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Abstract

We reserve the first part of this thesis to a brief (and by far incomplete, but hopefully
self-contained) introduction to the vast subject of quantum Hall physics. We dedi-
cate the first chapter to a discursive broad introduction. The second one is instead
used to introduce the integer and fractional quantum Hall effects, with an eye to the
synthetic quantum matter platforms for their realization. In the third chapter we
present famous Laughlin’s wavefunction and discuss its basic features, such as the
gapless edge modes and the gapped quasiparticle excitations in the bulk. We close
this introductory part with a fourth chapter which presents a brief overview on the
chiral Luttinger liquid theory.

In the second part of this thesis we instead proceed to present our original results. In
the fifth chapter we numerically study the linear and non-linear dynamics of the chi-
ral gapless edge modes of fractional quantum Hall Laughlin droplets – both fermionic
and bosonic – when confined by anharmonic trapping potentials with model short
range interactions; anharmonic traps allow us to study the physics beyond Wen’s
low-energy/long-wavelength chiral Luttinger liquid paradigm in a regime which we
believe is important for synthetic quantum matter systems; indeed, even though very
successful, corrections to Wen’s theory are expected to occur at higher excitation
energies/shorter wavelengths. Theoretical works pointed to a modified hydrody-
namic description of the edge modes, with a quadratic correction to Wen’s linear
dispersion ωk = vk of linear waves; even though further works based on conformal
field theory techniques casted some doubt on the validity of the theoretical descrip-
tion, the consequences of the modified dispersion are very intriguing. For example,
in conjunction with non-linearities in the dynamics, it allowed for the presence of
fractionally quantized solitons propagating ballistically along the edge.
The strongly correlated nature of fractional quantum Hall liquids poses technical
challenges to the theoretical description of its dynamics beyond the chiral Luttinger
liquid model; for this reason we developed a numerical approach which allowed us to
follow the dynamics of macroscopic fractional quantum Hall clouds, focusing on the
neutral edge modes that are excited by applying an external weak time-dependent
potential to an incompressible fractional quantum Hall cloud prepared in a Laugh-
lin ground state. By analysing the dynamic structure factor of the edge modes
and the semi-classical dynamics we show that the edge density evolves according
to a Korteweg-de Vries equation; building on this insight, we quantize the model
obtaining an effective chiral Luttinger liquid-like Hamiltonian, with two additional
terms, which we believe captures the essential low-energy physics of the edge beyond
Wen’s highly successful theory. We then move forward by studying – even though
only partially – some of the physics of this effective model and analyse some of its
consequences.

In the sixth chapter we look at the spin properties of bulk abelian fractional quan-
tum Hall quasiparticles, which are closely related to their anyonic statistics due to a
generalized spin-statistics relation - which we prove on a planar geometry exploiting
the fact that when the gauge-invariant generator of rotations is projected onto a
Landau level, it fractionalizes among the quasiparticles and the edge. We then show
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that the spin of Jain’s composite fermion quasielectron satisfies the spin-statistics
relation and is in agreement with the theory of anyons, so that it is a good anti-
anyon for the Laughlin’s quasihole. On the other hand, even though we find that
the Laughlin’s quasielectron satisfies the spin-statistics relation, it carries the wrong
spin to be the anti-anyon of Laughlin’s quasihole. Leveraging on this observation, we
show how Laughlin’s quasielectron is a non-local object which affects the system’s
edge and thus affecting the fractionalization of the spin.

Finally, in the seventh chapter we draw our conclusions.

Detailed outline

Part I

In the initial part we partially review the most important concepts which are
required to understand the results reported in the second half of this work.

Chapter 1 : we make a discursive overview of the quantum Hall physics.

Chapter 2 : we begin with a review of the most basic aspects of the integer
and fractional quantum Hall effects.

Chapter 3 : After that, we present the wave function for the most paradigmatic
quantum Hall fraction, namely the Laughlin state. We describe the gapless
edge excitations and bulk gapped ones.

Chapter 4 : We then recap the basic aspects of Luttinger liquids, focusing in
particular on Wen’s chiral Luttinger liquid model.

Part II

In this second part, we discuss the original results we have obtained for the
edge and quasiparticle excitations

Chapter 5 : we make use of Monte Carlo calculations to characterize the low-
energy/long-wavelength behaviour of the edge excitations of Laughlin liquid
droplets, confined by means of some non-harmonic potential which has the ef-
fect of producing small yet important deviations from the paradigmatic Wen’s
chiral Luttinger liquid behaviour. By inspecting the linear and non-linear dy-
namics, we write down an effective chiral Luttinger liquid-like Hamiltonian
which captures the observed features, even in some regimes of hard-wall con-
finement. By refermionizing the model, we finally study some of its properties.

Chapter 6 : we study the fractional-spin properties of bulk quasiparticles
emerging in abelian fractional quantum Hall states, and how this spin quantum
number is closely related to their anyonic statistics by writing down a gener-
alized spin-statistics relation on the plane, which is ultimately due to the fact
that the lowest Landau level projected gauge-invariant generator of rotations
fractionalizes among the quasiparticles and the edge. We then inspect two
famous quasielectron trial wavefunctions, namely Jain’s – based on his com-
posite fermion picture – and Laughlin’s – which he wrote based on an analogy
with his successful quasihole wavefunction. While Jain’s quasielectron satis-
fies the spin-statistics relation and configures itself as a good anti-anyon for
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the Laughlin’s quasihole, Laughlin’s quasielectron satisfies the spin-statistics
relation but carries the wrong spin to be the anti-anyon of Laughlin’s quasi-
hole. We further explore the issues of Laughlin’s quasielectron by rewriting
it as a composite fermion wavefunction which uncovers its non-local nature.
In particular we show how the presence of a Laughlin’s quasielectron can af-
fect the properties of the system’s edge, leading to the loss of the topological
robustness of its spin.

Chapter 7 : we draw the conclusions by summarizing our work, briefly discuss
the questions which are still opened and consider the prospects of our research.

iii





Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Iacopo
Carusotto for his support, guidance and unconditional patience throughout these
years. Without him, this whole project would have not been possible. I am also
grateful for all the morning-long insightful discussions we had, and for him organizing
our weekly “group meetings”. I am also deeply indebted to Leonardo Mazza, for his
support, help and all the countless discussions. I am also very grateful to Daniele
De Bernardis and Zeno Bacciconi, for all the discussions we had. I then would like
to thank all the other students and researchers in Trento I shared my time with. I
am especially grateful to the persons in my office, for the great time and for being
patient with my laptop’s noisy fan: Francesco Piccioli, whom I also have to thank
for his delicious “peposo”, Daniele Contessi and Anna Berti. I also would like to
give a special thank to Lennart Fernandes, for all the “notti brave”. I would finally
like to thank my girlfriend Elena, my friends and my family.
Thank you all for dedicating me some of your time.

v





CONTENTS

Abstract i

Acknowledgements v

1 Introduction 1

2 The quantum Hall effect 7

2.1 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Kinetic momenta . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Guiding centres . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Gauge invariant angular momentum . . . . . . . . . . . . . . . 11

2.2 Integer quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Landau gauge . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 A simple explanation of the effect . . . . . . . . . . . . . . . . 14

2.2.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 The role of disorder . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Fractional quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Quantum Hall states of atoms and photons . . . . . . . . . . . . . . . 19

2.4.1 Ultracold atoms in rapid rotation and optical lattices . . . . . 20

2.4.2 Optical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Laughlin state 25

3.1 The Laughlin state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Circular gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Laughlin’s ansatz . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Plasma analogy . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



viii CONTENTS

3.2 Edge modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Charged bulk excitations . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Quasihole excitations . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Quasielectron excitations . . . . . . . . . . . . . . . . . . . . . 36

4 Chiral Luttinger liquid theory 39

4.1 Bosonization of chiral 1D fermions . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Tomonaga-Luttinger model . . . . . . . . . . . . . . . . . . . 40

4.2 Wen’s chiral Luttinger liquid . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Hydrodynamic formulation . . . . . . . . . . . . . . . . . . . . 42

4.2.2 The electron operator . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Beyond chiral Luttinger liquid . . . . . . . . . . . . . . . . . . 46

5 Nonlinear dynamics at the edge 49

5.1 System and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 The numerical method . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 Quantized transverse conductivity . . . . . . . . . . . . . . . . 57

5.2.3 Beyond chiral Luttinger liquid effects . . . . . . . . . . . . . . 61

5.3 Non-linear chiral Luttinger liquid theory . . . . . . . . . . . . . . . . 68

5.4 Refermionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 The refermionization scheme . . . . . . . . . . . . . . . . . . . 72

5.4.2 Broadening of the dynamic structure factor . . . . . . . . . . 74

5.4.3 Threshold singularities of the dynamic structure factor . . . . 78

5.4.4 Fine structure of the dynamic structure factor . . . . . . . . . 80

5.4.5 Spectral function . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Hard-wall confinement . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Discussion and outlooks . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Experimental observability . . . . . . . . . . . . . . . . . . . . 91

5.6.2 Conclusions and perspectives . . . . . . . . . . . . . . . . . . 93

6 Spin-statistics relation for bulk quasiparticles 95

6.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Berry phase for the translation of the quasiparticles along a circle . . 100

6.4 Spin-statistics relation . . . . . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS ix

6.4.1 The spin of the quasielectron . . . . . . . . . . . . . . . . . . 103

6.4.2 Angular-momentum of the gas . . . . . . . . . . . . . . . . . . 105

6.5 Laughlin quasielectron . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.1 Laughlin’s quasielectron in the light of the composite fermion

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.2 Numerical analysis of truncated wavefunctions . . . . . . . . . 110

6.6 The non-Abelian case . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.1 The Moore-Read case . . . . . . . . . . . . . . . . . . . . . . . 112

6.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion 119

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Monte Carlo calculations 123

A.1 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Dynamic structure factor . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3 Spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.4 Statistics of the sampling . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Excitations with a radial dependence 131

C Linear response analysis 135

C.1 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D Dynamic structure factor broadening in a quartic trap 139

E Overlaps with Jack polynomials 141

E.1 Overlaps with Jacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.2 Comparison with particle-hole excitations within the refermionized

nonlinear χLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

F Angular velocity and curvature parameters 147

F.1 Edge mode velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

F.2 Finite size correction to the dispersion of linear waves . . . . . . . . . 150

F.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

F.4 Relation to radial gradients of the confinement . . . . . . . . . . . . . 152

G The spin of the quasielectron 155



G.1 Single Jain’s quasielectron . . . . . . . . . . . . . . . . . . . . . . . . 156

G.2 Double Jain’s quasielectron . . . . . . . . . . . . . . . . . . . . . . . 157

G.3 Single Laughlin’s quasielectron . . . . . . . . . . . . . . . . . . . . . . 158

G.4 Double Laughlin’s quasielectron . . . . . . . . . . . . . . . . . . . . . 159

x



CHAPTER 1

INTRODUCTION

In the late 18th century, Edwin Hall discovered that a voltage difference is produced

across a conductor in which some current is flowing orthogonally to an externally

applied magnetic field. The effect was soon understood as a consequence of the

Lorentz force acting on charges moving in the conductor, for it bends their tra-

jectories giving rise to a transverse electric field, VH/I = −B/(n2Dq) where VH is

the Hall voltage, I the current flowing in the conductor, B the magnetic field, n2D

the number of charge carriers per unit area orthogonal to the magnetic field, and

q their charge. The discovery of the effect was theoretically very important, for it

allowed to test the validity of newly proposed Maxwell’s ideas and to differentiate

between positive or negative charges moving inside a conductor, establishing that

in most metals it is electrons that carry the current; the experimental impact was

not minor in any sense: still today the classical Hall effect is used to characterize

electrical properties for example in semiconductor materials, and has a huge variety

of applications in state-of-the-art high-precision sensing.

Almost a century later, Klaus von Klitzing was performing Hall conduction mea-

surements with metal-oxide-semiconductor field-effect transistor (MOSFET) sam-

ples, which were effectively realizing a two-dimensional electron gas, cooled down

to liquid helium temperatures and subjected to strong orthogonal magnetic fields.

The remarkable discovery he made, for which he was awarded the Nobel prize, is

that when the magnetic field is changed the Hall conductance does not change con-

tinuously as in the classical effect ∝ 1/B, but in integer, discrete steps of e2/h, with

a striking accuracy. The effect is clearly quantum in its essence and was therefore
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2 Chapter 1. Introduction

named “integer quantum Hall effect”. Von Klitzing proposed this quantization as

a new way of measuring the fine-structure constant with great accuracy, and for

the very same reason the von Klitzing constant h/e2 ' 25.8kΩ was used within the

Internation System of Units as the standard of electrical resistance up to 2018. A

satisfactory explanation for the effect came only after its discovery. The physics at

the hearth of von Klitzing quantization can in its essence be understood as a single

particle effect, and boils down to the single particle kinetic energy spectrum split-

ting into macroscopically degenerate Landau levels: whenever an integer number

of Landau levels are completely occupied, the conductance is quantized precisely

at the von Klitzing’s value. Laughlin showed that the quantization is a result of

gauge invariance whenever an energy gap for the lowest lying bulk excitations is

present. The remarkable feature is that disorder and edge effects do not influence

the accuracy of the quantization; on the other hand, they conspire to the make

the quantized conductivity plateaus appear and become extended over a large in-

terval of the magnetic field piercing the material. It was soon realized that robust

Hall conductance quantization is also intimately related to topology; in particular

it was shown how the conductance could be written as a topological invariant, the

Chern number, which is an integer-valued quantity associated to the geometry of

the quantum state and as such can not change continuously when the system is

weakly deformed in a continuous way. An important consequence of non-trivial

topology is the appearance of edge states, localized at the boundary of the system,

through the so called bulk-boundary correspondence. In the quantum Hall effect,

these edge modes are chiral, meaning that they can only propagate in one direction.

Because of the unidirectionality of these modes, the edge currents are robust against

backscattering; and this is again deeply related to the conductance quantization.

It came with great surprise when – a few years after the discovery of the integer

effect – Störmer and Tsui realized that Hall conductance plateaus not only appear at

integer multiples of e2/h, but also fractional ones, corresponding to fractionally filled

Landau levels. The ground state of such a state would be macroscopically degener-

ate, owing to the extensive degeneracy of the Landau levels, but strong interactions

among the particles lift this degeneracy; at certain specific filling fractions these lead

to the appearance of an energy gap for the lowest lying excitations on top of the

ground state, explaining once again the quantized Hall conductivity. The emerging

liquid-like macroscopic collective ground state is strongly correlated, and has been

identified as a realization of new phases of matter – topological orders – which can-

not be classified by means of broken symmetries and their associated local order

parameter according to the standard paradigm of Landau theory of phase transi-
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tions; rather, they are classified/characterized by new means, such the robust ground

state degeneracy, the topological entanglement entropy, the presence of gapless edge

excitations and, last but not least, the presence of localized quasiparticle excitations

with emergent fractional charge and statistics. Indeed, the fact that particles can be

categorized as being either bosons or fermions is true in three spatial dimensions, but

does not stand critical scrutiny in two, where new objects – called anyons – can pop-

up as emergent quasiparticles breaking the boson/fermion dichotomy. Those emerg-

ing in the “simplest” fractional quantum Hall states are abelian anyons, meaning

that they pick up a U(1) phase when they are exchanged, but more exotic possi-

bilities, namely the non-abelian ones, are theorized to describe the localized bulk

excitations of some particular fractional quantum Hall states whose ground state in

the presence of quasiparticles is degenerate. Under such a condition an adiabatic ex-

change of the quasiparticle positions can cause non-trivial mixing within the ground

state subspace leading to matrix-valued “exchange-phases”. For this reason, these

kind of anyons have attracted lots of attention when Kitaev proposed to use them

to perform topologically protected fault-tolerant quantum computations.

Another key feature of quantum Hall states is the presence of robust gapless, chiral

modes localized close to the system’s boundary; they are usually described within

the framework of the chiral Luttinger liquid theory: the basic idea behind it is

simple: the system’s bulk is incompressible, therefore its lowest lying modes are

deformations of the liquid surface. Chirality on the other hand is caused by the

presence of the strong magnetic field. Despite its simplicity, the theory is highly

predictive. Most notably, the power-law (non-ohmic) behaviours in the current-

voltage characteristics I ∝ V α at fractional quantum Hall constrictions (I being the

current flowing through it and V the bias voltage) have been a striking prediction

of Wen’s theory and measurable manifestations of the strong-correlations of the

system’s bulk. Robust chiral edge modes are not only interesting in their own,

but they have very interesting potential applications. Due to their high coherence

they have been used as interferometers, a technique which was used to observe the

anyonic nature of bulk excitations. Other interesting applications have been devised

in the realm of topological quantum computation, most notably as a qubit readout

method.

Even though mainly studied in two-dimensional electronic systems, in more recent

years the possibility of exploring the physics of charged particles in a magnetic field

with two-dimensional systems of neutral particles subject to some strong synthetic

gauge field, both in the context of gases of ultracold atoms under synthetic magnetic

fields and fluids of strongly interacting photons in nonlinear topological photonics
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devices, has attracted lots of attention, to the point that many of the features of the

integer quantum Hall effect have already been recovered in atomic systems as well as

photonic ones. This kind of systems typically offer a wider variety of experimental

tools as compared to the transport and optical probes of electronic systems, offering

at the same time a clean environment in which disorder effects can be engineered

rather than being intrinsic. In recent years effects of strong correlations leading to

the realization of few particle Laughlin states have been observed both in atomic

and photonic setups; even if still far from the thermodynamic limit of solid state

devices, we believe the stage is ready for bosonic fractional quantum Hall states, as

huge steps forward in the experimental preparation are constantly being made.

This strong experimental attention in conjunction with the fascinating topic of

strong interparticle correlations are among the reasons that guided our theoretical

interest towards the investigation of the fascinating subject of fractional quantum

Hall fluids. In particular, we have directed our attention towards two crucial aspects:

the linear and nonlinear dynamics of the edge excitations of fractional quantum Hall

liquids, which will be the central focus of this thesis, as well as the exploration of

the peculiar properties of their bulk quasiparticle excitations.
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Quantum Hall Effects





CHAPTER 2

THE QUANTUM HALL EFFECT

The quantum Hall effect is probably one of the most surprising and spectacular

effects in condensed-matter physics: when one confines electrons to move in a two-

dimensional plane subject to a strong orthogonal magnetic field, the Hall resistivity

does not vary linearly with the magnetic field – as one could expect on classical

grounds – but displays a series of quantized plateaus in units of the von Klitzing

constant h/e2 ' 25.8kΩ, regardless of sample details such as disorder or electron-

electron interactions

RH =

(
h

e2

)
1

ν
.

In the first experiments performed by Klaus von Klitzing [1], ν was found to be

an integer number with extraordinary precision, to the point that the effect was

proposed as an independent way of measuring the fine structure constant. Due

to the striking precision of the quantization, the effect is now known as the “inte-

ger” quantum Hall effect. A couple of years after this discovery, Daniel Tsui and

collaborators [2] pointed out that resistivity plateaus not only show up when ν is

an integer, but also at certain specific rational values, hence the name “fractional”

quantum Hall for the effect.

Still today, more than 40 years after the discovery of these effects, strong theoretical

and experimental attention is devoted to the study of these kind of systems, which

inspired different research fields. For example, it was shown that the robustness of

the quantization of the Hall conductance can be related to a topological invariant [3,

4] which does not change under small perturbations of the system’s Hamiltonian

which do not close the energy gap; these insights laid the foundations of the now-

flourishing field of topological insulators [5]. The discovery of the strongly correlated
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8 Chapter 2. The quantum Hall effect

fractional quantum Hall effect led physicists to realize that symmetry alone is not

enough to characterize different fractional quantum Hall states, as Landau’s theory

of phase transitions would suggest; rather, new forms of orders, called topological

orders, were introduced [6, 7].

We begin this chapter by discussing the physics of the single particle electron states

in a magnetic field, the so-called Landau levels, before reviewing the basic features

of integer and fractional quantum Hall states. We end the chapter by discussing the

new platforms in which, through the interplay of strong synthetic magnetic fields

and interparticle interactions, physicists are looking for strongly correlated quantum

Hall state analogues in atomic or photonic platforms.

2.1 Landau levels

In this section we briefly review the quantum mechanics of charged particles moving

in a two-dimensional plane, pierced by a strong orthogonal magnetic field, a problem

first solved by Landau [8]; indeed, in order to understand the physics of quantum

Hall systems, one starts by building an understanding of the single particle physics.

2.1.1 Kinetic momenta

For simplicity, in the following we consider a positively charged particle carrying

charge q and with some given mass m, and for simplicity neglect its spin by assuming

it is polarized by the presence of the strong magnetic field. The Hamiltonian reads [9,

10]

H =
1

2m
(p− qA)2 (2.1)

where A is the vector potential describing a uniform magnetic field ∇ × A =

B ẑ orthogonal to the x − y plane in which the particle moves. Under a gauge

transformationA′ = A+∇χ, the canonical momentum transforms as p′ = p+q∇χ,

so it is not a gauge-invariant quantity. We can however introduce the so-called

kinetic momentum π = p− qA, which is a gauge invariant quantity. Its component

however fail to commute due to the presence of the magnetic field

[πx, πy] = i~qB = i
~2

l2B
, (2.2)

where l2B = ~/qB is the so-called magnetic length, setting the typical length-scale

of the problem. The non-commutativity (2.2) is at the heart of the quantum Hall

physics; at this point one can recognize the commutation relations of Eq. (2.2) as
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those of a quantum harmonic oscillator: it is indeed convenient to introduce a set

of creation and annihilation operators




a = 1

~/lB
πx+iπy√

2

a† = 1
~/lB

πx−iπy√
2

(2.3)

which satisfy the standard harmonic oscillator commutation relations [a, a†] = 1;

the quadratic Hamiltonian (2.1) of a charged particle in a magnetic field is therefore

equivalent to the one of a 1D harmonic oscillator

H = ~ωc
(
a†a+

1

2

)
(2.4)

where we introduced the cyclotron frequency ωc = qB/m which sets the typical en-

ergy scale of the problem. The energy levels can therefore be labelled by a quantum

number n ∈ N,

En = ~ωc
(
n+

1

2

)
, (2.5)

and are equally spaced by an energy gap set by the cyclotron frequency ~ωc ∝ B.

The kinetic energy in the presence of a strong magnetic field is very different from

the one of a free particle, and this quantization lies at the core of the quantum

Hall physics. Notice that, even though we started with a two-dimensional problem,

the spectrum depends on a single quantum number: there are indeed degeneracies.

These degenerate energy levels are known as Landau levels.

2.1.2 Guiding centres

To understand the degeneracies, we introduce a second pair of gauge-invariant op-

erators, the so-called guiding centres [10, 11], which classically correspond to the

centres of the cyclotron orbits

Ri = ri +
l2B
~
εijπj (2.6)

where i = x, y and ε is the Levi-Civita tensor. Since [πi, rj] = −i~δij, it is easy to

show that these operators commute with the kinetic momenta

[Ri, πj] = 0 (2.7)
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but fail to commute with each other

[Rx, Ry] = −il2B (2.8)

so that they define a new harmonic oscillator space orthogonal to the one defined

by the kinetic momenta. Even though the guiding centres commute with the Hamil-

tonian Eq. (2.1), they do not commute among each other: there is therefore an

Heisenberg uncertainty on the position of a quantum-mechanical guiding centre

σRxσRy ≥
1

2
l2B (2.9)

which can be interpreted as being the minimal surface area over which a guiding

centre can be localized. Therefore one can expect that the number of states Nφ in a

given Landau level living over a given surface area A – the Landau level degeneracy

– will be of order

Nφ ∝
A

l2B
∝ Φ

φ0

(2.10)

where Φ = AB the magnetic flux which passes through the area A, and φ0 = h/e

the quantum of magnetic flux: the degeneracy of any given Landau level is set by

the number of flux quanta threading the sample, and is therefore a macroscopic

number.

Building on the commutation relations between guiding centre operators Eq. (2.8)

one can introduce harmonic oscillator creation and annihilation operators




b = 1

lB

Rx−iRy√
2

b† = 1
lB

Rx+iRy√
2

(2.11)

which satisfy the usual commutation relations [b, b†] = 1, while commuting with the

a, a† of Eq. (2.3). These operators can therefore be used to construct the eigenstates

of the system as

|n,m〉 =

(
b†
)m

√
m!

(
a†
)n

√
n!
|0〉 . (2.12)

Finally, notice that in general a potential V (r) will lift the degeneracy of the

Landau levels. If V varies slowly on a length-scale set by the magnetic length and

provided it does not generate significant Landau level mixing |∇V | � ~ωc/lB, one

can approximate V (r) ≈ V (R) and therefore the Heisenberg equations of motion
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for the guiding centres become

i~
∂Ri

∂t
=

∂V

∂Rj

[Ri, Rj] = −il2B εij
∂V

∂Rj

(2.13)

which shows that the guiding centre motion is orthogonal to the potential gradient

∇V , i.e. it occurs along equipotential lines (Hall drift).

2.1.3 Gauge invariant angular momentum

We conclude this section by introducing the operator L = LR + Lπ, where




Lπ = − l2B

2~ π
2

LR = ~
2l2B
R2.

(2.14)

The spectrum of L is quantized in units of ~, `n,m = ~(m−n) where m,n ∈ N. Such

a operator obeys the following set of commutation relations





[L, πi] = i~ εij πj
[L,Ri] = i~ εij Rj.

(2.15)

One can therefore interpret L as the gauge-invariant generator of rotations. This

definition leaves room to an ambiguity though: one could indeed add a constant to

L without altering its physical meaning. Indeed any Lc/~ = L/~ + c, c ∈ Z has

the correct commutation relations, and a spectrum which is quantized in units of ~.

This is a peculiarity of O(2) rotations in two-dimensional physics; O(3) rotations do

not leave room for such ambiguity.

2.2 Integer quantum Hall effect

In the following section we will briefly describe the integer quantum Hall effect,

discovered in 1980 by Klaus von Klitzing [1] when piercing with a strong magnetic

field a two-dimensional electron gas realized with metal-oxide-semiconductor field-

effect transistor (MOSFET) samples developed by Michael Pepper and Gerhard

Dorda. The remarkable discovery he made, for which he was awarded the Nobel

prize in 1985, is that the Hall resistance of the sample does not grow linearly with

the magnetic field piercing the sample, as in the classical counterpart of the effect. It

instead exhibits plateaus as the magnetic field is varied, whose values are quantized
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Figure 2.1: Experimental curves for the Hall resistance and longitudinal resistivity
as a function of the applied magnetic field. From [12].

[Fig. 2.1] to a striking accuracy to

RH =

(
h

e2

)
1

ν
(2.16)

in units of fundamental constants alone, regardless of the solid state system details

(such as geometry, disorder, interactions...) with a strikingly small uncertainty

of ∼ 1 part in 109 [13, 14]. Here ν is an integer number, hence the name of

“integer quantum Hall effect”, whose meaning we will discuss in a moment. An

equally important feature of the integer quantum Hall effect is that at magnetic

fields corresponding to the quantized plateaus of the transverse Hall resistance, the
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longitudinal resistance becomes vanishingly small, as depicted in Fig. 2.1, exhibiting

an Arrhenius behaviour ∼ exp (−∆/2KBT ).
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Figure 2.2: (a) Hall bar geometry: the system is confined in the transverse direction,
x̂ and considered infinite in the longitudinal direction ŷ. Skipping orbits are sketched
(blue lines) along the system’s boundary. (b) The three lowest Landau levels of
Eq. (2.18) as a function of the wavevector k. An example of the lowest-Landau-level
ground-state is sketched by colouring in red the occupied states below the Fermi
energy (red dashed line) in the case of non-interacting particles. The corresponding
Fermi points are highlighted by vertical black-dashed lines.

2.2.1 The Landau gauge

We begin this short discussion by introducing a vector potential gauge which is suited

for dealing with a Hall bar geometry [Fig. 2.2(a)] which we consider to be free of any

defects, infinite along the ŷ direction and confined along x̂ by some translationally-

invariant confinement potential V (x) which we consider to be vanishingly small in

the bulk. An obvious choice is a gauge preserving translational invariance along the

ŷ direction

A = Bx ŷ (2.17)

called the Landau gauge. Due to translational invariance along ŷ the eigenstates

are separable ψ ∝ Φn,k(x)eiky. If using periodic boundary conditions along y, k is

quantized in units of 2π/Ly. Plugging this ansatz into the single electron Schrödinger

equation gives

HkΦn,k =

(
p2
x

2m
+

(~k − qBx)2

2m
+ V (x)

)
Φn,k = EnΦn,k (2.18)
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which, in the bulk region, is a shifted harmonic one-dimensional oscillator Hamilto-

nian reproducing the expected spectrum Eq. (2.5) and the eigenstates are strongly

localized in a stripe at x/lB ' klB

Φn,k(x) ∝ Hn(x/lB − k lB) exp

[
−(x/lB − k lB)2

2

]
. (2.19)

Close to the boundary, the strong confinement energy lifts the Landau level degen-

eracy, as can be seen in Fig. 2.2(b), effectively mixing the Landau levels.

2.2.2 A simple explanation of the effect

The very basic physics of the integer quantum Hall effect can be understood by

considering completely filled Landau levels of non-interacting fermions in the strip

geometry just described (see Fig. 2.2(a,b)), additionally subjected to a transverse

electric field Ex̂ which contributes the Hamiltonian of Eq. (2.18) a term −qEx that

will induce a purely transverse Hall current in the system [9, 11]

Iy =
1

Ly

q

m

∑

α

〈πy〉α (2.20)

where Ly is the length of the sample along which the current is flowing, while α is

an index that runs over all the occupied system eigenstates in the presence of the

electric field, and occupied according to Pauli exclusion principle. On an eigenstate

the expectation value of the kinetic momentum along the ŷ direction can be written

as

〈πy〉n,k =
m

~
〈∂kHk〉n,k =

m

~
∂En,k
∂k

(2.21)

and therefore the current [Eq. (2.20)]

Iy =
1

Ly

q

~
∑

n

∫
Ly dk

2π

∂En,k
∂k

=
q

h

∑

n

(En,kmax − En,kmin
) (2.22)

depends on the chemical potential difference between the two edgesEn,kmax−En,kmin
=

q∆V , which can be identified with the Hall voltage measured between the lower and

upper edge. As a consequence, the Hall conductance

σH =
Iy

∆V
=
q2

h
ν (2.23)

is quantized in units of q2/h, where ν = N/Nφ is the number of completely filled

Landau levels.
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Since the Landau levels are completely filled, in order to create bulk excitations

which can contribute to transport one needs to overcome an energy gap of the

order of the cyclotron splitting ∼ ~ωc. Therefore, the longitudinal resistance will

be exponentially suppressed at low energies, explaining the observed Arrhennius

behaviour. This also means that the bulk is incompressible whenever an integer

number of Landau levels is completely filled, meaning that all the excitations which

change the density are gapped. Taking into account the vanishing longitudinal

resistance one sees that the conductance result Eq. (2.23) is in agreement with the

Hall resistance measurements performed by von Klitzing Eq. (2.16).

Two crucial aspects are still missing, though. Edge states and disorder.

2.2.3 Edge states

A crucial aspect for the explanation of the integer quantum Hall effect are its edge

states. In a “clean” bulk the electrons undergo (classically) closed cyclotron orbits

with no net transport. Close to the edge however something different can happen

due to the interplay of the cyclotron motion and elastic reflection from the sharp

confinement. The competition between the two results in the particles performing

so called skipping-orbit trajectories [Fig. 2.2(a)]. The effect is that electrons can

propagate in a chiral way along all the one-dimensional boundary without being

back-reflected [9, 10]. The same kind of physics occurs when the the confining

potential is smooth; close to the system’s edge this potential induces according to

Eq. (2.13) a motion of the guiding centres with a velocity which is proportional to

the gradient of the confinement

v =
E

B
, (2.24)

so that electrons on opposite sides of the samples move in opposite directions, but

modes at each side are separately chiral; moreover, the direction (or chirality) is the

same for every occupied Landau level. These features imply the robustness of the

edge modes: in order to backscatter an electron, it needs to cross the entire sample;

since the sample width is macroscopically large, much larger than the magnetic

wavelength, such a scattering event is exponentially suppressed.

Finally, notice that in a non-interacting integer quantum Hall system all single-

particle states below the chemical potential are occupied so all bulk excitations

are gapped with a gap set by the cyclotron energy. However, as can be seen in

Fig.2.2(b) and Fig.2.3, low-energy particle-hole excitations are strongly localized at

the system’s boundary, and are gapless with an approximatively linear dispersion

relation with a velocity set by Eq.(2.24). They form a chiral one-dimensional Fermi
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Figure 2.3: Spectrum of the positive-k single particle-hole excitations on top of the
ground-state sketched in Fig. 2.2(a).

liquid, as we will more extensively discuss in Chapter 4. The important thing we

wish to point out at this stage is that integer quantum Hall systems constitute a

rather unusual electron liquid, with an insulating bulk and a perfectly conducting

metallic edge; these same features are observed in the fractional quantum Hall case,

even though more interesting things occur in this latter case.

2.2.4 The role of disorder

In the previous discussion, inherent disorder of solid state devices has been neglected.

It however turns out that it plays a very important role in making the quantum Hall

plateaus of Fig.2.1 extended over a wide range of magnetic fields [11, 9, 10].

This fact can qualitatively be understood on semi-classical grounds. From Eq. (2.13),

since the cyclotron orbit guiding centre follows an equipotential line, it can be seen

that disorder can turn many of the extended system eigenstates [Eq. (2.19)] into

localized ones. These localized states can then act as a reservoir of states and, even

as the magnetic field is changed and the filling fraction deviates from the ideal value

N/Nφ, the Hall conductance does not because localized states do not contribute

to transport properties. Why however the Hall conductance retains its universal

value Eq. (2.23) is not obvious at all, since all the states which have localized in the

presence of the disorder do not contribute to the current. It remarkably turns out

that the current carried by the extended states increases by the correct amount so

as to compensate for the decreased number of extended states. This was shown by a

beautiful argument due to Laughlin [15] and then generalized by Halperin [16] to the

presence of modest disorder in the bulk region, relying solely on gauge-invariance

and on the presence of an energy gap for bulk excitations.
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An alternative approach relying on the Landauer-Büttiker formalism [17] shows

that the integer quantum Hall effect is the result of a complete suppression of the

backscattering of the edge modes, owing to their spatial separation [10, 18]. For

example, a recent experiment [19] following the theoretical proposal [20] showed

that intra-edge scattering induced by cavity-enhanced vacuum-fluctuations leads to

a breakdown of the protection of the Hall conductivity robust quantization.

Figure 2.4: Experimental curves for the Hall resistance and longitudinal resistivity
as a function of the applied magnetic field. From [21].

2.3 Fractional quantum Hall effect

A couple of years after the discovery of the integer quantum Hall effect, Daniel

Tsui, Horst Störmer and Arthur Gossard were performing transport studies at low

temperatures in new high-mobility two-dimensional electron gases in GaAs-AlGaAs

heterojunctions subject to very strong orthogonal magnetic field, to the extent that

only a fraction of the levels in the spin-polarized lowest Landau level was occupied.

They discovered [2] the same phenomenology of the integer quantum Hall effect
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(see Fig. 2.4) at ν = 1/3 (hence the name fractional), namely a perfectly quantized

transverse resistance plateau at

RH =

(
h

e2

)
1

ν
(2.25)

extended over a region of magnetic fields, and an exponentially suppressed longi-

tudinal resistance. After the discovery, for which Tsui and Stormer were awarded

together with Robert Laughlin the Nobel prize in 1998, many more plateaus at

fractional fillings have been observed [22, 21].

It is easy to understand that interactions among the electrons must be playing a

crucial role in the appearance of plateaus at rational filling ν. As we discussed in

the previous sections Sec. 2.2, in the integer quantum Hall effect there is a unique

gapped Fermi-liquid-like ground state when ν Landau levels are completely filled.

On the other hand, in the case of partially filled Landau levels the situation is

completely different [9], for each Landau level has a macroscopic degeneracy Nφ =

Φ/φ0. Suppose ν < 1 for simplicity. Then, the number of ways N = νNφ electrons

can fill the Nφ degenerate levels making up an ideal Landau level is
(
Nφ
νNφ

)
, a number

exponentially large in the size of the system.

Strong enough inter-particle interactions will in general lift the degeneracy; in par-

ticular, if for some reason at some peculiar filling fraction ν they were to lead to a

gapped system, then weak disorder would produce a plateau in the transverse resis-

tance as the one observed [Eq. (2.25)] via the same mechanisms at play in the integer

quantum Hall effect, and an Arrhennius-like behaviour of the longitudinal one. For

this discussion to make sense, a hierarchy between the cyclotron, interaction and

disorder energy-scales must emerge

~ωc � Vinteractions � Vdisorder (2.26)

which, at least qualitatively, explains why the fractional quantum Hall plateaus are

observed only in high mobility samples, but the effect is otherwise insensitive to the

microscopic fabrication details.

Under such an assumption, the kinetic energy is completely determined by the

Landau level filling; the role of interaction is to break the degeneracy of the partially

filled Landau level. The striking consequence is that fractional quantum Hall states

are strongly correlated quantum-liquid-like states of matter whose essential features

are solely determined by the exchange statistics and quantum fluctuations that

minimize the repulsion between particles. It is thus intuitive to understand that
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any perturbative treatment is doomed to fail. A well-educated guess for the ground

state wavefunction [23] has indeed been what lead to a deeper understanding of the

effect, as we will briefly review in the next chapter.

To conclude, we would like to mention that fractional quantum Hall liquids at

different filling fractions ν turn out to be examples of a whole new class of phases of

matter, so-called topological orders [24, 7, 6], which cannot be characterized by the

breaking of any symmetry and therefore cannot be described by Landau’s theory

of phase transitions [25]. Rather, they are characterized by new quantum numbers

such as the robust ground state degeneracy [26, 27] which depends solely on the

topology of space over which the correlated quantum state is defined, the presence

of one-dimensional gapless chiral edge excitations [28, 26, 29, 30, 31, 32], the long-

range entanglement leading to the topological entanglement entropy[33, 34], and,

last but not least, the presence of localized bulk excitations carrying a fractional

charge [23] and exhibiting fractional exchange statistics, both Abelian [35] and,

even more interestingly, non-Abelian [36, 37], which make fractional quantum Hall

states a promising platform in which to perform topologically-protected quantum

computations [38, 39].

2.4 Quantum Hall states of atoms and photons

As we already mentioned, quantum Hall states have first been discovered in two-

dimensional systems of electrons subjected to strong magnetic fields; Even today, the

study of quantum Hall physics through solid-state devices remains a highly active

and productive field of research which in recent years achieved important milestone

results; just to name a few, thermal conductance measurements [40] among which

even the one of the non-abelian ν = 5/2 edge [41]; the anyon-like braiding statistics

of the quasiparticles of a ν = 1/3 fractional quantum Hall states both through edge

interferometry [42] and anyon collisions [43], which very recently have been used to

the study of Abelian ν = 2/5 states [44, 45]; and the space-time imaging of ν = 1/3

edge modes [46].

The possibility of realizing analogous states using synthetic quantum matter sys-

tems, such as gases of ultracold neutral atoms [47, 48] and fluids of strongly in-

teracting photons in non-linear topological photonics devices [49, 50, 51] – which

hold the potential for exploiting their internal degrees of freedoms as new effective

“synthetic” dimensions [52] – would however offer novel ways to explore quantum

Hall physics. Even though synthetic matter platforms are technically challenging

to setup, especially if the goal is to reach the strongly correlated regime, strong
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experimental as well as theoretical attention is currently devoted to the simulation

of quantum matter [53] using these new systems, as they hold the great potential

of exploring different and/or new aspects of the relevant physics due to the high

flexibility and control of the underlying Hamiltonian (both the confinement and in-

teractions), the long coherence times and the great variety of diagnostic tools which

complement the standard transport and optical probes traditionally used in solid

state devices. For example, while directly accessing the Hall conductance through

standard transport measurements would be extremely challenging in synthetic mat-

ter setups, alternative probing schemes for detecting topological phases have been

proposed. Viable information can indeed be gained by means of an arsenal of differ-

ent methods, such as the detection of edge excitations [54, 55, 56, 57, 58, 59, 60], by

means of spectroscopic probes [61, 62, 63, 64, 65], the characterization of the centre-

of-mass response [66, 67], density-density correlations [68] or the observation of the

flat-density profiles characteristic of incompressible states [69, 70, 71], the analysis

of the semiclassical dynamics of wavepackets [72], or by probing the anyonic nature

of gapped bulk excitations [73, 74, 75], as well as studying how they get bound to

mobile impurities [76, 77, 78, 79] and a plethora of different other techniques.

An immediate question comes however to mind: the key ingredients for fractional

quantum Hall physics are the strong magnetic field, leading to Landau levels, and

strong inter-particle interaction. While the latter are, at least conceptually, simple

and in the atomic context can be made strong by means of Feshbach resonances [80],

a neutral particle is not affected by a standard magnetic field in the way a charged

one is. How can one engineer a “magnetic field for neutral particles”? It was realized

that the effect of a magnetic field on the lines of Eq. (2.1) can be mimicked in a

variety of different ways by the introduction of so-called synthetic gauge fields [81,

82, 83, 84, 85]. In the following, we will briefly discuss some of the most prominent

examples in atomic and photonic platforms.

2.4.1 Ultracold atoms in rapid rotation and optical lattices

One of the first strategies to be developed [81, 82] was based on the mathematical

similarity between the Coriolis force felt by a particle of mass m moving at velocity

v in a frame rotating at angular velocity Ω, F = 2mv ×Ω, and the Lorentz force

felt by a moving charge q in a magnetic field B, F = qv × B; this leads to the

identification qB = 2mΩ. More formally, in the rotating frame the Hamiltonian for
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a single particle in a harmonic trap of frequency ω becomes

HΩ = H −Ω ·L =
(p−mΩ× r)2

2m
+

1

2
m
(
ω2 − Ω2

)
r2 (2.27)

where Ω = Ωẑ is the rotation frequency and r, p are canonically conjugated vari-

ables in the plane orthogonal to the rotation axis ẑ; the effect of the Coriolis force

is formally equivalent to that of the Lorentz force appearing in Eq. (2.1), and can

thus be seen as an effective uniform magnetic field qA = mΩ×r, in agreement with

the qualitative discussion above; a centrifugal potential term ∝ −Ω2r2 is however

seen to appear, which has the effect of weakening the harmonic confinement. Close

enough to the centrifugal limit Ω ' ω, the residual confinement becomes irrelevant

and we are left with the physics of almost degenerate Landau levels.

Over the years, rotation has been heavily investigated in atomic Bose-Einstein con-

densates, where it led to pioneering advances; at low rotation frequencies, vortices

start to appear [86] owing to their superfluid nature; as the rotation rate increases,

a triangular vortex lattice which breaks the rotational invariance of the underlying

Hamiltonian is formed [87] which, in the rapid rotation regime, starts occupying

the lowest Landau level [88, 89]; in recent years, Bose-Einstein condensation en-

tirely within the lowest Landau level has been reported [90, 91]. For even large

values of Ω, the Hamiltonian Eq. (2.27) becomes formally equivalent to the one

of a charged particle in a magnetic field. Interesting things are expected to occur

in such a regime, which is equivalent to the number of vortices Nv becoming of

the order of the number of particles N [81, 82]. There, the superfluid vortex lat-

tice is expected to “melt” due to quantum fluctuations of the vortex lines [92, 81]

giving space, through a quantum phase transition, to rotationally-symmetric incom-

pressible strongly correlated “vortex liquids” which realize bosonic analogues of the

fractional quantum Hall phases, which do not have Bose-Einstein condensation or

superfluidity. Supported by the fact that the exact two-dimensional ground state for

bosons at the centrifugal limit has a correlated form [93], numerical studies found

compelling numerical evidence for a quantum phase transition from a vortex lattice

to a strongly correlated phase [94] and for the presence of many bosonic analogues

of well-studied fractional quantum Hall states in the fast rotation regime of the Bose

gas, both Abelian and non-Abelian [95, 96, 97, 98, 99].

Early experiments [100] following adiabatic preparation with rotating microtraps [101]

reported hints of correlated fractional quantum Hall dynamics, even though the very

small sizes of the atomic samples did not allow to completely and unambiguously

characterize the Laughlin nature of the claimed state. At present, there is a strong
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theoretical effort to develop realistic experimental protocols that can yield to the

realization of strongly correlated phases [102, 103, 104].

We would then like to mention that synthetic magnetic fields can be generated in

continuous spatial geometries by coherently dressing the atoms with suitably de-

signed electric and magnetic fields [83, 84], effectively reproducing geometric phases

for neutral particles; these techniques have been successfully used for example to

nucleate vortices [105], to measure transverse Hall-like response [106] and observe

spin Hall effect [107]; The related concept of optical flux lattices [108, 109] has been

shown numerically to have the potential of hosting exotic fractional quantum Hall

states [110]. However, even though these approaches eliminate some of the diffi-

culties encountered in the fast-rotation regime of an atomic cloud, one has to face

spurious heating of the atomic cloud by spontaneous emission.

Finally, we want to briefly discuss the quantum Hall physics in lattice geometries

and how synthetic magnetic fields can be engineered in these setups. After the

discovery of the integer quantum Hall effect, physicists started to investigate the

interplay between lattice and magnetic field physics; when the magnetic length is

much larger than the underlying lattice spacing the underlying lattice structure can

be safely neglected, leading to the already discussed physics; the interplay between

the two length-scales however leads to interesting consequences. It was shown that

the energy spectrum becomes an intricate fractal structure, the so-called Hofstadter

butterfly [111], and the Hall conductance is, whenever the chemical potential lies in

a gap of the spectrum, related to a topological invariant associated with the filled

bands, the (first) Chern number, which does not change under smooth deformations

of the system’s Hamiltonian unless the energy gap is closed [3].

Owing to the high-degree of their tunability, atomic platforms have proved them-

selves to be a valuable platform in which to observe the effects of the interplay

between the lattice and a magnetic field [112, 113, 114], which can be generated

by making a particle that loops around a lattice-plaquette acquire a non-trivial

Berry phase [115] analogous to the Aharonov-Bohm phase [116] a charged parti-

cle acquires when moving in a magnetic field. Such a phase can be engineered

by introducing non-trivial complex hopping phases, for example by means of laser-

assisted-tunneling [117, 118, 119, 120], by lattice-shaking protocols [121, 122] or by

lattice rotation [123, 124, 125]. These methods have been first implemented to re-

alize an atomic Harper-Hofstadter model [119, 126], but numerous theoretical and

numerical studies have shown that they hold great promise towards the realiza-

tion of strongly correlated phases as well [122, 127, 61, 128, 129, 66] which can be

reached through suitable protocols [130, 131, 132, 133]; recently experimental ad-
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vances led to the observation of correlated two-particle dynamics [134] and to the

claim of the first realization of a fractional quantum Hall state with ultracold atoms

in an optical lattice [135]. Effects of strong interactions in a synthetic two-leg ladder

whose plaquettes are threaded by synthetic magnetic flux have also been recently

reported [136].

A final important point we would like to stress is that a magnetic field is not

strictly necessary to exhibit integer quantized Hall conductance; Haldane [137] ex-

hibited a non-interacting model for an honeycomb lattice with complex hoppings

breaking time-reversal symmetry but with zero average magnetic field in which the

bands have non-zero Chern number and thus can show quantized Hall response

whenever a topological band is completely filled. Haldane’s model has been realized

with neutral atoms in a shaken optical lattice [138]. Physicists started to look for

strongly correlated liquid phases as well, occurring when a topological Chern band

is partially filled; it turns out that such a possibility exists [139, 140, 141, 142] pro-

vided the interaction is strong enough when compared to the bandwidth (so that

the ground state is not dominated by kinetic-energy effects), but smaller than the

band-gap (so that the band topology is safely preserved); luckily, the bandwidth

can, at least theoretically, be reduced by introducing next-nearest-neighbour hop-

ping [143]. Compelling numerical evidence [144] demonstrated that the these states

are indeed the “Haldane” lattice analogue of fractional quantum Hall states, hence

named fractional Chern insulators.

2.4.2 Optical systems

Optical setups constitute a different prominent platform for performing quantum

simulations [49, 50, 51]. Even though massless and to any practical extent non-

interacting in vacuum, photons can be given an effective mass through suitable spa-

tial confinement and can be endowed with non-negligible interactions by mediating

them through suitable χ(3) non-linear materials.

Synthetic gauge fields for photons can be, analogously to the atomic counterpart,

generated in a variety of ways. The first theoretical proposal [145, 146] built on

the idea of breaking time-reversal symmetry by means of suitably engineered meta-

materials; the idea was soon implemented in the laboratory [147] leading to the

observation of robust, chirally propagating edge modes analogous to the ones which

are present in the integer quantum Hall effect. Many other proposals for the re-

alization of synthetic gauge fields in lattice geometries however popped up in the

following years, among which one can list coupled helical waveguides in propagating
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geometries [148], or the very-promising cavity- and circuit-QED systems [149, 150].

On the other hand, synthetic magnetic fields in continuous geometries have been pro-

posed based on the analogy between the Lorentz and Coriolis forces, for example in

a cavity with spherical mirrors [151, 152] and then in twisted optical ring resonators,

where they have been successfully implemented, leading to the first experimental re-

alization of synthetic photonic Landau levels [153] on an effective conical geometry.

This shows the potential of these new platforms, as it can lead to new physics which

can hardly be explored in solid state devices.

Physicists soon started to look for the possibility of realizing strong photon-photon

interactions in order to achieve strongly correlated phases such as the Mott insula-

tor state in the Bose-Hubbard model [154, 155], Tonks-Girardeau gases [156] and

fractional quantum Hall states of light [157, 158, 159, 160, 161, 162]. A particularly

effective way of realizing strong interactions is based on the photon-blockade mecha-

nism, which can for example be realized by exploiting the hybridization of light with

strongly interacting Rydberg atoms; the effect has been realized experimentally in

a non-planar cavity [163] and subsequently successfully combined with a synthetic

magnetic field [153] to realize the first two-photon Laughlin state [164]. Strong cor-

relations have been reported in circuit-QED systems as well [165, 166], which could

in the near future lead to realize strongly correlated fractional quantum Hall states

in these devices.

In conclusion, several experimental platforms have been proposed and examined

to simulate strongly correlated phases of matter, especially fractional quantum Hall

physics with neutral particles. In recent years, numerous promising experimental

findings have been reported in this exciting area and we believe that many more

fascinating results will emerge in the coming years.



CHAPTER 3

THE LAUGHLIN STATE

In Chapter 2 we mentioned that fractional quantum Hall liquids are peculiar strongly

correlated two-dimensional matter systems; perturbative analysis are doomed to

failure: since the kinetic energy is completely determined by the Landau level filling,

inter-particle interaction is the most important energy scale. Numerical simulations

are also hard, because of the macroscopically large Hilbert space dimension: in

principle, one needs to consider all the many-particle degenerate ground states of

a partially filled Landau level over which the interaction energy needs then to be

diagonalized.

Despite all these difficulties, Laughlin’s insight [23] was to simply guess the correct

wavefunction for the incompressible fractional quantum Hall liquid at filling ν =

1/m, where m is an odd integer due to the fermionic nature of the constituent

particles. Starting with his seminal work, theorists have managed to describe the

properties of many fractional quantum Hall states by well-educated guesses of the

system’s wavefunction [36, 37, 167, 168, 10]. For his insight, Laughlin was awarded

the Nobel prize in 1998.

In the following chapter we briefly review the main properties of the Laughlin state,

including those of its edge and quasihole/quasielectron excitations.

3.1 The Laughlin state

Even though the Laughlin state has been written in the Landau gauge [169] as well

with periodic boundary conditions [170] or on a sphere [171], the simplest by far is

the symmetric (also called circular) gauge, suitable for a droplet geometry [23]. We

25
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therefore begin by briefly reviewing the circular gauge; after that, we discuss the

Laughlin state and its edge and bulk charged excitations.

3.1.1 Circular gauge

In the symmetric gauge the vector potential is written as

A =
1

2
B × r. (3.1)

Such a convention apparently breaks translational symmetry in both the x̂ and the

ŷ directions, but preserves rotational symmetry with respect to the chosen origin.

The wave functions obtained in this gauge represent, because of their simplicity, a

key ingredient to describe the fractional quantum Hall effect. In particular we focus

our attention on the lowest Landau level wave functions, which satisfy a |0,m〉 = 0.

This relation can be conveniently rewritten as a differential equation using Eq. (2.3)

− i
lB (∂x + i∂y) + 1

2lB
(x+ iy)

√
2

φn=0,m = −i
√

2

(
lB∂z∗ +

z

4lB

)
φn=0,m = 0 (3.2)

where the complex coordinates z = x + iy and z∗ = x − iy have been introduced;

the derivative operators with respect to z and z∗ read ∂z = 1
2

(∂x − i∂y) and ∂z∗ =
1
2

(∂x + i∂y). The general solution to this equation reads

φn=0,m(z, z∗) = fm(z) exp

(
−zz

∗

4l2B

)
, (3.3)

namely it is given by an arbitrary function fm(z) which depends only on the holo-

morphic coordinate z and not on the anti-holomorphic one, z∗, times a circularly

symmetric Gaussian factor.

In this particular gauge, the guiding centre creation and annihilation operators

read 


b =
√

2
(
−lB∂z − z∗

4lB

)

b† =
√

2
(
lB∂z∗ − z

4lB

)
.

(3.4)

Requiring that |0, 0〉 is annihilated not only by a but by b as well, and that such

a state is normalized, one obtains that fm=0 = 1/
√

2π l2B; the generic |0,m〉 state

is then built by iteratively applying b†. The result, apart for an irrelevant phase

factor, is

φn=0,m =
1√

2π l2Bm!

(
z√
2lB

)m
exp

(
−zz

∗

4l2B

)
. (3.5)
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These wavefunctions as expected are cylindrically symmetric and are peaked at a

ring of radius r0 =
√

2mlB, making them, as anticipated, the most natural choice

for dealing with droplets of quantum Hall liquid. Notice that the flux through the

area enclosed by this ring is (πr2
0)B = mφ0: it contains exactly m magnetic flux

quanta.

Finally, notice that these eigenfunctions are also eigenfunctions of the gauge invari-

ant angular momentum operator L = LR + Lπ; in particular, since n = 0 (lowest

Landau level) Lπ |0,m〉 = −~/2, while LR |0,m〉 = ~(m+ 1/2) so

L |0,m〉 = ~m |0,m〉 . (3.6)

The quantum number m can thus be interpreted as an angular momentum eigen-

value. More explicitly, the angular momentum operator can be written as

L = ~(z ∂z − z∗ ∂z∗) (3.7)

and it is easy to check that the wavefunctions Eq. (3.5) indeed satisfy Eq. (3.6).

3.1.2 Laughlin’s ansatz

When the particles are restricted to the lowest Landau level, the kinetic energy be-

comes an inessential constant. The simplest Hamiltonian capturing all the essential

physics of fractional quantum Hall liquids can therefore be written as

H = PLLL

(∑

i<j

V (ri − rj)

)
PLLL (3.8)

where PLLL is a lowest Landau level projector [10] which reminds us that the other-

wise classical interaction-only problem [Eq. (3.8)] needs to be solved with a lowest

Landau level restriction, which turns it into a genuinely highly non-trivial quantum

mechanical problem, where interaction is not just a small perturbation.

Laughlin’s brilliant contribution [23] was – instead of attacking the problem trying

to diagonalize Eq. (3.8) – to write down the answer, a wavefunction, based on few

physical observations.

� Since one considers only a partially filled lowest Landau level, the single par-

ticle states which comprise the many-body state are of the form of Eq. (3.5).
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The system ground state wavefunction will thus have the following structure

Ψ(r1, . . . , rN) = F (z1, . . . , zN) exp

(
−
∑

i

|zi|2
4l2B

)
, (3.9)

namely it must be constructed out of an holomorphic polynomial function

F (z1, . . . , zN) times a Gaussian factor for each particle.

� Fractional quantum Hall states are incompressible; the ground state wave-

function must not break any continuous spatial symmetry and have an energy

gap; if a continuous spatial symmetry was indeed broken (e.g. in a Wigner

crystal) long-wavelength gapless Goldstone modes (acoustic phonon modes of

the crystal) would appear in the spectrum, making the system compressible.

� Since the Hamiltonian is rotationally invariant, we expect the ground state

wavefunction to be itself rotationally invariant and thus be an eigenstate of

the angular momentum operator. Since such operator Eq. (3.7) counts the

powers of z, the polynomial part of the wavefunction must be of homogeneous

degree.

� The number of fluxes piercing the system’s area should equal Nφ = N/ν. Since

the radius of the quantum Hall droplet is set by the highest occupied single

particle state mmax, which encloses exactly mmax flux quanta, the largest power

of any coordinate zk appearing in the polynomial F (z1, . . . , zN) should be (in

the thermodynamic limit) mmax = N/ν.

� The wavefunction should be fully (anti/)symmetric for (Fermi/)Bose statistics

of the constituent particles.

The (un-normalized) variational wavefunction Laughlin proposed satisfies all the

previous requirements

Ψ(r1, . . . , rN) =
∏

i<j

(zi − zj)m exp

(
−
∑

i

|zi|2
4l2B

)
(3.10)

provided m is an (odd/)even integer to satisfy the constraints of (Fermi/)Bose statis-

tics.

The maximum power of any given coordinate zk is Nφ = m(N −1), and thus yields

the filling fractions

ν = N/Nφ →
1

m
. (3.11)

It is worth noting that when m = 1 the Laughlin wavefunction corresponds to a

non-interacting Fermi-liquid-like ground state; namely, the Laughlin wavefunction
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coincides with a single Slater determinant (a so-called Vandermonde determinant)

with all the orbitals from m = 0 up to m = Nφ = N − 1 completely occupied

Ψ(r1, . . . , rN) = det




1 1 . . . 1

z1 z2 . . . zN
...

...
...

zN−1
1 zN−1

2 . . . zN−1
N




=
∏

i<j

(zi − zj), (3.12)

where the exponential factors have been omitted.

To wrap things up, let us emphasize that Laughlin’s wavefunction is not based

on a mathematical derivation, and does not describe the exact ground state for

standard fractional quantum Hall states observed in two-dimensional electronic sys-

tems; nonetheless, it turns out to be a particularly good wavefunction even for

realistic systems – with overlaps greater than 99%. This occurs because as two

particles approach each other the wavefunction vanishes as m powers, and therefore

the probability of having two particles close to each other is extremely low. As

a consequence, also the interaction (and its details) are to some extent irrelevant.

Even though the overlap is extremely large for small system sizes, it is likely that

it would drop to zero in the thermodynamic limit [9]; however, it has been shown

that the Laughlin wavefunction reproduces the correct long-distance features of the

true ground state [172], and indeed one should think of the Laughlin’s wavefunctions

as states representative of “universality classes” of fractional quantum Hall ground

states, meaning that the true ground states shares the same topological order.

Finally, we would like to mention the fact that many toy model Hamiltonians

with short-range interactions have been built for which Laughlin’s ansatz is indeed

exact [171, 173, 174, 175] and which generalize to more exotic fractional quantum

Hall states [176]. For example, the Laughlin wavefunction is the exact ground state

for bosonic particles interacting through contact interaction[93], which makes these

states particularly appealing in the atomic or photonic context.

3.1.3 Plasma analogy

For general values of m, Laughlin’s state can not be written as a single Slater

determinant out of single particle orbitals, as in the integer quantum Hall m = 1

case [Eq. (3.12)]. Computing the expectation values of observables is therefore a

difficult task. To unravel the features of the state he proposed, Laughlin [23] noticed
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that the norm of his wavefunction Eq. (3.10)

Z =

∫ ∏

i<j

|zi − zj|2me
−∑

i
|zi|2
2l2
B d2z1 . . . d

2zN

=

∫
exp

(∑

i<j

2m log(|zi − zj|/lB)−
∑

i

|zi|2
2l2B

)
d2z1 . . . d

2zN

=

∫
e−β U(z1,...,zN ) d2z1 . . . d

2zN

(3.13)

can be identified as the canonical partition function of a classical one-component two-

dimensional plasma of N identical charges of charge Q = −m at temperature β−1 =

m/2 and interacting via two-dimensional Coulomb potential V (r) = −Q log(r/lB)

U(z1, . . . , zN) =
∑

i<j

−Q2 log(|zi − zj|/lB)−
∑

i

Q|zi|2
4l2B

. (3.14)

The last term can be interpreted as describing a uniform neutralizing background

with charge density 1/2πl2B.

The problem of a classical one-component plasma [Eq. (3.13)] is a well-studied one

in classical statistical mechanics. In particular, Monte Carlo calculations [177] in-

dicated that the plasma is a screening fluid when m . 70 (and freezes to a solid

otherwise). Therefore, the equilibrium state must be uniform and electrically neu-

tral, implying that, in order to minimise this energy, the plasma will arrange itself

so as to neutralize the background charge density, or

ρ0 =
ν

2πl2B
. (3.15)

This is indeed the expected density of an incompressible state at filling ν.

The usefulness of the plasma analogy does not stop here though, since it allows to

obtain analytical results through the intuitive understanding of screening physics.

For example, the presence of charged impurities in the plasma will cause it to rear-

range in such a way that the impurities are exponentially screened-out at distances

larger than the plasma’s correlation length. This fact, which allows for analytical

considerations regarding the nature of bulk quasiparticles [9], will be extensively

used in Chapter 6.

We finally would like to point out that, due to their usefulness and the intuitive

understanding they provide, plasma analogies for different fractional quantum Hall

states have been developed, for example for multicomponent Halperin systems [178]



3.2. Edge modes 31

or the non-abelian Moore-Read fractional quantum Hall state [179].

3.2 Edge modes

As we mentioned already a couple of times, the edge modes of quantum Hall sys-

tems display peculiar behaviour in that they behave as a one-dimensional chiral

quantum liquid [32] in which transport occurs in a single direction without backscat-

tering, hence robust to disorder and general small deformations of the Hamiltonian.

The properties of this one-dimensional quantum liquid have been shown to serve as

a probe for the topological order characterizing different fractional quantum Hall

states [180, 30, 181, 182].

l = 1 l = 2 l = 3 l = 4

Figure 3.1: Top row: sketch of the edge deformation (blue cloud) when the system’s
state is a coherent superposition of the Laughlin’s ground state [Eq. (3.10)] and
an edge excitation [Eq. (3.16)] carrying definite angular momentum [Eq. (3.18)].
The Laughlin’s ground state density is also sketched (black cloud). Bottom row:
density variation, with respect to the system’s Laughlin’s ground state, of a coherent
superposition between a N = 25, ν = 1/2 Laughlin’s ground state and the lowest
lying excited state at angular momentum l, when the system is confined by means
of a weak quartic V ∝ r4 trap (see Chapter 5).

The study of fractional quantum Hall edge modes has been the subject of intense

investigation since the Wen’s milestone works [26, 28, 29, 180], where it has been

shown that the long-wavelength/low-energy physics of the one-dimensional edge

modes in the thermodynamic limit is given by an effective simple model, the so-

called chiral Luttinger liquid theory, which will be briefly reviewed in the following
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Chapter. Here, we will limit ourselves to a microscopic discussion of the edge modes

of the ν = 1/m circularly symmetric Laughlin state Eq. (3.10).

One can expect that, when a not-too-strong confinement is present, the ground

state will still have the structure of a Laughlin state Eq. (3.10), for it is the densest

state (lowest degree) which minimizes the interaction energy at fixed filling fraction.

Being the densest state, one expects that it will also have the minimal possible con-

finement energy. To look for low energy excitations, we need to slightly alter the

degree of the ground state wavefunction, without modifying the favourable interpar-

ticle correlations which are already built-in in Laughlin’s ansatz. The degree of edge

excitations cannot thus be smaller than the one of the Laughlin’s wavefunction; on

the other hand, increasing its degree is easily realized by multiplying the Laughlin

wavefunction by polynomials symmetric in the particle variables zk [31, 176], in such

a way that the proper bosonic/fermionic statistics of the wavefunction is preserved;

the chiral nature is apparent, as with these rules one can only increase the angular

momentum of the state. For model interactions, these states have zero interaction

energy, analogously to the Laughlin state; however, being of slightly higher degree,

the droplet’s radius will be slighly larger and thus the state will have higher con-

finement energy. With these considerations in mind, we can write down the generic

edge excitations

ΨEE(r1, . . . , rN) = P (z1, . . . , zN)
∏

i<j

(zi − zj)m exp

(
−
∑

i

|zi|2
4l2B

)
. (3.16)

If the state has to be rotationally symmetric, the polynomial P needs to be of

homogeneous degree; if its degree is l, ΨEE will carry angular momentum L = L0 +l,

where L0 = mN(N − 1)/2 is the angular momentum of the Laughlin state. For

uncorrelated electrons at ν = 1, these edge excitations exactly recover particle-hole

excitations on top of the Fermi surface [183].

It is now easy to determine the dimension of the Hilbert space associated with the

edge excitations Eq. (3.16), at fixed l. A convenient (non-orthogonal) basis for such

a space can be easily written in terms of so-called power sum symmetric polynomials

pl =
∑

i

zli. (3.17)

Indeed, by multiplying some of the pl together we can obtain a polynomial of degree

l in different ways, the number of which will be given by the integer partitions p(l)

of l, namely the number of ways in which l can be written as a sum of positive
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integers Lα = {l1, l2, . . .}
Pl,α =

∏

l∈Lα
pl =

∏

l

pnll . (3.18)

Here nl is the multiplicity of a given l in Lα. Some examples are reported in

Table 3.1. Notice that in general these states are linearly independent only if the

excitation angular momentum does not exceed the number of particles in the system,

N ≥ l; furthermore, their interpretation as being edge excitations is valid as long

as their wavelength is larger than the magnetic length, l .
√

2mN . In such a

regime, the edge excitations can be interpreted as area-preserving deformations of

the incompressible droplet [58], as depicted in Fig. 3.1.

Degree l Partition L Polynomial Energy

1 {1} p1 e0

2 {2} p2 2e0

{1, 1} p2
1

3 {3} p3 3e0

{2, 1} p2p1

{1, 1, 1} p3
1

4 {4} p4 4e0

{3, 1} p3p1

{2, 2} p2
2

{2, 1, 1} p2p
2
1

{1, 1, 1, 1} p4
1

Table 3.1: List of the lowest degree symmetric polynomials, generating Laughlin
edge excitations through Eq. (3.16).

Now we consider a confining potential proportional to the angular momentum op-

erator L; this is actually the case when the confinement potential is harmonic in the

lowest Landau level since 〈1
2
e0 r

2〉 = e0(N + L), but gives correct long-wavelength

low-energy behaviour for generic smooth potentials. In such a case, all the p(l)

states with given angular momentum l have the same excitation energy with respect

to the Laughlin ground state

El − EGS = e0 l (3.19)

and are equally spaced, so we can interpret the excitation spectrum as arising from an

effective theory of harmonic oscillators, the so-called chiral Luttinger liquid theory.
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3.3 Charged bulk excitations

After having briefly discussed the Laughlin wavefunction and its gapless chiral edge

excitations, we will now review its gapped bulk excitations, focusing on the charged

ones - namely the quasihole and quasielectron excitations, which are emergent par-

ticles having fractional charge and displaying fractional statistics.

We will just briefly mention that there is a different category of gapped collective

bulk excitations, which are charge-neutral ripples in the density of the incompress-

ible fluid. The dispersion of these excitations has a minimum (called the magneto-

roton [184], in analogy to the roton minimum of superfluid Helium) at a non-zero

value of the wavevector, indicating the tendency to form a Wigner crystal at small

filling fractions ν . 1/7 (much like the roton minimum in superfluid Helium in-

dicates the tendency to solidification [47]). In the last years, neutral modes have

attracted lots of attention, their long-wavelength behaviour being interpreted as a

spin-2 excitation [185, 186] (the “graviton”), the quanta of motion of an intrin-

sic geometric degree of freedom [187] of fractional quantum Hall fluids which can

potentially be probed when the background geometry is non-static [188, 189, 190].

In the following we will only briefly review charged elementary excitations.

3.3.1 Quasihole excitations

Laughlin noticed [23] that an elementary excitation can be created by piercing at

some position η the quantum Hall fluid by an infinitely thin solenoid through which

a flux quantum φ0 = h/e is inserted adiabatically. By Laughlin’s charge-pump

argument [15], each single-particle state flows as (z − η)m → (z − η)m+1, yielding

Laughlin’s famous quasihole wavefunction

ΨQH(r1, . . . , rN) =
∏

i

(zi − η)
∏

i<j

(zi − zj)m exp

(
−
∑

i

|zi|2
4l2B

)
(3.20)

which is easily generalized to the presence of many quasiholes at positions ηα by

successive flux-insertions, each of which introduces a
∏

(zi−ηα) in the wavefunction.

The physical interpretation is straightforward, as each prefactor makes the fluid’s

density vanish at ηα, creating thus a hole. Notice that this wavefunction has the same

form as those of Eq. (3.16), therefore for the specific ultra-short-range interaction

for which the Laughlin ground state is an exact zero-energy eigenstate, the quasihole

state is an exact zero-energy eigenstate as well. This is not the case for longer ranged

interactions, but it turns out to be an extremely good ansatz even for more realistic
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scenarios.

The charge of the quasihole, associated to the density depletion of the fractional

quantum Hall fluid close to η, can be obtained by means of the plasma analogy we

briefly reviewed in subsection 3.1.3. Because the plasma is in its screening phase,

one can expect the quasihole to be exponentially localised at the position η. The

quasihole at η contributes to the plasma free energy [Eq. (3.14)] a term
∑

iQ log(|zi−
η|/lB) which can be interpreted as the interaction energy between the plasma and

an impurity with unit charge. The particles of the plasma will screen the impurity

out; since each has charge Q = −m, one needs 1/m plasma particles to screen the

impurity unitary charge. The quasihole charge must therefore be

q∗ = − q

m
, (3.21)

which shows that fractional quantum Hall effect bulk charged excitations are remark-

able in that they carry fractional charge [23, 35]. This is not only a coincidence of

studying the Laughlin variational wavefunction, but rather a footprint of the un-

derlying topological order [7]. Their presence has indeed been first experimentally

confirmed in shot-noise experiments in a ν = 1/3 fractional quantum Hall state [191].

Since fractional quantum Hall quasiparticles are exponentially localized objects

which carry a well defined fractional charge, it is natural to ask what their statisti-

cal properties are. The answer to this question turns out to be remarkable [192, 35]

and with far reaching consequences: the quasiparticles manage to escape the bo-

son/fermion dichotomy, configuring themselves as anyons, an exotic possibility al-

lowed in a two-dimensional world [193, 194, 195, 39]: the exchange phase can be

any real-number interpolating between bosons and fermions. In particular, when

two quasiholes are adiabatically exchanged, the ground-state wavefunction picks up

a Berry phase [115] which comprises the Aharonov-Bohm [116] and an additional

term which is interpreted as the “statistical phase” due to the localized excitations

getting exchanged

φst = ν π. (3.22)

When ν = 1 (integer quantum Hall case), the holes behave as standard fermions,

giving φst = π so that the ground-state wavefunction changes sign when the two holes

are adiabatically exchanged; however at rational filling the quasiparticles have exotic

(Abelian) anyonic statistics, recently observed in interferometric experiments [42,

43].
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3.3.2 Quasielectron excitations

Laughlin pointed out that his fractional quantum Hall state [23] can host yet another

kind of charged excitation – the quasielectron – which, contrary to the quasihole

excitation Eq. (3.20), is associated with a lowering of the number of magnetic flux

quanta piercing the system, for adiabatic removal of a quantum of flux will create

a “lump” of charge at some point. It is however easy to understand that quasihole

and quasielectrons are not “symmetric” [10]: while the quasihole is a zero-energy

eigenstate of specific short-range Hamiltonians, the quasielectron must be separated

from the ground state by an energy gap (the so-called many-body or Laughlin gap),

because the Laughlin state is the highest-density zero-energy eigenstate: if we want

to increase the electron density inside the fractional quantum Hall fluid, we need to

decrease the relative angular momentum of some pair of particles, which will cost

some interaction energy.

In analogy with the quasihole wavefunction Eq. (3.20), Laughlin proposed to lower

the degree of Eq. (3.10) by multiplying it by a factor
∏

i(z
∗
i − η∗), which however

involves the anti-holomorphic variables z∗ and thus makes the resulting state have

non-zero unwanted components in excited Landau levels. One thus needs to explic-

itly project the wavefunction back to the lowest Landau level

ΨQE(r1, . . . , rN) = PLLL
∏

i

(z∗i − η∗)
∏

i<j

(zi − zj)m exp

(
−
∑

i

|zi|2
4l2B

)
. (3.23)

Several inequivalent ways of explicitly doing the projection have been devised [10],

which result in wavefunctions which have different short-range behaviours, but the

expectation/hope is that the topological properties of the state are not affected by

such a choice. The most natural scheme [196] is to “normal order” the z∗k to the left of

the zk and then replace the anti-holomorphic coordinates by holomorphic derivatives

z∗k → 2 ∂
∂zk

, with the convention that the derivatives do not act on the exponential

factors. This yields the following variational wavefunction for the quasielectron

excitation

ΨQE(r1, . . . , rN) =
∏

i

(
2
∂

∂zi
− η∗

) ∏

i<j

(zi − zj)m exp

(
−
∑

i

|zi|2
4l2B

)
. (3.24)

In close analogy with the quasiholes, also quasielectron excitations carry fractional

charge [23, 197, 198] and behave as emergent anyons with the same statistical pa-

rameter as the one of the quasiholes [Eq. (3.22)], but contrary to the quasihole case

[Eq. (3.21)] they carry a fractional charge with the same sign of the one of the
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particles forming the Laughlin state

q∗ = +
q

m
. (3.25)

It is finally worth mentioning that, contrary to the quasihole state, the Laughlin

quasielectron state is not an eigenstate of some model Hamiltonian, and different

quasielectron wavefunction have also been proposed [199] based on Jain’s composite

fermion approach to the quantum Hall effect [168], which has a better variational en-

ergy as compared to the Laughlin quasielectron [200]. Recently, a different proposal

for the quasielectron wavefunction has been advanced [201].

In this chapter, we introduced the Laughlin’s state starting from the motivations

that lead Laughlin to his famous variational wavefunction, which is highly suc-

cessful in the description of the main fractional quantum Hall sequence at filling

ν = 1/m. We then briefly described some basic features of such a state, namely

the gapless edge excitations at the boundary and the bulk quasiparticles. The edge

modes, being among the central topics of this thesis, will be further reviewed in the

following Chapter 4. There, we briefly summarize the instructive bosonization of

one-dimensional chiral fermions and Wen’s hydrodynamic description of fractional

quantum Hall edges.





CHAPTER 4

CHIRAL LUTTINGER LIQUID THEORY

In the previous chapters, we qualitatively discussed the edge modes of integer and

fractional quantum Hall states, and discussed their microscopic wavefunctions start-

ing from the Laughlin state. The aim of this chapter is to briefly review the basic

ideas at the core of the effective low-energy description of these chiral boundary

modes.

4.1 Bosonization of chiral 1D fermions

In this section we briefly sketch the bosonization procedure for one-dimensional

chiral spinless fermions, mainly for two reasons. Firstly, even though simpler, they

provide the key ideas and insight to the bosonization of non-chiral fermions moving in

one-dimension, leading to the well known Luttinger liquid [202, 203]. Secondly, while

the inclusion of inter-edge interactions slightly modifies the discussion [204, 205]

making the low-energy effective theory analogous to the one originally developed for

one-dimensional fermions [202], each edge of an integer quantum Hall state at unit

filling map exactly to this model, as one could have guessed by comparing the low-

energy, low-momentum excitations of an integer quantum Hall system (Fig. 2.2(b)

and Fig. 2.3) to those of 1D chiral fermions [Fig.4.1].

For more rigorous and comprehensive descriptions, the interested reader may refer

to [206, 207, 32, 208].
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Figure 4.1: (a) Quadratic dispersion ε(k) for one-dimensional fermions. An exam-
ple of the ground-state is sketched by colouring in red the occupied states below
the Fermi energy (red dashed line) in the case of non-interacting particles. The
corresponding Fermi points are highlighted by vertical black-dashed lines. Orange-
dashed lines are linear approximations of the free-fermion dispersion ε(k) at the
Fermi points. (b) Spectrum of the positive-k single particle-hole excitations on top
of the ground-state sketched in panel (a).

4.1.1 Tomonaga-Luttinger model

The simplest model of interacting spinless fermions moving in one-dimension in a

(periodic) wire of length L

HTL =
∑

k

ε(k)C†kCk +
1

2

∑

k,k′,q

Vq C
†
kCk−qC

†
k′Ck′+q (4.1)

is too complicated to be solved exactly for a general single-particle energy spectrum

ε(k). The key observation though is to notice that particle-hole excitations C†k+qCk
carry well defined momentum and, at low-energies and long-wavelength, well defined

energy due to a kinematic constraint existing in one-dimension; as can be seen

in Fig. 4.1(b), differently from what happens in higher dimensions, there are no

low-energy particle-hole excitations except at k ∼ 0 and k ∼ 2kF . Therefore,

low-momentum particle-hole excitations are long-lived elementary excitations of the

one-dimensional Fermi system, and indeed they play a crucial role in the solution of

the problem.

By replacing ε(k) with a single linear branch v(k − kF ) – corresponding to chiral

fermions – and considering an infinite filled Fermi sea below the Fermi point kF , the
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single particle-hole excitations at fixed momentum have the same energy. The idea

is that such a model will capture the low-energy physics of the original one. One

therefore introduces bosonic density fluctuations

ρ†q =
∑

k

C†k−qCk (4.2)

which are the Fourier transform of the density operator

ρ(x) =
∑

k

eikx

L
ρk (4.3)

where ρ(x) = ψ†(x)ψ(x) and ψ(x) =
∑

k
eikx√
L
Ck. Since the density is real, ρ†q = ρ−q.

The density-fluctuation operators crucially fail to commute among each other1 [203]

[ρq, ρ
†
p] =

Lp

2π
δq,p (4.4)

which are nothing but the commutation relations of a set of independent harmonic

oscillators which are used as a new basis in which to re-express the problem. Within a

constant fermion-number subspace, the kinetic energy term can indeed be rewritten

as a bilinear of the density operators yielding a quadratic Hamiltonian in the bosonic

basis

HTL =
πv

L

∑

k>0

ρ†kρk +
1

2L

∑

k

Vk ρ
†
kρk (4.5)

which is easily solved. The mapping can be made rigorous by the introduction of

so-called “Klein factors”, to account for excitations which change the number of

fermions [206]; this allows to explicitly construct the fermion operators in terms of

the boson ones [210] ψ(x) ∝ exp
(
2πi

∫ x
ρ(y)dy

)
, and to show that the two formula-

tions, bosonic and fermionic, are indeed equivalent [202]. Bosonization thus provides

a remarkably simple way of solving the problem, and allows for the computation of

many relevant quantities, such as the single-particle Green function

G(x, t) ∝ 1

x− vt. (4.6)

In the context of quantum Hall physics this shows that along the one-dimensional

edge of the system the Green’s function decays as a power law, to be contrasted

with the behaviour which is found within the gapped bulk, where one finds it to

1It can be shown that that such a commutation relation is a low-energy feature of one-
dimensional systems in the thermodynamic limit [209], rather than the result of a non-trivial
cancellations between infinities as originally shown in [203].
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decay exponentially fast over a length-scale set by the magnetic length.

Secondly, the Green function has an inverse-power-law behaviour with unit expo-

nent. Upon Fourier transform, this shows that chiral one-dimensional electrons have

a behaviour similar to those of free electrons in a metal; this leads to ohmic linear

current-voltage (I-V ) characteristics in tunneling experiments with integer quantum

Hall edges.

Finally, we want to stress that this behaviour is famously modified in the case

of spinless fermions moving in one dimension, where interactions between the left

and right moving fermions leads to interaction-dependent Green function exponents

and to non-Fermi liquid behaviour [206]. Along similar lines, as we will discuss

more extensively in the next section, the situation is drastically different for the

fractional quantum Hall effect, due to the strong interparticle correlations in the

bulk extending all the way through the edge.

4.2 Wen’s chiral Luttinger liquid

In a series of seminal papers, Wen showed that along the one-dimensional bound-

ary of incompressible fractional quantum Hall systems there exist gapless chirally-

propagating excitations [26, 28, 29, 180] which do not form a chiral Fermi liquid, con-

trary to the integer quantum Hall case, but rather constitute a strongly-correlated

one dimensional liquid which was named chiral Luttinger liquid, due to the simi-

larities with Luttinger liquids and to its chiral nature. Even though the presence

and nature of the edge modes can be shown to be a consequence of gauge symmetry

and bulk incompressibility [29], we here review the chiral Luttinger liquid theory by

taking a simple but physically insightful hydrodynamical approach [30, 31], which

exploits the fact that the fractional quantum Hall states are incompressible and ir-

rotational liquids with an energy gap for excitations in the bulk; therefore the only

low-lying excitations are deformations of the cloud boundary but not of its area,

with a chirality which is imposed by the external magnetic field.

Even though the hydrodynamic picture can be provided for hierarchical states as

well, we here limit the discussion to the simple Laughlin fractions.

4.2.1 Hydrodynamic formulation

Consider a straight edge separating a fractional quantum Hall state at filling frac-

tion ν from the vacuum, as sketched in Fig. 4.2. The fractional quantum Hall liquid

is approximated as an incompressible homogeneous fluid with density ρ0 = ν
2πl2B

,
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confined in the half-plane y ≤ 0 by an electric field E = −Eŷ. The system den-

sity can be described by means of a one-dimensional field h(x) describing the edge

displacement as ρ(x, y) = ρ0 Θ(y − h(x)), Θ being the Heaviside step function. A

one-dimensional density variation with respect to the ground state can henceforth

be defined as ρ(x) =
∫
ρ(x, y)dy −

∫
ρGS(x, y) = ρ0h(x). At the classical level, the

particles will drift along equipotential lines of the electric field at a velocity set by

Eq. (2.24), independent of their position along ŷ. Therefore, edge waves will prop-

agate rigidly at constant velocity v, in a chiral way, meaning that no waves can

propagate in the opposite direction because of the presence of the magnetic field.

The continuity equation implies that the displacement field obeys a simple wave

equation

∂tρ = −v∂xρ (4.7)

whose solutions are rigidly propagating waves ρ(x− vt).

h(x)

v

v

ρ0

Figure 4.2: Sketch of the hydrodynamic picture of the edge modes: a density ripple
on top of the unperturbed ground state (dashed line) is described as being con-
stant “below” h(x) and (yellow filling) equal to ρ0. The perturbation propagates at
constant velocity v [Eq. (2.24)].

Wen then writes down an energy function in order to quantise the theory. The

electrostatic energy of the configuration is
∫
V dq =

∫
(Ey)q ρ(x, y)dx dy; its variation

with respect to the ground state, due to a deformation of the edge, reads

H = π ~
v

ν

∫
ρ2(x)dx (4.8)



44 Chapter 4. Chiral Luttinger liquid theory

which is quadratic in the one-dimensional density ρ(x). In momentum space ρ(x) =∑
k 6=0

eikx

L
ρk, where L is the length of the one-dimensional boundary, the Hamiltonian

Eq. (4.8) and the chiral equation of motion Eq. (4.7) read




H = 2π

L
~ v
ν

∑
k>0 ρkρ−k

∂tρk = −ivkρk.
(4.9)

By comparing these relations with Hamilton’s equations of classical mechanics, one

can identify “coordinates” and their corresponding canonical momenta as (k > 0)




qk = ρk

pk = i~ 2π
Lkν

ρ−k
(4.10)

The theory is quantized by the standard canonical quantization recipe of replacing

the Poisson brackets {qk, pk′} = δk,k′ with the quantum commutator 1
i~ [qk, pk′ ] =

δk,k′ . Equivalently

[ρk, ρ−k′ ] = [ρk, ρ
†
k′ ] =

Lk

2π
ν δk,k′ , (4.11)

which shows that the charge-neutral edge excitations are described by a single U(1)

Kac-Moody algebra [28, 26], remarkably similar to the charge-neutral edge excita-

tions of the Tomonaga-Luttinger model (with single branch of fermions) Eq. (4.4).

In coordinate space, the previous commutator reads

[ρ(x), ρ(y)] = −i ν
2π
∂xδ(x− y). (4.12)

The dynamics of the low-lying boundary excitations is set by

[H, ρk] = −~vkρk. (4.13)

The previous relations show that the edge theory is a equivalent to a collection of

uncoupled harmonic oscillators.

We shall now parallel the discussion we made about the microscopic description of

the edge-excitations of the Laughlin’s state in Sec. 3.2. In the case of a circularly

symmetric geometry (a fractional quantum Hall droplet), the x dimension is peri-

odic; this requires the momenta to be quantized in units of 2π/L, kn = 2π
L
n. The

generic edge state carrying a well defined momentum kM is therefore constructed by

repeated application of ρ†k to the vacuum of edge excitations |0〉. It is not difficult

then to realize that the number of such states is given by the number of integer

partitions p(M) of M : if Mα is an integer partition of M , then we can write the
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(unnormalized) edge state as

|M,α〉 ∝
∏

m∈Mα

ρ†km |0〉 (4.14)

which carries momentum kM =
∑

m∈Mα
km = 2π

L
M and energy EMα = ~v

∑
m∈Mα

km =

~v 2π
L
M . As anticipated, we see that the effective theory exactly matches the state

counting, the degeneracies and the energy spectrum one obtains in the Laughlin

state case 3.2.

4.2.2 The electron operator

Charged excitations correspond to the addition (or subtraction) of electrons at the

edge. Analogously to the Tomonaga-Luttinger model [210], the underlying particle

creation/annihilation operators are built by exponentiating bosonic operators

ψ ∝ e−iφ/ν . (4.15)

Here, the phase field φ is related to the edge density through ρ(x) = − 1
2π
∂xφ(x).

It is not difficult to show that these operators indeed create a localized charge on

the edge

[ρ(x), ψ†(x′)] = δ(x− x′)ψ†(x′), (4.16)

however, in order to be valid particle creation/annihilation operators, they should

commute(/anticommute) when the particles making up the quantum Hall state are

bosons(/fermions). Making use of the Baker-Campbell-Hausdorff identity one can

obtain

ψ(x)ψ(x′) = (−1)1/νψ(x′)ψ(x), (4.17)

which shows that one needs 1/ν to be an even(/odd) integer in order for the ψ

to commute/(anticommute) at different positions. With such a constraint, Wen’s

effective edge theory is seen to be the correct low-energy description of the boundary

of a Laughlin state, but not of a generic fractional quantum Hall state. In these

latter cases, this simple formulation of Wen’s theory is indeed not self-consistent

because it does not contain the electron operator. Leveraging on this observation,

Wen concluded that states with ν 6= 1/m must contain more than a branch of edge

excitations.

As a final comment, we wish to to parallel the discussion we did for the Green

function at the end of Sec. 4.1. Using Eq. (4.15) one can compute the electron
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propagator

G(x, t) ∝ 1

(x− vt)1/ν
(4.18)

which, when ν = 1, reduces to Eq. (4.6), in agreement with the fact that the Laugh-

lin state at ν = 1/m = 1 is actually a non-interacting state described by a Slater

determinant [Eq. (3.12)], whose boundary excitations map to a chiral Tomonaga-

Luttinger model, as we mentioned in Sec. 4.1. However when ν 6= 1, due to the

strong correlations of the bulk liquid, the single-particle Green function acquires

an anomalous exponent, showing non-Fermi-liquid behaviour in a way that is rem-

iniscent of what happens in the Tomonaga-Luttinger model with both right- and

left-moving interacting fermions [206]. While in this latter system however the

anomalous exponent is set by the interactions, here it is completely determined by

the bulk filling fraction ν and is thus expected to be robust against microscopic

details, a central prediction of Wen’s chiral Luttinger liquid theory. The anomalous

exponent shows up in striking non-linear behaviour of current-voltage I-V charac-

teristics in tunneling experiments [32], and owing to its universality can be used to

characterize topological orders in fractional quantum Hall liquids [7].

Ingenious I-V characteristics experiments [211, 212] for electrons tunneling from

a three-dimensional Fermi liquid into the fractional quantum Hall edge confirmed

this remarkable non-ohmic behaviour, even though the measured exponent exhibits

deviations from the predicted value: this discrepancy generated a large number

of theoretical works trying to address the non-universality of the exponent, which

has been argued to arise from edge reconstruction [213, 214], Landau level mixing

due to long-range Coulomb interaction [215, 216, 217] or physics beyond the chiral

Luttinger liquid [218].

4.2.3 Beyond chiral Luttinger liquid

Even though the chiral Luttinger liquid theory is expected, because of renormal-

ization group arguments, to be the correct low-energy and long-wavelength limiting

behaviour of the Laughlin state edge physics, this cannot be the case at higher-

energies/shorter wavelengths; in such a regime additional contributions, irrelevant

in the renormalization group scheme, will start to matter and as we are going to dis-

cuss they are crucial to understand the edge-dynamics beyond the chiral Luttinger

liquid model, both at the linear and non-linear level.

Non-linear Luttinger liquids have attracted lots of attention in the context of one-

dimensional fermionic matter [219], and have recently started to attract the attention

in the quantum Hall field as well [220, 221, 222, 223, 224, 225, 226, 227, 228]. For
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example, in recent years additional long-range “Benjamin-Ono” terms giving rise to

fractionally quantized solitons moving along the one-dimensional boundary of the

quantum Hall sample have been predicted to arise as a general feature of fractional

quantum Hall liquids [225, 226, 227]. More recently, the presence of these long-range

terms has been critically scrutinized and constrained by means of conformal field

theory methods and analysis of symmetries [228], which have shown that as long as

the inter-particle interactions are short ranged, so must be the effective low-energy

edge Hamiltonian.

This is where our journey begins. In the rest of this thesis we will be presenting our

results. More specifically, in the upcoming Chapter 5, we are going to discuss our

results in this field of research. Leveraging on in-depth numerical analysis of anhar-

monically confined fractional quantum Hall clouds with short-range interactions, we

show how the semi-classical dynamics of the edge is in our case effectively captured

by a Korteweg-de Vries equation rather than by a Benjamin-Ono one. We then

quantize this semiclassical dynamics and show how this leads to a highly predictive

model generalizing Wen’s chiral Luttinger liquid description.

In chapter 6 we instead change a bit the topic, and instead of focusing on the edge

excitation we look at the bulk ones. In particular, we study how fractional quantum

Hall quasiparticles not only are characterized by fractional charge and fractional

statistics, but also by a fractional spin.
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CHAPTER 5

NONLINEAR DYNAMICS AT THE EDGE

In this chapter we study the nonlinear physics of the edge modes of fractional quan-

tum Hall systems, beyond the regime of validity of Wen’s chiral Luttinger liquid

theory described in Chapter 4. As compared to our previous investigations of the

non-linear features in conceptually-simpler non-interacting integer quantum Hall

fluids [229] – for which exact diagonalization methods are readily implemented and

yield valuable information and insight into the basic features of these systems –

the strongly correlated nature of fractional quantum Hall liquids poses enormous

technical challenges to their theoretical and numerical description. Given the great

success of Monte Carlo methods for the study of these states, especially the simpler

Laughlin’s fractions, we develop a numerical approach to follow the dynamics of the

edge modes of large fractional quantum Hall clouds. This allowed us to gain insight

into the physics of such these strongly correlated systems, which we accompany with

an in-depth study of the associated response functions.

In particular, in this chapter we are going to study the effects a weak anharmonic

confinement has on the linear and nonlinear dynamics of the edge modes of macro-

scopic fractional quantum Hall fluids with short-ranged interactions. We character-

ize for such a system the first corrections to Wen’s low-energy and long-wavelength

chiral Luttinger liquid theory. We find that the dispersion relation of linear waves

gets a cubic correction due to a combination of velocity gradients at the system’s

edge (induced by the anharmonic confinement) and strong bulk correlations ex-

tending all the way through the bulk. At the same time, we find sizable nonlinear

effects in the dynamics, which have the potential to lead to intriguing wavebreaking

dynamics.

49
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The numerically observed features are quantitatively captured by a nonlinear chiral

Luttinger liquid quantum Hamiltonian: the nonlinear behaviour found in the dynam-

ics is mapped onto interactions between the bosons, while the modified linear-waves

dispersion is accounted for by an additional quadratic term. The one-dimensional

edge-density time evolution reduces to a driven Korteweg-de Vries equation in the

semiclassical limit.

Making use of refermionization techniques we then show that the charge-zero sector

of the theory can be exactly mapped onto a one-dimensional model of massive

and interacting chiral fermions; this gives physical insight on the edge dynamical

structure factor, explaining both its broadening and interestingly showing that it

exhibits a universal power-law behaviour at its thresholds which depends on the

filling fraction alone and not on the details of the anharmonic trap.

The contents of this chapter have been adapted from [230, 231], with some more

results that will be wrapped up in an upcoming paper.

5.1 System and methods

In the following subsections, we are going to describe the system we considered and

the numerical method we used to study it.

5.1.1 The system

We consider a two-dimensional system of N quantum particles of mass M , inter-

acting through suitable short-range repulsive interactions and subject to a strong,

uniform synthetic magnetic field [83, 84] B orthogonal to the plane; the system’s

model Hamiltonian reads

H0 =
∑

i

π2
i

2M
+
∑

i<j

Vint(ri − rj), (5.1)

where πi is the kinetic momentum of the i-th particle Vint(ri−rj) the short-ranged

interaction potential between the i-th and j-th particles.

As we extensively discussed in Section 2.1, in this continuous-space geometry with

no underlying periodic lattice, the single-particle states in a uniform magnetic field

B organize in highly degenerate and uniformly separated Landau levels: in what

follows, energies are measured in units of the cyclotron splitting between Landau

levels and lengths in units of the magnetic length. Moreover, we will work in the
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symmetric gauge we reviewed in Sec. 3.1.1, therefore sticking with the usual complex-

valued shorthand z = x+ iy.

Two-body interactions lift the degeneracy and can lead – as we discussed in Sec. 3.1.2

– to the formation of highly-correlated incompressible ground states. The simplest

examples are the celebrated Laughlin states [23]

ΨL(z1, . . . , zN) =
∏

i<j

(zi − zj)1/ν exp

(
−
∑

i

|zi|2 /4
)
, (5.2)

entirely sitting within the lowest Landau level. The Laughlin state at filling ν = 1/2

is the exact ground state for contact-interacting bosons [93], and thus could be

realized in atomic [48, 82] or photonic [49, 50] systems; on the other hand, the

ν 6= 1/2 Laughlin states are the exact ground states of certain bosonic or fermionic

toy model Hamiltonians [171, 173, 174, 175] and an excellent approximation in more

realistic cases as shown by countless numerical evidence.

We focus our attention on the gapless edge-excitations – whose basic physics we

reviewed in Sec. 3.2 – on top of a circularly-symmetric droplet of Laughlin fractional

quantum Hall liquid, which correspond to chirally-propagating surface deformations

of the incompressible cloud and, in the low-energy and long-wavelength limit, are

accurately described by the chiral Luttinger liquid (χLL) model we reviewed in the

previous Chapter 4. Our goal is to understand the basic features of the dynamics

beyond the χLL description, when the cloud is confined by a generic non-harmonic

(circularly symmetric) trap potential

Vconf(r) = λrδ, (5.3)

and the applied time-dependent excitation strength is large enough to exit the linear

regime so that it provides sensible non-linear effects. We consider integer values

of the exponent, δ ≥ 2. The limiting δ = 2 case is somewhat trivial though,

for when the confinement is harmonic the edge excitations disperse linearly [176]

(see Fig. 5.1(b)) and the resulting edge theory reduces to the paradigmatic chiral

Luttinger liquid of Wen; the anharmonic δ > 2 case will be therefore the focus of

the chapter.

To keep the calculation manageable, we will assume that the trap is shallow enough

and the external time-dependent excitation is not too strong, so as to avoid coupling

to states above the many-body energy gap ∆ [96, 97, 81]. In this way the ground

state remains a Laughlin state and the dynamics of the system edge is confined
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to the subspace of many-body wavefunctions obtained by multiplying the Laughlin

wavefunction by the holomorphic symmetric polynomials Pα ({zi}) in the particle

coordinates [183, 58, 31, 176] we described in Chapter 3 (see Fig. 5.1(c)).

When is the Laughlin state the ground state?

In order to make these qualitative considerations more precise and quantitative, we

can note that the Laughlin state [Eq. (3.10)] remains (approximatively) the ground

state in the presence of the confinement potential as long as the energy cost of adding

a particle at the system edge is smaller than the one required for inserting the extra

particle into the bulk of the system, proportional to the many-body gap. Under this

assumption, the ground state is a Laughlin state everywhere and its edge states are

well captured by our theory 1. If the aforementioned condition is not strictly met, a

shell structure of locally homogeneous incompressible liquids has been predicted to

appear [69], separated by sudden jumps (which will get regularized on the magnetic-

length-scale) at the transition points between different strongly correlated liquids at

different filling fractions. In spite of this additional complication, we expect that

our theory will still provide an accurate description at least of the external edge

between the outer Laughlin shell and the external vacuum, provided the outer shell

is thicker than the characteristic correlation length of the gapped bulk, of the order

of the magnetic length.

While we expect that our results can be generally applied to a variety of systems

in different geometries, it is interesting to have a closer look at the relevant energy

scales for the promising case of rotating clouds of bosonic atoms [81, 100, 90, 91],

which we briefly discussed in Sec. 2.4.1: atoms are confined to move along a two-

dimensional plane by a tight confinement along ẑ and are laterally trapped by a

harmonic V2 = 1
2
Mω2r2 potential supplemented by a anharmonic Vconf = λrδ one.

In the fast rotation regime at Ωr = ω, the centrifugal potential in the rotating

frame is completely compensated by the harmonic part of the confinement and one

is left with the anharmonic trapping only. Given the tight confinement along ẑ,

the effective two-body interaction potential is a contact one, Vint = 2~Ωrgδ
(2)(r/l2B),

with an interaction strength g proportional to the ratio aS/az between the s-wave

scattering length and the harmonic oscillator length az. As usual, lB =
√

~/(2MΩr)

is the effective magnetic length and 2~Ωr the effective cyclotron gap.

The characteristic energy scale of the interactions between the bosons is thus

Vint = 2~Ωrg(n2Dl
2
B), where n2D is the two-dimensional density of the gas: for a

1This of course holds unless the edge is reconstructed[213, 214, 232, 233], which however does
not typically happen for local interactions.
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Laughlin state at half filling n2D = 1/(4π l2B), so the interaction energy scale is of

order Vint/2~Ωr = g/4π. While the quantum correlations between particles make the

Laughlin state and its edge excitations exact zero-energy eigenstates of the Hamilto-

nian, the typical energy of quasi-particle excited states is set by Vint. In particular,

numerical calculations [81] have shown that the many-body energy gap in these sys-

tems is of the order of ∆ ≈ 0.1 g ~Ωr. While the dimensionless parameter g could be

tuned to relatively large values by means of Feshbach resonances [80], in our case it

is beneficial to keep it moderate g/(4π) . 1 so as to suppress Landau level mixing.

As a result, one can expect optimal values of the many-body gap to be on the order

of a fraction of ~Ωr, which visibly points in the direction of using strong in-plane

harmonic potentials.

To conclude, let us clearly state the requirements for avoiding closing the many-

body gap in a quartic δ = 4 anharmonic confinement potential and thus favour

“wedding-cake” structures [69]. This requires that at the position of the edge (r ∼√
2N/ν lB) the anharmonic part is much smaller than the harmonic one, Vconf/V2 ∼

10−3. For a system of N = 25 particles, for which as we will show in what follows

the physics already approaches the thermodynamic limit, this condition sets the

magnitude of the anharmonic potential to be roughly Vconf(Rcl)/2~Ωr ≈ 0.01, which

imposes ~λ/M2Ω3
r ≈ 10−5. Under these conditions the ground state of the system

will be the bosonic Laughlin state at half filling. Scaling up the size of the system

will in principle require precise control on the trap parameters; however, as will

discuss later in this chapter, we see the same physics emerging even for the extreme

case of an hard-wall confining potential in real space, under suitable conditions.

5.1.2 The numerical method

Before we start with the discussion of the physics, we would like to give a brief

description of the numerical method we envisioned to perform all the numerical

simulations of this chapter.

Since we are assuming a clean separation of scales

~ωc � Vint � Vconf (5.4)

the system’s ground-state will be a Laughlin state and its edge excitations will be

described by many-body wavefunctions of the form of Eq. (3.16), which we expand

using the power-sum symmetric polynomials [Eq. (3.17)] as a basis in which to
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Figure 5.1: We plot the exact-diagonalization spectrum (restricted to the lowest
Landau level) for a system of N = 7 bosons, interacting through a short range
potential g δ(2)(r), as horizontal black lines against the conserved angular momentum
l measured with respect to the Laughlin’s ground state value mN(N−1)/2. Energies
are in units of g/l2B, in the case of (a) no confinement (λ = 0), (b) purely harmonic
(δ = 2) confinement, with λ = 1.76 × 10−3g/l4B and (c) purely quartic (δ = 4)
confinement, with λ = 6.4 × 10−5g/l6B. In the bottom panel (c) we compare exact
diagonalization data with Monte Carlo diagonalization ones (horizontal red lines,
plotted against a slightly shifted value of angular momentum). In the inset of (c),
we plot EED

l,n − EMC
l,n .

describe the edge-excitation P (z1, . . . , zN) [Eq. (3.18)]

Ψ(z1, . . . , zN) =
∑

l,α

Cl,αPl,α(z1, . . . , zN) ΨL(z1, . . . , zN) , (5.5)

where α runs through the pN(l) states corresponding to the integer partitions of l

restricted to N elements at most, which span each l sector.

The unperturbed system’s Hamiltonian H = H0 + Vconf(r) commutes with the an-

gular momentum operator; its eigenstates and eigenvalues can therefore be labelled

by the angular momentum eigenvalue l. Projecting the many-body Schrödinger
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equation over these many-body basis states, we obtain a Schrödinger equation

El,nM(l,α),(l,α′)Cl,α′ = H(l,α),(l,α′)Cl,α′ (5.6)

for the expansion coefficients Cl,α. The kinetic energy is constant within the low-

est Landau level and the two-body interaction energy is assumed to be negligible

within the subspace of Laughlin-like states (it is exactly zero for the case of contact-

interacting bosons, or model interactions). The Hamiltonian H then only includes

the confinement potential Vconf(r), while the “metric” M accounts for the non-

orthonormality of the basis wavefunctions, and makes the time-independent version

of the problem a generalized eigenvalue problem. A similar approach was previously

adopted to study the ground-state properties and the spectrum of edge-excitations

of a fractional quantum Hall fluid of Coulomb-interacting fermions [234, 218, 235].

Here we make a step forward and apply it to the study of relevant response functions

and crucially of the time-dependent dynamics of the strongly correlated fractional

quantum Hall fluid, in particular to its response to an external potential U . In

particular, when a time-dependent excitation potential is present, the projection of

the time dependent Schrödinger equation

iM(l,α),(l′,α′)Ċl′,α′(t) = H(l,α),(l′,α′)(t)Cl′,α′(t) (5.7)

couples different angular momenta. The great advantage of our approach is that

it allows to tame the dimension of the many-body Hilbert space: for a given l,

the dimension of the Hilbert subspace does not grow with N , as opposed to the

exponentially increasing dimension of the full N -particle Hilbert space. The price

to pay is the need to compute the high-dimensional integrals hidden in the matrix

elements of H and M; their number moreover grows quite fast2 with the angular

momentum l, which in practice limits our analysis to not-too-large values of l. In

our calculations, the evaluation of the integrals is done stochastically, by means

of a Monte Carlo sampling of the many-body wavefunction via the Metropolis-

Hastings algorithm, which we parallelized on a GPU to obtain a significant speed-up.

Specifically, the calculation of the matrices M and H appearing in Eq. (5.7) require

the evaluation of matrix elements of a generic real-space observables O(z1, . . . , zN)

between two (non-necessarily normalized) many-body states ψ1,2(z1, . . . , zN). This

2The number of partitions asymptotically grows as p(l) ∼ 1
4
√
3 l

exp

(
π
√

2l
3

)
.
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quantity can be rewritten as

∫
Dz ψ∗1(z)√

‖ψ1‖2
O(z)

ψ2(z)√
‖ψ2‖2

=

∫
Dz |ψ1(z)|2

‖ψ1‖2
O(z)ψ2(z)
ψ1(z)√∫

Dz |ψ1(z)|2
‖ψ1‖2

∣∣∣ψ2(z)
ψ1(z)

∣∣∣
2

(5.8)

where we have introduced the short-hands z = {z1 . . . zN} and Dz = dz1 . . . dzN and

we have defined the norm as ‖ψ1,2‖2 =
∫
Dz |ψ1,2(z)|2. The integrals in both the

numerator and the denominator are then performed with the Metropolis-Hastings

algorithm using P(z) = |ψ1(z)|2/‖ψ1‖2 as the target probability distribution func-

tion [236, 237, 238]. Since the ψ1,2(z) wavefunctions have the form given by Eq. (5.5),

consisting of a Laughlin state multiplied by a suitable polynomial of moderate de-

gree, they share most of their zeros and their weights are concentrated in similar

regions of configuration space. This feature is strongly beneficial in view of the con-

vergence of the Monte-Carlo sampling. Further details are provided in Appendix A.

Using this method we have been able to study the dynamics of systems of up to

N ∼ 80 particles. In the following we will mostly show results for up to 40 particles

for which the statistical error of the Monte Carlo sampling is smaller. As we are

going to see, for this particle number, the system is in fact large enough to be in the

macroscopic limit where the edge properties are independent of the system size.

5.2 Numerical results

In the following subsections we are going to describe our numerical results.

5.2.1 Benchmark

A first application of the numerical Monte-Carlo method is illustrated in Fig. 5.1(c)

and Fig. 5.2(b), where we compare the energies of the low-lying excited-states ob-

tained in two independent ways, namely Monte Carlo diagonalization and exact

diagonalization (always performed within the lowest Landau level).

The excited state energies successfully compare to exact diagonalization results

in every angular momentum sector l tested and for all particle numbers for which

exact diagonalization is easy to perform [Fig. 5.2(b)]. When the confinement is not

harmonic the ground state is not exactly a Laughlin state, but even when the effect

of the confinement is relatively strong [Fig. 5.1(c)] (Vconf(Rcl) ∼ 0.5∆, ∆ being the

many-body Laughlin gap) the ground state and its edge excitations are still well

described by Eq. (5.2) and Eq. (5.5). Notice that the low-energy description will
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Figure 5.2: (a) Radial profile of the ground state density. (b,c) Excitation spectra for
(b) N = 9 and (c) N = 25 bosons (red crosses), compared to exact diagonalization
(black dots in (b)) and the nonlinear χLL theory [Eq. (5.25)] (black dots in (c)).
The confinement is quartic, namely we set δ = 4 in Eq. (5.3); the bulk filling factor
is ν = 1/2.

become more accurate as Vconf gets smaller.

In Fig. 5.2(a) we show a radial cut of the Laughlin’s ground state density, which

exhibits the typical profile of a Laughlin state: a density plateau corresponding to the

incompressible bulk ρ0 = ν/ (2π) is well visible and separated by density oscillations

close to the edge of the system in proximity of the classical radius Rcl =
√

2N/ν,

where the density transitions from the bulk to the vacuum value.

Finally, notice that the Monte Carlo diagonalization allows us to deal with larger

systems [Fig. 5.2(c)]. We here just limit ourselves to observe that the same structure

of the spectrum as the one showcased in Fig. 5.2(b) survives as the droplet is made

larger.

5.2.2 Quantized transverse conductivity

We then investigate the dynamical evolution of the system in response to a tempo-

rally short excitation. With no loss of generality we assume for simplicity a radially
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Figure 5.3: Temporal shape of the pulsed-excitation Eq. (5.9). The insets sketch the
density associated to the system’s state before the pulse (in its ground state) and
after the excitation has been switched off (in a coherent superposition of ground-
and excited- states).

flat potential which we assume to be carrying definite angular momentum l. In the

(r, θ) polar coordinates, suitable for our circularly-symmetric geometry, the potential

has then the simple form

U(r, θ, t) = U(θ, t) = Ul(t) e
il θ + c.c.. (5.9)

where Ul(t) is the (complex-valued) time-dependent amplitude of the excitation at

angular momentum l. Here, l plays the role of a proxy of the excitation wavevector:

for a fixed cloud size, the higher l, the shorter the effective wavelength of the exci-

tation along the edge. While the calculations reported in the main text refer to this

r-independent potential, the general case of a r-dependent U(r, θ, t) is discussed in

Appendix B and shown to bring no additional physics. From the temporal point of

view, we focus on the case of a pulsed excitation with a Gaussian temporal shape

Ul(t) = u0 exp(−(t/τ)2). The characteristic time τ for turn-on and then switch-off

is taken to be slow enough τ � ~/∆ to avoid a significant excitation of states above

the many-body gap, but fast enough compared to the edge mode frequencies so to

induce a significant excitation of them. As sketched in Fig. 5.3, we start our protocol

with the system in its Laughlin ground state and pulse Ul(t) on a timescale τ . After
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the excitation potential has been switched-off the system’s state will be a coherent

superposition of the Laughlin state and its edge modes.

As expected on physical grounds, the force along the azimuthal direction induced

by the angular gradient of U(θ, t) generates a transverse Hall current along the radial

direction (see Sec. 2.1.2 and Sec. 2.2.2) which locally changes the cloud density on

the edge.
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Figure 5.4: (a) Amplitude of the edge density response after the weak l = 2 external
potential has been switched off, for different filling factors ν, normalized to the one of
a large integer quantum Hall system. (b) Dynamic structure factor weights plotted
against the excitation energy of each eigenstate. Within each angular momentum
l sector, the dashed lines are guides to the eye. Monte Carlo diagonalization data
(black dots) are compared to the nonlinear chiral Luttinger liquid model of Eq. (5.25)
(red crosses). (c) Static structure factor Sl as a function of l for the same values
of ν as in (a). Dashed lines indicate the χLL prediction Sl = νl. (d) Edge-mode
dispersion for different N , normalized by ω1 so that at l = 1 all curves start at 1. We
also normalize by the excitation angular momentum l and plot the results against
l2, so as to highlight the cubic ∝ l3 shift. The same trap potential as in Fig.5.2 has
been used. In panels (b,d) the filling factor is fixed to ν = 1/2.

Numerical results for the linear-response amplitude of the radially-integrated sys-

tem’s density (the “built-up” charge) to a weak excitation are displayed in Fig. 5.4(a):

in agreement with transverse conductivity quantization arguments, a clear propor-
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tionality of the response to the fractional quantum Hall filling factor ν is found in the

large-N limit. Quite remarkably, this limiting behaviour is accurately approached

already for way lower particle numbers (N & 15) in the fractional quantum Hall

than in the ν = 1 integer quantum Hall case. This conclusion is of great exper-

imental interest as it suggests that evidence of the quantized conductivity can be

observed just by probing the response to trap deformations of the edge of realistic-

size rapidly-rotating clouds [83], a technique of widespread use for ultracold atomic

clouds [47].

This behaviour can be understood using linear time-dependent perturbation theory

to study the edge-density ρ̂(θ) response when the system is excited by a perturbation

which couples to the system’s density, in our case the external potential U(θ, t). The

system’s response after the excitation Ul has been turned off reads, to linear order

(See Appendix C for more details)

〈δρ̂(θ, t)〉 =
1

π
=
[∑

l

∫
Ũl(ω)Sl(ω)ei(lθ−ωt) dω

]
, (5.10)

where Ũl(ω) is the space-time Fourier transform of U(θ, t) and

Sl(ω) =

∫
dt

2π
eiωt 〈eiĤtδρ̂le−iĤtδρ̂−l〉 (5.11)

is the dynamic structure factor – restricted here to the edge-modes manifold of states

– and δρ̂l is the angular Fourier transform of the edge-density variation δρ̂(θ). When

the trap is quadratic, the edge is a prototypical χLL and the dynamic structure factor

is a δ-peak centred at ωl = Ω l, with Ω = 2λ the angular velocity of the edge modes.

For anharmonic traps [Fig.5.5(a)], Ω is still determined by the potential gradient

at the cloud edge, analogously to Eq. (2.24) (a more extensive discussion is given in

Appendix F though),

Ω = r−1∂rVconf(r)
∣∣
Rcl
∝ N (δ−2)/2 (5.12)

but at the same time the dynamic structure factor broadens. Up to not-too-late

times however the broadening can nevertheless be neglected and the density response

can be accurately approximated as

〈δρ̂(θ, t)〉 ' 1

π
=
[∑

l

Ũl(ωl) e
i(lθ−ωlt)Sl

]
, (5.13)



5.2. Numerical results 61

where Sl =
∫
Sl(ω) dω is the edge-mode static structure factor. As long as the

confinement potential is not strong enough to mix with states above the many-body

gap, the static structure factor keeps its chiral Luttinger liquid value Sl = νl for l ≥ 0

and zero otherwise up to l values where finite-N effects get important [Fig.5.4(c)]

(See Appendix C for a discussion of this fact).
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Figure 5.5: (a) Angular velocity Ω plotted against the number of particles N , and
normalized to Ω(10), the angular velocity extracted from a system of N = 10 parti-
cles. (b) Group velocity dispersion parameter α as a function of N and normalized
to the extracted α(10), for different trap exponents δ at a constant filling fraction
ν = 1/2. (c, d) Properly normalized α (c) as a function of the reciprocal of the
filling, 1/ν, in the case of a quartic δ = 4 trap and different number of particles N
and (d) as a function of the trap curvature ∝ δ(δ − 2), for different filling fractions
ν at given N = 25.
All points are extracted from low-l polynomial fits to the numerical Monte Carlo
diagonalization data for ωl as a function of l.

5.2.3 Beyond chiral Luttinger liquid effects

Our numerical framework is not restricted to study the response of the system to

weak and long-wavelength excitations as captured by the standard chiral Luttinger

liquid theory. The goal of this Section is to explore the physics beyond Wen’s chiral
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Luttinger liquid theory, namely the response of the edge to stronger and shorter

wavelength excitations.
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Figure 5.6: Dynamic structure factor width ∆El, normalized by the one at N = 10
and l = 2 in the case of a ν = 1/2 fractional quantum Hall droplet as a function
of the particle number N for different values of (a) l = 2, (b) l = 3, (c) l = 4, and
(d) l = 5. The dashed lines are power law fits to the data and highlight the scaling
with N at fixed l, for different confinements δ. The fitted exponents are in close
agreement with the expected ones indicated in the legends.

Dynamical structure factor

As we have seen in the previous Section, anharmonic confinements cause the dy-

namic structure factor to broaden [Fig. 5.4(b) and Fig. 5.10] within a finite frequency

window, whose extension (as we will more extensively discuss in Sec. 5.4.2) is pro-

portional to l2 and to the curvature of the trap potential at the classical radius

c = R−1
cl ∂r

(
r−1∂rVconf(r)

)∣∣
Rcl

= λ δ(δ − 2)Rδ−4
cl , (5.14)

a quantity related to the second l-derivative of the lowest Landau level projection of

Vconf(r), which physically corresponds to the radial gradient of the angular velocity.

Analogously to the integer quantum Hall case [229], the broadening is responsible
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for the decay of the oscillations at late time that is visible in Fig. 5.8(b). However, in

contrast to the integer quantum Hall case, the distribution of the dynamic structure

factor weights at fixed angular momentum l is non-flat: as one can see in Fig. 5.4(b),

within each l sector, the weight of the states close to the high-energy threshold is

suppressed, while the one of the states close to the low-energy threshold is reinforced.

This behavior is in close analogy to what was found for a fermionic Luttinger liq-

uid beyond the linear dispersion approximation [219, 239, 240, 223, 224], and the

parallelism will be further explored in Sec. 5.4.1 and Sec. 5.4.3.

We will now present numerical data that substantiates this claim regarding the

broadening of the dynamic structure factor. However, a more comprehensive dis-

cussion on this matter will be presented in Sec. 5.4.2.

Broadening of the dynamical structure factor of edge modes

When the cloud is non-harmonically confined with δ 6= 2, the dynamic structure fac-

tor broadens within a finite frequency window, whose width can be easily estimated

by looking at the difference ∆El between the largest and smallest energies in a given

angular momentum l sector. The corresponding states have in fact a non-vanishing

weight | 〈0| δρ̂l |l, n〉 |2, and their energies thus correspond to the dynamic structure

factor thresholds.

In close analogy to to the integer quantum Hall case, we expect the dynamic struc-

ture factor to broaden ∝ c l2. Here we verify this scaling. In particular, data in

Fig. 5.6 suggest the following simple form

∆El = µν
c

2
l(l − 1). (5.15)

The proportionality c ∝ Rδ−4
cl is visible from theN dependence in each l sector. Since

all data have been normalized by ∆El=2 (at a fixed number of particles, N = 10),

the proportionality to l(l−1)/2 can be instead read out by looking at the first point

on y-axis. Notice that, apart for the ν-dependent proportionality factor, the result

in Eq. (5.15) is exactly the same as in the integer quantum Hall case, where the lower

(upper) threshold corresponds to a particle (/hole) created just above (/below) the

Fermi surface. An interpretation of this result, as well as the µν coefficient, are

presented in Sec. 5.4.2.
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Figure 5.7: Sketches of the excited droplet. (a) Excitation wavelength λ at fixed
excitation angular momentum l when the droplet is enlarged. (b) The undeformed
boundary, at a distance Rcl from the trap centre, and the deformed one parametrized
by a local radius R(θ).

Group velocity dispersion

This asymmetrical distribution of the dynamic structure factor makes its centre-of-

mass frequency (its first moment, normalized to the zeroth one)

ωl =

∫
ωSl(ω)dω∫
Sl(ω)dω

(5.16)

shift from the low-energy result ωl ' Ω l. Edge-excitations experience a wavevector-

dependent frequency-shift and, thus, a finite group velocity dispersion. As shown in

Fig. 5.4(d), the negative shift 3 gets stronger according to a cubic law at small l,

ωl = Ω l − α l3 . (5.17)

Notice that the cubic form of the frequency shift is different from the quadratic term

that appears in typical non-chiral Luttinger liquid theories describing, e.g., interact-

ing Fermi gases, as well as from the Benjamin-Ono term introduced in the context

of fractional quantum Hall fluids in [227, 226] and already critically scrutinized on

the basis of conformal field theory and symmetries in [228].

Whereas the numerical results shown in Fig.5.4(d) may suggest that the shift is a

finite-size effect, as the droplet size is increased the wavelength of the excitation gets

larger, as sketched in Fig. 5.7(a). Indeed, a careful account of the N dependence,

3In Appendix F we discuss small finite size corrections to the angular velocity parameter Ω with
respect to the physical expectation Eq. (5.12).
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of the geometry and confinement parameters indicates that the shift persists in the

macroscopic limit. To this purpose, we note that as N increases at fixed trapping

parameters λ and δ, the cloud gets correspondingly larger as Rcl =
√

2N/ν, so the

effective spatial wavevector of an excitation at l decreases as q = l/Rcl. At fixed q,

we expect the frequency shift to be proportional to the curvature of the confining

potential in a straight-edge geometry, which in our case suggests

α l3 = βν c̃ q
3 (5.18)

with

c̃ = R2
cl c = λ δ(δ − 2)Rδ−2

cl (5.19)

and a size-independent coefficient βν which in general will depend on the bulk filling

fraction. This functional form is validated against the numerical results in Fig.5.5(b-

d). Fig.5.5(b) shows that α is indeed proportional to
√
N

δ−5
at fixed λ. Fig.5.5(c)

and Fig. 5.5(d) illustrate the linear dependence on the filling factor and on the trap

curvature parameter, respectively.

From these data, we extract the size-independent βν coefficient 4

βν '
π

8

1− ν
ν

. (5.20)

Since βν ∝ 1 − ν, we see that the frequency shift of Eq. (5.18) is related to the

strong correlations of the quantum liquid extending all the way through the edge,

for βν vanishes at integer filling. Work is still in progress to understand the physical

origin of this term which we think could be related to the Hall viscosity[241], edge

dipole moment [242] and the magneto-roton excitations in the bulk of the fractional

quantum Hall fluid[243]. Interestingly, recently the oscillatory behaviour in the

proximity of the Laughlin state boundary, visible in Fig. 5.2(a), has been numerically

studied and the wavevector of such a oscillation was found to be related to the

wavevector of the bulk magnetoroton minimum [244].

Non-linear dynamics

When the excitation strength increases, nonlinear effects start to play an important

role in the edge mode evolution. Numerical results illustrating this physics are

displayed in Fig.5.8; in particular, Fig.5.8(a) shows the density profile of the cloud

edge after a relatively long evolution time past a sinusoidal excitation with given

4Note that additional, yet typically smaller and opposite in sign group velocity dispersion effects
may arise from higher-order terms in the single-fermion dispersion even for ν = 1 [229].
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Figure 5.8: (a) Colorplot of the density near the edge at ct ' 0.1 after an excitation
pulse of the form of Eq. (5.9) with an intensity large enough to induce a significant
non-linear dynamics on this temporal scale. White (black) lines are iso-density
contours for the excited (unexcited) system. (b,c) Time-evolution of the (modulus
of the) fundamental and second harmonic spatial Fourier components of the edge
density variation of N = 30 (red) and N = 9 (yellow) clouds, computed via Monte
Carlo diagonalization. Exact diagonalization data for N = 9 are shown as brown
dashed lines as a benchmark. Dotted black lines and black dots indicate respectively
the solution of the semi-classical equation Eq. (5.23) and of the quantum model ĤNL

χLL

of Eq. (5.28). Insets show a magnified view of the dynamics at early times. Same
trap parameters as in Fig. 5.2, filling factor ν = 1/2.

l. In contrast to the weak excitation case discussed above where the density profile

keeps at all times a plane-wave form proportional to cos(lθ − ωlt), here a marked

forward-bending of the waveform is visible, leading to a sawtooth-like profile. Upon

angular Fourier transform, this asymmetry corresponds to the appearance of higher

spatial harmonics.

The physical mechanism underlying the nonlinearity can be understood in analogy

with the integer quantum Hall case [229]. Because of the incompressibility condition,

a local variation δρ(θ) of the radially-integrated angular density must correspond to

a variation of the cloud radius δR(θ) ' δρ(θ)/(ρ0Rcl) (see the sketch in Fig. 5.7).
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This then leads to a variation of the local angular velocity

Ω̄(θ) = r−1∂rVconf

∣∣
R(θ)
' Ω + (2πc/ν) δρ . (5.21)

This nonlinear effect can be combined with the group-velocity dispersion and the

excitation potential U(θ, t) discussed above into a single semiclassical evolution equa-

tion
∂δρ

∂t
= −

(
Ω +

2πc

ν
δρ

)
∂δρ

∂θ
− α

∂3δρ

∂θ3
− ν

2π

∂U

∂θ
(5.22)

which we reformulate in terms of the 1D density variation along a “straightened”

edge by defining σ(ζ, t) = δρ(θ, t)/Rcl, where ζ = Rclθ is the physical position along

the edge. The resulting evolution equation

∂σ

∂t
= −

[
ṽ +

2πc̃

ν
σ

]
∂σ

∂ζ
− βν c̃

∂3σ

∂ζ3
− ν

2π

∂U

∂ζ
(5.23)

and has the form of a driven classical Korteweg-de Vries equation [245] whose coef-

ficients only involve macroscopic parameters such as the linear speed

ṽ = Rcl Ω (5.24)

determined via Eq. (5.12) by the transverse response to the inward trapping force

at the cloud edge, ṽ ∼ − ∂rVconf(r)|Rcl . The confinement potential curvature is

defined via Eqs.(5.14) and (5.19) and is proportional to the second derivative c̃ ∼
∂2
rVconf(r)|Rcl , namely the gradient of the trapping force.

As one can see in the time evolution of the spatial Fourier components of the

density shown in Fig.5.8(b,c) and in Fig.5.9, the semiclassical equation accurately

reproduces the numerical evolution up to relatively long times, where the forward-

bending due to the density dependent speed of sound is well visible. It would be

interesting to study whether a suitable semiclassical limit (e.g. larger systems so

that the density ripples on the edge effectively contain larger number of particles)

exists in which Korteweg-de Vries solitons [246] can emerge.

On the time-scales where the semiclassical dynamics Eq. (5.23) fails, the broadening

of the dynamic structure factor discussed above starts to play a dominant role, giving

rise to the collapse and revival features visible in the plots; equivalently, these effects

can be seen as the emergence of quantum fluctuations on top of the semiclassical

dynamics, as we are now going to see.
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Figure 5.9: Time evolution of the fundamental (a), second (b) and third (c) harmonic
of the spatial Fourier transform of the edge density variation of a N = 30 cloud at
filling factor ν = 1/2 in a δ = 4 quartic trap. The results of the microscopic
Monte Carlo diagonalization calculations (red lines) are compared with those of the
non-linear χLL model (black circles) and of its semiclassical limit (brown dashed
lines). For comparison, the result of a non-linear χLL model without the dispersive
contribution is shown as yellow triangles.

5.3 Non-linear chiral Luttinger liquid theory

In order to properly capture these last features, quantum effects must be included in

the theoretical description. In this perspective, the semiclassical evolution Eq. (5.23)

can be seen as the classical limit of the Heisenberg equation for the density oper-

ator of a χLL supplemented with a group velocity dispersion term and a forward-

scattering non-linearity.

This reasoning suggests the following form for the lowest non-universal corrections

to the quantum chiral Luttinger liquid Hamiltonian for our short-ranged interacting,

non-harmonically confined fractional quantum Hall fluid

Ĥ =

∫
dθ

(
π

Ω

ν
ρ̂2 +

c

ν2

2π2

3
ρ̂3 − πβν

ν

c

Rcl

(∂θρ̂)2

)
(5.25)
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where the the density operator of the chiral edge mode obeys the usual χLL com-

mutation rules [31],

[ρ̂(θ), ρ̂(θ′)] = −i ν
2π
∂θδ(θ − θ′). (5.26)

or, in the straight-line geometry,

ĤNL
χLL =

∫
dζ

[
π ṽ

ν
σ̂2 − π βν c̃

ν

(
∂σ̂

∂ζ

)2

+
2π2c̃

3ν2
σ̂3 + U(ζ, t) σ̂

]
(5.27)

and the U(1) Kac-Moody algebra Eq. (5.26) becomes [σ̂(ζ), σ̂(ζ ′)] = −i ν
2π
∂ζδ(ζ−ζ ′).

It is straightforward to verify that the evolution equation for σ̂ that is obtained by

taking the classical limit of the Heisenberg equation

∂σ̂

∂t
= i
[
ĤNL
χLL, σ̂

]
= −ṽ ∂σ̂

∂ζ
− πc̃

ν

∂σ̂2

∂ζ
− βν c̃

∂3σ̂

∂ζ3
− ν

2π

∂U

∂ζ
(5.28)

indeed recovers the classical wave equation Eq. (5.23) when operators are replaced

by complex numbers.

The different terms in the Hamiltonian Eq. (5.27) (or Eq. (5.25)) correspond to

the different physical effects discussed in the previous Sections. The first term,

proportional to σ̂2, is quadratic in the density operators σ̂: it is already present

in the standard chiral Luttinger liquid Hamiltonian and accounts for the increase

of energy of the cloud when the edge is deformed from its equilibrium position.

The second term is proportional to the second spatial derivative (∂ζ σ̂)2 and is still

quadratic in the density bosonic operators: it arises from the cubic correction to the

dispersion of weak-amplitude waves in Eq. (5.17); the additional third derivative

appearing in the corresponding term in the wave equation Eq. (5.23) comes from

the derivative present in the commutator Eq. (5.26). The microscopic origin of this

term will be the subject of future work – here we just note that it has the suggestive

form of a surface-tension energy.

The third term is proportional to σ̂3 and therefore is no longer quadratic in σ̂:

it stems from the intrinsic nonlinearities discussed in 5.2.3 and it describes inter-

actions among the bosonic modes of the chiral Luttinger liquid. Finally, the last

term proportional to the density operator σ̂ is analogous to the coupling to the elec-

tromagnetic field in the Wen’s chiral Luttinger liquid theory [28]: in our model, it

describes the external driving generated by the coupling of the cloud density to the

external potential U(θ, t) in Eq. (5.9).

All numerical coefficients appearing in the quantum Hamiltonian Eq. (5.27) can

be straightforwardly calculated in terms of the bulk filling fraction ν and the radial
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dependence of the confinement potential Vconf(r) around the classical radius r =

Rcl =
√

2N/ν using Eq. (5.19), Eq. (5.20), and Eq. (5.24). This confirms the

physical expectation that the edge dynamics only depends on the local features of

the confinement. The resulting formulas

ṽ = ∂rVconf(r)|Rcl (5.29)

c̃ = Rcl∂r
(
r−1∂rVconf(r)

)∣∣
Rcl

(5.30)

can be used to obtain quantitative predictions for specific physical systems.
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Figure 5.10: (a) Energy spectrum El,n − E0 of the system confined by a quartic
U(r) = λr4 trap, in units of the trap strength λ and coloured according to the
dynamic structure factor weight | |0〉 δρ̂l |l, n〉 |2 and plotted against the angular mo-
mentum sector l. The red dotted line is Wen’s linear dispersion of the edge modes,
Ωl; the black line is the cubic correction Ωl − αl3. Black circles with crosses are

the dynamic structure factor central frequency ω1(l) =
∫
dω ωSl(ω)∫
dω Sl(ω)

. (b) Dynamic

structure factor weights (on the x-axis) are plotted against the excitation energies
El,n−E0 (on the y-axis). Black circles are Monte Carlo points, red crosses have been
obtained from Eq. (5.25). The principal emerging features of the dynamic structure
factor at angular momentum l have been joined with black-dashed lines as a guide
for the eye. All the data are for N = 25 bosons at ν = 1/2 filling.
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We here wish to highlight the importance of the aforementioned dispersion ∝ (∂ζ σ̂)2

and interaction σ̂3 terms in Eq. (5.27). In Fig. 5.10 we show again the energy

spectrum of the system (left panel), highlighting both the dynamic structure fac-

tor weights (colorscale) and the modified linear waves dispersion Eq. (5.17). Even

though for a fixed l most of the dynamic structure factor weight is concentrated in the

lowest energy state, a non-zero weight is present in higher energy states as well. As

a result, the dispersion of linear waves, defined as the centre-of-mass of the dynamic

structure factor [Eq. (5.16)] does not coincide with the lowest energy state at E−(l).

It is henceforth not possible to identify this state with a single boson excitation at

the same angular momentum l, as previously done [221, 232, 247, 234, 218]. The

boson-boson interaction term proportional to σ̂3 in the nonlinear chiral Luttinger

liquid model is therefore playing a crucial role in spreading the dynamic structure

factor over a finite range of energies. Furthermore, as it will be apparent from

the discussion in Sec. 5.4.2., the fact that ω1(l) deviates from a linear behaviour

highlights the importance of the dispersive term proportional to (∂ζ σ̂)2.

The surprisingly good accuracy of the physical predictions of the nonlinear chiral

Luttinger liquid Hamiltonian Eq. (5.27) are showcased in Fig. 5.2(d), Fig.5.4(b),

Fig. 5.8(b,c) and Fig. 5.9 for the eigenenergy spectrum, the dynamic structure fac-

tor 5 and the complete time evolution, respectively. In each of these plots, the

predictions of Eq. (5.27) are compared to results obtained from the full microscopic

Hamiltonian, and an excellent agreement is found. In the panels of Fig. 5.9 we

further compared the numerically calculated microscopic time-evolution (the mod-

ulus of the spatial Fourier transform of the edge-density variation, up to the third

harmonic) with the results of the nonlinear chiral Luttinger liquid model6, with and

without the cubic correction associated to the modified phonon dispersion. Notice

that the latter is essential to correctly capture the late-time dynamics, in particular

of the harmonic components at 2l and 3l (yellow triangles in Fig. 5.9). Of course,

the nonlinear terms are even more important [228], and they are responsible for the

very appearance of a finite amplitude in the higher harmonic components. A very

good agreement can be seen, which gets slightly worse at larger angular momenta l:

this small deviation may be caused by a higher-order correction of the phonon dis-

persion (beyond the cubic term considered here) and/or by the increasing difficulty

in accurately sampling the matrix elements of the excitation Hamiltonian between

5The slight deviations at large momenta are due to the higher-order group velocity dispersion
and finite-size effects that are visible also in Fig. 5.4(c,d). When the droplet is made larger, the
deviations become smaller as can be seen in Fig. 5.12(b).

6To this purpose, the free parameters of the model have been determined according to the
scaling formulas previously discussed, without any additional fine-tuning.



72 Chapter 5. Nonlinear dynamics at the edge

higher-l subspaces which would then result is numerical error increasing over time.

All together, these results strongly support the predictive power of the nonlinear

χLL model. Given the favourable scaling of its numerical complexity with particle

number N as compared to the full two-dimensional calculations, the one-dimensional

nonlinear χLL appears as a most promising tool to describe the dynamics of large

fractional quantum Hall clouds well beyond the limitations of the full many-body

description.

In the sections that follow we are going to discuss some simple consequences of

such a model.

5.4 Refermionization

In the following subsections, we are first going to describe an equivalent fermionic

model for the description of the bosonic edge modes. Even though equivalent, such

a dual description turns out to be convenient when dealing with nonlinear Luttinger

liquids. Leveraging on this picture we then describe some consequences.

5.4.1 The refermionization scheme

Starting from the nonlinear chiral Luttinger liquid Hamiltonian Eq. (5.25), we now

show how the quantum dynamics of the (bosonic) edge excitations (the charge-zero

sector) of the Laughlin fractional quantum Hall droplet can be exactly mapped onto

an equivalent model of one-dimensional, massive, interacting and chiral fermions,

where one can make use of the artillery of techniques developed in the context of

non-linear Luttinger liquids [239, 219].

By rescaling the bosonic field as ρ̂′ = ρ̂/
√
ν, the Hamiltonian of Eq. (5.25) can be

written as

Ĥ =

∫
dθ

(
πΩ ρ̂′2 +

c√
ν

2π2

3
ρ̂′3 − πα (∂θρ̂

′)
2

)
, (5.31)

where for convenience we introduced the shorthand α = βνc/Rcl, and the commu-

tatation relations Eq. (5.26) are correspondingly rescaled to

[ρ̂′(θ), ρ̂′(θ′)] = −i 1

2π
∂θδ(θ − θ′), (5.32)

which is the standard commutation rule of bosonized density modes in a Tomonaga-

Luttinger model [248, 206], as we saw in Chapter 4.

The similarity with the Tomonaga-Luttinger does not stop here, and standard
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bosonization identitites [206] can be used to show 7 that the full rescaled Hamiltonian

Eq. (5.31) is the bosonized version of a model of one-dimensional (chiral) fermions

with Hamiltonian

Ĥ ′ =
∑

l

εlR̂
†
l R̂l −

α

2

∑

l

l2ρ̂lρ̂−l , (5.33)

where the free-fermion dispersion

εl = Ωl +
l(l − 1)

2m∗
(5.34)

has a quadratic contribution with an effective mass m∗ = (c/
√
ν)−1 and interactions

occur via the short-range potential V12(θ1 − θ2) = −2π α δ′′(θ1 − θ2). As usual, the

fermionic creation (annihilation) operators R̂†l (R̂l) obey anticommutation rules

{Rl, R
†
l′} = δl,l′ , (5.35)

and ρl =
∑

l′ R̂
†
l−l′R̂l′ is the Fourier transform of the density operator ρ̂.

It is interesting to note that the term proportional to ρ̂3 describing the interactions

between the bosonic modes in Eq. (5.25) translates into the non-interacting mass

term in the refermionized Eq. (5.34). Vice-versa, the quadratic term proportional

to (∂θρ̂)2 describing the group velocity dispersion of the bosons translates into an

interaction term in the fermionic picture.

In the regime we are investigating here the ground state |0〉 of the fermionic Hamil-

tonian Eq. (5.33) is a Fermi sea filling all the states below the Fermi point lF = 0




R†l≤0 |0〉 = 0

Rl>0 |0〉 = 0
(5.36)

and is the only available state for its value of the angular momentum. Notice that

in principle higher-order terms in the fermion free-particle dispersion are required

to make this ground-state well defined, which we however neglect mainly for two

reasons: first of all, these corrections are expected not to be relevant at the energy

scales we are considering; secondly, we have not characterized these higher order

terms numerically.

To conclude this Section, it is important to note that density-related observables of

the physical fractional quantum Hall system directly map onto the density operator

7Note that the refermionization map is not complete as ψ = eiφ/ν → eiφ
′/
√
ν is not a single

fermion annihilation operator. In spite of this, the above mapping works as long as we compute
density-related observables.
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of the refermionized model, showing that the charge-zero sector of the fractional

quantum Hall edge theory maps (at low energies) onto a chiral generalization of

the non-linear Luttinger model of one-dimensional fermions [239, 219]. On the

other hand, the creation/annihilation operators of the physical particles forming

the fractional quantum Hall fluid cannot be mapped in a simple way to fermionic

creation/annihilation operators. As we are going to see in the next Section, this

mathematical fact makes the refermionization approach a useful tool for character-

izing the dynamic structure factor – and similarly all density-related observables.

5.4.2 Broadening of the dynamic structure factor

As a first application of the refermionized Hamiltonian Eq. (5.33), we look at the

broadening of the dynamic structure factor that is well visible in Fig. 5.10 and

manifests as a progressive spreading of the energies with the angular momentum l

of the droplet.

In order to get a simple picture of the underlying physics, we make the approxima-

tion of neglecting the interactions between fermions described by the last term of the

Hamiltonian (5.33). This leaves us with a free fermion model of dispersion εl whose

excitations consist of particle-hole pairs around the Fermi level, which is taken to be

at lF = 0. Within this approximation, for a given value of the angular momentum l

of the excitation, the dynamic structure factor has a flat profile in between the least

and the most energetic excitations, whose energies are respectively equal to

E+(l) = εl − ε0 (5.37)

E−(l) = ε1 − ε1−l . (5.38)

Taking the difference of these energies gives an estimate for the broadening

∆El = E+(l)− E−(l) =
c√
ν
l(l − 1), (5.39)

which is proportional to the trap curvature parameter c and grows quadratically with

the excitation angular momentum l, as we observed in Section 5.2.3. Interestingly,

the prefactor depends on the filling fraction of the underlying fractional quantum

Hall state. Notice that the normalized first moment of the dynamic structure factor

ω1(l) Eq. (5.16) coincides in this simple case with the average

ω1(l) =
E+ + E−

2
= Ωl (5.40)
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Figure 5.11: (a) Plot of the (normalized) total width E+(l) − E−(l) defined in
Eq. (5.39) as a function of the (rescaled) angular momentum l(l − 1). The results
of full 2D numerical calculations for various values of ν and δ accurately follow the
behaviour

√
ν∆El/(λδR

δ−4
cl ) = (δ− 2)l(l− 1) predicted by Eq. (5.39) together with

Eq. (5.14), shown here as black-dashed lines. (b) Plot of the second moment ω2(l)
of the dynamic structure factor as a function of the (rescaled) angular momentum
l2(l2 − 1). The results of the full 2D numerical calculations for various values of
ν and δ accurately follow the behaviour νω2(l)/(λδRδ−4

cl )2 = (δ − 2)2l2(l2 − 1)/12
predicted by Eq. (5.42) together with Eq. (5.14), shown here as black-dashed lines.
(c) Time-evolution of the square modulus of the fundamental component of the edge-
density response in response of a weak pulsed excitation of strength u0 and angular
momentum l = 3. The black curve is the result of the full 2D numerical calculation,
while the brown curve is the the short-time decay prediction of Eq. (5.46). In all
panels, a fractional quantum Hall cloud of N = 25 particles is considered.

which highlights, as we foretold in the discussion in Sec. 5.3, the importance of the
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fermion interaction term, or, equivalently, of the additional bosonic dispersive term.

An alternative measure of the dynamic structure factor broadening is provided by

its second (normalized) moment

ω2(l) =

∫
(ω − ω1(l))2Sl(ω) dω∫

Sl(ω) dω
, (5.41)

which, for the flat dynamic structure factor of non-interacting fermions, is equal to

ω2(l) =
c2

ν

l2(l2 − 1)

12
. (5.42)

The two broadening measures Eq. (5.39) and Eq. (5.42) are compared with micro-

scopic Monte Carlo data for different values of the confinement trap exponent δ and

of the filling factor ν in Fig. 5.11(a) and Fig. 5.11(b) respectively. For both quan-

tities, the analytical predictions appear to accurately capture the numerical data,

especially for low values of the filling fraction ν and of the confinement exponent δ:

this regime allows in fact to minimize effects caused by the gradient of the curvature

parameter c, which is approximated as a constant in the nonlinear χLL theory. As

a further evidence of our conclusions, more numerical results on the quartic δ = 4

case are shown in the Appendix D.

From an experimental perspective, beside the employment of spectroscopic probes [249]

the second moment [Eq. (5.42)] of the dynamic structure factor can be indirectly

measured by looking at the short- and moderate-time part of the temporal decay

of edge-density excitations on top of the fractional quantum Hall droplet. Con-

sider that the droplet is excited via a time-dependent perturbation U(θ, t) whose

strength at the classical radius is almost constant. Using linear perturbation theory

(see Eq. (5.10) and Appendix C) we obtain that

〈δρ̂(θ, t)〉 =
1

π
=
[∑

l

eilθ
∫
Ũl(ω)Sl(ω) e−iωt dω

]
(5.43)

where Ũl(ω) is the Fourier transform of the excitation potential and Sl(ω) the dy-

namic structure factor defined in Eq. (5.11).

Assuming that the spectrum Ũl(ω) of the perturbation is approximately constant

across the peak of Sl(ω) (this requires that the excitation pulse is sufficiently short

compared to the characteristic time-scale of the edge dynamics), we can approximate
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the integral appearing on the right-hand side of (5.43) as

Ũl(ω1(l))e−iω1(l)t

∫
Sl(ω) e−i(ω−ω1(l))t dω. (5.44)

Up to not-too-large times, the exponential inside this integral can be expanded to

second order, which gives

Ũl(ω1(l))e−iω1(l)t

∫
Sl(ω)

(
1− (ω − ω1(l))2t2

2

)
dω . (5.45)

Using the sum-rule
∫
Sl(ω)dω = lΘ(l)ν for the edge static structure factor of a

fractional quantum Hall droplet in the thermodynamic limit (Θ is here the Heaviside

step function), we finally get

〈δρ̂(θ, t)〉 ' −ν
π

∑

l>0

(
1− ω2(l)t2

2

)
∂

∂θ
<
[
ei(lθ−ω1(l)t)Ũl(ω1(l))

]
. (5.46)

This shows that, at short times after the excitation, the decay of density modes

follows a quadratic law. Its time-scale is set by the second moment of the dynamic

structure factor which, in turn, depends on the curvature parameter c and on the

filling fraction of the bulk, ν according to Eq.(5.42). As a sidenote, notice that it is

indeed ω1(l) [Eq. (5.16)] which sets the propagation velocity.

The accuracy of the approximated expression Eq. (5.46) at short times is success-

fully validated against the exact evolution in Fig. 5.11(c) in response to an excitation

carrying definite angular momentum. These results support a physical interpreta-

tion of the edge excitation decay as the result of the decoherence of the different

particle-hole excitations that we originally proposed in [229] for the integer quantum

Hall case.

To conclude this Section, it is interesting to highlight that the formulas Eq. (5.39)

and Eq. (5.42) for the dynamic structure factor broadening, obtained neglecting

interactions between fermions, remain accurate well outside the regime where inter-

actions are irrelevant. The non-interacting fermion approximation predicts in fact

the dynamic structure factor to be flat and centered at the linear χLL dispersion

[Eq. (5.40)] ω1(l) = Ωl; however, as one can see in Fig. 5.10, while ω1(l) only slightly

deviates from the linear behaviour over the values of l considered in Fig. 5.11, the

dynamic structure factor rapidly starts acquiring a highly non-trivial lineshape much

before the non-interacting fermion approximation for the broadening breaks down.

Analogously, while the broadening ∆El in Eq.(5.39) compares remarkably well with

the full 2D numerical calculation, the threshold energies E± predicted by the non
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interacting model Eq. (5.37) separately do not.
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Figure 5.12: (a) Plot of the dynamic structure factor threshold exponents µ± as
a function of the excitation momentum q = l/Rcl ∝ l/

√
N , extracted from the

predictions of the nonlinear χLL model of Eq. (5.25) by means of a power-law fit
to the dynamic structure factor data close to the lower and upper threshold. (b)
Comparison between the microscopic dynamic structure factor weigths extracted
from 2D numerical calculations (circles) and those obtained from the nonlinear χLL
model Eq. (5.25) (crosses) for different number of particles N (colorscale) at fixed
angular momentum l = 10. The dynamic structure factor weights are plotted against
the excitation energies in logarithmic scale.

5.4.3 Threshold singularities of the dynamic structure fac-

tor

On top of the broadening effect discussed in the previous Subsection, the curves for

the dynamic structure factor plotted in Fig. 5.10(b) for growing l clearly show the

appearance of some peculiar singular behaviour close to its energy thresholds. Such

features are reminiscent of those emerging from the theory of non-linear (non-chiral)

Luttinger liquids [219] and will be the subject of the present Section.

The main challenge in the theoretical study of both the bosonic and fermionic

models of Eq. (5.25) and Eq. (5.33) comes from the fact that both the group velocity
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dispersion and the non-linearity are proportional to the same curvature parameter

c. For this reason, perturbative approaches based on a hydrodynamic formulation

where dispersion dominates over interactions [223, 224] do not give consistent results.

On the other hand, many features of the fermionic theory Eq. (5.33), in particular

the behaviour around the energy thresholds, can be be successfully studied making

use of so-called “mobile-impurity” approaches.

Within a non-interacting fermion model, the lower threshold corresponds in fact to

the displacement of a particle from deep below the Fermi point to right above it and,

correspondingly, the upper threshold corresponds to the displacement of a particle

right at the Fermi point up to high energy states. This can be seen as the creation

of a deep-hole or a high-energy-particle accompanied by a slight shift of the Fermi

point (sketched in the last or first row of Fig. 5.13, respectively). Once we include

again interactions, if we focus on the threshold regions, the full model Eq. (5.33) can

therefore be replaced by an effective two-band model, namely a (chiral) Luttinger

liquid at l ∼ 0 and a single deep-hole/high-energy-particle at l [240, 250, 219]. This

latter then acts as an impurity off which particles close to the Fermi point, that is the

Luttinger liquid, can scatter by small-momentum transfers. As discussed in detail

in [240], this then leads to a power-law enhancement at the lower-energy threshold

ω−(l) and a power-law suppression at the high-energy one ω+(l). In formulas, we

have that 


Sl(ω ∼ ω−) ∝ θ(ω − ω−)

(
1

ω−ω−

)µ−

Sl(ω ∼ ω+) ∝ θ(ω+ − ω) (ω+ − ω)µ+
(5.47)

where the exponents

µ+ ' µ− '
2αl

c/
√
ν

= 2βν
√
ν

l

Rcl

(5.48)

only depend on the excitation momentum l/Rcl and the bulk filling fraction ν, but

not on the specific values of the non-universal trap parameters Ω and c. Even though

a finite value of c is essential for the emergence of the singular power-law behaviour,

the value of the exponents turn out to be universal properties of strongly correlated

fractional quantum Hall fluids with short-ranged interactions, a manifestation of

strong bulk correlations extending all the way through the edge. This peculiar

universal behaviour emerges because the exponent is set by 2m∗α, but both the

effective mass m∗ and the interaction strength proportional to α emerge because of

the presence of the trap causing a gradient of angular velocity at the cloud’s edge. So,

while α is directly proportional to c, the effective mass m∗ is inversely proportional

to it: the curvature parameter c therefore cancels out from the exponents µ±.

A direct validation of the power-law behaviour via microscopic simulations of
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the fractional quantum Hall droplet is made difficult by the fast growth of the

Hilbert space dimensionD at the large angular momentum l values (sub-exponential,

logD ∝
√
l, see the Footnote 2) that are needed to interpolate power-law behaviours

at both thresholds. However, since the nonlinear χLL Hamiltonian gives results

which are in quantitative agreement with microscopic Monte-Carlo diagonalization,

we restrict our numerical analysis to this former theory which grants us access to

the large l values that are needed to precisely extract the power law exponents. To

corroborate this statement, in Fig. 5.12(b) we compare the results of the nonlinear

χLL theory with microscopic results obtained from Monte Carlo diagonalization at

fixed angular momentum l for increasing number of particles N : as the excitation

wavevector ∼ l/Rcl ∝ l/
√
N decreases the effective model becomes more accurate,

so we can expect it to correctly account for the behaviour of the dynamic structure

factor in the thermodynamic limit.

The numerical predictions for the exponents at the lower and higher thresholds

are plotted in Fig. 5.12(a): a good agreement with the analytical prediction of

Eq. (5.48) is found for small wavevectors q, with quadratic corrections at higher q

phenomenologically compatible with the form

µ∓ = ±
[(

1± αl

c/
√
ν

)2

− 1

]
. (5.49)

These results illustrate the power of the refermionized theory in capturing the pecu-

liar behaviour of the charge-zero sector of fractional quantum Hall edges and show

that they behave as a peculiar nonlinear Luttinger liquid [219].

5.4.4 Fine structure of the dynamic structure factor

Going beyond the mesoscopic quantities investigated in the previous Subsections, it

is interesting to see how the refermionized theory provides an interesting physical

interpretation also for the microscopic structure of the eigenstates, in particular the

values of the matrix elements | 〈0| δρ̂l |l, n〉 |2 entering the dynamic structure factor.

As an example, a plot of these matrix elements is displayed in Fig. 5.14 for the

l = 10 case.

From the fermionic model, we expect that at the level of the free fermion approx-

imation, the δρ̂l operator only connects the ground state Fermi sea to the single

particle-hole states on top of it (first, second, fourth and fifth rows of Fig. 5.13) and

the l such transitions have the same amplitude. This simple picture is of course

modified by the presence of fermionic interactions, so that non-zero matrix elements
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Figure 5.13: Schematic diagram of the different particle-hole excitations (black-
arrows) across the Fermi point (vertical-dashed lines) at a fixed angular momentum
l = 4. For each state, the corresponding partition of l = 4 are indicated on the
right-hand side of the plot.

may appear also for states corresponding to several particle-hole excitations (third

line of Fig. 5.13).

This expectation is fully confirmed by the numerical data shown in Fig. 5.14. As

it is displayed in Fig.E.2 of Appendix E, the interacting eigenstates are found to

maintain a dominant weight on the particle-hole basis of non-interacting fermions.

On this basis, in Fig. 5.14 we keep labelling the states in terms of the partition η of

the non-interacting particle-hole state which has the largest weight on the eigenstate.

As usual, a partition η = [η1, η2, η3 . . .] is defined to have η1 ≥ η2 ≥ η3 ≥ . . . and

corresponds to a state where, starting from a filled Fermi sea, the highest energy

particle is promoted by η1 orbitals, the second-highest one by η2 orbitals and so on:

for the sake of clarity, a few examples of partitions and of the corresponding states

are illustrated in Fig. 5.13.

From Fig. 5.14, it is apparent how the matrix elements tend to organize in a hier-

archical way. Besides the principal sequence of highest-weight states corresponding

to single particle-hole excitations discussed above, well-distinguishable secondary

sequences of states are visible, carrying a much weaker dynamic structure factor

weight. For all these data-points, an excellent agreement is found between the non-

linear χLL model and the full two-dimensional calculation.

While this latter method gets quickly impracticable for larger values of l, the non-

linear χLL model provides a manageable and reliable approach up to much larger l

values. An example of such calculation is displayed in Fig.5.15: thanks to the larger
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Figure 5.14: Plot of the dynamic structure factor weights | 〈0| δρ̂l |l, n〉 |2 against the
excitation energy El,n−E0 for a l = 10 excitation of a fractional quantum Hall cloud
of N = 25 bosons at filling ν = 1/2 confined by a quartic δ = 4 trap. The black
circles are the result of a full 2D numerical calculation and are compared to the
predictions of the nonlinear χLL model [Eq. (5.25)]. Differently from Fig. 5.10(b),
the weights are plotted here in logarithmic scale. All points with a sizable dynamic
structure factor weight are labeled in terms of the partition η corresponding to the
particle-hole excitation with the largest overlap with the eigenstate.

l = 20 value, a larger number of secondary structures is clearly discernible. Interest-

ingly, these structures can be grouped together (black-dashed lines) by considering

squeezing processes in which the high-energy fermion looses one unit of angular

momentum by exciting one more fermion across the Fermi point that delimits the

Fermi sea of filled states, e.g. [7, 3]→ [6, 3, 1]→ [5, 3, 1, 1]→ . . . [3, 3, 1, 1, 1, 1].

As a final point, it is interesting to look at these structures from the point of

view of the two-dimensional fractional quantum Hall cloud. Remarkably, we find
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a large overlap (& 95% for the considered system sizes) between the eigenstates

of the 2D quantum Hall system and Jack polynomial states [251, 252] labeled by

the same partitions η. The interested reader can find a color plot of the overlap

matrix in Fig.E.1 of Appendix E, together with a brief description of the numerical

method used to compute them. While no complete explanation of this remarkable

result is available yet, it hints at a deep relation between the Pauli principle for the

fermions of the refermionized theory and the generalized Pauli principle naturally

implemented by the Jacks [253]. Getting an understanding of this relation will be

the subject of future work.
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Figure 5.15: Dynamic structure factor weights | 〈0| δρ̂l |l, n〉 |2 against the excitation
energy El,n − E0, for a l = 20 excitation of a fractional quantum Hall cloud of
N = 300 bosons at filling ν = 1/2, confined by a quartic δ = 4 trap. The points
have been computed via the nonlinear χLL model of Eq. (5.25).



84 Chapter 5. Nonlinear dynamics at the edge

5.4.5 Spectral function

Another quantity of great interest in the study of Luttinger liquids is the spectral

function, which describes the probability of removing a particle from the system at a

given energy. This quantity is relevant for the study of particle tunneling into χLL

and is connected to power-laws in the current-voltage characteristic of fractional

quantum Hall systems [180]. Recently it was shown to contain relevant informa-

tion on Haldane fractional exclusion statistics [62] and to be directly accessible to

experiments in various synthetic setups [62, 159].

Focusing on the bosonic Laughlin state at ν = 1/2, in this Subsection we show

how the results of the full two-dimensional calculation of the spectral function are

quantitatively captured by the nonlinear χLL model of Eq. (5.25) once this is sup-

plemented with the bosonized form of the particle annihilation operator [30] we

reviewed in Sec. 4.2.2

ψ̂(θ) = e−iφ̂(θ)/ν , (5.50)

which is defined in terms of a bosonic phase operator φ̂ related to the density through

ρ̂ = −∂θφ̂/2π [30, 31]. The refermionized approach is then used to shine physical

light on the peculiar properties of the spectral function.

Comparison with full 2D numerical calculations

As usual, we define the spectral function as

Al(ω) =
∑

f

∣∣〈f | â(N−1)/ν−l |0〉
∣∣2 δ(ω − ωf,0). (5.51)

where the sum runs over allN−1 particle states |f〉 and |0〉 is theN particle Laughlin

ground state. Here, â(N−1)/ν−l annihilates a particle with angular momentum (N −
1)/ν − l = ∆l. The reason behind this notation for the angular momentum will be

clarified shortly.

Let us first notice that, provided the anharmonic confinement does not induce

mixing of the low-lying edge excitations with states above the many-body gap, the

frequency-integrated Al =
∫
dω Al(ω) at fixed l is independent of the the particular

confinement as the eigenstates |f〉 will be connected by a unitary transformation.

The standard χLL result Al ∝ l1/ν−1 (at small values of l) is therefore maintained

in spite of the spectral function being broadened and having a highly non-trivial

line-shape. As such, we focus here on the energy-resolved Al(ω).

The initial N particle Laughlin state has total angular momentum L
(N)
0 = N(N −



5.4. Refermionization 85

1)/(2ν). The occupied single-particle orbital of largest angular momentum has an-

gular momentum (N − 1)/ν, so the angular momentum Lf of the final state after

removing one particle lies in the range

(N − 1)(N − 2)

2ν
≤ Lf ≤

N(N − 1)

2ν
, (5.52)

that is, between L
(N−1)
0 and L

(N)
0 . For convenience, we will focus our attention on

the removal of a particle close to the system’s edge; such a particle carries a large

angular momentum, . (N − 1)/ν. In this way, the final state can be interpreted as

a low-angular-momentum edge-excitation with angular momentum l with respect to

the Laughlin ground state of N−1 particles; therefore, the relevant matrix elements

can be studied through the nonlinear χLL model of (5.25).
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Figure 5.16: Spectral function weight | 〈f | â(N−1)/ν−l |0〉 |2, normalized to the l = 0
Laughlin-Laughlin matrix element Z0 = | 〈f | â(N−1)/ν |0〉 |2. the result of the full 2D
numerical calculation for bosons at a constant filling ν = 1/2 in a quartic δ = 4
trap but different numbers of particles in each panel: (a) N = 30, (b) N = 40,
(c) N = 50 and (d) N = 60. The red circles display the results of the nonlinear
χLL model of Eq. (5.25). The insets display a magnified view of the l = 6 curves.
Amplitudes relative to different l-sectors (l = 1 . . . 6) have been joined with black
dashed lines as a guide for the eye. The point corresponding to l = 0 is not shown
as it equals 1 by definition due to the normalization factor.

Within our theoretical framework, we calculate the matrix elements appearing in
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Eq. 5.51 through Monte-Carlo sampling on the full two-dimensional model, as de-

scribed in Appendix A.3. The results of this microscopic calculation are shown

in Fig. 5.16 and are compared to the prediction of the nonlinear χLL model. In

this latter calculation, the single-particle destruction operators â∆l of the full two-

dimensional theory are interpreted within the χLL framework as

â∆l =

∫
dθ
ei∆l θ√

2π
ψ̂(θ) , (5.53)

where the bosonized form of the annihilation operator Eq.(5.50) is used. In order

to remove an overall normalization factor which ambiguously depends on the cutoff

length-scale of the effective edge-boson theory [254, 235, 234, 218, 206], all matrix

elements have been normalized to the Laughlin-Laughlin transition matrix element

Z0 = | 〈0| a(N−1)/ν |0〉 |2. As expected, only a limited number of states within each

angular momentum Lf = L
(N−1)
0 + l sector have a significant matrix element.

A good qualitative and quantitative agreement between the two theories is clearly

visible in Fig. 5.16, in particular for the low-energy states at low l. At large l, a

good agreement is recovered as the system is made larger and the wavelength gets

correspondingly longer. Most interestingly, these numerical results prove the cor-

rectness of the exponential expression Eq.(5.50) for the particle annihilation operator

in terms of the bosonic field within our nonlinear χLL model Eq. (5.25).

Behaviour of the spectral function at the energy thresholds

Following [62] and based on the microscopic insight discussed in the previous Sec.5.4.4,

we can identify the states corresponding to the energetic thresholds of Al(ω): the

lower threshold corresponds to the state labelled by the partition [1l], while the

upper threshold corresponds to the state of partition [2l/2] if l is even or [2(l−1)/2, 1]

if l is odd. These partitions have a simple interpretation in terms of the fermionic

model: as in the dynamic structure factor case, the state at the lower threshold of

the spectral function has a deep-hole at ∼ −l (an impurity) off which particles at

the Fermi point at l = 0 (i.e. the Luttinger liquid) can scatter with small angular

momentum exchanges. On the other hand, the state at the upper threshold displays

a pair of deep holes at ∼ −l/2 and dramatically differs from the (higher energy)

state with a high-energy particle at ∼ l related to the upper threshold of the dy-

namic structure factor. Therefore, the upper threshold of the spectral function does

not correspond to the highest energy eigenstate at the given angular momentum l.

For small systems, our results are in agreement with exact diagonalization re-

sults and with the counting prescription derived from Haldane’s fractional exclusion
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statistics principle [255, 253] as discussed in [62]. Thanks to the larger values of N

accessible to our calculations, we find that this counting prescription remains accu-

rate for odd values of l for growing N , while for even l one state ends up eventually

losing all its spectral function weight. A precursor of this difference can already be

appreciated for the moderate system sizes considered in [62]: a single state has a

systematically smaller spectral weight for even l than for odd l values. This different

behaviour can be attributed to the qualitatively different structure of the state with

the smallest possible spectral function weight at a given l, that is the state closest

to the upper threshold, which corresponds to the [2l/2] and [2(l−1)/2, 1] partitions for

respectively even and odd values of l. This unexpected suppression of the spectral

weight is even more remarkable if one thinks the state of partition [2l/2] as the result

of removing one particle of well-defined angular momentum (N − 1)/ν − l from the

N particle Laughlin state partition, which is equivalent to the creation of a double

quasihole at the same angular momentum. All other states with non-zero spectral

weight correspond instead to the insertion of two quasiholes with distinct values of

the angular momentum.

In analogy to the dynamic structure factor shown in Fig. 5.10, also the spectral

function displays a marked singularity at the lower threshold within each l sector.

The characterization of the functional form of the threshold behaviour however

appears to be far more challenging than in the dynamic structure factor case, and

no robust conclusion can yet be drawn from the available theoretical insight and

numerical data.

From the theoretical side, a study of the spectral function threshold within the

bosonized theory is made difficult by the exponential form Eq. (5.50) of the single-

particle annihilation operator, to be contrasted to the expression Eq. (5.11) of the

dynamic structure factor that directly involves the density operator ρ̂. It is rea-

sonable to think that the refermionized model may still be relevant for extract-

ing information on the spectral function, especially at the lower energy threshold

which, as we discussed above, corresponds to a simple situation in which a Lut-

tinger liquid scatters from a deep-hole. However, a naive attempt to express the

bosonized form of the particle annihilation operator Eq. (5.50) in terms of the

fermions e−iφ̂(θ)/ν = e−iφ̂
′(θ)/

√
ν ∼ Ψ1/

√
ν leads to an ill-defined operator, whose value

in the characterization of the spectral function singularities using a mobile-impurity

model [219] is far from obvious and calls for more sophisticated treatment.

Serious difficulties are also present from the numerical side. Testing the power-law

behaviour by fitting the spectral function Al(ω) computed with the nonlinear χLL

model requires working at even larger l values than for the dynamic structure factor
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case, as the number of points that are available to the fit for given l is roughly halved

as compared to the dynamic structure factor case. Moving to higher l values forces

to work in larger Hilbert spaces leading to an intractable numerical complexity of

the calculation.

In spite of these theoretical difficulties, the spectral function remains a quantity

of key experimental interest. On one hand, it can be directly probed in the single-

particle spectroscopy experiments proposed for fractional quantum Hall clouds of

atoms or photons in [62, 159]. Specially in the photonic case the spectral function is

directly observable from the emission spectrum of the fluid, so our predictions are of

direct application to the experiments. On the other hand, a complete understanding

of the spectral function will be instrumental to attack the harder questions related

to the non-perturbative dynamics of the edge: large density dips at the edge of the

fractional quantum Hall cloud can in fact be be produced by selectively removing

particles close to the edge of the cloud. It is therefore very interesting to investigate

the emerging non-linear Korteweg-de Vries hydrodynamics described by Eq. (5.25),

which, analogously to what occurs at the classical level, may lead to shockwaves

and solitons that chirally propagate along the edge, a possibility already pointed

out in [226, 227].

5.5 Hard-wall confinement

We end this chapter by investigating the edge-mode physics in the case of hard-

wall confinements [251, 252], steeply-rising in real-space over a lengthscale which is

short compared to the magnetic length. We specifically consider Vconf(r) = λΘ(r −
R) which however, contrary to [256, 251, 252], we consider not to be steep when

projected on the lowest Landau level

Ul =

∫
|Φl(z)|2 λΘ (|z| −R) dz =

λ

l!
Γl+1

(
R2

2

)
. (5.54)

Indeed, provided Rcl ∼ R, at the edge of the quantum Hall droplet l ∼ (N − 1)/ν

we can expand Ul as a linear function Ωl with a small quadratic correction cl2/2. In

the previous equation, Γa(z) =
∫∞
z
ta−1e−tdt is the incomplete gamma function.

In order to avoid Landau level mixing, as well as mixing with states above the

many-body energy gap ∆, the wall must not be too high. Roughly speaking, we

need Ul∼(N−1)/ν ≈ λ . ∆.

We here show that under these conditions essentially the same physics as the one

investigated in the previous Sections emerges in this case, provided one replaces the
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Figure 5.17: (a) Laughlin state of N = 50 bosons at half filling, ν = 1/2 (black
curve, the values are on the left-hand side y-axis). The red vertical line indicates
the position of the classical radius. Orange and brown line-points denote the con-
finement Ul (the values are on the right-hand side y-axis), plotted in real space by
identifying its l component with the average radial position of the corresponding
lowest Landau level orbital Φl(z) in the circular gauge, r =

√
2l. The two curves

refer to different positions of the hard-wall potential, R = Rcl + δr. (b-c) Excitation
spectrum of the system Enl−E0 in units of the hard-wall confinement strength λ, for
the two hard-wall potentials shown in panel (a). Black-circles are microscopic Monte
Carlo data, red crosses the low-energy effective model Eq. (5.25). (d-e) Dynamic
structure factor weights | 〈0| |δρ̂l |l, n〉 |2, for the two hard-wall potentials shown in
panel (a), as a function of the excitation energies Enl − E0. Black-circles are mi-
croscopic Monte Carlo data, red crosses the low-energy effective model Eq. (5.25).
The principal emerging features of the dynamic structure factor for a fixed angular
momentum l have been joined with black-dashed lines as a guide for the eye.
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radial gradients of the confinement with proper angular momentum finite-differences

of the projected version, as we discuss in Appendix F.

Even though highly idealized, this hard-wall case is interesting in three respects;

first of all, both positive and negative angular velocity gradients c can be obtained.

In the refermionized Hamiltonian Eq. (5.33) this means that the fermion effective

mass m∗ can become negative. Secondly, it allows us to test the nonlinear χLL model

Eq. (5.25) for fractional quantum Hall fluids confined by heavily anharmonic traps,

yet still close to the Luttinger fixed point. Finally, the curvature parameter c can

potentially become small as compared to higher order corrections at the potential

Ul inflection point, leading to different emergent physics of the edge excitations.

Indeed, we expect that in such a regime both the cubic non-linearity term ∝ ρ̂3

and the quadratic dispersive correction ∝ (∂θρ̂)2 term appearing in Eq. (5.25) could

become small when compared to higher order corrections. In a future work we will

try to address such a case, so as to understand how this can modify the emergent

Kortweg-de Vries-like hydrodynamics.

In Fig. 5.17, we show two cases, one in which m∗ is positive (panels (b,d)) and the

other in which it is negative (c,e). For clarity, the ground state density is plotted

together with the two projected hard-wall confinement potentials in panel (a). The

excitation spectrum and the edge dynamic structure factor are compared with the

results obtained by diagonalizing Eq. (5.25). The parameters Ω and c have been

extracted from the lowest lying energy levels using Eq. (F.1) and Eq. (5.39) respec-

tively, because they get slightly renormalized with respect to the simpler Eq. (F.18),

as we discuss in Appendix F. The model captures qualitatively (and quantitatively)

the underlying microscopic behaviour in a quite broad region of parameters away

from the Ul inflection point or from the super-steep regime [256, 251, 252] (which

is achieved when the projected potential Ul of Eq. (5.54) grows abruptly in angular

momentum space), also highlighting the universality of the low-energy Korteweg-de

Vries behaviour [Eq. (5.25)] emerging in the edge dynamics of trapped fractional

quantum Hall fluids, at least when the interactions are short-ranged.

Notice finally that, even though the energy spectra in the two cases (panels (b) and

(c)) look alike, the emergent dynamics can be pretty different, as can be seen from

the qualitative differences appearing in the edge dynamic structure factor in the two

cases, Fig. 5.17(d,e). Let us also recall that we expect the power-law threshold expo-

nent µ± to be the same regardless of the curvature sign, because (see Eq. (5.48)) it

does not depend on the curvature parameter c; however by looking at the panels (d,e)

this could seem not to be the case. This seemingly paradoxical situation can actu-

ally be easily explained by looking at the energy thresholds of the dynamic structure
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factor from the point of view of the refermionized model [Eq. (5.33)]: when the mass

m∗ of the fermions is positive(/negative), the particle-hole excitation giving rise to

the lower threshold corresponds to a deep-hole below the Fermi point(/high-energy

particle above it), and vice-versa for the higher threshold. This means that, when

the sign of m∗ changes, the two thresholds interchange. In particular, when m∗ be-

comes negative the power-law enhancement(/suppression) of the dynamic structure

factor is found at the upper(/lower) threshold rather than at the lower(/upper) one:

in this case, most of the dynamic structure factor weight is carried by high energy

states rather than low energy ones (as was the case for the anharmonic potentials

we considered so-far. See for example Fig. 5.10).

5.6 Discussion and outlooks

In the following subsections we are first of all going to discuss about the experi-

mental observability of our predictions, complementing the discussion we started in

Sec. 5.1.1. After that, we will draw our conclusions and discuss the prospects of our

research.

5.6.1 Experimental observability

We conclude the Chapter with a brief discussion of the actual relevance of our predic-

tions in view of experiments with synthetic quantum matter systems, in particular

trapped atomic gases for which an artillery of experimental tools is already available.

As several strategies to induce synthetic magnetic fields are nowadays well es-

tablished, from rotating traps [89, 88] to combinations of optical and magnetic

fields [114, 84], the open challenge is to reach sufficiently low atomic filling fac-

tors and sufficiently low temperatures to penetrate the fractional quantum Hall

regime [81, 83]: an intense work is being devoted to this issue from both the the-

oretical [101, 104] and experimental sides, and promising preliminary observations

have appeared in the literature [100, 90, 135]. In this, an important challenge is to

design an adiabatic protocol for reaching a Laughlin state with large fidelity. Once

the desired many-body state is generated, arbitrary confinement potentials can be

generated with optical techniques [89, 257] and the response to rotating potentials of

the form of Eq.(5.9) can be measured via the same tools used, e.g., to study surface

excitations of rotating superfluid clouds [258].

While transverse conductivity features [Fig.5.4(a)] are independent of the shape

of the confinement potential, both the group velocity dispersion and the nonlinear
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effects crucially depend on the trap anharmonicity that also helps stabilizing the

cloud at large rotation speeds close to the centrifugal limit. A rough estimate of

the maximum potential curvature c̃ that the fractional quantum Hall liquid can

withstand before being significantly affected is set by the many-body gap over the

squared magnetic length. Since both the group velocity dispersion and the non-

linearity terms in Eq. 5.27 scale proportionally to the curvature c̃, and the chiral

dynamics factors out as a rigid translation at ṽ, such an upper bound on c̃ does

not impose any restriction on the observability of interesting effects due to their

interplay. It only requires that the dynamics is followed on a temporal scale much

longer than the inverse many-body gap, a condition which is anyway automatically

enforced upon working with a correlated many-body state.

To be more specific, let us consider again the case of ultracold bosons in the fast

rotation regime already mentioned at the end of Sec.5.1.1. In this case, for a δ = 4

quartic anharmonic potential, the curvature parameter can be written as c/2Ωr =

λ~/M2Ω3
r. Based on the constraints discussed in the aforementioned section, the

timescale for the correction of linear waves Eq. (5.17) is then set by the reciprocal

of Tl = 1/(cl3), which is 102 ÷ 103 longer than the timescale set by the many-body

energy gap ∆. In order to be able to observe the correlated many-body state one

needs to maintain the system over a timescale much longer than the reciprocal of the

many-body energy gap. When the droplet gets excited by a time-dependent external

potential of the form Eq. (5.9), the edge density variation δσ predicted by Eq.(5.28)

in the linear regime of weak excitations is proportional to lu0τ/Rcl, where τ is the

duration of the (short) Gaussian excitation pulse and u0 is its strength 8. Given

the incompressible nature of the fractional quantum Hall fluid, the edge density

variation δσ then results in a corresponding variation of the cloud radius δR/Rcl =

δσ ν/(2π Rcl) ∼ lu0τν/N which can be detected either in-situ or, if needed, after

a time-of-flight expansion: as one can see in Fig.5.8, the relative change in the

cloud radius can be a significant fraction of its equilibrium value, which supports

the experimental observability of our predictions.

A different strategy to observe strong nonlinear dynamics and highlight Korteweg-

de Vries behaviour would be to induce a spatially localised density modulation by

selectively removing a controlled number of particles in the vicinity of the system

edge [62], as we discussed in Section 5.4.5. Importantly, the nonlinear χLL model

provides also in this respect quantitative information, since it is able to capture the

behaviour of the spectral function of the fractional quantum Hall fluid corresponding

8Of course, stronger excitations could be obtained by a careful engineering of the excitation
sequence that may include resonant temporal oscillations.
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to the removal of a particle from the system, as we we showed in Fig. 5.16. Since the

equation of motion of the edge-density operator has a Korteweg-de Vries classical

limit, and such an equation is well-known to admit solitonic solutions, it will be

interesting to address the emergent dynamics of the large density depletions caused

by the removal of a particle close to the edge and investigate whether shock-wave-like

behaviours can lead to the formation of solitons [226, 227].

5.6.2 Conclusions and perspectives

In this chapter we extensively studied the linear and nonlinear edge dynamics of

a Laughlin state fractional quantum Hall droplet of macroscopic size, trapped by

some anharmonic potential. Our calculations are based on a numerical method

based on the expansion of the many-body wavefunction on those many-body states

which lie below the many-body gap for short-ranged interaction Hamiltonians. This

expansion allows us to evaluate the relevant matrix elements by means of Monte

Carlo techniques, which we then use to study the dynamics and extract relevant

observables.

Our calculations highlight a number of effects of direct experimental interest, both

at linear and nonlinear regime: a sizable group velocity dispersion of the edge mode

related to strong bulk correlations as well as significant nonlinearities, both induced

by the velocity gradients at the system’s edge.

From the theoretical side, the numerical results are used to build an effective one-

dimensional nonlinear chiral Luttinger liquid quantum formalism describing the dy-

namics of the one-dimensional edge in the form of a quantum Korteweg-de Vries

equation, which is quantitatively accurate. Such a model can be conveniently refor-

mulated in terms of an effective Hamiltonian of interacting massive chiral fermions in

one-dimension, which allows to extract quantiative information on the quantum Hall

edge. In particular, we characterize the dynamic structure factor broadening and its

threshold singularities, which exhibit power-law behaviour with universal exponents.

An intriguing question which we would like to address is whether the refermionized

theory of the edge modes can say something about the threshold behaviour of the

spectral function.

The natural next step would be to obtain a microscopic derivation of the filling-

dependent βν parameter related to the group velocity dispersion of the edge modes,

and to put it on solid theoretical grounds, as our studies highlight the crucial role

such a parameter has in the description of the edge dynamics. Indeed, not only it

directly enters the dynamic structure factor threshold exponent, but also sets the
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dispersive behaviour of the edge modes, endowing them with an emergent quantum-

Korteweg-de Vries collective behaviour. In this respect, since the equation of motion

of the edge-density operator has a true Korteweg-de Vries form in the classical limit,

and such an equation is well-known to admit solitonic solutions, a future task will be

to address the emergent dynamics of the large density depletions caused for example

by the removal of particles close to the edge and investigate whether shock-wave-like

behaviours can lead to the formation of solitons.

Since our conclusions are based on a very generic model with short-ranged inter-

actions, they directly apply to fractional quantum Hall fluids in atomic or photonic

synthetic quantum matter. As such, they are ready to be experimentally verified

with state-of-the-art technology and hold a great promise as a novel probe of the

bulk topological order and its anyonic excitations. Future efforts will however be

devoted to the generalization of our approach to the study of long-range interact-

ing systems and to understand how the interplay between the confinement-induced

physics studied here and the non-vanishing interaction energy in a two-dimensional

electron gas in solid-state devices modifies the picture we presented.

Finally, we mention here another long-term route we would like to pursue. We

believe that our numerical approach can be generalized to the more exotic (and

more challenging) case of non-abelian quantum Hall states, such as the Moore-

Read [36] state, which do host a more complex manifold of edge modes. It would

be interesting to explore the nonlinear edge physics in such a case.

On a longer run, we believe our results will contribute paving the way towards the

study of fractional quantum Hall fluids as a novel platform for nonlinear quantum

optics of edge excitations with unprecedented dynamical and statistical properties.



CHAPTER 6

SPIN-STATISTICS RELATION FOR BULK

QUASIPARTICLES

In the previous Chapter 5 we dealt with the nonlinear dynamics at the edge of a

fractional quantum Hall system. In this Chapter we are instead going to discuss

about the gapped quasiparticle excitations that the bulk of a fractional quantum

Hall fluid can host, and that were briefly reviewed in Sec. 3.3. In particular, we are

going to talk about how a fractional spin for these quasiparticle excitations emerges,

and about its relation with their fractional braiding statistics.

The spin-statistics theorem is one of the pillars of our description of the world

and classifies quantum particles into bosons and fermions according to their spin,

integer or half-integer [259]. It was early noted that in two spatial dimensions this

relation is modified and intermediate statistics exist, called ayonic [260, 194, 195].

These objects too satisfy a generalised spin-statistics relation, and it is common

nowadays to speak of fractional spin and fractional statistics [261, 262]. This type

of spin-statistics relation we consider arises in a non-relativistic, non-field-theoretic

context [263].

As we discussed in Chapter 3, topologically ordered fractional quantum Hall fluids

are one of the prominent setups where emergent anyons have been studied. Whereas

the notion of fractional statistics has been early applied to the localised bulk quasi-

particles [35, 192, 39, 264], the notion of spin has been more controversial. The

existence of a fractional spin satisfying a spin-statistics relation has been estab-

lished for setups defined on curved spaces thanks to the coupling to the curvature

of the surface [265, 266, 267, 268, 269, 270]. The extension of this notion to planar

surfaces has required more care and it is not completely settled yet [271, 272, 273].

95
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In this chapter we discuss how a spin quantum number can be naturally defined

on a flat disk in terms of the (measurable) local angular-momentum of the frac-

tional quantum Hall quasiparticles, i.e. in terms of the gauge invariant generator of

rotations.

In particular, we prove with mild assumptions that this spin obeys a spin-statistics

relation, and show that the gauge-invariant generator of rotations fractionalizes

among the quasiparticles and the edge, leading to spin robustness. We also show that

information on the braiding phase can be read off from the fractionalized angular

momentum at the edge.

We then predict the value of the spin of the composite-fermion quasielectron pro-

posed by Jain, numerically compute the associated spins and show them to satisfy

the spin-statistics relation. We also analyse the case of Laughlin’s quasielectron. We

show that, even though it satisfies the spin-statistics relation, it carries the wrong

spin and cannot thus be identified as the anti-anyon of a Laughlin’s quasihole. Build-

ing from the aforementioned considerations, we argue that Laughlin’s quasielectron

shows the wrong spin because it has a long-range correlation tail which alters the

structure of the boundary. We show this by rewriting Laughlin’s quasielectron as a

composite-fermion wavefunction, and construct a class of wavefunctions which in-

terpolates between Jain’s and Laughlin’s quasielectrons. We numerically show that,

as long as the edge the structure of the edge is not affected by the presence of the

bulk excitation the value of the quasiparticle spin is robust.

We finally briefly discuss the non-Abelian case.

The contents of this chapter have been adapted from [274] and from an article

which is currently being prepared.

6.1 The system

As in the previous Chapter 5, the system we consider here is a two-dimensional

one, consisting of N quantum particles with mass m and charge q > 0 pierced by a

uniform and perpendicular magnetic field B = Bẑ, B > 0. The cyclotron frequency

and the magnetic length read ω = qB/m and `B =
√
~/(qB). As we described in

Sec. 3.1.1, we adopt the standard parametrization of the plane zj = xj+iyj = |zj|eiφj ,
suitable for lowest Landau level physics in the symmetric gauge.
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The Hamiltonian we consider reads

H0 =
N∑

i=1

(
π2
i,x + π2

i,y

2m
+ v(|zi|)

)
+
∑

i<j

Vint(|zi − zj|) (6.1)

where πi,a = pi,a − qAa(zi) is the particle kinetic momentum (see Sec. 2.1.1) and

v(|z|) is a central confining potential, analogous to those we considered in the previ-

ous chapter. Differently from the previous chapter though we here assume no specific

form for the interaction energy, but only that is rotationally invariant and can thus

be written as Vint(|z|). This is for example the case of the Coulomb interaction rele-

vant for electrons [275] or the contact interaction relevant for cold atomic gases [96]

and photonic systems [49]. We also assume that the ground state of Eq. (6.1) is

not degenerate and realizes an incompressible fractional quantum Hall state char-

acterised by screening, which we discussed in the context of the Laughlin state in

Sec. 3.1.3: in the presence of perturbations which do not close the energy gap the

particles will arrange in such a way that the density of the system is everywhere the

same except in an exponentially localized region close to the defects; gentle modi-

fications of the confinement potentials fall into this class of perturbations, so that

the specific form of v(|z|) is not important if we are only interested in the bulk, and

we argue that most of our conclusions carry over to cases in which the confinement

potential lacks rotational invariance.

We assume the presence of Nqp pinning potentials located at positions sα; using

the complex-plane parametrisation ηα = sα,x + isα,y = |ηα|eiθα we write:

H1(η) =

Nqp∑

α=1

N∑

i=1

Vα(|zi − ηα|), (6.2)

where η is a shorthand for η1, . . . , ηNqp . Since the pinning potentials might be

different, we keep the subscript Vα; they are all assumed to be rotationally invariant.

We denote the ground state of the total Hamiltonian Hη = H0 +H1(η) by |Ψη〉; we

assume that it is unique and that it localises Nqp quasiparticles at ηα. By virtue of

screening, the density is everywhere the same as in the absence of pinning potentials,

except close to the defects and at the boundary. Since the pinning potentials can be

different, the quasiparticles need not be of the same kind. The set of ηα is completely

arbitrary and rotational invariance is generically broken; in our discussion, we will

assume that they are always kept far from the boundary. These assumptions imply

that |Ψη〉 is a smooth function of η.
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6.2 Gauge fixing

We introduce the operator that is the sum of the particle angular momentum and of

its quasiparticle generalisation, measured in units of ~ (we use the symmetric gauge

A = 1
2
B× r),

L̃ = Lz + L′z (6.3)

where

Lz = −i
N∑

i=1

∂

∂φi
(6.4)

L′z = −i
Nqp∑

α=1

∂

∂θα
. (6.5)

We also define the group operator Uβ = eiβL̃ that is generated by Eq. (6.3), with

β ∈ R. Physically, Uβ represents the quasiparticle self-rotations over an angle β.

The physical meaning of Uβ is best understood by considering its effect on a generic

function f(z, η), see Fig. 6.1. As it is well known, Lz induces the rotation of the

dynamical quantum particles, and thus Uβ maps zj → zje
iβ: in the z space, the

function is translated backwards along a circular path and rotated. On the other

hand, the operator L′z simply generates a translation of the quasiparticles along a

circular trajectory, and thus Uβ maps ηα → ηαe
iβ. Globally, Uβ is the composition

of the two transformations. It therefore represents the quasiparticle self-rotations

over an angle β.

Since the ηα are parameters, a gauge transformation |Ψη〉 → eig(η) |Ψη〉 using an

arbitrary smooth function of the parameters g(η) does not change the energy of the

state. Our goal is to show that it is always possible to use a gauge such that the

ground-state is annihilated by L̃ and is thus invariant under the quasiparticle self-

rotation operator Uβ; this result will be essential for the proof of the spin-statistics

relation.

Let us first consider for simplicity the case of a single quasiparticle, Nqp = 1, so

that L′z = −i∂θ (we suppress the index α = 1 for conciseness). The Hamiltonian

is explicitly invariant under the action of the group: UβHηU
†
β = Hη. With a quasi-

particle at η, the ground state satisfies the Schrödinger equation Hη |Ψη〉 = Eη |Ψη〉.
However, Eη can only depend on |η|, and not on θ; thus, ∂θEη = 0. We conclude

that HηUβ |ψη〉 = UβEη |Ψη〉 = EηUβ |Ψη〉 , namely that Uβ |Ψη〉 is an eigenvector of

Hη with energy Eη. If the ground state is unique, it must be an eigenvector of Uβ
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Figure 6.1: Action of L̃. Panel (a): contour plot in z space of the function f(z, η) =
exp[−1

2
<(z − η)2 − 2=(z − η)2] for η = 2. Panel (b): contour plot of f(zeiβ, η) for

β = 2π/3: with respect to (a), the plot is translated and rotated. Panel (c): contour
plot of f(z, ηeiβ): this time, the plot is only translated. Panel (d): contour plot of
f(zeiβ, ηeiβ): the composition of the two is just a rotation and thus L̃ generates the
self-rotations of the quasiparticles in the z plane.

and of its generator L̃; we dub the eigenvalue of the latter `η

Uβ |Ψη〉 = `η |Ψη〉 . (6.6)

For example, in the case of the normalised Laughlin state with a quasihole at position

η

N (|η|)−1/2
∏

i

(zi − η)
∏

j<k

(zj − zk)me−
∑
i |zi|2/4`2B (6.7)

the eigenvalue `η = m
2
N(N − 1) +N is the degree of the polynomial in zi and η.

We now perform a gauge transformation that unwinds the generalised angular

momentum `η moving along a trajectory at fixed |η|. Namely

|Ψ̃η〉 = eig̃(η) |Ψη〉 (6.8)

with

g̃(η) = −
∫ θ

0

`|η|eiθ′dθ
′. (6.9)

In the aforementioned case of the Laughlin’s quasihole, the Laughlin state gets
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multiplied by the phase (η/η∗)−
m
4
N(N−1)−N

2 .

With this choice, the gauge-transformed state |Ψ̃η〉 is in an eigenvector of L̃ with

vanishing eigenvalue

L̃ |Ψ̃η〉 = 0. (6.10)

By definition, L̃ |Ψ̃η〉 = eig̃(η)L̃ |Ψη〉 +
(
L′eig̃(η)

)
|Ψη〉. The first term of the sum is

`η |Ψ̃η〉, the second term is obtained by differentiating the exponential, and equals

−`η |Ψ̃η〉. Thus, one can find a gauge such that L̃ annihilates the ground state.

Note that for a state satisfying Eq. (6.10), it is also true that Uβ |Ψ̃η〉 = |Ψ̃η〉 for

any angle β. Choosing β = 2π we obtain that this state is single-valued in the η

coordinate because U2π |Ψ̃η〉 is also equal to |Ψ̃ηei2π〉.

This reasoning can be easily extended to the case of several quasiparticles. We

can define a reference angle θ0 and express θα = θ0 + ∆θα, treating the variables

∆θα = θα − θ0 as independent from θ0. The operator −i∂θ0 generates the group

exp (iβ(−i∂θ0)) that modifies the quasiparticle polar angles as follows: θα → θα +β,

leaving the radial distance unchanged; thus: ηα → ηαe
iβ. This is exactly the action

of L′z, and thus we conclude that L′z = −i∂θ0 . With arguments paralleling those

for one quasiparticle, one can (i) show that L̃ |Ψη〉 = `η |Ψη〉, (ii) by making the

dependence on θ0, ∆θα and the |ηα| explicit by writing `θ0,∆θα,|ηα|, one can define

|Ψ̃η〉 = eig(η) |Ψη〉 with g(η) = −
∫ θ0

0
`θ′0,∆θα,|ηα|dθ

′
0, which is in the kernel of L̃.

6.3 Berry phase for the translation of the quasi-

particles along a circle

We now compute the Berry phase corresponding to the translation along a closed

circular path of the Nqp quasiparticle coordinates via θ0 → θ0 + 2π generated by L′z
leaving all the ∆θα and |ηα| invariant. Using the fact that |Ψ̃η〉 is single-valued in

η, this Berry phase is γη =
∫ 2π

0
〈Ψ̃η| i∂θ0 |Ψ̃η〉 dθ0, where only the θ0 coordinate is

changed in the state inside the integral. Employing the definitions of L̃ and L′z, and

using Eq. (6.10), we get

γη =

∫ 2π

0

〈Ψ̃η|Lz |Ψ̃η〉 dθ0 =

∫ 2π

0

〈Ψη|Lz |Ψη〉 dθ0. (6.11)

The matrix element in the integral is manifestly gauge-independent, as the Lz op-

erator does not act on the η; one can thus also use the original states. Finally, let

us note that the integrand cannot be a function of θ0, and thus we have an even
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simpler expression

γη = 2π 〈Ψη|Lz |Ψη〉 . (6.12)

Like any operator projected onto the lowest Landau level, the angular momentum

Lz is a function of the guiding-center operators [11] Rj,x = xj + (`2
B/~)πj,y and

Rj,y = yj − (`2
B/~)πj,x, which, as discussed in Sec. 2.1.2, do not commute along

different directions [Rj,x, Rj′,y] = −i`2
Bδj,j′ . As can be easily seen from the discussion

in Sec. 2.1.3, the lowest Landau level projected angular momentum operator reads

Lz =
∑

j(R
2
j/`

2
B − 1)/2. Written in this projected form, Lz is the gauge-invariant

generator of rotations, and its expectation value is just a function of the density of

the gas ρη(z), which, due to the screening property of the fractional quantum Hall

fluid, can be split into a bulk contribution ρb(z) (the state without quasiparticles), an

edge contribution ρe(z) (the difference at the edge with respect to the state without

quasiparticles) and a quasiparticle contribution localised around the ηα, ρqp,η(z).

We therefore split the integrand into three parts:

〈Ψη|Lz |Ψη〉 = Lb + Le(Nqp) + Lqp(η). (6.13)

As long as the quasiparticles are far from the edge, the screening property ensures

that Le can only depend on their number, or, more precisely, on the number of

quasiparticles of each species, but not on their positions; in fact, it also does not

change when two of them are put close by or stacked on top of each other.

Notice that Lb is an integer, thanks to rotational invariance. Therefore its contribu-

tion to the Berry phase Eq. (6.11) can be discarded. The only relevant information

is contained in the remaining pieces, which indeed depend, directly or indirectly, on

the quasiparticles alone

γη = 2π
(
Le(Nqp) + Lqp(η)

)
. (6.14)

Let us consider now the case of a single quasiparticle at η; on the basis of very

general arguments, γη should be the Aharonov-Bohm phase qQπ|η|2B/~, where Q

is the charge of the quasiparticle in units of the charge of the fractional quantum Hall

state constituents, q. Let us compare Eq. (6.14) with this widely-accepted result. In

very general terms, the angular momentum of a rotationally-invariant quasiparticle

Lqp(η) =
∫
d2r (r2/2`2

B − 1) ρqp,η(r) can be split into an orbital part Q|η|2
2`2B

and an

intrinsic part

Jqp ≡ Lqp(0) =

∫
d2r

(
r2

2`2
B

− 1

)
ρqp,η=0(r). (6.15)
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We can therefore write

γη = πQ|η2|/`2
B + 2π(Le(1) + J1qp). (6.16)

We recognise the Aharonov-Bohm phase, to which an apparently spurious contri-

bution has been added; yet, we can show that it is an integer multiple of 2π, and

thus inessential. To show that Le(1) + J1qp is an integer, we consider a system with

a quasiparticle at its centre. The state in this case is rotationally symmetric, so its

angular momentum Lb + J1qp + Le(1) is an integer; since Lb ∈ Z, J1qp + Le(1) is

also an integer. By the same logic Jnqp + Le(n) ∈ Z where Jnqp is the spin of the

rotationally symmetric quasiparticle obtained by fusing n quasiparticles together,

stacking them on top of each other.

Very generically, the gauge-invariant generator of rotations fractionalizes between

the bulk quasiparticles and the edge, implying that the spin is robust to local

circularly-symmetric perturbations which do not couple the quasiparticles to the

edge.

6.4 Spin-statistics relation

We consider two identical quasiparticles placed at opposite positions η and −η and

far from each other and from the edge. In order to compute the statistical parameter

κ, we consider a double exchange, that gives a gauge-invariant expression and avoids

any discussion on the identity of the pinning potentials [35]. Accordingly, we study

the difference between the Berry phase for exchanging two opposite particles and

the single-particle Aharonov phases [197]:

κqp =
1

2π
(γη,−η − 2γη) . (6.17)

Using Eq. (6.14), we can rewrite the previous equation as κqp = Le(2)+Lqp(η,−η)−
2Le(1) − 2Lqp(η). As long as the quasiparticles are well separated, and given that

the fractional quantum Hall liquid is screening, we can separate ρqp(η,−η) = ρqp,η +

ρqp,−η. We therefore obtain Lqp(η,−η) = 2Lqp(η); since Le(n) + Jnqp ∈ Z we obtain

the spin-statistics relation:

κqp = −J2qp + 2J1qp (mod 1). (6.18)

This result allows us to identify the intrinsic angular momentum with the fractional

spin associated to the fractional statistics. Interestingly, we have linked the statistics
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to a local property of the quasiparticles: if we assume screening, the fine details of

the boundary do not matter, and – as we argued above – one could prove Eq. (6.18)

without requiring that v(|z|) is a central potential.

With similar arguments, the spin-statistics relation can be extended to the situation

where the two quasiparticles are different: calling Ja and Jb their spins, and Jab the

spin of the composite quasiparticle obtained by stacking them at the same place, we

obtain the mutual statistics parameter

κab = −Jab + Ja + Jb (mod 1). (6.19)

Moreover, the fractionalization property allows us to read the phase κ directly at

the edge; indeed, one easily obtains

κqp = Le(2)− 2Le(1) (6.20)

or, more generally,

κab = Le(a, b)− Le(a)− Le(b). (6.21)

These last equations are neat manifestations of the bulk-boundary correspondence:

information on the topological properties of the bulk are encoded in system’s edge

properties, in this case in the form of fractionalized angular momentum.

6.4.1 The spin of the quasielectron

As a first application of the spin-statistics relation Eq. (6.18), we consider the quasi-

electron of the Laughlin state we described in Sec. 3.3.2, at filling ν = 1/m. Nu-

merical studies have highlighted that the composite-fermion wavefunction for the

quasielectron proposed by Jain [168, 200] has the correct statistical properties when

the quasielectron is braided with another one (κqe = 1/m) or with a quasihole

(κqe−qh = −1/m) [198, 276, 277, 278, 279, 280]. Previous articles have already

shown that lowest Landau level quasiparticles composed of p stacked quasiholes

fractionalize the angular momentum

Jp = − p2

2m
+
p

2
, (6.22)

and that these results are compatible via the spin-statistics relation Eq. (6.18) with

a correct quasihole statistics κqh = 1/m [273, 270].

On the basis of these results and of the spin-statistics relation, it is easy to predict

that Jain’s quasielectron fractionalizes the same spin Jp (where p < 0 for quasielec-
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Figure 6.2: Calculation of the quasielectron spin via the integral J(r) =∫ r
0

(
|r′|2
2`2B
− 1
)
ρqp(r)2πr

′dr′; the spin of Eq. (6.15) coincides with the plateau ap-

pearing when r is far from the center and the boundary; Rcl =
√

2N/ν is the
classical radius of the droplet. Panel (a): the spin of a single Jain’s quasielectron
for ν = 1/2, 1/3 and 1/4. Panel (b): the case of two stacked Jain’s quasielectrons.
Panels (c) and (d): the same for one and two Laughlin’s quasielectrons, respectively.
Theoretical predictions following from the spin-statistics relation in Table 6.1 are
marked with dashed lines and are only compatible with the spin of Jain’s quasielec-
tron. Dashed-dotted lines in panels (c) and (d), together with their values, highlight
the position of the spin plateaus in the case Laughlin’s quasielectrons.
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2
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p = −2 −2 −5
3
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2

Table 6.1: The spin Jp of Jain’s quasielectron at filling factor ν.

trons and p > 0 for quasiholes). We numerically verify this statement by performing

a Monte-Carlo analysis of Jain’s wavefunction with one quasielectron (p = −1) or

two (p = −2). See Appendix G for additional details. Table 6.1 summarizes the

expected values. The results of our simulations are in Fig. 6.2(a,b) and they agree
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Figure 6.3: Angular momentum L(R1, R2) of a Laughlin state (N = 25, ν = 1/2)
with two quasiholes at distances R1 and R2 from the center, computed with Monte
Carlo techniques. Panel (a): displacement of the first quasihole; the angular momen-
tum variation L(R,R0)− L(R0, R0) is plotted in black circles, and it is a quadratic
function of R that agrees with the theory prediction −ε(R2 −R2

0) (red line). Panel
(b): displacement of the second quasihole; the variation L(0, R)−L(0, R0) is plotted
in brown triangles and it is a quadratic function of R only at large R; when the
quasiholes fuse a deviation sets in that equals −κ, the statistical parameter. Here,
R0 is the quasihole initial position.

perfectly with our theory.

Notice that this way of assessing the statistics of the quasielectron does not suffer

from the undesired multi-quasiparticle position shift that needs to be taken into

account in order to get the correct statistical phase [276, 280].

Concerning the quasielectron wavefunction proposed in the original article by Laugh-

lin [23], it was shown that it fractionalizes the correct charge, without making defini-

tive statements about its braiding properties though [197, 198, 276, 277, 279]. The

results of our numerical simulations are in Fig. 6.2(c,d). The plateau values can be

phenomenologically described by the spin values J ′p = −p2/(2m) + p(2−m)/(2m),

that gives the correct braiding phase for the Laughlin quasielectron, but also shows

that it is not the anti-anyon of the Laughlin’s quasihole.

6.4.2 Angular-momentum of the gas

As a further application of the spin-statistics relation, let us consider what happens

when two quasiholes initially placed far apart are displaced radially towards the

centre of the cloud. Let us call L0 the angular momentum of the initial state with
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both quasiparticles at the same distance R0 from the center.

The first quasihole is then moved to the center. During this process the angular

momentum increases and depends on the distance R in a parabolic fashion, as

L(R) = L0 − ε(R2 −R2
0) with ε = qQπB/h. A gain in angular momentum of εR2

0 is

expected at the end of the process.

The same is now done with the second quasihole. Whereas also in this case the

angular momentum increases, it does not in a parabolic way. Indeed, at the end of

the process it can not attain the value L0 + 2εR2
0 because when the two quasihole

fuse, their total spin changes. The final value is in fact L0 +2εR2
0−κ. We verify this

result with numerical simulations reported in Fig. 6.3. This provides an experimental

procedure for measuring the mutual statistics of two generic quasiparticles in a

controllable quantum simulator of the fractional quantum Hall effect.

6.5 Laughlin quasielectron

Leveraging on the numerical results we presented in the last section [Sec. 6.4.1], in

this one we are going to explore the link between the quasielectron wavefunctions

proposed by Laughlin and by Jain. We show that Laughlin’s quasielectron can be

understood as a non-local composite fermion state due to a long-range tail which

affects the boundary properties of the fractional quantum Hall cloud and, as a

consequence, the spin and braiding properties of the quasielectron itself. These facts

we believe lead to the ambiguities which have been reported in many studies [197,

198, 279].

6.5.1 Laughlin’s quasielectron in the light of the composite

fermion theory

Our starting point is Laughlin’s quasielectron [Eq. (3.24)] in its unprojected form

[Eq. (3.23)]

ΨLQE({zi}) ∼
(∏

i

z∗i

)∏

i<j

(zi − zj)1/ν

∼
(∏

i

z∗i
∏

i<j

(zi − zj)
)

︸ ︷︷ ︸
Φ({zi})

∏

i<j

(zi − zj)1/ν−1 (6.23)
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(a)
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n+ l

(b)

n

n+ l

Figure 6.4: Schematic view of (a) Jain’s quasielectron [Eq. (6.29)] and (b) Laughlin’s
quasielectron [Eq. (6.27)], in terms of their composite fermion descriptions. Compos-
ite fermion states are denoted by the circles (the fluxes are not shown for graphical
convenience) and labelled by their Λ-level (index n) and angular momentum (index
l). Empty circles denote free states, blue-filled ones the occupied ones. In (b) the
transparency of the circles has been regulated according to the occupation proba-
bilities Eq. (6.28). Diagonal bars serve as a reminder that each composite fermion
is in a superposition state of a n = 0 and a n = 1 Λ-level state.

where, according to the standard composite fermion theory, we separated a “vortex

attachment” term
∏

i<j(zi− zj)1/ν−1 from a non-interacting fermionic wavefunction

Φ({zi}) which we can conveniently write as a Slater determinant

Φ({zi}) =

∣∣∣∣∣∣∣∣∣∣

z∗0 z∗1 z∗2 . . .

z∗0z0 z∗1z1 z∗2z2 . . .

z∗0z
2
0 z∗1z

2
1 z∗2z

2
2 . . .

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣

. (6.24)

This shows that each non-interacting electron sits in orbitals whose wavefunction is

proportional to z∗zl, which carries angular momentum l − 1. These orbitals are a

coherent superposition of the two states belonging to the lowest and the first Landau
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levels with the same angular momentum l − 1





φn=0,l−1(z) = 1√
2π(l−1)!

(
z√
2

)l−1

φn=1,l(z) = 1√
2πl!

(
z√
2

)l−1 (
z√
2
z∗√

2
− l
)
.

(6.25)

Let us show this explicitly by introducing the single-particle orbital

ψl−1(z) ≡
√

1

l + 1
φn=1,l(z) +

√
l

l + 1
φn=0,l−1(z). (6.26)

Since in Eq. (6.25) we have used normalized states, the orbital in Eq. (6.26) is also

normalized. Moreover, it is easy to see that ψl−1 ∝ z∗ zl, which are precisely the

terms that appear in the non-interacting fermionic wavefunction Eq. (6.24). We

rewrite Eq. (6.24) in an equivalent manner (the only difference being an overall

irrelevant normalization factor) as

Φ({zi}) =

∣∣∣∣∣∣∣∣∣∣

ψ−1(z0) ψ−1(z1) ψ−1(z2) . . .

ψ0(z0) ψ0(z1) ψ0(z2) . . .

ψ1(z0) ψ1(z1) ψ1(z2) . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣

. (6.27)

The probabilities for a fermion labelled by the angular momentum l to sit in the

lowest or in the first excited Landau level therefore read




P0(l) = l+1

l+2

P1(l) = 1
l+2
,

(6.28)

which manifestly shows the long-range nature of Laughlin’s quasielectron: even

though liml→∞ P1(l) = 0, the decay is algebraic and very slow. Let us consider for

instance a finite system with N particles. We argue that this slow algebraic decay

can indeed affect the system’s boundary and change the topological properties of

Laughlin’s quasielectron.

On the contrary, it is easy to realize that Jain’s quasielectron [200, 10]

ΨJQE({zi}) ∼ P̂LLL

∣∣∣∣∣∣∣∣∣∣

z∗0 z∗1 z∗2 . . .

1 1 1 . . .

z0 z1 z2 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣

∏

i<j

(zi − zj)m−1 (6.29)
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has basically no such tail. In Fig. 6.4 we present a sketch comparing the two situa-

tions.

0

0.4

0.8

1.2

1.6

0 0.4 0.8 1.2
0

2

4

6

0 0.4 0.8 1.2

−4

0

4

8

0 0.2 0.4 0.6 0.8 1

ρ
(r
)/
ρ
b

r/Rcl

ρ0(r)

(a)

Q
−
1
(r
)

r/Rcl

×10−1

(b)

J
−
1
(r
)

r/Rcl

M+1=150

M+1=25

M+1=10

M+1=1

()

Figure 6.5: Numerical results for (a) the density profiles, (b) the quasielectron
charge Q(r) =

∫ r
0

(ρ(r′)− ρ0(r′)) d2r′ and (c) its spin J(r) =
∫ r

0

(
r′2/2− 1

)
(ρ(r′)−

ρ0(r′)) d2r′ in the case of N = 150 bosons at filling ν = 1/2. The different curves
(see the legend in panel (c)) are associated to quasielectron wavefunctions Eq. (6.31)
truncated at different levels M . The green-curve in panel (a) is the Laughlin’s state
background density ρ0(r).
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6.5.2 Numerical analysis of truncated wavefunctions

In this subsection we are going to show that, provided the long-range tail is suit-

ably truncated, one recovers the correct value of the spin [267, 269, 273] given by

Eq. (6.22).

In order to do that, we introduce the “M -th level truncation” of Eq. (6.27)

Φ[M ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ−1(z0) ψ−1(z1) ψ−1(z2) . . .
...

...
... . . .

ψM−1(z0) ψM−1(z1) ψM−1(z2) . . .

zM0 zM1 zM2 . . .

zM+1
0 zM+1

1 zM+1
2 . . .

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.30)

which qualitatively corresponds to the Laughlin’s quasielectron up to the M -th

orbital, in the sense that the composite fermions are in the coherent superposition

Eq. (6.26). From the M+1-th orbital, the composite fermion occupations are instead

the same as those of the Laughlin’s state. Something interesting can already be seen:

while by construction the truncation at M = N−1 restores Laughlin’s quasielectron

[Eq. (6.23)], truncating at M = 0 gives exactly Jain’s quasielectron [Eq. (6.29)].

A quasielectron wavefunction which interpolates between Jain’s and Laughlin’s

quasielectrons can therefore be constructed by “attaching vortices” to the non-

interacting fermions [10] as

ψ[M ] = P̂LLL Φ[M ]

∏

i<j

(zi − zj)1/ν−1. (6.31)

Notice that at M = N − 1, doing the “standard” Girvin-Jach lowest Landau level

projection [9, 196] leads indeed to Laughlin’s version of the quasielectron [Eq. (3.24)].

For a generic truncation level M & 1 however such a projection scheme is intractable.

Since one heuristically expects the topological features of the state to be independent

of the projection scheme, we resort on the Jain-Kamilla scheme [281, 10], which in

this case is easier to employ. It must be noted that in this case the quasielectron

one obtains when M = N − 1 is not mathematically the same as Laughlin’s one.

We perform standard Monte-Carlo sampling on the wavefunction Eq. (6.31) to

characterize the density profile, the charge and the spin of the quasielectrons at

different truncation levels M . We show our results in Fig. 6.5 and Fig. 6.6 for bulk

filling fractions ν = 1/2 and 1/3 respectively.
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While it can be seen in Fig. 6.5(b) and Fig. 6.6(b) that the quasielectron charge

is independent of the truncation parameter M , we see in Fig. 6.5(c) and Fig. 6.6(c)

that the spin is not. In particular, as long as M � N (i.e. the edge is unaffected

by the presence of the quasielectron at the centre) the correct value of the spin

[Eq. (6.22)] is recovered even if [Fig. 6.5(a), Fig. 6.6(a)] the quasielectron density

profiles are quite different, and therefore these quasielectron states describe “good”

antianyon wavefunctions of Laughlin’s quasihole.

This is not the case in the Laughlin’s quasielectron limit (M = N − 1), where we

find a value of the spin that not only is different from that of Laughlin’s quasihole

[Eq. (6.22)] – thus strengthening the conclusions we drew in subsection 6.4.1 –

but is also different from the value we found there (JLQE = −1/4 and JLQE = 0

at ν = 1/2 and ν = 1/3 respectively) by employing the “standard” Laughlin’s

quasielectron of Eq. (3.24). This demonstrates that Laughlin’s quasielectron spin

is not “topologically robust” in the sense that its value strongly depends on the

detailed short-range structure of the wavefunction and consequently on the method

one employs to project out higher Landau level components, which obviously should

not be the case.

6.6 The non-Abelian case

In this final section, we want to stress that our arguments carry over to non-Abelian

quantum Hall states. In this latter case, fusing two quasiparticles generically can

lead to more than one different outcome. This means that in the presence of several

quasiparticles, the ground state is typically degenerate. When considering a state

with two quasiparticles in a definite fusion channel, the ground state is however

unique (we restrict ourselves to the case without fusion multiplicities). Therefore,

even the non-Abelian case is covered, because the hypotheses of derivation of the

spin-statistics relation are uniqueness of the ground state, screening and rotational

invariance. The non-Abelian nature shows up via the possibility that fusing two

quasiparticles can lead to different anyons, which leads to a different spin-statistics

relation for each possibility

κab,c = −Jc + Ja + Jb (mod 1), (6.32)

where c denotes the particular fusion outcome of fusing a with b. We numerically

support this claim by explicitly analysing the Moore-Read [36] case and comparing

them to analytical results.
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Figure 6.6: Numerical results for (a) the density profiles, (b) the quasielectron charge
Q(r) and (c) its spin J(r) in the case of N = 150 fermions at filling ν = 1/3.
The different curves (see the legend in panel (c)) are associated to quasielectron
wavefunctions Eq. (6.31) truncated at different levels M . The green-curve in panel
(a) is the Laughlin’s state background density.

6.6.1 The Moore-Read case

We now discuss how we obtain analytical results for the values of the spins of the

Moore-Read state quasiholes.

We write the filling fraction of the state as ν = 1
q
, where q is even(/odd) in the

fermionic(/bosonic) case. The Moore-Read state is defined in terms of a chiral boson
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Figure 6.7: Comparison of the quasihole charges Q(r) =
∫ r

0
(ρqp(r

′)− ρMR(r′)) r′dr′,
where ρqp(r) is the quasihole density and ρMR(r) the background Moore-Read den-

sity, for the different Moore-Read quasiholes: (a) the
(
σ, 1

2q

)
, (b) the

(
1, 1

q

)
and (c)

the
(
ψ, 1

q

)
, for the bosonic filling ν = 1 (corresponding to q = 1) and the fermionic

ν = 1
2

(q = 2). Rcl =
√

2N/ν is the classical radius of the droplet.

field ϕ and the fields of the Ising conformal field theory. This means that we should

label the quasiholes by their Ising sector (i.e., 1, σ or ψ), and their charge. The

smallest charge quasihole has the labels
(
σ, 1

2q

)
. Because the fusion of two σ fields

has two possible outcomes, σ× σ = 1 +ψ, the fusion of two quasiholes also leads to

two possible results. In particular, we have (the charge label is additive, as it is the
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case for the Laughlin state)

(
σ,

1

2q

)
×
(
σ,

1

2q

)
=

(
1,

1

q

)
+

(
ψ,

1

q

)
. (6.33)

The first possible outcome
(
1, 1

q

)
is the quasihole one obtains by piercing the sample

with an additional flux, i.e., the “ordinary” Laughlin quasihole. The second possible

outcome “contains” an additional neutral fermionic mode ψ.

The braiding phases can be read from the explicit conformal field theory construc-

tion [36] (see also [179]). In this way one obtains the statistical parameters of the

double exchange of two charge 1
2q

quasiholes, for both possible fusion outcomes. For

clarity, we drop the charge label when referring to the braid parameter κ. In par-

ticular, one finds κσσ,1 = 1
4q
− 1

8
(when the quasiholes fuse to

(
1, 1

q

)
, the ordinary

Laughlin quasihole). For the other fusion channel, one has κσσ,ψ = 1
4q

+ 3
8
, that is,

one has κσσ,ψ = κσσ,1 + hψ, where hψ = 1
2

is the scaling dimension of the neutral

fermion.

We know, on theoretical grounds, the spin of the Laughlin’s quasihole in the Moore-

Read state, which we label J(1,1/q). We can then first make a prediction for the spin

of an elementary quasihole, J(σ,1/(2q)), using the spin-statistics relation. Finally,

using J(σ,1/(2q)), we can obtain the spin for the quasihole of type
(
ψ, 1

q

)
, i.e. J(ψ,1/q).

In the following, we provide numerical results that confirm the values of the spin in

these three cases.

Generically, the spin of a Laughlin quasihole is given by

J(1,1/q) = −
(

1

2q

)
+
S
2q
, (6.34)

where S is a number known as the “shift” of the state[31, 176]. This result can

for instance be computed from the assumption of a rigid shift of the droplet’s

boundary [273] and by writing the total angular momentum of the state as [187]

L = N/ν−S
2

N . The reasons for the introduction of the shift will be clear in a mo-

ment.

In the case of the Moore-Read Pfaffian state, the shift is given by S = q+ 1, which

results in

J(1,1/q) =
1

2
, (6.35)

independent of the filling fraction 1/q.

By making use of J(1,1/q) = 1
2
, κσσ,1 = 1

4q
− 1

8
, and the spin-statistics relation
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J(σ,1/(2q)) = 1
2
(κσσ,1 + J(1,1/q)), we find

J(σ,1/(2q)) = −
(

1

8q
+

1

16

)
+
S
4q

=
1

8q
+

3

16
. (6.36)

For q = 1, this results in J(σ,1/2) = 5
16

, while for q = 2, we have J(σ,1/4) = 1
4
.

With the values of J(σ,1/(2q)) = 1
8q

+ 3
16

and κσσ,ψ = 1
4q

+ 3
8

at hand, we can now obtain

J(ψ,1/q). Invoking again the spin-statistics relation J(ψ,1/q) = 2J(σ,1/(2q)) − κσσ,ψ, we

obtain

J(ψ,1/q) = −
(

1

2q
+

1

2

)
+
S
2q

= 0. (6.37)

Again, this value is independent of q.

Notice interestingly that the spins on the plane, as we defined them, take the

same form that is found by Berry phase arguments on curved spaces, thanks to

the coupling of the spin to the surface curvature [269]. Moreover, the second term

Qqh
S
2

is proportional to the shift quantum number S and linearly proportional

to the quasihole charge Qqh measured in units of the “elementary” Moore-Read

quasihole charge 1/2q, and can be removed by a suitable redefinition of the angular

momentum operator in 2D 2.1.3. On the other hand, the first piece corresponds

to the topological spin of the Moore-Read quasihole [179] - analogously to how

in Eq. (6.22) the first piece, quadratic in the quasihole charge, corresponds to the

topological spin of a Laughlin quasiparticle, while the second is related to the shift of

the Laughlin state (in this case Qqh
S
2

= p/2 for p quasiholes fused together). Notice

that the piece linear in the quasihole charge and proportional to the shift does not

contribute to the spin-statistics relation [Eq. (6.18)], only the quadratic part does.

The reasons that lead us to split the topological-spin contribution from the shift in

Eq. (6.34) should now be clear. While the first piece, quadratic in the quasihole

charge, is related to their anyonic nature and encodes topological properties, the

second piece is instead associated to the angular momentum of the background

liquid[31]. This intriguing connection will be explored in future work.

In the following sub-subsection, we numerically confirm the spin values obtained

here.

6.6.2 Numerical results

We now proceed to describe how we employed a Monte-Carlo sampling of the Moore-

Read wavefunction in the presence of the different quasiholes
(
σ, 1

2q

)
,
(
1, 1

q

)
and

(
ψ, 1

q

)
in order to characterize their charges and spins. We here always consider N
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Figure 6.8: Comparison of the quasihole spins J(r) =∫ r
0

(
r′2/2− 1

)
(ρqp(r

′)− ρMR(r′)) r′dr′, where ρqp(r) is the quasihole density
and ρMR(r) the background Moore-Read density, for the different Moore-Read

quasiholes: (a) the
(
σ, 1

2q

)
, (b) the

(
1, 1

q

)
and (c) the

(
ψ, 1

q

)
, for the bosonic filling

ν = 1 (corresponding to q = 1) and the fermionic ν = 1
2

(q = 2). Rcl =
√

2N/ν is
the classical radius of the droplet.

to be even.

The “Laughlin” quasihole
(
1, 1

q

)
can be obtained by adiabatically piercing the
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system with a flux at position η, resulting in

Ψ(1, 1q )
(η) =

N∏

i

(zi − η) Pf

(
1

zi − zj

) N∏

i<j

(zi − zj)q exp

(
−1

4

∑

i

|zi|2
)
. (6.38)

The Gaussian factors will henceforth be omitted.

The
(
σ, 1

2q

)
quasiholes are instead obtained by “splitting” a Laughlin quasihole

making use of the properties of the Pfaffian factor

Ψ(η1, η2) = Pf

(
(zi − η1)(zj − η2) + (i� j)

zi − zj

) N∏

i<j

(zi − zj)q. (6.39)

From the numerical point of view, it is useful to maximize the distance between the

quasiholes and the boundary of the system; the optimal solution is to place a single(
σ, 1

2q

)
quasihole at η = 0 – the system’s centre – and send the other at spatial

infinity. This will in general modify the properties of the boundary, but not those

of the quasihole at the centre of the system. We obtain

Ψ(σ, 1
2q )

(η = 0) = Pf

(
zi + zj
zi − zj

) N∏

i<j

(zi − zj)q. (6.40)

Finally, we introduce a quasihole
(
ψ, 1

q

)
by inspecting the four-

(
σ, 1

2q

)
quasiholes

wavefunction. Introducing the four quasi-hole “building-block”

Ψ(ab)(cd) = Pf

(
(zi − ηa)(zi − ηb)(zj − ηc)(zj − ηd) + (i� j)

zi − zj

) N∏

i<j

(zi − zj)q (6.41)

it is possible to define two degenerate four-quasihole states for suitable short-ranged

Hamiltonians with pinning potentials [282]





Ψ0 =
∏4

µ<ν η
1
4q
− 1

8
µν

(η13η24)
1
4√

1+
√

1−x

(
Ψ(13)(24) +

√
1− xΨ(14)(23)

)

Ψ1 =
∏4

µ<ν η
1
4q
− 1

8
µν

(η13η24)
1
4√

1−√1−x

(
Ψ(13)(24) −

√
1− xΨ(14)(23)

) (6.42)

where ηµν = ηµ − ην and x = η12η34
η13η24

; these states are orthonormal [179].

By taking the appropriate limit of Ψ1, we obtain

Ψ(ψ, 1q )
(η = 0) ∝ Pf

(
z2
i + z2

j

zi − zj

) N∏

i<j

(zi − zj)q. (6.43)
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In Fig. 6.7 and Fig. 6.8 we exhibit Monte Carlo results for the charge Q(r) =∫ r
0

(ρqp(r
′)− ρL(r′)) r′dr′ and spin Eq. (6.15) of the different Moore-Read quasiholes(

σ, 1
2q

)
Eq. (6.40),

(
1, 1

q

)
Eq. (6.38) and

(
ψ, 1

q

)
Eq. (6.43). The results for both

the charge and spin are in excellent agreement with the predictions.

6.7 Conclusions and perspectives

In this chapter we have presented a general derivation of a spin-statistics relation

for Abelian quasiparticles on planar surfaces, derived from very mild assumptions.

We have shown that the quasiparticles fractionalize the gauge-invariant generator

of rotations and that this quantity can be used to define a measurable spin. We

showed that to the fractionalization of angular momentum at the quasiparticle po-

sition corresponds a factionalized angular momentum at the edge which encodes

crucial information about the topological state of the bulk. Specifically, the braid-

ing properties are there encoded, which we believe to be a neat manifestation of the

bulk-boundary correspondence.

Our results carry over naturally to non-Abelian quantum Hall states. We explicitly

analysed the quasiholes in the Moore-Read case, but a long term goal would be to try

addressing the problem in more exotic states belonging to the Read-Reazayi series -

even though doing numerical calculations appear to be daunting. Secondly, it would

be extremely interesting to fully uncover the relation between the fractionalized

rotation generator and the topological spin.

A natural follow-up study will try to address the link between the local angular

momentum at the quasiparticle position, which we associate with its fractional spin,

and the spin that quasiparticles exhibits when moving on curved surfaces. A pos-

sible direction could for example be studying the effective dynamics of an impurity

immersed in a fractional quantum Hall bath along the lines of [79].

Finally, we explicitly showed that Laughlin’s quasielectron is not the antiparticle

corresponding to Laughlin’s quasihole. We argue that this is an effect of Laughlin’s

quasielectron influencing the structure of the edge of the system. We further investi-

gated this hypothesis by rewriting Laughlin’s quasielectron in terms of a composite

fermion description and showing that it has a long-range tail which affects the sys-

tem’s edge. By defining a truncated quasielectron wavefunction – which interpolates

between those of Jain and Laughlin – we show that as long as the tail is truncated

away from the edge the correct value of the spin is recovered. We argue these to be

the reason behind the contradictory results reported in the literature in the last 30

years concerning the Laughlin’s quasielectron wavefunction.



CHAPTER 7

CONCLUSION

In this Chapter we want to give an overall conclusion to this thesis work and briefly

give our outlooks.

7.1 Summary

In Chapter 5, we tackled the problem of studying the linear and nonlinear edge

dynamics of large Laughlin-like fractional quantum Hall states trapped by some an-

harmonic potential. We developed an efficient numerical method based on a joint

use of exact diagonalization and Monte Carlo sampling of the relevant matrix ele-

ments. This allowed us to extract response functions, relevant for the linear regime,

and also to study the real-time dynamics of our system. In this way we were able

to uncover details of the nonlinear physics as well. In both the linear and nonlinear

regimes our calculations highlighted a number of effects of direct experimental and

theoretical interest, such as a sizable group velocity dispersion of the edge mode re-

lated to strong bulk correlations as well as significant amplitude-dependent effects,

both induced by velocity gradients at the system’s edge.

We leveraged on these numerical results to build an effective one-dimensional non-

linear chiral Luttinger liquid quantum model, which describes the dynamics of the

one-dimensional edge in the form of a quantum Korteweg-de Vries equation.

We subsequently reformulated this model in terms of an effective system of inter-

acting massive chiral fermions in one-dimension to extract quantitative information

on the quantum Hall edge, such as the dynamic structure factor broadening and its

threshold singularities which exhibit power-law behaviour with universal exponents.
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In Chapter 6 we have presented a general derivation of a spin-statistics relation for

Abelian quasiparticles on planar surfaces, derived from very mild assumptions. This

naturally carries over to the non-Abelian case provided the fusion channel is well

defined. We have shown that the quasiparticles fractionalize the gauge-invariant

generator of rotations and that this quantity can be used to define a measurable

spin. We showed how to the fractionalization of angular momentum at the quasi-

particle position corresponds a factionalized angular momentum at the edge, which

encodes crucial information about the topological state of the bulk.

We explicitly analysed two paradigmatic quasielectron wavefunctions, the one pro-

posed by Laughlin based on the adiabatic extraction of flux and the one propesed by

Jain based on his composite-fermion approach to the fractional quantum Hall effect.

Our results suggest that Jain’s quasielectron is a good quasielectron wavefunction.

Laughlin’s one instead satisfies the spin-statistics relation, but does not have the

correct spin to be the anti-anyon of Laughlin’s quasihole.

This pushed us to further investigate the structure of Laughlin’s quasielectron: we

showed how its presence has a long-distance effect on the system’s boundary, which

in turn affects the topological robustness of the spin. We argue these to be the rea-

son behind the contradictory results reported in the literature in the last 30 years

concerning Laughlin’s quasielectron wavefunction.

We finally briefly discussed the non-Abelian case, showing how our conclusions are

easily extended to such a case. We explicitly analysed the most simple and paradig-

matic case, provided by the Moore-Read state.

7.2 Future Work

Regarding the nonlinear dynamics at the edge, many questions are still opened and

currently being investigated. Among these, we would like to mention a few.

First of all, we would like to understand the physical mechanism giving rise to

the modified group-velocity dispersion we numerically observed, and in this way to

explain the coefficient of the cubic term in the dispersion. We believe this to be

related to the Hall viscosity and to the bulk magneto-roton excitations, but work is

still (slowly) in progress.

Secondly, a more detailed understanding of the spectral function at its thresholds

would be desirable; is some power-law behaviour emerging even in this quantity?

Can the refermionization of the edge-dynamics answer this question?

Thirdly, it would be interesting to further understand and characterize the emergent

nonlinear and dispersive Korteweg-de Vries dynamics at the edge, in particular the
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emergence of shock-waves and/or solitons. Furthermore, we pointed out how situ-

ations could emerge in which the gradient of the force on the fractional quantum

Hall boundary can vanish. In this case, higher order terms can be expected to set

the dynamics of the edge modes. How is the emergent hydrodynamics modified?

As a fourth point, we would like to extend our numerical analysis to the Moore-Read

case. Even though more challenging, the non-Abelian nature of the state can po-

tentially lead to highly interesting and non-trivial nonlinear behaviours of the edge

modes.

Fifth, we would like to extend our work to lattice systems and in particular address

the question of how the underlying periodic spatial structure modifies the emergent

linear and nonlinear dynamics of the edge modes.

Finally, we aim to analyse the role of non-ultrashort-ranged interactions. We be-

lieve this last point to be of high relevance, given that large fractional quantum

Hall systems are currently available only in electronic condensed matter systems. A

deeper understanding of how the interplay of confinement and interactions sets the

edge linear and nonlinear dynamics beyond the chiral Luttinger liquid model would

therefore be desirable.

Many open questions are still present, also concerning the spin of fractional quan-

tum Hall quasiparticles.

First of all, it would be extremely interesting to fully uncover the relation between

the fractionalized rotation generator at the quasiparticle position, which we associate

with its fractional spin, and the topological spin discussed in anyon models [283, 179].

We also would like to explicitly link the local angular momentum at the quasiparticle

position and the spin that quasiparticles exhibit when moving on curved surfaces.

We think that a possible direction to investigate this link would be studying the

effective dynamics of an impurity immersed in a fractional quantum Hall bath [79],

for it must inherit the effects of the quasiparticle spin.

Concerning the non-Abelian case, a natural follow-up question would be the ex-

tension of our analysis to the more exotic Read-Rezayi states; the numerical study

via Monte Carlo techniques is however much more difficult, and it is absolutely not

obvious what strategy (e.g. the use of Jack polynomials or the MPS formulation)

would be more suitable in such a case.

To conclude, we believe that our results will be important towards a complete

understanding the linear and nonlinear dynamics of the edge modes and of the bulk

excitations in fractional quantum Hall liquids in state-of-the-art atomic or photonic

synthetic quantum matter platforms.
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APPENDIX A

MONTE CARLO CALCULATIONS

In this Appendix we discuss further details of the Monte Carlo calculations we

performed.

A.1 Numerical details

As we already explained in Sec. 5.1.1 and Sec. 5.1.2, provided the coupling to states

above the many-body Laughlin gap can be neglected, the system eigenstates – which

here we denote as |n, l〉 – can be entirely written expanding them using the many-

body linearly-independent model wavefunctions |αl, l〉 spanning the edge-state space

at angular momentum L0 + l

|n, l〉 =
∑

αl

C [n,l]
αl

|αl, l〉√
〈αl, l|αl, l〉

(A.1)

where αl runs through the pN(l) states corresponding to the integer partitions of the

angular momentum l of length smaller or equal to N . Using this expansion, since the

states |αl, l〉 are not orthogonal, the time-independent Schrödinger equation turns

into the generalized eigenvalue problem of Eq. (5.6) for the expansion coefficients

C
[n,l]
αl

Hβl,αlC
[n,l]
αl

= En,lMβl,αlC
[n,l]
αl

. (A.2)
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Here, the matrix elements H and M are defined as





Hβl,αl = 〈βl,l|H|αl,l〉√
〈βl|βl〉〈αl|αl〉

Mβl,αl = 〈βl,l|αl,l〉√
〈βl|βl〉〈αl|αl〉

.
(A.3)

Since the kinetic energy is constant within the lowest Landau level and the two-body

interaction energy is assumed to be negligible within the subspace of Laughlin-

like states, the effective Hamiltonian H only includes the confinement potential

Vconf(r), while the “metric” M accounts for the non-orthonormality of the basis

wavefunctions. The high-dimensional integrals in Eq. (A.3) are computed by means

of a standard single-component Metropolis-Monte Carlo sampling [284] which allows

for efficient exploration of the configuration space at large N without the acceptance

rate dropping. Notice that, since the states |αl, l〉 and |βl, l〉 are polynomials of not-

too-large degree with a Laughlin wavefunction Eq. (5.2) common factor, they share

most of their zeros, so the sampling procedure is highly efficient. In principle the

matrices M and H obtained in this way are not exactly Hermitian, so we perform a

preliminary Hermitization step before proceeding with the diagonalization Eq. (A.2).

General observables are computed in an analogous way, e.g. those appearing in the

dynamic structure factor (Section A.2) and in the spectral function (Section A.3).

These calculations are performed by sampling the relevant observable using the

power-sum symmetric polynomials basis |αl, l〉, and then rotating the results onto the

system eigenstates via Eq. (A.1) which thus requires to be computed with sufficient

accuracy. This typically requires much more samples than obtaining the energy

eigenvalues, as it is apparent by comparing for example Fig. A.1 and Fig. A.2.

Notice finally that with the choice of gauge we made (power-sum symmetric poly-

nomials as a basis spanning the relevant many-body subspace of the total Hilbert

space), the system’s wavefunction can be expanded as a linear combination of mono-

mials in the zi with real coefficients

〈z1, . . . , zN |αl, l〉 =
∑

m1,...,mN

Cm1,...,mN φm1(z1)φm2(z2) . . . φmN (zN) (A.4)

where φm(z) are the circular gauge wavefunctions given by Eq. (3.5) and as already

stated the coefficients Cm1,...,mN are real. The matrix-elements of local observables
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in real space therefore read

〈βl, l| o(z1) |αl, l〉 =

=
∑

m1,m′1
m2,...,mN

C ′m′1,m2,...,mN
Cm1,m2...,mN

∫
φm′1(z1)o(z1)φm1(z1)dz1 (A.5)

and it follows that if the single particle matrix element
∫
φm′1(z1)o(z1)φm1(z1)dz1 is

real/imaginary, so will be the many-body one. Therefore, imaginary/real parts of

the matrix elements can be discarded.
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Figure A.1: (a) Eigenenergy spectrum (with errorbars) for a N = 25, ν = 1/2
fractional quantum Hall cloud confined by a δ = 4 quartic potential. (b) Magnified
view on the statistical errors on the eigenenergies. The panels on the right show
histograms for the M = 250 Monte Carlo realizations of the energy spectrum in
each l-sector. Each point is obtained by an independent run.



126 Appendix A. Monte Carlo calculations

A.2 Dynamic structure factor

We here briefly describe how we write the dynamic structure factor weights (yet to

be rotated over the system’s eigenstates) appearing in Eq. (C.11)

〈αl, l| δρ̂−l |0〉√
〈αl, l|αl, l〉 〈0|0〉

. (A.6)

We expand the density operator as δρ̂−l =
∫
eilθδρ̂(θ)dθ. Here, we defined the edge-

density operator as the difference between the density operator and its ground state

expectation value, integrated over the radial direction δρ̂(θ) =
∫∞

0
(ρ̂(r)− ρ0(r)) r dr.

In first quantization language then we can write, for l 6= 0,

δρ̂−l =

∫
eilθ

N∑

i

δ(r − ri)
r

δ(θ − θi) r drdθ =
N∑

i

eilθi (A.7)

which is then be sampled according to Eq. (5.8).

A.3 Spectral function

We here briefly describe how we write the matrix elements appearing in the spectral

function Eq. (5.51) in a way which is amenable of Monte Carlo sampling. We expand

the annihilation operators at angular momentum ∆l = (N − 1)/ν − l as

â∆l =

∫
dz1Φ∗∆l(z1)ψ̂(z1), (A.8)

where Φ∆l(z1) are the single-particle lowest Landau level orbitals in the circular

gauge Φ∆l(z1) =
(
z1/
√

2
)∆l

exp(−|z1|2/4)/
√

2π∆l!. We then write the matrix ele-

ments explicitly in first quantization language as

〈f | â∆l |0〉 =
√
N

∫
Φ∆l(z1)∗

Ψ
[N−1]
f (z′)∗

Nf
Ψ

[N ]
0 (z)

N0

Dz (A.9)

where z is a shorthand for the the particle coordinates z = {z1, . . . , zN} and z′ a

shorthand for all the particle coordinates exception made for z1, z′ = {z2, . . . , zN},
and we define the normalization factors as

N0 =

[∫
Dz

∣∣∣Ψ[N ]
0 (z)

∣∣∣
2
]1/2

(A.10)
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Figure A.2: (a) Dynamic structure factor weights | 〈0| δρ̂l |l, n〉 |2 (with errorbars)
for a N = 25, ν = 1/2 fractional quantum Hall cloud confined by a δ = 4 quartic
potential. (b) Suitably normalized first moment ωl of the dynamic structure factor
(with errorbars). The panels on the right show histograms for the M = 250 Monte
Carlo realizations of the dynamic structure factor weights in each l-sector.

and

Nf =

[∫
Dz′

∣∣∣Ψ[N−1]
f (z′)

∣∣∣
2
]1/2

. (A.11)

The final states Ψf are expanded as power-sum symmetric polynomials multiply-

ing a (N − 1)-particles Laughlin wavefunction Ψ
[N−1]
L (z′). We find that the Monte

Carlo sampling of the integrals is strongly facilitated by introducing the probability

distribution function

P(z) =
|Ψ[N ]

0 (z1 . . . zN)Ψ
[N−1]
0 (z2 . . . zN)|

∫
|Ψ[N ]

0 (z1 . . . zN)Ψ
[N−1]
0 (z2 . . . zN)|Dz

(A.12)

since in this way we have zeros of the correct order at each particle’s position, which

makes the sampling more effective. The obvious disadvantage is that, since not all

the coordinates are treated on an equal footing, the relevant matrix element which

needs to be sampled [Eq. (A.9)] cannot be symmetrized over all the coordinates:
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Figure A.3: (a) Spectral function weight | 〈f | â∆l |0〉 |2, normalized to the Laughlin-
Laughlin matrix element Z0 = | 〈f | â(N−1)/ν |0〉 |2, obtained through Monte Carlo
diagonalization for N = 30 bosons at half filling ν = 1/2, in a quartic δ = 4 trap.
The panels on the right show histograms for M = 250 Monte Carlo realizations of
the spectral function weights for some of the angular momentum l sectors considered.

we however empirically find the usage of Eq. (A.12) to be a compromise worth the

additional computational price.

A.4 Statistics of the sampling

In order to estimate the statistical error of the Monte Carlo sampling, we performed

some statistical analysis on the numerical data. In particular, we split the calcula-

tions of our observables into M = 250 groups for the same droplet configuration.

The obtained results are treated as a population of which we studied the statistics.

The average energies

El,n =
1

M

M∑

i=1

el,n[i] (A.13)
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are shown in Fig. A.1(a) with their standard errors

σ(El,n) =

(
1

M(M − 1)

M∑

i=1

(el,n[i]− El,n)2

) 1
2

. (A.14)

Since these latter are very small and almost invisible in Fig. A.1(a), we have replotted

them separetely in panel (b). Histograms of the M = 250 samples for the eigenstate

energies at a few values of l are shown in the right panels.

The same analysis has been repeated for the dynamic structure factor and the

spectral function; the results for the dynamic structure factor weights are shown

in Fig. A.2(a), with the associated errorbars; histograms of the M = 250 samples

for a few l components of the dynamic structure factor are shown in the panels on

the right. Error propagation then yields small but sizeable errorbars on the central

frequency ωl, in particular at l = 1, as shown in Fig. A.2(b). The results for the

spectral function weights are instead shown in Fig. A.3.

Notice that all the histograms are approximatively Gaussian, showing that indeed

the samples are independent, and well separated.





APPENDIX B

EXCITATIONS WITH A RADIAL DEPENDENCE

In Chapter 5 we dealt with an excitation U(r, t) (see Eq. (5.9)) which is uniform

in the radial direction r̂. In this Appendix we show that the results we obtained

remain valid, under reasonable approximations, even when the externally applied

excitation depends on the radial coordinate.

The external potential couples to the density (apart for a time-dependent additive

constant which is anyway irrelevant for the dynamics) via

V̂ (t) =

∫
U(r; t) δρ̂(r) d2r. (B.1)

For edge excitations, the support of the density variation δρ̂(r) is exponentially

localized close to the edge, r ' Rcl: if the excitation potential is nearly uniform

in the radial direction over the width of the edge mode, we can approximate the

previous excitation potential as

V̂ (t) '
∫
U(Rcl, θ; t)

(∫
δρ̂(r) r dr

)
dθ =

∫
U(Rcl, θ; t) δρ̂(θ) dθ , (B.2)

which indeed yields a minimal coupling between the edge density variation and an

effectively azimuthal excitation. On physical grounds one can indeed expect that

as long as the radially-dependent excitation potential is almost constant over the

edge width, reaching the incompressible bulk on the inner side and the vacuum on

the outer one, a quantized transverse Hall current will flow during the excitation

time from the bulk all the way through the edge, where it is accumulated. Then,

the edge-density variation will be proportional to the macroscopic bulk transverse

conductivity set by the filling fraction.
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Figure B.1: Density variation δρ(x, y) at a time c0t ' 0.1 after the ν = 1/2 cloud has
been excited by means of (a) an excitation with a non-trivial radial profile described
by Eq. (B.3) or (b) by a radially flat profile. (c,d) Time-evolution of the fundamental
and second harmonic spatial Fourier components of the edge density variations in
the same two cases (black and red). The confinement is quartic, Vconf ∝ r4 and the
system comprises N = 25 bosons at bulk filling ν = 1/2.

To validate this physical picture, we compare the calculations presented in Chap-

ter 5 for a radially uniform excitation potential U with a non-uniform one, by

performing analogous numerical calculations but perturbing the droplet with an

excitation of the form

U(r, θ; t) = Ul(t) (r/Rcl)
l eil θ + c.c. (B.3)

for which the radial variation of the excitation potential over the edge-mode shape

may be not negligible. As shown in Fig.B.1, good qualitative agreement with the

results for a flat U(θ; t) = U(Rcl, θ; t) is found: the density variations δρ(x, y) are

in fact practically indistinguishable. Note that the excitation considered here was

strong enough to trigger visible non-linear effects.

The comparison has been made more quantitative by looking at the time-evolution



133

of the spatial Fourier transforms of the edge density (bottom panels). The fundamen-

tal mode in the two cases can hardly be told apart. Slight quantitative differences

appear in the second spatial harmonic, even though the qualitative shape remains

the same. This confirms that the approximation made in Eq. (B.2) is a good one, es-

pecially at small l, so the simpler form Eq. (B.2) is an accurate effective description

also for the more general coupling Eq. (B.1).





APPENDIX C

LINEAR RESPONSE ANALYSIS

In this Appendix we discuss the perturbative analysis of the linear response theory

of a fractional quantum Hall cloud to a weak time-dependent external excitation.

C.1 Linear response

The key observable we consider is the edge density variation, which we define as

δρ̂(θ) =

∫ ∞

0

(
ψ̂†(r)ψ̂(r)− 〈ψ̂†(r)ψ̂(r)〉

)
r dr (C.1)

where the bra-kets denote the expectation value on the ground state and ψ†(r) is

the particle-creation operator at position r.

Within linear response theory, the edge density variation induced by the external

perturbing potential which couples to the edge-density (see Eq. (B.2))

V̂ (t) =

∫
U(θ; t) δρ̂(θ) dθ (C.2)

reads

〈δρ̃(θ, t)〉 = −i
〈[

δρ̃(θ, t),

∫ t

−∞
Ṽ (t′)dt′

]〉
(C.3)

where the system is assumed to be initially in its ground state at t → −∞, higher

order terms O(U2) have been neglected and the tilde indicate interaction picture

with respect to the unperturbed U = 0 Hamiltonian.
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With straightforward algebra, the above formula can be rewritten as

〈δρ̂(θ, t)〉 = 2=
∫ t

−∞
dt′
∫
dθ′ U(θ′, t′)

〈
δρ̂(θ) e−i(Ĥ−E0)(t−t′) δρ̂(θ′)

〉
. (C.4)

Introducing the Fourier transforms




δρ̂(θ) = 1

2π

∑
l 6=0 e

ilθδρ̂l

U(θ, t) = 1
2π

∑
l 6=0 e

ilθUl(t)
(C.5)

this can be reformulated as

〈δρ̂(θ, t)〉 = 2=
∫ t

−∞
dt′

1

(2π)2

∑

l 6=0

eilθ Ul(t
′) Cl(t− t′) (C.6)

where the rotational invariance of the ground state has been used to remove a

summation so that Cll′ = Cl δll′ and

Cl(t) =
〈
δρ̂l e

−i(Ĥ−E0)t δρ̂−l
〉
. (C.7)

If we are interested in the late time dynamics of the system once the perturbation

pulse has gone (Ul(t)→ 0 for late times), we can replace the upper boundary of the

time integral with t→∞, use the convolution theorem and write

〈δρ̂(θ, t)〉 =
1

π
=
[∑

l

eilθ
∫
Ũl(ω)Sl(ω) e−iωt dω

]
(C.8)

where we defined the Fourier transforms

Ũl(ω) =

∫
dt

2π
eiωt Ul(t) (C.9)

Sl(ω) =

∫
dt

2π
eiωt Cl(t). (C.10)

Combining Eq. (C.10) with Eq. (C.7) allows to recover the edge dynamic structure

factor. As long as the confinement and excitation potentials are weak enough not

to excite states above the many-body gap, we can introduce a projector onto these

states only and rewrite

Sl(ω) =
∑

n

δ (ω − ωl,n) |〈0| δρ̂l |l, n〉|2 (C.11)

where |0〉 is the Laughlin ground state and ωl,n = El,n−E0 the excitation energy of
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state |l, n〉 with respect to the ground state.

Integrating over the frequencies in Eq. (C.11) (restriction to energies below the

many-body gap is automatically enforced by the projector onto the low-energy sub-

space) one obtains the edge static structure factor

Sl =
∑

n

|〈0| δρ̂l |l, n〉|2 (C.12)

which importantly is invariant under a deformation of the many-body Hamiltonian

as long as the gap is not closed. Indeed, under this condition a unitary transforma-

tion between the “new” eigenstates |l, n〉′ and the “old” ones |l, n〉 is well defined.

Hence, in the long wavelength/low energy limit the edge static structure factor main-

tains its chiral Luttinger liquid value regardless of the specific form of the confining

potential. Namely, Sl = νl when l ≥ 0 (as shown in Fig. 5.4(c)) and 0 otherwise,

reflecting the chirality of the system.

Assuming a narrowly peaked dynamic structure factor at ω ' ωl and including the

chiral Luttinger liquid form of Sl, we can approximate Eq. (C.8) as

〈δρ̂(θ, t)〉 = −ν
π

∂

∂θ

∑

l>0

<
[
eil(θ−ωlt)Ũl(ωl)

]
, (C.13)

which explicitly displays the proportionality of the edge response to the bulk fill-

ing factor of the fractional quantum Hall droplet, and is the key of our proposed

measurement scheme of the transverse conductivity. Of course, this formula is only

valid up to not-too-large times, namely as long as the dynamic structure factor

broadening is not resolved, ∆Elt� 1.

Notice finally that the solution of the semiclassical equation introduced in Chapter 5

(Eq. (5.22)) perfectly matches this result as long as the nonlinear velocity term can

be neglected.





APPENDIX D

DYNAMIC STRUCTURE FACTOR BROADENING IN A

QUARTIC TRAP

In this Appendix we present a more detailed analysis of the second moment of the

edge dynamic structure factor

ω2(l) =

∫
(ω − ω1(l))2 Sl(ω) dω∫

Sl(ω) dω
(D.1)

in the case of a weak quartic Vconf = λr4 potential confining the Laughlin droplet, and

we compare the result to the simple prediction Eq. (5.42). This case is particularly

simple: in the quartic trap, the angular velocity gradient is in fact constant and

position independent,

c = (r−1∂r)
2 Vconf

∣∣
r=Rcl

= 8λ (D.2)

so we have

ω2(l) =
16λ2

3ν
l2(l2 − 1) : (D.3)

when the product ν × ω2(l) is plotted, data from different filling factors ν are then

expected to collapse on the same curve.

In order to better highlight the long-wavelength limit, data for different values of

the particle number N and filling factor ν are plotted in Fig. D.1(a) in terms of

q2(q2 −R−2
cl ), where q = l/Rcl is the edge excitation wavevector: it is apparent how

all points accurately fall on the expected straight line Eq. (D.3). The difference

∆(q) from this line is shown in the bottom panel: the difference is always small and

tends to zero in the long-wavelength limit.
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Figure D.1: (a) Numerically computed (and properly normalized) dynamic structure
factor second moment ω2(l) for the case of a quartic δ = 4 trap, for different system
sizes N and filling fractions ν; we plot it as a function of q2(q2− 1/R2

cl) rather than
l2(l2 − 1), q being the momentum q = l/Rcl carried by the edge excitation, in order
to highlight the long-wavelength limiting behaviour. We compare it with Eq. (5.42)
(black-dashed line), and show the distance from this line in panel (b); it can be seen
that as q → 0, the points systematically approach Eq. (5.42). The difference has
been magnified by a factor 103.



APPENDIX E

OVERLAPS WITH JACK POLYNOMIALS

In this Appendix, we show how the 2D system eigenmodes at filling ν = 1/2 in the

quartic trap have large overlaps with a single Jack polynomial labelled by some root

configuration η. We also show that, within the refermionized nonlinear edge theory,

the corresponding eigenstate has a large overlap with a particle-hole state labelled

by the same partition η.

E.1 Overlaps with Jacks

We now are going to show numerically that the eigenmodes at filling ν = 1/2 in

the quartic trap have large overlaps with a single Jack polynomial [285, 251, 252]

of parameter α = −2/(r − 1) with r = 1/ν = 2 and labelled by a (1, r)-admissible

root-configuration Ω′.

We expand Ω′ = Ω + η, where Ω is the Laughlin state root partition [253] and η

is the edge-partition, labelling a basis of edge excitations at angular momentum l.

As described in [285], analogously to Eq. (3.16), one can write JαΩ+η = Jβη J
α
Ω where

β = 2/(r+1) and JαΩ is the Laughlin state. We consider it to be at filling 1/r = 1/2.

Since the Laughlin state factors out, the overlaps between the eigenstates |l, n〉 and

the edge-Jacks JαΩ′ are easily computed by means of a generalization of the Monte

Carlo sampling we described in Appendix A. We start by expanding the eigenstates

at angular momentum l as in Eq. (A.1) |l, n〉 =
∑

αl
C

[l,n]
αl

|αl,l〉√
〈αl,l|αl,l〉

, so that we can
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Figure E.1: Overlap matrix between the numerically obtained eigenstates |l, n〉 for
a fractional quantum Hall cloud at ν = 1/2 in a quartic trap Vconf = λr4 and the
(normalized) Jack polynomials JαΩ+η with α = −2/(r − 1) and r = 1/ν. On the x
axis, the system’s eigenvectors |l, n〉 are ordered by increasing eigenvalue number n.
On the y axis we report the Jack edge-partitions η with which the overlap has been
computed. The edge-partitions η, on the y-axis, have been ordered in such a way
that the the largest overlap (close to 1) lies on the diagonal.
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express the properly-normalized matrix elements of interest as

〈l, n|J−2
Ω′ 〉√

〈J−2
Ω′ |J−2

Ω′ 〉
=
∑

αl

C [l,n]∗
αl

〈αl, l|J−2
Ω′ 〉√

〈αl, l|αl, l〉 〈J−2
Ω′ |J−2

Ω′ 〉︸ ︷︷ ︸
Oαl;η

. (E.1)

Introducing the normalized probability density function

Pαl(z) =
|Pαl(z)ΨL(z)|2∫
|Pαl(z)ΨL(z)|2Dz (E.2)

where z is a shorthand for z1, . . . , zN , Dz = d2z1 . . . d
2zN and 〈z|αl, l〉 = Pαl(z)ΨL(z),

the normalized overlaps Oαl;η appearing on the right-hand side of Eq. (E.1) read

Oαl;η =

∫
Pαl(z)

Jβη (z)

Pαl (z)
Dz

√∫
Pαl(z)

∣∣∣ J
β
η (z)

Pαl (z)

∣∣∣
2

Dz
. (E.3)

These can be computed through Monte-Carlo sampling: once again, since the states

JαΩ+η and PαlΨL are polynomials of not-too-large degree with a Laughlin wavefunc-

tion [Eq. (5.2)] as common factor, they share most of their zeros and the sam-

pling procedure is highly efficient. Finally, the Jack polynomials Jβη are computed

by expanding them in the basis of power-sum symmetric polynomials seen above,

Jβη (z) =
∑

αl
j

[αl]
η Pαl(z).

The results for the overlaps matrix are shown in Fig. E.1. On the x axis, the

system’s eigenvectors |l, n〉 are ordered by increasing eigenvalue number n (which

is, by increasing energy eigenvalue). On the y axis we show the edge-partition η

labelling a specific Jack; we ordered the partitions along the y-axis so that the

largest overlap lies on the diagonal. It is apparent how the eigenstates of our system

have a large overlap (& 0.95) with a single Jack polynomial, while the largest off-

diagonal component remains . 0.2.

E.2 Comparison with particle-hole excitations within

the refermionized nonlinear χLL

Finally, we want to compare the partitions η labelling the Jacks with those labelling

particle-hole excitations in the refermionized model [Eq. (5.33)]. In order to do so, in

Fig. E.2 we show the overlaps between the eigenstates |l, n〉F of the fermionic model



144 Appendix E. Overlaps with Jack polynomials

0 5 10 15 20 25 30 35 40

Eigenvalue number

[110]
[2, 18]

[22, 16]
[3, 17]

[23, 14]
[3, 2, 15]
[24, 12]
[4, 16]

[25]
[3, 22, 13]

[32, 14]
[3, 23, 1]
[4, 2, 14]

[32, 2, 12]
[5, 15]

[4, 22, 12]
[32, 22]

[4, 3, 13]
[4, 23]
[33, 1]

[5, 2, 13]
[4, 3, 2, 1]
[5, 22, 1]
[42, 12]
[4, 32]
[6, 14]

[5, 3, 12]
[42, 2]

[5, 3, 2]
[6, 2, 12]
[5, 4, 1]
[6, 22]

[6, 3, 1]
[7, 13]

[52]
[6, 4]

[7, 2, 1]
[7, 3]

[8, 12]
[8, 2]
[9, 1]
[10]

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∣ ∣ 〈l
,η

|l,
n
〉 F

∣ ∣

Figure E.2: Overlap matrix between the numerically obtained eigenstates |l, n〉F of
the fermionic model [Eq. (5.33)] and the non-interacting particle-hole states labelled
by the partition η shown on the y axis. On the x axis, the states are ordered by
increasing n. The partitions η on the y axis have been ordered in the same way
as in Fig.E.1. Note how this choice leads to the largest overlap being on the main
diagonal.
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with the non-interacting particle-hole excitations labelled by a partition η and car-

rying the same angular momentum l, |l, η〉. On the x axis, the system’s eigenvectors

|l, n〉F are ordered by increasing eigenvalue number n (which is, by increasing en-

ergy eigenvalue). On the y axis we show the partitions η labelling the particle-hole

states; the same ordering is adopted as in Fig. E.1. It is apparent from Fig. E.2 how

each eigenstate of the refermionized model has a dominant (& 90%) overlap with a

single non-interacting particle-hole state. Remarkably, the fact that the weight is

concentrated on the main diagonal of the overlap matrix, together with the energies

of the nonlinear χLL being in good agreement with those of the full 2D fractional

quantum Hall, shows that the partition η labelling the fermionic state through a

non-interacting particle-hole state which satisfies the Pauli exclusion principle is the

same as the one labelling the full 2D fractional quantum Hall eigenstates through a

Jack polynomial satisfying a generalized exclusion principle [253].





APPENDIX F

ANGULAR VELOCITY AND CURVATURE

PARAMETERS

In this Appendix we further discuss the angular velocity Ω and curvature c parame-

ters introduced by heuristic thinking in Chapter 5. In this Appendix we take a more

general approach, even though still relying on numerical results. We begin by iden-

tifying the edge mode angular velocity Ω with the dispersion of the dipole (l = 1)

mode of the fractional quantum Hall cloud, and discuss small finite-size corrections

to the extrapolations presented in Chapter 5. Then we introduce the curvature pa-

rameter c by analysing the quadrupole mode splitting in the thermodynamic limit.

In this way the two parameters are defined as “angular momentum derivatives” of

the lowest Landau level projected confinement instead of its gradients at the edge

position. The relation between the two definitions is discussed in the last section.

F.1 Edge mode velocity

We start by discussing the confinement-induced velocity of edge modes; we can

define it as

Ω = EEE − EGS =
∑

l

Vconf(l)
(
〈a†lal〉EE − 〈a

†
lal〉GS

)
(F.1)

where EEE is the energy of the only edge-mode (the dipole mode) at angular momen-

tum LGS + 1, ψEE ∝
∑

i ziΨL, and Vconf(l) =
∫
|Φl(z)|2Vconf(|z|)d2z the confinement

projected onto the lowest Landau level. The Lowest Landau level occupation num-
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ber variation

δnl = 〈a†lal〉EE − 〈a
†
lal〉GS (F.2)

will in general differ from zero only near the boundary of the system, since ψEE is

an excitation of the system’s edge. In the case of an integer quantum Hall state

of non-interacting fermions for example δnl = 1 if l = N , δnl = −1 if l = N −
1 and it vanishes otherwise. The strongly-correlated ν = 1/2 case is shown in

Fig. F.1(a). Since δnl is localized at angular momenta l close to the last occupied

angular momentum state at (N−1)/ν, we expand the discrete Ul close to an effective

Fermi point l ∼ lF , which at this point is arbitrary. Using Newton’s series for finite

differences

Ul = UlF + ∆UlF (l − lF ) +
1

2
∆2UlF (l − lF )(l − lF − 1) + . . . (F.3)

where ∆Ul = Ul+1 − Ul. Inserting this expansion in Eq. (F.1) and using the fact

that conservation of the number of particles requires
∑

l δnl = 0, together with the

states having well defined angular momentum, requiring
∑

l lδnl = 1, we obtain

Ω = ∆UlF +
1

2
∆2UlF

(∑

l

l2δnl − (2lF + 1)

)
+ . . . (F.4)

We compute
∑

l l
2δnl numerically, using the fact that l2 = 〈r4/4− 3r2/2 + 1〉 within

the lowest Landau level. Therefore we can write

〈∑

l

l2a†lal

〉
=

〈
1

4
r4 − 3

2
r2 + 1

〉
. (F.5)

Using Eq. (F.2) and the previous Eq. (F.5), we can access 1
2

∑
l l

2δnl. Based on

the insight the ν = 1 case provides, we find that the numerical data are perfectly

captured by the following relation (see Fig. F.1(b))

1

2

∑

l

l2δnl =
N − 1

ν
+

1

2
, (F.6)

and therefore the second order error in the expansion Eq. F.4 can be minimized by

choosing

lF =
N − 1

ν
(F.7)

as one would have heuristically expected. In this way, we obtain

Ω = ∆UlF +O(∆3UlF ). (F.8)
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Figure F.1: (a) The occupation number variation δnl of Eq. (F.2) (black crosses) be-
tween the first excited state and the Laughlin state, for a strongly-correlated system
of N = 30 bosons at half filling; the inset shows the two contributions separately:
the Laughlin state occupation numbers 〈a†lal〉GS (black circles) and the excited state

ones 〈a†lal〉EE (red circles). (b) Difference between the moments 1
2

∑
l l

2δnl of the
first edge state at l = 1 and the Laughlin state as a function of the number of
particles N of the state, for different filling fractions ν (differently coloured circles).
For each filling, the dashed line shows (N − 1)/ν + 1/2, which is found to be in
excellent agreement with the numerics. (c) Error term ε of Eq. (F.9) for various
filling fractions ν as a function of the number of particles N of the state (The ν = 1
curve is not shown, for it vanishes identically).

The error term is seen to be ∝ ∆3UlF , which vanishes for U ∝ r4 potential and

is negligible with respect to the leading order term for not-too-steep power-law

confinements. More quantitatively, the coefficient multiplying ∆3UlF in Eq. (F.8)

can be written as

ε =
1

6

(∑

l

l3δnl − (3l2F + 3lF + 1)

)
. (F.9)
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We compute the quantity within the large parentheses numerically (see Fig. F.1(c))

at fillings ν = 1/2 and ν = 1/3 (for ν = 1 it vanishes identically); at large N , it

grows ∝∼ −N so, in order for the velocity of the edge modes to be given by ∆Ul,

one needs ∆3UlF to decrease faster than 1/N ; for the hard-wall case of Sec. 5.5 this

condition is not met though, so in practice the angular velocity parameter Ω = ∆UlF
is (slightly) renormalized by the higher order corrections.
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Figure F.2: Deviation (percent) of the fit parameters (black points) Ω∗ and (red
points) Ω∗ − α∗ with respect to the expectation Ω = ∆UlF of Eq. (F.8). It can be
seen that the latter compares systematically better to ∆UlF than the foremost.

F.2 Finite size correction to the dispersion of lin-

ear waves

In Chapter 5, we extrapolated the parameters Ω∗ and α∗ appearing in Eq. (5.17) by a

polynomial fit of the numerically computed dynamic structure factor first weighted

moment, defined in Eq. (5.16). Here, as compared to Chapter 5, we introduced

asterisks as a way of reminding that these two parameters are actually empirical.

By comparing ωl at l = 1 with the results of the previous section (see Eq. (F.8)),

we obtain ω1 = Ω∗ − α∗ rather than ω1 = Ω = ∆UlF . Therefore we see that the fit

parameter Ω∗ = Ω + α∗ picks a finite size correction α∗ with respect to the simple

potential gradient ∆UlF . In other words, the dispersion of linear waves at cubic
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order Eq. (5.18) can be rewritten as

ωl = Ωl − α∗l(l2 − 1) (F.10)

where now the coefficient of the linear term is related to the first angular momentum

derivative of the lowest Landau level projected potential at the effective Fermi point,

Ω = ∆UlF .

In Fig. F.2, we show that indeed Ω∗ − α∗ compares to ∆U better than Ω∗ alone,

showing that the “correct” dispersion of linear waves is Eq. (F.10) rather than

Eq. (5.18), where the angular velocity parameter Ω picks up a (small) finite size

correction.

F.3 Curvature

By analysing the energetic splitting of the two quadrupole modes |ψ1〉 and |ψ2〉 (the

states in the l = 2 angular momentum sector) and making use of some reasonable

approximations, we now are going to relate the curvature parameter to the second

angular momentum derivative of the lowest Landau level projected confinement

potential at the effective Fermi point, ∆2UlF .

Using of the expansion Eq. (F.3) we write

E2 − E1 =
1

2
∆2UlF

∑

l

l2δnl. (F.11)

Making use of Eq. (F.5) and noticing that only the ∝ r4 term contributes to the

variation (the two state have the same angular momentum), we obtain

E2 − E1 =
1

2
∆2UlF

(〈
r4

4

〉

2

−
〈
r4

4

〉

1

)
. (F.12)

Provided the confinement is not too strong (so that one does not couple to states

above the many-body energy gap), |ψ1〉 and |ψ2〉 are related by a unitary trans-

formation to the analogous eigenstates in a quartic U ∝ r4 trap, |φ1〉 and |φ2〉.
However, we expect the mixing to be small since, as discussed in Appendix E, the

eigenstates in the quartic trap have large overlaps with Jack polynomials and such

an overlap is expected to increase for steeper confinements [256, 251, 252]. In this

way, we expect |ψ1(2)〉 to be mostly |φ1(2)〉, and we therefore approximate

〈ψ2| r4 |ψ2〉 − 〈ψ1| r4 |ψ1〉 ≈ 〈φ2| r4 |φ2〉 − 〈φ1| r4 |φ1〉 = E
[4]
2 − E[4]

1 , (F.13)
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where E
[4]
1 and E

[4]
2 are the energies of the r4 trap eigenstates, |φ1〉 and |φ2〉, respec-

tively.

In the case of the quartic trap, in Appendix D we showed that Eq. (D.3) gives

the correct long-wavelength limit of the dynamic structure factor weighted second

moment; therefore, at l = 2, we can write

ω
[4]
2 (2) =

64

ν
. (F.14)

The left-hand side of the equality, ω
[4]
2 (2), is however easy to evaluate from its

definition Eq. (5.41). Indeed in the thermodynamic limit the dynamic structure

factor weights are equal | 〈φ1| δρ̂2 |0〉 |2 = | 〈φ2| δρ̂2 |0〉 |2 = ν. It follows that

ω
[4]
2 (2) =

E
[4]
1 + E

[4]
2

2
−
(
E

[4]
1 + E

[4]
2

2

)2

=
1

4

(
E

[4]
2 − E[4]

1

)2

. (F.15)

From Eq. (F.14) and Eq. (F.15) we then get E
[4]
2 − E

[4]
1 = 16√

ν
and thus, together

with Eq. (F.13) the energy splitting Eq. (F.12) in a generic trap becomes

E2 − E1 ≈ 2
∆2UlF√

ν
. (F.16)

This expression agrees with Eq. (5.39) obtained from the simple model Eq. (5.25)

provided we identify

c = ∆2UlF +O(∆3UlF ). (F.17)

Again, the approximation works reasonably good in the case of power law confine-

ment, but higher order terms slightly renormalize the result in the hard-wall case.

F.4 Relation to radial gradients of the confine-

ment

We end this Appendix by noting that the relevant parameters

Ω = ∆UlF (F.18)

c = ∆2UlF , (F.19)

properly defined in terms of angular momentum derivatives, reduce to those we

heuristically introduced Chapter 5 in terms of radial gradients of the confinement
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potential. Indeed, the single particle wavefunctions |Φl(z)|2 [Eq. (3.5)] are peaked

at r =
√

2l. Therefore, if we assume that the confinement potential Vconf(r) varies

slowly over the lengthscale set by the magnetic-length, the trap potential matrix

elements Ul are simply related to the real-space one by

Ul ' U(
√

2l). (F.20)

When the system is made larger and larger,

Ω = ∆U |lF ≈
(
r−1 ∂r

)
U(r)|Rcl (F.21)

and analogously

c = ∆2U |lF ≈
(
r−1 ∂r

)2
U(r)|Rcl (F.22)

which indeed coincide with the heuristic expressions Eq. (5.12) and Eq. (5.14) we

introduced.





APPENDIX G

THE SPIN OF THE QUASIELECTRON

In this Appendix we give some details on how the results for the spins

Jqp(R) = 2π

∫ R

0

r dr

(
r2

2
− 1

)
(ρqp(r)− ρ(r)) (G.1)

of the quasiparticles, which we presented in Chapter 6, have been obtained. In the

previous expression, ρqp(r) is the density of a fractional quantum Hall cloud with a

quasiparticle placed at the origin, and ρ(r) the background density of the fractional

quantum Hall state hosting the fractionalized excitation. When 1 � r � Rcl (in

units of the magnetic length lB), Jqp(R) has a plateau at the spin value.

The knowledge of the analytical form of model wavefunctions allows us to compute

the spin by Monte Carlo sampling [236, 237, 238] the associated integral Eq. (G.1).

This stochastic method allows at the same time to extract information on the charge

and density profile of the quasiparticle excitation.

In the following sections some information on the numerics is given. The results

for the spin [Eq. (G.1)] are shown in Fig. 6.2 in Chapter 6; here, in Fig. G.1, we

complement by showing the density and the excess charge with respect to the bulk

Laughlin liquid of the quasielectron states that will be discussed in the following

sections.
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Figure G.1: Comparison of Jain’s and Laughlin’s quasielectron densities ρqp(r) and
charges Q(r) =

∫ r
0

(ρqp(r
′)− ρL(r′)) r′dr′, where ρqp(r) is the quasielectron density

and ρL(r) the background Laughlin density. The charge Q of the quasielectron co-
incides with the plateau appearing when r is far from the center and the boundary;
Rcl =

√
2N/ν is the classical radius of the droplet. Panel (a)(/(c)): comparison

between the densities ρqp(r) of single(/double) Jain’s (full lines) and Laughlin’s
(dashed lines) quasielectrons, for ν = 1/2, 1/3 and 1/4. Horizontal dashed-dotted
lines represent the bulk Laughlin state density ρb = ν/2πl2B. Panel (b)(/(d)): com-
parison between the charges Q(r) of single(/double) Jain’s (full lines) and Laughlin’s
(dashed lines) quasielectrons. Horizontal dashed-dotted lines represent the charge
of Laughlin’s quasiparticles, Q = ν.

G.1 Single Jain’s quasielectron

Jain’s composite fermion approach to the fractional quantum Hall states suggests [168,

10]

ΨJQE = P̂LLL

∣∣∣∣∣∣∣∣∣∣

z∗0 z∗1 z∗2 . . .

1 1 1 . . .

z0 z1 z2 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣

∏

i<j

(zi − zj)m−1 (G.2)

as the simplest candidate wavefunction for the quasielectron on top of a Laughlin

state at filling ν = 1
m

. Here and in the following, Gaussian factors will be left

implicit. Carrying out standard projection onto the lowest Landau level [196] gives
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(apart for constant proportionality factors)

ΨJQE =
∑

i

(
1∏

l 6=i zl − zi
∑

j 6=i

1

zi − zj

)∏

i<j

(zi − zj)m (G.3)

which has already been shown to carry the correct fractional charge [198] and having

the correct exchange statistics [276, 280].

G.2 Double Jain’s quasielectron

Jain’s composite fermion approach suggests the following wavefunction for a doubly

charged quasielectron at the centre of a circularly symmetric droplet

ΨJ2QE = P̂LLL

∣∣∣∣∣∣∣∣∣∣∣∣∣

z∗0
2 z∗1

2 z∗2
2 . . .

z∗0 z∗1 z∗2 . . .

1 1 1 . . .

z0 z1 z2 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣

∏

i<j

(zi − zj)m−1. (G.4)

Notice that this wavefunction is not the most energetically-favourable double quasi-

electron state [200], which is realized by promoting two composite fermions to their

first Landau level, nor it has the correct angular momentum for a double quasielec-

tron state. We study this particular wavefunction because it has the same angular

momentum as the Laughlin’s double quasielectron state, allowing therefore for a

more direct comparison [278]. The spin of a “true” quasielectron however differs

only by integers from the one of Eq. (G.4).

We use standard lowest Landau level projection, although different inequivalent pro-

jection methods [281, 286, 10] have been proposed. After some tedious algebra (and

again dropping constant proportionality factors) we find

ΨJ2QE =
∑

i 6=j

(
(zi − zj)Γij∏

k 6=i(zk − zi)
∏

k 6=j(zk − zj)

)∏

i<j

(zi − zj)m (G.5)

where

Γij = (m− 1)2A2
iAj − (m− 1)BiAj +

2(m− 1)Ai
(zi − zj)2

− 2

(zi − zj)3
(G.6)
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and 


Ai =

∑
j 6=i

1
zi−zj

Bi =
∑

j 6=i
1

(zi−zj)2 .
(G.7)

G.3 Single Laughlin’s quasielectron

Laughlin proposed a quasielectron wavefunction by generalizing his successful quasi-

hole wavefunction [23], based on the idea of adiabatic flux-insertion

ψLQE =

(∏

i

2
∂

∂zi

)∏

i<j

(zi − zj)m, (G.8)

which however - unlike the quasihole counterpart - is not easy to deal with from

the computational point of view, due to the N -th order derivative term. We are

interested in computing expectation values of local, single-particle observables Ô =∑
i ôi

〈Ô〉 =

∫
Dz ψ∗LQEO(z, z∗)ψLQE (G.9)

where Dz =
∏

i d
2zi and z is a shorthand for all the particles’ coordinates. To

simplify the expressions we assume O(z, z∗) = O(|z|2). By performing integration

by parts 2N times we then get

〈Ô〉 =
1

Z

∫
Dz
∣∣∣∣∣
∏

i<j

(zi − zj)m
∣∣∣∣∣

2∏

i

(|zi|2 − 2)
∑

i

Ai(|zi|2) (G.10)

where Ai is related to the observable oi through

A(r2) = o(r2)− 4
r2 − 1

r2 − 2

∂o(r2)

∂r2
+ 4

r2

r2 − 2

∂2o(r2)

∂(r2)2
(G.11)

but crucially involves its derivatives. The normalization factor Z can be found by

looking at Ô = 1.

As an example, we expand here the expressions for the observable Ô being the

charge up to radius R

o(r2) = Θ(R2 − r2). (G.12)

Here Θ is the step function. The case of the spin Eq. (G.1) is perfectly analogous

but the expressions are more lengthy because of the r2/2− 1 factor multiplying the

step function. The integrals involve derivatives of the δ function. It is convenient
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to take these out of the integrals and rearrange Eq. (G.10) in the following form

Q(R) = I0(R2) + 4I1(R2) + 4
∂I2(R2)

∂R2
(G.13)

where

I0(R2) =
1

Z

∫
Dz

∣∣∣∣∣
∏

i<j

(zi − zj)m
∣∣∣∣∣

2∏

i

(|zi|2 − 2)
∑

i

θ(R2 − r2
i ) (G.14)

I1(R2) =
1

Z

∫
Dz

∣∣∣∣∣
∏

i<j

(zi − zj)m
∣∣∣∣∣

2∏

i

(|zi|2 − 2)
∑

i

δ(R2 − r2
i )
r2
i − 1

r2
i − 2

(G.15)

I2(R2) =
1

Z

∫
Dz

∣∣∣∣∣
∏

i<j

(zi − zj)m
∣∣∣∣∣

2∏

i

(|zi|2 − 2)
∑

i

δ(R2 − r2
i )

r2
i

r2
i − 2

. (G.16)

Taking derivatives [Eq. (G.13)] of the noisy Monte-Carlo sampled observables [Eqs. (G.14)-

(G.16)] is tricky; to circumvent the problem we Fourier transform the relevant quan-

tities

Ĩ(k) =

∫ ∞

0

I(R)J0(kR)RdR (G.17)

where J0 is the order 0 Bessel function of the first kind. We then filter out the “high-

wavevector” noise superimposed to the “low-wavevector” signal Ĩc(k) = c(k)Ĩ(k),

with some suitably chosen cut-off function c(k), and invert the transform

∂nIc(R)

∂(R2)n
=

∫ ∞

0

Ĩc(k)
∂nJ0(kR)

∂(R2)n
k dk. (G.18)

Derivatives of J0 can be expressed in closed compact form in terms of the 0F1

hypergeometric function, thus avoiding the computation of finite differences.

G.4 Double Laughlin’s quasielectron

A doubly charged Laughlin’s quasielectron can be placed at the origin as [200]

ψL2QE =

(∏

i

2
∂

∂zi

)2∏

i<j

(zi − zj)m. (G.19)

Again, carrying out the derivatives explicitly seems not to be feasible, however it

is simpler to look at local observables as Eq. (G.9). Repeated integration by parts
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yields

〈Ô〉 =
1

Z

∫
Dz
∣∣∣∣∣
∏

i<j

(zi − zj)m
∣∣∣∣∣

2∏

i

(8− 8|zi|2 + |zi|4)
∑

i

Ai(|zi|2) (G.20)

with

A(r2) = o(r2)− 8
4− 6r2 + r4

8− 8r2 + r4

∂o(r2)

∂r2
+ 8

4− 12r2 + 3r4

8− 8r2 + r4

∂2o(r2)

∂(r2)2
−

− 32
−2r2 + r4

8− 8r2 + r4

∂3o(r2)

∂(r2)3
+ 16

r4

8− 8r2 + r4

∂4o(r2)

∂(r2)4
.

(G.21)

Once again, the expressions for the observables involve derivatives of the observ-

able itself; whenever dealing with derivatives of the delta function, we adopted the

procedure outlined in the previous section.
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[121] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt,

M. Lewenstein, K. Sengstock, and P. Windpassinger. Tunable gauge potential

for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett.,

108:225304, May 2012.

[122] Anders S. Sørensen, Eugene Demler, and Mikhail D. Lukin. Fractional quan-

tum hall states of atoms in optical lattices. Phys. Rev. Lett., 94:086803, Mar

2005.

[123] S. Tung, V. Schweikhard, and E. A. Cornell. Observation of vortex pinning in

bose-einstein condensates. Phys. Rev. Lett., 97:240402, Dec 2006.

[124] R. A. Williams, S. Al-Assam, and C. J. Foot. Observation of vortex nucleation

in a rotating two-dimensional lattice of bose-einstein condensates. Phys. Rev.

Lett., 104:050404, Feb 2010.
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[185] Bo Yang, Zi-Xiang Hu, Z. Papić, and F. D. M. Haldane. Model wave func-

tions for the collective modes and the magnetoroton theory of the fractional

quantum hall effect. Phys. Rev. Lett., 108:256807, Jun 2012.

[186] Shiuan-Fan Liou, F. D. M. Haldane, Kun Yang, and E. H. Rezayi. Chiral

gravitons in fractional quantum hall liquids. Phys. Rev. Lett., 123:146801, Sep

2019.

[187] F. D. M. Haldane. Geometrical description of the fractional quantum hall

effect. Phys. Rev. Lett., 107:116801, Sep 2011.

[188] Kun Yang. Acoustic wave absorption as a probe of dynamical geometrical

response of fractional quantum hall liquids. Phys. Rev. B, 93:161302, Apr

2016.

[189] Zhao Liu, Andrey Gromov, and Zlatko Papić. Geometric quench and nonequi-
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