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Abstract: The international commitment to achieve carbon neutrality in the next few decades has
oriented human activities towards the preservation of natural and non-renewable resources. In
this context, a great research effort has been devoted to the search for sustainable solutions for the
infrastructure construction sector, based on a thorough assessment of the environmental impact
(EI). In this regards, Life Cycle Assessment (LCA) is considered one of the main components of
Environmental Impact Assessment (EIA) and, for a comprehensive analysis, all the costs incurred by
stakeholders during the useful life of the infrastructure should also be taken into account, applying
the Life Cycle Cost (LCC) methodology. So far, there is a lack of combined LCA and LCC analyses of
railway projects to support a proper sustainable decision-making process at a project level. Therefore,
this study aimed to contributed to this topic by determining the environmental effect and related
costs of different planning and construction choices in terms of material and maintenance strategies.
For this purpose, first, an LCA of typical railway infrastructures with a ballasted track was developed.
The case study considered two different functional units of a double-track railway line: 1 km of
embankment section and 1 km of a cut section, in straight alignment. After defining five alternative
railway infrastructure scenarios with different materials (virgin or recycled material) and construction
methods (e.g., lime stabilization), two different railway track maintenance approaches were analysed.
SimaPro was used to analyse the case study, and the results were compared with those obtained
using the PaLATE software, suitably adapted for use in the railway sector. Finally, a cost analysis
was carried out using Life Cycle Cost (LCC) methodology for all the scenarios analysed. The results
obtained in terms of EI and related costs of each scenario provide useful information, allowing a
sustainable planning approach: as a general result, the initial construction phase always involves
the larger part of the total environmental impact while the material production is the most polluting
phase, reaching percentages always higher than 50% of the total.

Keywords: LCA; LCC; railway; transport infrastructures; recycled materials; soil stabilization

1. Introduction

Environmental impact (EI) reduction is one of the major focal points of the scien-
tific and political communities; this target passes through correct assessment of several
impact types.

In recent years there has been growing attention in the transport sector, no longer only
concerning emissions from different means of transport vehicles, but also the EI caused by
the construction of new infrastructures and the maintenance processes of existing ones.

In the last twenty years, several studies have been developed for evaluating the
environmental impact of the railway sector. In these studies, there is great heterogeneity
in the methodological approach, analysis period, railway type, software and data set
used. Moreover, different railway systems are considered, including high-speed rail (HSR),
ordinary rail, tramways and light rail transit. It is not easy to make a rigorous comparison
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of these studies as they present different methodologies and limitations. Nevertheless, the
most relevant results related to Life Cycle Assessment (LCA) are briefly analysed in this
article. A comprehensive approach should consider both the construction activities and
the maintenance works of the railway and the use phase. Focusing only on the railway
infrastructure, the elements to consider are different from the railway track to the signal
and telecommunication systems.

This clarifies why it is not possible to determine a standard impact value of a railway
infrastructure section of a given length, because the presence or absence of railway facilities
and structural elements depends on a huge number of factors, such as land topography,
energy sources, urbanisation, etc. Therefore, it is clear how important the examination
of the railway infrastructure during the construction and maintenance phases is for the
assessment of the EI.

A very interesting study covering all LCA phases of a HSR is that of Stripple et al. [1]
regarding the Bothnia Line in Sweden. In this research, a “top-down” approach is applied
for an entire construction site by measuring the energy consumption, materials waste, and
emissions related to cut sections, embankments, tunnels and bridges sections. Another
important aspect of this approach was the division of the whole railway infrastructure
into several structural components: foundations, tracks, power supply systems, tunnels,
bridges, stations, etc.

Chang and Kendall [2] conducted a study on California’s high-speed rail system
(HSR), showing that 80% of the total impact derives from material production while
railway transport activities only accounted for 15% of the total.

The International Union of Railways [3] has estimated that rails production accounts
for 50% of the total impacts related to railway lines construction. This result cannot be
generalized, because in several cases the site preparation (vegetation cutting, removal of
organic soil layers, etc.) and construction of the embankment body can be very relevant.

As a matter of fact, for instance, the study [4] shows that the environmental impacts of
railway infrastructure are correlated to land topography. Another example is given by the
study [5] which analyse the “Follo Line” in Norway whose railway infrastructure runs for
90% of its length in tunnels and therefore the EI arises mainly from the construction of the
railway tunnels; similar results are described in [6].

In connection with the occurrence of bridges and tunnels, it is interesting to note the
study by Yue et al. [7]; in it, 1318 km of HSR between Beijing and Shanghai are analysed.
The authors carried out analyses of different scenarios in which the percentage values of
the length of the bridges with respect to the total line length are in the range of 50–80.4%.
The research pointed out that a reduction of tunnels, bridges, and reinforced underpasses
brings significant benefits in terms of environmental emissions, but without safety and
efficiency reduction.

Taking into account the high impact related to the construction phase of railway
infrastructures, other studies [8,9] have proposed alternative construction solutions in
order to reduce EI of the construction and maintenance phases by specific measures for
increasing the useful life. Giunta et al. [8] considered a different solution for track-bed
characterized by the use of bitumen-stabilized b (BSB); in comparison to traditional railway
tracks, the use of BSB produces a significant reduction of the number of maintenance
activities during the railway life cycle, with a consequential decrease in environmental
impacts and costs.

After calculating the EI, it is appropriate to monetize the same through an economic
evaluation. As also indicated in the “Handbook on the External Costs of Transport” by the
European Commission [10], environmental costs must be taken into account as external
costs for a complete LCC. Of course, these costs are not directly linked to maintenance or
management activities, but the emissions from such activities, therefore, have environmen-
tal and social impacts.
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The ISO 14008 [11] provides a framework that includes the principles and guide-
lines for monetizing EI, but despite the current legislation, there are several methods for
monetizing impacts, also with significant differences [12].

An example of EI monetization in the railway sector is given by Giunta et al. [8], which
refers to monetization with an ECO-COST approach, i.e., considering the costs required to
reduce pollution and resource depletion.

The advantage comes from the possibility of having a single indicator that is not only
useful for the railway infrastructure manager, but understandable for all stakeholders, and
of course provides a link between environmental and economic aspects, but we must not
believe that economic compensation can solve the problems arising from the impacts under
consideration. Ultimately, this process allows these costs to be integrated into a broader
economic view, the LCC, which allows for an economic assessment of the work over its
entire useful life, taking into account all associated costs.

So far, there is a lack of LCA and LCC analysis of railway projects to support a proper
sustainable decision-making process when selecting construction techniques, materials,
and maintenance strategies and the purpose of this study is to provide a contribution to
it. Therefore, Life Cycle Assessment (LCA) was first carried out for a standard double-
track rail-way line, considering the railway entirely in an embankment or in a cut section.
Different construction and maintenance techniques of railway bodies and superstructures
were analysed for each section. For a correct analysis of LCA, it is necessary to collect the
data from an environmental LCA database, such as EcoInvent, UCSL, or others, integrated
into the LCA analysis tools including, for example, SimaPro, PaLATE [13], OpenLCA [14],
GaBi [7], KCL-ECO [1] or GREET [15]. Since several technical software on LCA are available
today [16,17], in this article a comparison is given of the results obtained using two of the
most widely used: SimaPro and PaLATE.

Following the LCA technique, the environmental impacts were monetized in order to
perform the LCC analysis, with the aim to estimate the total costs associated with the entire
useful life of the analysed railway functional units.

For both analyses, two sustainable construction techniques were considered: one is
based on the use of secondary materials, such as the reclaimed asphalt pavement (RAP)
produced in road maintenance activities (to be used for the bituminous sub-ballast in
railway sections), and the second is the lime treatment of fine soils for embankment and/or
subgrade construction. In fact, in countries with developed railway networks, railway
projects (new constructions, doubling projects, removal of level crossings, etc.) often involve
road-related structures and, consequently, reclaimed asphalt pavement (RAP) is frequently
available as a secondary material recovered by the project itself. Furthermore, RAP may
also be available as a secondary material coming from other construction activities (road
maintenance activities, for instance, produce huge volumes of RAP that is not always
possible to fully reuse in new pavement structures). Therefore, in the view of circularity in
an infrastructure project and for maximizing the use of secondary materials, it is important
to evaluate the benefits of the use of RAP in different percentages for the bituminous
sub-ballast layers, as a strategy for increasing the environmental sustainability of railway
projects thanks to the saving of virgin aggregates and binder. Indeed, a few studies have
already proved that a bituminous sub-ballast layer with reclaimed asphalt—thanks to
proper mix design—is adequate for guaranteeing mechanical performance comparable
with those of traditional sub-ballast, with virgin components only, but there is a need for
future studies for developing sound technologies for this purpose [18,19].

On the other hand, earthmoving activities for railway construction produce huge
volumes of different types of soils and, amongst these, fine clayey soils that, due to their
poor mechanical properties, are considered for backfilling only or as waste material to
be dumped. Indeed, lime stabilization is a well-known sustainable and cost-effective
technique [20–22], since it allows for reusing these fine soils for structural purposes in
linear infrastructures (in embankment layers or even as subgrade), thanks to the improved



Sustainability 2023, 15, 5066 4 of 20

mechanical resistance developed after mixing the soil with lime, thus saving volumes of
valuable natural and non-renewable materials.

Considering the discussion above, the aim of this paper is to evaluate the effect of
different planning and construction choices in railway projects, in terms of material and
maintenance strategies for supporting sustainable decisions at projects level: therefore, the
study was intentionally focused on the environmental benefits only of the above sustainable
techniques, in terms of EI and related life cycle costs.

2. Methods
2.1. Life Cycle Assessment

LCA is universally acknowledged to be the best approach for assessing EI because it
is an objective process for evaluating the environmental loads associated with a product,
process, or activity.

The main international regulations are represented by ISO standard series [23] UNI
EN ISO 14040:2021 and UNI EN ISO 14044:2021. In accordance with the ISO 14040 standard
series, an LCA study comprises four steps that affect one another (Figure 1):

1. Definition of goal, scope, and functional unit:

In this stage, the aims of the study, the functional unit, the system analysed, the data
requirements and the boundaries of the study are declared.

2. Life cycle inventory (LCI):

In this stage, the full inventory of the in-out flows of the system, concerning the
individual operations, is defined. The result will be an inventory table, showing all resource
uses and emissions associated with the functional unit.

3. Life cycle impact assessment (LCIA):

In this stage, the potential impact deriving from the elementary flows is assigned to
several classes and quantified.

4. Interpretation:

This is the final step of LCA, where the results are evaluated with respect to the aims
and scope for writing the conclusion and recommendations. In this phase, a sensibility
analysis is extremely important for formulating correct advice to improve the process.
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2.2. SimaPro Software

The software used for analysing the case study is the SimaPro; it is one of the most
widely used and established LCA analysis software: it allows us to collect, monitor, and
analyse the environmental performance of products and services following the recommen-
dations of the ISO 14040 standard series.

For this study, for modelling the inventory phase, the EcoInvent database was ap-
plied, and to calculate the impacts, the EPD (Environmental Product Declarations) method
was used.
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2.3. PaLATE Software

PaLATE (Pavement Life Cycle Assessment Tool for Environmental and Economic
Effects) software is an Excel-based tool specifically designed for the pavement LCA model.

The adaptability of this software makes it very versatile, which is why it was chosen
for the study [13].

2.4. Life Cycle Cost

LCC is a methodology of economic evaluation by which all relevant costs over the
useful life of a given project (e.g., transportation infrastructures) are calculated. LCC is not
only useful to determine the cost of the infrastructure but is also helpful in the decision-
making process of design and maintenance, etc., since it allows us to define all of costs
associated with the system’s life cycle [24] including research, development, production,
construction, maintenance and disposal costs at the end-of-life phase.

The fundamental aspect of LCC is to determine all the parameters to be evaluated
in order to make a correct estimate. For a correct analysis of railway infrastructure, it is
necessary to consider the following main costs:

• Agency cost, supported by the infrastructure manager responsible for the design,
construction, maintenance, renewal and modernization of the railway line. In this
study, the agency cost is estimated based on [25].

• Delay costs, i.e., the variety of costs associated with train delays experienced by all the
users and stakeholders [26]. Generally, these costs are caused by the work zones. In
detail, delay costs comprise:

• Operator cost, related to the use of the trains, energy and fuel consumption, and
the crew; for these costs reference was made to [26].

• Users’ cost, concerning the use of the railway line. Data were for the Palermo-
Catania railway line (year 2019): user time value was estimated using data
from [27].

• External costs, relating to monetization of the EI. This economic analysis was carried
out regarding the values [28].

With regard to the value of time (VOT) and vehicle operating cost (VOC), reference
was made to the values processed by [29] based on HEATCO data [29]. According to these
sources, the VOC is determined on the basis of components such as repair and maintenance
of vehicles, fuel, staff and all costs related to the use of the train, obviously related to the
reference country.

Regarding users’ costs, this is the most controversial point to determine, since it is
necessary to monetize the user’s time: to evaluate the VOT, the approach proposed by
previous studies [29] takes into account the average salary of the country and additional
costs such as taxes, etc.

Therefore, depending on the maintenance plans considered, the delays of the line
are estimated, taking into account that there is no interruption in service but a reduction
of speed.

In this study, all the above costs are properly actualized, considering a discount rate
equal to 1.2%, determined as the difference between the average inflation rate of 2.06%
and the average annual average nominal interest rates derived from the annual BTP yield
of 3.25%.

3. Case Study

The first step of a LCA study is the definition of the functional unit. In this study the
functional unit of 1 km of double-track railway line is split into two functional units; in
detail, defined are a typical embankment section of 1 km and a typical cut section of 1 km,
both in straight alignment. The distance between the natural ground surface and the top
surface of the rails was set equal to 2.25 m for the cross-section in the embankment and to
1.00 m for the cut section.
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3.1. Material and Scenarios

For a correct LCA analysis, it is essential to define the materials and scenarios under
consideration. The whole life cycle of a railway infrastructure may be subdivided into
five main phases: (1) material production phase; (2) construction phase; (3) use phase;
(4) maintenance and rehabilitation phase; and (5) end-of-life phase.

In this study, ten different scenarios were analysed: 5 for the embankment section and
5 for the cut section. These scenarios include different construction techniques based on the
use of virgin material only, the reuse of discarded materials (i.e., recycled asphalt pavement,
RAP), as well as in situ stabilization of fine-grained soils with lime in order to improve soil
performances.

In detail, the following techniques and materials are considered:

• Use of lime stabilization of clayey soils, in the case of soils unsuitable to be used for
construction purposes;

• Use of different percentages of reclaimed asphalt pavement (RAP) for the bituminous
sub-ballast layer.

Table 1 summarizes the main characteristics of the 10 scenarios considered in this
study and the percentages of RAP and stabilization of fine-grained soils with lime. For
instance, in Scenario 5 the sub-ballast contains 40% of recycled material.

Table 1. Scenarios definition for embankment and cut sections.

Embankment Section

Layer 1 2 3 4 5

Sub-ballast V V V V + 40%R V + 40%R
Highly compacted soil V V L (5.5%) V L (5.5%)

Embankment body V L (2.5%) L (2.5%) V L (2.5%)
Impermeable layer V V V V V

Cut Section

Layer 1 2 3 4 5

Sub-ballast V V V V + 40%R V + 40%R
Highly compacted soil V V L (5.5%) V L (5.5%)

Embankment body V L (2.5%) L (2.5%) V L (2.5%)
(V = Virgin material, R = recycled material, L = lime stabilization).

These railway construction techniques were compared in order to identify the best
scenario in terms of environmental impacts.

It is clear that earthmoving phases have a fundamental role during the construction
phase. Table 2 shows the type and classification of soils considered for each layer of the
railway infrastructure.

Table 2. Type and HRB-AASHTO classification of soils used for the construction of the analysed
railway infrastructure.

Layer Natural
Subgrade

Upper Layer
of the Em-
bankment

Embankment
Body

Capillary-
Break

Soil Used for
Remediation

Classification A7-6 A1-b A2-7 2/25 mm A1-b

For scenarios in which lime stabilization is considered, the in situ availability of
subgrade soils of class A7-6 was assumed. Another important hypothesis is to consider
RAP as already present in the production plant because RAP is a recycled product, and
therefore the impacts of its previous life are not considered.

Regarding the railway superstructure, the main characteristics common for the two
railway functional units are:
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• UIC60 rails (weight: 60.4 kg/m; grade 900A steel that combines high strength with
moderate ductility and high strain hardening rate);

• Pandrol fastenings;
• Concrete sleepers (weight: 260 kg; module: 60 cm);
• Ballast layer (depth: 50 cm; Los Angeles index lower than 20–25; granular materials

ranging between 15–20 and 60–65 mm in size).

The height of the top surface of the rails with respect to the natural ground sur-
face was set at 2.55 m and 1.00 m for the embankment and the cut section, respectively
(cf. Figures 2 and 3).
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Based on data concerning the construction of new railway lines in Italy, it was consid-
ered that virgin and recycled materials were transported by road transportation systems
using heavy-duty dump trucks (20 t mass) with diesel engines. The average values of the
transport distances considered in the present study are summarized in Table 3 [9]. These
values were inferred from recent railway works in Italy (see Table 3). For in situ lime
stabilization, an average transport distance of 1 km was considered.

Table 3. Average transport distances.

Transport Distances km

Rails 900.00
Sleepers 800.00

Bitumen and emulsion plant 110.00
Lime plant 110.00

Asphalt plant 35.00
Landfill 20.00

Quarry site 15.00
Soil for earthmoving 15.00

Water 5.00

3.2. Useful Life and Manutention

A complete life cycle of a railway infrastructure can be subdivided into the following
five phases:
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• Materials production

All phases of the material production process, from the extraction of raw materials to
transformation into the finished product that will be used in the railway infrastructure. It
also includes transport from the quarry or production site to the construction site.

• Construction

All the required operations, works, and equipment for constructing the railway in-
frastructure are considered, particularly the different equipment used and their associated
consumption.

• Use

This is the longest phase of the life cycle. In this phase, it is necessary to consider
energy consumption due to the railway infrastructure deterioration and to evaluate the
polluting emissions deriving from railway traffic.

• Maintenance and Rehabilitation

All interventions to guarantee the highest standards of quality, safety, and reliability
of the infrastructure must be considered. According to the railway service life, these
interventions may concern the railway track and the railway body (in these cases, they are
expected to take place every 60–100 years).

For every maintenance operation (generally scheduled by “on condition” logic) the
raw materials production, the demolition activities, the total materials to be sent to the
landfill and the transport must always be considered.

• End of life

Depending on the assumptions made at the beginning of the study, there may be
two different options: complete disposal to landfill or partial recycling of the railway
infrastructure components.

In this study, the analysis of the use phase is excluded, because it is assumed to
be identical for the different hypothesized scenarios, and therefore is not significant for
comparison purposes. Similarly, the delay times are not considered in the construction and
maintenance phases.

The traffic level is hypothesized to be in the range 350–700 million gross tonnes (only
passenger services).

The maintenance of the railway superstructure is supposed to be “on condition” and
according to the scientific literature [30–32] two very different maintenance plans have
been considered:

- (A) Maintenance Plan A: intervention every 5 years;
- (B) Maintenance Plan B: intervention every 10 years.

In order to maintain the superstructure in good functional condition, each maintenance
activity requires the following interventions:

• Tamping of the ballast;
• Grinding of the ballast;
• Rails brushing and profiling.
• In both maintenance plans, the replacement of the concrete sleepers and the ballast

is scheduled at the end of the 30th year, starting from the construction of the railway
infrastructure.

Ordinary maintenance is not considered because it requires the use of low quantities
of materials and energy, and therefore is negligible with respect to the aforementioned
maintenance operations.

To make the following data easier to read, Figure 4 clarifies the nomenclature used
and Table 4 provides a summary of the main characteristics of each scenario.
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Table 4. Summary of analysis scenarios.

Cross-Section
Type Maint. Plan Scenarios

E A 1 2 3 4 5

Embank.

Every 5 years

All virgin
material

Lime stabilization
for embankment

body

Lime stabilization
for embankment
body and highly
compacted soil

RAP for
sub-ballast layer

Lime stabilization
for embankment
body and highly
compacted soil,
use of RAP for

sub-ballast layer

B

Every 10 years

C A 1 2 3 4 5

Cut

Every 5 years

All virgin
material

Lime stabilization
for embankment

body

Lime stabilization
for embankment
body and highly
compacted soil

Use of RAP for
sub-ballast layer

Lime stabilization
for embankment
body and highly
compacted soil,
use of RAP for

sub-ballast layer

B

Every 10 years

4. Results

To obtain the most exhaustive outcomes possible, we have selected some of the
most important impact parameters related to railway infrastructure construction and
maintenance phases. All impact categories and substances considered in the LCA analysis
are listed in Table 5 with their acronyms and units of measurement.

Table 5. List of abbreviations used for impact categories and substances.

Impact Categories/Substance Unit

GWP Global warming (GWP100 a) kg CO2 eq
NOx Nitrogen oxides kg
PM10 Particulate matter kg
Acidif. Acidification (fate not incl.) kg SO2 eq

CO Carbon monoxide kg
Hg Mercury kg
Pb Lead kg

Eutroph. Eutrophication kg PO4 eq
Phot. Ox. Photochemical oxidation kg NMVOC

Ab. dep. Elements Abiotic depletion, elements kg Sb eq
Ab. dep.

Fossil fuels Abiotic depletion, fossil fuels MJ

Wat. Scars. Water scarcity m3 eq
Ozone layer Ozone layer depletion (ODP) kg CFC-11 eq

In the first phase of the research, the environmental impacts of the construction and
maintenance phases were estimated. Figure 5 shows the results obtained from the analysis
of the first scenarios, i.e., embankment and cut sections and Maintenance Plan A (scenarios
E-A1 and C-A1, respectively).
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Figure 5. Initial construction/maintenance comparison: Maintenance Plan A. (a) Embankment
section; (b) cut section.

The results are consistent with those of other studies [5,33]; in fact, the impacts of the
initial construction phase are higher than those of the maintenance phase (Table 6). Similar
outcomes were found for the alternative scenarios considered (see Table 1).
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Table 6. LCA results of 1 km of railway infrastructure in embankment (E) and cut (C) sections for different scenarios (cf. Table 1).

E-A1

Scenario GWP NOS PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. Dep.
Elements

Ab. Dep.
Fossil
Fuels

Water
Scarcity Ozone Layer

N◦ and
Phase kg CO2 eq kg kg kg SO2 eq kg kg kg kg PO4 eq kg

NMVOC kg Sb eq MJ m3 eq kg CFC-11
eq

1
Constr. 2.00 × 106 8.26 × 103 1.56 × 103 1.03 × 104 1.46 × 104 8.24 × 10−2 3.16 × 100 3.41 × 103 1.10 × 104 1.64 × 101 2.40 × 107 1.27 × 106 2.01 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

2
Constr. 1.80 × 106 7.64 × 103 3.65 × 103 9.47 × 103 1.35 × 104 8.50 × 10−2 3.82 × 100 3.15 × 103 1.02 × 104 2.44 × 101 2.12 × 107 8.67 × 105 1.77 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

3
Constr. 1.71 × 106 7.32 × 103 4.72 × 103 9.06 × 103 1.29 × 104 8.59 × 10−2 4.08 × 100 3.05 × 103 9.84 × 103 2.76 × 101 1.99 × 107 6.91 × 105 1.66 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

4
Constr. 1.99 × 106 8.18 × 103 1.50 × 103 1.02 × 104 1.45 × 104 8.23 × 10−2 3.15 × 100 3.40 × 103 1.09 × 104 1.64 × 101 2.39 × 107 1.26 × 106 2.00 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

5
Constr. 1.70 × 106 7.24 × 103 4.67 × 103 8.98 × 103 1.29 × 104 8.58 × 10−2 4.07 × 100 3.04 × 103 9.74 × 103 2.76 × 101 1.98 × 107 6.87 × 105 1.65 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

C-A1

Scenario GWP NOS PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. Dep.
Elements

Ab. Dep.
Fossil
Fuels

Water
Scarcity Ozone Layer

N◦ and
Phase kg CO2 eq kg kg kg SO2 eq kg kg kg kg PO4 eq kg

NMVOC kg Sb eq MJ m3 eq kg CFC-11
eq

1
Constr. 1.60 × 106 7.12 × 103 1.37 × 103 8.07 × 103 1.28 × 104 7.10 × 10−2 2.49 × 100 2.60 × 103 9.41 × 103 1.21 × 101 1.91 × 107 6.83 × 105 1.66 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

2
Constr. 1.52 × 106 6.87 × 103 2.20 × 103 7.75 × 103 1.23 × 104 7.20 × 10−2 2.75 × 100 2.49 × 103 9.11 × 103 1.53 × 101 1.80 × 107 5.25 × 105 1.57 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

3
Constr. 1.48 × 106 6.73 × 103 2.67 × 103 7.57 × 103 1.21 × 104 7.24 × 10−2 2.86 × 100 2.45 × 103 8.94 × 103 1.67 × 101 1.74 × 107 4.48 × 105 1.52 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

4
Constr. 1.59 × 106 7.04 × 103 1.32 × 103 7.99 × 103 1.27 × 104 7.09 × 10−2 2.47 × 100 2.58 × 103 9.31 × 103 1.21 × 101 1.90 × 107 6.79 × 105 1.65 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2

5
Constr. 1.47 × 106 6.65 × 103 2.62 × 103 7.49 × 103 1.21 × 104 7.23 × 10−2 2.85 × 100 2.44 × 103 8.84 × 103 1.66 × 101 1.73 × 107 4.44 × 105 1.50 × 10−1

Maint. 3.86 × 105 1.54 × 103 2.34 × 102 1.86 × 103 2.02 × 103 1.19 × 10−2 4.79 × 10−1 5.87 × 102 2.08 × 103 2.58 × 100 4.15 × 106 1.72 × 105 3.50 × 10−2
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The material production phase is the most onerous in terms of impacts. These results
are consistent with previous studies on the LCA of transport infrastructures [2,3].

After the material production phase, material transport is the highest in terms of
produced impacts. The processes phase (that is the one that accounts for all the operations
necessary for the construction of the infrastructure, from the laying of the materials and the
earthworks operations for embankment construction, to the positioning of the tracks and
the sleepers) is more impacting in the cut-section scenarios due to the impacts related to
the soil excavation phase.

The impact of material production, transportation, and processes for the first scenarios
of the embankment and cut sections are shown in Figure 6.
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Figure 6. Material production/transport/process comparison. (a) Embankment section; (b) cut section.

The results of the alternative scenarios confirm the trend of Figure 6.
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As for the two different maintenance plans, only the frequency of pressing, grind-
ing, brushing and profiling varies. Table 7 shows the percentage incidence of the two
maintenance plans in relation to the total impact of the different scenarios.

It is evident that the two different solutions do not bring significant changes in terms
of impact. In this connection, it can be noted that the difference between the incidence of a
maintenance strategy in Scenario 5 for NOS in the cut is 0.004% at maximum.

Because of what has been said, the subsequent evaluations consider the maintenance
of the superstructure every 5 years (Maintenance Plan A).

This research shows interesting results in terms of emissions associated with the
railway infrastructure life cycle, summarized below:

• Lime stabilization allows us to obtain good benefits in terms of NOX and SO2 CO2
reduction but gives rise to a significant increase in terms of PM10;

• The use of RAP in the sub-ballast layers produces a decrease in CO2 NOX and SO2,
also yielding a good result for PM10 and a slight improvement for CO Hg and Pb.

Table 8 shows the performance of scenarios 2–4 with respect to scenario 1 (cf. Table 1),
for embankment and cut sections, respectively. Scenario 4 slightly improves all impact
categories compared to the results obtained in the other scenarios. Scenarios 2, 3, and 5
improve all impact categories, except for PM10-, mercury-, lead- and abiotic-depletion
elements.

The increase in PM10 in the lime stabilization scenario is very high, reaching 176.25%
in the embankment section of scenario 3; this is attributable to the use of fine material
which tends to volatilize.

SimaPro-PaLATE Comparison

Table 9 shows the comparison between the most important environmental impacts,
obtained using SimaPro and PaLATE software.

There are some notable differences in all impact categories. The biggest differences are
given in the calculation of mercury and PM10; the percentage variations are, respectively,
3661.01% for mercury in cut 5 and 2615.04% for PM10 in the embankment section of
scenarios 4 and 5. Other major differences are in NOx and Pb values, although in general,
all impact categories present substantial differences.

Indeed, the differences in the emissions estimated with the two different software
used for this study were somehow expected, since the PaLATE is specifically developed for
road infrastructures and takes into account typical construction operations such as those
for embankment construction or other materials that are common for linear infrastructures
(including those for the trackbed layers). Nevertheless, when it comes to the railway
superstructure, the SimaPro software (being a versatile LCA tool for a variety of different
applications) allows a much more detailed modelling of elements that are not easy to
consider in PaLATE, such as the rail fastening system or sleepers, etc. Therefore, the results
obtained with SimaPro are more representative and, thus, reliable.



Sustainability 2023, 15, 5066 14 of 20

Table 7. Maintenance strategy incidence.

Embankment Section

Scenario and
Maint. Strategy GWP NOS PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. Dep.

Elements
Ab. Dep.

Fossil Fuels
Water

Scarcity
Ozone
Layer

1
A 16.22% 15.72% 13.06% 15.29% 12.16% 12.61% 13.16% 14.67% 15.92% 13.55% 14.73% 11.94% 14.83%
B 16.22% 15.72% 13.06% 15.29% 12.16% 12.61% 13.16% 14.68% 15.92% 13.55% 14.73% 11.94% 14.83%

2
A 17.69% 16.78% 6.03% 16.40% 13.04% 12.27% 11.13% 15.71% 16.90% 9.55% 16.36% 16.53% 16.48%
B 17.69% 16.79% 6.03% 16.40% 13.04% 12.27% 11.13% 15.71% 16.90% 9.55% 16.36% 16.53% 16.48%

3
A 18.45% 17.38% 4.73% 17.01% 13.52% 12.16% 10.50% 16.14% 17.45% 8.55% 17.26% 19.89% 17.41%
B 18.45% 17.39% 4.73% 17.02% 13.52% 12.16% 10.50% 16.14% 17.45% 8.55% 17.27% 19.89% 17.42%

4
A 16.28% 15.85% 13.48% 15.39% 12.19% 12.62% 13.20% 14.73% 16.04% 13.57% 14.79% 11.97% 14.92%
B 16.28% 15.85% 13.48% 15.39% 12.19% 12.62% 13.20% 14.73% 16.04% 13.57% 14.80% 11.97% 14.92%

5
A 18.52% 17.54% 4.78% 17.14% 13.56% 12.17% 10.53% 16.21% 17.59% 8.55% 17.35% 19.99% 17.54%
B 18.53% 17.55% 4.78% 17.14% 13.56% 12.17% 10.53% 16.21% 17.59% 8.55% 17.36% 19.99% 17.54%

Cut Section

Scenario and
Maint. Strategy GWP NOS PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. Dep.

Elements
Ab. Dep.

Fossil Fuels
Water

Scarcity
Ozone
Layer

1
A 19.49% 17.80% 14.57% 18.70% 13.64% 14.35% 16.15% 18.43% 18.10% 17.55% 17.87% 20.08% 17.41%
B 19.49% 17.80% 14.57% 18.70% 13.64% 14.35% 16.15% 18.43% 18.10% 17.55% 17.87% 20.08% 17.40%

2
A 20.29% 18.33% 9.62% 19.34% 14.06% 14.17% 14.84% 19.05% 18.59% 14.45% 18.77% 24.65% 18.26%
B 20.29% 18.32% 9.62% 19.34% 14.06% 14.17% 14.84% 19.05% 18.58% 14.45% 18.77% 24.65% 18.26%

3
A 20.72% 18.64% 8.07% 19.71% 14.30% 14.11% 14.34% 19.33% 18.88% 13.40% 19.28% 27.72% 18.75%
B 20.72% 18.63% 8.07% 19.71% 14.30% 14.11% 14.34% 19.33% 18.87% 13.40% 19.27% 27.72% 18.75%

4
A 19.58% 17.97% 15.10% 18.86% 13.68% 14.37% 16.21% 18.52% 18.26% 17.59% 17.96% 20.18% 17.53%
B 19.58% 17.97% 15.10% 18.85% 13.68% 14.37% 16.21% 18.52% 18.26% 17.59% 17.96% 20.18% 17.53%

5
A 20.82% 18.82% 8.22% 19.88% 14.35% 14.13% 14.39% 19.43% 19.05% 13.43% 19.39% 27.91% 18.89%
B 20.82% 18.81% 8.22% 19.88% 14.35% 14.13% 14.39% 19.43% 19.04% 13.43% 19.39% 27.91% 18.89%
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Table 8. Performance of scenarios 2–5 with respect to scenario 1.

Embankment

Scenario GWP NOx PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. dep.
Elements

Ab. dep.
Fossil fuels

Wat.
Scars.

Ozone
layer

2 8.31% 6.33% −116.63% 6.77% 6.75% −2.77% −18.24% 6.58% 5.78% −41.92% 9.98% 27.77% 10.01%

3 12.08% 9.58% −176.25% 10.16% 10.07% −3.70% −25.29% 9.06% 8.75% −58.58% 14.68% 39.99% 14.85%

4 0.37% 0.82% 3.09% 0.66% 0.25% 0.12% 0.33% 0.40% 0.75% 0.17% 0.44% 0.29% 0.59%

5 12.45% 10.40% −173.16% 10.82% 10.33% −3.58% −24.96% 9.46% 9.50% −58.41% 15.12% 40.27% 15.44%

Cut

Scenario GWP NOx PM10 Acidif. CO Hg Pb Eutroph. Phot. Ox. Ab. dep.
Elements

Ab. dep.
Fossil fuels

Wat.
Scars.

Ozone
layer

2 3.96% 2.85% −51.45% 3.29% 3.00% −1.24% −8.84% 3.28% 2.61% −21.46% 4.80% 18.51% 4.66%

3 5.96% 4.47% −80.70% 5.11% 4.64% −1.71% −12.64% 4.65% 4.09% −30.94% 7.31% 27.55% 7.16%

4 0.45% 0.93% 3.45% 0.81% 0.29% 0.14% 0.41% 0.50% 0.86% 0.22% 0.53% 0.48% 0.70%

5 6.40% 5.39% −77.25% 5.92% 4.93% −1.57% −12.23% 5.15% 4.95% −30.72% 7.84% 28.03% 7.86%

Table 9. SimaPro/PaLATE impact comparison.

Embankment

GWP NOS PM10 Acidif. CO Hg Pb

1
Production −35.67% −49.48% 1267.19% −72.90% −80.16% 3098.63% −45.20%

Transportation −69.20% 266.79% 616.28% −62.93% −21.27% −82.75% −91.10%
Processes 27.14% 224.74% 2188.43% −74.16% 1.83% 222.69% 175.46%

2
Production −39.45% −23.74% 368.31% −49.35% −76.45% 3006.99% −52.09%

Transportation −73.96% 201.79% 487.94% −66.31% −30.63% −82.58% −92.35%
Processes 10.99% 273.89% 2501.08% −70.26% 17.01% 222.67% 136.10%
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Table 9. Cont.

Embankment

GWP NOS PM10 Acidif. CO Hg Pb

3
Production −36.68% 4.47% 219.39% −24.96% −71.90% 2980.41% −51.52%

Transportation −76.09% 175.70% 436.08% −67.75% −34.48% −82.58% −92.94%
Processes 2.85% 293.06% 2615.04% −68.76% 22.96% −100.00% 125.98%

4
Production −39.18% 4.47% 219.39% −24.96% −71.90% 2980.41% −51.52%

Transportation −76.09% 175.70% 436.08% −67.75% −34.48% −82.58% −92.94%
Processes 2.85% 293.06% 2615.04% −68.76% 22.96% −100.00% 125.98%

5
Production −39.18% −53.35% 1222.45% −75.64% −81.87% 3099.22% −47.75%

Transportation −68.95% 269.75% 624.94% −62.61% −20.60% −82.64% −90.83%
Processes −5.20% 272.14% 2484.31% −70.27% 16.44% −100.00% 106.38%

Cut

GWP NOS PM10 Acidif. CO Hg Pb

1
Production −41.18% −35.69% 1013.30% −64.69% −80.06% 3658.40% −31.62%

Transportation −68.82% 290.90% 641.82% −63.98% −21.69% −85.01% −91.07%
Processes −65.65% −13.21% 510.94% −93.09% −72.91% −10.04% −26.02%

2
Production −44.02% −21.48% 515.33% −51.46% −78.54% 3607.93% −37.32%

Transportation −70.71% 265.95% 594.41% −65.27% −25.26% −84.96% −91.67%
Processes −67.34% −9.85% 529.23% −92.79% −71.89% −10.07% −28.78%

3
Production −42.53% −3.24% 374.27% −35.64% −76.27% 3590.45% −37.53%

Transportation −71.47% 255.14% 573.29% −65.86% −26.85% −84.96% −91.83%
Processes −68.47% −8.09% 543.00% −92.67% −71.31% −10.07% −31.52%

4
Production −45.70% −40.51% 956.39% −68.75% −82.04% 3661.01% −34.94%

Transportation −71.47% 255.14% 573.29% −65.86% −26.85% −84.96% −91.83%
Processes −68.47% −8.09% 543.00% −92.67% −71.31% −10.07% −31.52%

5
Production −48.02% −9.02% 329.29% −39.83% −78.48% 3591.63% −40.46%

Transportation −70.10% 269.20% 607.18% −64.51% −23.73% −84.37% −91.40%
Processes −70.99% −10.71% 402.17% −92.96% −72.06% −24.55% −60.55%
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5. LCC Results

The economic analysis was carried out taking into account the prices related to the
construction costs defined by the Italian “Rete Ferroviaria Italiana” (RFI) rail company [25]:
for VOC and VOT, reference was made to the data estimated by the European Commission
for the HEATCO project [27]. Finally, also with regard to the monetization of impacts,
reference was made to the value of monetization used by the European Commission [28,29].

The first outcomes show that the cut section is more expensive than the embankment
section. By analysing Table 10, scenario 5, in which both lime stabilization and RAP are
used, it proves to be the most advantageous one, reaching a saving up to 5.35% and 3.55%
for embankment and cut sections, respectively.

Table 10. Railway infrastructure total costs.

Net Present Value [€]

Section Maint.
Plan 1 2 3 4 5

Embank.
A 3,244,012.53€ 3,141,938.70€ 3,076,981.96€ 3,242,179.96€ 3,075,150.70€
B 3,179,341.37€ 3,077,267.53€ 3,010,675.39€ 3,177,510.10€ 3,008,844.12€

Cut
A 3,732,961.79€ 3,620,736.54€ 3,604,204.95€ 3,731,123.63€ 3,602,366.80€
B 3,668,288.16€ 3,556,062.91€ 3,539,531.33€ 3,666,450.01€ 3,537,693.17€

Figure 7 shows the average incidence of costs; it can be noted that the agency costs
related to construction and maintenance reach 87.74% of the total costs for the embankment
section and maintenance scenario A, and 90.95% for the cut section.
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Another important point of view concerns the impact, which ranges from 8.24% to 11.50%.
The delay costs are between 0.41% and 0.89% of the total costs, but they depend to a

large extent on traffic and utilization of the railway line under consideration.
It can be noted that a different configuration and materials of the railway track could

produce even improvement in all environmental impacts including PM10 emissions. In
order to select the best railway track layout, future studies could use TRIZ (a Russian
acronym for the “Theory of Inventive Problem Solving”) strategies [34].

It is worth underlying that the outcomes of this research could be used for choosing
better construction techniques to guarantee the environmental sustainability of the railway
system at the regional or national level.

6. Conclusions

The construction of transport infrastructures, such as railways, can have a huge en-
vironmental impact (EI). This observation gives rise to the need to assess environmental
impacts and evaluate alternative construction techniques and maintenance plans to reduce
them. The present research examines different construction techniques and maintenance
plans in railway infrastructure in order to evaluate their environmental, energy, and eco-
nomic effects. The study demonstrates that the initial construction phase always involves
no less than 80% of the total environmental impact related to the railway’s useful life. In
addition, material production is the most polluting phase, reaching percentages always
higher than 50% of the total.

The scenarios related to the embankment section cause major EI with respect to the
cut section; this is due to the high use of raw materials required for the realization of the
roadbed.

The use of construction techniques such as lime stabilization can produce good results
in all impact categories, with the exception of PM10 due to the presence of fine material.

However, the lime stabilization technique is recommended as it allows the use of soils
that would otherwise result in waste material pending the possibility of levelling cut and
filled soils. Compensation reduces the impact in terms of waste materials and raw materials
needed for the realization of the embankment.

The use of recycled materials such as RAP (recycled asphalt pavement) is recom-
mended as they reduce the impact, too.

In this research study, a comparative analysis of LCA was carried out using two
specialized software: PaLATE and SimaPro. The comparison of LCA outputs obtained
using the two software shows remarkable differences due to several reasons, including
differences in the reference database and calculation algorithms, but PaLATE proved to have
some limitations when modeling elements of the railway superstructure, being specifically
developed for road infrastructures, not for railways. On the other hand, SimaPro proved
to be easily applicable to the case of railways, after a proper definition of the functional
unit and the related inventory analysis. In terms of costs, both construction techniques
considered are efficient and bring significant cost savings of up to 5.34% in the embankment
section and maintenance plan B compared to standard scenarios (E-B1). These savings
could increase even further as, especially if excavated soil is reused particularly as regards
EI costs, there are savings of up to 14%.

Although this research project analyses only embankment and cut sections of double-
track railway lines, nevertheless the initial results are encouraging, since the proposed
methodology is “general” and, consequently, it can also be applied to single-track railway
lines and high-speed railway lines, as well as to analyse the environmental impacts of
railway bridges and railway tunnels. Indeed, future works will have to involve many other
construction and maintenance techniques and materials and specific sensitivity analyses
will have to be carried out in order to properly evaluate the effect of each variable.
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