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A B S T R A C T

One essential energy vector for building a sustainable bioeconomy is hydrogen, which may be obtained from
renewable biomass sources. This study discusses many biological routes used in the conversion of biomass to
hydrogen, as well as a variety of thermochemical routes such as pyrolysis and gasification. Thermochemical
routes include fast pyrolysis, steam and supercritical water gasification, and related processes; biological routes
include photo, dark, and mixed fermentation techniques in addition to bio-photolysis processes. Notwithstanding
its promise, improving the reliability and selectivity of hydrogen processing is necessary for economically viable
industrial uses in the hydrogen economy. The importance of operating conditions, process parameters, variables
influencing hydrogen production, parameters of storage methods, hydrogen transportation, separation, and
difficulties in producing hydrogen through thermochemical and biological routes are all covered in this paper. It
looks at the problems that come with these procedures, highlighting important knowledge gaps that need for
more investigation. Combining biological processes with thermochemical pathways can ensure economic sus-
tainability. Both thermochemical and biological routes can help fulfilling future demand for a hydrogen based
society.

1. Introduction

With the world’s population growing rapidly, so the energy demand.
Currently, fossil fuels are meeting the need of 87 % of global energy
usage for various applications [1]. Moreover, growing environmental
worries about the exhaustion of fossil resources and substantial harm-
ful gas (CO, CO2, NOX, and SOx) emissions should be addressed by
designing and implementing alternative energy sources and vectors
[2–4]. Hydrogen fuel seems to be the cleanest alternative energy vector,
generating just water as a byproduct of oxidation, providing genuine
“environmental friendliness” [5,6]. It is the most abundant chemical
element, contributing to around 75 % of all elemental mass on the
universe. Since hydrogen gas is less dense than air, it is scarce on earth
[7]. H2 has the most significant energy density of all the biofuels and
energy sources. H2 has a 122 kJ per kilogram energy output, 2.75 times
that of conventional hydrocarbon fossil fuels [8–11] Methane steam
reforming, electrolysis of water, and steam catalytic conversion of crude

oil [10,12–16] are the most common industrial hydrogen generation
technologies today [5,17,18]. Fig. 1 illustrates the diverse methods of
hydrogen production, each identified by a specific color code. The
methods include coal gasification, biomass gasification, steam methane
reforming, and electrolysis. Each production technique is associated
with different energy sources, highlighting the variety of approaches
available for generating hydrogen. Just as an example, the steam cata-
lytic method’s conversion of heavy oil to hydrogen is unsustainable.

In contrast, hydrogen generation from biomass is a cost-effective,
energy-efficient, and ecologically friendly process of hydrogen genera-
tion [19,20]. Biomass is a biological renewable natural resource widely
available in various industries, including the agronomic and forest sec-
tors. The primary forms of biomass in significant amounts, which are
sustainable feedstock for bio-refineries, include agricultural, forest,
fisheries, livestock, and urban waste [21,22]. Biomass is made up of
organic components high in carbon, hydrogen, and oxygen elements.
The average mass percentage of hydrogen in biomass is 6 %,
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corresponding to 0.672 m3 of H2 produced per kilogram of biomass and
accounts for more than 40 % of overall biomass energy [23].

Thermochemical, biological, and electrolytic routes are the most
common ways of producing hydrogen from biomass at the current time
[25,26]. Biological and electrolytic hydrogen production is challenging
and, unfortunately, produces limited amounts of hydrogen, and ther-
mochemical hydrogen generation is gaining popularity [27]. Gasifica-
tion and pyrolysis are the two most common thermochemical
conversion processes for biomass. Thermochemical gasification occurs
at temperatures in the range of 700 to 1200 ℃ with no or limited
amount of oxygen and generates combustible gas, making efficient
syngas production [28–30]. Syngas is a fuel that may be used to heat
homes and generate power, as well as synthetic chemicals like ammonia,
methanol, and dimethyl ether [31].

Additionally, high-quality hydrogen produced by syngas may be
utilized in fuel cells [32,33].

Another method for producing hydrogen from biomass is biocon-
version. Bio-photolysis and fermentation are the primary biological
mechanisms for generating biomass hydrogen [34,35]. Hydrogen gen-
eration by fermentation is an enzymatic process that converts organic
material into hydrogen by utilizing a range of bacterial communities. It
covers both dark and photoheterotrophic fermentation. Dark fermen-
tation produces hydrogen in the dark using plentiful and low-cost
anaerobic microorganisms. Between 30 and 80 ◦C, hydrogen may be
generated from carbohydrate-rich feedstock. Some contaminants, like

methane and hydrogen sulphide, are combined with the main product.
Developing a safe technique for separating and cleaning hydrogen from
gas mixtures is essential to increase practical applicability.

Photo-fermentation differs from the dark fermentation process in
that it requires light. Hydrogen may be produced via photosynthetic
hydrogen synthesis in aquatic settings at atmospheric temperatures and
pressures [36]. However, using light energy to break the bond of water
molecules into hydrogen and oxygen is inefficient for microalgae and
cyanobacteria [37]. This is one of the most significant roadblocks to the
application’s success. One of the primary research directions is to in-
crease the rate of hydrogen generation.

Fig. 2 presents a detailed breakdown of global hydrogen consump-
tion by country and region. This includes data from China, the Middle
East, the United States, Eastern Europe, Southwest Asia, Western
Europe, Africa, Central Europe, Canada, and Japan. The figure high-
lights the varying levels of hydrogen usage across these diverse regions,
providing a comprehensive overview of global consumption patterns,
and it can be observed that Asia is the largest consumer of hydrogen.
Hydrogen is the primary reactant in the petrochemical industry, and
within the next 20 years, it has the potential to be used as a fuel. Fig. 3
highlights the primary applications of hydrogen, with ammonia syn-
thesis being the most significant. Other notable uses include methanol
production and hydrogenation/hydrotreatments of in the petrochemical
sector (refining) mainly for fuel production.

The uniqueness of the production of hydrogen through

Fig. 1. Diverse methods of hydrogen production with feedstock [24].
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thermochemical and biological routes is in the innovative methods of
producing hydrogen in a sustainable and efficient manner, hence over-
coming the constraints of conventional techniques such as steam
methane reforming and water electrolysis. Thermochemical methods
involve using high temperatures to convert biomass into syngas. This
process can be enhanced by using new catalysts and reactor designs to
increase the amount and purity of hydrogen produced. Pyrolysis, on the
other hand, is a process that breaks down organic materials without
oxygen. Innovations in pyrolysis have focused on improving efficiency
and managing the by-products generated. Within biological route, spe-
cific strains of cyanobacteria generate hydrogen via the process of
fermentation and biophotolysis. By employing genetic engineering
techniques and optimising growing conditions, the production and sta-
bility of hydrogen may be significantly improved. Advanced reactor
designs enhance productivity by optimising the distribution of light,
supply of nutrients, and exchange of gases. Dark fermentation employs
anaerobic microbes to decompose organic materials in the absence of
light. This process utilises innovative microbial communities and
metabolic pathway manipulation to enhance productivity and expand
the range of usable substrates. Integrating dark fermentation with

processes such as photo fermentation improves overall efficiency and
waste utilisation. The benefits of these approaches encompass the use of
sustainable or low-emission energy sources, the capacity to handle a
diverse array of raw materials, and the possibility of implementing
small-scale, decentralised production systems. Nevertheless, there are
still obstacles to overcome, since several procedures are now in the
experimental or pilot phases.

These processes necessitate enhanced effectiveness, reduced costs,
resilient materials, optimised reactor designs, and the construction of
infrastructure for the production, storage, and distribution of hydrogen.
This review paper offers an insight into these innovative H2 production
methods and technologies aimed at valorizing biomasses in view of
sustainable production through thermochemical and biological routes.

2. Hydrogen production from bioresources

Thermochemical and biological routes have produced hydrogen
from various biomass types. They include: almond shell [42], beech
wood [43], black liquor [44], cedar wood [45], coir pith [46], coffee
husk [47], corn cob [48,49], Food waste [50] hazel nut [51],

Fig. 3. Global hydrogen demand for various sectors 2019–2070 [40,41].

Fig. 2. Global hydrogen consumption by country and region [38,39].
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lignocellulosic char [52], marine algae [53], municipal solid waste [54],
paper mill waste [55], pine saw dust [56], palm oil waste [57], saw dust
[58], spruce wood [59], tea waste [60], waste water sludge [61], waste
wood [62], wheat straw [63], wood saw dust [64], yellow pine wood-
chips [53,65]. The present study focuses on two primary methods of
producing hydrogen from biomass: the thermochemical route and the
biological route. The thermochemical methods include gasification [66]
and pyrolysis, each employing high-temperature processes to convert
biomass into hydrogen. The biological route encompasses biophotolysis,
dark fermentation, and photo fermentation, which utilize biological
processes and microorganisms to generate hydrogen. These methods are
detailed in Fig. 4, providing a comprehensive overview of the diverse
approaches to hydrogen production from biomass. Biological processes
are more ecologically friendly and energy-efficient since they function
under mild operating conditions. Still, they produce modest rates and
yields of hydrogen (molH2/mol feedstock) based on the raw biomass
utilized [11]. Thermochemical processes are substantially faster and
produce larger hydrogen output, making gasification an economically
and environmentally feasible option [67,68].

2.1. Thermochemical route

The thermochemical route consists of the conversion of biomass into
hydrogen and hydrogen-rich gases by diverse thermochemical process

[69,70]. The generation of hydrogen-rich gas from syngas resulting from
such procedures is an essential technique for environmental preserva-
tion, as it produces minimal greenhouse gases [71].

The thermochemical conversion process is primarily concerned with
thermochemical gasification and pyrolysis. Both conversion methods
produce gaseous fuel mixtures like hydrogen, methane, and carbon
monoxide, which are processed for different hydrogen generations via
steam reforming and the water gas shift reaction.

Table 1 outlines the various processes and reactions involved in the
thermochemical route for hydrogen production. These include pyrolysis,
combustion, the Boudouard reaction, methane formation, the water–gas
reaction, steam methane reforming, the CO shift reaction, and tar
cracking. Each reaction plays a critical role in converting raw materials
into hydrogen, showcasing the complexity and diversity of thermo-
chemical processes used in hydrogen production.

2.1.1. Fast pyrolysis
Rapid pyrolysis converts a significant amount of biomass to bio-oil,

known as pyrolytic oil. Fast pyrolysis generates liquid material, and a
limited quantity of gaseous compounds, including hydrogen, are also
produced. Pyrolytic oil can be reformed with steam to extract hydrogen
[78,79]. The oil is divided into water-soluble and water-insoluble por-
tions based on its solubility. Hydrogen is generated by steam reforming
of the water-soluble fraction. The water-insoluble fraction can be used
for making adhesives. The limited effectiveness of this technique and the
creation of tar and char are its primary drawbacks. Tar formation causes
other unneeded reactions that lower the production of gaseous products.
Char interacts with gaseous particles to form undesirable compounds.

2.1.2. Steam gasification
The gasifying agent utilized in the procedure is used to classify the

gasification process. Steam is used as a gasification agent in the steam
gasification operation. A pyrolytic step occurs before gasification
because the pyrolysis rate is quicker than gasification. Pyrolysis pro-
duces volatiles, generating char (residue), which interacts with steam to
produce H2, CO, and CO2. Steam gasification produces H2 and fuel gas
for heating [80]. According to estimates, the average steam gasification
product gas composition is H2 (64.40–68.48 %), CO (6.57–5.82 %), CH4
(0.65–0.83 %), CO2 (28.20–24.7 %), and CxHy (0.18–0.11 %) [81]. The
largest H2 generation from biomass is reported to be 17 % (on a biomass
weight basis) [82]. On a dry basis, the process may create 53–55 % H2-
rich syngas [83].

2.1.3. Supercritical water gasification
Supercritical water gasification is a new method of hydrogen pro-

duction. Water occurs under normal conditions in all three states of
matter solid, liquid, and gases (steam) [84]. When subjected to super-
critical conditions of 22.1 MPa and 374 ◦C, water’s gas and liquid forms
become entirely miscible [85]. Oxygen acts as an oxidant in water under
these circumstances. When a carbonaceous substance, such as biomass,
reacts with supercritical water, the carbon present in the biomass is
oxidized, and CO is released. Then after CO is oxidized and generates
CO2. The hydrogen in the biomass and the water are liberated and, as a
result, H2 is produced. This technique is ideal for biomass with large
moisture fraction. Besides, the cost of producing H2 in this process is
much greater than traditional steam methane reforming in refinery,
which uses natural gas [86]. The technology is still under research and
requires much investigation to be verified. Table 2 provides detailed
information on various biomass gasification reactors used for hydrogen
production, highlighting the different feedstocks and reactor charac-
teristics. The feedstocks include meat and bone meal, sludge, agricul-
tural waste pellets [87–89] and wood, each chosen for their potential to
generate hydrogen. The table also describes the construction details and
features of each reactor, such as flow rate, biomass feeding rate, and
equivalence ratio. These parameters are crucial for optimizing the
gasification process and maximizing hydrogen yield, offering a

Fig. 4. Hydrogen production source and methods.

Table 1
The diverse thermochemical processes and reactions involved in hydrogen
production [72–77].

Name of process Reaction

Pyrolysis Biomass→H2 + CO2 + CO + CH4 + CnHm + tars + biochar;
ΔH > 0 kJ/mol

Combustion C +
1
2
O2→CO; ΔH = − 111 kJ/molH2 +

1
2
O2→H2O;

ΔH = − 242 kJ/molCO +
1
2
O2→CO2; ΔH = − 254kJ/mol

Boudouard C + CO2→2CO; ΔH = 172kJ/mol
Methane formation C + 2H2→CH4 ; ΔH = − 75kJ/mol
Water gas C + H2O→CO + H2 ; ΔH = 131kJ/molC + 2H2O→CO2 +

2H2; ΔH = 100 kJ/mol
Steammethane

reforming
CH4 + H2O→CO + 3H2; ΔH = 200 kJ/molCH4 +

2H2O→CO2 + 4H2; ΔH = 165 kJ/mol
CO shift CO + H2O→CO2 + H2; ΔH = − 41kJ/mol
General tar cracking

CnHm + nH2O→nCO +

(

n+
1
2

m
)

H2; ΔH > 0 kJ/mol

Tar cracking Tars + H2O→CO2 + H2 + CO + lower hydrocarbon; ΔH >

0 kJ/mol

P. Kumar and L. Fiori
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Table 2
Different biomass gasification reactors used for hydrogen production

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Meat and

bone meal

• Bed zone,
din = 40 mm.
free board zone,
din = 63 mm.

Fluidized bed reactor

• H2 = 21.2–22.7
vol% (100 % coal
and 0.5 % meat-
99.5 % coal)

1.8 g/min 0.25–0.35

[90]

Municipal

sewage sludge

• Silica sand (2.2 kg)
with a diameter of
between 150–300 mm
was used

• Sewage sludge/
coal = 30:70

ProduceH2 =

26.63 %

13 g/min 0.3

[91]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Rice husk

• Air and steam media
Bubbling fluidized

bed gasification
Reactor has been

fixed as 40 kW.
Diameter 0.15 m

with height = 2.5 m.

Air flow rate, 13.92
kg/h

1.0–9.8
kg/h

0.22

[92]

Pine pellet

• Diameter (drying
zone) = 280 mm

Height = 200 mm
10 kWth gasifierAir

media

• H2 molar ratio =

17.28–21.39 %
H2 and CO

increased with
reactor
temperature.

1 kg/h 0.27–––0.28

[93]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Pruning

waste of olive

• Retrofitting small-
scale gasifiers

Steam media
Steam flow rates =

0.04–––0.20 g/min

• Optimum H2 =

70 % at a 800℃
Steam flow

rate = 0.04 g/min

214 gm/
min

− -

[94]

Pine needle

pellets and Pongamia pellets

• 20kWeDowndraft
gasifier

• H2 = 7.44
Gas flow rate

= 14.10 g/s
Efficiency =

65 %

− — 0.3

[95,96]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Rubber wood

• Downdraft gasifier
Height = 91 cm
Diameter = 22.4 cm

• Air flow rate =

1.64 Nm3/hr
3.65 kg/
hr

0.30–0.45

[97]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Beech wood

• Hopper capacity =

1.15 l
Air flow = 0.5 NL/

minSolar gasification
reactor

• H2 = 1957 k mol
CO =

1656kmol
Optical mode:

H2 = 71 %
Hybrid mode:
H2 = 3349

kmol
CO = 3388

kmol

g/min.

[98]

(continued on next page)

P.Kum
ar

and
L.Fiori



EnergyConversionandManagement:X
23(2024)100659

10

Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Waste wood

• Height = 3.5 m
Diameter = 400 mm
Gasifier material =

Stainless steel
Wood shape and

size = rectangular
shape of 6 cm

• H2 = 10–15.6 % 2.5 kg/hr 0.30–0.37

[77]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Mushroom

waste

• Tubular reactor
SS-310 material
Freeboard zone

inner diameter = 63.9
mm

Reactor length =

450 mm

• H2 = 15–40 vol% Bach feed. 0.27–0.33

[99]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Pine wood

• Downdraft gasifier
Steam flow =

0.3–0.9 kg/h

• H2 = 15–105 m3/
kg

Stem to
biomass
ratio =

0.95

−

[100]

(continued on next page)

P.Kum
ar

and
L.Fiori



EnergyConversionandManagement:X
23(2024)100659

13

Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Pine saw dust

• Conical spouted bed
gasifier

Di = 12.5 mm
Do = 7.6 mm
Dc = 60.3 mm
Hc = 73.0 mm
Ht = 298.0 mm
Steam flow rate =

1.86 l/min

• H2 = 0–40 % Saw dust
= 0.2 to
3gmin− 1

[101]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

Almond shell

• Fluidized bed biomass
gasification plant

Inner diameter =
100 mmSteam media

• Air flow rate =

10.6 l/min
H2 =

31.4–57.5 %

11.6 gm/
min

0.148

[102]

Palm shell

• Rotary kiln reactor
Diameter = 400 mm
Length = 1000 mm

2 = 39.4–52.5 % 5 kg /h − -

[103]

(continued on next page)
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Table 2 (continued )

Biomass Construction detail and effective parameter Gasifier
Reactor

Feature Air flow rate
H2 production rate

Feeding
rate of
biomass

Equivalence
ratio

De

alcoholised marc of grape

• Entrained-flow
gasification pilot
plant.

Steam flow rate =

less than 1.5 kg/h

H2 = 2.7–5.74 k
mol/h

1–2 kg/h 0.2

[104]
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Table 3
Various biological processes used for hydrogen production.

Process Biomass and
substrate

Group of bacteria Key enzymes H2 production Reactor

fermentation Molasses,food
waste, wastewater

Rhodo bacteria capsulatus,Rhodobium
marinum, R.sphaeroides

Nitrogenase,Hydrogenase H2 yield rate = 0.01 l/l/h

[113]
Pre-treated Water
hyacinth, (leaves
and stems)

Engineered bacteriaE. cloacae Hydrogenase H2 yield = 74.9 mL/g of total
volatile solid

[114]

(continued on next page)
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Table 3 (continued )

Process Biomass and
substrate

Group of bacteria Key enzymes H2 production Reactor

Protein-rich waste
water (e.g.,
gelatin)

RhodospirillaceaeClostridiaceae H2 yield = 0.4 l/g COD, at HRT =

24 h and initial pH = 6.5.

[115]
− photolysis Water,

carbohydrate
Chlamydomonas reinhardtii,
Chlorella fusca,
Scenedesmus obliquus,Chlorococcum
littorale,Nostoc,Anabaena,Calothrix,
Oscillatori

Nitrogenaseorhydrogenase Photoautotrophs aid in the
establishment of strains that
produce bio hydrogen at
appropriate amounts in
cyanobacteria

[116]
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comprehensive overview of the technologies and materials employed in
biomass gasification for hydrogen production.

2.2. Biological route

Research in hydrogen generation by biological route has risen
considerably in the last several years due to a greater focus on envi-
ronmental sustainability and waste minimization. The majority of bio-
logical processes run at atmospheric pressure and temperature.
Furthermore, they employ limitless renewable energy resources and
help trash recycling since they may use various wastes as feedstock
[105,106]. The primary biological methods for hydrogen gas generation
are direct and indirect bio-photolysis, photo and dark fermentations,
and multistage or sequential dark and photo-fermentation. Table 3
presents an in-depth overview of various biological processes used for
hydrogen production, including photo fermentation, dark fermentation,
combined photo and dark fermentation, and biophotolysis. The table
details the different substrates and groups of bacteria involved in each
process and the key enzymes that facilitate hydrogen production.

Additionally, it describes the various reactor types used and their
respective hydrogen yields. This comprehensive information highlights
the diverse biological methods and their efficiencies in producing
hydrogen, showcasing the potential and versatility of biological routes
for sustainable hydrogen production. Biomass for fermentative pro-
cesses, where the carbohydrate-containing materials are changed and
transformed into organic acids, which are then converted to hydrogen
gas using bioprocessing techniques, produces hydrogen via the hy-
drogenase or nitrogenase enzyme systems of bacteria and algae
[107–112].

2.2.1. Fermentation processes
Fermentation processes are microbial conversions of organic feed-

stocks that produce modest quantities of alcohols, acetic acid, hydrogen,
and carbon dioxide. They may occur with or without the presence of
oxygen. These bio-hydrogen production systems are interesting because
they utilize waste products and enable low-cost energy generation while
simultaneously treating biowaste [117].

2.2.1.1. Photo fermentation process. In photo fermentation, sunlight is
used for degrading carbohydrates and organic acids into carbon dioxide
and hydrogen. The ability of cyanobacteria to produce hydrogen is
widely reported regarding both algae and bacteria [118]. Rhodobacter
bacteria are also promising for hydrogen generation via anoxygenic
photosynthesis and photo-fermentation [119]. Algae and cyanobacteria
may utilize light with a 400–1000 nm wavelength region. Rhodospirillum
and Rhodobacter sphaeroides are photosynthetic bacteria that consume

the carbon from the molecule of organic acids [120]. The following
equation shows the use of light energy for producing hydrogen.[121].

16ATP+N2 +16H2O+10H+ +8e− + light→16ADP+2NH+
4 + 16pi+H2

(1)

Sun energy and organic acids are used to achieve photo-fermentation
in nitrogen-deficient environments. While nitrogenase is available,
certain photosynthetic bacteria may convert organic acids (butyric,
acetic, and lactic) into carbon dioxide and hydrogen [122].

CH3COOH+2H2O→light4H2 +2CO2 (2)

C3H6O2 +4H2O→light7H2 +3CO2 (3)

C4H8O2 +6H2O→light10H2 +4CO2 (4)

C3H6O3 +3H2O→light6H 2 +3CO2 (5)

Light intensification stimulates H2 output and production rate but has a
negative effect on light conversion efficiency. When producing H2 from
industrial wastes, a big issue arises due to the wastewater’s color. It
might reduce the penetration of light and, in the presence of harmful
compounds, such as heavy metal ions, it is necessary a pretreatment
before use [123–125]. Low solar energy conversion efficiency and
requirement for complex anaerobic photobioreactors require huge
areas, despite hydrogen generation under light conditions i generally
higher than in the dark [126]. The restricted availability of organic acids
is the major obstacle to the proficiency of this approach [127]. A sche-
matic representation of H2 generation by photosynthetic bacteria is
shown in Fig. 5.

2.2.1.2. Dark fermentation process. Dark fermentation eliminates the
issue of requiring light as an energy source. Most of the production oc-
curs via the acetate and butyrate paths [128]. Dark fermentation is a
type of fermentation that employs anaerobic bacteria to ferment
carbohydrate-rich materials in the absence of oxygen. Carbohydrates are
used as feedstock for various bacterial strains in the dark fermentation
process. H2 production is measured in terms of the molar quantity of
hydrogen produced per mol of substrate. Wastewater treatment sludge
[129] has also been used as a substrate for dark fermentation (DF) by
Clostridium bifermentans and Pseudomonas sp. GZI. However, the
hydrogen yields from this process have been relatively low, producing
only 0.9 mmol of H2 per gram of dried sludge. When considering the
molecular formula of activated sludge as approximately C5H7O2N, this
translates to about 0.1 mol of H2 per mole of dried sludge [130]. As
shown in Eqs. (6), (7), glucose is a model substrate. More than 80 % of

Fig. 5. Schematic flow of photo fermentation process.
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total end products are acetic and butyric acids. Ideally, acetate
fermentation and butyrate fermentation both produce four mol of H2 per
mole of glucose [11].

C6H12O6 +2H2O→2CH3COOH+4H2 +2CO2 (6)

C6H12O6 +2H2O→CH3CH2CH2COOH+4H2 +2CO2 (7)

The primary feedstock for this procedure, glucose, is very costly and not
frequently available in large amounts, although agricultural waste may
contain it. Alternative materials include starch-containing compounds
plentiful in nature and cellulose, the primary component of plant
biomass [131]. The pH should be kept between 5 and 6 for better pro-
duction, as the amount of H2 produced by this method strongly depends
on pH [132]. Another limitation is that the hydrogen must be eliminated
from the moment it is produced since H2 generation tends to decrease as
pressure increases [133]. As illustrated in Fig. 6, dark fermentation is a
relatively straightforward technique for hydrogen production that

operates independently of light sources. This method leverages anaer-
obic bacteria to break down organic substrates, making it a practical and
efficient process for generating hydrogen without complex light-based
systems. As a result, a large area of land is not required, and hydrogen
may be generated continuously during the day and night from a diverse
range of potentially usable substrates, like trash and waste products
[134].

2.2.1.3. Combined fermentation. As indicated by its name, the combined
process of dark and photo fermentation integrates both dark fermenta-
tion and photo fermentation methods, as depicted in Fig. 7. This hybrid
approach leverages the advantages of each process, utilizing anaerobic
bacteria in dark fermentation to break down substrates without light,
followed by photo fermentation which uses light to enhance hydrogen
production further. In this process, it can be observed that there is a
reduction in the formation of byproducts. This process’s economic
perspective promises industrial-scale hydrogen production
[119,135,136]. As previously discussed, organic acid yield in dark

Fig. 7. Schematic flow of combined dark and photo fermentation process.

Fig. 8. Schematic flow of the direct bio-photolysis process.

Fig. 6. Schematic flow of dark fermentation process.
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fermentation can be used in photo fermentation, providing an edge over
a single process. Chen et al. [137] observed a reduction in COD and
increased hydrogen production in the combined dark and photo
fermentation process. This technique eliminated 72 % COD and
increased hydrogen production from 3.80 mol H2 per mol of sucrose to
10.02 mol H2 per mol of sucrose. Another observation suggests that
acetate formation in dark fermentation was used as a carbon source for
Rhodopseudomonas palustris in photo fermentation, but inhibition took
place when carbon was utilized from butyrate [138]. Chookaew et al.
[139] also studied the combined process. Dark fermentation using
Klebsiella sp. TR17 was used for the first stage, and Rhodopseudomonas
palustris TN1 was used for photo fermentation in the second stage.
Hydrogen yield in the first stage was 5.74 mmol H2/g COD and 0.68
mmol H2/g COD in the second stage by adding yeast extract (2.3 g/L),
NaHCO3 (0.63 g/L), and glutamate (2–8 mmol/L) to the effluent from
dark fermentation. Dark fermentation effluent is an excellent photo-
fermentation feedstock [140–142].

2.2.2. Bio-photolysis process
Bio-photolysis is a biological method that generates hydrogen gas

using the same principles as plant and algae photosynthesis. In green
plants, H2 production does not occur because they lack enzymes that
catalyze it and the hydrogen ions produced by the first stage of photo-
synthesis enter the CO2 reduction reaction carried out by electrons
[143]. On the other hand, algae have H2-producing enzymes that can
generate H2 in specific conditions.

2.2.2.1. Direct bio-photolysis process. In direct bio-photolysis, green
algae play a crucial role in splitting water molecules into hydrogen ions
and oxygen, a process depicted in Fig. 8.

This method harnesses the photosynthetic capabilities of green algae
to produce hydrogen directly from water, making it an efficient and
environmentally friendly approach to hydrogen production. The hy-
drogenase enzyme transforms the produced hydrogen ions into
hydrogen gas [144]. Since the hydrogenase enzyme is extremely
oxygen-sensitive, the oxygen concentration must be kept below 0.1
percent at all times [145]. At maximal sunlight intensity, however, 90 %
of photons received by photosynthesis (chloroplasts and some other
pigments) are not used in photosynthesis and instead disintegrate as
radiation or fluorescence [146]. To avoid the “light-saturation effect,”
microalgae mutants were discovered to have reduced pigment content
with fewer amounts of chlorophyll and robust oxygen tolerance,
resulting in more hydrogen formation [147]. The following generic re-
action can be used to depict green algae’s conversion of water:

2H2O→light2H2 +O2 (8)

2.2.2.2. Indirect bio-photolysis process. In indirect bio-photolysis, the
following processes may represent the fundamental reaction for
hydrogen generation from water by cyanobacteria or blue-green algae:

6H2O+6CO2→C6H12O6 +6O2(inlight) (9)

C6H12O6 +6H2O→12H2 +6CO2(inlight) (10)

where reaction (9) is photosynthesis and reaction (10) is fermentation.
Fig. 9 displays a schematic illustration of the indirect bio-photolysis

process. Hydrogenase and nitrogenase enzymes produce hydrogen; the
synthesis rate is comparable to green algae’s hydrogenase production
[148]. While indirect bio-photolysis methods are already in the con-
ceptual phase, the production cost is estimated at 1.42 $/kg [149]
assuming a total capital cost of 135 $/m2 [149]. Consequently, algal H2
production might be considered a cost-effective and sustainable method
of using water as a sustainable source and CO2 usage among the airborne
pollutants. Furthermore, the critical drawbacks of this bio-hydrogen
generating approach are its limited H2 production capability and the
need for a wide surface area to capture adequate light [150,151].

3. Factors affecting hydrogen production

The factors that influence the production of hydrogen include a
number of characteristics that have a notable effect on the yield of H2 in
the thermochemical and biological routes. Essential variables in the
thermochemical route include residence time, which determines the
degree of conversion, and temperature, which impacts reaction rates

Fig. 9. Schematic flow of the indirect bio-photolysis process.

Table 4
Parameters that influence H2 yield in gasification and biological route.

Parameters Effects Ref.

Temperature Increase in temperature causes complete
homogenous reactions that increase the yield of
H2

[153,154]

Residence time Increase in holding time increases the
production of gas

[155]

Biomass particle
size

Particle size reduction provides a large surface
area, enhancing heat transmission and
promoting H2 production, homogeneity of
gasification reactions, and reducing char and
tar components.

[99,154]

Biomass
characteristics

Biomass with high cellulosic content is gasified
within a short holding time. Gaseous products
are produced in larger amount when biomass
has high lignin and cellulosic content.

[156,157]

Catalysts Various catalysts such as alkaline metal oxides,
dolomites, and olivine can be used for
gasification. The usage of catalysts enhances
the H2 and CO content and decreases the tar
content. Nickel and Cerium-based catalysts also
prevent carbon deposition.

[158,159]

Steam biomass
ratio (S/B)

An increase in the value of the S/B ratio
increases the H2 yield. Lowering the ration
increases the carbon and methane content. For
a better H2 yield, this ratio must be optimised.

[160,161]

P. Kumar and L. Fiori



Energy Conversion and Management: X 23 (2024) 100659

21

and product distribution. The size of biomass particles and their intrinsic
properties, such as composition and moisture content, are other
important factors in determining how efficiently hydrogen is produced.
Moreover, catalysts can improve the selectivity and kinetics of reactions,
and the ratio of steam to biomass (S/B) is essential for optimizing the
gasification process and creating an atmosphere conducive to hydrogen
production. Table 4 presents a detailed overview of the crucial charac-
teristics for determining hydrogen yield in gasification and biological
route. It is essential to comprehend these characteristics to optimize
hydrogen production and improve the process’s overall efficiency. By
meticulously considering variables including temperature, pressure,
feedstock composition, reactor design [152], and catalysts, scientists
and industry professionals may enhance hydrogen production tech-
niques, laying the groundwork for more efficient and sustainable energy
solutions.

4. Hydrogen generation using thermochemical and biological
routes: separation, storage, transportation with benefits and
drawbacks

To achieve the goals of power generation system security, climate
safety, and societal economic growth, introducing H2 generation as an
energy and fuel carrier poses numerous challenges in developing the
necessary separation, storage, transmission, and utilization technolo-
gies. Pressure Swing Adsorption, separation by membrane, and distil-
lation are all feasible methods for the last phase of hydrogen separation.
Table 5 provides an overview of different types of membranes utilized
for hydrogen purification, including dense polymer, microporous
ceramic, dense metallic, porous carbon, and dense ceramic membranes.
Each membrane type is associated with specific materials and operating
temperature limits. Additionally, the table outlines stability issues
associated with each membrane type and their selectivity for hydrogen
over carbon dioxide. This information aids in selecting the most suitable
membrane for hydrogen purification, considering factors such as effi-
ciency, stability, and selectivity.

H2 storage is now one of the significant barriers to its widespread
usage due to its low density of 0.09 kg/m3. Hydrogen may be stored
securely as a gas or liquid phase, on surfaces or inside solids, using the
adsorption and absorption. Standard piston-type compressors are widely
used to store gaseous hydrogen up to 77.5 MPa in cylinders [162]. But,
the energy needed for compression is more than 2.21 kWh/kg, leading to
density of less than 40 kg/m3 [159]. Cryogenic tanks may store liquid
hydrogen by compressing it and then chilling it using a heat exchanger
in two steps. Because of its low boiling point of − 252.87 ◦C, the energy
needed is estimated to be 15.2 kWh/kg, which results in a volumetric
density of 70.8 kg/m3 at atmospheric pressure.

Solid-state retention holds large volumes of hydrogen at

intermediate temperatures and pressures. A gaseous molecule connects
with multiple atoms at the material surface material. On this, it is
attached and transiently withdrawn when required in an adsorption
process. Table 6 provides a comprehensive overview of the fundamental
approaches for gaseous hydrogen storage processes, including
compression, liquefaction, adsorption or physisorption, absorption in
metal hydrides, and complex hydrides. Each approach is detailed with
key aspects such as density, temperature, and pressure values. This in-
formation is essential for evaluating and selecting the most suitable
method for storing gaseous hydrogen, considering factors like storage
capacity, energy requirements, and practical feasibility.

H2 may be transported and distributed in two ways. The first cate-
gory covers bulk storage vessels, trucks, rail cars, and shipping con-
tainers, whereas the second includes long-distance pipelines [163]. The
low density of hydrogen, which is the limitation of transporting H2 via
the traditional first mode, leads to significant shipping costs [162]. The
H2 transportation and distribution in future infrastructure might
resemble present natural gas pipes, part of a network system that in-
cludes both power and natural gas [164].

H2 may be utilized in engines, fuel cells, turbines, boilers, and
chemical and oil industries [165]. Fuel cells have a lot of appeal
regarding power production, heating, and transportation because of
their simplicity, modularity, and environmental protection. The two
strategies for hydrogen-powered cars are direct, on-board synthesis of
H2 from methanol or direct storage of H2 delivered via recharging sta-
tions [166,167].

The processes of producing hydrogen via thermochemical and bio-
logical means are not equivalent and each has a unique set of advantages
and disadvantages (see Table 7). Thermochemical procedures are now
more scalable and effective than previous methods, making them suit-
able for large-scale commercial applications. But these procedures also
have a significant energy need and produce a lot of CO2 emissions. While
biological techniques provide a more environmentally friendly and
sustainable solution, they are not without consistency, scalability, and
efficiency challenges. Biophotolysis is an intriguing method for directly
using solar energy to make hydrogen, which turns water into hydrogen
using photosynthetic organisms. However, longer production durations
are typically the result of slower response speeds in biological processes.
Numerous biological techniques, such as biophotolysis, are still in the
research or early commercial phases and must be improved to compete
with well-established thermochemical technology. Future hydrogen
generation may use both of these technologies, utilising their respective
benefits to meet various energy needs with the least amount of envi-
ronmental impact.

5. Case studies globally addressing H2 production

In order to produce hydrogen from organic waste through a variety
of biological (Table 8) and thermochemical processes (Table 9), the
projects listed in both tables represent a global effort to utilise renewable
energy sources and advance hydrogen production technologies. This
effort helps to promote waste management and sustainable energy
solutions.

Table 5
Different types of membranes for the purification of hydrogen.

Type of
membrane

Material of
membrane

Temperature
(
◦

K)
Stability issue
of membrane

Selectivity
of H2 over
CO2

Dense
Polymer

Polymers <373 Compaction,
swelling

Low

Microporous
ceramic

Silica,
alumina,
zirconia,
titania,
zeolites

473–873 Stability
towards H2O

5–139

Dense
metallic

Palladium 573–873 Phase
taransition

>1000

Porous
carbon

carbon 773–1173 Brittle 4–20

Dense
ceramic

alumina,
titania, silica,
zirconia

873–1173 Stability
toward CO2

>1000

Table 6
Fundamental approaches for gaseous hydrogen storage processes.

Storage Method Density (kg/
m3)

Temperature
(oC)

Pressure
(MPa)

Compression 40 ambient 77
Liquifaction 70.8 − 252.87 atm
Adsorption or

physisorption
41 − 196.15 6

Absorption in metal
hydrides

150 ambient atm

In Complex hydrides 150 >100 atm
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6. Challenges and future Prospects

It is theoretically possible to build pipelines that transport pure
hydrogen gas and, in limited amount, they have been operational in
several locations, including the United States, Germany, the
Netherlands, France, and Belgium. Such pipeline networks are restricted
but don’t provide enough foundation for rapid hydrogen deployment
upscaling. Hydrogen is the most plentiful element in the universe, with
the maximum energy density per unit mass and the cleanest combustion,
producing only water. This is because hydrogen is considered the
strongest contender for replacing fossil fuels as the mobile industry’s
primary energy source. On the other hand, hydrogen is an energy vector
rather than an energy source and is not found in molecular form in
nature. It must be created either from water or other chemicals.

Fig. 10 outlines various technical challenges and drawbacks inherent
in hydrogen production routes, including both thermochemical and
biological methods. Among these challenges, hydrogen storage is the
most pressing issue, particularly for mobile applications. Addressing
these challenges is crucial for advancing hydrogen’s widespread adop-
tion as a clean energy source in mobile applications. Various barriers
must be overcome for hydrogen to become a viable energy carrier. The
following four essential features of hydrogen utilisation can be
addressed:

• Production − It is essential to develop a technique that consume the
least amount of energy and enable large-scale hydrogen production
since hydrogen must be produced flawlessly by biological and ther-
mochemical routes.

Table 7
Advantage and disadvantage of thermochemical and biological route of hydrogen production with hydrogen yield.

Process Energy
efficiency

Advantage Development
stage

Hydrogen
cost ($/kg)

Disadvantage H2 Yield
Ton/Hr.

Ref.

Thermochemical route
Thermochemical

water splitting
process

30–50 • CO2-neutral, plentiful, and
inexpensive feedstock.

− 1.0–2.0 • H2 percentages vary owing to
seasonalavailability, feedstock
contaminants, and tar production.

0.08–8.1 [168,169]

Fast pyrolysis 56 • H2 recovery from gaseous and
liquid products is oxygen-free
and has a relatively high
hydrogen concentration.

− 1.25–2.20 • Low efficient, formation of tar and
char, and low hydrogen production
with high energy usage.

0.11–30.4 [170,171]

Steam gasification • H2 generation with high purity
and minimal ash output makes
it appropriate for commercial
scale.

− 1.77–2.20 • Tar formation, high energy input.It
is difficult to separate and purify
gas products.

− [172]

Supercritical
watergasification

40–50 • Production of H2 from wet
biomass Large conversion and
H2 concentration without tar
and pollutants.

− • High energy input, tar formation
not proven, pricy.

−

Biological route
Biochemical process
Photo fermentation

process
60–80 • H2 production from distillery

wastewaters sludge.
The lack of oxygen

minimizes the potential for
inhibition, aids in waste
recycling, and allows using
organic wastes and
wastewater.Microbes that can
use light radiation of multiple
wavelengths.

Lab-scale
only

2.8 • It Utilises nitrogenase enzyme,
which has a high energy need and
poor solar energy conversion
efficiency, and it has enormous
anaerobic photo bioreactor surface
areas.

− [173–175]

Darkferementation • Renewable, simultaneous
waste treatment and
generation of H2.

CO2-neutral, generates H2

without sunlight, helps recycle
garbage, has no O2 constraint.

H2 produced without the
addition of visible light, the
ability to mix and match
different carbon sources as a
substrate.Produces lactic acid,
acetic acid, and butyric acid,
all useful byproducts.
Anaerobic process

Lab-scale
only

2.6 • Low energy conversion efficiency.
Separation of fatty acids, limited

H2 rates and yields, poor
condensation efficiency, and need
for a high reactor space.

Poor energy conversion
efficiency makes CO2 removal
vital.

− [169,176–179]

Bio photolyis process
Direct bio photolysis

process
• Direct H2 production from

water utilizing solar energy
converts ten times more solar
power than trees and crops.

− 2.13 • It needs sunshine, has poor H2 rates
and yields, large reactor capacity
required, is sensitive to O2, and is
expensive to produce.

Strong hydrogenase enzyme
suppression caused by produced
oxygen, low 10-fold rise in solar
energy H2 generation, and no waste
consumption

− [172]

Indirect bio
photolysis process

• N2 fixation from the
atmosphere H2 production
from water.

− 1.42 • Strong hydrogenase enzyme
suppression caused by produced
O2, minimal H2 generation, and no
byproduct consumption

− [172]
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• Storage – fuel must be easily stored for use and transportation, with
one of the most essential requirements being easily accessible. This
necessitates quick charge/discharge times, exceptional charge/
discharge process control, and low energy requirement for charging
and discharging operation [180].

• Power generation − As soon as hydrogen is suitable for usage, it must
be done in the most efficient manner possible.

• Combined power generation- Hydrogen is utilized as a primary fuel
in dual-fuel diesel engines as a viable fuel alternative. At low loads, a
heavy-duty hydrogen-diesel dual fuel engine using liquid fuel as the
pilot fuel reduces carbon and NOx emissions by over 90 % while
reducing soot emissions by 85 %. At a medium load, the critical
concern is an increase in NOx emissions [1 9 2]. A hydrogen-

biodiesel dual fuel CI engine [180]working at full load improves
exhaust emissions and exhaust gas opacity. The brake thermal effi-
ciency of the engine also improves when hydrogen-diesel dual fuel is
used [1 9 3]. Nonetheless, hydrogen and biogas are the best sec-
ondary gaseous fuels for dual-fuel mode operating among all gaseous
fuels since they are environment friendly, have a high-octane num-
ber, and knock resistance capability, apart from being economical
and renewable. Hence, hydrogen is very much suitable for combined
power generation.

• Safety- Due to the risks associated with hydrogen use and storage,
several precautions and safety measures should be taken
(flammability).

Table 8
Global effort to utilize renewable energy sources and advance hydrogen production using biological technologies.

Project Name Country Technology Details

Europe
HYVOLUTION Netherlands Dark fermentationandphoto-fermentation Developing sustainable hydrogen production from organic waste using a combination of dark

fermentation and photo-fermentation processes.
HYTIME Denmark Dark fermentation,photo-fermentation,and

biophotolysis
Focuses on maximizing hydrogen yields through an integrated approach, utilizing organic waste
as feedstock.

BIO-H2 Spain Dark fermentationandphoto-fermentation Research project focused on optimizing hydrogen production from agro-industrial waste through
combined dark and photo-fermentation processes.

Asia
HYFUSEN India Dark fermentationandphoto-fermentation A project aiming to produce hydrogen from organic waste, such as agricultural residues, using a

combination of dark and photo-fermentation techniques.
BioHydrogen China Dark fermentationAndphoto-fermentation Investigates the production of biohydrogen from organic waste materials using a combined

fermentation approach.
North America
Bio-H2 USA Dark fermentationandbiophotolysis Focuses on the production of hydrogen from organic waste using dark fermentation and

biophotolysis, with an emphasis on process integration and optimization.
Africa
HySA

Infrastructure
South Africa Dark fermentationandphoto-fermentation Part of South Africa’s Hydrogen South Africa (HySA) initiative, this project explores hydrogen

production from organic waste using combined dark and photo-fermentation processes.
South America
Hydrogen Brazil Brazil Dark fermentationAndphoto-fermentation A research initiative aimed at developing sustainable hydrogen production methods from

agricultural waste through the integration of dark and photo-fermentation technologies.
Australia
AUS-BioH2 Australia Dark fermentation,photo-fermentation,

andbiophotolysis
Focuses on the combined use of dark fermentation, photo-fermentation, and biophotolysis for
hydrogen production from organic waste, aiming to create a sustainable and efficient production
process.

Table 9
Global effort to utilize renewable energy sources and advance hydrogen production using thermochemical technologies.

Project Name Country Technology Details

Europe
GoBiGas Sweden Steam gasification

(fluidized bed)
Located in Gothenburg, this project focused on producing bio-methane and hydrogen from
forest residues using fluidized bed steam gasification.

BioEnergy2020+ Austria Fast pyrolysis and steam
gasification

A research initiative aimed at developing advanced bioenergy technologies, including
hydrogen production from organic waste through fast pyrolysis and steam gasification.

CHRISGAS Sweden Steam gasification
(fluidized bed)

The project aimed to produce hydrogen-rich synthesis gas from biomass using fluidized bed
steam gasification technology.

North America
Iowa state university bioeconomy

institute
USA Fast pyrolysis and steam

gasification
Research projects focused on hydrogen production from agricultural residues and other
biomass through fast pyrolysis and subsequent steam gasification.

University of florida hydrogen
production project

USA Supercritical water
gasification

Investigates the use of supercritical water gasification for hydrogen production from wet
organic waste, such as agricultural residues and wastewater sludge.

Asia
Sinopec shanghai research institute of

petrochemical technology
China Steam gasification

(fluidized bed)
Focuses on hydrogen production from biomass using fluidized bed steam gasification
technology.

Indian institute of science, bangalore India Downdraft gasification Research projects on hydrogen production from agricultural and forestry residues using
downdraft gasification technology.

Australia
ANU Energy Change Institute Australia Fast pyrolysis and steam

gasification
Research initiative focused on developing hydrogen production technologies from biomass
using fast pyrolysis and steam gasification.

South America
Embrapa Agroenergy Brazil Fast pyrolysis Investigates the production of bio-oil and hydrogen from agricultural waste through fast

pyrolysis.
Africa
Stellenbosch university South

Africa
Fluidized bed
gasification

Research on hydrogen production from biomass using fluidized bed gasification technology
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7. Conclusions

Modern bioenergy already today covers over 50 % of renewable
energy production and 6 % of the global energy supply [180], and is
expected to increase its share in the future. In such energy framework, in
view of a progressive shifting from fossil fuels to renewable energy and
of the development of a society where H2 would become the energy
vector of the future, we can expect a progressive development of tech-
nologies for biohydrogen production. Alongside the development of
hydrogen production via water electrolysis, other technologies are at
different stages of development to produce biohydrogen, i.e. hydrogen
from biomass and, in particular, waste biomass. This review covers
precisely these technologies, both thermochemical and biochemical:
from pyrolysis to gasification to fermentation and bio photolysis pro-
cesses. The state of the art is highlighted, both in terms of scientific
articles and current and past projects, with emphasis on the reactors
used, the operating conditions, and the hydrogen yields. The strengths
and weaknesses of the various technologies are described. Insights are
reported regarding separation technologies, as biohydrogen typically is
produced alongside other gases. Finally, mention is made of what is
needed for the development of a society in which hydrogen can have an
increasingly greater importance, from its storage to its transport.

From the analysis carried out it can be concluded that research and
projects to produce biohydrogen are at an advanced stage, with more
consolidated but not yet economically competitive technologies and
others still in the development phase − typically, biochemical
technologies.

Certainly, further efforts are necessary for the engineering and
optimization of biohydrogen production processes. If we want to pro-
gressively free ourselves from the production of hydrogen from fossil
fuels, we must make the production of hydrogen from water electrolysis
more efficient and combine this with hydrogen produced from waste
biomass. Depending on the type of waste biomass it will be more
convenient to resort to thermochemical or rather biochemical technol-
ogies, and even within these two macro-categories many different

processes can be implemented, as oulined in this review.
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