: Phys. Rev. A 62 (1 June
2000), p. 012306. doi: 10.1103/PhysRevA.62.012306. url: https://
link.aps.org/doi/10.1103/PhysRevA.62.012306.

[28] Immanuel Bloch, Jean Dalibard, andWilhelm Zwerger. “Many-body physics
with ultracold gases”. In: Rev. Mod. Phys. 80 (3 July 2008), pp. 885–964.
doi: 10.1103/RevModPhys.80.885. url: https://link.aps.org/doi/
10.1103/RevModPhys.80.885.

[29] Christian Gross and Immanuel Bloch. “Quantum simulations with ultracold
atoms in optical lattices”. In: Science 357.6355 (2017), pp. 995–1001. doi:
10.1126/science.aal3837.

[30] Emanuel Knill, Raymond Laflamme, and Gerard J. Milburn. “A scheme for
efficient quantum computation with linear optics”. In: Nature 409 (2001),
pp. 46–52. doi: 10.1038/35051009.

[31] Stefanie Barz. In: 48.8 (Mar. 2015), p. 083001. doi: 10.1088/0953-4075/
48/8/083001. url: https://dx.doi.org/10.1088/0953-4075/48/8/
083001.

[32] Philip Krantz et al. “A quantum engineer’s guide to superconducting qubits”.
In: Applied Physics Reviews 6 (June 2019), p. 021318. doi: 10.1063/1.
5089550.

[33] Michel H Devoret and Robert J Schoelkopf. “Superconducting circuits for
quantum information: An outlook”. In: Science 339.6124 (2013), pp. 1169–
1174.

119

BIBLIOGRAPHY

[34] LC Gupta and Manu S Multani. Selected topics in superconductivity. Vol. 1.
World Scientific, 1993.

[35] SE Rasmussen et al. “Superconducting circuit companion—an introduction
with worked examples”. In: PRX Quantum 2.4 (2021), p. 040204.

[36] John M. Martinis and M. Nahum. “Effect of environmental noise on the
accuracy of Coulomb-blockade devices”. In: Phys. Rev. B 48 (24 Dec. 1993),
pp. 18316–18319. doi: 10.1103/PhysRevB.48.18316. url: https://link.
aps.org/doi/10.1103/PhysRevB.48.18316.

[37] A. O. Caldeira and A. J. Leggett. “Influence of Dissipation on Quantum
Tunneling in Macroscopic Systems”. In: Phys. Rev. Lett. 46 (4 Jan. 1981),
pp. 211–214. doi: 10.1103/PhysRevLett.46.211. url: https://link.
aps.org/doi/10.1103/PhysRevLett.46.211.

[38] Anthony J Leggett. “Testing the limits of quantum mechanics: motivation,
state of play, prospects”. In: J. Phys: Condens. Matter 14.15 (2002), R415.
doi: 10.1088/0953-8984/14/15/201.

[39] T. Duty et al. “Coherent dynamics of a Josephson charge qubit”. In: Phys.
Rev. B 69 (14 Apr. 2004), p. 140503. doi: 10.1103/PhysRevB.69.140503.
url: https://link.aps.org/doi/10.1103/PhysRevB.69.140503.

[40] Denis Vion et al. “Manipulating the quantum state of an electrical circuit”.
In: Science 296.5569 (2002), pp. 886–889. doi: 10.1126/science.1069372.

[41] J. Q. You and Franco Nori. “Quantum information processing with super-
conducting qubits in a microwave field”. In: Phys. Rev. B 68 (6 Aug. 2003),
p. 064509. doi: 10.1103/PhysRevB.68.064509. url: https://link.aps.
org/doi/10.1103/PhysRevB.68.064509.

[42] Yasunobu Nakamura, Yu A Pashkin, and JS Tsai. “Coherent control of
macroscopic quantum states in a single-Cooper-pair box”. In: nature 398.6730
(1999), pp. 786–788. doi: 10.1038/19718.

[43] Michael J. Peterer et al. “Coherence and Decay of Higher Energy Levels
of a Superconducting Transmon Qubit”. In: Phys. Rev. Lett. 114 (1 Jan.
2015), p. 010501. doi: 10.1103/PhysRevLett.114.010501. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.114.010501.

[44] Xian Wu et al. “High-Fidelity Software-Defined Quantum Logic on a Su-
perconducting Qudit”. In: Phys. Rev. Lett. 125 (17 Oct. 2020), p. 170502.
doi: 10.1103/PhysRevLett.125.170502. url: https://link.aps.org/
doi/10.1103/PhysRevLett.125.170502.

120

BIBLIOGRAPHY

[45] L Dicarlo et al. “Preparation and Measurement of Three-Qubit Entangle-
ment in a Superconducting Circuit”. In: Nature 467 (Sept. 2010), pp. 574–
8. doi: 10.1038/nature09416.

[46] R. Barends et al. “Coherent Josephson Qubit Suitable for Scalable Quan-
tum Integrated Circuits”. In: Phys. Rev. Lett. 111 (8 Aug. 2013), p. 080502.
doi: 10.1103/PhysRevLett.111.080502. url: https://link.aps.org/
doi/10.1103/PhysRevLett.111.080502.

[47] Martin Sandberg et al. “Tuning the field in a microwave resonator faster
than the photon lifetime”. In: Applied Physics Letters 92 (May 2008),
p. 203501. doi: 10.1063/1.2929367.

[48] Mathieu Pierre et al. “Storage and on-demand release of microwaves us-
ing superconducting resonators with tunable coupling”. In: Applied Physics
Letters 104 (June 2014). doi: 10.1063/1.4882646.

[49] Yi Yin et al. “Catch and Release of Microwave Photon States”. In: Physical
review letters 110 (Mar. 2013), p. 107001. doi: 10.1103/PhysRevLett.110.
107001.

[50] Nissim Ofek et al. “Extending the lifetime of a quantum bit with error
correction in superconducting circuits”. In: Nature 536 (July 2016). doi:
10.1038/nature18949.

[51] Alexandre Blais et al. “Circuit quantum electrodynamics”. In: Reviews of
Modern Physics 93 (May 2021). doi: 10.1103/RevModPhys.93.025005.

[52] Alexandre Blais et al. “Cavity quantum electrodynamics for superconduct-
ing electrical circuits: An architecture for quantum computation”. In: Phys-
ical Review A 69 (Feb. 2004). doi: 10.1103/PhysRevA.69.062320.

[53] Christopher Axline et al. “An architecture for integrating planar and 3D
cQED devices”. In: Applied Physics Letters 109 (July 2016), p. 042601. doi:
10.1063/1.4959241.

[54] Jonas Bylander et al. “Noise spectroscopy through dynamical decoupling
with a superconducting flux qubit”. In: Nature Physics 7 (May 2011),
pp. 565–570. doi: 10.1038/nphys1994.

[55] F. Bloch. “Generalized Theory of Relaxation”. In: Physical Review - PHYS
REV X 105 (Feb. 1957), pp. 1206–1222. doi: 10.1103/PhysRev.105.1206.

[56] A. G. Redfield. “The Theory of Relaxation Processes”. In: IBM Journal of
Research and Development 1 (Feb. 1957), pp. 19–31. doi: 10.1147/rd.11.
0019.

[57] Domenico d’Alessandro. Introduction to quantum control and dynamics.
Chapman and hall/CRC, 2021.

121

BIBLIOGRAPHY

[58] David Goodwin and Ilya Kuprov. “Modified Newton-Raphson GRAPE
methods for optimal control of spin systems”. In: The Journal of Chem-
ical Physics 144 (May 2016), p. 204107. doi: 10.1063/1.4949534.

[59] Katharine W. Moore Tibbetts et al. “Exploring the tradeoff between fidelity
and time optimal control of quantum unitary transformations”. In: Phys.
Rev. A 86 (6 Dec. 2012), p. 062309. doi: 10.1103/PhysRevA.86.062309.
url: https://link.aps.org/doi/10.1103/PhysRevA.86.062309.

[60] Benjamin Rowland and Jonathan Jones. “Implementing quantum logic
gates with gradient ascent pulse engineering: Principles and practicalities”.
In: Philosophical transactions. Series A, Mathematical, physical, and engi-
neering sciences 370 (Oct. 2012), pp. 4636–50. doi: 10.1098/rsta.2011.
0361.

[61] Sophie Shermer and Pierre Fouquieres. “Efficient Algorithms for Optimal
Control of Quantum Dynamics: The”Krotov” Method unencumbered”. In:
New Journal of Physics 13 (July 2011), p. 073029. doi: 10.1088/1367-
2630/13/7/073029.

[62] Jason Dominy and Herschel Rabitz. “Exploring families of quantum con-
trols for generating unitary transformations”. In: Journal of Physics A:
Mathematical and Theoretical 41 (May 2008), p. 205305. doi: 10.1088/
1751-8113/41/20/205305.

[63] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. “Chopped
random-basis quantum optimization”. In: Phys. Rev. A 84 (2 Aug. 2011),
p. 022326. doi: 10.1103/PhysRevA.84.022326. url: https://link.aps.
org/doi/10.1103/PhysRevA.84.022326.

[64] Jens Koch et al. “Charge-insensitive qubit design derived from the Cooper
pair box”. In: Phys. Rev. A 76 (4 Oct. 2007), p. 042319. doi: 10.1103/
PhysRevA.76.042319. url: https://link.aps.org/doi/10.1103/
PhysRevA.76.042319.

[65] Willis E. Lamb and Robert C. Retherford. “Fine Structure of the Hydrogen
Atom by a Microwave Method”. In: Phys. Rev. 72 (3 Aug. 1947), pp. 241–
243. doi: 10.1103/PhysRev.72.241. url: https://link.aps.org/doi/
10.1103/PhysRev.72.241.

[66] A Fragner et al. “Resolving Vacuum Fluctuations in an Electrical Circuit
by Measuring the Lamb Shift”. In: Science (New York, N.Y.) 322 (Dec.
2008), pp. 1357–60. doi: 10.1126/science.1164482.

[67] H. A. Bethe. “The Electromagnetic Shift of Energy Levels”. In: Phys. Rev.
72 (4 Aug. 1947), pp. 339–341. doi: 10.1103/PhysRev.72.339. url:
https://link.aps.org/doi/10.1103/PhysRev.72.339.

122

BIBLIOGRAPHY

[68] James Gubernatis, Naoki Kawashima, and PhilippWerner.Quantum Monte
Carlo Methods. Cambridge University Press, 2016.

[69] J. Carlson et al. “Quantum Monte Carlo methods for nuclear physics”.
In: Rev. Mod. Phys. 87 (3 Sept. 2015), pp. 1067–1118. doi: 10.1103/
RevModPhys.87.1067. url: https://link.aps.org/doi/10.1103/
RevModPhys.87.1067.

[70] James M Haile et al. “Molecular dynamics simulation: elementary meth-
ods”. In: Computers in Physics 7.6 (1993), pp. 625–625.

[71] Simone Montangero, Evenson Montangero, and Evenson. Introduction to
tensor network methods. Springer, 2018.

[72] Liang-Hui Du, J. Q. You, and Lin Tian. “Superconducting circuit probe for
analog quantum simulators”. In: Phys. Rev. A 92 (1 July 2015), p. 012330.
doi: 10.1103/PhysRevA.92.012330. url: https://link.aps.org/doi/
10.1103/PhysRevA.92.012330.

[73] 1-Michael Reiner et al. “Emulating the one-dimensional Fermi-Hubbard
model by a double chain of qubits”. In: Phys. Rev. A 94 (3 Sept. 2016),
p. 032338. doi: 10.1103/PhysRevA.94.032338. url: https://link.aps.
org/doi/10.1103/PhysRevA.94.032338.

[74] Zohreh Davoudi et al. “Towards analog quantum simulations of lattice
gauge theories with trapped ions”. In: Phys. Rev. Res. 2 (2 Apr. 2020),
p. 023015. doi: 10 . 1103 / PhysRevResearch . 2 . 023015. url: https :

//link.aps.org/doi/10.1103/PhysRevResearch.2.023015.

[75] G. Ortiz et al. “Quantum algorithms for fermionic simulations”. In: Phys.
Rev. A 64 (2 July 2001), p. 022319. doi: 10.1103/PhysRevA.64.022319.
url: https://link.aps.org/doi/10.1103/PhysRevA.64.022319.

[76] J. Casanova et al. “Quantum Simulation of Interacting Fermion Lattice
Models in Trapped Ions”. In: Phys. Rev. Lett. 108 (19 May 2012), p. 190502.
doi: 10.1103/PhysRevLett.108.190502. url: https://link.aps.org/
doi/10.1103/PhysRevLett.108.190502.

[77] Valentina Amitrano et al. “Trapped-ion quantum simulation of collective
neutrino oscillations”. In: Phys. Rev. D 107 (2 Jan. 2023), p. 023007. doi:
10.1103/PhysRevD.107.023007. url: https://link.aps.org/doi/10.
1103/PhysRevD.107.023007.

[78] Naomichi Hatano and Masuo Suzuki. “Finding exponential product for-
mulas of higher orders”. In: Quantum annealing and other optimization
methods. Springer, 2005, pp. 37–68.

123

BIBLIOGRAPHY

[79] Benjamin Jones et al. “Optimising trotter-suzuki decompositions for quan-
tum simulation using evolutionary strategies”. In: (July 2019), pp. 1223–
1231. doi: 10.1145/3321707.3321835.

[80] Francesco Tacchino et al. “Quantum computers as universal quantum Sim-
ulators: state-of-the-art and perspectives”. In: Advanced Quantum Tech-
nologies 3.3 (2020), p. 1900052.

[81] Kishor Bharti et al. “Noisy intermediate-scale quantum algorithms”. In:
Rev. Mod. Phys. 94 (1 Feb. 2022), p. 015004. doi: 10.1103/RevModPhys.
94.015004. url: https://link.aps.org/doi/10.1103/RevModPhys.94.
015004.

[82] Michael A Nielsen et al. “The Fermionic canonical commutation relations
and the Jordan-Wigner transform”. In: School of Physical Sciences The
University of Queensland 59 (2005).

[83] Sergey B. Bravyi and Alexei Yu. Kitaev. “Fermionic Quantum Computa-
tion”. In: Annals of Physics 298.1 (2002), pp. 210–226. issn: 0003-4916.
doi: https://doi.org/10.1006/aphy.2002.6254. url: https://www.
sciencedirect.com/science/article/pii/S0003491602962548.

[84] F Verstraete and J I Cirac. “Mapping local Hamiltonians of fermions to
local Hamiltonians of spins”. In: Journal of Statistical Mechanics: Theory
and Experiment 2005.09 (Sept. 2005), P09012. doi: 10.1088/1742-5468/
2005/09/P09012. url: https://dx.doi.org/10.1088/1742-5468/2005/
09/P09012.

[85] C. D. Batista and G. Ortiz. “Algebraic approach to interacting quantum
systems”. In: Advances in Physics 53.1 (2004), pp. 1–82. doi: 10.1080/
00018730310001642086.

[86] Rolando Somma et al. “Quantum Simulations of Physics Problems”. In:
International Journal of Quantum Information 01.02 (2003), pp. 189–206.
doi: 10.1142/S0219749903000140.

[87] Nicolas Sawaya et al. “Resource-efficient digital quantum simulation of d-
level systems for photonic, vibrational, and spin-s Hamiltonians”. In: npj
Quantum Information 6 (Dec. 2020). doi: 10.1038/s41534-020-0278-0.

[88] Farrokh Vatan and Colin Williams. “Optimal quantum circuits for general
two-qubit gates”. In: Phys. Rev. A 69 (3 Mar. 2004), p. 032315. doi: 10.
1103/PhysRevA.69.032315. url: https://link.aps.org/doi/10.1103/
PhysRevA.69.032315.

[89] Eric T Holland et al. “Optimal control for the quantum simulation of nu-
clear dynamics”. In: Phys. Rev. A 101.6 (2020), p. 062307. doi: 10.1103/
PhysRevA.101.062307.

124

BIBLIOGRAPHY

[90] R. Machleidt and D. Entem. “Chiral effective field theory and nuclear
forces”. In: Phys. Rep-rev. Sect. of Phys. Lett. 503 (May 2011). doi: 10.
1016/j.physrep.2011.02.001.

[91] C. D. Goodman et al. “Gamow-Teller Matrix Elements from 0°(p, n) Cross
Sections”. In: Phys. Rev. Lett. 44 (26 June 1980), pp. 1755–1759. doi: 10.
1103/PhysRevLett.44.1755. url: https://link.aps.org/doi/10.
1103/PhysRevLett.44.1755.

[92] W. G. Love and M. A. Franey. “Effective nucleon-nucleon interaction for
scattering at intermediate energies”. In: Phys. Rev. C 24 (3 Sept. 1981),
pp. 1073–1094. doi: 10.1103/PhysRevC.24.1073. url: https://link.
aps.org/doi/10.1103/PhysRevC.24.1073.

[93] A. Gezerlis et al. “Local chiral effective field theory interactions and quan-
tumMonte Carlo applications”. In: Phys. Rev. C 90 (5 Sept. 2014), p. 054323.
doi: 10.1103/PhysRevC.90.054323. url: https://link.aps.org/doi/
10.1103/PhysRevC.90.054323.

[94] I. Tews et al. “Quantum Monte Carlo calculations of neutron matter with
chiral three-body forces”. In: Phys. Rev. C 93 (2 Feb. 2016), p. 024305.
doi: 10.1103/PhysRevC.93.024305. url: https://link.aps.org/doi/
10.1103/PhysRevC.93.024305.

[95] J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP: An open-source
Python framework for the dynamics of open quantum systems. 2012. doi:
https://doi.org/10.1016/j.cpc.2012.02.021. url: https://www.
sciencedirect.com/science/article/pii/S0010465512000835.

[96] J.R. Johansson, P.D. Nation, and Franco Nori. “QuTiP 2: A Python frame-
work for the dynamics of open quantum systems”. In: Computer Physics
Communications 184.4 (2013), pp. 1234–1240. issn: 0010-4655. doi: https:
/ / doi . org / 10 . 1016 / j . cpc . 2012 . 11 . 019. url: https : / / www .

sciencedirect.com/science/article/pii/S0010465512003955.

[97] V Smirnov. “On the estimation of a path integral by means of the saddle
point method”. In: Journal of Physics A: Mathematical and Theoretical 43
(Oct. 2010), p. 465303. doi: 10.1088/1751-8113/43/46/465303.

[98] Douglas A Reynolds. “Gaussian mixture models”. In: Encycl. Biometr.
741.659-663 (2009). doi: 10.1007/978-1-4899-7488-4_196.

[99] Raúl Rojas. Neural networks: a systematic introduction. Springer Science
& Business Media, 2013.

[100] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016. doi: 10.1007/s10710-017-9314-z.

125

BIBLIOGRAPHY

[101] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learn-
ing: A Review and New Perspectives”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 35.8 (2013), pp. 1798–1828. doi: 10.
1109/TPAMI.2013.50.

[102] Ajay Shrestha and Ausif Mahmood. “Review of Deep Learning Algorithms
and Architectures”. In: IEEE Access 7 (2019), pp. 53040–53065. doi: 10.
1109/ACCESS.2019.2912200.

[103] Susanna Kirchhoff et al. “Optimized cross-resonance gate for coupled trans-
mon systems”. In: Phys. Rev. A 97 (4 Apr. 2018), p. 042348. doi: 10.
1103/PhysRevA.97.042348. url: https://link.aps.org/doi/10.1103/
PhysRevA.97.042348.

[104] Michael H Goerz et al. “Charting the circuit QED design landscape using
optimal control theory”. In: npj Quantum Information 3.1 (2017), p. 37.
doi: 10.1038/s41534-017-0036-0.

[105] Matthew Neeley et al. “Emulation of a Quantum Spin with a Supercon-
ducting Phase Qudit”. In: Science 325.5941 (2009), pp. 722–725. doi: 10.
1126/science.1173440.

[106] Howard Georgi and Kannan Jagannathan. Lie Algebras in Particle Physics.
Vol. 50. 1982, pp. 1053–1053.

[107] Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer
Chams, 2013. doi: https://doi.org/10.1007/978-3-319-13467-3.

[108] A. Roggero and A. Baroni. “Short-depth circuits for efficient expectation-
value estimation”. In: Phys. Rev. A 101 (2 Feb. 2020), p. 022328. doi:
10.1103/PhysRevA.101.022328.

[109] Alexandre Blais et al. “Cavity quantum electrodynamics for superconduct-
ing electrical circuits: An architecture for quantum computation”. In: Phys.
Rev. A 69.6 (2004), p. 062320. doi: 10.1103/PhysRevA.69.062320.

[110] A. Wallraff et al. “Approaching unit visibility for control of a supercon-
ducting qubit with dispersive readout”. In: Phys. Rev. Lett. 95.6 (2005),
p. 060501. doi: 10.1103/PhysRevLett.95.060501.

[111] Theodore Walter et al. “Rapid high-fidelity single-shot dispersive readout
of superconducting qubits”. In: Phys. Rev. App. 7.5 (2017), p. 054020. doi:
10.1103/PhysRevApplied.7.054020.

[112] Y. Sunada et al. “Fast Readout and Reset of a Superconducting Qubit
Coupled to a Resonator with an Intrinsic Purcell Filter”. In: Phys. Rev.
App. 17 (4 Apr. 2022), p. 044016. doi: 10.1103/PhysRevApplied.17.
044016.

126

BIBLIOGRAPHY

[113] Alexander PM Place et al. “New material platform for superconducting
transmon qubits with coherence times exceeding 0.3 milliseconds”. In: Na-
ture Comm. 12.1 (2021), pp. 1–6. doi: 10.1038/s41467-021-22030-5.

[114] Ani Nersisyan et al. “Manufacturing low dissipation superconducting quan-
tum processors”. In: 2019 IEEE International Electron Devices Meeting
(IEDM). 2019, pp. 31–1. doi: 10.1109/IEDM19573.2019.8993458.

[115] Easwar Magesan et al. “Machine learning for discriminating quantum mea-
surement trajectories and improving readout”. In: Phys. Rev. Lett. 114.20
(2015), p. 200501. doi: 10.1103/PhysRevLett.114.200501.

[116] Alireza Seif et al. “Machine learning assisted readout of trapped-ion qubits”.
In: Jour. Phys. B 51.17 (Aug. 2018), p. 174006. doi: 10.1088/1361-
6455/aad62b.

[117] Benjamin Lienhard et al. “Deep-Neural-Network Discrimination of Mul-
tiplexed Superconducting-Qubit States”. In: Phys. Rev. App. 17 (1 Jan.
2022), p. 014024. doi: 10.1103/PhysRevApplied.17.014024.

[118] David Quiroga, Prasanna Date, and Raphael Pooser. “Discriminating Quan-
tum States with Quantum Machine Learning”. In: 2021 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE. 2021,
pp. 481–482. doi: 10.1109/ICRC53822.2021.00018.

[119] Xian Wu et al. “High-fidelity software-defined quantum logic on a super-
conducting qudit”. In: Phys. Rev. Lett. 125.17 (2020), p. 170502. doi: 10.
1103/PhysRevLett.125.170502.

[120] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning. Vol. 4. 4. Springer, 2006. doi: 10.1108/03684920710743466.

[121] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learn-
ing: A Review and New Perspectives”. In: IEEE Trans.Patt. Analy. and
Mach. Intell. 35.8 (2013), pp. 1798–1828. doi: 10.1109/TPAMI.2013.50.

[122] Luca Pasa and Alessandro Sperduti. “Pre-training of recurrent neural net-
works via linear autoencoders”. In: Adva. Neur. Infor. Process. Syst. 27
(2014).

[123] Bun Theang Ong, Komei Sugiura, and Koji Zettsu. “Dynamic pre-training
of deep recurrent neural networks for predicting environmental monitoring
data”. In: 2014 IEEE International Conference on Big Data (Big Data).
IEEE. 2014, pp. 760–765. doi: 10.1109/BigData.2014.7004302.

[124] Liangyu Chen et al. “Transmon qubit readout fidelity at the threshold for
quantum error correction without a quantum-limited amplifier”. In: arXiv
preprint arXiv:2208.05879 (2022). doi: 10.48550/arXiv.2208.05879.

127

BIBLIOGRAPHY

[125] Sigmund Kohler. “Dispersive readout: Universal theory beyond the rotating-
wave approximation”. In: Phys. Rev. A 98.2 (2018), p. 023849. doi: 10.
1103/PhysRevA.98.023849.

[126] Quantum Orchestration platform. 2021. url: https://qm-docs.qualang.
io/introduction/qop_overview.

[127] Morten Kjaergaard et al. “Superconducting qubits: Current state of play”.
In: An. Rev. Cond. Matt. Phys. 11 (2020), pp. 369–395. doi: 10.1146/
annurev-conmatphys-031119-050605.

[128] He Liang Huang et al. “Superconducting quantum computing: a review”.
In: Sci. Chi. Info. Sci. 63.8 (2020), pp. 1–32. doi: 10.1007/s11432-020-
2881-9.

[129] Isaac Westby et al. “FPGA acceleration on a multi-layer perceptron neu-
ral network for digit recognition”. In: Jour. Supercomput. 77.12 (2021),
pp. 14356–14373. doi: 10.1007/s11227-021-03849-7.

[130] Rijad Sarić et al. “FPGA-based real-time epileptic seizure classification us-
ing Artificial Neural Network”. In: Biomed. Sig. Process. Contr. 62 (2020),
p. 102106. doi: 10.1016/j.bspc.2020.102106.

[131] Yutana Jewajinda and Prabhas Chongstitvatana. “FPGA-based online-
learning using parallel genetic algorithm and neural network for ECG signal
classification”. In: ECTI-CON2010: The 2010 ECTI International Confer-
nce on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology. IEEE. 2010, pp. 1050–1054.

[132] Shubham Gandhare and B Karthikeyan. “Survey on FPGA architecture
and recent applications”. In: 2019 International Conference on Vision To-
wards Emerging Trends in Communication and Networking (ViTECoN).
IEEE. 2019, pp. 1–4. doi: 10.1109/ViTECoN.2019.8899550.

[133] Keras website. https://keras.io/.

[134] Keras website. https://scikit-learn.org/stable/index.html.

[135] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

128

List of Figures

1.1 Bloch sphere. The ”north pole” represent the ground state |0⟩, the
”south pole” the first exited state |1⟩. A state |ψ⟩ [Eq. (1.4))] is a
point on the surface of the sphere as a function of the basis states
|0⟩ and |1⟩. 9

2.1 Harmonic and anharmonic oscillators. (a) A schematic represen-
tation of a LC circuit. (b) Potential energy of the LC circuit. It
presents equidistant levels. (c) A schematic representation of a non-
linear LC circuit (transmon) where a Josephson junction replaces
the classical inductance. (d) Potential energy of the transmon. The
levels are not equidistant and can be addressed individually. Figure
taken from [32] . 16

2.2 Representation of a Josephson junction. The blue plates represent
superconducting metal films and the red plane represents an insu-
lating oxide layer. This insulating layer allows discrete charges to
tunnel between the superconducting elements, making the junction
a nonlinear inductor. 17

2.3 Example of qubits couplings. (a) Direct capacitive coupling between
two qubits. (b) Capacitive coupling of two qubits via a coupler.
The qubits coupling is enforced by capacitively coupling them to
the same LC circuit (cavity or resonator). Figure taken from [32] . 22

2.4 Effect of different types of noise on the qubit. (a) Bloch sphere
representation of a single qubit state space. (b) Effect of longitudi-
nal relaxation on the Bloch sphere. (c) Effect of pure dephasing on
the Bloch sphere. (d) Effect of transverse relaxation on the Bloch
sphere. Figure taken from [32] . 23

129

LIST OF FIGURES

2.5 Characterization of longitudinal (T1) and transverse (T2) relaxation
times of a transmon qubit. (a) Measurement of longitudinal relax-
ation (energy relaxation). The qubit is excited with a π−pulse and
measured after a waiting time τ . For each value, τ , this procedure is
repeated to obtain the blue point series. From this series the char-
acteristic decay time T1 can easily be extracted. (b) Measurement
of transverse relaxation (decoherence) by Ramsey interferometry.
The qubit is prepared at the equator with a π/2 pulse that is inten-
tionally detuned from the qubit frequency by δω, causing the Bloch
vector to precess in the rotating frame at a rate of δω around the
z-axis. After a time τ , a second π/2 pulse projects the Bloch vector
back to the z-axis, effectively mapping its former position on the
equator to a position on the z-axis. The oscillations decay with an
approximately (but not exactly) exponential decay function, from
which the time T2 can be derived. Figures taken from [32] 25

2.6 Schematic representation of In-phase and Quadrature extraction
from a qubit readout signal. The figure is taken from [32]. 33

3.1 Schematic description of the leading-order nucleon-nucleon interac-
tion. The first diagram represents a single pion exchange process,
the middle diagram depicts a spin-independent interaction, and the
right one a spin-dependent contact term. 45

3.2 Spin dynamics for two neutrons fixed in space in terms of occupation
probability. Solid lines represent the exact evolution. Dots represent
the subsequent application of controls 48

3.3 Representation of the neutrons dynamics. Panel (a): A single re-
alization of a classical spatial trajectory for two neutrons obtained
solving their equation of motion with a simple Euler algorithm. The
origin of axes is fixed on one particle. Panel (b): Spin dynamics for
the system following the trajectory of panel (a) in terms of proba-
bility to find a particular spin configuration. In the lower panel is
represented the error for each time step. 50

5.1 The x-axis represents the average mean squared error (MSE) be-
tween the controls optimized with GRAPE and the controls inter-
polated with the CPR method for the same sampled set of the
parameters h and J . The y-axis, instead, represents the average
fidelity between the exact propagator UIsing and the reconstructed
one, ŨIsing with the right-hand side of Eq. (5.1). Each point refers
to a chain with a different spin number N 61

130

LIST OF FIGURES

5.2 Computational time vs. the total number of levels of a quantum de-
vice. The single time data (diamond markers) are computed for 2N

QC levels with N = [1, 2, 3, 4, 5] (which identify the total number
of levels for 1,2,3,4 or 5 qubits). Computational time grows expo-
nentially with the number of levels, as exponential fitting highlights
(dashed line). 64

5.3 Representation of the neutrons dynamics. Panel (a): A single re-
alization of a classical spatial trajectory for two neutrons obtained
by solving their equation of motion with a Crank-Nicolson scheme
starting from a specified initial condition. The origin of axes is fixed
on one particle. Panel (b): Spin dynamics in terms of occupation
probability corresponding to the trajectory of the panel (a). For
every timestep the values are found using Eq. (3.24), as for the case
in Sec. 3.3.2 . 68

5.4 Average fidelity for neural networks with different combinations of
layer size and number of layers in the case of 1,2 and 3 qubits. The
architecture that produces the highest average fidelity can be clearly
spotted in each case. 73

5.5 Average fidelity and dataset dimension for the one, two and three
qubit setup using the optimal architecture (red text on the left).
The one qubit case is stopped at 2000 elements because the fidelity
was already saturated. 75

6.1 Pictorial representation of qubit readout data. Panel a Example
of in-phase, I(t), and quadrature, Q(t), components of heterodyned
signal of a single shot obtained via sliced demodulation (as described
in Sec.6.3). The average of these signals is a single point in the I-Q
plane below. Panel b Example of the whole dataset. Each point is
the time average of a measurement represented in the I-Q plane for
qubit states 0,1, and 2. The lines represent the 2D Gaussian contour
plot (see Sec. 6.4) for the 3 Gaussian distribution. The dotted red-
yellow line is an example of a measurement signal represented in the
I-Q plane. The colors represent the time evolution (in nanoseconds). 79

6.2 Average readout trajectories for state |0⟩ and |1⟩ in both quadrature.
Solid lines represent the mean of all trajectories in the data set for
state |0⟩ (blue) and state |1⟩ (orange). The shaded regions represent
the standard deviation of the average for each timestep. The dashed
line instead represents an example of a single trajectory. 80

131

LIST OF FIGURES

6.3 Pictorial representation of the working principle and the architec-
ture of the PreTraNN method described in Sec. 6.3. Section 1 :
Example of the measurement signal x(t) we want to classify with
PreTraNN. Section 2 : The input x(t)i is flattened to obtain Xi,
plugged into the encoder, previously trained as an autoencoder,
and transformed into its encoded representation hi. Section 3 : The
latent layer of the encoder,hi is passed into a feed-forward neural
network trained to assign the label ŷi. 83

6.4 Pictorial representation of PreTraNN training described in Sec. 6.3.
Section 1 : The autoencoder is trained to reconstruct the measure-
ment signals. This should train the network to extract the relevant
features from each temporal chunk. Section 2 : After the training,
the decoder part of the network is removed, and the encoded repre-
sentation of data (represented in the plot at the top right) is used
as the train input dataset for the second section of the PreTraNN
model which is trained to classify them into the correct class yi . . 84

6.5 Classification accuracy comparison, for state |0⟩ and |1⟩ separately,
between Gaussian Mixture Model (GMM), the simple feed-forward
neural network (FFNN) and the PreTraNN method . The readout
time Tm spans from 800 ns to 8000 ns. 87

6.6 Global classification accuracy between state |0⟩ and |1⟩ for increas-
ing measurement time Tm. The accuracy obtained with PreTraNN
method is higher (or at most equal) to the ones obtained with GMM
and FFNN. 88

6.7 Pictorial representation of the dataset with exact, GMM’s and Pre-
TraNN’s labeling. Each point is the time average of the I(t) and
Q(t) signals. The actual label, i.e. the prepared state, is represented
in the first column. The GMM and PreTraNN methods labels are
represented in the second and third columns. 90

6.8 Confusion matrices for classification between states |0⟩ and |1⟩ for
the three methods for short, medium and long readout times. . . . 91

6.9 Training and classification times for GMM, FFNN and PreTraNN
methods. The times are reported in seconds for a middle-range
laptop computer. Upper panel : Training time in function of the
measurement time (i.e. the length of the inputs). Lower panel :
Classification time. The average time is 0.00013 seconds for GMM,
0.039 seconds for FNN and 0.037 seconds for PreTraNN. 93

6.10 Global classification accuracy for |0⟩,|1⟩ and |2⟩ states classification
for a qutrit. 94

132

LIST OF FIGURES

6.12 Difference in percentage points [p.p.] between the accuracy of Pre-
TraNN and GMM for the qubit and qutrit cases for different mea-
surement time Tm. The lower panel reports the analysis only for
medium-long times. The small panels on the right show the aver-
age of all values of the respective plot on the left. 97

6.13 Difference in percentage points [p.p.] between the accuracy of Pre-
TraNN and FFNN for the 2 or 3 qubit state case. The lower panel
reports the analysis only for medium-long times. The small panels
on the right show the average value of the respective plot on the left. 97

C.1 PreTraNN global classification accuracy for the 3-state case with
2400 ns readout inputs as a function of the latent space dimension.
The higher accuracy is reached at 1/4 the input dimension. 107

C.2 Autoencoder training loss function as a function of training epochs
for different latent space relative dimensions. Too large latent di-
mensions (1, 1/1.3 1/2 times the input size) present a fluctuating
behavior and are useless for feature extraction, while too small la-
tent dimensions do not allow an effective encoding and their loss
function remains high (1/8 and 1/10 the input size). 108

C.3 Autoencoder training time in function of latent space relative di-
mension. Clearly larger latent spaces correspond to neural networks
with more parameters and thus longer training times. 109

C.4 Global classification accuracy of the PreTraNN as a function of the
number of dataset elements. 110

C.5 Autoencoder loss (mean square error) as a function of the epochs
for increasing dataset size. 110

C.6 Training time for increasing dataset dimension. 111

C.7 An example of input regeneration made by the autoencoder. In both
panels, the solid lines represent the measurement signal divided into
its two quadratures, respectively In-phase (I) and In-Quadrature
(Q). The lines with markers, instead, represent the input recon-
struction made by the autoencoder. 113

C.8 Representation of latent space of the autoencoder for state |0⟩ (up-
per) and |1⟩ state (lower). In both panels, the colored lines are the
latent space representation (i.e. hi vector) of inputs for state |0⟩ or
|1⟩. The solid black lines represent instead the average of these values.114

133

LIST OF FIGURES

C.9 The figure depicts an example of how the input reconstruction varies
if a single value of the latent representation is varied slightly. The
upper panel represents the in-phase component, lower panel the
quadrature one. In both panels, the thick lines are the original
”correct” input reconstruction, and the thin lines represent the re-
constructions obtained by slowly varying a single value of the latent
representation. In both panels, arrows are used to indicate the di-
rection of changes induced by increasing the latent value. 115

134

List of Tables

3.1 Parameters for GRAPE algorithm implemented in Qutip 47

5.1 Values of qubit parameters for Eq. 5.4 used in the Ising model
analysis. 60

5.2 Average fidelity for a 3-spin Ising chain for increasing number of
Hamiltonian parameters. First column: average fidelity of the datasets
controls. Second column: average fidelity of CPR interpolated con-
trols with uniformly sampled Ji and h. 62

5.3 Average fidelity for a 3-spin chain with two parameters of the Hamil-
tonian, J = J1 = J2 = J3 and h for increasing parameters interval
I spacing Z. The data format is the same as the Tab. 5.2. 63

6.1 Classification times for PreTraNN and GMM as a function of in-
puts batch size. Every reported time is the result of an average of
100 experiments. The FFNN method is not reported because its
behavior follows PreTraNN’s. 92

C.1 Autoencoder’s specifications. The ”Size” column represents the
number of neurons for each layer in a fraction of the input dimen-
sion L. The ”Keras type” column reports the type of Keras layer
employed. 112

C.2 Structure and specifications of PreTraNN’s second section (FFNN)
network with Keras. L is the dataset inputs length, C is the di-
mension of the output layer which change based on the number of
classes. 113

135

LIST OF TABLES

136

