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Abstract

The process-based Spatial Logics are multi-modal logics developed for semantics on
Process Algebras and designed to specify concurrent properties of dynamic systems. On
the syntactic level, they combine modal operators similar to operators of Hennessy-Milner
logic, dynamic logic, arrow logic, relevant logic, or linear logic. This combination gen-
erates expressive logics, sometimes undecidable, for which a wide range of applications
have been proposed.

In the literature, there exist some sound proof systems for spatial logics, but the prob-
lem of completeness against process-algebraic semantics is still open. The main goal of
this paper is to identify a sound-complete axiomatization for such a logic. We focus on a
particular spatial logic that combines the basic spatial operators with dynamic and classi-
cal operators. The semantics is based on a fragment of CCS calculus that embodies the
core features of concurrent behaviors. We prove the logic decidable both for satisfiabil-
ity/validity and mode-checking, and we propose a sound-complete Hilbert-style axiomatic
system for it.

1 Introduction
Process algebras [2] are calculi designed for modelling complex systems of processes1 organ-
ised in a modular way, which run in a decentralised manner and are able to interact, collaborate
and communicate. Starting with Robin Milner’s classical work on a Calculus of Communicat-
ing Systems [17], a plethora of process calculi have been developed and successfully applied
to a multitude of issues in concurrent computing, e.g. modelling computer networks, cellu-
lar/molecular/chemical networks, and a wide class of problems related to them. This success

1In this paradigm, the processes are understood as spatially localised and independently observable units of
behaviour and computation (e.g. programs or processors running in parallel).
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raises the necessity to define query languages able to express complex properties of systems
and, eventually, to develop model-verification techniques. The dual nature of these calculi -
algebraical/equational syntax versus coalgebraical operational semantics, makes them appro-
priate for a modal logic-based approach.

In this context were proposed the process semantics for modal logics, that can be considered
as a special case of Kripke semantics: it involves structuring a class of processes as a Kripke
model, by endowing it with accessibility relations and then using the standard clauses of Kripke
semantics. The most obvious accessibility relations on processes are the ones induced by

action transitions α.P
α

toP , and thus the corresponding (Hennessy-Milner) logic [13] was the
first process-based modal logic to be developed. Later, temporal [21], mobile or concurrent
features were added [10, 18]. A relatively new type of process logics are spatial logics [8, 3],
which are particularly tailored for capturing spatial and concurrent properties of processes.
Among the various spatial operators we mention: the parallel operator2 φ|ψ and its adjoint
- the guarantee operator φ . ψ; the location operators characterize ambient logic3 [8]; for
semantics based on calculi with name passing and name restrictions other specific operators
have been proposed, e.g. placement, revelation and hiding operators etc [3]. In addition, most
of these logics include transition-based modalities and quantifiers.

The modal operators of spatial logics are similar to modal operators studied in other con-
texts. The parallel operator, for instance, is just a modal operator of arity 3 that satisfies the
axioms of associativity, commutativity and modal distribution, as will be proved latter. Oper-
ators such as this have been studied, e.g., in the context of Arrow Logic [1] where it entails
undecidability for Kripke semantics, as proved in [11]. The parallel operator and the guarantee
operator of spatial logics are similar to two operators used in Relevant and Substructural Logics
[22] - the intentional conjunction and relevant implication respectively. But, as in the case of
Arrow Logic, Relevant Logic has a semantics in terms of Kripke structures. Consequently, not
many known results can be projected over the process semantics. Some spatial logics are using
dynamic operators [12] for expressing the transitions. There are also other relations between
spatial logics and well studied modal logics4.

On the other hand, there are many peculiarities of spatial logics that make them interesting
from a modal perspective. For example, the spatial logic we study in this paper allows us to
define characteristic formulas for processes. Such a formula identifies a process up to structural
congruence, i.e. we have formulas fP that names a particular state P of the system, thus
giving to the logic the expressivity of Hybrid Logics [19]. Another peculiarity is that we can
define a universal modality ◦φ and thus, we can express syntactically meta properties such
as validity and satisfiability of a formula. The guarantee operator can be used to translate
any satisfiability/validity problem of spatial logic into a model checking problem for the null
process, as |= φ can be proved equivalent with 0 |= > . φ, [9]. In this way, decidability of
satisfiability and validity is directly related with the decidability of model checking. All these
peculiarities of spatial logics emerge mainly from the structure of their models, which are not
just labelled graphs, but processes with a structure bound by the rigid rules of the operational

2A process P has the property φ|ψ, if it can be split into two disjoint parts P ≡ Q|R s.t. Q satisfies φ and R
satisfies ψ.

3Ambient logic is a spatial logic defined over ambient calculus.
4See e.g. [8] for a detailed description of the connection between Ambient logic and Linear Logic
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semantics of process calculi.
The challenge we take in this paper is to find a sound and complete Hilbert-style axiomatic

system for spatial logic that will reveal the nature of the spatial operators, as well as the in-
terrelation between them and the dynamic or classical operators. The axioms we propose are
sometimes similar with the axioms of the related modal logics and these similarities are use-
ful in placing the spatial logics in the general context of modal logics. To the best of our
knowledge, the problem of completeness for this class of logics has not been approached in the
literature, even if the problem of defining sound sequence calculi for them has been considered
[6, 8, 4]. Related to static ambient logic, for instance, there exists a sound-complete sequent
calculus [6], but its syntax differs from the syntax of ambient logics. It is done for atomic
construction of type P : φ for a process P and a logic formula φ, that encodes the satisfiability
relation P |= φ of ambient logic; the sequent rules just rewrite the semantics of ambient logic.
In this context, the soundness and completeness are proved as P |= φ iff ` P : φ, result that
does not clarify the axiomatics of spatial logics, the syntactic behavior of the spatial operators,
or the relation with other logics. Our previous work [14, 15] present some completeness re-
sults from a modal perspective, but for only for epistemic versions of spatial logics without the
guarantee operator.

A second achievement of the paper is a decidability result that is essential in the com-
pleteness proof. The particular spatial logic studied in this paper (that extends the Hennessy-
Milner logic with the parallel and guarantee operators) is proved decidable for both satisfia-
bility/validity and model checking against a fragment of CCS calculus that embodies the core
features of finite concurrent behaviors. The decidability proof goes on the lines of decidabil-
ity proofs in [7, 6] and consist in proving the bound model property for the logic. As for the
semantics, the same fragment of CCS yields undecidability for other spatial logics, e.g. with a
modality encoding communication-based transitions [5].

2 Preliminaries on Process Algebra
In this section we recall a number of basic notions of process algebra, mainly to establish
some basic terminology and notations for this paper. We introduce a fragment of CCS calculus
that will be latter used as semantics for the logic. The novelty of the section is the structural
bisimulation, a special relation on processes that will be latter used for proving the bounded
model property for the spatial logic.

Definition 2.1 (CCS processes) Let Σ be a denumerable set of elements called actions and
0 6∈ Σ a special object called the null process. The class of CCS processes is introduced
inductively, for arbitrary α ∈ Σ, as follows.

P := 0 | α.P | P |P

We denote by P the class of CCS processes.

Definition 2.2 (Structural congruence) The structural congruence is the smallest congru-
ence relation ≡⊆ P× P such that (P, |, 0) is an abelian monoid with respect to ≡, i.e.

1. (P |Q)|R ≡ P |(Q|R) 2. P |0 ≡ 0|P ≡ P 3. P |Q ≡ Q|P
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Definition 2.3 (Operational semantics) Let τ 6∈ Σ ∪ P and consider a function on Σ that
associates to each α ∈ Σ its complementary action α, such that α = α. The operational
semantics on P defines a labeled transition system T : P → (Σ ∪ {τ}) × P by means of the

rules in Table 1, where T(P ) = (α,Q) is denoted by P
α
toQ for any α ∈ Σ, T(P ) = (τ,Q) is

denoted by P
τ
toQ, and µ is used to denote arbitrary elements in Σ ∪ {τ}.

α.P
α

toP , α ∈ Σ α.P |α.Q
τ

toP |Q , α ∈ Σ

P≡ Q

P
µ

toP ′ Q
µ

toP ′, µ ∈ Σ ∪ {τ} P
µ

toP ′ P |Q
µ

toP ′|Q, µ ∈ Σ ∪ {τ}

Table 1: The transition system

Hereafter, we call a process P guarded if P ≡ α.Q for some α ∈ Σ and we use the notation
P k def

= P |...|P︸ ︷︷ ︸
k

for k ≤ 1.

Definition 2.4 The set of actions Act(P ) ⊂ Σ of an arbitrary process P ∈ P is defined,
inductively, as follows.
1.Act(0)

def
= ∅ 2.Act(α.P )

def
= {α} ∪ Act(P ) 3.Act(P |Q)

def
= Act(P ) ∪ Act(Q).

For a set Ω ⊆ Σ and a pair h,w of nonnegative integers we define the class PΩ
(h,w) of

processes having the actions from Ω and the syntactic trees bound by two dimensions - the
depth h of the tree and the widthw that represents the maximum number of congruent processes
that can be found in a node of the tree. PΩ

(h,w) is introduced inductively on h.
PΩ

(0,w) = {0};
PΩ

(h+1,w) = {(α1.P1)k1|...|(αi.Pi)ki , for kj ≤ w, αj ∈ Ω, Pj ∈ PΩ
(h,w),∀j = 1..i}.

If Ω ⊆ Σ is a finite set, then PΩ
(h,w) is a finite set of processes.

2.1 Structural Bisimulations
In this subsection we introduce the structural bisimulation, a relation on processes indexed by
a subclass Ω ⊆ Σ of actions and by two nonnegative integers h,w. This relation is similar to
the pruning relation proposed for trees (static ambients) in [6]. Intuitively, two processes are
Ω-structural bisimilar on size (h,w) if they look indistinguishable for an external observer that
sees only the actions in Ω, does not following a process for more than h transition steps and
cannot distinguish more than w cloned subprocesses of a process.

Definition 2.5 (Ω-Structural Bisimulation) Let Ω ⊆ Σ and h,w two nonnegative integers.
The Ω-structural bisimulation on P is denoted by ≈Ω

(h,w) and is defined inductively as follows.
If P ≡ Q ≡ 0, then P ≈Ω

(h,w) Q;
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If P 6≡ 0 and Q 6≡ 0, then
P ≈Ω

(0,w) Q always.
P ≈Ω

(h+1,w) Q iff for any i ∈ 1..w and any α ∈ Ω:

• P ≡ α.P1|...|α.Pi|P ′ implies Q ≡ α.Q1|...|α.Qi|Q′, Pj ≈Ω
(h,w) Qj , j = 1..i;

• Q ≡ α.Q1|...|α.Qi|Q′ implies P ≡ α.P1|...|α.Pi|P ′, Qj ≈Ω
(h,w) Pj , j = 1..i.

Hereafter we present some results about Ω-structural bisimulation.
[Equivalence] For a set Ω ⊆ Σ and nonnegative integers h,w, ≈Ω

(h,w) is an equivalence
relations on P.

[Congruence] Let Ω ⊆ Σ be a set of actions.
1. If P ≈Ω

(h,w) Q, then α.P ≈Ω
(h+1,w) α.Q.

2. If P ≈Ω
(h,w) P

′ and Q ≈Ω
(h,w) Q

′, then P |Q ≈Ω
(h,w) P

′|Q′.
For nonnegative integers h, h′, w, w′ we convey to write (h′, w′) ≤ (h,w) iff h′ ≤ h and

w′ ≤ w.
Let Ω′ ⊆ Ω ⊆ Σ and (h′, w′) ≤ (h,w). If P ≈Ω

(h,w) Q, then P ≈Ω′

(h′,w′) Q.
[Split] If P ′|P ′′ ≈Ω

(h,w1+w2) Q for some Ω ⊆ Σ, then there exists Q,Q′ ∈ P such that
Q ≡ Q′|Q′′ and P ′ ≈Ω

(h,w1) Q
′, P ′′ ≈Ω

(h,w2) Q
′′.

[Step-wise propagation] If P ≈Ω
(h,w) Q and P

α

toP ′ for some α ∈ Ω ⊆ Σ, then there exists a

transition Q
α

toQ′ such that P ′ ≈Ω
(h−1,w−1) Q

′.
As Σ is a denumerable set, assume a lexicographic order �⊆ Σ × Σ on it. Then, any

element α ∈ Σ has a successor denoted by succ(α) and any finite subset Ω ⊂ Σ has a maximum
element denoted by sup(Ω). We define Ω+ = Ω ∪ {succ(sup(Ω))}.

All the previous results can be used to prove the next theorem. It states that for any finite
set Ω of actions and any nonnegative integers h,w, the equivalence relation ≈Ω

(h,w) divides P
in equivalence classes such that each equivalence class has a representative in the set PΩ+

(h,w).
This set, by Lemma2, is finite. This observation will be the key for proving, latter, the bounded
model property.

[Pruning Theorem] For any finite set Ω ⊆ Σ, any nonnegative integers h,w and any process
P ∈ P, there exists a process Q ∈ PΩ+

(h,w) such that P ≈Ω
(h,w) Q.

3 Spatial Logic
In this section we introduce the spatial logic SL that contains only one atomic proposition5 0,
a class of dynamic operators 〈α〉 indexed by a denumerable set Σ 3 α, the parallel operator
and its adjoint together with the Boolean operators.

Definition 3.1 (Syntax of Spatial Logics) Let Σ be a denumerable alphabet. The class L of
well formed formulas of SL is introduced inductively as follows.

5In spatial logics the symbol 0 it is used both in syntax for representing the atomic proposition and in semantics
to represent the null process in CCS.
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φ := 0 | ¬φ | φ ∧ φ | 〈α〉φ | φ|φ | φ . φ.

Definition 3.2 (Semantics of SL) The semantics of SL is given by the satisfiability operator,
P |= φ that relates a process P ∈ P with the formula φ ∈ L, inductively by.

P |= 0 iff P ≡ 0.
P |= ¬φ iff P 6|= φ.
P |= φ ∧ ψ iff P |= φ and P |= ψ.

P |= 〈α〉φ iff there exists a transition P
α
toP ′ and P ′ |= φ.

P |= φ|ψ iff P ≡ Q|R, Q |= φ and R |= ψ.
P |= φ . ψ iff for any Q, Q |= φ implies P |Q |= ψ.

For arbitrary φ, ψ ∈ L and α ∈ Σ we introduce some derived operators6.

> def
= 0 ∨ ¬0 ⊥ def

= ¬> φ ‖ ψ def
= ¬(¬φ|¬ψ)

◦φ def
= (¬φ) .⊥ 1

def
= ¬0 ∧ (0 ‖ 0) α.φ

def
= 1 ∧ 〈α〉φ

•φ def
= ¬(◦¬φ)

The derived operators can be characterized semantically by:
P |= > always.
P |= ⊥ never.
P |= φ ‖ ψ iff P ≡ P1|P2, then either Pi, v |= φ or Pj, v |= ψ, {i, j} = {1, 2}.
P |= ◦φ iff for any process Q, Q |= φ.
P |= •φ iff there exists a process Q, Q |= φ.
P |= 1 iff there exists α ∈ Σ and P ≡ α.Q.
P |= α.φ iff there exists α ∈ Σ s.t. P ≡ α.P ′ and P ′ |= φ.

Notice, from the semantics, that ◦ is a universal modality as the satisfiability of ◦φ is equivalent
with the validity of φ, while • is its dual.

Definition 3.3 A formula φ ∈ L is satisfiable if there exists a process P ∈ P such that P |= φ.
A formula φ ∈ L is valid (a validity), denoted by |= φ, if for any process P ∈ P, P |= φ.

4 Decidability of SL
In what follows we show that satisfiability, validity and model checking are decidable for SL
against process semantics. The proof is based on the bounded model property technique which
consists in showing that, given a formula φ ∈ L, we can identify a finite class of processes
bound by the dimension of the formula, Pφ such that if φ has a model in P, then it has a model
in Pφ. Thus, the satisfiability problem in P is equivalent with the satisfiability in Pφ. This result
can be further used to prove the decidability of satisfiability. Indeed, as Pφ is finite, checking
the satisfiability of a formula can be done by investigating, one by one, all the processes in Pφ.

6We also assume all the boolean operators.
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Definition 4.1 (Size of a formula) The sizes of a formula of L, denoted by φ = (h,w), is
defined inductively on the structure of a formula. In what follows, suppose that φ = (h,w) and
ψ = (h′, w′).

1. 0
def
= (1, 1). 2. ¬φ def

= φ.

3. φ ∧ ψ def
= (max(h, h′),max(w,w′)). 4. 〈α〉φ def

= (h+ 1, w + 1).

5. φ . ψ
def
= (max(h, h′), w + w′). 6. φ|ψ def

= (max(h, h′), w + w′).

Definition 4.2 The set of actions of a formula φ, act(φ) ⊆ Σ is given by:

1. act(0)
def
= ∅ 2. act(¬φ) = act(φ)

3. act(φ ∧ ψ)
def
= act(φ) ∪ act(ψ) 4. act(〈α〉φ)

def
= {α} ∪ act(φ)

5. act(φ . ψ)
def
= act(φ) ∪ act(ψ) 6. act(φ|ψ)

def
= act(φ) ∪ act(ψ)

The next Lemma states that a formula φ ∈ L expresses a property of a process P up to
≈act(φ)
φ . This means that φ expresses a property that involves only its actions and is bounded

by its size.
If P ≈act(φ)

φ Q, then P |= φ iff Q |= φ.
This result guarantees the bounded model property.

Theorem 4.1 (Bound model property) If P |= φ, then there exists Q ∈ Pact(φ)+

φ such that
Q |= φ.

Proof The result is a direct consequence of Lemma 2.1 and Lemma 4. 2

Theorem 4.2 (Decidability) For SL validity, satisfiability and model checking are decidable
against process semantics.

Proof The decidability of satisfiability derives from the bounded model property. Indeed,
if φ has a model, by Lemma4.1, it has a model in Pact(φ)+

φ . As act(φ) is finite, by Lemma 2,

Pact(φ)+

φ is finite, hence checking for membership is decidable.
The decidability of validity derives from the fact that φ is valid iff ¬φ is not satisfiable. 2

5 Characteristic formulas
In this section we use the peculiarities of L to define characteristic formulas for processes.
Consider the subclass F ⊆ L of well formed formulas of SL given, for arbitrary α ∈ Σ by
f := 0 | α.f | f |f. Let ∗ : F → F be the function defined by:
0∗ = 0; (α.f)∗ = α.f ∗; (f |0)∗ = f ∗; (f1|f2)∗ = f ∗1 |f ∗2 , for f1 6= 0 6= f2.
Denote by F ⊆ F the set of fixed points of function ∗ called proper formulas, i.e., the set of
formulas f ∈ F s.t. f ∗ = f . For arbitrary positive integers h,w and arbitrary S ⊆ Σ, let

FS(h,w) = {f ∈ F | f ≤ (h,w), act(f) ⊆ S}.
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Observe that F ⊆ L and for a finite set S ⊆ Σ, FS(h,w) is finite. In what follows, we
use Greek letters (sometime with indexes) φ, ψ, φ1, etc. to denote arbitrary formulas of L and
f, f ′, f ′′, f1, f2, etc. to denote arbitrary proper formulas of F .

The next Lemma proves that the ≡-equivalence classes of P can be characterized by for-
mulas of F . For this reason, in what follows, we will use sometime the notation fP to denote
a proper formula f ∈ F that characterizes the ≡-equivalence class of P ∈ P.

1. Let f ∈ F , P,Q ∈ P. Then P |= f and Q |= f , iff P ≡ Q.
2. For any P ∈ P there exists f ∈ F such that P |= f .
3. For any f ∈ F there exists P ∈ P such that P |= f .

Proof The function [ ] : F → P given by the next rules defines the relation between the
formulas in F and the ≡-equivalence classes in P .

[0] = 0; [α.f ] = α.[f ]; [f1|f2] = [f1]|[f2]. 2

6 A Hilbert-style axiomatic system of SL
In table 2 is proposed a Hilbert-style axiomatic system for SL. We assume the axioms and the
rules of propositional logic. In addition we have axioms and rules that characterize the spatial
and dynamic operators and their interrelations. Recall that we use Greek letters to specify
arbitrary formulas of L and f, f1, f2 to specify arbitrary proper formulas (of F).

Due to the way the proper formulas are defined, the axioms (S1) − (S4) guarantees that
for any formula f ∈ F the set {(f ′, f ′′) ∈ F × F | ` f ↔ f ′|f ′′} is finite. This proves that
the disjunction in axiom (S6) is finitary.

Observe that the rules (GR1) and (GR2) depicts the adjunction between the two spatial
operators | and ..

The condition α.f, f |f ′ ∈ Fact(φ)+

φ reflects the finite model property and guarantees that
(Ind) can be based on a finite number of premises.

Definition 6.1 A formula φ ∈ L is provable in SL, denoted by ` φ if φ is an axiom or it can
be derived, as a theorem, from the axioms of SL using the rules of SL. A formula φ ∈ L is
consistent in SL if ¬φ is not provable in SL.

All the axioms and the rules of our axiomatic system depict true facts about processes. This
is proved by the next soundness theorem.

Theorem 6.1 (Soundness) The axiomatic system of SL is sound with respect to the process
semantics, i.e. if ` φ then |= φ.

Before continuing with the completeness proof, we list some theorems of SL that will be
useful further. Recall that, in what follows, we denote by fP ∈ F any proper formula that
characterizes the process P .

[Spatial corollaries] The next assertions are theorems of SL.
1. ` φ|(ψ ∧ ρ)→ (φ|ψ) ∧ (φ|ρ)
2. If ` φ→ ρ and ` ψ → θ, then ` φ|ψ → ρ|θ.
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Spatial axioms Spatial rules
(S1): ` (φ|ψ)|ρ→ φ|(ψ|ρ)
(S2): ` φ|0↔ φ
(S3): ` φ|ψ → ψ|φ
(S4): ` >|⊥ → ⊥
(S5): ` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
(S6): ` (f ∧ φ|ψ)→

∨
f↔f ′|f ′′(f

′ ∧ φ)|(f ′′ ∧ ψ)

(SR1): If ` φ→ ψ then ` φ|ρ→ ψ|ρ

Dynamic axioms Dynamic rules
(D1): ` 〈α〉φ|ψ → 〈α〉(φ|ψ)
(D2): ` [α](φ→ ψ)→ ([α]φ→ [α]ψ)
(D3): ` 0 ∨ α.> → [β]⊥, for α 6= β
(D4): ` α.φ→ [α]φ

(DR1): If ` φ then ` [α]φ
(DR2): If ` φ1 → [α]φ′1 and ` φ2 → [α]φ′2

then ` φ1|φ2 → [α](φ′1|φ2 ∨ φ1|φ′2)

Guarantee axiom Guarantee rules

(G1): ` ◦(f → φ)→ •φ (GR1): ` φ1 → (φ2 . ψ) iff ` φ1|φ2 → ψ
(GR2): ` φ1 → ¬(φ2 . ψ) iff ` •(φ1|φ2 ∧ ¬ψ)

Induction rule
(Ind): If for any α.f, f |f ′ ∈ Fact(φ)+

φ

` 0→ φ
` ◦(f → φ)→ ◦(α.f → φ)
` (◦(f → φ) ∧ ◦(f ′ → φ))→ ◦(f |f ′ → φ)
then ` φ

Table 2: The axiomatic system of SL

3. If P 6≡ Q, then ` fP → ¬fQ.
4. If for any Q,R s.t. P ≡ Q|R, ` fQ → ¬φ or ` fR → ¬ψ, then ` fP → ¬(φ|ψ).

[Dynamic corollaries] The next assertions are theorems of SL.
1. If ` φ→ ψ, then ` 〈α〉φ→ 〈α〉ψ.
2. If ` φ→ ψ, then ` [α]¬ψ → [α]¬φ.
3. ` fP → [α]

∨
{fQ | P

α−→ Q}.
4. If `

∨
{fQ | P

α−→ Q} → φ, then ` fP → [α]φ.
[Guarantee corollary] The next assertions are SL-theorems.

1. If `
∨
f∈Fact(φ)+

φ

f → φ, then ` φ.

2. If ` φ, then ` ◦φ.
Now we approach the completeness problem. We begin with the next lemma stating that a

process P satisfies a property φ iff its characteristic formula fP implies the property φ and this
implication is a theorem in SL system.

If P ∈ P and fP ∈ F characterizes P , then P |= φ iff ` fP → φ.
Proof (=⇒:) If P |= φ, then ` fP → φ. We prove it by induction on the syntactical
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structure of φ. We show here only the cases that require a more complex analysis.
The case φ = φ1|φ2: P |= φ iff P ≡ Q|R, Q |= φ1 and R |= φ2. Using the inductive
hypothesis, ` fQ → φ1 and ` fR → φ2. The case 2 of Lemma 6 implies further ` fQ|fR →
φ1|φ2), i.e. ` fP → φ.
The case φ = ψ . ρ: P |= ψ . ρ iff for any process Q, Q |= ψ implies P |Q |= ρ. The
inductive hypothesis gives that for any Q, ` fQ → ψ implies ` fP |fQ → ρ. But Rule
(GR1) gives the equivalence of ` fP |fQ → ρ and ` fQ → (fP . ρ). Hence, for any Q,
` fQ → (φ → fP . ρ). Then, for any Q with fQ ∈ Fact(φ→fP .ρ)+

φ→fP .ρ , ` fQ → (φ → fP . ρ).
Hence, `

∨
f∈Fact(φ→fP .ρ)

+

φ→fP .ρ
f → (φ→ fP . ρ) where from, using Lemma 6, ` φ→ fP . ρ that

is equivalent with ` fP → φ . ρ.
The case φ = ¬(ψ1|ψ2): P |= ¬(ψ1|ψ2) means that for any parallel decomposition of P ≡
Q|R, Q |= ¬ψ1 or R |= ¬ψ2, i.e., ` fQ → ¬ψ1 or ` fR → ¬ψ2. Then, the case 4 of Lemma6
gives ` fP → ¬ψ.
The case ψ = ¬(φ1 . φ2): P |= ¬(φ1 . φ2) is equivalent with P 6|= φ1 . φ2. Hence, there
exists Q |= φ1 such that P |Q |= ¬φ2, i.e., ` fQ → φ1 and ` fP |fQ → ¬φ2. Hence,
` fP |fQ → (fP |φ1 ∧ ¬φ2). Further, Lemma 6 implies ` ◦(fP |fQ → (fP |φ1 ∧ ¬φ2)), Axiom
(G1), ` •(fP |φ1 ∧ ¬φ2) and Rule (GR2), ` fP → ¬(φ1 . φ2).

(⇐=) Let ` fP → φ. Suppose that P 6|= φ. Then, P |= ¬φ. Using the reversed implication
we obtain ` fP → ¬φ, thus, ` fP → ⊥. But P |= fP which, using the soundness, gives
P |= ⊥ impossible! Hence, P |= φ. 2

Using the result of the previous lemma we can prove that consistency implies satisfiability,
as stated in the next lemma.

If φ is SL-consistent then there exists a process P ∈ P such that P |= φ.
Proof Suppose that for any process P we do not have P |= φ, i.e., P |= ¬φ. Using

Lemma 6, we obtain ` fP → ¬φ, i.e. ` ◦(fP → ¬φ). as this is happening for all processes,
implies that for any f ∈ F we have ` f → ¬φ, i.e. ` f → ¬φ. But then ` 0 → ¬φ,
` ◦(f → ¬φ)→ ◦(α.f → ¬φ) and ` (◦(f → ¬φ)∧◦(f ′ → ¬φ))→ ◦(f |f ′ → ¬φ). Further,
the rule (Ind) gives ` ¬φ wich contradicts the consistency of φ. 2

At this point we have all the results needed to prove the completeness of our axiomatic
system.

Theorem 6.2 (Completeness) The axiomatic system of SL is complete with respect to process
semantics, i.e. if |= φ then ` φ.

Proof Suppose that φ is a valid formula with respect to our semantics, but φ is not provable
from our the axiomatic system. Then neither is ¬¬φ, so, by definition, ¬φ is SL-consistent. It
follows, from Lemma 6, that ¬φ is satisfiable with respect to process semantics, contradicting
the validity of φ. 2

Consequently, the axiomatic system of SL proposed in Table2 is sound and complete with
respect to process semantics. This means that any fact about CCS processes that can be ex-
pressed in L has the properties:
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• if it is true, then either it is stated in the axioms or it can be proved from the axioms;

• if it is stated in the axioms or if it can be proved from the axioms, then it true about
processes.

These two characteristics of the axiomatic system, the soundness and completeness, present
SL as a powerful tool for expressing and analysing properties of CCS processes.

7 Conclusion and future works
The achievements of this paper can be summarized as follows. We identified an interesting
multi-modal logic, SL, with semantics on CCS calculus able to express dynamic and concur-
rent properties of distributed systems. The language of SL is expressive enough to characterize
the CCS processes up to structural congruence, quality that reveal for SL an expressivity com-
parable with the expressivity of hybrid logics. In SL we can also define universal modalities
that allow us to express meta properties such as validity and satisfiability. In spite of this level
of expressivity, we proved the bounded model property for SL against a fragment of CCS for
which other spatial logics are undecidable. The bounded model property entails decidability
for satisfiability, validity, and model checking.

The main result of the paper is the sound-complete axiomatic system that we propose for
SL. Some of the axioms and rules are similar with axioms and rules known from other modal
logics, and this peculiarity can help in better understanding the modal face of the concurrency
and in placing spatial logics in the general context of modal logics.
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M |= φ|ψ iff M ≡M ′|M ′′ and M ′ |= φ, M ′′ |= ψ
M |= φ . ψ iff M ′ |= φ implies M |M ′ |= ψ
If agent A “sees” N “taking” the action α, this is expressed by 〈A : α〉.
M |= 〈A : α〉φ iff M ≡ N |M ′, N

α

toN ′ and N ′|M ′′ |= φ
If agent A “sees” the submodel N , then its knowledge is described by KA.
M |= KAφ iff M ≡ N |M ′ and for any M ′′, N |M ′′ |= φ
Given a class M of models for the logicL(At) defined for the setAt of atomic propositions.
A refinement over M is a relationR ⊆M×M.

The refinement R can be used, e.g., to model certain (structural/bio-chemical) modifications
(mutations) of a model (individual of a species) M ∈M.

M is robust for the properties Φ ⊆ L(At) against the refinementR iff
for any (M,M ′) ∈ R and any φ ∈ Φ we have
M |= φ iff M ′ |= φ
M is globally robust againstR if it is robust for L(At).
Application:
Let M be a class of individuals.
Let At be a set of properties that characterize some individuals in M.
The maximal consistent sets of formulas of L(At) induces an equivalence relationR0 over

M. M is globally robust againstR0.
The quotients ofR0 over M are species of M.
The quotient satisfying At is the main species.
The other quotients are mutants of the main species.
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