UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://mww.dit.unitn.it

REQUIREMENTS ANALYSIS FOR SOCIO-TECHNICAL SYSTEMS:
EXPLORING AND EVALUATING ALTERNATIVES.

Volha Bryl, Paolo Giorgini and John Mylopoulos

February 2006

Technical Report # DIT-06-006

Requirements Analysis for Socio-technical Systems:
Exploring and Evaluating Alternatives

Volha Bryl Paolo Giorgini John Mylopoulos
University of Trento, Italy University of Trento, Italy University of Toronto, Canada
bryl@dit.unitn.it paolo.giorgini@unitn.it University of Trento, Italy

jm@cs.toronto.edu

Abstract organizational, human and system actors depend on each
other to fulfill root-level goals. Moreover, there are no

Early requirements analysis focuses on stakeholders andgeneric criteria to guide the design process by determining
their goals, and explores alternative ways of fulfilling them whether a solution is good-enough, or even optimal. Our
through networks of actor delegations. The i* modeling long-term objective is to develop such criteria and use them
framework is a popular way of modeling and analyzing through tools and systematic design processes.
early requirements. This paper frames the problem of de- The purpose of this paper is to propose a framework
signing actor dependency networks as a multi-agent plan-for the automatic selection and evaluation of design al-
ning problem and adopts off-the-shelf planners to offer a ternatives. The framework supports both the generation
tool that generate alternative actor dependency networks,and evaluation of alternatives. Specifically, the framework
and evaluate them in terms of metrics derived from Gameadopts multi-agent planning techniques and uses off-the-
Theory literature. The paper presents in detail how plan- shelf planning tools. Alternatives are evaluated with re-
ning can generate alternative networks, also describes thespect to individual interests of system actors (i.e. their own
tool (P-Tool) that supports the planning process and gener- goals). Ideas from Game Theory [14] are used to determine
ates alternatives. As well, we offer preliminary experimen- whether an alternative is an equilibrium. In particular, an
tal results on the scalability of the approach. alternative is in equilibrium if no actor can do better with
respect to its own goals by adopting a different strategy for
delegating and accepting delegations. When combined to-
gether, these two steps support the designer/requirements
engineer in selecting alternatives that are in equilibrium
with respect to the local strategies of each actor. An early

The last fifteen years have seen an increased emphasigersion of this idea is used in [3] to propose a framework
on an early phase in Requirements Engineering (RE) whento generate alternative designs for secure systems. This pa-
the focus is on stakeholders and their goals, rather than thgyer goes further by describing a prototype tool that gener-
system-to-be.i* [20] is a modeling framework that sup- ates alternatives, presents some experimental results, and
ports modeling and analysis during this phase. Accordingalso proposes evaluation techniques for alternatives based
toi* and an associated requirements analysis process (Troon game-theoretic notions.
pos [2]), one begins requirements acquisition by identifying The process of the best alternative selection consists of
stakeholders ("actors”) and their goals. These goals are dethe following steps:
composed and delegated to other actors, thereby creating
networks of delegations. The process ends when all ini- 1. Identify system and human actors, goals and their
tial ("root”) goals can be fulfilled if all actors deliver on properties. Define goal decompositions and depen-
their delegations. One or more of these actors representthe dency relationships among actors.
system-to-be. The functional requirements for the system-
to-be are determined by all delegations to these system ac- 2. For each actor identify criteria to evaluate alternatives.
tors.

Exploring the space of alternative actor dependency net- 3. Automatically explore the space of alternatives "on the
works is a difficult design task. This is so because such upper level” to identify assignments of coarse-grained
networks represent complex socio-technical systems where goals to actors.

1. Introduction

signed at step 3. According to above identified evalu-
ation criteria, select "the best” alternative for each ac-

tor. During this step, alternative refinements of coarse- { 2D
grained goals and delegation dependencies among ac-
tors are explored.

4. Separately for each actor, automatically explore the al-
ternative ways to satisfy the goals the actor was as-
7

5. Evaluate the combined solution consisting of alterna- (a) Sample problem

tives identified at step 4. In case it does not satisfy one

or several system actors (e.g. they are overloaded with

respect to others), return to step 4 to search for another @ o> e [0 > @
alternative.

Ideally, the process stops after a number of iterations

when the socio-technical structure is optimized enough to
comply with the individual interests of the system actors. If

no satisfactory alternatives can be generated at some step, (b) 1st alternative

the designer should return to steps 1 or 2, and revise either

the initial structure, or the evaluation criteria. @ B D@
Figure 1la presents a simple example of the probleea. - :

tor 1 has to achieve &oal, which can be refined into two ' i \
subgoalsSubgoal lJandSubgoal 2 The actor can decide to - - ;

achieve the goal by itself or delegate itAstor 2 In both ‘ '
cases, there are a number of alternative ways that can be

adopted. So, for instancAgctor 1can decide to delegate to

Actor 2the wholeGoal (Figure 1b), or part of it (Figure 1c).

Shaded goal in the circle of an actor means that the goal is (c) 2nd alternative

the responsibility of this actor. Even for this primitive ex-

ample, exploring all the alternatives is quite tedious, and a Figure 1. Sample problem and two alternative
support for alternative generation and evaluation would be ~ solutions

beneficial.

The rest of the paper is structured as follows. In the next
Section we describe the example we use through the papefeye|opment teams. Note, that a manager can assess how
to describe our framework. In Section 3 the issue of al- yhe project goals are refined and what skills it requires to
ternative generation and_ evaluation is detailed. Section 4satisfy each subgoal only on the coarse-grained level.
describes the P-Tool, an implemented prototype tool to sup- The company has decided to use a software develop-

port the exploratiqn of a!ternatiyes, and reporFs SOME EXPEr-, ot support system (SDS system or supporting system in
imental reSl_JIts. Finally, in _Sectlon 5 we descnbe.the r_elatgd the following), which will facilitate and report communi-
WOFK, and discuss conclusions and future work directions in cation among actors, archive a library of reusable compo-
Section 6. nents, organize the search for such components, store and

provide the information specific to the project under devel-
2. SDS System example opment (e.g. contain a glossary of domain specific terms,

store domain specific classifications, etc.). Communication

Let us consider a small software development company,between manager and members of the development teams

which typical projects are medium-scale web based infor- is supposed to be carried out only through the supporting
mation systems (like, e.g. online library catalog, or travel system. Teams can communicate with each other in two
agency home page with online trip booking, etc.). Within cases: when one team wants to redirect a subgoal which re-
the company there are three teams of developers each foquires the development skills these team does not possess
cused on its area: GUI development, web design, and datato another team, and when one team needs to consult an-
base support. Each team can develop subcomponents and/ather one. The first type of communication is possible only
consult other teams on questions related to their expertisethrough the supporting system, while the communication on
A manager is supposed to divide the project into meaningful consultancy can be done both through the supporting sys-
parts and perform the assignment of goals to achieve to theem and e-mail (or even personal communication).

Provide
eBooking
system

Support

Frovide user

interface with DB

Q

ARD

Consulton Frovide
ul GU-o-web hooking web
adoption interface

Figure 2. Goal tree for e

Provide
hoaoking G

To analyze the above described socio-technical system
let us consider a typical project it might deal with: web
based eBooking system for the travelling agency. As it is
represented in Figure 2, the high-level gpedvide eBook-
ing systemis refined into three subgoalgrovide user in-
terface support communication with DBnd provide web
page In order to fulfil the high-level goal, all three sub-
goals should be satisfied. Two subgoals are further refined,
e.g.provide eBooking systesubgoal can be reached in two
alternative ways: by developing eBooking GUI and consult-
ing web designers to adopt it for web environment, or by
developing web booking interface together with consulting
GUI team on which standard components to use.

The OR-decomposition of the subgoal®vide user in-
terfaceanddesign web pagmtroduces alternative solutions
for the development of the eBooking system. One of the
alternatives to achievarovide user interfacsubgoal is de-
picted in Figure 3. The goal is decomposed®y| team
actor, which selects the lefttmost alternative among the two

communication

Consulton
standard GU| Design from Find standard
components scratch template

Provide web
page

Frovide
registration
procedure

Frovide
registration
form

Booking project

Supporting
System

Pravide
booking weh
interface

Provide
hooking wel
interface

Consulton

standard GU|

COMPONENts,
e
OR

AND

Provide
boolking GUI

Provide
booking web
interface

Cansulton
GUHo-web
adoption

Figure 3. An alternative way to achieve
user interfacesubgoal

provide

or-subgoals. The selected subgoal is further decomposed

into two subgoals:consult on standard GUI components
andprovide booking web interfacéhe former is satisfied
by GUI team while the latter is delegated M/eb design
team

3. Exploring and evaluating alternatives
3.1. Formalization of the planning problem

It can be noticed that requirements — at least within the
frameworks such ag [20], Tropos [2] and the like — are

either fulfill delegated goal, or further delegate it, thus cre-
ating another delegation relation in the network. Intuitively,
these can be seen as actions that the designer/requirements
engineer ascribes to the members of the organization and
the system-to-be. Further, the task of constructing such net-
works can be framed as a planning problem: selecting a
suitable requirements structure corresponds to selecting a
plan that satisfies the goals of human and software agents.
Thus, we have chosen the Al planning approach to sup-
port the designer/requirements engineer in the process of

conceived as networks of delegations among actors. Everyselecting the best alternative. The basic idea behind plan-
delegation involves two actors, where one actor delegatesning approach is to automatically determine the course of

to the other the fulfillment of a goal. The delegatee can

actions (i.e. a plan) needed to achieve a certain goal where

Goal Properties

an action is a transition rule from one state of the system to
another [19, 15]. Actions are described in terms of precon-
ditions and effects: if the precondition is true in the current

state of the system, then the action is performed. As a con-

type(g : goal, gt : gtype)

subtype(child : gtype, parent : gtype)
and_decomposition, (g : goal, g1 : goal gn : goal)
or_decomposition, (g : goal, g1 : goal, . .., g, : goal)
satisfied(g : goal)

.....

sequence of an action, the system will be in a new state

Actor Properties

where the effect of the action is true.
Planning approach requires a specification language tq

can_satisfy(a : actor, g : goal)
can_satisfy_gt(a : actor, gt : gtype)
can_decompose_gt(a : actor, gt : gtype)
wants(a : actor, g : goal)

represent the planning domain, i.e.

Actor Relations

e the initial state of the system;

can_depend_on(a : actor, b : actor)
can_depend_on_gt(a : actor, b : actor, gt : gtype)

¢ the goal of the planning problem (i.e. the desired final
state of the system);

Table 1. Primitive predicates

¢ the description of actions;
e the axioms of background theory.

Once the domain is described, the solution to the planning
problem is the (not necessarily optimal) sequence of actions
that allows the system to reach the desired state from the
initial state.

To describe the initial state of the system, actors’ and

goal properties, and social relations among actors should bétype (ProvideEBookingSystem, tManagScope)

specified. We propose to represent initial state in terms of

type (ConsultOnGUIToWebAdoption, tWDConsult)
subtype (tWDConsult, tConsult)

can_depend_on_gt (GUITeam, WDTeam, tConsult)
can_depend_on_gt (WDTeam, GUITeam, tConsult)

type (ProvideBookingWeblnterface, tWDDevel)
type (DesignFromScratch, tWDDevel)

type (ProvideRegistrationForm, tWDDevel)
can_satisfy_gt (WDTeam, tWDDevel)

can_decompose_gt (Manager, tManagScope)

predicates that correspond to
¢ the possible ways of goal decomposition;
e actors’ capabilities and desires to achieve a goal;

e possible delegation relations among actors.

Figure 4. Predicates for SDS System example

with wantspredicate. When the goal is fulfilleshtisfied

predicated becomes true for it.

The desired state of the system (or the goal of the planning
problem) is described through the conjunction of predicates
derived from the description of actors’ desires in the initial

state. Essentially, for each desired goal a predicate is addeé‘

to the goal of the planning problem.

Different types of logic could be applied for this purpose
e.g. first order logic is often used to describe the planning
domain with conjunctions of literals specifying the states of
the system. In table 1 predicates used to describe the re

In figure 4, a part of SDS System example formalization

is presented. The goal typ&Sonsult tWDDevelandMan-

gScopare used.
Ini* /Tropos approach, when drawing the model of a sys-

tem, the designer/requirements engineer assigns goals to ac-
' tors, defines delegations of goals from one actor to another,
and identifies appropriate goal refinements among the pre-
defined alternative refinements. Thus, the following actions
will be used by a planner to find a way to fulfill the goals of

guirements engineering domain are introduced. Predicate he system actors.

take variables of three types: actors, goals and goal types.

To typify goals,type predicate is used. Actor capabilities g satisfaction. An actor can satisfy a goal only if the

are described witltan decompos&nd can.decomposayt

predicates, which mean that an actor has enough capabil-

ities to satisfy a specific goal or any goal of a specific

type, accordingly. Social dependencies among actors are
Goal delegation. An actor may have not enough capabili-

reflected bycandependon and candependon_gt predi-

cates, which means that one actor can delegate to another

actor the fulfilment of any goal or, in the latter case, any
goal of a specific type. Predefined ways of goal refine-
ment are represented usidgcompositiopredicates, while
with can.decomposajt the scope of each actor can be rep-
resented: an actor can refine, or knows how to refine, only
goals within his scope. Initial actors’ desires are represented

achievement of the goal is among his desires and he
can actually satisfy it. The effect of this action is the
fulfillment of the goal.

ties to achieve his goals by himself, and so he has to
delegate their satisfaction to other actors. This pas-
sage of responsibilities is performed only if the dele-

gator wants a goal to be achieved and can depend on
the delegatee to achieve it. The effect of this action is

that the delegator does not worry any more about the
satisfaction of the goal, while the delegatee takes the

responsibility for the fulfillment of the goal and so it
becomes his own desire to achieve it. The delegator

does not care how the delegatee satisfies the goal (e.qg.

by his own capabilities or by further delegation), it is
up to the delegatee to decide it.

Goal decomposition/refinement.As in different goal-

oriented modeling frameworks (e.g. as in Tropos and
KAOS [5]) two types of goal refinement are supported:
OR-decomposition, which suggests the list of alterna-
tive ways to satisfy the goal, and AND-decomposition,

or maximized. However, the complexity of the prob-
lem of optimizing a solution with respect to the defined
metrics is very high and the feature is still poorly sup-
ported by the available planning tools [8].

Degree of satisfaction of non-functional requirements.
E.g. in [12], a set of rules is proposed to identify
application-specific parameters and functions to quan-
tify impacts of different explored alternatives on non-
functional goals (e.g. security, performance, usability)
satisfaction.

which refines the goals into subgoals which all are to | 5.4l evaluation of the obtained plan is a much more

be satisfied in order to satisfy the initial goal. An actor ¢ompjex task. Indeed, a challenging characteristic of socio-
can decompose a goal only if he wants it to be satis- gchnical IT system design is that human agents should be
fied, and only in the way which is predefined in the (5uen into account. They can be seen as players in a game
initial state of the system. The effect of decomposition heqretic sense as they are self-interested and rational. This
is that the actor who refines the goal focuses on the neans they want to minimize the load imposed personally
fulfillment of subgoals instead of the initial goal. Itis them, i.e. they want to reduce the number and the com-
assumed that different actors can decompose the samgexity of actions they are involved in. In a certain sense
goal in different ways. non-human agents, i.e. system components, are players as
. well as itis undesirable to overload them. Each player has a
In addition to actions, axioms of the planning domain ey of gyrategies he could choose from, e.g. he could decide

can be defined. These are rules that hold in every state of th‘?/vhether to satisfy a goal himself o to pass it further to an-

system and are used to complete the description of the CUlother system actor. Strategies are based on the player's ca-

rent state. For example, to propagate goal properties alon(-babilities and his relations (e.g. subordination, friendship,

goal refinement the following axiom is used: a goal is satis- trust) with other human and artificial agents in the sys-
fied if all its and-subgoals or at least one of the or-subgoalstem

are satisfied. The substantial difficulty in applying game theoretic

ideas to our problem is that all actors of a socio-technical
system should work as a solid mechanism satisfying the
overall organizational goal. Differently from classical
To complete the requirements analysis process, the alnon-cooperative game theory, where all players choose
ternative designs generated by the planner should be evaltheir strategies independently and simultaneously before the
uated, amended and approved by the designer. The trickygame, in our problem actors’ choices are closely interre-
point here is the solution evaluation which can be complex lated. A player cannot independently change his strategy
enough even for experienced designers with considerablebecause the new action sequence will very likely be unsat-
domain expertise. Alternative requirements structures canisfactory, i.e. it will not be a solution anymore. Thus, to
be evaluated both from global and local perspectives, i.e.satisfy the system goals it will be necessary to impose some
from the designer’s point of view and from the point of additional load (to compensate the one this player tries to
view of individual actors. The optimality of a solution in avoid) on some other actors — and it might happen that they
the global sense could be assessed with respect to the folwill not be satisfied with their new utilities, and will try to
lowing. deviate from the strategy they were imposed, and so on and
))) so forth. Thus, if one actor wants to deviate from the gen-
* Length of the obtained plafihe number of actions in grated solution, the re-planning is needed to search for an-
the obtained plan is often the criteria for the planner other alternative option, which is then evaluated, possibly,
itself to prefer one solution to another. Thus, it can g pe re-plan again. The process stops when a (sub)optimal
be assumed that the obtained plan is already (locally) requirements alternative option is found. In our frame-
optimal in the sense of the length minimization. work the following "replan-towards-optimality” procedure
is used.
First, for all actorsa;, i = 1,n and all goalsg, k =
1, m, wheren andm are the number of actors and goals,
respectively, the costs are defined:

3.2. Evaluation procedure

e Overall plan cost.This is closely related with the idea
of plan metrics introduced in PDDL 2.1 [8]. Plan met-
rics specify the basis on which a plan is evaluated for
a particular problem (e.g. action costs or duration),

and are usually numerical expressions to be minimized e cs;;, is the cost for the actas,; of satisfying the goal

Action | Cost Actors and Goals e An alternativeP is generated with the help of planner.
Satisfy 3 goals of typetConsultfor WDTeam GUI-

Teamand DBTeam goal FindStandardTem- N ,

platefor SupportingSystem e Costc (P, a;) is calculated for each;.

4 goals of typetWDDevelfor WDTeam goal .. - . .
ProvideBookingGUI for GUITeam goal o Actor a,,;, is identified whose value 03‘_(., .) is mini-
SupprtDBCommunicatiofor DBTeam mal among all actors who want to deviate frdm

Delegate | 1 SupportingSystem delegations between
WDTeamGUITeamandDBTeam e The first most expensive actiod,,.s; is identified
_ 2 all other actors and goals among actions oP in which a,,;,, is involved.
Refine 2 all actors and goals

e Negation ofd,,.s; is added to the initial planning
problem, and replanning is performed. If no plan can
be found, the nexd,,,,: is identified.

Table 2. Costs for the SDS System example

ke The process stops when an equilibruium-like solution is

e cr;; is the cost for the actar; of refining the goaly; found, i.e. no actors are willing to deviate from it and the
) . designer approves this solution. The designer remains in the
e cdiji. is the cost for the actar; of delegating a goal process all the time, and can stop the iterations whenever he

to the actow;. thinks the satisficing alternative is generated.

For example, the costs of actions for actors from the SDS 1his evaluation procedure is used at the following steps
System example are defined in Table 2. of the selection of the best alternative, defined in the Intro-

Then, the cost of a given alternatiyfor the actora; is duction.

calculated by summing up the costs of actiong’invhich

o . . At step 3, while selecting the best assignments of
a; is involved in, and is denoted by * P d g

coarse-grained goals to actors.

c(P,ai) > cdijr+ e Atstep 4, separately for each actor, when exploring the
delegate(as,bj,gr)E€P ways to satisfy the goals the actor was assigned.

Z crik + Z CSik, e At step 5, when evaluating the combined solution con-

decompose; (@, gr,gr1,-.,gr)EP satisfy(a;,gr)EP sisting of alternatives identified at step 4. Here the re-

planning is performed only for the alternative to which

where d i Ay e stands for the de-
ecompose;(ai, g, Jr1 Gkl) duwors: DEIONGS tO.

composition ofg,, into I subgoalsyy1, ..., gii.

If P is the alternative depicted in Figure 3, then
c¢(P,GUITeam) = 6, ¢c(P,WDTeam) = 6 and 4. P-Tool and experiments
¢ (P, SupportingSystem) = 2.

Note, that in our framework we do not use the notion of 4.1, Choosing the planner
utility, which is an important game theory construct. This

ISI done'malr;ly fﬁr the S|mpI|C|tg/ rga?onz. Thﬁ ucti'_lf':y of an One important step we have performed during the im-
alternativer” for the actoiu; can be defined as the difference plementation of the proposed framework, is choosing the

between maximum upper bound for the solution cost for "right planner” among off-the-shelf tools available. In the

actora; andc (P, a;). Basically, utility says how much an |, vears many planners have been proposed [15]. In or-

actor "saves” with the alternative being selected. . der to choose one of them the following requirements are
After the costs are computed, for each actor the condi- considered:

tions are defined upon which an actor decides whether to

deviate from an alternativ® or not. The conditions could e The planner should not produce redundant plans. Un-
be either one of the following, or both. der non-redundant plan we mean that, by deleting an
arbitrary action of the plan, the resulting plan is no
more a "valid” plan (i.e. it does not allow to reach
the desired state from the initial state).

e Actor a; whose predefined upper cost boudtf is
greater tham (P, a;) is willing to deviate from P.

e Actor a; whose predefined upper bourdev;” on
cost deviation is greater than{ P, a;) —avg;(c (P, a;))
wants to deviate fron.

e The planner should use PDDL (Planning Domain De-
finition Language) since it is becoming a "standard”
planning language and many research groups work on

Finally, the evaluation procedure is the following. its implementation.

(: action Satisfies (OR.DECOMPOSES GUITeam ProvideUl ProvideUI1 ProvideUI2)
: parameters(7a — t_actor, 7g — t_goal (AND_DECOMPOSES GUITeam ProvideUI1
: precondition (and ProvideBookingWebl ConsultStandGUI)
(or(can_satisfy?a?g) (SATISFIES GUITeam ConsultStandGUI)
(exists(?gt — t_gtype)(and(type?g?gt) (PASSES GUITeam SupportingSystem ProvideBookingWebl)
(can_satisfy_gt?a?gt))) (PASSES SupportingSystem WDTeam ProvideBookingWebl)
(wants?a?g) (SATISFIES WDTeam ProvideBookingWebl)
: effect (and
(satisfied?g) (a) Provide user interface
not(wants?a?
(not() (AND_DECOMPOSES WDTeam ProvideWebPage
(: derived DesignWebPage ProvideRegistrProc)
(type?g — t_goal?parent — t_gtype) (AND_DECOMPOSES WDTeam ProvideRegistrProc
(exists(?child — t_gtype) ProvideRegForm ConsultOnStoreUData)
(and(subtype?child?parent)(type?g?child)))) (SATISFIES WDTeam ProvideRegForm)
(OR_.DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(SATISFIES WDTeam DesignFromScratch)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)

Figure 5. Domain description using PDDL

e The language should support a number of "advanced” (b) Provide web page
features (e.g. derived predicates) that are essential for
implementing our planning domain, i.e. it should be at Figure 6. Plans for ProvideUl and ProvideWeb-
least PDDL 2.2. [6]. Pagesubgoals

The first requirement is concerned with the optimality of
the generated design decisions. We argue that it is not nec-
essary to focus on the optimal design: human designers do
not prove that their design is optimal, why should a system
do it? Instead, in our framework the plan is required to be :
non-redundant, which guarantees at least the absence of a - - ’
ternative delegation paths since a plan does not contain an e iy
redundant actions. s

We have compared a number of planners with respect Design weio o Provice
to above requirements (see [3] for the details). Finally, we '??:‘E‘e'?frg

have chosen LPG-td [13], a fully automated system for solv- | D

ing planning problems, supporting PDDL 2.2 specification @G‘Sﬁ'ﬁa GZR"’?EDD Gfg?uclﬂ)'
for implementing our planning domain. o oring

Then, we have implemented our planning domain in N Cecion o
PDDL 2.2. Figure 5 presents the specification of one ac- e scratch
tion and one domain axiom in PDDL 2.2.

Figure 6 shows the plans generated by LPG-td for satis-
fying provide user interfacandprovide web pagsubgoals.
The former plan is illustrated in Figure 3, the latter —in Fig- ~ Figure 7. Diagram for the plan for ProvideWeb-
ure 7. Pagesubgoal

Preliminary experiments were conducted to test the scal-
ability of the approach. A very simple "core” problem was
considered, with three actors, B andC' and two goals,
G1 and G5, which A wants to be achieved, anel andC
can satisfy. Then "additional” actors with the dependen- and with 120 "additional” actors is the same (less than one
cies among them were added to the problem, but they didsecond), only the parsing time increases insignificantly. At
not interfere at all with "core” subproblem. The idea was the same time, search time for the plan with long delegation
to check whether the search time of the plan to achigve chains (more than 30 steps) is much greater (around 15 sec-
and G, depends on the number of "additional” actors and onds). Of course, the scalability issue should be explored
dependencies among them. The experiments showed thatnuch more carefully (actually, this is one of our future work
at least with respect to this example, the approach is scalplans), but the above reported preliminary experiments have
able. Basically, the search time for the problem with 10 shown promising results.

Consulton
user data

Web Design
T
eam storing

4.2. P-Tool (AND_DECOMPOSES WDTeam ProvideWebPage

DesignWebPage ProvideRegistrProc)
(AND_DECOMPOSES WDTeam ProvideRegForm
We have developed P-Tool, an implemented prototype to ConsultOnStoreUData)

support the designer/requirements engineer in the process 2?255;E/?/l\D/VTDTeaBﬁBPTrovidecRegFTrg)s D

of exploring and evaluating alternatives. The tool has the| 2o c et - Coii:}to‘;’;‘;:eu"Dati’S ata)
interface for the input of actors, goals and their properties,| (or DECOMPOSES WDTeam DesignWebPage

which can be seen in Figure 8. LPG-td is built in the tool, DesignFromScratch FindStandardTemplate)

and is used to generate requirements alternatives, and repre-(PASSES WDTeam SupportingSystem FindStandard Template)
sents each solution graphically usifigiotation, see Figure | (SATISFIES SupportingSystem FindStandardTemplate)

9 for an example.

Pty

Figure 10. New plan for ProvideWebPageub-

4 p-Tool - Ex\ptooleBooking.plan i [=[3 0 a.l
File Tools g
|| ala]s]] &]e] s @]v]
olol|x CanDepend Narme
& Wanager
Lt v DB Team
Manage! = v Weh Design Team Cansultan
() DB Tean o GUI Team pettaaial
() Web Design Team Supperting System . <t
) BUI Team . Web Design storing
Team DB Team

(O Provide user \ntevlace
O Support with DB W/ ants | CanDo | Nome Consulton
(D Provide web pa O] Provide eBooking system El

page o = Provice web user data.
(O Provide Ul 1t altemative Provide user interface hind Find sandard C
() Provide Ul 2nd altemative Support with DB Emplaie storing
() Provide booking GLI Provide web page —
() Consult WDT to adopt GUI to Provide Ul Tst allemative
(O Piovide booking web page Provide Ul 2nd akemative AND
(O Consult BUIT on standard GUI Pravide booking GLIT Design web Provide
(O Desion web page Consult WD ta adopt GUT to web page registration Supporting
(O Desian fram seratch Pravide booking web page procedure Systam
(O Use standard template Consull GUIT an standard GOV comp -
(O Provide regishiation procedure. O O Desian weh page -
() Provide registiation form O r Design fiom seratch
(O Consult DBT to store user data O I Use standard template \ Bravids Consulton Findsentai
" CanBeDeconposed (Provide w]] Provide regisiiation procedure Designfom Y Findstandard il iy it
9 CanBeDecomposed (Provide e. Provide registration form scratch template T storing
> CanDependni Supporting Sys. H Consult DET to store user datain DB
Input data | Iteration stack [Pddl code | Dutput text] Outpat giaph]

Provide
registration
form

Figure 8. P-Tool: identifying actor properties

Figure 11. Diagram for new plan for

S ool EApteneraeR TS Bl ProvideWebPagsubgoal
File Tools
Jelslals| ae[s|alv]aak: ~]e]
|C”“H>*_j_‘ ’*\p'?"“de”:' b 1E) Step 3 First, the planning "on the upper level” fdtan-
— |we ;’/\T e ‘\mm D ager actor is performed. We will skip the process descrip-
'\EE”""‘"i) = g~ tion. The resulting alternative can be seen in the screenshot
- e oo 3 I@'\M/‘ (o) in Figure 9. Manager decompose®rovideEBookingSys-
|\m) °°rc::rsa"° - ¥ - temgoal i_ntol?rovideUI, ProvideWebPagand SupportDB-
- (—\ / \‘ Communicatiorsubgoals, and passes them througthpe-
oo (e | \“/ \ portingSysteno GUITeam WD TeanandDBTeamrespec-
- tively.
Step 4 We will illustrate this step with exploring
o | o alternatives for the subgodtrovideWebPagassigned to
Input data [Tteration stack | Pd code | Dutput text Dutput graph
— WDTeamactor. Firstly, an alternative presented in Figure
6 is generated. For this alternativé P,, W DTeam) =
Figure 9. P-Tool: i* diagram for the generated 2+2+4+2+442 = 16, which does not satisftWDTeam
alternative actor, so it tries to decrease the imposed load. According to

the evaluation procedure described in Section 3.2, the action
(SATISFIES WDTeam ProvideRegForm) is selected as
In the following we will illustrate how the steps 3-5 of dy.-s:- When this action is negated, the planner is not able
our approach (see Section 1) could be supported by the P+o find a solution. Thus, the neut,,.s; is identified, which
Tool. For the sake of simplicity we will leave out some is (SATISFIES WDTeam DesignFromScratch). New al-
details. ternative is generated, see Figures 10 and 11, for which

¢(Po, WDTeam) =2+2+4+2+2+1=13. This last (OR_DECOMPOSES GUITeam ProvideUl ProvideUI1 ProvideUI2
alternative is then fixed as it satisfidéD Teamactor. (AND_DECOMPOSES GUITeam ProvideUI1

Step 5 When partial plans are combined into the | ATFEOF"l'SgBGOS',‘.'r';i\r/nveé’:Ocvfd“eségfif’n”gdguul;)

plan P and evaluated, it appears thetP, GUITeam) = (PASSES GUITeam WDTeam ConsultOnGUIToWebAdoption)

6 and ¢(P,WDTeam) = 13 + 6 = 19. Actor (SATISFIES WDTeam ConsultOnGUIToWebAdoption)
WDTeamtries to deviate from the alternativ®, and
(SATISFIES WDTeam ProvideBookingWebl) of the plan
depicted in Figure 6 is identify a,..s; and negated. By
replanning we get an alternative presented in Figures 12 and

Figure 12. New plan for ProvideUl subgoal

13, fOI’ Wh'ChC (P/7 GUITeam) = 2 + 2 + 4 + 2 = 10 al’ld D Cansulton B ‘Web Design
. . GUI-o-web
c¢(P',WDTeam) = 13+ 3 = 16. This new alternative , arbpion il
satisfies botlGUITeamandWDTeanactors. e > . a :
interiace Ul wet
=S \ adoption
5. Related work O %
AND
Requirements engineering is considered to be a crucial Cenauton
adoption

part of software development process [18]. Careful elicita-
tion and analysis of requirements help to develop a system
that meets user’s expectations, is trustful and robust. Mod-
eling requirements to software systems and organizations in Figure 13. Diagram for new plan for ProvideUl

terms of goals and their interdependences has been a topic subgoal

of considerable research interest during the last decades

[18]. A number of goal-oriented approaches for require-

ments representation and reasoning were introduced, e.g.

KAOS [5]. tage of the approach is that the designer still performs a lot

The field of Al planning has been intensively developing ©f work manually determining the combination of goals and
during the last decades, and has found a number of applicaProhibited situations appropriate for the given application,
tions (robotics, process planning, autonomous agents, etc.)d€fining possible start-up conditions and providing many
Planning approach recently has proved to be applicable inother domain-specific expert knowledge.
the field of automatic Web service composition [15]. There Castillo et al. [4] present an Al planning application to
are two basic approaches to the solution of planning prob-assist an expert in designing control programs in the field of
lems [19]. One is graph-based planning algorithms in which Automated Manufacturing. The system they have built in-
a compact structure, called Planning Graph, is constructedegrates POCL, hierarchical and conditional planning tech-
and analyzed. In the other approach the planning problem ishiques (see [4, 15] for references). The authors consider
transformed into a SAT problem and a SAT solver is used. standard planning approaches to be not appropriate with

There exist several ways to represent the elements ofo ready-to-use tools for the real world, while in our pa-
a classical planning problem, i.e. the initial state of the per the opposite point of view is advocated. Another recent
world, the system goal, or the desired state of the world, application of the planning approach to requirements engi-
and the possible actions system actors can perform. Theeering for the secure systems is proposed by Gans et al.
widely used, and to the certain extend standard represental9]. The work is based oit modeling approach [20] and
tion is PDDL (Planning Domain Definition Language), the ConGolog (see [15] for description and references), a logic-
problem specification language proposed in [10]. Current based planning language. However, the authors focus more
PDDL version, PDDL 2.2 [6] used during the last Inter- 0n representing/modeling trust in social networks, than on
national Planning Competition [11], supports many useful the design automation, and do not go far in explaining how
features, e.g. derived predicates and timed initial literals. they exploit the planning formalism.

A few works can be found which relate planning tech- Game theory is an established discipline which deals
niques with software requirements analysis and design. Inwith conflicts and cooperation among rational independent
[1] a program called ASAP (Automated Specifier And Plan- decision-makers, or players. The key concept in classical
ner) is described, which automates a part of the domain-game theory is the notion of equilibrium [14] which de-
specific software specification process. ASAP assists thefines the set of strategies, one for each player, which none
designer in selecting methods for achieving user goals, dis-of the independent rational players wants to deviate from.
covering plans that result in undesirable outcomes, and find-By playing an equilibrium each player maximizes his util-
ing methods for preventing such outcomes. The disadvan-ity locally, given some constraints. For example, playing

the Nash equilibrium means that no player can benefit when [3] V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone. De-
deviating from his equilibrium strategy given that all other signing secure systems through planning.CIAiISE 2006.
players play the equilibrium. To appear. _ _
Game theory is applied in various areas, especially in [4] L. Castillo, J. Fdez-Olivares, and A. Gonzlez. Integrating
economics (modeling markets, auctions, etc.), corporate de- nierarchical and conditional planning techniques into a soft-
cision making, defense strategy, telecommunications net- ware design process for automated manufacturintCAPS

2003, Workshop on Planning under Uncertainty and Incom-
works and many others. Among the examples are the ap- plete Informationpages 28-39, 2003

plications of game theory to so called network games (e.g. [5] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-

routing, bandwidth allocation, etc.), see [17] for references. directed requirements acquisitidBcience of Computer Pro-
gramming 20:3-50, 1993.

[6] S. Edelkamp and J. Hoffmann. Pddi2.2: The language for
the classical part of the 4th international planning competi-
tion. Technical Report 195, University of Freiburg, 2004.

We have proposed a framework for automatically gener- [7] H. Estrada. Private communication.

ating a space of alternative actor dependency networks that [8] M. Fox and D. Long. Pdd[2.1: An extension to pddl for

satisfy an initial set of stakeholder goals. The framework ?;£|r§;2896tle?gzraz'0%g““'“9 domairss Artif. Intell. Res.

use.s planning techniques t.o chara_ct(_arlze the space of alter- [9] G.Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling

natives. A prototype tool with a built-in off-the-shelf plan- . . .

. . . the impact of trust and distrust in agent networks. pages 45—
ner is used to generate alternatives. These are evaluated in

6. Conclusions

terms of criteria founded on game-theoretic notions. [10] &8 %;?;iab, A. Howe, C. Knoblock, D. McDermott,
This is clearly a first step towards making more system- A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL — The

atic and tool-supported the process of designing actor de- Planning Domain Definition Language. 1998.

pendency models for a given set of initial stakeholder goals. [11] IPC-4 Homepage. International Planning Competition 2004.

More needs to be done to ensure the scalability of the P- http://Is5-www.cs.uni-dortmund.de/ edelkamp/ipc-4/.

Tool. In particular, we'd like to include the use of heuristic [12] E. Letier and A. van Lamsweerde. Reasoning about partial
. : | satisfaction for requirements and design engineering.

(e.g.,A*-like [16]) techniques to reduce the space of alter- goa _

natives under considering by filtering away early on alter- SIGSOFT Softw. Eng. Note29(6):53-62, 2004.

. ; . [13] LPG Homepage. LPG-td Planner.
natives that look bad. We'd also like to adopt proposals http://zeus.ing.unibs.it/lpg/.

for better structuring actor dependency models. One such[14] M. J. Osborne and A. Rubinstei.Course in Game Theary
proposal [7] is to maké& models "service-oriented” by en- MIT Press, 1994.

capsulating composite actors and allowing delegations to it [15] J. Peer. Web Service Composition as Al Planning — a Sur-
only through a well-defined service interface. Such propos- vey. Technical report, University of St. Gallen, 2005.

als reduce dramatically the number of possible solutions to [16] S. Russell and P. NorvigArtificial Intelligence: A Modern

a given multi-actor planning problem. Approach Prentice Hall, second edition, 2002.
[17] E. Tardos. Network games. Proceedings of the Annual

ACM Symposium on Theory of Computiag04.
7. Acknowledgements [18] A.van Lamsweerde. Requirements engineering in the year
00: a research perspective. pages 5-19. ACM, 2000.

- . [19] D. S. Weld. Recent Advances in Al Planningl Magazine
We thank Alfonso Gerevini and Alessandro Saetti for the 20(2):93-123, 1999.

support on the use of LPG-td planner. This work has been 0] . 5.-K. Yu. Modelling strategic relationships for process
partially funded by EU Commission, through the SENSO- reengineering PhD thesis, University of Toronto, 1996.
RIA and SERENITY projects, by the FIRB program of

MIUR under the ASTRO project, and also by the Provin-

cial Authority of Trentino, through the MOSTRO project.

References

[1] J. S. Anderson and S. Fickas. A proposed perspective shift:
viewing specification design as a planning problem. In
IWSSD '89: 5th Int. workshop on Software specification and
design pages 177-184, 1989.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. TROPOS: An Agent-Oriented Software Develop-
ment Methodology. 8(3):203-236, 2004.

