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Abstract

This thesis theoretically and experimentally studies the characteristics of integ-
rated microresonators (MRs) built by passive (no gain) and non-magnetic materials
and characterized by both Hermitian and non-Hermitian Hamiltonians. In partic-
ular, I have studied three different microresonators: a typical Microring Resonator
(MR), a Taiji Microresonator (TJMR), which consists of a microresonator with an
embedded S-shaped waveguide, and a new geometry called the Infinity-Loop Mi-
croresonator (ILMR), which is characterized by a microresonator shaped like the
infinity symbol coupled at two points to the bus waveguide.

To get an accurate picture of the three devices, they were modeled using both
the transfer matrix method and the temporal coupled mode theory. Neglecting
propagation losses, the MR is described by a Hermitian Hamiltonian, while the
TJMR and the ILMR are described by a non-Hermitian one. An important differ-
ence between Hermitian and non-Hermitian systems concerns their degeneracies.
Hermitian degeneracies are called Diabolic Points (DPs) and are characterized by
coincident eigenvalues and mutually orthogonal eigenvectors. In contrast, non-
Hermitian degeneracies are called Exceptional Points (EPs). At the EP, both the
eigenvalues and the eigenvectors coalesce. The MR is at a DP instead, and the
TJMR and the ILMR are at an EP. Since the TJMR and ILMR are at an EP, they have
interesting features such as the possibility of being unidirectional reflectors. Here,
it is shown experimentally how in the case of the TJMR this degeneracy can also
be used to break Lorentz reciprocity in the nonlinear regime (high incident laser
powers), discussing the effect of the Fabry-Perot of the bus waveguide facets.

The effect of backscattering, mainly due to the waveguide surface-wall rough-
ness, on the microresonators is also studied. This phenomenon induces simultan-
eous excitation of the clockwise and counterclockwise modes, leading to eigenvalue
splitting. This splitting makes the use of typical quality factor estimation methods
unfeasible. To overcome this problem and mitigate the negative effects of backscat-
tering, a new experimental technique called interferometric excitation is introduced.
This technique involves coherent excitation of the microresonator from both sides of
the bus waveguide, allowing selective excitation of a single supermode. By adjust-
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ing the relative phase and amplitude between the excitation fields, the splitting in
the transmission spectrum can be eliminated, resulting in improved quality factors
and eigenvalue measurements. It is shown that this interferometric technique can
be exploited under both stationary and dynamic conditions of time evolution.

The thesis also investigates the sensing performance of the three microresonators
as a function of a backscattering perturbation, which could be caused, for example,
by the presence of a molecule or particle near the microresonator waveguide. It is
shown that the ILMR has better performance in terms of responsivity and sensitivity
than the other two microresonators. In fact, it has both the enhanced sensitivity due
to the square root dependence of the splitting on the perturbation (characteristic
of EPs) and the ability to completely eliminate the region of insensitivity as the
backscattering perturbation approaches zero, which is present in both the other
two microresonators.

To validate the models used, they were compared with experimental measure-
ments both in the linear regime and, for TJMR, also in the nonlinear regime, with
excellent agreement.



Contents

Acronyms 1

Introduction 5

1 Microring Resonator 11
1.1 Design and theoretical model . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Temporal Mode Theory . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Backscattering and Diabolic Point . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Temporal Coupled Mode Theory . . . . . . . . . . . . . . . . . 25
1.2.2 Backscattering in the Transfer Matrix Method . . . . . . . . . 33

1.3 Interferometric excitation . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.1 Hermitian Coupling . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.2 Non-Hermitian Coupling . . . . . . . . . . . . . . . . . . . . . 43

1.4 Time response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.1 Ideal microresonator . . . . . . . . . . . . . . . . . . . . . . . . 49
1.4.2 Microresonator with backscattering . . . . . . . . . . . . . . . 50

1.5 Experimental Measurements . . . . . . . . . . . . . . . . . . . . . . . 59
1.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.5.2 Integrated photonic circuits/samples . . . . . . . . . . . . . . . 62
1.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2 Taiji Microresonator 77
2.1 Design and Temporal Coupled Mode Theory model . . . . . . . . . . 78
2.2 Transfer Matrix Method with Fabry Perot . . . . . . . . . . . . . . . . 82
2.3 Nonlinear breaking of Lorentz reciprocity theory and experimental

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.3.2 Theoretical simulations . . . . . . . . . . . . . . . . . . . . . . 104

2.4 Backscattering and Exceptional Point . . . . . . . . . . . . . . . . . . . 116



viii

2.4.1 Theory and Experimental Measurements . . . . . . . . . . . . 117
2.4.2 Exceptional Point Behavior . . . . . . . . . . . . . . . . . . . . 123

2.5 Interferometric Excitation . . . . . . . . . . . . . . . . . . . . . . . . . 127

3 Infinity-Loop Microresonator 133
3.1 Design and Temporal Coupled Mode Theory model . . . . . . . . . . 134
3.2 Backscattering, Riemann Sheets and Sensing . . . . . . . . . . . . . . 141
3.3 Coherent perfect absorption condition . . . . . . . . . . . . . . . . . . 147
3.4 Transfer Matrix Method with Backscattering . . . . . . . . . . . . . . 150
3.5 Experimental Measurements . . . . . . . . . . . . . . . . . . . . . . . 154

3.5.1 Samples and experimental setup . . . . . . . . . . . . . . . . . 154
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4 A comparison of the Microring, the Taiji, and the Infinity-Loop microres-
onators 159
4.1 Spectral responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 Sensing performances . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5 Matrix of Hermitian and non-Hermitian microresonators 167

Conclusions and Perspectives 175

Publications 181

A Chips design 185
A.1 Couplings simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B Experimental procedure for the interferometric excitation 193

Bibliography 195



Acronyms

InGaAs indium gallium arsenide. 61

SiON silicon oxynitride. 90, 92, 93, 97, 100

SiO2 silica. 6, 7, 62, 97, 118, 119, 154, 166, 190

SiOx silicon oxide. 97

Si silicon. 6, 62, 97, 116, 154, 155, 175, 190

2D two-dimensional. 169

3D three-dimensional. 51–53, 55, 57, 126

ALPI ERC-PoC ALPI Project. 188

AS Alignment Stage. 60, 61, 95, 96

BACKUP BACKUP project: Unveiling the relationship between brain connectivity
and function by integrated photonics. 185, 188

BPSG borophosphosilicate. 97

BS backscattering. 8–10, 12, 20, 24–36, 39–41, 43, 45, 48, 50, 52, 53, 55, 56, 58, 59,
64, 66–68, 70, 77, 78, 116–123, 125, 126, 131, 133, 135, 137, 141–145, 152, 153,
157–160, 166, 171, 175–177, 187, 188

BWG bus waveguide. 7

C constructive-like. 98–103, 107, 108, 110, 112–114

https://r1.unitn.it/back-up/projects/projects/erc-poc-alpi-project/
https://r1.unitn.it/back-up/


2

CCW counterclockwise. 7, 19, 21, 25–27, 29, 30, 35–37, 49, 54, 56, 78–80, 93–95, 100,
102, 104, 105, 107–109, 111, 117, 118, 134, 159, 167, 169, 176

CMOS Complementary Metal-Oxide Semiconductor. 6

CMT Coupled Mode Theory. 190, 191

CPA Coherent Perfect Absorption. 147–150, 164, 177

CR crossing. 6

CRD Cavity Ring-Down. 48, 54, 56

CROW coupled resonators optical waveguides. 186, 187

CW clockwise. 7, 19, 21, 25–27, 29, 30, 35–37, 52, 54, 56, 78–80, 93, 95, 100, 104, 105,
107–109, 111, 117, 118, 134, 159, 167, 169, 176

CWTL Continuous Wave Tunable Laser. 60, 62, 71, 95, 96

D destructive-like. 99, 100, 102, 103, 107, 108, 110, 112–114

DL Delay Line. 60, 61

DP Diabolic Point. 5, 7, 8, 11, 21, 31, 32, 123, 124, 161, 176, 177

EDFA Erbium Doped Fiber Amplifier. 95, 96

EF Enhancement Factor. 18, 23, 24, 94, 102, 112, 139–141

EP Exceptional Point. 5–10, 77–79, 116, 123–126, 128, 133, 135–137, 139, 143–145,
147, 150, 158, 161, 163, 164, 166, 176–178, 187

ER Extinction Ratio. 17, 18, 23, 24, 27, 29, 120

F Fano-like. 98, 99, 102, 103, 107, 108, 110, 112–114

FCA Free Carrier Absorption. 93

FCD Free Carrier Dispersion. 93

FP Fabry-Pérot. 9, 62, 63, 77, 82, 89–91, 94, 98, 100, 102, 104, 106–113, 115, 116

FPC Fiber Polarization Controller. 60, 61, 95, 96



3

FPO Fabry-Pérot Oscillation. 89–91

FS Fiber Splitter. 60

FSR Free Spectral Range. 17–19, 22, 35, 91, 98

FWHM Full Width at Half Maximum. 17, 18, 22, 23, 36, 39–41, 45, 48, 59, 63, 64, 70,
75, 81, 128, 176

GND ground. 188, 190

GRT grating. 6

ILMR Infinity-Loop Microresonator. 7–10, 133–151, 153–166, 175, 177, 178, 185–187

IRC Infrared Camera. 60, 62

laser light amplification by stimulated emission of radiation. 60, 77, 92, 95

MMI Multi-Mode Interferometer. 6, 71

MR Microresonator. 6–25, 27–34, 36, 40–59, 62–70, 72–75, 77–79, 81, 84, 88, 93, 94,
105, 106, 116, 119, 120, 122, 123, 125, 126, 128, 134, 136, 141, 151, 159–178, 187,
188, 193

MZI Mach Zhender Interferometer. 71, 187

OC Optical Circulator. 60, 61, 95, 96, 194

OI Optical Isolator. 60, 95, 96

PC Personal Computer. 60–62, 95

PD photodetector. 60–62, 95, 96, 193, 194

PECVD Plasma-Enhanced Chemical Vapor Deposition. 97

PELM Photonic Extreme Learning Machine. 185, 186, 188

PicoScope PC Oscilloscope. 60, 62

PID Proportional–Integral–Derivative controller. 60, 61

https://r1.unitn.it/pelm/


4

PSWO particle swarm optimization. 120

Q Quality Factor. 8, 9, 18, 19, 23, 24, 30, 39, 40, 45, 48, 50, 54, 56, 58, 59, 63, 64, 66,
68, 70, 75, 78, 81, 116, 119–123, 128, 141, 166, 175, 176, 178

SCISSOR side-coupled integrated sequences of resonators. 186, 187

SOI Silicon-on-Insulator. 62

TC Temperature Controller. 60

TCMT Temporal Coupled Mode Theory. 7, 9, 19, 25, 35, 37, 48, 67, 69, 77, 78, 82,
85, 116, 123, 133, 135, 141, 150, 152, 154, 156, 157, 171, 175, 176

TE Tranverse Electric. 61, 62, 119

TJMR Taiji Microresonator. 7–10, 77–79, 81–87, 89–102, 104–131, 133–137, 141, 142,
151, 159–178, 185–187

TM Tranverse Magnetic. 97

TMM Transfer Matrix Method. 7, 9, 12, 19, 22, 23, 33, 35, 77, 82, 85, 86, 91, 104, 105,
133, 150, 152, 154, 157, 171, 175, 191

TO Thermo Optic. 8, 104, 105

TOE Thermo Optic Effect. 93, 94, 100

TPA Two Photon Absorption. 93

VOA Variable Optical Attenuator. 60–62, 193, 194

WG waveguide. 6–8, 10, 12–14, 17, 24, 25, 30, 34, 49, 61–66, 68, 77–79, 81–84, 90–95,
97, 104–107, 111, 116, 118–120, 122, 124, 127, 133, 134, 139, 141, 143, 151, 152,
154, 155, 170–172, 175–178, 187, 190, 191



Introduction

Classical and quantum systems are usually described by Hermitian and non-
Hermitian Hamiltonians. Hermitian Hamiltonians describe isolated systems, char-
acterized by energy conservation. The Hermiticity of these systems ensures the
presence of only real-valued energy eigenvalues. Unlike Hermitian systems, the
non-Hermitian ones are open systems and therefore exhibit loss and/or gain. They
do not conserve energy and can therefore exhibit interesting asymmetric couplings
between the levels of the system. In general, the eigenvalues of these systems are
complex, i.e. they have an imaginary part (corresponding to losses and gains) that
is not zero. In 1998 Bender and Boettcher show in [1, 2] that even non-Hermitian
systems can have only real eigenvalues if the Hamiltonian satisfies the parity time
symmetry (PT-symmetry). In these special cases, the system is not isolated, the
modes of the system exchange their energy, and the losses are perfectly balanced
by the presence of gains. Although PT-symmetric systems are not isolated, they
are in equilibrium and their energy levels are real as in a Hermitian system [1, 2].
This has led to a great interest in the study of these special non-Hermitian sys-
tems [2, 3, 4, 5]. These systems have been studied in different areas such as in optics
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], in microwave cavities [21, 22], super-
conductivity [23, 24], atomic diffusion [25], electronic circuits [26, 27], mechanical
systems [28] and graphene [29, 30].

Another important difference between Hermitian and non-Hermitian systems
concerns their degeneracies. Hermitian degeneracies are called Diabolic Points
(DPs) and are characterized by coincident eigenvalues and mutually orthogonal
eigenvectors [4]. In contrast, non-Hermitian degeneracies are called Exceptional
Points (EPs). At the EP both the eigenvalues and the eigenvectors coalesce [4, 31,
32, 3]. Both DPs and EPs have been studied in many different physical systems.
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In particular, the coalescence of the eigenstates present at an EP has been studied
in several fields, such as in optics [33, 34, 35, 36, 37, 38, 6, 39], in the microwave
Physics [40, 41], in atom-cavity systems [42], and in acoustic systems [43]. In
addition, the EP can be used for different applications or devices, such as enhanced
sensors [35, 44, 45, 46, 32, 47, 48, 49, 50], unidirectional reflectors (unidirectional
invisibility) [11, 51, 34, 52, 14], chiral transmission [53, 54, 55, 56, 57, 58], loss-
induced transparency [6], lasers (unidirectional lasers, chiral lasers, single-mode
lasers, PT-lasers, loss-induced suppression and revival of lasing, laser line width
broadening) [55, 59, 36, 60, 61, 55, 62, 20, 63, 64, 65, 66, 67, 68], topological devices
(topological lasers, topological energy transfer) [69, 70, 71], EP-based gyroscopes
[72, 73, 74, 75], asymmetric mode switching devices [76, 41], and non-reciprocal
optical components which show a violation of the Lorentz reciprocity theorem
(unidirectional transmission devices) [39, 77, 78, 79, 80].

A powerful platform for studying Hermitian and non-Hermitian physics is
integrated photonics, because of its miniaturization and the ability to have loss and
gain. Integrated photonics is based on waveguides (WGs) of a material with a
high refractive index, we used silicon (Si) with a cross section of 450 nm × 220 nm,
surrounded by a material with a low refractive index, such as silica (SiO2). The
waveguides, as the name suggests, guide light and are used to construct the basic
components of integrated optical circuits. Light, as an electromagnetic field, is not
completely confined within the core of the WG. The field in the WG cladding is
called the evanescent field and is used to exchange optical power from one WG to
a nearby WG, i.e. to couple WGs. WGs are arranged in several geometries: the
Microresonator (MR, composed of a closed WG coupled to a bus waveguide) [81,
82], the Multi-Mode Interferometer (MMI) [83], the WGs coupler, the Wavelength-
Division Multiplexing (WDM) device [84], the crossing (CR) [85, 86, 87, 88] and
the grating (GRT) [89, 90, 91]. These structures can be implemented in regions of
the order of 500 µm2. Consequently, using photonic chip fabrication techniques,
such as Complementary Metal-Oxide Semiconductor (CMOS) technology, one can
fabricate miniaturized structures that are very stable and facilitate the experimental
characterization of Hermitian and non-Hermitian phenomena.

Light propagation in the integrated WGs is subject to power losses that make
the system a characteristic non-Hermitian system. In fact, the study of many phe-
nomena characteristic of EPs and many of the devices listed above use integrated
optics and optics in general. By appropriately engineering the integrated struc-
tures, losses can be reduced or controlled through the use of the evanescent field
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coupling between different WGs. An example of a tailored made non-Hermitian
system in a fully integrated device is the Taiji Microresonator (TJMR) [52, 36]. The
TJMR consists of a microresonator with an embedded S-shaped WG which induces
a unidirectional coupling between the microresonator counter-propagating modes
(the clockwise and the counterclockwise ones), see Fig. 1 (b). Other optical non-
Hermitian systems described in the literature are for example the SiO2 micro-toroid
cavity with two silica nano-tips [35], two microresonators coupled together and
with two bus waveguides (BWGs) [92], a microresonator coupled to a waveguide
with at one end a symmetric reflector [57, 48, 49]. By using these devices, the physics
of EPs can be studied.

My thesis aims to study integrated Microresonators (MRs) characterized by
both a Hermitian and a non-Hermitian Hamiltonian, built by passive (no gain) and
non-magnetic materials. In particular, I studied three different microresonators: the
microring resonator (MR), the TJMR [52] and a new geometry called Infinity-Loop
Microresonator (ILMR) [93], see Fig. 1.

(c)
ILMR

TJMRMR (b)(a)

Figure 1: Sketch of a microring resonator (MR) (a), a Taiji Microresonator (TJMR) (d), and a Infinity-
Loop Microresonator (ILMR) (c). In all three microresonators, the field within them is
coupled via a bus waveguide (straight line in the three panels).

The three MRs are modeled with a Transfer Matrix Method (TMM) and a Tem-
poral Coupled Mode Theory (TCMT). In the TCMT, a MR is described as a two-level
system. These correspond to its two counterpropagating modes, the clockwise (CW)
and the counterclockwise (CCW) ones. Through the TCMT, we derive the Hamilto-
nian of the system. Neglecting propagation losses, this turns out to be Hermitian
for the MR, while it is non-Hermitian for the TJMR and the ILMR. Therefore, the
MR is at a DP, while the TJMR and ILMR are at an EP. Since the TJMR and the
ILMR are at an EP, they have interesting features such as the possibility of being
unidirectional reflectors and the possibility of breaking Lorentz reciprocity when
used in the nonlinear (high power) regime.

These MRs are also studied when perturbed by Hermitian and non-Hermitian



8

backscattering (BS). Indeed, the MRs integrated with a high quality factor (in sil-
icon Q > 50, 000 [47]) show a non-negligible coupling between the two coun-
terpropagating modes caused by the BS. The BS is mainly due to the roughness
of the lateral surfaces of the WGs. Other causes of BS are the coupling regions
between the WGs or the presence of molecules/particles near the core of the WGs
[94, 95, 47, 48, 96, 97, 35, 98, 99, 100, 101, 102, 103]. The BS causes a splitting of
the eigenvalues of the system, which leads to a splitting of the resonance. In this
work, the behavior of the three MRs is studied as a function of the BS strength. This
last can also be considered as a perturbation to the ideal MR, thus the MR can be
also studied as a sensor. In particular, the three devices are compared and a linear
dependence of the eigenvalue splitting as a function of the perturbation near the
DP and a square root dependence near the EP (enhanced sensitivity) [35, 47] are
reported.

The BS splitting resonance reduces the Quality Factor (Q) of the resonator. In this
work we see how to solve this problem using interferometric excitation [102, 103].
We call interferometric excitation a new technique that involves a simultaneous
coherent excitation of the MR from both sides of a bus waveguide. With interfero-
metric excitation, by varying the relative phase between the two excitation fields,
a single supermode of the system relative to one of the two eigenvalues can be
excited. In this way, in the transmission, one no longer observes a splitting, but
a single Lorentzian dip corresponding to one of the two eigenvalues. Using this
technique it is then possible to increase the Q of the MR and measure directly the
eigenvalues of the system from the spectrum. We also see that this technique is valid
not only for the steady-state spectral response, but also for the temporal response.

The TJMR is studied theoretically and experimentally in the linear regime (low
power), but also in the nonlinear regime (high power), where the Thermo Optic
(TO) effect becomes relevant. In this case, an increase in the optical intensity inside
the microresonator is followed by an increase in its temperature and, consequently,
in its refractive index. The increase in the refractive index causes a redshift of the
resonant frequency. A Hermitian MR being symmetrical, has always a transmission
response independent of the microresonator excitation direction. On the other hand,
the TJMR is a non-Hermitian chiral structure characterized by an asymmetrical
coupling between the two counterpropagating modes. Therefore, it has different
transmissions depending on the excitation direction. This means that the TJMR in
the nonlinear regime can break the Lorentz reciprocity theorem [77, 78].

The study of the ILMR, which consists of an infinity-shaped closed WG coupled
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with a bus waveguide [see Fig. 1 (c)], is also reported. Due to its peculiar geometry,
the coupling occurs at two points that correspond to the two infinity-shaped mi-
croresonator lobes. This causes particular Riemann sheets [41, 3, 104, 4, 105, 106].
In particular, the Riemann surfaces given by the eigenvalues of the system as well
as those obtained from the transmission and reflection spectra are presented. We
compute the sensitivity of a ILMR used as a sensor and compare it with those of a
MR and a TJMR.

My thesis is organized as follows.

Chapter 1 studies the spectral and temporal responses of an ideal and non-ideal
MR, that is characterized by a Hermitian or non-Hermitian BS. The system is
modeled with the TMM and the TCMT. The behavior of the MR as a function
of a Hermitian backscattering perturbation is presented in order to study the sensit-
ivity near a diabolic point. A new method to excite individually the supermodes of
the system, named the interferometric excitation [102, 103], is also presented. Here
we study the spectral response in both the steady state and transient (time response)
regimes. Finally, experimental measurements are reported to verify experimentally
the theoretical models.

Chapter 2 introduces the TJMR by using the formalism introduced in the pre-
vious chapter. It is demonstrated that it works at an Exceptional Point (EP), is a
unidirectional reflector, and that in the nonlinear (high power) regime it breaks the
Lorentz reciprocity by showing different transmissions depending on the excitation
direction. This chapter also includes in the model the Fabry-Pérot (FP) cavity [107]
created by reflections from the ends of the bus waveguide. It is then studied how
the interaction between the FP cavity and the TJMR modifies the main properties
of the TJMR (unidirectional reflection, non-reciprocal transmission) [78]. Then, the
backscattering is introduced to study the sensing enhancement of the EP. The influ-
ence of the characteristic TJMR parameters such as backscattering coefficient as a
function of the TJMR Q-factors is studied [47]. Finally, experimental measurements
validating the theoretical analysis are reported.

Chapter 3 analyzes a new integrated structure at an EP, the ILMR [93]. Here
the ILMR is modeled with both the TCMT and the TMM. Spectral responses of
different ILMRs, geometrically symmetric or asymmetric, are reported, showing
that the ILMR can exhibit completely different reflections (unidirectional reflection,
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like the TJMR) or identical reflections, remaining at an EP. In addition, the Riemann
sheets of the ILMR and its efficiency in sensing BS perturbations are studied.

Chapter 4 discusses the main differences between the three analyzed structures
(the MR, the TJMR, and the ILMR). In particular, the greater tunability and efficiency
in detecting small BS perturbations of the ILMR compared to the normal MR and
the TJMR is highlighted.

Chapter 5 reports a first study of topological matrices of TJMRs. In particular,
it presents the structures designed to study topologically protected edge states
[108, 109, 69].

The "Conclusions and Perspectives" chapter reports the final considerations and
future prospects of this research project.

The "Publications" chapter lists the publications made during my academic ca-
reer.

Appendix A describes the sample designs in which I participated. It also reports
the procedure used to simulate and then design the coupling regions between WGs.

Appendix B describes the experimental procedure used to perform the interfero-
metric excitation measurements.



Chapter 1
Microring Resonator

This chapter describes the microring resonator [82, 96, 110, 111, 112, 81]. It is
one of the most important components in integrated optics and is used in various
applications. For example, it can be used as a sensor to detect temperature changes
[113], to detect the concentration of a contaminant [114, 115, 116, 113, 117, 35], to
detect strain [118], to detect magnetic field [119] and to detect acceleration [120]. In
addition, it is also used as a tunable photonic element to filter a signal [121], and to
address signals of different wavelengths in different waveguides [122].

In Sec. 1.1 its geometry is described and two models are developed that can
describe its behavior and, in particular, its spectral responses. After the description
of the ideal MR and the explanation of all the characteristic parameters of this type
of MR, we move on to the introduction of backscattering (Sec. 1.2). This is a process
caused by the presence of surface-wall roughness, which couples the propagating
and the counter-propagating waves. Then, the evolution of the eigenvalues of the
system around a DP is described.

In Sec. 1.3 a new methodology is described to be able to derive both the real
and imaginary parts of the eigenvalues directly from the experimental spectrum.
This is useful when the eigenvalues of the MR differ due to backscattering and two
dips/peaks appear in the transmission spectra. This technique is called interferomet-
ric excitation and consists in the simultaneous excitation of the two modes of a MR
by the use of two coherent fields having a specific relative phase (±π/2) and a ratio
between the input intensities which is related to the coupling coefficients between
the two propagating modes.

In Sec. 1.4, in order to have a more complete description of MR, the study of
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the time response of a MR, first ideal and then non-ideal in the presence of BS, is
reported.

Finally, Sec. 1.5 describes the experimental setup used to perform both single-
side excitation and interferometric excitation measurements. In addition, experi-
mental measurements on integrated silicon MRs are reported. It is then shown that
the models and techniques presented in this section provide an excellent description
of the experimental results we measured.

Part of this chapter is derived from [102, 103, 93].

1.1 Design and theoretical model

The standard MRs consists of a closed waveguide (WG) that can be coupled to
one or more WGs in such a way that light can be fed into and extracted from it. There
are a variety of MR geometries, but the most common ones are the ring-shaped or
racetrack-shaped geometries, see Fig. 1.1. These MRs are theoretically equivalent,
since the coefficients describing them are the same. Therefore, in the following we
will use the most common MR, the microring resonator, as a standard.

(b)(a) (c)

Figure 1.1: Sketches of the microring resonator, (a) and (c), and the racetrack microresonator (b). In
(a) and (b) the microresonator is shown in the all-pass configuration, whereas in (c) the
microring resonator is represented in the add-and-drop configuration.

Typically, a MR is coupled to one or two WGs. Specifically, if it is coupled to
only one bus waveguide then it is in the all-pass configuration, see Fig. 1.1 (a),
while if it is coupled to two WGs it is in the add-drop configuration, see Fig. 1.1 (c).
The following is a study of a microring resonator in the all-pass configuration, see
Fig. 1.1 (a).

1.1.1 Transfer Matrix Method

One way to describe a microring resonator is to use the TMM [107, 82, 81]. The
idea behind this method is to write down all the relationships between the fields
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inside and outside the MR. Then, by solving the system of equations, the fields
exiting from the bus waveguide are obtained.

3 2

0 1

t | ik

σ
L

Figure 1.2: Sketches of the microring resonator in the all-pass configuration. The black arrows
indicate the En fields, where n = 0, ..., 3, and their propagation direction. The red arrows
instead identify the Enr fields, which have opposite propagation directions. L is the
perimeter of the microresonator measured at the center of the waveguide. All parameters
are described in the text.

With the help of Fig. 1.2 we write the equations that link the fields in the different
sections of the MR: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 = tE0 + ikE3

E2 = tE3 + ikE0

E3 = σe
iψE2

E0r = tE1r + ikE2r

E2r = σe
iψE3r

E3r = tE2r + ikE1r

(1.1)

ψ :=
2π

λ
neffL , σ := e−αL , L := 2πR , (1.2)

where t and ik are the transmission and coupling coefficients between the bus
waveguide and the microring resonator. ψ is the phase acquired by the field as it
travels one lap of the MR, λ is the wavelength of the input field, neff is the effective
mode index of the WG, σ2 is the percentage of intensity remaining after a round
trip (0 ⩽ σ ⩽ 1, related to propagation losses), α is the propagation loss coefficient,
L is the perimeter of the MR, and R is its radius. Since the system is passive, t and
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k must be between 0 and 1 and must also satisfy the inequality k2 + t2 ⩽ 1. The
imaginary unit in front of the coefficient k is used to account for the phase acquired
by the field when it passes from one WG to another.

The field En, with n = 0, ..., 3, is the field at the black arrow with the number
n given in Fig. 1.2. Furthermore, the direction of the arrow corresponds to the
propagation direction of the field. Similarly, the field Enr is related to the red
colored arrows shown in Fig. 1.2. Therefore, it is possible to excite the system via
the E0 and E1r fields from left and right, respectively. Instead, the output fields are
E1 and E0r from right and left, respectively. To make the following formulas clearer
and easier to interpret, we use the following definitions:

Ein,L := E0 , Eout,R := E1 , (1.3)

Eout,L := E0r , Ein,R := E1r . (1.4)

Solving the system of equations in Eq. 1.1 yields the following fields:

Eout,R = Ein,L

(︃
t−

k2σ

e−iψ − tσ

)︃
, (1.5)

Eout,L = Ein,R

(︃
t−

k2σ

e−iψ − tσ

)︃
, (1.6)

E2 = Ein,L
ike−iψ

e−iψ − tσ
. (1.7)

Therefore, the scattering matrix (SMR) of the MR is [107]:(︄
Eout,L

Eout,R

)︄
= SMR

(︄
Ein,L

Ein,R

)︄
, (1.8)

SMR =

(︄
0 t− k2σ

e−iψ−tσ

t− k2σ
e−iψ−tσ

0

)︄
. (1.9)

Since in this ideal model we have neglected any phenomena that could cause
backreflection of the electromagnetic field, the MR will show zero reflection. In
fact, in Eq. (1.5) we observe that Eout,R depends only on the input field Ein,L and is
independent of the field Ein,R. Similarly, Eout,L depends only on Ein,R, see Eq. (1.6).
Moreover, the transmission by exciting the MR from right or left is equal. Therefore,
as expected, the Lorentz Reciprocity Theorem is satisfied. These considerations can
be deduced directly from the scattering matrix [Eq. (1.9)]; in fact, the elements on
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the diagonal are zero and those on the antidiagonal are equal.

The intensity transmission T is equal to:

T =
|Eout,R|

2

|Ein,L|2
=

|Eout,L|
2

|Ein,R|2
= (k2 + t2) −

k2
(︁
1−

(︁
k2 + t2

)︁
σ2
)︁

1− 2σt cos[ψ] + σ2t2
(1.10)

Assuming zero losses in the coupling (k2 + t2 = 1), we obtain [82, 81]:

T =
t2 − 2σt cos[ψ] + σ2

1− 2σt cos[ψ] + σ2t2
= 1−

(︁
1− t2

)︁ (︁
1− σ2

)︁
1− 2σt cos[ψ] + σ2t2

, (1.11)

T = 1−
k2g2

1− 2σt cos[ψ] + σ2t2
, (1.12)

where we introduced the new variable g2 := 1− σ2 which describes the amount of
loss in a round trip.

Equations (1.5), (1.6) and (1.11) show that the spectral responses are periodic in
ψ. In particular, T has minima equal to:

Tmin =
(t− σ)2

(1− tσ)2
at ψ = 2πm with m ∈N+ , (1.13)

at resonance, and maxima equal to:

Tmax =
(t+ σ)2

(1+ tσ)2
at ψ = π+ 2πm with m ∈N+ , (1.14)

at anti-resonance. At resonance, the internal field inside the resonator is maximum
(k2/(1 − tσ)2), and the field coming out of the MR makes destructive interference
with the field propagating along the bus waveguide. The MR is at resonance when
the optical path (neffL) is a multiple of the wavelength:

λres =
neffL

m
, m ∈N+ . (1.15)

Equation 1.13 shows that zero transmission at resonance can be obtained if t = σ or
equivalently if k2 = g2. This condition corresponds to the critical-coupling regime
where the transmission coefficient t of the coupling is equal to the propagation
coefficient σ, or rather where the power coupled to the MR is equal to the power
lost in a round trip. On the other hand, if t > σ (k2 < g2) then the MR is in the
under-coupling regime, while if t < σ (k2 > g2) then the MR is in the over-coupling
regime.
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(a)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

FSR

FWHM
ER

Figure 1.3: Transmission response of the MR as a function of the wavelength. In (a) are reported
the name of the most important features of the spectral transmission. Panels (b), (c), and
(d) refer to the three coupling regimes of the MR, under-coupling, critical-coupling, and
over-coupling, respectively. (b1), (c1), and (d1) show the intensity transmission (T ). (b2),
(c2), and (d2) report the phase of the output field (arg [Eout,R/Ein,L] = arg [Eout,L/Ein,R]).
For panel (a) we used λres = 1550 nm, neff [λres] ≃ 2.35, L = 1000 µm, Q ≃ 8.1 × 103,
t = 0.8 and σ = 0.7. For panels (b), (c) and (d) we used λres = 1550 nm, neff [λres] ≃ 2.36,
L = 50 µm, tσ = 0.9952 ≃ 0.99 and Q ≃ 2.4 × 104. For (b1) and (b2) t = 0.997 and
σ ≃ 0.0774. For (c1) and (c2) t = σ = 0.995. For (d1) and (d2) t ≃ 0.0774 and σ = 0.997.
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As can be seen from Eq. (1.11) and Eq. (1.5), the intensity transmission is in-
dependent of the exchange of the t and σ parameters [see Fig. 1.3 (b1) and (d1)],
while the output electric field is affected by the exchange. Therefore, the only way
to distinguish the over-coupling regime from the under-coupling regime, when we
can only measure the outgoing fields in the stationary regime around a resonance,
is to measure not only the field intensity but also its phase. In fact, as observed in
Fig. 1.3, the phase of the outgoing field has a different trend in the three regimes.
In critical-coupling, it is observed that the transmission intensity has a spectral dip
that reaches zero at resonance, see Fig. 1.3 (c1). In fact, at resonance, the field com-
ing out of the MR has a π phase difference with respect to the field propagating
in the bus waveguide (destructive interference). In the critical-coupling regime,
since the intensities of the field exiting the MR and the one propagating in the bus
waveguide are equal, complete destructive interference occurs, resulting in a zero
intensity output. Therefore, the phase at resonance is undefined and there is a jump
of π in phase, as shown in Fig. 1.3 (c2). In contrast, in the under-coupling regime,
since the coupling with the resonator is smaller, the outgoing field intensity of the
MR is smaller than that of the field that continues into the bus waveguide, so at
resonance there will be non-zero transmission and the phase of the outgoing field
will be 0 (the field that remains in the bus waveguide wins), see Fig. 1.3 (b1) and (b2).
Finally, in the over-coupling regime there is k2 > g2, so the field exiting the MR has
a higher intensity than that continuing into the bus waveguide. Consequently, at
resonance, the phase of the outgoing field will be equal to −π and the intensity will
be different from zero, see Fig. 1.3 (d1) and (d2).

The spectral characteristic parameters are the Full Width at Half Maximum
(FWHM), the Free Spectral Range (FSR), and the Extinction Ratio (ER), see Fig. 1.3 (a).
The FWHM of the resonance spectrum can be derived from Eq. (1.11) [82]:

FWHM =
λ2res(1− tσ)

πngL
√
tσ

, (1.16)

where ng is the WG group index that is defined as:

ng = neff − λ
dneff

dλ
. (1.17)

The group index is related to the velocity with which the envelope of the wave
propagates through the WG (group velocity) vg = c/ng, where c is the speed of
light in vacuum. From Eq. (1.11) we can also derive the distance between two
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consecutive resonances:

FSR =
λ2

ngL
, (1.18)

which is inversely proportional to the perimeter of the MR. The ER is the ratio of
the transmission intensity at anti-resonance to that at resonance. From Eq. (1.14)
and Eq. (1.13) we get:

ER =
Tmax

Tmin
=

(t+ σ)2

(1+ tσ)2
(1− tσ)2

(t− σ)2
. (1.19)

Other very important parameters that describe a MR are: the Quality Factor
(Q), the Finesse, the Enhancement Factor (EF) and the round-trip time. The Q is a
dimensionless quantity that describes the sharpness of the resonance. The Q has
different definitions, which become equivalent for large values of Q [82, 81]:

Q = 2π
energy stored

energy dissipated per cycle
, (1.20)

Q =
λres

FWHM
=
πngL

√
tσ

λres(1− tσ)
. (1.21)

The higher the Q, the better the MR will be. Equation (1.21) shows that Q and MR
losses are linked. Larger Q are associated with smaller g (higher σ). The Finesse is
defined as:

Finesse =
FSR

FWHM
=
π
√
tσ

1− tσ
. (1.22)

The enhancement factor is defined as the ratio between the power inside the MR
and the input power at resonance, which we get from Eq. (1.7):

EF ≃ k2

(1− tσ)2
. (1.23)

With equal losses, the EF is higher in the critical-coupling regime when t = σ.

The round-trip time is:

τ̃ =
ngL

c
, (1.24)

and the repetition frequency (its inverse) is:

f̃ =
c

ngL
. (1.25)

Later we will see that this parameter turns out to be useful for linking equations
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derived by TMM to those derived by TCMT. Moreover, the FSR in angular frequency
is:

FSRω = 2π
c

ngL
= 2πf̃ . (1.26)

1.1.2 Temporal Mode Theory

Another way to describe the MR is by using the temporal mode theory [123, 124,
125, 126, 127]. In temporal mode theory the MR is described by its characteristic
modes. The modes of a simple MR are the CW and CCW modes. The former
describes the clockwise rotating field in the MR, while the latter describes the
counterclockwise rotating field. The ideal MR has no backscattering and therefore
the two counterpropagating modes do not interact. As in Sec. 1.1.1, the modes of
the MR are characterized by intrinsic loss γ (propagation loss, material absorption,
bending losses and scattering) and extrinsic loss Γ (loss due to the coupling with
the bus waveguide), see Fig. 1.4. These two parameters, γ and Γ , are loss/coupling
rates. In addition to the two modes CW and CCW, which we identify with αCW

and αCCW, a key parameter is the resonance angular frequency of the MR, ω0.
Instead, ω is the angular frequency of the input wave. Unlike the method used
in the previous subsection (TMM), the temporal mode theory only describes the
behavior of the MR around a single resonance, so it will not be possible to observe
the FSR using this technique. In addition, to accurately describe the MR, the loss
and coupling rates must be small (γ ≪ f̃ ≪ ω0 and Γ ≪ f̃ ≪ ω0). This condition
is typically satisfied for MR with high Q (Q ≳ 103).

Using the parameters just described and taking into account the conservation
of energy near the coupling, we can write the system of equations describing the
modes of the system [102]:

i
d
dt

(︄
αCCW

αCW

)︄
=

(︄
ω0 − iγtot 0

0 ω0 − iγtot

)︄(︄
αCCW

αCW

)︄
−

√
2Γ

(︄
Ein,L

Ein,R

)︄
, (1.27)

where γtot = γ + Γ is the total loss rate and Ein,L (Ein,R) is the excitation field from
the left (right) input of the bus waveguide. Thus, the Hamiltonian of the system is:

H =

(︄
ω0 − iγtot 0

0 ω0 − iγtot

)︄
. (1.28)
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Eout,R

Ein,R

Eout,L

Ein,L

αCCWαCW

γ

Γ

Figure 1.4: Sketches of the microring resonator in the all-pass configuration. γ and Γ are the intrinsic
and the extrinsic damping rate. The index R,L refer to left and right. Ein and Eout are the
input and the output fields, respectively. All parameters are described in more detail in
the text.

The off-diagonal terms of the Hamiltonian are zero because in the ideal MR (without
BS) the two counterpropagating modes do not interact. Note that γ and Γ are real
numbers, so γtot ∈ R. In particular, in the absence of gain, [γ, Γ, γtot] ∈ R+.

For the system to be completely Hermitian, its Hamiltonian must be equal to
its conjugate transpose H = H†. From the Eq. (1.28) we see that the Hamiltonian
is in fact non-Hermitian, H ≠ H†. This is due to the presence of losses in the
system. However, since the losses are the same for the two modes of the MR, the
non-Hermiticity of the MR does not yield any special property. Therefore, since the
two modes are equivalent and there is a symmetric (zero) coupling between them,
we can consider the MR as a Hermitian system (Hermitian coupling between the
modes of the MR).

Equation (1.28) shows that the eigenvalues of the system are two, degenerate
and equal to:

λ1 = λ2 = ω0 − iγtot . (1.29)

As expected, they are not real because the MR has losses. If we compute the
eigenvectors instead, we get

ν1 =

(︄
1

0

)︄
, ν2 =

(︄
0

1

)︄
. (1.30)
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Therefore the eigenvectors are orthogonal to each other, in fact, their inner product
is zero < ν1|ν2 >= 0. Since the eigenvalues are degenerate and the eigenvectors
are orthogonal, this means that the system is on a DP. Thus, an ideal MR works on
a DP.

To derive the output fields, we must also write the equations that connect them
to the input fields and to the internal modes of the MR [102]:(︄

Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

(︄
αCCW

αCW

)︄
, (1.31)

where Eout,R and Eout,L are the electric fields at the right and left edge of the bus
waveguide, respectively. Solving Eq. (1.27) and Eq. (1.31) in the steady state and
assuming:

Ein,L := εin,L e
−iωt , Ein,R := εin,R e

iϕ e−iωt , (1.32)

αCCW := aCCW e−iωt , αCW := aCW e−iωt , (1.33)

Eout,R := εout,R e
−iωt , Eout,L := εout,L e

−iωt , (1.34)

we obtain:

εout,R =

(︃
1−

2Γ

−i∆ω+ γtot

)︃
εin,L , (1.35)

εout,L =

(︃
1−

2Γ

−i∆ω+ γtot

)︃
eiϕεin,R , (1.36)

aCCW =
i
√
2Γ

−i∆ω+ γtot
εin,L , (1.37)

aCW =
i
√
2Γ

−i∆ω+ γtot
eiϕεin,R , (1.38)

where ∆ω = ω −ω0, ε is the input or output field amplitude, and ϕ is the phase
difference between the incoming field from the right side of the bus waveguide and
the incoming field from the left side.

As seen in Sec. 1.1.1, Eq. (1.35) and Eq. (1.36) show that εout,R is independent
of εin,R, and εout,L is independent of εin,L. This is due to the absence of coupling
between the two counterpropagating modes within the MR.
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The transmission intensity can be easily derived by the Eq. (1.35) or the Eq. (1.36):

T =

⃓⃓⃓⃓
εout,R

εin,L

⃓⃓⃓⃓2
=

⃓⃓⃓⃓
εout,L

εin,R

⃓⃓⃓⃓2
= 1−

4γΓ

∆ω2 + γ2tot
= 1−

4γΓ

∆ω2 + (γ+ Γ)2
. (1.39)

Equation (1.39) shows that the spectral response of the MR is equal to 1 minus a
Lorentzian with

FWHMω = 2γtot = 2(γ+ Γ) , (1.40)

see Fig. 1.5 (FWHMω is the FWHM in the angular frequency spectrum). Moreover,
as ensured by the Lorentz Reciprocity Theorem, the two transmission spectra are
identical.

Figure 1.5: Graph of the spectral response of a MR. To create this plot, Eq. (1.39) was used. The used
parameters are: γ = Γ = 10 GHz.

As before, we can distinguish between three coupling regimes of the MR. The
critical-coupling regime is when the coupling rate is equal to the rate of intrinsic
losses Γ = γ. By decreasing Γ (Γ < γ) one enters the under-coupling regime, while
for higher Γ (Γ > γ) one is in the over-coupling regime.

The observations made in Sec. 1.1.1 can also be applied to this new formulation,
except for the concept of FSR, in fact in temporal mode theory we focus on a single
resonance.

It is possible to pass from the spectral response of Eq. (1.5) derived using TMM to
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that of Eq. (1.35) by assuming that t ≃ 1 (k≪ 1), σ ≃ 1 (g≪ 1). These assumptions
are satisfied for MR with high Q and are equivalent to satisfying Γ ≪ f̃ and γ≪ f̃.
Therefore, starting from Eq. (1.5), making the following substitutions:

t ≃ 1− Γ

f̃
, k ≃

√︃
2Γ

f̃
, (1.41)

σ ≃ 1− γ

f̃
, g ≃

√︃
2γ

f̃
, (1.42)

tσ ≃ 1− γtot

f̃
, (1.43)

λ0 = λres =
2πc

ω0
, ψ =

∆ω

f̃
, (1.44)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

, (1.45)

and stopping at the first-order expansion, we get Eq. (1.35).

In conclusion, we have demonstrated that, if the following relations are satisfied
(k≪ 1, t ≃ 1, σ ≃ 1) equivalent to (γtot ≪ ω0 or better γtot ≪ f̃), to move from the
coefficients corresponding to TMM to those of temporal mode theory, it is sufficient
to use the following relations:

Γ ≃ f̃(1− t) , Γ ≃ f̃k2/2 , (1.46)

γ ≃ f̃(1− σ) , γ ≃ f̃g2/2 , (1.47)

γtot ≃ f̃(1− tσ) , (1.48)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

. (1.49)

With the temporal mode theory we can also derive the main characteristic para-
meters of a MR, the Q, the Extinction Ratio (ER) and the Enhancement Factor (EF)
[102, 93, 128].

Q =
ω0

FWHMω
=
ω0
2γtot

=
ω0

2(γ+ Γ)
, (1.50)

ER =
γ2tot

γ2tot − 4γΓ
=

(γ+ Γ)2

(γ− Γ)2
, (1.51)

EF =
2Γ f̃

γ2tot
=

2Γ f̃

(γ+ Γ)2
=

2Γc

ngL(γ+ Γ)2
. (1.52)

Thus, we can calculate these parameters directly using the coefficients of the tem-
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poral mode theory. Equation (1.51) and Eq. (1.52) show that the ER and EF are
maximal in the critical-coupling regime (Γ = γ). Fig. 1.6 shows EF ·γ/f̃ as a function
of ξ = Γ/γ:

EF · γ
f̃
=

2ξ

(1+ ξ)2
. (1.53)

Figure 1.6: EF · γ/f̃ as a function of ξ = Γ/γ.

Fig. 1.6 shows that, keeping the intrinsic losses (γ) fixed, the EF is maximized
for ξ = 1, which is the condition for having a critical-coupling, Γ = γ.

1.2 Backscattering and Diabolic Point

In the Sec. 1.1 we saw that in the ideal case there is no coupling between the
counterpropagating modes of the MR. In a more realistic situation, especially for
integrated MRs with high Q, the two modes exchange energy due to the backscatter-
ing (BS) [94, 95, 47, 96, 102, 103, 97, 48]. The latter is mainly due to the surface-wall
roughness of the WGs. The surface-wall roughness is caused by the used fabric-
ation method. The finite lithographic resolution and the etching process are not
able to produce a smooth surface at the sides of the WG core, only a rough surface.
Instead, polishing can produce a much smoother top surface. The roughness creates
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a change in the effective refractive index of the WG along the propagation direction
of the wave, causing retroreflections and thus the BS.

1.2.1 Temporal Coupled Mode Theory

To include the BS in our model, we use the Temporal Coupled Mode Theory
(TCMT) [123, 124, 125, 127]. We identify with βBS,12 the coefficient describing the
coupling rate from the αCW mode to the αCCW mode and with βBS,21 from αCCW to
αCW, see Fig. 1.7. To include this phenomenon in the model, we need to add the

Eout,R

Ein,R

Eout,L

Ein,L

αCCWαCW

γ

β21

Γ

β12

Figure 1.7: Sketch of the microring resonator with backscattering in the all-pass configuration. All
the parameters are described in the text.

following term to the ideal MR [Eq. (1.27)]:

K

(︄
αCCW

αCW

)︄
:=

(︄
0 −iβBS,12

−iβBS,21 0

)︄(︄
αCCW

αCW

)︄
, (1.54)

Consequently, the Hamiltonian of the MR becomes

H =

(︄
ω0 − iγtot −iβBS,12

−iβBS,21 ω0 − iγtot

)︄
. (1.55)

As a result, the eigenvalues of the system are no longer degenerate [102]:

λ1/2 = ω0 ± i
√︁
βBS,12 βBS,21 − iγtot ⇒ λ1 ≠ λ2 , (1.56)



26 Microring Resonator

ν1/2 =
1√︁

|βBS,12|/|βBS,21|+ 1

⎛⎝∓
√︂
βBS,12
βBS,21

1

⎞⎠ (1.57)

⇒ < ν1|ν2 >=
1− |βBS,12|/|βBS,21|

1+ |βBS,12|/|βBS,21|
.

where the inner product is defined as:

⟨︄⎛⎜⎜⎝
x1
...

xn

⎞⎟⎟⎠
⃓⃓⃓⃓
⃓
⎛⎜⎜⎝
y1
...

yn

⎞⎟⎟⎠
⟩︄

= xTy∗ =

n∑︂
i=1

xiy
∗
i = x1y

∗
1 + · · ·+ xny∗n, (1.58)

The BS can be classified into two categories, a Hermitian and a non-Hermitian
scattering. This distinction can be made using the matrix K that couples the two
modes [Eq. (1.54)]. If K is Hermitian (βBS,21 = −β∗

BS,12) then the BS is Hermitian,
otherwise they are both non-Hermitian (βBS,21 ≠ −β∗

BS,12).

We there get the following systems of equations:

i
d
dt

(︄
αCCW

αCW

)︄
=

(︄
ω0 − iγtot −iβBS,12

−iβBS,21 ω0 − iγtot

)︄(︄
αCCW

αCW

)︄
−

√
2Γ

(︄
Ein,L

Ein,R

)︄
, (1.59)

(︄
Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

(︄
αCCW

αCW

)︄
, (1.60)

In the steady state, the solutions of Eq. (1.59) and Eq. (1.60) are

εout,R =

(︄
1−

2Γ (−i∆ω+ γtot)

(−i∆ω+ γtot)
2 − βBS,12βBS,21

)︄
εin,L (1.61)

+

(︄
2ΓβBS,12

(−i∆ω+ γtot)
2 − βBS,12βBS,21

)︄
eiϕεin,R ,

εout,L =

(︄
1−

2Γ (−i∆ω+ γtot)

(−i∆ω+ γtot)
2 − βBS,12βBS,21

)︄
eiϕεin,R (1.62)

+

(︄
2ΓβBS,21

(−i∆ω+ γtot)
2 − βBS,12βBS,21

)︄
εin,L ,
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aCCW =

√
2Γ(∆ω+ iγtot)

(−i∆ω+ γtot)2 − βBS,12βBS,21
εin,L (1.63)

−
i
√
2Γ βBS,12

(−i∆ω+ γtot)2 − βBS,12βBS,21
eiϕεin,R ,

aCW =

√
2Γ(∆ω+ iγtot)

(−i∆ω+ γtot)2 − βBS,12βBS,21
eiϕεin,R (1.64)

−
i
√
2Γ βBS,21

(−i∆ω+ γtot)2 − βBS,12βBS,21
εin,L ,

Where we assumed the conditions given in Eq. (1.32), Eq. (1.33), and Eq. (1.34).
A simultaneous excitation of the system from both sides has been considered in

the equations above. We can observe that the left(right) output fields are equal to the
sum of the transmission of the system given by the incoming field from right(left)
with the reflection of the MR given by the incoming field from left(right). With this
strategy, it is straightforward to change the excitation side of the system. In fact,
for a left excitation, it is sufficient to impose εin,L ≠ 0 ∧ εin,R = 0, while for a right
excitation εin,L = 0∧ εin,R = 0. In the following, we refer to the field at the o output
when the device is excited from the i input as εio, where i = L,R and o = L,R (L
stands for left and R stands for right).

In Fig. 1.8 we report the spectral responses of the MR when subjected to a
Hermitian BS (a) or to a non-Hermitian BS (b).

In the presence of a Hermitian BS, the MR has symmetric spectral responses
with respect to the axis where the detuning ∆ω is zero, see Fig. 1.8 (a1). The two
transmissions, the one related to the excitation from left and the one related to the
excitation from right, are identical (Lorentz Reciprocity Theorem). The inclusion
of the coupling terms between the counterpropagating modes (βBS,12 and βBS,21)
leads to a doublet characterized by two dips in the spectral transmission. This
splitting is a consequence of the interaction between the modes, which causes the
separation of the two eigenvalues of the system. Figure 1.8 (a1) shows that in the
Hermitian case the two dips are symmetrical and balanced, i.e. they have the same
ER. In fact, in the case of the Hermitian BS, the losses of the supermodes describing
the system are equal (the two eigenvalues have the same imaginary part). The
presence of the Hermitian BS means that the reflection spectra are no longer equal
to zero, in fact they show a symmetric spectral doublet (two peaks). In addition,
since the BS is in this case Hermitian, the two reflections (|εLL|

2 and |εRR|
2) are equal.

The phase spectrum of the fields also changes when BS is present, see Fig. 1.8 (a2).
In particular, in Fig. 1.3 only a sudden change at resonance is observed. In contrast,
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(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 1.8: Spectral response of a MR with BS. Column (a) is characterized by a Hermitian BS (βBS,12 =
−β∗

BS,21 = 20 GHz). Column (b) has a non-Hemiltonian BS (βBS,12 ≠ −β∗
BS,21, βBS,12 =

22GHz,βBS,21 = (−15+4i)GHz). The first row shows the spectral responses at the output
ports of the system. The second shows the relative phases of the fields at the output ports
of the system. The third row shows the intensities of the two counterpropagating modes
as a function of the detuning ∆ω. The parameters used are γ = 5 GHz and Γ = 5 GHz.
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in Fig. 1.8 (a2), since the eigenvalues of the system are no longer degenerate, two
sudden changes are observed near the two minima of the spectral transmission.

Figure 1.8 (a3) shows the intensity of the two counterpropagating modes within
the MR for both the left-side excitation (|aCCW,L|

2 and |aCW,L|
2) and the right-side

excitation (|aCW,R|
2 and |aCCW,R|

2). Let us focus for the moment on |aCCW,L|
2 and

|aCW,L|
2. Both spectra (CCW and CW) have two symmetrical peaks. Therefore, an

eigenvalue of the system does not correspond to a CCW or a CW mode, but to a
combination of them. Let us call the two combinations of these modes (aCCW and
aCW) supermodes (s1 and s2). Note that the eigenvalues of the system correspond
to the supermodes. Excitation from only one side of the MR does not excite only
one supermode, but excites both simultaneously, in fact in transmission we observe
a doublet. The two spectra (|aCCW,L|

2 and |aCW,L|
2) are different. In fact, by exciting

from left the bus waveguide couples the light directly to the CCW mode that due
to BS couples the light to the CW mode. For the right-side excitation, the results
are equivalent; it is sufficient to exchange the CCW mode with the CW mode.
Note that in the Hermitian case |aCW,L|

2 = |aCCW,R|
2 and |aCW,R|

2 = |aCCW,L|
2, see

Fig. 1.8 (a3), Eq. (1.63) and Eq. (1.64).

Let us now consider the non-Hermitian case, see Fig. 1.8 (b). Even in the non-
Hermitian case, the Lorentz Reciprocity Theorem ensures equality between the two
transmissions of the system (when the system is excited from the left side or the right
one). Also in the case of the non-Hermitian BS there are two dips in the transmission
spectrum of the MR, see Fig. 1.8 (b1). However, this time the spectra are asymmetric
with respect to the axis where the detuning is zero. In particular, the two dips are
characterized by two different Extinction Ratios (ERs). For this reason, we will call
this an unbalanced splitting. This asymmetry is caused by the non-Hermiticity of
the BS, which creates an asymmetric coupling between the modes of the MR. The
asymmetric coupling also causes an increase in the total losses of the system. Since
the parameter γ also includes the losses given by the BS, in order to have no gain
within the MR it is necessary that |n| ⩽ γ [96, 102], where

h := i
βtot,12 − β

∗
tot,21

2
, n :=

βtot,12 + β
∗
tot,21

2
, (1.65)

are the Hermitian (h) and non-Hermitian (n) intermodal coupling coefficients [96,
102]. This formulation of the intermodal coupling coefficients allows to distinguish
between the Hermitian and non-Hermitian part of the coefficients. Here βtot,12 and
βtot,21 are the total coupling coefficients from the first mode (CW) to the second
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mode (CCW) and vice versa. In the case of a MR, βtot,12 = βBS,12 and βtot,21 =

βBS,21. Note that to obtain βtot,12 and βtot,21 from the parameters h and n, it is
sufficient to use the inverse definitions of Eq. (1.65):

βtot,12 := n− ih , βtot,21 := n
∗ − ih∗ . (1.66)

Fig. 1.8 (b1) shows that the reflections related to the excitation from the two sides
show asymmetric splitting and also differ from each other. However, if we look
more closely, we can see that the spectral shape of the two reflections is equivalent,
and therefore the two reflections differ only by a multiplicative factor. In fact, from
Eq. (1.61) and Eq. (1.62) we observe that |εLL|

2/|εRR|
2 = |βBS,21|

2/|βBS,12|
2. Then we

can simply derive the ratio between the absolute values of the two BS coefficients
from the ratio of the reflection intensities. This will be very useful in the Sec. 1.3
where we will present the interferometric excitation to excite the supermodes indi-
vidually. The phase of the fields exiting the bus waveguide also shows asymmetry
with respect to the axis where the detuning is zero, see Fig. 1.8 (b2). An asymmetry
is also found in the modes within the MR, as shown in Fig. 1.8 (b3). Here we see
that the modes have different spectral forms and that both are present at the two
eigenvalues. Thus, even in the non-Hermitian case, the eigenvalues correspond
to supermodes which are combinations of the two modes (αCCW and αCW). Panel
(b3) of Fig. 1.8, Eq. (1.63) and Eq. (1.64) show that also in the non-Hermitian case
|aCW,R|

2 = |aCCW,L|
2 and |aCW,L|

2/|aCCW,R|
2 = |βBS,21|

2/|βBS,12|
2.

Fig. 1.8 shows that the spectral definition of Q no longer has the same meaning
when splitting occurs. Having two dips in the transmission spectrum makes it
difficult to identify the Q or Qs of the system.

In summary, the coupling between the counterpropagating modes of the MR
caused by the presence of the BS causes an Autler-Townes splitting doublet [129,
35]. The coupling between the two modes of the MR can also occur due to other
causes, such as the punctual presence of one or more molecules/particles in the
WG cladding of the MR [35, 98, 99, 100, 101]. This means that the splitting of the
eigenvalues/transmission spectrum can be used to determine the BS and thus the
presence of the molecules we want to detect. Therefore, we could consider the BS
as a perturbation of the MR we want to measure. Assuming that the perturbation
is Hermitian, i.e. δβ = βBS,12 = −β∗

BS,21, we can observe the variation of the
eigenvalues and the eigenvector as a function of δβ. Equation (1.65), Eq. (1.56) and
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Eq. (1.57) transform into:
h = i · δβ , n = 0 , (1.67)

λ1/2 = ω0 ∓ |δβ|− iγtot ⇒ λ1 ≠ λ2 , ∆λ2−1 := λ2 − λ1 = 2|δβ| , (1.68)

ν1/2 =
1√
2

⎛⎝±i
√︂
δβ
δβ∗

1

⎞⎠ ⇒ < ν1|ν2 >= 0 . (1.69)

Eq. (1.68) shows that only the real part of the eigenvalues changes as a function of the
perturbation, while the imaginary part remains equal to the total losses of the system
(γtot). In particular, the eigenvalue splitting is real and has a linear dependence on
the perturbation |δβ|. Moreover, the eigenvectors remain orthogonal to each other
even for δβ ≠ 0, in fact their inner product is zero, as shown in Eq. (1.69). These
equations also show that when the perturbation is zero, the MR is at a DP and
the displacement from the latter produces a linear splitting of the eigenvalues as a
function of |δβ|.

To make the behavior of the eigenvalues as a function of the δβ perturbation
clearer, we can represent Riemann surfaces [41, 3, 104, 4, 105, 106] in the complex
field of the perturbation, see Fig. 1.9 (a).

Figure 1.9 (a) shows the Riemann sheets for the MR as a function of the real
ℜ[δβ] and the imaginary part ℑ[δβ] of the Hermitian BS perturbation (δβ). The
eigenvalues of the MR form two cones around the DP, one corresponding to λ1 and
the other to λ2, colored red and blue, respectively. Thus the Riemann surfaces have
cylindrical symmetry and are symmetric with respect to the plane where ℜ[λ] = 0.

Experimentally, using a single-side excitation, it is not possible to have a dir-
ect measure of the eigenvalues of the system. To derive the real part ℜ[λ] of the
eigenvalues from the spectral response of the system (i.e. the actual observable of
the system), it is common to calculate the spectral position of the two minima of
the Autler-Townes splitting doublet. Figure 1.9 (b) shows the Riemann surfaces
computed from the transmission spectra of the MR characterized by the BS per-
turbation δβ. The orange and Dodger blue colors correspond to the positions of the
two different transmission dips [see Fig. 1.8 and Fig. 1.9 (b)] and in this case refer
to the eigenvalues λ1 and λ2. Here we can see that around the DP [around (0, 0)], it
is not possible to identify two different spectral dips that cause a cancellation of the
sensitivity of the MR with respect to a small BS perturbation, see also Fig. 1.9 (d).
In fact, the spectral width of the dips causes the two dips to overlap. Outside this
central region, there is a nonlinear trend of the positions of the minima as a function
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(a) (b) (c)

(d)

Figure 1.9: Riemann surfaces for the MR as a function of the real ℜ[δβ] and the imaginary ℑ[δβ] part
of the Hermitian BS perturbation (δβ). (a) shows the map of the real ℜ[λ] part of the
eigenvalues, in red ℜ[λ1] and in blue ℜ[λ2]. Panels (b) and (c) represent the map of the
positions of the spectral minima of the transmission intensity (|εLR|

2) and of the sum of the
transmission intensity with the reflection intensity (|εLR|

2 + |εLL|
2), respectively. The hole

around the DP [around (0, 0)] in panels (b) and (c) is due to the inability to distinguish
two peaks. The colors orange and Dodger blue correspond to the positions of the two
different dips and in this case refer to the eigenvalues λ1 and λ2. (d) shows in magenta,
gray and black the splitting of the eigenvalues, the splitting of the doublets observed
in the transmission spectra and the splitting observed in the |εLR|

2 + |εLL|
2 spectra as a

function of |δβ|, respectively. Here we use γ = 1/4 a.u. and Γ = 1/4 a.u..

of δβ, which then tends to the ideal linear trend of the eigenvalues. To highlight
this trend, given the cylindrical symmetry of the Riemann surfaces, we have plotted
the splitting ℜ[∆λ] as a function of |δβ| in Figure 1.9 (d). We can see the linearity of
the splitting of the eigenvalues and also the region where the spectral splitting does
not faithfully describe the trend of the eigenvalues. To reduce as much as possible
the region where no splitting can be observed, we found a trick: instead of using
only the intensity in transmission (|εLR|

2), we can use the sum of the transmission
intensity with the reflection intensity (|εLR|

2 + |εLL|
2). This sum can be obtained by
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measuring the two intensities separately and then adding them. In Fig. 1.9 (c), the
Riemann surfaces obtained from the sum of these intensities are shown. Panels (c)
and (d) show that by using also the reflection component it is possible to reduce, but
not eliminate, the region where the splitting does not appear in the spectrum and
to still have higher sensitivity. Figure 1.9 (d) shows that both splittings computed
using |εLR|

2 or |εLR|
2 + |εLL|

2 tend to the eigenvalues splitting as the perturbation
δβ increases.

1.2.2 Backscattering in the Transfer Matrix Method

It is also possible to implement the BS using the TMM. Here, instead of having
a uniform BS inside the MR, we model the BS as a point scatterer characterized by
a transmission coefficient tBS and two reflection coefficients bBS,12 and bBS,21, see
Fig. 1.10.

5 2

0 1

4 3

t | ik

σ
L

L23L45

-bBS,12 | tBS | -bBS,21

Figure 1.10: Sketches of a MR in all-pass configuration with a scatterer (black star) inside, simulating
the BS. The black arrows identify the En fields, where n = 0, ..., 5, and their propagation
directions. The red arrows instead identify the Enr fields, which have opposite propaga-
tion directions. All parameters are described in the text.
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The system of equations corresponding to the MR in Fig. 1.10 is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 = tE0 + ikE5

E2 = tE5 + ikE0

E3 = σ23e
iψ23E2

E4 = tBSE3 − bBS,12E4r

E5 = σ45e
iψ45E4

E0r = tE1r + ikE2r

E2r = σ23e
iψ23E3r

E3r = tBSE4r − bBS,21E3

E4r = σ45e
iψ45E5r

E5r = tE2r + ikE1r

(1.70)

ψjl :=
2π

λ
neffLjl , σjl := e

−αLjl , (1.71)

ψ :=
2π

λ
neffL , σ := e−αL , L := 2πR , (1.72)

For simplicity, we have assumed that there are no losses in the coupling between
the bus waveguide and the MR (t2 + k2 = 1). The parameter Lij identifies the WG
length between the numbers i and j given in Fig. 1.10. From (1.70) we derive

εLR = εRL =
1

t

(︄
1−

k2
(︁
1− σtBSte

iψ
)︁

(1− σtBSteiψ)
2
− b12b21σ2t2e2iψ

)︄
, (1.73)

εLL =
k2b21σ

2
23e

2iψ23

(1− σtBSteiψ)
2
− b12b21σ2t2e2iψ

, (1.74)

εRR =
k2b12σ

2
45e

2iψ45

(1− σtBSteiψ)
2
− b12b21σ2t2e2iψ

, (1.75)

εout,R = εin,LεLR + εin,Re
iϕεRR , (1.76)

εout,L = εin,Re
iϕεRL + εin,LεLL . (1.77)

In order to simplify the discussion, we impose the following conditions on the
position of the scatterer inside the MR: L23 = L45 = L/2 (ψ23 = ψ45 = ψ/2 and
σ23 = σ45 =

√
σ).

If the conditions describing a situation of "low" couplings (k ≪ 1, t ≃ 1,
|bBS,12/21| ≪ 1, tBS ≃ 1, σ ≃ 1) are met, and performing the following substi-
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tutions [93]:

t ≃ 1− Γ

f̃
, k ≃

√︃
2Γ

f̃
(1.78)

tBSσ ≃ 1− γ

f̃
, σ := e−αL (1.79)

bBS,12 ≃
βBS,12

f̃
, bBS,21 ≃

βBS,21

f̃
(1.80)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

(1.81)

ψ =
∆ω

f̃
(1.82)

it is straightforward to verify that we get the same results derived through the
TCMT equations, namely Eq. (1.61) and Eq. (1.62).

In conclusion, we have demonstrated that, if the following relations are satisfied
(k≪ 1, t ≃ 1, |bBS,12/21| ≪ 1, tBSσ ≃ 1) equivalent to (γtot&|βBS,12|&|βBS,21| ≪ ω0

or better γtot&|βBS,12|&|βBS,21| ≪ f̃), to move from a TCMT to a TMM model one
has to use the following relations [93]:

Γ ≃ f̃(1− t) , Γ ≃ f̃k2/2 (1.83)

γ ≃ f̃(1− tBSσ) , σ := e−αL (1.84)

γtot ≃ f̃(1− ttBSσ) , (1.85)

βBS,12 ≃ f̃bBS,12 , βBS,21 ≃ f̃bBS,21 (1.86)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

. (1.87)

Note that these are the same equations found in Sec. 1.1.2 [Eq. (1.46), Eq. (1.47),
Eq. (1.48), Eq. (1.49)] with the addition of Eq. (1.86) and of the term tBS in Eq. (1.84)
and in Eq. (1.85).

1.3 Interferometric excitation

In Sec. 1.2 we saw that the CW and CCW modes do not correspond to the
eigenstates of the system. This is due to the existence of a coupling between the two
modes. Therefore, in this section we want to find the supermodes of the system
that correspond to the eigenvalues. We will find two supermodes which will not
mutually exchange energy. We will also find a way to excite one supermode at a
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time so that the two eigenvalues are obtained separately in the spectral response. In
particular, the real part of the eigenvalue will be the position of the dip minimum,
while the imaginary part will be proportional to its FWHM.

To make this discussion as general as possible, let us identify with βtot,12 and
βtot,21 the total coupling coefficients from the mode αCW = α1 to the mode αCCW =

α2 and vice versa. In βtot,12 and βtot,21 there can be both contributions given by the
BS and those given by the geometry of the system. In particular in this chapter, since
the ideal MR has no couplings between modes, we will have that βtot,12 = βBS,12

and βtot,21 = βBS,21. From Eq. (1.59) and Eq. (1.60) we derive the general system of
equations [102]:

i
d
dt

(︄
αCCW

αCW

)︄
=

(︄
ω0 − iγtot −iβtot,12

−iβtot,21 ω0 − iγtot

)︄(︄
αCCW

αCW

)︄
−

√
2Γ

(︄
Ein,L

Ein,R

)︄
, (1.88)

(︄
Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

(︄
αCCW

αCW

)︄
, (1.89)

with the eigenvalues and eigenvectors equal to:

λ1/2 = ω0 ± i
√︁
βtot,12 βtot,21 − iγtot ⇒ λ1 ≠ λ2 , (1.90)

ν1/2 =
1√︁

|βtot,12|/|βtot,21|+ 1

⎛⎝∓
√︂
βtot,12
βtot,21

1

⎞⎠ (1.91)

⇒ < ν1|ν2 >=
1− |βtot,12|/|βtot,21|

1+ |βtot,12|/|βtot,21|

equivalent to Eq. (1.56) and Eq. (1.57).

Taking advantage of the knowledge of the eigenvectors of the system, Eq. (1.91),
we can change the basis to get a diagonal Hamiltonian. To do this we write down
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the supermodes of the system:

s1 :=
1√
2̃

(︄
−

√︄
βtot,21

βtot,12
αCCW + αCW

)︄
, (1.92)

s2 :=
1√
2̃

(︄
+

√︄
βtot,21

βtot,12
αCCW + αCW

)︄
, (1.93)

2̃ :=
|βtot,21|

|βtot,12|
+ 1 , (1.94)

where 1/
√
2̃ is the normalization of the supermodes. 2̃ is equal to 2 if |βtot,21| =

|βtot,12|. Note that the supermodes are a linear combination of the two αCW and
αCCW modes. This combination also takes into account the different couplings
βtot,12 and βtot,21.

Writing the TCMT equations with the supermodes s1 and s2 yields

i
d
dt

(︄
s1

s2

)︄
=

(︄
λ1 0

0 λ2

)︄(︄
s1

s2

)︄
−

√
2Γ

⎛⎝−
√
βtot,21/βtot,12Ein,L+Ein,R√

2̃
+
√
βtot,21/βtot,12Ein,L+Ein,R√

2̃

⎞⎠ , (1.95)

(︄
Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

√
2̃

2

⎛⎝−
√︂
βtot,12
βtot,21

√︂
βtot,12
βtot,21

1 1

⎞⎠(︄s1
s2

)︄
, (1.96)

where λ1 and λ2 are the eigenvalues of the system given in Eq. (1.90). To derive
Eq. (1.96) we used the following relations:

αCCW =

√
2̃

2

√︄
βtot,12

βtot,21
(−s1 + s2) , (1.97)

αCW =

√
2̃

2
(s1 + s2) . (1.98)

As can be seen from Eq. (1.95), if the system is excited from only one side (left
or right), the two supermodes are excited at the same time, leading to a doublet
in the spectral response. On the other hand, to excite only one supermode, it is
necessary to perform an interferometric excitation [102, 103], in which the system
is excited from both sides with two coherent fields having a certain relative phase
and a precise ratio between their intensities.
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To excite only the supermode s1, one must have:

+
√︁
βtot,21/βtot,12Ein,L + Ein,R√

2̃
= 0 (1.99)

⇒ Ein,R =

√︄
βtot,21

βtot,12
Ein,Le

i(π+2πm) (1.100)

⇒

⎧⎨⎩|Ein,R| =
√︂

|βtot,21|

|βtot,12|
|Ein,L|

ϕ =
arg[βtot,21/βtot,12]

2 + π+ 2πm =: ϕ1
(1.101)

Instead, to excite only the second supermode (s2), one must satisfy:

−
√︁
βtot,21/βtot,12Ein,L + Ein,R√

2̃
= 0 (1.102)

⇒ Ein,R =

√︄
βtot,21

βtot,12
Ein,Le

i2πm (1.103)

⇒

⎧⎨⎩|Ein,R| =
√︂

|βtot,21|

|βtot,12|
|Ein,L|

ϕ =
arg[βtot,21/βtot,12]

2 + 2πm =: ϕ2
(1.104)

where

ϕ := arg
[︃
Ein,R

Ein,L

]︃
, φ12/21 := arg

[︁
βtot,12/21

]︁
, m ∈ Z . (1.105)

Consequently, to excite the s1 or s2, the ratio of the intensities of the input fields
must be equal to the square root of the ratio of the coupling coefficients:

|Ein,R|

|Ein,L|
=

√︄
|βtot,21|

|βtot,12|
(1.106)

and the phase difference between the incoming field from right and the incoming
field from left must be:

ϕ1/2 =
arg[βtot,21/βtot,12]

2
+
π

2
± π

2
+ 2πm . (1.107)

We further define the phases θ1 and θ2 as follows:

θ1/2 := ϕ1/2 −

(︃
arg[βtot,21/βtot,12]

2
+
π

2

)︃
= ±π

2
+ 2πm . (1.108)
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It is important to note that to know the ratio between the two input intensities
to be used (|Ein,R|

2/|Ein,L|
2 = |βtot,21|/|βtot,12|), it is sufficient to measure the ratio

between the reflections in single-side excitation. In fact, as pointed out in Sec. 1.2.1,
from Eq. (1.61) and Eq. (1.62) we have that |εLL|

2/|εRR|
2 = |βBS,21|

2/|βBS,12|
2 and

therefore |Ein,R|
2/|Ein,L|

2 =
√︁
|εLL|2/|εRR|2.

By solving the system in the steady-state [Eq. (1.32), Eq. (1.34), and s1/2 =

s1/2e
−iωt] we get Eq. (1.61) and Eq. (1.62) (where βBS,12 and βBS,21 should be

replaced with βtot,12 and βtot,21, respectively). Now by performing the interfero-
metric excitation in order to excite only one of the two supermodes [Eq. (1.106) and
Eq. (1.107)], we obtain [102]:(︄

|εout,R|
2

|εout,L|
2

)︄
=

(︃
1−

4(γ∓ γ̃)Γ
(∆ω± β̃)2 + (γ∓ γ̃+ Γ)2

)︃(︄
|εin,L|

2

|εin,R|
2

)︄
, (1.109)

β̃ :=
√︁
|βtot,12βtot,21| sin

[︁
arg [βtot,12βtot,21]/2

]︁
,

γ̃ :=
√︁

|βtot,12βtot,21| cos
[︁

arg [βtot,12βtot,21]/2
]︁
.

Equation (1.109) shows that the responses in the case of interferometric excitation
are characterized by a single Lorentzian dip. Therefore, this method allows us
to transform a transmission doublet into a single Lorentzian. This Lorentzian is
centered in ∓β̃ and its FWHM is equal to 2(γ ∓ γ̃ + Γ). We also note that the
eigenvalues of the system [Eq. (1.90)] can also be written as a function of β̃ and γ̃,
which yields:

λ1/2 = ω0 ∓ β̃− i(γtot ∓ γ̃) = ω0 ∓ β̃− i(γ∓ γ̃+ Γ) . (1.110)

Consequently, β̃ and γ̃ are the real and imaginary parts of the shifts of the eigenval-
ues with respect toω0 − iγtot. Thus from Eq. (1.109) and Eq. (1.110) we see that the
position of the Lorentzian corresponds to the real part of the eigenvalue, while its
FWHM corresponds to twice the modulus of the imaginary part of the eigenvalue.
Therefore, by the interferometric excitation, one can measure the eigenvalues of the
system directly from the transmission spectrum. Note also that γ̃ is always positive,
while β̃ can change sign as a function of βtot,12 and βtot,21.

The two Lorentzians described in Eq. (1.109) are closely related to the two eigen-
values of the system. Since we can separate their contribution in the transmission
spectrum, their Qs can be calculated. As can also be seen from Eq. (1.110), in general
the eigenvalues have a different imaginary part, consequently the two Lorentzians
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will have different FWHMs and different Qs. Using the spectral definition of Q
[Eq. (1.50)], we get that the two Qs are approximately:

Q1/2 =
ω0

FWHM1/2

=
ω0

2(γ∓ γ̃+ Γ)
. (1.111)

It is worth noting that since γ̃ ⩾ 0, the first supermode always has the maximum Q.

1.3.1 Hermitian Coupling

Let us consider the case of Hermitian coupling. Here, βtot,12 = −β∗
tot,21 = β,

h = iβ and n = 0, see Eq. (1.67). Under this condition, we have that Eq. (1.106) and
Eq. (1.107) become:

|Ein,R|

|Ein,L|
= 1 , ϕ1/2 =

arg
[︁
−(β∗)2

]︁
2

+
π

2
± π

2
+ 2πm . (1.112)

This means that to excite one of the supermodes one must use a symmetric inter-
ferometric excitation, i.e. the two input field intensities must be equal. To find
the correct excitation phase, if one does not know arg

[︁
−(β∗)2

]︁
, it is sufficient to

vary it until one observes a spectral response characterized by a single Lorentzian.
Substituting the Hermitian coupling condition into Eq. (1.109) yields:

βtot,12 = −β∗
tot,21 = β ⇒ β̃ = |β| , γ̃ = 0

⇒

(︄
|εout,R|

2

|εout,L|
2

)︄
=

(︃
1−

4γΓ

(∆ω± β̃)2 + (γ+ Γ)2

)︃(︄
|εin,L|

2

|εin,R|
2

)︄
. (1.113)

Therefore, if one excites the first supermode (s1), a Lorentzian centered at ω0 − |β|

will be measured. On the other hand, if one excites the second supermode (s2), one
will measure a Lorentzian centered atω0+ |β|. Moreover, these two Lorentzians are
characterized by the same FWHM = 2(γ + Γ) as that of the ideal MR (without any
coupling). Note that since the coupling is Hermitian, the total losses of the system
remain the same as in the case of the ideal MR. Using the interferometric excitation,
we can calculate the Q of the MR affected by BS, which in the case of Hermitian
coupling is equal to that of an ideal MR:

Q1/2 =
ω0

2(γ+ Γ)
. (1.114)

To make it clear, we present in the following (Fig. 1.11) some graphs of the optical
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response of a MR having: Γ = γ = 6.8 GHz, βtot,12 = −β∗
tot,21 = β = 33.2 GHz and

ω0 ≃ 2π · 193THz.
Panels (a1) and (a2) of Fig. 1.11 show the standard single-side excitation output

spectral intensities, i.e., when |εin,L|
2 = 1 mW and |εin,R|

2 = 0 or when |εin,L|
2 = 0

and |εin,R|
2 = 1 mW, respectively. Hence, in the top graph, |εout,R|

2 and |εout,L|
2 are

the transmitted and reflected intensities while the opposite applies to the bottom
graph. The output intensities are not simple Lorentzians, but show a balanced
doublet (same dip extinction ratios) due to the interaction between the counter-
propagating modes in the MR. Figure 1.11 (a1) and Fig. 1.11 (a2) show equal trans-
mission spectra and reflection spectra.

Using a symmetric (i.e. equal field intensities) interferometric excitation (|εin,L|
2 =

|εin,R|
2 = 1 mW), εout,L and εout,R depend on θ. Panels (b1) and (b2) of Fig. 1.11

show the transmitted field intensities as a function of ∆ω and θ. A rich dynamic
is observed, with the transmitted intensities increasing or decreasing depending
on the excitation conditions. Note that, since the sum of the input intensities is
equal to 2 mW, it is expected to observe spectral regions where at least one trans-
mitted intensity is greater than 1 mW. Moreover, by exciting simultaneously from
both sides of the system, the Lorentz reciprocity theorem cannot be used, and in
fact, the transmissions are generally different. Both phenomena (output intensity
greater than 1 mW and different transmissions) would not be present if the MR
was ideal (without BS). Figures 1.11 (c1)-(c4) show the transmission spectra for
θ = {±π, π/4,+π/2,−π/2}. Different transmission line shapes are observed at the
bus waveguide outputs when the angle θ is changed. Note that when θ = ±π/2
the doublet merges into a single Lorentzian resonance and the two transmission
spectra are identical. When θ = ±π/2 (Fig. 1.11 (c3), (c4)) the Lorentzian is centered
in ∆ω = ∓|β| (real part of the eigenvalue λ1/2) and its FWHM is 2(γ+ Γ) (absolute
value of twice the imaginary part of λ1/2). This means that in Fig. 1.11 (c3) we only
excite the first supermode (s1), while in Fig. 1.11 (c4) we only excite the second su-
permode (s2). Note also that these spectral responses, except for a frequency shift,
are equal to the spectral response of the ideal MR with the same coefficients γ and Γ .
Note also that for θ = ±π/2 the MR has dips that reach zero in transmission, which
is not the case when we use single-side excitation [Fig. 1.11 (a1) and (a2)]. Thus,
since we have Γ = γ and the BS is Hermitian, if we excite one of the two supermodes
(via a symmetric interferometric excitation), we have the spectral response of the
MR in the critical-coupling regime. Finally, note that by continuously varying the
phase difference (ϕ corresponding to the variation of θ) between the input fields, it
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(a1)

(a2)

(b1) (b2)

(c1) (c3)

(c2) (c4)

Figure 1.11: Spectral responses for a MR with a Hermitian coupling. Panels (a1) and (a2) report
the transmission and reflection spectra for an excitation from the left and right input
sides, respectively. Maps (b1) and (b2) show, respectively, the right and left output field
intensities as a function of θ and∆ω for a symmetric interferometric excitation. (c1)-(c4)
show the output field intensity spectrum for fixed values of θ = {±π, π/4, π/2,−π/2}.
The blue and red curves correspond to the right and the left output field intensities,
respectively. The used coefficients are: Γ = γ = 6.8 GHz, βtot,12 = −β∗

tot,21 = 33.2 GHz
andω0 = 2π · 193 THz. [102]
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is easy to tune the system so that only one supermode is excited, see Fig. 1.11 (b1)
and Fig. 1.11 (b2).

1.3.2 Non-Hermitian Coupling

Let us consider the case of non-Hermitian coupling. Here, βtot,12 ≠ −β∗
tot,21 and

thereforen ≠ 0, see Eq. (1.65). In this subsection, we will first observe what happens
when we use a symmetric interferometric excitation in the case of a non-Hermitian
BS, and then we will calculate the spectral responses when we use the asymmetric
interferometric excitation characterized by the correct ratio between the intensities
of the input fields (separate excitation of supermodes).

Let us now consider a MR characterized by a non-Hermitian BS and described by
the following parameters: Γ = γ = 6.8 GHz, βtot,12 = 20.2 GHz, βtot,21 = (−20.2+

9i) GHz and ω0 = 2π · 193 THz. In panels (a1) and (a2) of Fig. 1.12, the single-side
excitation output spectral intensities are reported, i.e., when |εin,L|

2 = 1 mW and
|εin,R|

2 = 0 or when |εin,L|
2 = 0 and |εin,R|

2 = 1 mW, respectively. Also with a
non-Hermitian BS, the Lorentz reciprocity theorem ensures the same transitions.
Instead, the reflections are different, as can be seen by comparing |εout,L|

2 of the
panel (a1) and |εout,R|

2 of the panel (a2). Panels (b1)-(b2) and (c1)-(c4) describe
the spectral responses of the system when symmetric interferometric excitation is
used (|εin,L|

2 = |εin,R|
2 = 1 mW). A high variability of the transmission spectra is

observed as the phase θ varies. Here, by varying θ one can obtain a spectrum very
similar to that of a Lorentzian, see panels (c3) and (c4) of Fig. 1.12. Although for
θ = ±π/2 the doublet seems to be almost completely merged into a single resonance,
a small deformation is still present. This deformation results from the fact that we
excite the system with two fields of equal intensity instead of taking into account
the unbalance between the βtot,12 and βtot,21 couplings, see Eq. (1.106). To get the
correct interferometric excitation so that the supermodes can be excited individually,
it is necessary to satisfy Eq. (1.106). Note that symmetric interferometric excitation
can be perfect even if the BS is non-Hermitian, but one needs equal absolute values
of the two couplings (|βtot,12| = |βtot,21|).

In the general case, to obtain the excitation of only one supermode at a time, one
must satisfy Eq. (1.106) and Eq. (1.107). Fig. 1.13 shows the spectral responses as the
phase θ changes when the asymmetric interferometric excitation is used [Eq. (1.106)
satisfied]. Panels (b1) and (b2) of Fig. 1.13 emphasize the fact that for θ = ±π/2
one is able to excite only the first/second supermode (s1/2). In fact, the asymmetric
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(b1) (b2)

(c1) (c3)

(c2) (c4)

(a1)

(a2)

Figure 1.12: Spectral responses for a MR with a non-Hermitian coupling. Panels (a1) and (a2) report
the transmission and reflection spectra for an excitation from the left and right input
sides, respectively. Maps (b1) and (b2) show, respectively, the right and left output
field intensities as a function of θ and ∆ω for a symmetric interferometric excitation
(|εin,L|

2 = |εin,R|
2). (c1)-(c4) show the output field intensity spectrum for fixed values

of θ = {±π, π/4, π/2,−π/2}. The blue and red curves correspond to the right and the
left output field intensities, respectively. The used coefficients are: Γ = γ = 6.8 GHz,
βtot,12 = 20.2 GHz, βtot,21 = (−20.2+ 9i) GHz andω0 = 2π · 193 THz. [102]



1.3 Interferometric excitation 45

doublets of Fig. 1.12 (a1) and (a2) merge into a single Lorentzian, see Fig. 1.13 (b1)
and (b2). In panel (b1) of Fig. 1.13 it is observed that the two output spectra have the
same spectral shape but different intensities. This is due to the different intensity of
the two input fields, namely |εin,L|

2 = 1mW, while |εin,R|
2 ≃ 1.1mW.

(a1) (a2) (b1)

(b2)

Figure 1.13: Spectral responses for a MR with a non-Hermitian coupling. Maps (a1) and (a2) show,
respectively, the right and left output field intensities as a function of θ and ∆ω for
an asymmetric interferometric excitation [|εin,R|

2 =
√︁

|βtot,21|/|βtot,12||εin,L|
2, Eq. (1.106)

satisfied]. (b1) and (b2) show the output field intensity spectrum for fixed values
of θ = ±π/2 (first and second supermode). The blue and red curves correspond to
the right and the left output field intensities, respectively. The used coefficients are:
Γ = γ = 6.8 GHz, βtot,12 = 20.2 GHz, βtot,21 = (−20.2+ 9i) GHz andω0 = 2π · 193 THz.
[102]

As in the case of the Hermitian coupling, we can measure directly from the
spectrum the real part (position of the Lorentzian) and the imaginary part (minus
half of the Lorentzian FWHM) of the eigenvalues. Note that since the BS is non-
Hermitian, the FWHMs and thus the Qs of the two supermodes are different. Thus,
the losses of the two supermodes are different, and in particular, for one they are less
than γtot, while for the other they are greater than γtot. In Fig. 1.13, since Γ = γ, one
supermode is in the over-coupling regime while the other is in the under-coupling
regime (for more details see Sec. 1.4.2).

A special non-Hermitian case is when sin [arg [βtot,12βtot,21]/2] = 1. This con-
dition can be satisfied if βtot,21 = −rβ∗

tot,12 where r > 0 and r ∈ R. In this situation,
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(b1) (b2)

(c1) (c3)

(c2) (c4)

(a1)

(a2)

Figure 1.14: Spectral responses for a MR with a non-Hermitian coupling. Panels (a1) and (a2) report
the transmission and reflection spectra for an excitation from the left and right input
sides, respectively. Maps (b1) and (b2) show, respectively, the right and left output
field intensities as a function of θ and ∆ω for an asymmetric interferometric excitation
[|εin,R|

2 =
√︁

|βtot,21|/|βtot,12||εin,L|
2, Eq. (1.106) satisfied]. (c1)-(c4) show the output field

intensity spectrum for fixed values of θ = {±π, π/4, π/2,−π/2}. The blue and red curves
correspond to the right and the left output field intensities, respectively. The used
coefficients are: Γ = γ = 6.8GHz,βtot,12 = 20.2GHz,βtot,21 = −0.8βtot,12 = −16.16GHz
andω0 = 2π · 193 THz.
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(b1) (b2)

(c1) (c3)

(c2) (c4)

(a1)

(a2)

Figure 1.15: Spectral responses for a MR with a non-Hermitian coupling. Panels (a1) and (a2) report
the transmission and reflection spectra for an excitation from the left and right input
sides, respectively. Maps (b1) and (b2) show, respectively, the right and left output
field intensities as a function of θ and ∆ω for a symmetric interferometric excitation
[|εin,R|

2 = |εin,L|
2, Eq. (1.106) satisfied]. (c1)-(c4) show the output field intensity spectrum

for fixed values of θ = {±π, π/4, π/2,−π/2}. The blue and red curves correspond to
the right and the left output field intensities, respectively. The used coefficients are:
Γ = γ = 6.8 GHz, βtot,12 = 4 GHz, βtot,21 = β

∗
tot,12 = 4 GHz andω0 = 2π · 193 THz.
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β̃ =
√
r |βtot,12| and γ̃ = 0, so the difference of the two eigenvalues would only

be real and consequently the two Lorentzians would have the same FWHM, see
Fig. 1.14.

Another special non-Hermitian case is when |βtot,12| = |βtot,21|, because as
discussed before it is possible to use the symmetric interferometric excitation. Fur-
thermore, when arg [βtot,12βtot,21] = 0 (i.e. when sin [arg [βtot,12βtot,21]/2] = 0),
then βtot,21 = β∗

tot,12, β̃ = 0 and γ̃ = |βtot,12|. In this situation, the difference of the
two eigenvalues is only imaginary and consequently the two Lorentzians would be
centered atω0 and the FWHMs would be different, see Fig. 1.15. In particular, one
would have |n| = γ̃ and thus for the supermode with λ1 = ω0 − β̃− i(γ− γ̃+ Γ) =

ω0 − i(γ − |n| + Γ), using the interferometric excitation, one is able to completely
remove the losses due to the non-Hermitian BS.

1.4 Time response

In the previous sections, we focused on the spectral responses of a MR with or
without backscattering, analyzing only the steady state. In fact, we neglected the
time dependence of the field amplitudes. In this section, we will calculate the time
response of a MR from the equations of the TCMT. The study of the time response
is important for resonators with ultra-high Q [110, 130, 131, 132]. In fact, in these
cases, the resonance of the MR is spectrally too narrow, and therefore the Cavity
Ring-Down (CRD) technique is used to determine the main characteristics of the
MR [133, 103, 134]. This technique takes advantage of the fact that MRs with ultra-
high Q have relatively long charge and discharge times which can be detected with
fast detectors.

In Sec. 1.4.1 I will present the time response of a MR when it is excited on one
side only (standard method). Then I will describe the three coupling regimes from
the point of view of the time response. Next, I will introduce backscattering inside
the MR, which will cause a distortion in the usual exponential discharge of the MR.

Finally, in order to derive the characteristic parameters of the two supermodes
of the MR with BS, for example the Qs, I will use the interferometric excitation
described in Sec. 1.3 also in the study of the time response.
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1.4.1 Ideal microresonator

In an ideal MR the two counterpropagating modes are not coupled [Eq. (1.27)]
and the MR has the same response in both transmission and reflection. Therefore,
without loss of generality, we focus only on the CCW mode excited by the electric
field Ein,L coming from the left side of the WG. We therefore write

i
dα
dt

= (ω0 − iγtot)α−
√
2Γ Ein,L , (1.115)

Eout,L = Ein,L + i
√
2Γ α . (1.116)

To compute the time response of the MR, we solve the system of Eq. (1.115) using
Green’s function G[t]. This function is defined as the solution of a differential
equation when its forcing is equal to a Dirac delta function (δ[t]) [135]. Thus, using
an impulse excitation from left (Ein,L[t] = εin,Lδ[t− t

′], where εin,L is the input field
amplitude) and taking the Fourier transform of Eq. (1.115), one obtains the spectral
Green’s function G[ω] [110]:

G[ω] = −
1√
2π

√
2Γ

∆ω+ iγtot
εin,Le

iωt ′ . (1.117)

Then the spectral Green’s function of the output fields is determined by substituting
this solution into Eq. (1.116):

Gout,R[ω] =
1√
2π
εin,Le

iωt ′
(︃
1−

2Γ

−i∆ω+ γtot

)︃
. (1.118)

The inverse Fourier transform of Gout,R[ω] is:

Gout,R[t− t
′] = εin,L

(︂
δ[t− t ′] − 2Γ Θ[t− t ′]e−i(ω0−iγtot)(t−t

′)
)︂
, (1.119)

where Θ[t] is the Heaviside function. Now, to obtain Eout,R[t], we need to do the
convolution of Gout,R[t] with the exciting function, ξin[t]:

Eout,R[t] =

∫︂∞
−∞Gout,R[t− t

′] ξin[t
′]dt ′ . (1.120)

Let us consider a MR excited by a continuous-wave light pulse of angular
frequency ω and a duration equal to ∆t [ξin[t] = (Θ[t] − Θ[t − ∆t])e−iωt]. We
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obtain:
Eout,R[t] = εin,Le

−iωt
{︂
Θ[t]

(︂
1−

2Γ(1−ei(∆ω+iγtot)t)
−i∆ω+γtot

)︂
−Θ[t− ∆t]

(︂
1−

2Γ(1−ei(∆ω+iγtot)(t−∆t))
−i∆ω+γtot

)︂}︂
.

(1.121)

Figure 1.16 shows |Eout,R|
2 as a function of time and frequency detuning for the

three coupling conditions. In (a), (b) and (c) the output responses of a MR in the
over-, critical- and under-coupling regime are shown. Figure 1.16 shows that for all
three coupling regimes, since the square pulse arrives at t = 0, the outgoing field
quickly reaches 1 and then decays exponentially. After this, the time responses for
the three regimes change. In the case of over-coupling, the outgoing field arrives at
0 and then rises again, stopping at the value previously obtained in the stationary
regime. This behavior is due to the fact that at the cancellation of the outgoing
field, there is a complete destructive interference between the field exiting the MR
and that continuing in the bus waveguide. However, immediately thereafter, in
the over-coupling regime (Γ > γ), the field coming out of the MR dominates over
that continuing in the bus waveguide, causing an increase in |Eout,R|

2 and an abrupt
change in the phase of the outgoing field at the value of π. In contrast, in the critical-
coupling regime (Γ = γ), |Eout,R|

2 tends exponentially to 0 (value corresponding to
the steady state). Also in the under-coupling regime, the intensity of the outgoing
field tends exponentially to the value previously found in the steady state, which
this time is not zero. Moreover, in the under-coupling regime, the field does not
acquire any phase during the charging of the MR.

At the end of the rectangular pulse of duration ∆t, the interference between the
field exiting the MR and the field continuing in the bus waveguide is no longer
present. In particular, at the time ∆t, a sudden positive change of |Eout,R|

2 and an
exponential discharge of the MR are observed. In all three cases, the outgoing field
has a π phase. In the over-coupling regime a peak with an intensity greater than
1 is observed, in the critical-coupling regime the peak reaches 1 and finally in the
under-coupling regime the peak remains below 1.

By studying the charge and discharge of the MR, it is easy to derive the important
parameters of the MR, such as γ, Γ , and Q. This technique is called the cavity ring-
down technique.

1.4.2 Microresonator with backscattering

To derive the time response of a MR with BS we can follow the steps described
in Sec. 1.4.1 starting from Eq. (1.88) and Eq. (1.89).
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(a)

(b)

(c)

Figure 1.16: (a), (b) and (c) show the time response for an ideal MR in the over-, critical- and under-
coupling regimes when a left side excitation with a rectangular pulse shape (∆t = 400ps)
is used. The input time pulse of intensity 1 a.u. starts at time t = 0 and ends at t = ∆t.
The first column shows |Eout,R|

2 as a function of ∆ω and time in a three-dimensional
(3D) plot. The second column shows the time response of the MR at ∆ω = 0. The third
column reports the spectral response of the MR at t ≃ ∆t (quasi-stationary regime). The
used parameters are: (a) Γ = 8 GHz > γ = 4 GHz, (b) Γ = 6 GHz = γ = 6 GHz and (c)
Γ = 4 GHz < γ = 8 GHz.



52 Microring Resonator

The first step is the calculation of the spectral Green’s function [103]:

Gout,R[ω] = 1√
2π
εin,Le

iωt ′
(︂
1−

2Γ(−i∆ω+γtot)
(−i∆ω+γtot)2−βtot,12βtot,21

)︂
+ 1√

2π
εin,Re

iωt ′
(︂

2Γβtot,12
(−i∆ω+γtot)2−βtot,12βtot,21

)︂
eiϕ .

(1.122)

Then its Fourier transform is calculated:

Gout,R[t− t
′] = εin,L

{︂
δ[t− t ′] − ΓΘ[t− t ′]

(︂
e−i(t−t

′)λ1 + e−i(t−t
′)λ2
)︂}︂

+
√︂
βtot,12
βtot,21

εin,RΓΘ[t− t
′]
(︂
e−i(t−t

′)λ2 − e−i(t−t
′)λ1
)︂
eiϕ ,

(1.123)

where λ1/2 = ω0−iγtot±i
√
βtot,12βtot,21 are the system eigenvalues, see Eq. (1.90).

Then, the convolution ofGout,R[t]with the exciting function, ξin[t], yields toEout,R[t].

Let us excite the MR by a CW pulse of light of angular frequency ω and a
duration equal to ∆t [ξin[t] = (Θ[t] −Θ[t− ∆t])e−iωt]. We obtain:

Eout,R[t] = e−iωt
{︂
Θ[t]

{︂
εin,L

(︃
1+

Γ(e−itσ
−
−1)

iσ− +
Γ(e−itσ

+
−1)

iσ+

)︃
+εin,R

√︂
β12
β21
eiϕΓ

(︂
e−itσ

+
−1

iσ+ − e−itσ
−
−1

iσ−

)︂}︂
−Θ[t− ∆t]

{︂
εin,L

(︃
1+

Γ(ei(∆t−t)σ
−
−1)

iσ− +
Γ(ei(∆t−t)σ

+
−1)

iσ+

)︃
+εin,R

√︂
β12
β21
eiϕΓ

(︃
(ei(∆t−t)σ

+
−1)

iσ+ −
(ei(∆t−t)σ

−
−1)

iσ−

)︃}︂}︂
,

(1.124)

where σ− = λ1 −ω and σ+ = λ2 −ω.

Single side excitation

The Eq. (1.124) can be used either for an interferometric excitation or for a
single-side excitation. For example, to use Eq. (1.124) as a single-side excitation, it
is sufficient to set εin,L = 1 a.u. and εin,R = 0.

Figure 1.17 shows |Eout,R|
2 as a function of the time and the frequency detuning

(∆ω). In the first row, (a), the graphs corresponding to a MR with a Hermitian
BS are shown. Instead, the MR of the second row, (b), is characterized by a non-
Hermitian BS. In Fig. 1.17, the first column shows the 3D plots of |Eout,R|

2, while in
the second, the blue curves show the time behavior of |Eout,R[t]|

2 for ∆ω indicated
by the vertical black lines in the third column, where the line scans for |Eout,R[∆ω]|2

at t = 399 ps (red curves) are reported, i.e., close to the end of the square pulse.

Figure 1.17 shows that in both cases (Hermitian and non-Hermitian BS) the tem-
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(b)

(a)

Figure 1.17: (a) and (b) show the time response of a MR characterized by a Hermitian and non-
Hermitian BS, respectively. Here, a single-side excitation with a rectangular pulse shape
(∆t = 400 ps) is used. The input time pulse of intensity 1 a.u. starts at time t = 0 and
ends at t = ∆t. The first column shows |Eout,R|

2 as a function of ∆ω and time in a 3D
plot. The second column of panels (a) and (b) shows the time response of the MR at ∆ω
equal to −33.2 GHz and −19.3 GHz, respectively. The third column reports the spectral
response of the MR at t ≃ ∆t (quasi-stationary regime). The MR parameters in panel (a)
are Γ = γ = 6.8GHz and βtot,12 = −βtot,21 = β = 33.2GHz. Instead, the MR parameters
in panel (b) are Γ = γ = 6.8 GHz, βtot,12 = 20.2 GHz and βtot,21 = (−20.2 + 9i) GHz.
[103]
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poral response shows an exponential trend that is superimposed by an oscillatory
pattern. The latter is caused by the continuous energy exchange between the CW
and CCW modes. This continuous oscillation does not allow to unambiguously
determine the characteristic parameters of the MR. In fact, fitting the charging or
discharging of the MR with a simple exponential decay leads to errors in parameter
estimation. Therefore, the estimation of the Q by the CRD method will also not be
accurate.

Interferometric excitation

One way to overcome the continuous energy exchange between the counter-
propagating modes of the MR is to use the interferometric excitation method
[103, 102]. In particular, as we have seen in Sec. 1.3, it is possible to excite one
of the two supermodes of the MR individually by exciting the system from both
sides and with a certain relationship between the phases and between the amp-
litudes of the two fields. The supermodes of the MR do not interact, therefore no
energy exchange occurs and the oscillatory pattern is not present.

Hermitian coupling In the case where the backscattering is Hermitian (βtot,12 =

−β∗
tot,21 = β), the amplitude of the two fields entering from the left and right into

the bus waveguide must be equal (εin,L = εin,R = εin).

Figure 1.18 (a) shows that by fixing ϕ = 8
5π and with Γ = γ, a preferential

exchange of energy towards a given supermode is induced. For this value of ϕ,
an unbalanced doublet (different spectral dips) is obtained. In addition, ϕ = 8

5π

does not avoid the intensity oscillation during the time evolution, see the temporal
profile. The asymmetric excitation of the two supermodes is also observed in
the discharge (t > ∆t). Indeed, when the inputs are switched off, the outgoing
intensity field exhibits a larger peak for the negative supermode (∆ω < 0) than for
the positive one (∆ω > 0).

As seen in Sec. 1.3, to excite a single supermode it is necessary to satisfy not
only the relation between the intensities of the incoming fields, but also a specific
phase relation. In particular, to excite the first supermode corresponding to the
eigenvalue λ1 = ω0 − |β| − i(γ + Γ) [see Eq. (1.110) and Eq. (1.113)] it is necessary
to satisfy Eq. (1.107) and thus have θ = +π/2 + 2πm (with m ∈ Z), see Eq. (1.108).
On the other hand, to excite only the second supermode, s2, which corresponds to
λ2 = ω0 + |β|− i(γ+ Γ), one needs θ = −π/2+ 2πm, see Eq. (1.108).
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(b)

(a)

(c)

Figure 1.18: Time response of a MR characterized by a Hermitian BS when an interferometric ex-
citation with a rectangular pulse shape (∆t = 400 ps) is used. The input time pulse of
intensity 1 a.u. starts at time t = 0 and ends at t = ∆t. In (a), (b) and (c) the phase
θ is equal to π/10, +π/2 and −π/2, respectively. The first column shows |Eout,R|

2 as a
function of ∆ω and time in a 3D plot. The second column of panels (a), (b) and (c)
shows the time response of the MR at ∆ω = −24 GHz and at the resonant frequency of
the first or second supermode (∆ω = ∓β = ∓33.2 GHz), respectively. The dashed lines
underline the perfect exponential decay. The third column reports the spectral response
of the MR at t ≃ ∆t (quasi-stationary regime). The MR parameters are Γ = γ = 6.8 GHz
and βtot,12 = −βtot,21 = β = 33.2 GHz. [103]
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Panels (b) and (c) of Fig. 1.18 show the interferometric excitation of the first and
the second supermode, respectively. Here, a single dip/peak in the transmission is
observed during both charging and discharging of the MR. In addition, the oscil-
lations due to the interference between the two supermodes are no longer present.
Therefore, it is possible to use the interferometric CRD technique to extrapolate the
MR parameters, such as the Q, by an exponential fit. In fact, using: εin,R = εin,L = εin

and ϕ1/2 =
arg[βtot,21/βtot,12]

2 + π
2 ± π

2 + 2πm (m ∈ Z), Eq. (1.124) reduces to:

|Eout,R[t]|
2 = ε2in

⃓⃓⃓
Θ[t]

γ−Γ−i(∆ω±|β|)+2Γe−t(−i(∆ω±|β|)+γ+Γ)

γ+Γ−i(∆ω±|β|)

− Θ[t− ∆t]
γ−Γ−i(∆ω±|β|)+2Γe−(t−∆t)(−i(∆ω±|β|)+γ+Γ)

γ+Γ−i(∆ω±|β|)

⃓⃓⃓2
.

(1.125)

Considering only the MR discharge (t > ∆t):

|Eout,R[t]|
2 = e−2(γ+Γ)t

(︃
4ε2inΓ

2(1+e2∆t(γ+Γ)−2e∆t(γ+Γ) cos [∆ω±|β|])
(γ+Γ)2+(∆ω±|β|)2

)︃
, (1.126)

namely, the product of a constant by an exponential decay function with a time
constant τph = 1

2(γ+Γ) = Q
ω0

, see dashed cyan line in Fig. 1.18 (b) and (c). Note that
the discharge of the MR follows a simple exponential decay even for∆ω ≠ ∓|β|. This
is interesting experimentally because it relaxes the requirement for high-precision
spectral control of the input frequency in CRD measurements.

In Fig. 1.18, given that Γ = γ and the BS is Hermitian, we have that both
supermodes have the same Q and furthermore are in the critical-coupling regime,
in fact in the stationary regime (t ≃ ∆t) at zero detuning (∆ω = 0) the transmission
is zero.

Non-Hermitian coupling In the non-Hermitian case the CW and the CCW modes
have two different coupling rates βtot,12 and βtot,21. As explained in Sec. 1.3, to
excite one of the two supermodes individually, it is necessary to excite the system
simultaneously from both sides (interferometric excitation), satisfying Eq. (1.106),

Eq. (1.107) and Eq. (1.108), namely |εin,R|

|εin,L|
=
√︂

|βtot,21|

|βtot,12|
, ϕ1/2 =

arg[βtot,21/βtot,12]
2 + π

2 ±
π
2 +2πm, and θ1/2 = ±π2 +2πm (m ∈ Z). Under these conditions, the transmission
doublet merges into a single Lorentzian, see Fig. 1.19.

Even in the non-Hermitian case, the temporal response of the MR no longer
shows the intensity oscillations. Furthermore, for ∆ω < 0 (panel (a) of Fig. 1.19)
the typical behavior of a MR in the over-coupling regime is observed [110, 103].
In fact, the outgoing intensity reaches a zero value before the steady state and
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(a)

(b)

Figure 1.19: Time response of a MR characterized by a non-Hermitian backscattering when an asym-
metric interferometric excitation [Eq. (1.106) satisfied] with a rectangular pulse shape
(∆t = 400 ps) is used. The input time pulse of intensity 1 a.u. starts at time t = 0 and
ends at t = ∆t. In (a) and (b) the phase θ is equal to +π/2 and −π/2, respectively. The
first column shows |Eout,R|

2 as a function of∆ω and time in a 3D plot. The second column
shows the time response of the MR at the resonant frequency of the first or second super-
mode. Here, the dashed lines highlight the perfect exponential decay. The third column
shows the spectral response of the MR at t ≃ ∆t (quasi-stationary regime). The MR
parameters are Γ = γ = 6.8 GHz, βtot,12 = 20.2 GHz and βtot,21 = (−20.2 + 9i) GHz. In
panels (a) and (b), the black line shows ∆ω equal to −β̃ and β̃ ≃ 20.7GHz, respectively.
[103]
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also reaches a value greater than 1 at the beginning of the discharge. The second
supermode behaves differently. In particular, it is observed that for ∆ω > 0 (panel
(b) of Fig. 1.19) the MR exhibits a time response typical of a single-mode MR in the
under-coupling regime, see Fig. 1.16. In fact, this time the output intensity does
not go to zero and at the beginning of the MR discharge the intensity does not
reach 1. The different coupling regime of the two supermodes is due to two factors.
First, we have that Γ = γ, so in the absence of a non-Hermitian backscattering the
supermodes would be in the critical-coupling regime. Furthermore, we have that
γ̃ ≠ 0, so one supermode will have less loss (over-coupling) and the other will have
more loss (under-coupling). In the general case, one can use the eigenvalues of the
system λ1/2 = ω0 ∓ β̃ − i(γ∓ γ̃ + Γ) to determine the coupling regime of the two
supermodes. In fact, if (Γ < γ− γ̃) or (Γ = γ− γ̃) or (Γ > γ− γ̃), the first supermode
(s1) will be in under- or critical- or over-coupling, respectively. On the other hand, if
(Γ < γ+ γ̃) or (Γ = γ+ γ̃) or (Γ > γ+ γ̃) the second supermode (s2) will be in under-
or critical- or over-coupling, respectively. Note that the different coupling regime
and Qs of the two supermodes are appreciated also in the discharging time. In fact,
the first supermode has a faster decay time than the second supermode. Note that
this is always true since γ̃ ⩾ 0. However, it is possible to swap the spectral position
of the supermodes by changing the phase of βtot,12 and βtot,21.

To show that the MR supermodes follow the same behavior as a single-mode
MR, we enter the conditions for exciting a single supermode [Eq. (1.106), Eq. (1.107)
and Eq. (1.108)] in Eq. (1.124), and get:

Eout,R[t] =
εin,Le

−iωt

i(γ+Γ∓γ̃)+∆ω±β̃

{︂
Θ[t]

(︂
2iΓeit(∆ω±β̃+i(γ+Γ∓γ̃))

+i(γ− Γ ∓ γ̃) + ∆ω± β̃
)︂

−Θ[t− ∆t]
(︂
2iΓei(t−∆t)(∆ω±β̃+i(γ+Γ∓γ̃))

+i(γ− Γ ∓ γ̃) + ∆ω± β̃
)︂}︂
.

(1.127)

This formula is equivalent to the expression for the field transmitted by a bus
waveguide coupled to a single-mode MR unaffected by BS and excited from one
side [110, 103]. The only two differences are: the different position of the resonance
∆ω = ∓β̃ and the different rate of intrinsic losses γ→ γ∓ γ̃.

In the discharging, the outgoing intensity reduces to the product of a constant
by an exponential decay function (see dashed cyan lines in Fig. 1.19):

|Eout,R[t]|
2 = e−2(γ+Γ∓γ̃)t

4ε2in,LΓ
2(1+e2∆t(γ+Γ∓γ̃)−2e∆t(γ+Γ∓γ̃) cos [∆ω±β̃])

(γ+Γ∓γ̃)2+(∆ω±β̃)2 . (1.128)



1.5 Experimental Measurements 59

As in the Hermitian coupling case, the exponential decay is independent of ∆ω.
Here, the time constant is τph = 1

2(γ∓γ̃+Γ) =
Q1/2
ω0

. Note, γ̃ is subtracted in the case
of the first supermode (∆ω = −β̃) and added for the second one (∆ω = β̃). From
here we can calculate the two Qs of the MR:

Q1/2 =
ω0 ∓ β̃

2(γ+ Γ ∓ γ̃)
≃ ω0
2(γ+ Γ ∓ γ̃)

. (1.129)

Therefore, the simple fitting of the decay of the outgoing intensity allows the estim-
ation of the Q as in the Hermitian case. However, in the case of Hermitian coupling,
since γ̃ = 0 and β̃≪ ω0, the Qs of the two supermodes are equal and independent
ofβtot,12/21 (they depend only on γ and Γ ). In the non-Hermitian case, we generally
have γ̃ ≠ 0. Therefore, the two supermodes have different Qs. Note that γ contains
also the losses due to the non-Hermitian BS, so reducing γ to γ− |γ̃| does not mean
that the supermode has lower losses than if the BS were zero, but it means that
we remove most of the losses caused by the non-Hermitian BS. We can define the
ultimate Q as the highest Q between those of the two supermodes.

In conclusion, using interferometric excitation, it is possible to measure the Q of
a MR even when it is affected by BS. This is true not only in the steady state, via the
spectral response, but also in the transient regime and thus via the time response of
the MR.

1.5 Experimental Measurements

In this section, we describe the experimental setup we have built to perform
measurements on different types of MRs. In particular, this setup is designed to
simultaneously measure both the transmission and reflection of the device under
test. In addition, it is possible to quickly switch from left to right excitation or to
the interferometric excitation (simultaneous excitation from both directions).

Then, in Sec. 1.5.3 I will show some measurements made on integrated MRs.
Here, both almost completely Hermitian and non-Hermitian BS will be observed.
In addition, the new interferometric technique introduced in Sec. 1.3 will be used
to transform a transmission doublet into a single Lorentzian centered on the real
part of its eigenvalue and with FWHM equal to twice the absolute value of the
imaginary part of the eigenvalue.
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1.5.1 Experimental Setup

The experimental setup for the simultaneous measurement of transmission and
reflection spectra is shown in Fig. 1.20. With this setup it is possible to measure in
both single excitation and interferometric configurations [102]. The experimental
setup is based on an interferometric scheme where we use both arms to realize
the interferometric excitation or only one arm to obtain the spectral response of a
single-side excitation.
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Figure 1.20: Scheme of the used experimental setup. It is composed by: a Continuous Wave Tunable
Laser (CWTL) as light source, an Optical Isolator (OI) to protect the laser from the
backscattered light, a 50/50 Fiber Splitter (FS) to separate the laser beam in two, two
Variable Optical Attenuators (VOAs) to tune the light intensity, two Fiber Polarization
Controllers (FPCs) to set the correct light polarization, a Delay Line (DL) to balance
the optical length path of the two arms, two 10/90 Fiber Splitters (FSs) to measure the
intensity in the two arms, two Optical Circulators (OCs) to excite and simultaneously
measure the spectral responses, two Alignment Stages (ASs) and one Infrared Camera
(IRC) to align the stripped optical fiber to the chip, one Temperature Controller (TC) and
one Proportional–Integral–Derivative controller (PID) to control the chip temperature,
four photodetectors (PDs) and one PC Oscilloscope (PicoScope) to measure the spectral
responses and a Personal Computer (PC) to control all the instruments. [102]

The source is a Continuous Wave Tunable Laser (CWTL), namely Yenista TU-
NICS T-100S. This laser works in the third telecom window and more precisely its
wavelength can range from 1475 nm to 1575 nm, with an accuracy of 1 pm. The
output of the laser is fibered, can reach a maximum of about 8 mW and is linearly
polarized. To control the laser, a MATLAB® [136] code was implemented that can
scan the laser wavelength at different speeds. This program also commands the
PC Oscilloscope (PicoScope), a PC oscilloscope, which is used to measure both the
laser sync signal and the output voltages from the photodetectors (PDs). After
the laser, a fiber Optical Isolator (OI) was inserted to protect the Continuous Wave
Tunable Laser (CWTL) from any retroreflection which causes power instabilities or
even laser failure. Then, the optical path is divided into two paths by using a 50/50
Fiber Splitter (FS). This allows exciting our sample from both sides (interferometric
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excitation). Two Variable Optical Attenuators (VOAs) controlled by the PC and a
voltage generator are inserted on each of the two arms. The VOAs are used to con-
trol the optical power in the two paths and, in particular, to switch off one excitation
direction (left or right). After the VOAs, a Fiber Polarization Controller (FPC) sets
the correct polarization, in our case Tranverse Electric (TE), on the grating of the bus
waveguide in the chip under consideration. In fact, most of the integrated struc-
tures presented in this thesis have been realized by using single mode WGs that only
guide the TE polarization. After the fiber polarization controllers in one of the two
arms, a Delay Line (DL) in air was inserted in order to compensate for the difference
in optical length between the fibers on the two arms. Since the refractive index of
the fiber has a different behavior as a function of wavelength than that of air (which
remains almost constant), care was taken to keep the delay line as short as possible,
about 5 cm. Then, to control the optical intensities in the two arms, two 90/10 fiber
splitters are inserted, as shown in Fig. 1.20. On the 10% path, two indium gallium
arsenide (InGaAs) photodetectors (PDs) with variable gain are used to monitor the
light intensity. On the contrary, 90% of the signal is fiber coupled to an Optical
Circulator (OC). The optical circulator is a three ports device that is designed to
allow light to travel in only one direction. In particular, only the following paths
are allowed: 1→ 2 and 2→ 3. Therefore the paths 2→ 1 and 3→ 2 are forbidden
(they have a large isolation). In this scheme, the optical circulators are essential
to measure the transmission and reflection spectra of the system simultaneously.
They are also needed to be able to excite from both directions simultaneously and
measure the spectral responses at the same time. Therefore, optical circulator port
number 2 of the Optical Circulators (OCs) transmits the optical signal towards the
device under test, while optical circulator port number 3 is coupled to an InGaAs
variable gain PDs to measure the spectral responses of the device under test. The
PDs are PDA10CS2 from Thorlabs, InGaAs switchable gain amplified detectors
with a bandwidth of about 13 MHz operating in the 900 − 1700 nm range. After
the optical circulators there are the Alignment Stages (ASs) with angled supports
needed to properly align the stripped optical fibers with the gratings of the integ-
rated structures. The chip is placed on a copper block that can be heated or cooled
by a Peltier cell, which is attached to a heat sink by thermal paste. The sample
holder is attached with a thermally non-conductive material to a 4-axis stage to
move the sample to the desired position. The temperature is controlled by a 10 kΩ
thermistor in contact with the copper block, a constant current generator of about
500 µA, a Peltier cell and a Proportional–Integral–Derivative controller (PID). In
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this way, we are able to keep the chip temperature stable and thus have no drift
in the resonance wavelengths. All the instruments, in particular the CWTL, the
two VOAs and the PicoScope, are connected and programmable from a PC via
MATLAB®. The PicoScope is connected to all PDs and the sync signal of the CWTL
and is used to record the experimental measurements and spectra. There is also
an Infrared Camera (IRC) to observe the structures on the chip and to ease the
alignment of the fibers with the gratings.

In order to minimize the reflections due to the refractive index change at the
transition between fiber, air and WG, we used glycerol as an index-matching ma-
terial. This allowed us to reduce the spurious reflections by an additional order of
magnitude and avoid strong Fabry-Pérot (FP) effects. Note that in this experimental
setup it is very important to have very low reflections because we are not only in-
terested in the transmission spectra but also in the reflection ones. Moreover, while
it is easy to obtain equal transmissions, the couplings between the optical fibers
and waveguides must be very similar to have the correct balance of reflections. In
fact, the left reflection is affected twice by the left fiber grating coupling, while the
right reflection is affected twice by the right fiber grating coupling. Instead, both
transmissions are affected by both couplings. For this reason, the experimental
setup was calibrated periodically. All fibers were cleaned, delay line was realigned,
detectors were recalibrated, and stripped fibers were checked/cut again. All this
was done to be sure of the symmetry of the experimental setup.

The reported spectral responses are normalized by the spectral transmission
response of the gratings (Gaussian shape due to the coupling between a fiber and a
grating).

1.5.2 Integrated photonic circuits/samples

The measurements reported in this section were performed on integrated photonic
circuits fabricated by the IMEC/Europractice facility within the multi-project wafer
program. The design of the MRs, whose experimental measurements I will report
in this section, was carried out by other components of the Nanoscience Laboratory
of the University of Trento. The integrated photonic circuit is realized in Silicon-
on-Insulator (SOI). In particular, a single mode waveguide TE with a cross section
of 450 nm × 220 nm was used. The WGs are realized in Si and surrounded by a
cladding in SiO2.
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1.5.3 Results

The studied MRs are in the add-drop configuration (see Fig. 1.1 (c)) and have a
radius of about 7 µm. In addition, the resonators have a gap width between the bus
waveguide and the MR of about 250 nm or 300 nm and a coupling length (length
of the part where the bus waveguide and the WG of the MR are parallel) of 0 µm or
3 µm (Tab. 1.1).

MR coupling length [µm] coupling distance [µm] Figure

1 3 0.25 1.21
2 3 0.30 1.22
3 0 0.25 1.23
4 0 0.30 1.24

Table 1.1: Design characteristic of the four studied MRs.

In the following, I will present the measured spectral responses of the MRs listed
in Tab. 1.1, see Fig. 1.21, Fig. 1.22, Fig. 1.23 and Fig. 1.24. These measurements are ex-
ploratory and are intended to present resonances that are characterized by different
line shapes. To make the graphs clearer, only one of the two transmission spectra
has been plotted. The transmission not shown is actually the same as the other
in the region where the whole system was aligned and calibrated (1515–1540 nm).
When a single Lorentzian was measured in more detail, the entire experimental
setup was calibrated to a wavelength close to the resonance wavelength so that the
correct transmission and reflection spectra were obtained.

From Figs. 1.21, 1.22, 1.23 and 1.24 it can be seen that the MRs in Tab. 1.1 are
ordered from the MR having wider resonances (smaller Q) to the one with the
split but single narrower resonances (larger Q). In all plots, the transmission out of
resonance is not constant, but has oscillations. These are due to the spectral response
of the input/output gratings and to the Fabry-Pérot formed by weak reflections
between the input and the output gratings. At low and high wavelengths, both
transmission and reflection spectra show more strain/noise, which can be attributed
to several factors, including the grating band and its correction, the alignment and
calibration of the polarization, and of the entire experimental setup, which was
performed around 1525–1530 nm.

Another feature present in all 4 MRs is the increase in the FWHM of the reson-
ances with increasing wavelength. This is due to the increase in γtot as a function
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of wavelength, which is most likely caused by the increase in coupling between
the WGs and the MR. In fact, as the wavelength increases, the propagating mode
in the WG is less confined and therefore the coupling between two adjacent WGs
increases.

Figure 1.21: Spectral responses of the MR number 1 of Tab. 1.1, in the add-drop configuration. The
MR coupling length is 3 µm and the gap between the WGs and the MR is 0.25 µm.
The insets show a zoom of the resonances, the range of the ordinates is the same as in
the main plot, instead, the range of the wavelengths is 0.4 nm. Each inset refers to the
resonance located to its right.

In Fig. 1.21 no splitting of resonances is observed. However, at the same time,
the reflections, which in the ideal case (without BS) should be zero, have peaks
at the resonances. This means that even if the BS is not large enough to split the
resonances, it is present and clearly visible in the reflections. Figure 1.21 shows that
the resonances are almost all close to the critical-coupling regime, which is caused
by the fact that the couplings between the MR and the bus and drop WGs are equal
and the propagation losses within the MR are not large enough to move the MR to
an under-coupling regime.

In Fig. 1.22 the coupling rates between the MR and the two WGs are smaller
than in the previous graph. It can be observed that the resonances have a smaller
FWHM. It is also observed that the resonance around 1493 nm has an asymmetric
doublet. This is due to the fact that by increasing the Q of the MR, the BS effect
becomes more and more visible.

Further decreasing the coupling rates between MR and WGs yields the spec-



1.5 Experimental Measurements 65

Figure 1.22: Spectral responses of the MR number 2 of Tab. 1.1, in the add-drop configuration. The
MR coupling length is 3 µm and the gap between the WGs and the MR is 0.30 µm.
The insets show a zoom of the resonances, the range of the ordinates is the same as in
the main plot, instead, the range of the wavelengths is 0.4 nm. Each inset refers to the
resonance located to its right.

Figure 1.23: Spectral responses of the MR number 3 of Tab. 1.1, in the add-drop configuration. The
MR coupling length is 0 µm and the gap between the WGs and the MR is 0.25 µm.
The insets show a zoom of the resonances, the range of the ordinates is the same as in
the main plot, instead, the range of the wavelengths is 0.4 nm. Each inset refers to the
resonance located to its right.
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tra in Fig. 1.23. Here all resonances except the one near 1525 nm are split, and
in addition, one can see the presence of nearly symmetric resonances and asym-
metric resonances. The symmetry or asymmetry of the resonances is given by the
Hermiticity or non-Hermiticity of the BS.

Figure 1.24: Spectral responses of the MR number 4 of Tab. 1.1, in the add-drop configuration. The
MR coupling length is 0 µm and the gap between the WGs and the MR is 0.30 µm.
The insets show a zoom of the resonances, the range of the ordinates is the same as in
the main plot, instead, the range of the wavelengths is 0.4 nm. Each inset refers to the
resonance located to its right.

The MR with zero coupling length and with a gap width equal to 0.30 µm, is the
MR that ideally has the highest Q among the measured ones. Figure 1.24 shows that
all the resonances of this MR exhibit either Hermitian or non-Hermitian splitting.
In this graph, as in the others, it is clear that the BS is not constant throughout the
spectrum, but each resonance is characterized by a different BS. This is because
different wavelengths are affected differently by the surface-wall roughness and are
therefore characterized by a different BS coefficient. Furthermore, each WG and
thus each MR has its roughness, so it is not possible to derive a general trend of BS
in WG as a function of wavelength.

In summary, we have observed that as the ideal Q increases, backscattering due
to the surface roughness of the WGs becomes increasingly relevant and no longer
negligible. This significantly limits the maximum Q achievable by silicon integrated
MRs.

Let us now analyze two resonances in more detail. In particular, we analyze the
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resonance around 1525 nm for both 3rd and 4th MR, see Fig. 1.25 and Fig. 1.26.

(a)

(b)

Figure 1.25: Spectral response around 1525 nm of the 3rd MR, see Tab. 1.1. (a) reports the spectral
responses when the system is excited from left, and (b) when it is excited from right. The
blue and red lines are the experimental data for the output intensities measured at the
right and left ports, respectively. The dashed lines identify the fits made by the model
obtained through the TCMT. The parameters of the fit are listed in Tab. 1.2.

Figure 1.25 shows the spectral responses of the 3rd MR. Here the resonance is not
split, and the transmission spectra at the resonance have a dip with a minimum value
of 0.3 µW, which is about 1/17 of the transmitted intensity out of the resonance.
Note that this is the deepest transmission of this MR and also the only one that is
not split. Moreover, the reflection spectra at resonance have a peak of only 0.2 µW,
which is about 1/25 of the transmitted intensity out of resonance. This resonance
is the one with the lowest BS of this MR. The spectral responses are well fit by the
theoretical model of TCMT (Eq. (1.61) and Eq. (1.62)), the fit parameters are given
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in Tab. 1.2. Figure 1.25 shows that the two transmission spectra are equal. Since
the dip in transmission is close to zero, the resonator is close to the critical-coupling
configuration. More precisely, the MR is in the under-coupling regime. We can say
this because the MR is in the add-drop configuration where the couplings between
the WGs are equal, so γ is definitely greater than or at most equal to Γ . In fact,
in this case, the parameter γ includes not only the propagation losses, but also the
losses due to the coupling of the MR with the drop WG. The fact that the MR is in
the under-coupling regime, is also shown in Tab. 1.2, where Γ < γ.

Parameter Value

λ0 1524.61709(1) nm
ω0 1.23549157(1) PHz
γ 9.54(1) GHz
Γ 6.136(6) GHz

ℜ[β12] 3.91(2) GHz
ℑ[β12] −0.71(3) GHz
ℜ[β21] −4.13(2) GHz
ℑ[β21] −0.15(3) GHz
h 0.43(2) + 4.02(2)i GHz
n −0.11(2) − 0.28(2)i GHz

Table 1.2: Fit parameters for the resonance at λ0 ≃ 1525 of the 3rd MR (Fig. 1.25).

Table 1.2 shows how the BS is smaller than the intrinsic and extrinsic decay rates
and also turns out to be predominantly Hermitian, in fact, |h| > |n|. Since the BS
is not very pronounced in this case, the Q computed directly from the spectrum is
similar to those computed using the Eq. (1.111), Q ≃ 4× 104.

The resonance shown in Fig. 1.26 is completely different. Here the reflections are
much more prominent and the resonance is clearly split. The spectra of Fig. 1.26 are
related to the resonance near the wavelength of 1525 nm of the 4th MR in Tab. 1.1,
which has a larger gap (0.30 µm) than the one lastly analyzed (0.25 µm). Again, the
transmissions are equivalent for left and right excitation, while the reflections are
slightly different; in fact, the spectrum in the reflection from the right has higher
peaks. The doublets in transmission and reflection are not symmetric with respect
to zero detuning, which means that the BS is non-Hermitian. We also observe that
the transmission reaches a minimum at 30% of the maximum intensity and therefore
there is never a complete constructive interference between the fields continuing in
the bus waveguide or leaving the MR.
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(a)

(b)

Figure 1.26: Spectral response around 1525 nm of the 4th MR, see Tab. 1.1. (a) reports the spectral
responses when the system is excited from left, and (b) when it is excited from right. The
blue and red lines are the experimental data for the output intensities measured at the
right and left ports, respectively. The dashed lines identify the fits made by the model
obtained through the TCMT. The parameters of the fit are listed in Tab. 1.3. [102]
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Figure 1.26 shows that even at high BS the theoretical model reported in Sec. 1.2.1
fits well the experimental data. The parameters obtained from the fit are reported in
Tab. 1.3. To achieve a greater accuracy in the parameters, a single set of parameters
was used to fit the four spectra.

Parameter Value

λ0 1524.94302(1) nm
ω0 1.235227507(8) PHz
γ 4.56(1) GHz
Γ 2.662(3) GHz

ℜ[β12] −19.72(2) GHz
ℑ[β12] −0.2(4) GHz
ℜ[β21] 20.67(2) GHz
ℑ[β21] 0.8(4) GHz
h −0.3(3) − 20.20(1)i GHz
n 0.48(1) − 0.5(3)i GHz

Table 1.3: Fit parameters for the resonance at λ0 ≃ 1525 of the 4th MR (Fig. 1.26).

Comparing Tab. 1.3 with Tab. 1.2 we see that the 4th MR has lower intrinsic and
extrinsic decay rates as expected. In addition, the BS is much larger in this case
and is also larger than both Γ and γ. Although the spectrum is asymmetric, it can
be seen that the BS, in this case, is also mainly Hermitian |h| > |n|. This causes the
MR to have little loss due to the BS (|n| relatively small). The absolute value of the
Hermitian part of the BS and of both BS coefficients are about 20GHz, which causes
the resonance to be characterized by two dips/peaks centered at∆ω ≃ ∓20GHz, see
Fig. 1.26. This results in a measured Q value of ≃ 2.4× 104 when using the FWHM
of the entire resonance. Using Eq. (1.50), the values in Tab. 1.3 and neglecting the
BS, we get Q ≃ 8.55 × 104. Using our new definition, which includes the BS and
differentiates the two supermodes of the MR [Eq. (1.111)], we get Q1 ≃ 9.18 × 104

and Q2 ≃ 8.01 × 104. This means that the spectral measurement of Q loses its
meaning when a single-side excitation (non-interferometric) is used.

Interferometric excitation Since the interferometric excitation technique is based
on coupling the light signal in both directions of propagation and having a constant
and well-defined relative phase during the spectral measurement, we adjusted the
delay line so that the two optical paths after the 50/50 fiber splitter are as equal
as possible. In fact, if there is a change in the optical path equal to ∆L, then the
relative phase between the two arms will be ϕ ≃ (2π∆L)/λ. From this formula it
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is clear that if ∆L is not small enough, the phase will vary rapidly as a function of
wavelength, making it impossible to make a spectral measurement in which the
phase remains constant during the spectral measurement of a resonance. Since
delay line is in air, we must also take into account the fact that the refractive indices
of fiber and air do not vary in the same way as a function of wavelength. In fact,
this means that the optical path difference ∆L varies as a function of wavelength,
causing additional phase variations. To limit this phenomenon, we inserted a fiber
segment of appropriate length to shorten the delay line in air as much as possible
(5 cm). Since the spectrum of a resonance is about 0.3 nm wide, we were able to have
a constant phase in the measurement window. However, this is not enough because
since the interferometer is made of fiber, even fiber relaxation, a small change in
temperature or airflow will cause the phase in one arm or the other to vary. In order
to limit excessive variations in the relative phase between the two arms, we fixed the
fibers to the table and made sure that there was as little air circulation as possible.
Even with these arrangements, the phase varies over time, but it varies slowly
enough to have a constant phase during the measurement of a single spectrum.
Specifically, we measured a phase variation rate of dϕ/dt ⩽ 0.1 rad/s. Since we
use a scan rate of the Continuous Wave Tunable Laser (CWTL) of 1 nm/s, and since
the spectral window of interest is 0.3 nm wide, we have that the typical time to
acquire a spectrum of a single Lorentzian is about 0.3 s. Consequently, the phase
variation during a single scan is about 3× 10−2 rad and therefore negligible. Using
this setup, it is therefore possible to measure the spectral responses produced by
the interferometric excitation for different ϕ phases, taking advantage of the fact
that this phase varies randomly with time.

A much simpler and more accurate way to perform this type of measurement
is to integrate the experimental setup within a chip using well-known and charac-
terized blocks, such as integrated Multi-Mode Interferometers (MMIs), integrated
Mach Zhender Interferometers (MZIs), and integrated phase shifters made by, for
example, microheaters. In this way, both the intensities and the phases of the two
arms of the MZI can be easily varied, and a constant phase can be obtained over
almost the entire spectrum. Also, by deterministically varying both phase and
amplitudes, the interferometric measurement would be much more accurate and
faster.

In our case, the symmetric interferometric excitation is made possible by calib-
rating each part of the setup and estimating the coupling losses of the gratings, see
Appendix B for more details.
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To observe the variation of the spectra as a function of phase, 100 spectral meas-
urements were made with a resolution of 0.1 pm. To allow sufficient randomness
in theϕ phases, a guard time of at least 1 s was used between different acquisitions.
This is necessary because we cannot control the phase, and therefore we use its
temporal variation, e.g. due to fiber temperature fluctuations, to measure spectra
corresponding to different ϕ phases of the interferometric excitation.

Since it was not possible to control the phase ϕ value, to determine it we first
measured the resonance at a single-side excitation as reported in Fig. 1.26. After
fitting the four single-side excitation spectra, we used the obtained fit parameters,
leaving only the relative phase between the two excitation fields (ϕ) as a free
parameter. With this method, the error in the phase ϕ is 3 × 10−2 rad. Some
measured spectra and the results obtained are given in Fig. 1.27 and Fig. 1.28.

The panels (a) and (b) of Fig. 1.27 report the doublet splitting as a function of the
phase θ := ϕ − (arg[βtot,21/βtot,12]/2+ π/2), see Eq. (1.108). The doublet splitting
is reported as a frequency detuning with respect to the MR fundamental angular
frequency, i.e. δω = ω</> − ω0, where ω< and ω> are the measured angular
frequencies of the two dip minima. In particular, ω< refers to the lower angular
frequency dip andω> to the higher angular frequency dip. Panels (a) and (b) show
the variation of δω as a function of θ for the right and left output field intensities,
respectively. The magenta (purple) colored dots correspond to δω = ω< − ω0,
while the black (gray) squares correspond to δω = ω> −ω0. The dashed magenta
(purple) and dash-dotted black (gray) curves show the theoretical dependencies
derived by Eq. (1.61) and Eq. (1.62). Note that the model developed in Sec. 1.2.1
and Sec. 1.3 reproduces the experimental data.

In Fig. 1.28 four examples of the measured interferometric excitation spectra are
shown. The blue and red curves represent the experimental spectra relative to the
right and left field intensities, respectively. The four panels (a), (b), (c) and (d) are
characterized by θ = −0.27π, 0.26π, −0.52π and 0.48π, respectively. Here we can
see that the interferometric excitation gives very different responses as the relative
phase of the two excitation fields varies. It is worth noticing that the experimental
data is well fitted by the theoretical model. As predicted by theory (Sec. 1.3), when
the phase θ = ∓π/2, the interferometric excitation is able to merge the doublet into
a single Lorentzian, see panels (c) and (d) of Fig. 1.28. Around these values of θ in
Fig. 1.27 the points coincide with squares. Since the two phases are not perfectly
∓π/2 and since we have used a symmetric interferometric excitation even though√︁
|βtot,21|/|βtot,12| is not identically equal to 1 [see Eq. (1.106)], the spectra are not
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(a) (b)

Figure 1.27: The position of the dips as a function of the phase θ := ϕ− (arg[βtot,21/βtot,12]/2+ π/2)
for the right and left output intensities [panels (a) and (b)]. δω = ω< − ω0 and
δω = ω> − ω0 are the angular frequency detuning for the dip with lower angular
frequency (ω<) and the one with higher angular frequency (ω>). The experimental
data are reported in magenta (purple) dots for δω = ω<−ω0 and in black (gray) square
for δω = ω> − ω0. The theoretical curves are dashed magenta (purple) and dash-
dotted black (gray) forω< andω>, respectively. The data correspond to the symmetric
interferometric excitation with a wavelength around 1525 nm of the 4th MR (Tab. 1.1).
[102]
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(a) (c)

(b) (d)

Figure 1.28: Response spectra of the 4th MR at the resonance of around 1525 nm for a symmetric
interferometric excitation. Panels (a), (b), (c) and (c) correspond to the phases θ =
−0.27π, 0.26π, −0.52π and 0.48π. The blue and red curves represent the measured
output field intensities at the right and left side, respectively. The black curves report
the fit of the experimental data. [102]
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perfectly Lorentzian. However, we can say that the spectral responses shown in
panels (c) and (d) are hardly different from a Lorentzian one. We can therefore
say that by using the interferometric excitation we are able to excite one of the two
supermodes of the MR (s1 or s2). Using this method, we are then able to increase
the Q of the MR, calculated using the spectral FWHM, from Q ≃ 2.4 × 104 to
Q ≃ 9× 104. It is important to note that now the extinction ratio of both dips is also
increased with respect to the single-side excitation case. In fact, the first supermode
[panel (c)] has the minimum of the dip reaching almost zero. Moreover, it becomes
easy to measure both the real and imaginary parts of the eigenvalues λ1 and λ2. In
fact, the position of the two Lorentzian dips, one in panel (c) and the other in panel
(d), corresponds to the real part of the eigenvalues, while their FWHM corresponds
to twice the absolute value of the imaginary part of the eigenvalues.

Single Side Interferometric
Excitation [GHz] Exitation [GHz]

|ℜ
[︁
λ1/2 −ω0

]︁
| 20.2± 0.3 21.0± 0.3

ℑ[λ1] −6.73± 0.02 −6.8± 0.2
ℑ[λ2] −7.71± 0.02 −7.51± 0.07

Table 1.4: Real and imaginary parts of the eigenvalues of the MR. The first column shows the values
calculated by using the parameters obtained from the fit of the spectral responses of a
single side excitation (Fig. 1.26). The second column shows the values estimated by using
a simpler Lorentzian fit of the experimental data reported in panels (c) and (d) of Fig. 1.28.
[102]

Table 1.4 shows the comparison between the real and imaginary parts of the
eigenvalues derived by a full fit of all the single side spectra (Fig. 1.26) and by a
simpler Lorentzian fit of the two merged doublet [panels (c) and (d) of Fig. 1.28].
We use the simple Lorentzian fit to determine the wavelength and FWHM of the
resonances of the two supermodes. The two methods of eigenvalues calculation
give compatible results. The difference in the values and the greater uncertainty in
the estimation of ℑ

[︁
λ1/2

]︁
is due to the use of a symmetric interferometric excitation

with θ ≠ ∓π/2, which causes a small perturbation in the Lorentzian line shape.
In summary, we have also demonstrated experimentally that by using the inter-

ferometric excitation one can merge the doublet into a single Lorentzian line shape,
thereby increasing the Q of the MR and also the extinction ratio. Moreover, by being
able to excite a single supermode of the MR, one can measure, either directly from
the spectrum or by performing a simple Lorentzian fit, both the real and imaginary
parts of the eigenvalues of the system.





Chapter 2
Taiji Microresonator

This chapter discusses a particular MR called the Taiji Microresonator (TJMR).
The TJMR consists of a simple MR with an embedded S-shaped waveguide [52,
137, 78, 77, 60, 138, 139, 140, 36, 141, 80, 47, 142, 143]. Its name comes from its
special geometry, which resembles the Taiji symbol. The S-shaped WG creates
an asymmetric coupling between the two counterpropagating modes inside the
MR, and as a result a non-Hermitian coupling is obtained. Here it is shown that
the TJMR is at an Exceptional Point (EP), which means that both eigenvalues and
eigenvectors of the system coalesce [53, 31, 35, 36, 4, 105, 72, 144, 32]. Being on a EP,
the TJMR has special features that can be exploited. The most important features
of this structure are: the unidirectional reflector behavior [52], the possibility to
break the transmission Lorentz reciprocity theorem when excited by a high power
laser (nonlinear regime) [77, 78, 80], the unidirectional laser [36], the generation of
tunable orbital angular momentum beams [145], and the sensitivity enhancement
to a BS perturbation due to the EP features [47].

In Sec. 2.1 I will show the geometry of the TJMR and then I will describe it
using the TCMT. Here we will observe the main characteristics of the TJMR in
the linear regime (low laser power). Then, in the Sec. 2.2, the system is described
using the TMM. A disturbing element found experimentally, the presence of a
cavity FP created in the bus waveguide due to the presence of reflections at the
waveguide ends, will also be introduced here. This phenomenon is very important
when butt coupling is used and the ends of the bus waveguide are not accurately
designed. In the following section (Sec. 2.3) the TJMR will also be analyzed in the
nonlinear regime (high laser power) where we will demonstrate both theoretically
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and experimentally the breaking of the Lorentz reciprocity. Going back to the
description of the TJMR via the TCMT, we will introduce the BS and demonstrate
the enhanced sensitivity to a BS perturbation characteristic of the EPs (Sec. 2.4). We
will also report experimental measurements of TJMRs characterized by different Qs
and observe how the BS, mainly due to surface roughness, becomes increasingly
relevant as Q increases. Finally, in Sec. 2.5 we will analyze the TJMR using the
interferometric excitation both theoretically and experimentally.

Part of this chapter is derived from [78, 102, 77, 93, 52].

2.1 Design and Temporal Coupled Mode Theory model

The Taiji Microresonator (TJMR) is a particular MR characterized by an embed-
ded S-shaped WG, see Fig. 2.1.

Eout,R

Ein,R

Eout,L

Ein,L

αCCW αCW

γ

β12
ΓS

Γ

eiφ
ΓS

Figure 2.1: Sketch of the Taiji Microresonator (TJMR) in the all-pass configuration. γ and Γ are the
intrinsic and the extrinsic damping rates. The indices R,L refer to left and right. Ein and
Eout are the input and the output fields, respectively.

The S-shaped WG couples energy from the CW mode to the CCW mode
(β12 ≠ 0), but not vice versa (β21 = 0), thus creating an asymmetric coupling
between the two counterpropagating modes. This means that the CCW mode will
be dominant over the CW mode so the TJMR is a chiral MR [146, 53]. Note that
the two counterpropagating modes, αCW and αCCW, suffer the same losses because
they both suffer from the coupling between the MR and the S-shaped WG.

Using the TCMT, we can write the system of equations that describes the ideal
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TJMR:

i
d
dt

(︄
αCCW

αCW

)︄
=

(︄
ω0 − iγtot −iβ12

0 ω0 − iγtot

)︄(︄
αCCW

αCW

)︄
−

√
2Γ

(︄
Ein,L

Ein,R

)︄
, (2.1)

(︄
Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

(︄
αCCW

αCW

)︄
, (2.2)

where Γ is the extrinsic decay rate, γtot = γ + Γ + 2ΓS is the total loss rate, γ is
the intrinsic decay rate due to absorption and scattering losses, ΓS is the coupling
rate between the MR and the S-shaped WG and β12 is the coupling rate from αCW

to αCCW. In particular β12 = 2eiφ(
√
2ΓS)

2 = 4eiφΓS [93], where φ is the phase
acquired by the field when it propagates through the S-shaped WG. In fact, β12 has
to take into account that αCW couples to the S-shaped WG twice in one round trip,
and has to cross two coupling points (MR to S and S to MR) to enter the outer rim
WG and transforms into the αCCW.

From the Hamiltonian corresponding to TJMR,

H =

(︄
ω0 − iγtot −iβ12

0 ω0 − iγtot

)︄
, (2.3)

we can immediately see the asymmetric coupling between the two counterpropagat-
ing modes (off-diagonal terms). Calculating the eigenvalues and eigenvectors of
this Hamiltonian, we obtain

λ1 = λ2 = ω0 − iγtot , ν1 = ν2 =

(︄
1

0

)︄
. (2.4)

Therefore not only the eigenvalues are degenerate, but also the eigenvectors co-
alesce, in fact the eigenvectors are equal to each other and therefore | < ν1|ν2 > | = 1.
The coalescence of two or more eigenstates (eigenvalues and eigenvectors) is the
necessary and sufficient condition for a system to be at an EP. Thus, we can say
that the TJMR not only exhibits non-Hermitian coupling between its two counter-
propagating modes, but is also at an EP.

Let us observe what it implies for the TJMR to be at an EP. We then solve the
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system of equations in Eq. (2.1) and Eq. (2.2) in the stationary regime by imposing:

Ein,L := εin,L e
−iωt , Ein,R := εin,R e

iϕ e−iωt , (2.5)

αCCW := aCCW e−iωt , αCW := aCW e−iωt , (2.6)

Eout,R := εout,R e
−iωt , Eout,L := εout,L e

−iωt , (2.7)

as in Sec. 1.1.2. This results in:

εout,R =

(︃
1−

2Γ

−i∆ω+ γtot

)︃
εin,L +

(︄
2Γβ12

(−i∆ω+ γtot)
2

)︄
eiϕεin,R , (2.8)

εout,L =

(︃
1−

2Γ

−i∆ω+ γtot

)︃
eiϕεin,R , (2.9)

aCCW =
i
√
2Γ

−i∆ω+ γtot
εin,L −

i
√
2Γ β12

(−i∆ω+ γtot)2
eiϕεin,R , (2.10)

aCW =
i
√
2Γ

−i∆ω+ γtot
eiϕεin,R , (2.11)

where ∆ω = ω − ω0 is the detuning angular frequency. Let us identify the field
at the o output when the device is excited from the i input as εio, where i = L,R
and o = L,R (L stands for left and R stands for right). The intensities of the output
fields when a single-side excitation is used are:

|εLR|
2 =

(︃
1−

4(γtot − Γ)Γ

∆ω2 + γ2tot

)︃
|εin,L|

2 , (2.12)

|εRL|
2 =

(︃
1−

4(γtot − Γ)Γ

∆ω2 + γ2tot

)︃
|εin,R|

2 , (2.13)

|εLL|
2 = 0 , (2.14)

|εRR|
2 =

4Γ2|β12|
2(︁

∆ω2 + γ2tot
)︁2 |εin,R|

2 , (2.15)

Consequently, one has:

T =
|εLR|

2

|εin,L|2
=

|εRL|
2

|εin,R|2
= 1−

4(γtot − Γ)Γ

∆ω2 + γ2tot
, (2.16)

RL =
|εLL|

2

|εin,L|2
= 0 , (2.17)

RR =
|εRR|

2

|εin,R|2
=

4Γ2|β12|
2(︁

∆ω2 + γ2tot
)︁2 =

43Γ2Γ2S e
−2ℑ[φ](︁

∆ω2 + γ2tot
)︁2 , (2.18)
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where T is the transmission intensity and RL and RR are the reflections intensities
from left and right, respectively. It is evident that the transmissions are identical
while the reflections are different, in fact RL = 0 while RR ≠ 0. This means that at
resonance the ideal TJMR behaves like a unidirectional reflector.

Note that the transmission spectrum is characterized by a Lorentzian dip centered
at ω0 (real part of the eigenvalues, ℜ

[︁
λ1/2

]︁
) and with a FWHM equal to 2γtot (the

absolute value of twice the imaginary part of the eigenvalues, |2ℑ
[︁
λ1/2

]︁
|). Therefore,

the transmission of an ideal TJMR is equivalent to the one of a MR characterized
by the same Γ and γtot coefficients. In general, to be in the critical-coupling regime
one must have 2Γ = γtot, where γtot depends on Γ . For the TJMR this translates
to Γ = γ + 2ΓS. Consequently, the three coupling regimes, under-, critical-, and
over-coupling, correspond to Γ < γ+2ΓS, Γ = γ+2ΓS, and Γ > γ+2ΓS, respectively.

The Q of the ideal TJMR can be calculated from the FWHM, which gives

Q =
ω0
2γtot

=
ω0

2(γ+ Γ + 2ΓS)
. (2.19)

It is useful to note that the TJMR with the embedded S-shaped WG will always have
more losses than a normal MR, and consequently, its Q will be lower. Note that if
we impose the critical-coupling regime, Γ = γ + 2ΓS, the reflectivity from the right

side and at resonance becomes RR =
4Γ2S e

−2ℑ[φ]

(γ+2ΓS)
2 and Q = ω0

4(γ+2ΓS)
. So, assuming

that we keep γ ≠ 0 constant and that we can vary ΓS (and consequently Γ ), there will
be a maximum reflection (≃ e−2ℑ[φ]) for ΓS that tends to ∞. However, this means
that the system is no longer a MR because Q goes to 0. This implies that to make
the best use of the TJMR, one should not only aim for maximum reflection, but
also, for example, for a large intensity difference within the TJMR between the left-
and the right-excitation case ( this concept will be seen in more detail in Sec. 2.3).
Obviously, in the case of zero losses (γ = 0), we obtain a maximum reflection at the
critical-coupling regime (e−2ℑ[φ]) that is independent of the value of Γ = 2ΓS.

Let us now give an example of the spectral responses of a TJMR in the critical-
coupling regime, see Fig. 2.2.

In Fig. 2.2 we observe, as expected, two identical transmissions and the uni-
directional reflector behavior of the TJMR. Note also that by imposing Γ = γ + 2ΓS

(critical coupling) the transmissions are zero at resonance. The transmission spec-
trum shows a dip with a Lorentzian line shape, instead the right reflection shows
a peak with the shape corresponding to a squared Lorentzian, as can also be seen
from Eq. 2.18.
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Figure 2.2: Theoretical spectral responses of a TJMR in the critical-coupling regime. The black curve
shows the transmission spectrum, while the blue and red curves show the reflections from
the left and right. The used coefficients are: γ = 5 GHz, ΓS = 30, Γ = γ + 2ΓS = 65 GHz
and therefore γtot = 130 GHz.

2.2 Transfer Matrix Method with Fabry Perot

In this section we want to include in the model of the TJMR also the reflections
at the edges of the bus waveguide that create a Fabry-Pérot (FP) cavity of the
same length as the bus waveguide. This will be necessary to best describe the
experimental measurements made on some chips where the butt coupling method
was used to couple light from the fiber to the sample. The most appropriate way to
incorporate these new system features is to switch from the TCMT, as seen in the
previous section, to the TMM.

In Fig. 2.3 the TJMR is schematized, and the black and red arrows and numbers
are used to identify the direction and name of each electric field within the TJMR.
In particular, the black arrows identify the En fields, where n = −4, ..., 11, and
forward propagation direction. Instead, the red arrows identify the Enr fields, which
have opposite propagation directions. In this section we assume, without loss of
generality, that the couplings between the different WGs are point-like. The TJMR
has three different coupling points, one with the bus waveguide and two with
the S-shaped WG, which we describe with the parameters (t1, ik1), (t2, ik2) and
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(t3, ik3), respectively. The parameters tj and kj are the transmission and coupling
coefficients, respectively. φ is the phase acquired by the field propagating in the
S-shaped WG. In Fig. 2.3 there are also specified the parameters related to the
terminations of the bus waveguide, i.e. (tL,∓rL) and (tR,∓rR), respectively for the
left and right ends/facets. Again, the t parameters are the transmission coefficients
between the two interfaces (air - WG), while the r parameters are the reflection
coefficients, which have the sign + or − depending on whether the field is reflected
inside or outside the WG. The change in sign is due to the fact that the field changes
sign or not depending on whether it is reflected in the material with a lower or
higher refractive index. This sign change results from Fresnel’s laws.

0 1

10

8

4

3

9

11

5

6

7 2

-1 -2 -3 -4

t3 | ik3 t2 | ik2eiφ

t1 | ik1tL |∓ tR | ±rRrL
lL lR

Figure 2.3: Sketches of the Taiji Microresonator (TJMR) in the all-pass configuration. The black arrows
identify the En fields, where n = −4, ..., 11, and forward propagation direction. Instead,
the red arrows identify the fields Enr, which have opposite propagation directions. All
the parameters are described in the text.

Before studying the whole system, which also includes the reflections of the
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ends of the bus waveguide, let us write the equations describing the TJMR:

E1 = t1E0 + ik1E7 , E0r = t1E1r + ik1E2r ,

E2 = t1E7 + ik1E0 , E2r = σ23e
iψ23E3r ,

E3 = σ23e
iψ23E2 , E3r = t2E4r ,

E4 = t2E3 + ik2E8 , E4r = σ45e
iψ45E5r ,

E5 = σ45e
iψ45E4 , E5r = t3E6r ,

E6 = t3E5 + ik3E9 , E6r = σ67e
iψ67E7r ,

E7 = σ67e
iψ67E6 , E7r = t1E2r + ik1E1r , (2.20)

E8 = e
iφE9r , E8r = ik2E4r ,

E9 = e
iφE8r , E9r = ik3E6r ,

E10 = t2E8 + ik2E3 , E11 = t3E9 + ik3E5 ,

ψjl :=
2π

λ
neffLjl , L = L23 + L45 + L67 ,

σjl := e
−αLjl , L := 2πR ,

ψ =
2π

λ
neffL , σ := e−αL .

The parameter Ljl identifies the WG length between the numbers j and l reported
in Fig. 2.3. Here, neff is the WG effective refractive index, α is the propagation loss
coefficient, L is the perimeter of the MR, and R is its radius. In the following, for
simplicity, we assumed that all the coupling have no losses (t21+k

2
1 = 1, t

2
2+k

2
2 = 1

and t23 + k
2
3 = 1).

From (1.70) we derive:

E1 =
t1 − σt2t3e

iψ

1− σt1t2t3eiψ
E0 +

2σ45σ
2
67k

2
1k2k3t3e

i(ψ45+2ψ67+φ)

(1− σt1t2t3eiψ)2
E1r , (2.21)

E0r =
t1 − σt2t3e

iψ

1− σt1t2t3eiψ
E1r . (2.22)

From Eq. 2.21 and Eq. 2.22 the transmission and reflection amplitudes are derived
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[52]:

ttaiji = t
L
taiji = t

R
taiji =

t1 − σt2t3e
iψ

1− σt1t2t3eiψ
, (2.23)

rL
taiji = 0 , (2.24)

rR
taiji =

2σ45σ
2
67k

2
1k2k3t3e

i(ψ45+2ψ67+φ)

(1− σt1t2t3eiψ)2
. (2.25)

tL
taiji and tR

taiji are the transmission amplitudes for a left and right excitation, while
rL

taiji and rR
taiji are the reflection amplitudes for light incident from left and right,

respectively.

In the stationary regime, when the conditions kj ≪ 1, tj ≃ 1, σ ≃ 1 (equivalent
to γtot ≪ ω0 or better γtot ≪ f̃) are satisfied, this model is equivalent to the one
used in Sec. 2.1. As seen in Ch. 1, to pass from the equations derived from TMM to
those derived via TCMT, it is sufficient to use the following relations [93]:

t1 ≃ 1−
Γ

f̃
, k1 ≃

√︃
2Γ

f̃
, (2.26)

t2 ≃ 1−
ΓS

f̃
, k2 ≃

√︃
2ΓS

f̃
, (2.27)

t3 ≃ 1−
ΓS

f̃
, k3 ≃

√︃
2ΓS

f̃
, (2.28)

σ ≃ 1− γ

f̃
, g ≃

√︃
2γ

f̃
, (2.29)

σt1t2t3 ≃ 1−
γtot

f̃
, (2.30)

λ0 = λres =
2πc

ω0
, ℜ[ψ] =

∆ω

f̃
, (2.31)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

, (2.32)

and expand for small couplings.

Now we want to add reflections at the ends of the bus waveguide. There are
two ways to do this. The first is to include in the system of equations of the TJMR
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(Eq. (2.20)) also the equations corresponding to the whole bus waveguide:

E−2 = tLE−1 + rLE−2r , E−1r = tLE−2r − rLE−1 ,

E0 = σ−20e
iψ−20E−2 , E−2r = σ−20e

iψ−20E0r ,

E−3 = σ−31e
iψ−31E1 , E1r = σ−31e

iψ−31E−3 ,

E−4 = tRE−3 − rRE−4r , E−3r = tRE−4r + rRE−3

and then solve the complete system of equations once again with these new 8

equations as well. Another method is instead to take full advantage of the TMM
technique, which consists of writing for each part of the system a transfer matrix
that links the fields to the right of that sub-block with the fields to the left of it. In
this way, it is sufficient to multiply the matrices in the correct order to obtain the
transfer matrix for the whole system, without having to solve the entire system of
equations. In the following, we will follow this path and explain the different steps
in more detail.

First, using the definition of the scattering matrix Staiji [107, 52]:(︄
E0r

E1

)︄
= Staiji

(︄
E0

E1r

)︄
(2.33)

we obtain:

Staiji =

(︄
rL

taiji tR
taiji

tL
taiji rR

taiji

)︄
(2.34)

=

⎛⎝ 0 t1−σt2t3e
iψ

1−σt1t2t3eiψ

t1−σt2t3e
iψ

1−σt1t2t3eiψ
2σ45σ

2
67k

2
1k2k3t3e

i(ψ45+2ψ67+φ)

(1−σt1t2t3eiψ)2

⎞⎠
At this point we need to switch to the TJMR transfer matrix (Mtaiji), which connects
the fields in this way: (︄

E1

E1r

)︄
= Mtaiji

(︄
E0

E0r

)︄
. (2.35)

For this purpose, we introduce three general properties of matrices:

A =

(︄
A11 A12

A21 A22

)︄
,
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(︄
x ′

y ′

)︄
=

(︄
A11 A12

A21 A22

)︄(︄
x

y

)︄
⇒

(︄
y

x ′

)︄
=

1

A22

(︄
−A21 1

det[A] A12

)︄(︄
x

y ′

)︄
(2.36)

(︄
x ′

y ′

)︄
=

(︄
A11 A12

A21 A22

)︄(︄
x

y

)︄
⇒

(︄
y

y ′

)︄
=

1

A12

(︄
−A11 1

−det[A] A22

)︄(︄
x

x ′

)︄
(2.37)

(︄
x ′

y ′

)︄
=

(︄
A11 A12

A21 A22

)︄(︄
x

y

)︄
⇒

(︄
y ′

y

)︄
=

1

A12

(︄
−det[A] A22

−A11 1

)︄(︄
x

x ′

)︄
(2.38)

Using the property described in Eq. (2.38) we get:

Mtaiji =
1

tR
taiji

(︄
−det [Staiji] rR

taiji

−rL
taiji 1

)︄
(2.39)

=
1

ttaiji

(︄
t2taiji rR

taiji

0 1

)︄
.

It is worth noting that the determinant of the transfer matrix of TJMR is one
(det [Mtaiji] = 1).

We now write the scattering matrix of the corresponding left facet of bus wave-
guide [107]:

SFL =

(︄
−rL tL

tL rL

)︄
. (2.40)

As a result, applying the property given in Eq. (2.38) yields the transfer matrix for
the left facet:

MFL =
1

tL

(︄
1 rL

rL 1

)︄
. (2.41)

Here, we assumed t2L + r2L = 1 (energy conservation). Similarly, we can calculate
the scattering matrix and the transfer matrix for the right-hand facet:

SFR =

(︄
rR tR

tR −rR

)︄
⇒ MFR =

1

tR

(︄
1 −rR

−rR 1

)︄
. (2.42)

We also write the scattering matrix and the transfer matrix for the field propagation
in the left or right side of the bus waveguide [107]:

SPj =

(︄
0 eiΨj

eiΨj 0

)︄
⇒ MPj =

(︄
eiΨj 0

0 e−iΨj

)︄
, (2.43)
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where j = L,R identifies the parameters relative to the left or right side of the bus
waveguide. Ψj = ((2π/λ)neff+ iα)lj identifies the complex phase (including losses)
that the field acquires when it passes through the part of bus waveguide that is to
the left or right of the MR (j = L,R). Note that all the calculated transfer matrices
have a determinant equal to 1.

In order to make the equations easier to understand, we use the following
definitions:

Ein,L := E−1 , Eout,R := E−4 , (2.44)

Eout,L := E−1r , Ein,R := E−4r . (2.45)

At this point, we can calculate the transfer matrix of the entire system, which is
defined as follows: (︄

Eout,R

Ein,R

)︄
= M

(︄
Ein,L

Eout,L

)︄
. (2.46)

by simply multiplying the transfer matrices [Eqs. (2.39), (2.41), (2.42) and (2.43)]:

M = MFRMPRMtaijiMPLMFL . (2.47)

M = e−iΨ̃

⎛⎜⎝ rL

(︂
−rR+r

R
taijie

2iΨR
)︂
+t2taijie

2iΨ̃

tLtRttaiji

−rR+e
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂
tLtRttaiji

rL

(︂
1−rRr

R
taijie

2iΨR
)︂
−rRt

2
taijie

2iΨ̃

tLtRttaiji

1−rRe
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂
tLtRttaiji

⎞⎟⎠ (2.48)

=

(︄
M11 M12

M21 M22

)︄
,

where Ψ̃ := ΨL +ΨR. With Eq. (2.36) we can now switch from the transfer matrix to
the scattering matrix:

S =
1

M22

(︄
−M21 1

det[M] M12

)︄
(2.49)

=

(︄
−M21

M22

1
M22

det[M]
M22

M12

M22

)︄

=

(︄
rL

tot tR
tot

tL
tot rR

tot

)︄
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S =

(︄
rL

tot tR
tot

tL
tot rR

tot

)︄
(2.50)

=

⎛⎜⎜⎝
−rL

(︂
1−rRr

R
taijie

2iΨR
)︂
+e2iΨ̃rRt

2
taiji

1−rRe
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂ eiΨ̃tLtRttaiji

1−rRe
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂
eiΨ̃tLtRttaiji

1−rRe
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂ − 1
rR

+ 1
rR

1−r2R

1−rRe
2iΨR

(︂
rR

taiji+rLe
2iΨLt2taiji

)︂

⎞⎟⎟⎠
Here, rL

tot and rR
tot are the reflection amplitudes for the light incident from the left

and the right end of the bus waveguide, respectively. Moreover, tL
tot and tR

tot are the
transmission amplitudes when the system is excited from left or right.

It is worth noting that the two transmissions of the system are equal. Moreover,
it is easy to prove that for rL and rR equal to zero (tL and tR equal to one) we obtain
the expected spectral responses:

ttot = t
R
tot = t

L
tot → ttaijie

iΨ̃ , (2.51)

rL
tot → 0 , (2.52)

rR
tot → rR

taijie
2iΨR . (2.53)

In the diametrically opposite case, where we remove the TJMR (t1 = 0 ⇒
rR

taiji = 0 and ttaiji = 1) we get:

ttot = t
R
tot = t

L
tot →

tLtRe
iΨ̃

1− rLrRe2iΨ̃
, (2.54)

rL
tot →

−rL + rRe
2iΨ̃

1− rLrRe2iΨ̃
, (2.55)

rR
tot →

−rR + rLe
2iΨ̃

1− rLrRe2iΨ̃
. (2.56)

As expected, these are the responses of a FP cavity with the typical periodic oscil-
lations as a function of the frequency of the exciting field [107].

Equation (2.50) shows that the spectral responses of the whole system clearly
show the characteristics of TJMR, but at the same time there are oscillations due to
the FP cavity which cause special interferences, see Fig. 2.4 and Fig. 2.5.

Panels (a) and (b) of Fig. 2.4 show the theoretical spectra for a TJMR without
and with the bus waveguide (Fabry-Pérot Oscillations (FPOs)), respectively. In
Fig. 2.4 (a) the TJMR is in the critical coupling regime and has a right reflection
that reaches about 0.7 a.u. at resonance, while the left reflection is always zero. It
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(a)

(b)

Figure 2.4: Panels (a) and (b) show the theoretical spectra of a TJMR without or with reflections at
the ends of the bus waveguide. Here the TJMR is in the critical-coupling regime. The
coefficients used are: t1 = 0.868, t2 = t3 = 0.945, neff = 1.58, α ≃ 231/m (2 dB/cm),
L23 = L67 ≃ 206.3 µm, L45 ≃ 397.7 µm, L89 ≃ 391.1 µm, lL = lR = 750 µm and
rL = rR = 0.23. We used the effective refractive index of a silicon oxynitride (SiON) WG.

can be clearly seen that the TJMR at resonance is a unidirectional reflector. When
the FP cavity (the bus waveguide) is added, wavelength-dependent oscillations are
observed with a period equal to λ2/(2ng(lL + lR)), where λ is the wavelength of
the incident field. The amplitude of the FPOs depends on the reflections of the
ends of the bus waveguide, here we used rL = rR = 0.23. This value was found
by fitting the spectral measurements, as reported in Sec. 2.3.1. It is worth noticing
that in Fig. 2.4 (b) the oscillations also change the spectral shape of the resonance,
both in transmission and in reflection. Moreover, the left reflection is no longer
zero as in the ideal case, but has an oscillating wavelength response. Note also
that since the TJMR is in the critical coupling regime (ttaiji = 0 at resonance), the
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left reflection at resonance is simply due to the reflection of the left facet and is,
therefore, equal to r2L = 0.0529. This can be quickly verified analytically using
rL

tot reported in Eq. (2.50). It is important to note that in this case, although the
spectral responses are perturbed by the FPOs, at resonance the right-side reflection
is always much larger than the left-side reflection, so the TJMR again behaves as a
good unidirectional reflector.

Let us now decrease the coupling coefficients between the TJMR and the S-
shaped WG and thus increase the transmission coefficients to t2 = t3 = 0.99,
see Fig. 2.5. Figure 2.5 (a) shows that by increasing t2 and t3 the right reflection
decreases, moreover we are now in the under-coupling regime and the transmission
no longer reaches zero at resonance. Although the right reflection is small here, it
reaches 0.1 a.u. at resonance, again the TJMR works as a unidirectional reflector.

Now let us look at the complete system, taking into account the reflections of
the ends of the bus waveguide, see Fig. 2.5 (b). Again, all spectral responses are
distorted by the FPOs. The transmissions may appear both narrower and wider
than they would be, and even the minimum may occur at a different wavelength
than the resonance one. The most important thing to note is that in the spectrum of
the right reflection, due to interference from the FP cavity, the characteristic peak at
the resonance may no longer be present, as observed in Fig. 2.5 (b) for the resonance
around 1544.25 nm. In fact, the right reflection is even lower than the left reflection.
This peculiar phenomenon is caused by the destructive interference between the
field that passes through the S-shaped WG, is reflected, enters the bus waveguide,
and then exits from the right side of the bus waveguide, and the field that is reflected
outside the right facet of the bus waveguide. Indeed, by changing the resonance, we
observe that the interference between these two waves varies, and we can also get
a larger right reflection than in the ideal case (without FP). In fact, in the resonance
at about 1546.1 nm, |rR

tot|
2 exceeds the value of 0.3 a.u.. Therefore, in different FSRs

the TJMR may or may not be a unidirectional reflector.

In conclusion, by using the TMM it is also possible to add in a simple way the
reflections given by the ends of the bus waveguide. These reflections create a FP
cavity inside the bus waveguide that causes distortions in the spectra of the TJMR
and can also cause both a cancellation and an accentuation of the property of the
TJMR to be a unidirectional reflector.
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(a)

(b)

Figure 2.5: Panels (a) and (b) show the theoretical spectra of a TJMR without or with reflections at
the ends of the bus waveguide. Here the TJMR is in the under-coupling regime. The
coefficients used are: t1 = 0.868, t2 = t3 = 0.99, neff = 1.58, α ≃ 231/m (2 dB/cm),
L23 = L67 ≃ 206.3 µm, L45 ≃ 397.7 µm, L89 ≃ 391.1 µm, lL = lR = 750 µm and
rL = rR = 0.23. We used the effective refractive index of a SiON WG.

2.3 Nonlinear breaking of Lorentz reciprocity theory and
experimental measurements

In optics, nonreciprocal elements such as isolators and circulators [147, 148] are
very important not only for being able to protect the source from back reflections,
but also for their use in unidirectional lasers, high-speed optical communications
and information processing systems [149, 150, 151]. Using nonmagnetic elements,
it is not possible to break Lorentz’s reciprocity while remaining in linear optics. In
fact, Lorentz reciprocity is a fundamental property of fields propagating in a linear,
nonmagnetic medium. Since this property is based on the linearity of the field
equations, we can exploit material nonlinearities to overcome this limitation. Some
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devices use multiple cascaded coupled MRs or special configurations of resonators
in the nonlinear regime to break the Lorentz reciprocity [152, 153, 154, 39, 155].
Other devices exploit the interaction between two fields [156, 157].

In this section, we will show that the TJMR, when used in the nonlinear regime,
can also be used as an isolator. Unlike multiresonator systems, the TJMR does
not require fine tuning of two or more resonant frequencies because it has the two
degenerate modes CW and CCW.

Let us now explain how it works. First, in the nonlinear regime, the effective
refractive index of the waveguide depends on the intensity of the light. In particular,
there are three phenomena that characterize the variation of the refractive index in
a normal waveguide: the Kerr effect, the Thermo Optic Effect (TOE) and the Two
Photon Absorption (TPA) effects [Free Carrier Absorption (FCA) and Free Carrier
Dispersion (FCD)] [128, 77, 78, 158, 159]. Here we will only describe the first two,
because we will use an optical integrated circuit made of SiON waveguides, which
around 1550 nm do not exhibit the TPA phenomenon. The Kerr effect is due to the
nonlinear dependence of the polarization vector (P) on the field (E) [107, 160]:

P = ε0

(︂
χ(1)E + χ(2)E2 + χ(3)E3

)︂
, (2.57)

where ε0 = 1
µ0c2

≃ 8.854187817 × 10−12 F/m is the vacuum permittivity, χ(1)

is the linear susceptibility tensor and χ(2) and χ(3) are second and third order
nonlinear susceptibilities. The a.c. Kerr effect [107, 161, 162] is due to the third
order susceptibility (ℜ

[︁
χ(3)

]︁
) and in first approximation influences the nonlinear

refractive index (∆n) in this way:

∆n := n− n0 ≃
3χ(3)

8n0
|Eω|2 =: nK|Eω|2 , (2.58)

where Eω is the electric field oscillating at a frequency ofω andnK, usually denoted
byn2, is the nonlinear a.c. Kerr index. Thus, the a.c. Kerr effect causes the refractive
index to vary linearly as a function of the intensity of the electric field.

The refractive index also depends on the temperature. Since some of the light
lost from the WG is converted to heat, we have in a first approximation that ∆n
depends linearly on the optical intensity in the guide, i.e.

∆n = nTIthermal , (2.59)



94 Taiji Microresonator

where nT is the coefficient of the thermo-optic nonlinearity and Ithermal is the total
electromagnetic intensity in the vicinity of the WG. This phenomenon is called
Thermo Optic Effect (TOE) [107, 128, 78]. It should be noted that while the a.c. Kerr
effect is a point effect, i.e. it causes the refractive index of the guide to change exactly
where the field is located, the thermo optic effect, because it is due to the heating of
the WG, is not a local effect. Moreover, the a.c. Kerr effect is an almost instantaneous
phenomenon, whereas the thermo optic effect has much longer response times,
around hundreds of nanoseconds. This is due to the fact that the thermo optic
effect is driven by the temperature rise of the WG. In this section we will not study
the time response in the nonlinear regime of TJMR, but will always work in a
stationary regime, so without loss of generality we will always consider the two
effects as instantaneous.

The nonlinear refractive index causes a change in the resonance wavelength of
the MR, becausemλres = neffL (m ∈N). Consequently, the resonance wavelength
also has a linear dependence on the power of the electric field inside the WG. We
also emphasize that the MR with an enhancement factor higher than 1 (EF > 1) will
have a higher refractive index change than the bus waveguide.

In a normal MR, which is symmetric, it is not possible to break Lorentz recipro-
city simply by using this type of nonlinearity. In fact, the same optical intensity will
be present in the MR for both left and right excitations, and consequently, the shift
at resonance will be identical for both types of excitation. This is not the case for the
TJMR; in fact, if one excites the TJMR from left, the field entering the S-shaped WG is
diffused in the cladding by an appropriate design of the WG that prevents the back
reflection of light. Whereas if it is excited from right, some of the light that couples
into the S-shaped WG is coupled into the CCW mode of the microresonator, and
as a result, there will be a higher optical intensity within the TJMR. Since there is a
higher intensity, in the nonlinear regime, the resonance has a larger shift in the case
of excitation from right than in the case of excitation from left, and consequently,
the two transmission spectra will be different. Therefore, by using the TJMR in the
nonlinear regime, one is able to break the Lorentz reciprocity.

In the following, starting from the experimental data in the linear regime and
then moving to the nonlinear regime, we will demonstrate the breaking of Lorentz
reciprocity in a TJMR. We will also discuss the interaction between the FP cavity
due to facet reflections at the ends of the bus waveguide and the TJMR in both
regimes. Simulations of the whole system in the linear and nonlinear regime will
also be carried out to better explain this interaction.
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Specifically, the structure of this section is as follows. In Sec. 2.3.1 I will present
the experimental evidence for the different transmission and reflection behavior in
the linear and nonlinear regimes. Then, in Sec. 2.3.2 I will present the numerical
simulations that reproduce the experimental results.

2.3.1 Experiments

Experimental setup and photonic sample

In this subsection, we will study the system using a simplified experimental
setup compared to the one described in Sec. 1.5.1. As the sketch of the experimental
setup shows (Fig. 2.6), an Erbium Doped Fiber Amplifier (EDFA) is used to amplify
the laser power to enter in the nonlinear regime of the TJMR. The setup consists of
a CWTL (Yenista OPTICS, TUNICS-T100S) that operates from 1490 nm to 1640 nm,
followed by a fiber coupled EDFA (IPG photonics) that can amplify the signal
up to 5 W. To avoid damage from retroreflection, the EDFA is followed by a
Optical Isolator (OI). A Fiber Polarization Controller (FPC) is then used to vary the
polarization of the light within the fiber so that the correct polarization is obtained
at the input to the chip. Next, one Optical Circulator (OC) and two PDs (Thorlabs,
PDA20CS2) are used to simultaneously measure the transmission and reflection
spectra (PDT and PDR). At output number 2 of the optical circulator, an Alignment
Stage (AS) is used to align a tapered lensed fiber to the waveguide present on the
sample. We use the butt coupling method to input the signal in the chip. Butt
coupling is also used to collect the transmitted light. As in the setup described in
Sec. 1.5.1, the PDs are read by an oscilloscope (PicoScope 4000 series) interfaced to
a PC.

It is not possible to quickly change the excitation direction of the system in this
setup. In order to do this, and to avoid problems with changes in propagation loss
that could be caused by changing fibers in the connectors (dust), we decided that
to vary the excitation direction we would simply rotate the sample by 180°.

Given this rotation of the sample, we define the forward excitation as the one
that couples light via the bus waveguide in the CCW mode of the TJMR [path with
blue arrows in Fig. 2.6 (a)]. The reverse excitation is the opposite, which couples
light via the bus waveguide to the CW mode of the TJMR, which then couples to the
CCW mode via the S-shaped WG [path with red arrows in Fig. 2.6 (a)]. So far we
have referred to the forward and reverse excitation as left and right excitation. Thus,
neglecting the facet reflections of the bus waveguide, in the forward excitation we
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Figure 2.6: In panel (a) is reported the design of the TJMR. In panel (a) the meaning of forward
(blue arrows) and reverse (red arrows) excitation is shown. The yellow regions highlight
the three directional couplers. In (b) a sketch of the experimental setup is shown. The
instrumentation used is an Continuous Wave Tunable Laser (CWTL), an Erbium Doped
Fiber Amplifier (EDFA), an Optical Isolator (OI), a Fiber Polarization Controller (FPC) an
Optical Circulator (OC), two Alignment Stages (ASs), two photodetectors (PDs) and an
oscilloscope. [78]
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will have a zero reflection, while in the reverse excitation we will have a non-zero
reflection at resonance. In the reverse excitation, there will be more energy inside the
TJMR, given the fact that the light coupled to the S-shaped waveguide is coupled
back to the microresonator. The structure in Fig. 2.6 (a) is the design geometry of
the TJMR that we measured. Here one can see that the terminations of the S-shaped
WG have been designed to minimize retroreflections.

The bus waveguide/TJMR device was made of channel waveguides in SiON
with a cross section of 1.2 µm × 0.57 µm. Consequently, the WGs guide only the
first mode for each polarization. Here we will use only the Tranverse Magnetic
(TM) polarization. Below the waveguide core is a 5 µm layer of SiO2 grown on
a standard 150 mm Si wafer. Whereas, above the WGs a double stack of 410 nm
borophosphosilicate (BPSG) glass and a 2 µm thick Plasma-Enhanced Chemical
Vapor Deposition (PECVD) silicon oxide (SiOx) layer is deposited. The TJMR is
composed of a microresonator with an embedded S-shaped WG as reported in
Fig. 2.6 (a). Here, the used bending radius is 25 µm. The coupling gaps and lengths
of the three directional couplers are 0.86 µm and 18.81 µm for the bus waveguide
and 0.8 and 10.28 µm for the two couplers with the S-shaped WG. The lengths of
the different parts of the TJMR are L23 = L67 ≃ 206.26 µm, L45 ≃ 397.71 µm and
L89 ≃ 391.12 µm, as a result, the total perimeter of the TJMR is L = L23+L45+L67 ≃
810.24 µm, see Fig. 2.6 (a). The ends of the bus waveguide are polished. The two
lengths identifying the position of the TJMR are lL on the left and lR on the right,
respectively. Below we will present measurements made on two TJMRs with the
same characteristics but characterized by a different position with respect to the
center of the bus waveguide. In particular, in both cases we have lL ≃ 0.431 mm,
while we have two different lR: 5.52 mm and 1.062 mm. More details about the
device and the chip are reported in [52, 78].

Linear regime

Here I present the experimental results in the linear (low power) regime for the
system composed of bus waveguide and TJMR. In Fig. 2.7 the spectral responses of
two TJMR with the same characteristics are shown, the only difference is the length
lR of the right side of the bus waveguide. In fact in panel (a) lR ≃ 5.52mm while in
panel (b) lR ≃ 1.062mm. In both cases, the length of the left part is lL ≃ 0.431mm.
In Fig. 2.7, only one of the two transmission spectra is reported because the other
was, as expected, equivalent. To see what the different parameters correspond to,
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we refer to Fig. 2.6 (a) or Fig. 2.3.

In Fig. 2.7 (a), the presence of the Fabry-Pérot (FP) oscillations is easily observed
due to the nonzero reflections of the facets of the bus waveguide, which create a
FP cavity. This leads to the presence of a non-zero reflection even in the forward
excitation (Rf, blue curve), as discussed in Sec. 2.2. Figure 2.7 shows that for
a sufficiently long bus waveguide length [panel (a)], the FP oscillations have a
wavelength period so short that there is always more than one complete oscillation
in the resonance band. This causes the interference between the reflected field by
the TJMR and that reflected by the bus waveguide facets to change rapidly as a
function of wavelength, and thus both destructive and constructive interferences
are observed within the same resonance. This is observed in panel (a) of Fig. 2.7 and
causes a reflection in reverse (Rr) at resonance larger than the reflection in forward
(Rf). Note also that outside resonance the two reflections have similar values, i.e.
the forward and reverse couplings between the fiber and the bus waveguide are
nearly equal, as are the reflections of the two facets rL ≃ rR. Thus, for long enough
waveguides (in this case about 6mm), the spectral responses are affected by the FP
oscillations, but overall the system still behaves as a unidirectional reflector.

On the other hand, if we shorten the bus waveguide, the period of the FP
oscillations increases and thus we get a more constant interference between the two
cavities (TJMR and FP) within the same resonance. This allows us to distinguish
different cases with different behaviors in reflection. In transmission, a Lorentzian
line shape deformation is observed, but no particular phenomena are observed.
Panels (b1), (b2) and (b3) show zooms of the experimental spectra corresponding to
lR ≃ 1.062mm. Let us focus on the two reflections Rr and Rf. In the previous case, as
well as in the ideal case, the reflection relative to reverse excitation is greater than the
reflection in forward for every resonance in the spectrum (for all FSRs). However,
in panel (b) it can be seen that different resonances show different behaviors in
reflection. In particular, we consider the three cases shown in panels (b1), (b2) and
(b3). These cases differ in the spectral shape of the reflections and, therefore, in a
different interference between the reflection of TJMR and that of bus waveguide. In
(b1) we observe that Rr is larger than Rf. We will call this case constructive-like (C)
reflection lineshape. Here, constructive interference causes Rr to present a peak at
resonance, and thus the system behaves like a typical TJMR. In (b2), on the other
hand, the peak present in Rr has a different shape; it is a sharp peak with a height
similar to that of FP oscillations. For this reason we will call this case Fano-like (F).
The last case [panel (b3)] is the most peculiar. Here the reflection Rr shows a spectral
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Figure 2.7: Experimental power spectra of a bus waveguide/TJMR system. Black lines report the
transmission data, instead the blue and the red ones show the reflection for a forward
and a reverse excitation, respectively. In all the panels lL ≃ 0.431 mm. In panel (a)
lR ≃ 5.52 mm instead in (b) lR ≃ 1.062 mm. The zooms reported in (b1), (b2) and (b3)
highlight three different interference cases characterized by constructive-like (C), Fano-like
(F) and destructive-like (D) line shapes, respectively. [78]
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dip at resonance that reaches approximately zero, and also Rr is smaller than the
reflection in forward (Rf). This strange behavior is due to destructive interference
between the reverse reflection of the TJMR and that of the FP cavity. We will call
this case destructive-like (D). In the destructive-like case, the unidirectional behavior
of the TJMR is drastically reduced or even eliminated or reversed. Consequently,
in the case reported in panel (b) of Fig. 2.7, the system behaves as a unidirectional
reflector device only for some resonance frequencies.

Nonlinear regime

Let us now analyze the sample with lR ≃ 1.062 mm in the nonlinear regime.
Here we show the change of the transmission spectra obtained by scanning from low
to high wavelengths as a function of the coupled power within the bus waveguide,
see Fig. 2.8 and Fig. 2.9. In the nonlinear regime, it was not possible to measure the
reflection spectra because the optical circulator has a low damage threshold power.

We first describe the behavior followed by the constructive-like resonance in
Fig. 2.7 (b1), the nonlinear measurements are shown in Fig. 2.8. Panels (a) and (b) of
Fig. 2.8 show the trend of the transmission spectra as a function of power in the case
of forward excitation and reverse excitation, respectively. In both cases, as the power
increases, the resonance shifts to longer wavelengths (redshift), and even at higher
powers it can be seen that the resonance deforms, taking on the characteristic
triangular shape of the spectrum of a high-power resonance [163, 164, 165, 166].
This redshift is mainly caused by the Thermo Optic Effect (TOE), which for SiON
amounts to nT ≃ 2 × 10−13 cm2/W much larger than the nonlinear Kerr index
nK ≃ 8 × 10−16 cm2/W. It is worth noting that nT > 0, in fact, we observe an
increase in wavelength as the power increases. Comparing panels (a) and (b) of
Fig. 2.8, it is clear that at high powers the resonance in the reverse configuration is
more redshifted compared to the forward one. For example, at 0.65 W there is a
window of about 0.17 nm between 1545.1 nm and 1545.27 nm in which the reverse
transmission is low (< 0.3 a.u.) while the forward transmission is high (≳ 0.8 a.u.).
Therefore, we have shown experimentally that by using a TJMR in the nonlinear
regime it is possible to break Lorentz reciprocity. As explained earlier, the breaking
of Lorentz reciprocity is due to the different energy inside the TJMR when it is
excited in the forward or reverse direction. In fact, in the second case we have that
the light intensity of the CW mode is the same as that of the CCW mode when
the TJMR is excited in the forward configuration, and in addition the energy in the
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(a)

(b)

C

Figure 2.8: Normalized transmission spectra of upward wavelength ramps for different input
powers, for a bus waveguide/TJMR system exhibiting a constructive-like (C) line shape in
the linear regime. Panels (a) and (b) show the experimental data for a forward and reverse
configuration, respectively. The resonant wavelengths for different powers are indicated
by the blue dashed lines. For low input power, the resonant wavelength is considered
to be the minimum of the Lorentzian dips, while for high input power, the resonant
wavelength is considered to be the wavelength at which the transmission jump occurs.
[78]
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CCW mode (in reverse) is also different from zero. However, the FP cavity can create
special situations due to interference within the TJMR, see Fig. 2.9. Before going on
to describe the three different cases observed experimentally, let us make two more
considerations about the graphs shown in Fig. 2.8. It is indeed worth noting that
the fringes of the FP cavity also show a redshift with increasing power, but these
redshifts are almost equivalent in the two excitation directions and are also smaller
than that observed for the resonance. These shifts are simply due to the heating
of the bus waveguide and are smaller than that found for the resonance of the
TJMR, because the TJMR has a larger EF (≃ 9) than that of the FP cavity. Due to the
presence of the FP oscillations, we will identify the position of the resonance (λres) at
different energies in this way. At low powers, that is, when the characteristic sharp
jump of the signal (triangular shape) cannot be observed, we use the wavelength
corresponding to the minimum of the transmission dip, while at high powers we
use the wavelength at which the sharp increase in transmission occurs, see blue
dashed lines in Fig. 2.8. This transmission jump is due to the fact that the power
inside the microresonator is no longer sufficient to shift the resonance further, and
thus the wavelength of the laser overtakes the “hot” resonance of the TJMR, and
thus the TJMR cools down quickly.

Let us now describe three characteristic cases. To quantify the region where
Lorentz reciprocity is broken, we compute the difference ∆λr[P] − ∆λf[P] between
the relative shift of λres for the reverse configuration ∆λr[P] := λres

r [P] − λres
r [P ≃ 0]

and for the forward configuration ∆λf[P] := λ
res
f [P]−λres

f [P ≃ 0]. Figure 2.9 (a) shows
∆λr[P] −∆λf[P] as a function of power for the three different cases, constructive-like,
Fano-like, and destructive-like, identified by the colors brown, green, and orange,
respectively. These three cases correspond to those reported in the linear regime
in Fig. 2.7, panel (b1), (b2) and (b3), respectively. The transmission spectra for the
forward and reverse configurations at a coupled power in bus waveguide of about
0.65 W are shown in panels (a1), (a2) and (a3) of Fig. 2.9. In blue is the forward
spectrum and in red is the reverse spectrum.

In the constructive-like case (brown symbols) ∆λr[P] − ∆λf[P] is positive and
reaches the value of about 0.17 nm at 0.65 W, see panels (a) and (a1) of Fig. 2.9.
Therefore, in the constructive-like case, as seen in Fig. 2.8 in the reverse configuration
the energy inside the TJMR is higher than the one in the forward. Even in the
destructive-like case (orange symbols)∆λr[P]−∆λf[P] is positive, but small compared
to the previous case, see panels (a) and (a3) of Fig. 2.9. Instead, in the Fano-like case
(green symbols) ∆λr[P] −∆λf[P] is small but negative at high powers, see panels (a)
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Figure 2.9: Panel (a) shows the difference between the resonant shift in the reverse and forward con-
figurations as a function of the input power for the three cases described in Fig. 2.7. The
brown, green and orange colors highlight the constructive-like (C), Fano-like (F) and de-
structive-like (D) cases seen in the linear regime. Panels (a1)-(a3) show the experimental
results of the normalized transmission spectra at Pin ≃ 0.65W for the forward (blue lines)
and reverse (red lines) configurations and for the three interference cases. The wavelength
scans were performed starting from shorter wavelengths to longer wavelengths. [78]
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and (a2) of Fig. 2.9. This means that because of the interference with the FP cavity
modes, the behavior of the TJMR changes which causes an increased energy inside
the TJMR in the forward excitation.

2.3.2 Theoretical simulations

Simulation Model

The theoretical simulations of the bus waveguide/TJMR system are based on the
equations derived in Sec. 2.2 by using the TMM. However, in the nonlinear regime
we will consider not only the variation of the effective refractive index of the WG as
a function of wavelength, but also its dependence on the optical power in the WGs.

In the case of a local Kerr nonlinearity when two counterpropagating fields are
present the refractive index shift is proportional to |ECW + ECCW|2(ECW + ECCW)

[77, 78, 167], where ECW and ECCW are the electric fields with the propagation
direction CW and CCW, respectively. Expanding the squared modulus gives:

|ECW + ECCW|2(ECW + ECCW) =

=(|ECW|2 + |ECCW|2 + E∗CWECCW + ECWE
∗
CCW)(ECW + ECCW) =

=(|ECW|2 + 2|ECCW|2)ECW + (2|ECW|2 + |ECCW|2)ECCW + E∗CWE
2
CCW + E2CWE

∗
CCW

≃(|ECW|2 + 2|ECCW|2)ECW + (|ECCW|2 + 2|ECW|2)ECCW , (2.60)

where the two terms E∗CWE
2
CCW and E2CWE

∗
CCW are neglected because they oscillate

rapidly and average to zero in the rotating wave approximation. Note that there is
a factor 2 for the Kerr shift due to counterpropagating waves [77, 167]. In the case
of thermo optic nonlinearity, however, this factor of 2 is reduced to 1 because this
phenomenon is not local [77, 167]. In the nonlinear regime, we will therefore use
the following formula for the effective refractive index of the WG [77, 78]:

neff = nL + nTIthermal + nK(|ECCW/CW|2 + 2|ECW/CCW|2) , (2.61)

where nL is the effective refractive index in the linear regime, nT is the coefficient
of the thermo optic nonlinearity, nK ≃ 8 × 10−16 cm2/W ≪ nT is the a.c. Kerr
nonlinear index and Ithermal is the total light intensity for the three different regions:
microresonator, S-shaped WG and bus waveguide. In the simulations, we used the
relation nT ∝ 1 − e−αL, which relates the Thermo Optic (TO) nonlinear coefficient
to the propagation losses α (L is the microresonator perimeter). By comparing the
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experimental results with the simulated ones, we estimated nT, see Fig. 2.10.

Figure 2.10: Thermo Optic (TO) nonlinear coefficient as a function of the wavelength, estimated by
comparing experimental and simulated spectra. [78]

To derive the transmission, reflection, and internal energy spectra, we evolved
the system of equations starting at low wavelengths and increasing the wavelength
in small steps. In addition, for each value of the wavelength, we evolved the system
to convergence. This was necessary because the refractive index depends on the
internal fields of the system, which in turn depend on the refractive index.

Taiji microresonator internal energy calculation

In the nonlinear regime, it is important to calculate the intensities within the
system in the correct way to obtain the correct value of the refractive index. In
particular, it is necessary to calculate the internal energy in the three regions: mi-
croresonator, S-shaped WG and bus waveguide. Since the procedure is equivalent,
we will only explain here how we calculated the internal energy of the MR. First,
we need to calculate the CW and CCW fields for each point inside the MR. To
do this, we can take advantage of the fact that along the wave propagation dir-
ection (z) and between two coupling regions, we can write the electric field as
E[z] = E[z0]e

i( 2πλ neff+iα)(z−z0), where z0 is the starting position and z is the coordin-
ate along the WG. Then, using the equations derived from the TMM (see Sec. 2.2),
we compute all the CW (ECW) and CCW (ECCW) fields. At this point, the internal
energy is easily determined by calculating the integral of |ECW + ECCW|2 along the
entire MR.

Parameters of the simulation

From the design of TJMR we have: L23 = L67 ≃ 206.26 µm, L45 ≃ 397.71 µm
and L89 ≃ 391.12 µm, so L = L23 + L45 + L67 ≃ 810.24 µm.
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(a)

(b)

(c)

Figure 2.11: Parameters used in the theoretical simulation as a function of wavelength. Panels (a)
and (b) show the spectral dependence of the effective refractive index (neff) and the
transmission coefficients of the coupling between MR and S-shaped WG (t2 = t3 = tS).
(c) shows the propagation losses within bus waveguide and TJMR as a function of
wavelength in blue and red, respectively. [78]

The effective refractive index (neff) was extrapolated from that reported in [52]
and a variation was applied to it to match the simulated TJMR resonances with
the experimental ones. In Fig. 2.11 (a) the obtained neff is reported as a function
of wavelength. The bus waveguide length lL ≃ 0.431 mm was obtained from
the design, while the bus waveguide length lL ≃ 1.062 mm and the reflection
coefficients rL = rR ≃ 0.23were extrapolated from the experimentally measured FP
oscillations. In the simulations, we assumed that the three couplings are lossless, i.e.
t2 + k2 = 1. The spectral dependence of the transmission coefficients t2 = t3 = tS,
losses and t1 = 0.868 were estimated by measuring the transmission, reflection
and propagation loss spectra. The obtained parameters are shown in panels (b)
and (c) of Fig. 2.11. Fitting the experimental spectra in the linear regime and in
the nonlinear regime, we observed that the propagation losses within the TJMR are
higher than those due to the bus waveguide, see Fig. 2.11 (c). This difference is
easily explained by the additional losses that light encounters in the TJMR due to
the presence of bends.
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Linear regime

In this subsection we will study the bus waveguide/TJMR system using simula-
tions and investigate the different types of interference between the TJMR and the
FP cavity. The length lL ≃ 0.431 mm of the bus waveguide and all parameters of
the TJMR will be kept constant, and we vary lR.

Since we are interested in understanding the interaction between the TJMR and
the FP cavity, we calculated the reflections in three cases: for the reverse excitationRr,
for the forward one Rf and for the situation where the TJMR is removed (t1 = 1) and
only the FP cavity remains RFP. Panels (a) and (b1) Fig. 2.12 show the wavelength
vs lR maps of Rr − Rf and of Rr − RFP, respectively. A 2 µm-range of lR around
lR = 5.524 mm [panel (a)] and lR = 1.062 mm [panel (b1)] is mapped. Since the
intensity inside the TJMR is also affected by the interferences with the FP cavity,
in panel (b2) of Fig. 2.12 we report the λ vs lR map of the difference between the
intensity inside the TJMR in the reverse configuration (Ir) and that in the forward
configuration (If). This map is only reported for lR ≃ 1.062 mm. In all three
maps, vertical lines can be seen; these correspond to the resonance wavelengths of
the TJMR. Recall that all simulations also take into account the variation of various
parameters (such asneff , tS and the propagation losses) as a function of wavelength,
as described above.

In agreement with the experimental measurements [Fig. 2.7 (a)], for long bus
waveguide (lR ≃ 5.524 mm) the system behaves as a unidirectional reflector (Rr −

Rf > 0), see Fig. 2.12 (a). In addition, from the simulations with lR ≃ 1.062 mm
[Fig. 2.7 (b)], we are able to find all the cases that we found experimentally. These
cases are marked by rectangles in panels (b1) and (b2). Furthermore, in panels (b3),
(b4)-(b5) and (b6), the transmission and reflection spectra for the cases marked by
the rectangles are given, respectively, for lR = 1.0620mm (top) and lR = 1.0624mm
(bottom). In particular, (b3) reports two destructive-like (D) cases, (b4) and (b5) two
constructive-like (C) cases, and (b6) two Fano-like (F) cases. The plus or minus sign
inside the graphs describes a positive or negative difference between Ir and If.

We start with the destructive-like case [dotted rectangles in Fig. 2.7 (b1)-(b2) and
lineshapes in Fig. 2.7 (b3)]. Here we have that the reflection in reverse has a dip at
resonance. This is due to the destructive interference between the light reflected at
the input facet (magenta arrows) and the light entering the bus waveguide, coupling
to the CW mode (red arrows), which in turn couples to the CCW mode through
the S-shaped WG (blue arrows), goes back to the bus waveguide, and exits the
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Figure 2.12: Panel (a) shows the wavelength vs lR map of the difference between the reflection in
reverse and forward, for lR ≃ 5.524 mm, i.e. Rr − Rf. Panel (b1) shows the simulated
wavelength vs lR map of the difference between the reflected intensities for the reverse
and the FP oscillations (without the TJMR), namely, Rr − RFP. Panel (b2) shows the map
of the difference between the intensity inside the TJMR in the reverse (Ir) and forward
(If) configurations as a function of the wavelength and lR ≃ 1.062 mm. In panels (b3),
(b4)-(b5) and (b6) are plotted the transmission and reflection spectra for lR = 1.0620mm
(top) and lR = 1.0624 mm (bottom) for the destructive-like (D), constructive-like (C) and
Fano-like (F) cases. The different line-style of the rectangles connects these graphs with
the maps (b1) and (b2). The + and - signs inside the graphs indicate when Ir − If > 0
and Ir − If < 0, respectively. Panels (c1) and (c2) show the interference diagrams. The
red and blue arrows label the CW and the CCW modes, respectively. lL ≃ 0.431 mm is
constant in all the panels. Here the bus waveguide/TJMR system is in the linear regime.
[78]
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right facet, as shown in panel (c1) of Fig. 2.7. Thus, the condition of destructive
interference between these two waves can be written as follows:

2π

λ
neff(2lR + 2L67 + L89 + L45) + 2π = π+ π+ 2πmI1 , mI1 ∈ Z . (2.62)

In other words, the phase difference between the path followed by the field reflected
by the TJMR and the path followed by the light reflected by the input facet must be
an odd multiple of π. Therefore,mI1 must satisfy:

mI1 =
neff(2lR + 2L67 + L89 + L45)

λ
. (2.63)

This condition is met in (b3, top) where the reverse reflection goes to zero at reson-
ance. Also in (b3, bottom) the dip in the reverse reflection is observed, but in this
case the small variation in the length of the bus waveguide causes the perturba-
tion to be slightly different, in fact, the dip does not reach zero. It is worth noting
from the map in Fig. 2.12 (b2) (dotted rectangles) that the electromagnetic intensity
within the TJMR results higher in the reverse case than in the forward case. In fact,
destructive interference in reflection does not mean that there is the same kind of
interference inside the TJMR. To understand this, we need to introduce two new
interference diagrams. Let us consider the FP cavity. It has constructive interference
at the output of the input facet if the following relation is satisfied:

2π

λ
neff(2lR + 2lL) = π+ 2πmFPCR , mFPCR ∈ Z . (2.64)

The interference between two other fields must be taken into account, see panel
(c2). This is the constructive interference within the TJMR between the CW field
(red arrows) that transforms into the CCW mode (blue arrows) and then returns
to the coupling region and from the field that continues into the bus waveguide, is
reflected back to the left facet, returns to the coupling region with the TJMR and
then couples with the latter (magenta arrows). This constructive interference occurs
when:

2π

λ
neff2lL +

π

2
=
π

2
+
2π

λ
neff(2L67 + L89 + L45) + π+ 2πmI2 , mI2 ∈ Z . (2.65)

It is worth to note that the three numbersmFPCR,mI1 andmI2 are actually related:

mFPCR = mI1 +mI2 . (2.66)
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Therefore, if mFPCR and mI1 are integers, then mI2 will also be integer. In other
words, if the FP oscillations have a reflection peak and the whole system has a
reflection dip, then there will be constructive interference within the TJMR and
consequently Ir − If > 0.

This model also explains the constructive-like case. The solid and dashed-dotted
rectangles in the panels (b1) and (b2) of Fig. 2.12 highlight some regions where
the constructive-like shape is present. Using also the spectra corresponding to the
four rectangles given in panels (b4) and (b5), it is observed that here the structure
behaves as a unidirectional reflector. In fact, the reflection in reverse is higher than
that in forward. Using the map in panel (b2), it can be seen that the cases reported in
(b4) are characterized by higher energy within the TJMR in the reverse configuration
(+ sign), while those in (b5) exhibit higher internal energy in the forward excitation
(− sign). The resonances in (b5) have shorter wavelengths than those in (b4), so the
larger propagation losses observed at shorter wavelengths (Fig. 2.11 (c)) and the
unbalance of the two lengths lR > lL cause the discrepancy between the internal
energies found in these cases.

The simulations performed also report Fano-like situations, see the dashed rect-
angles in panels (b1) and (b2) and the transmission and reflection spectra in panel
(b6) of Fig. 2.12. Here we are in an intermediate case between constructive-like and
destructive-like, and moreover, the internal energy at the TJMR in reverse can be both
higher and lower than that in forward.

(a)

(b)

Figure 2.13: Panels (a) and (b) show the wavelength vs lR maps of Rr − Rf and Ir − If, respectively.
In these maps, the facet reflections of the bus waveguide are considered equal to zero
(rL/R = 0) and lL ≃ 0.431 mm is constant. The red, black, and blue rectangles highlight
the regions where lR = lL = 0.431 mm, lR = 1.062 mm and lR = 5.52 mm, respectively.
Here the bus waveguide/TJMR system is in the linear regime. [78]

We have seen that due to the interference of the FP cavity, the TJMR can lose
its property of being a unidirectional reflector. Let us now simulate the case where
the reflections of both ends of bus waveguide are zero (rL = rR = 0), see Fig. 2.13.
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Panel (a) shows the map of the difference between the reflections (Rr − Rf) as a
function of the wavelength and the length of the right side of the bus waveguide
(lR). Also in this figure, lL = 0.431 mm is kept constant. Note that here the
reflection Rr is always higher than in forward, because in the absence of the facet
reflections Rf = 0. Note also that we do not observe any oscillations in the map,
which confirms that the oscillations are caused by the FP cavity. It is worth noting
that the reflection Rr decreases with decreasing wavelength and increasing length
lR. This is due to propagation losses, which are largest at 1540 nm and decrease
monotonically with increasing wavelength. Also, by increasing the length lR, due
to propagation losses, less light is coupled to the CW mode and consequently
less energy is transferred from the CW mode to the CCW mode. To observe this
phenomenon more closely, in panel (b) of Fig. 2.13 we show the λ vs lR map of Ir−If.
In Fig. 2.13 the red, black and blue colored rectangles identify the regions where
lR = lL = 0.431mm, lR ≃ 1.062mm and lR ≃ 5.52mm, respectively. Because of the
wavelength dependence of the propagation losses we have that for any fixed lR the
difference Ir − If decreases with decreasing wavelength, see Fig. 2.13 (b). Moreover,
by increasing the length lR the TJMR is no longer centered between the two facets
of the bus waveguide, so due to propagation losses less energy is coupled within
the TJMR in the reverse case than in the forward case. This causes that, especially
at low wavelengths, where the losses are higher, the effect of the S-shaped WG is
not sufficient to counteract the lower energy coupled to the TJMR, and therefore
regions where Ir − If < 0 are observed. On the other hand, when lR = lL, the optical
intensity within the TJMR is always higher in the reverse configuration (Ir − If > 0).

In summary, we have observed that, depending on the interaction between the
FP cavity and the TJMR, we can have that the TJMR behaves as a unidirectional
reflector or not, and the internal energy in the reverse case can be both higher and
lower than in the forward one. Thus, by simply changing the free spectral range
(resonance), different cases can be studied. In addition, we found that the total
length of the waveguide and the position of the TJMR with respect to the two ends
of the bus waveguide are also very important.

Nonlinear regime

Let us now simulate the bus waveguide/TJMR system in the nonlinear regime.
Panels (a) and (b) of Fig. 2.14 show the transmission spectra and the internal intensity
spectra of TJMR as a function of the input power Pin, when a wavelength scan from
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low to high values is performed. Here, by Pin we mean the input coupled optical
power within the bus waveguide. In panels (a), (b), (c) and (d1) lR = 1.0624 mm,
while in (d2) lR = 1.0620mm. In panels (a1), (b1) and (c1) we use reverse excitation,
while in (a2), (b2) and (c2) we use forward excitation. Let us focus on panels (a)
and (b). As expected, by increasing Pin the resonances shift to higher wavelengths
proportionally to the internal intensity of the TJMR. The positive shift is consistent
with the fact that the nonlinear coefficients of the material used are positive. Note
that the dominant nonlinear coefficient here is the one associated with thermo optic
effect (nT ≫ nK). The FP fringes also show a redshift, but it is smaller than that
of the resonances. This difference is due to the different energies within the TJMR
and the bus waveguide, in fact, the TJMR is characterized by a Enhancement Factor
(EF) of about 9. Note also that because of the higher losses at shorter wavelengths
and the assumed nT ∝ 1 − e−αL relationship, a higher redshift of the resonances
is observed at shorter wavelengths, even though the intensity inside the TJMR is
higher at longer wavelengths. The destructive-like, constructive-like and Fano-like
cases reported for the linear regime in panels (b3), (b4)-(b5) and (b6) of Fig. 2.12
(bottom panels, lR = 1.0624mm) are highlighted by the rectangles in the nonlinear
maps in Fig. 2.14. Specifically, the dashed rectangles mark the Fano-like case (F-),
the dash-dotted/solid rectangles mark the constructive-like cases (C-/C+), and the
dotted rectangles mark the destructive-like cases (D+). The signs + and − indicate
that for the linear case this resonance has Ir − If > 0 and Ir − If < 0, respectively.
Panels (c1) and (c2) of Fig. 2.14 correspond to the constructive-like C- case and they
are the theoretical analog of the experimental data reported in panels (b) and (a) of
Fig. 2.8. From these transmission spectra taken at different powers, scanning from
a shorter to a longer wavelength, it is observed that at high powers the redshift is
higher in the reverse (c1) configuration than in the forward (c2) configuration. Thus,
even theoretically, we have reported Lorentz reciprocity breaking using a TJMR
in the nonlinear regime. From panels (c1) and (c2) it can be seen that, due to the
interference of the FP fringes, the difference between the nonlinear redshifts of the
resonances for the reverse and forward configurations does not show a linear trend.
Fig. 2.14 (d1) shows the difference ∆λr − ∆λf obtained from the maps in panels
(a1) and (a2) for the four resonances highlighted by the rectangles. Specifically,
the dotted, dash-dotted/solid, and dashed lines correspond to the destructive-like
(D+), constructive-like (C-/C+), and Fano-like (F-) cases, respectively. As observed
experimentally, the different cases show different trends of ∆λr − ∆λf as a function
of the power Pin. In the destructive-like case, a positive value of ∆λr − ∆λf slightly
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larger than zero is observed, both in the theoretical simulation [labeled D+ in
Fig. 2.14 (d1)] as well as in the experimental measurement (labeled D in Fig. 2.9).
The same agreement also occurs between the theoretical C- and the experimental
C case, where ∆λr − ∆λf is always positive and reaches a high value of 0.07 nm
and 0.17 nm, respectively. The Fano-like case also shows good agreement between
theory (F-) and experiment (F), in fact in both cases ∆λr − ∆λf has negative values.

However, there is no clear relationship between Ir − If in the linear regime
and ∆λr − ∆λf in the nonlinear regime. In fact, in the constructive-like case, the
∆λr −∆λf vs Pin curve shows both a positive slope for the C- case (where Ir − If < 0
in the linear regime), and an almost zero slope in the C+ case (where Ir − If > 0

in the linear regime). The absence of a direct correlation between the trend of
∆λr − ∆λf as a function of Pin and the value of Ir − If in the linear regime is even
more evident in Fig. 2.14 (d2). Here, the trends correspond to nonlinear simulations
performed on the resonances reported at the top of panels (b3)-(b6) of Fig. 2.12,
where lR = 1.0620 mm. Here, D+, C- and F+ have a negative ∆λr − ∆λf value at
high Pin instead C+ has always a positive ∆λr − ∆λf as a function of Pin. These
behaviors do not match with those observed in panel (d1). Therefore, depending
on their spectral position and on the length lR, the resonances of the TJMR show a
different ∆λr −∆λf shift which we attribute to the interplay between the FP and the
asymmetric losses (lL ≠ lR) in the bus waveguide.

In Fig. 2.15 we analyze the interplay between the FP and the asymmetric losses
(lL ≠ lR) in the bus waveguide by plotting the trends of ∆λr − ∆λf as a function of
Pin in different configurations. In panels (a1) and (a2) we have removed the facet
reflections (rL = rR = 0, no FP fringes), while in (b) and (c) we have rL = rR = 0.23

and rL = rR = 0.1, respectively. Furthermore, in (a1) lR = 1.0624 mm > lL =

0.431mm, while in the other panels lR = lL = 0.431mm.

In the simulations without FP [panels (a1) and (a2)], a linear trend of∆λr−∆λf as
a function ofPin is observed. The different slopes are due to the different propagation
losses, in fact, the resonance at 1541.4 nm, with larger losses, has a smaller slope,
while the resonance at 1564.6 nm, with smaller losses, has the maximum slope. It
is important to note that in the asymmetric case [lR > lL, panel (a1)] the resonance
with higher losses has a negative slope. This is due to the fact that, since the TJMR
is asymmetrically positioned with respect to the facets of the bus waveguide, the
two configurations forward and reverse excite the TJMR with different intensities. In
particular, in (a1) we have that the TJMR is more excited in the forward configuration,
but nevertheless, only for high loss values this asymmetry succeeds in winning
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Figure 2.14: Panels (a1) and (a2) show the spectral transmission (Tr and Tf) map as a function of the
input power (Pin) for the reverse and forward configurations, respectively. Panels (b1)
and (b2) show the spectral internal intensity of the TJMR (Ir and If) map as a function
of the input power (Pin) for the reverse and forward configurations, respectively. Panels
(c1) and (c2) are the spectral transmission for the C- case, i.e. constructive-like shape
where Ir − If < 0 in the linear regime, for different input powers and for the reverse and
forward excitation, respectively. An upward wavelength ramp is used in all these panels.
Panel (d1) shows the difference between the resonances shift in the reverse and forward
configurations, ∆λr − ∆λf, as a function of Pin. For (a1), (a2), (b1), (b3), (c1), (c2) and
(d1) the right bus waveguide length is lR = 1.0624 mm. Panel (d2) reports ∆λr − ∆λf vs
Pin for lR = 1.0620 mm. The dashed, dotted-dashed, dotted and solid rectangles allow
relating the maps (a1)-(a2) and (b1)-(b2) to the graph in panel (d1). The letters D, C and
F denote, in the linear regime, the destructive-like, constructive-like and Fano-like cases,
respectively. The + and - signs highlight when Ir − If > 0 and Ir − If < 0 in the linear
regime, respectively. Here the bus waveguide/TJMR system is in the nonlinear regime.
[78]
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(a1)

(a2)

(b)

(c)

Figure 2.15: Difference between the shift of the resonance of TJMR in the reverse configuration versus
that in the forward configuration (∆λr − ∆λf) as a function of the input power (Pin).
Panels (a1) and (a2) are characterized by rL/R = 0 (no FP cavity). Panels (b) and (c)
have the reflection coefficients of the bus waveguide corresponding to a butt-coupling
(rL/R = 0.23) and a grating coupling (GC, rL/R = 0.1), respectively. In panel (a1)
lR = 1.0624mm > lL = 0.431mm instead in panels (a2), (b) and (c) lR = lL = 0.431mm.
[78]



116 Taiji Microresonator

over the energy recirculation given by the S-shaped WG. If lR = lL and rL = rR = 0

[Fig. 2.15 (a2)], the slopes of∆λr −∆λf vs Pin are always positive, and thus the TJMR
always succeeds in breaking Lorentz reciprocity in the nonlinear regime.

Considering the FP cavity in the symmetric configuration [lR = lL, Fig. 2.15 (b)],
nonlinear trends are observed due to the different perturbations found at different
powers. Cases are also observed where the slope of the curve changes its sign
with increasing power, as for the frequencies 1541.4 nm and 1552.9 nm (dashed
and dotted lines). Figure 2.15 (b) shows that even with lR = lL the FP cavity
interference can cause a negative ∆λr − ∆λf shift. By comparing Fig. 2.14 (d1)
and Fig. 2.15 (a1) (with and without FP, lR = 1.0624 mm > lL = 0.431 mm), it is
worth noticing that the presence of the FP cavity is able to increase the maximum
width of the window in which reciprocity breaking occurs, in fact in Fig. 2.14 (d1)
max [∆λr − ∆λf] ≃ 0.07 nm while in Fig. 2.15 (a1) max [∆λr − ∆λf] < 0.03 nm.

It is worth noticing that since we are using a fiber-to-chip coupling realized by
simple butt coupling, the facet reflections are quite high r2L/R ≃ 0.053. This reflection
can be decreased by several techniques, such as using a matched index resin [168],
inverse tapering of the bus waveguide [169, 170], or grating couplers [171]. Since
we had a silicon sample with grating couplers, we estimated the reflections of the
bus waveguide in this much better performing case and obtained r2L/R ≃ 0.01. Re-
running the simulations with this new value, which is five times lower than that
measured in butt coupling, we obtained panel (c) in Fig. 2.15. Note that even with
a reflection equal to 1%, we observe nonlinear trends of ∆λr −∆λf vs Pin due to the
presence of the cavity FP.

2.4 Backscattering and Exceptional Point

In Sec. 1.5.3 we observed that an integrated MR in silicon (Si) with a sufficiently
high Q (Q ≳ 5 × 104) exhibits backscattering (BS) due to the surface roughness,
which cannot be neglected. In fact, in these cases, the BS is high enough to cause
resonance splitting.

Therefore, in this section, we will study a TJMR with non-zero BS. For simplicity,
we will ignore the effects caused by the FP cavity and analyze the system using the
TCMT. In Sec. 2.4.1 we will introduce the BS inside the TJMR and present the
experimental measurements obtained on the TJMR integrated on a Si chip. Then
in Sec. 2.4.2 we will analyze in more detail how the TJMR ideally located at an
Exceptional Point (EP) behaves as a function of a Hermitian perturbation of the BS



2.4 Backscattering and Exceptional Point 117

coefficients.

2.4.1 Theory and Experimental Measurements

Similar to what was done in Sec. 1.2.1, we introduce into the system of equations
Eq. 2.1 a new term describing the coupling between the two modes CW and CCW:

KBS

(︄
αCCW

αCW

)︄
:=

(︄
0 −iβBS,12

−iβBS,21 0

)︄(︄
αCCW

αCW

)︄
, (2.67)

Consequently, the Hamiltonian of the TJMR [Eq. (2.3)] turns into:

H =

(︄
ω0 − iγtot −i (β12 + βBS,12)

−iβBS,21 ω0 − iγtot

)︄
. (2.68)

As a result, the eigenvalues of the system are no longer degenerate:

λ1/2 = ω0 ± i
√︁

(β12 + βBS,12) βBS,21 − iγtot ⇒ λ1 ≠ λ2 , (2.69)

and the eigenvectors are no longer equal:

ν1/2 =
1√︁

|β12 + βBS,12|/|βBS,21|+ 1

⎛⎝∓
√︂
β12+βBS,12
βBS,21

1

⎞⎠ (2.70)

⇒ < ν1|ν2 >=
1− |β12 + βBS,12|/|βBS,21|

1+ |β12 + βBS,12|/|βBS,21|
.

This results in the appearance of a doublet in the transmission spectrum and a
non-zero reflection in the excitation from the left (forward).

We now define the new total coupling coefficients between the two counter-
propagating modes of TJMR. These include both the couplings given by the geo-
metry of the structure (β12 ≠ 0 and β21 = 0) and the BS coefficients (βBS,12 and
βBS,21):

βtot,12 := β12 + βBS,12 , βtot,21 := β21 + βBS,21 = βBS,21 . (2.71)

When the perturbation given by the BS is small, |β12| ≫ |βBS,12| and |β12| ≫ |βBS,21|,
hence |βtot,12| ≫ |βtot,21|. Note that all β coefficients are generally complex, and
thereforeβ12 andβBS,12 can also have a different (even opposite) argument (phase).
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With these new definitions, we rewrite the equations of TJMR:

i
d
dt

(︄
αCCW

αCW

)︄
=

(︄
ω0 − iγtot −iβtot,12

−iβtot,21 ω0 − iγtot

)︄(︄
αCCW

αCW

)︄
−

√
2Γ

(︄
Ein,L

Ein,R

)︄
, (2.72)

(︄
Eout,R

Eout,L

)︄
=

(︄
Ein,L

Ein,R

)︄
+ i

√
2Γ

(︄
αCCW

αCW

)︄
. (2.73)

Note that these equations are identical to those in Eq. (1.59) and Eq. (1.60) except for
the change of the variables βBS,12 → βtot,12 and βBS,21 → βtot,21. So the solution
of this system of equations in the steady state is:

εout,R =

(︄
1−

2Γ (−i∆ω+ γtot)

(−i∆ω+ γtot)
2 − βtot,12βtot,21

)︄
εin,L (2.74)

+

(︄
2Γβtot,12

(−i∆ω+ γtot)
2 − βtot,12βtot,21

)︄
eiϕεin,R ,

εout,L =

(︄
1−

2Γ (−i∆ω+ γtot)

(−i∆ω+ γtot)
2 − βtot,12βtot,21

)︄
eiϕεin,R (2.75)

+

(︄
2Γβtot,21

(−i∆ω+ γtot)
2 − βtot,12βtot,21

)︄
εin,L ,

aCCW =

√
2Γ(∆ω+ iγtot)

(−i∆ω+ γtot)2 − βtot,12βtot,21
εin,L (2.76)

−
i
√
2Γ βtot,12

(−i∆ω+ γtot)2 − βtot,12βtot,21
eiϕεin,R , (2.77)

aCW =

√
2Γ(∆ω+ iγtot)

(−i∆ω+ γtot)2 − βtot,12βtot,21
eiϕεin,R (2.78)

−
i
√
2Γ βtot,21

(−i∆ω+ γtot)2 − βtot,12βtot,21
εin,L , (2.79)

where we assumed the conditions given in Eq. (2.5), Eq. (2.6), and Eq. (2.7).

Integrated sample and TJMR design

We have designed four TJMRs based on silicon waveguides. The channel WGs
have a cross section of 450 nm × 220 nm and are surrounded by a cladding in
SiO2. In the spectral range where we will use them (1475 nm-1575 nm) the WGs
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guide only the first TE mode. The designed TJMRs were fabricated in a run at
the IMEC/Europractice facility within the multi-project wafer program (the design
of the whole chip is shown in Fig. A.1 of Appendix A). To design the TJMRs, we
assumed propagation losses of 2 dB/cm and no BS. In addition, all couplings were
designed to work best at about 1550 nm. The four TJMRs were designed to have
different Qs while still remaining in the critical-coupling regime. In addition, the
TJMR with the lower Q is designed to have a very high right (reverse) reflection.

l

Figure 2.16: Our design of the Taiji Microresonator (TJMR) in the all-pass configuration.

As shown in Fig. 2.16, we decided to use a different geometry than the one
shown in Fig. 2.6 (a). In fact, to minimize BS, we decided to use Euler curves
[172, 173, 174] with minimum radii of curvature of 15 µm and 10 µm, which is
smoother than a constant radius curve. Specifically, the MR consists of four 90°
Euler curves with minimum radii of curvature of 15 µm, connected by straight
WGs. Therefore, the perimeter of the TJMR is about L ≃ 196.22 µm. Starting from
the center of the TJMR and proceeding symmetrically, the S-shaped WG is formed
by two 135° Euler curves with a minimum radius of curvature of 10 µm, two straight
sections of about l = 3.106 µm, two more 75° Euler curves with a minimum radius of
curvature of 10 µm, and two terminations. The terminations of the S-shaped WG are
adiabatically tapered so that the field passes into the SiO2 without retroreflection.
They behaves as perfect loss points. The gap widths between the bus waveguide
and the TJMR for the four devices are gapTB = [241, 415, 472, 433] nm, while those
between the TJMR and the S-shaped WG are gapTS = [210, 410, 550, 440] nm. To
couple the light from the fiber to the sample, we used the grating at the ends of the
bus waveguide.

To measure these devices, we used the experimental setup described in Sec. 1.5.1.
Again, to minimize edge reflections from the bus waveguide, we used glycerol to
match the refractive indices.
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Results

The spectral measurements of the four TJMRs around 1530nm (ω ≃ 2π·196THz)
are shown in Fig. 2.17. The blue lines show the experimental data corresponding
to the right output intensity, while the red lines are the data at the left output port.
Panel (a) shows the transmission spectra (blue lines) and reflection spectra (red lines)
corresponding to the left (forward) excitation. Panel (b) shows the transmission (red
lines) and reflection (blue lines) spectra corresponding to the excitation from the
right (reverse). With the numbers 1, 2, 3, 4 we identify the four different MRs with
different Qs. The dashed and dotted black lines show the theoretical fit performed
simultaneously on the four available spectra (two transmissions and two reflections)
using Eq. (2.74) and Eq. (2.75). To derive the fit parameters, we used the particle
swarm optimization (PSWO) [175]. Particle swarm optimization is a computational
technique inspired by the behavior of bird flocks or fish schools, where a group
of particles iteratively searches for the optimal solution in a given problem space
by adjusting their positions and velocities based on their own experience and the
knowledge of the swarm [176, 177, 178]. For all four TJMRs, the fits describe the
experimental data well. Here, the coefficients of the BS are necessary to obtain a
good agreement between theory and experiment.

Panels (a1) and (b1) of Fig. 2.17 show that the TJMR with the lowest Q behaves
like an ideal TJMR. In fact, the reflection from the left is almost zero, while the
reflection from the right has a peak at resonance with a height greater than 80%
of the maximum transmission. However, by increasing the Q of the TJMR, the
unidirectional reflectivity of the device disappears due to the predominance of
BS caused by the roughness of the WGs walls. In fact, it is observed that as
the Q increases, the resonance splitting becomes more and more evident and the
reflections become similar to each other. From the spectral responses of these
four types of TJMRs, we have observed that the resonance doublet created can be
balanced in some few cases [the two sub-dips have the same ER, for example panels
(a3) and (b3)] or unbalanced in other cases, as in panels (a2), (b2), (a4) and (b4). In
Fig. 2.17 we also report the Qmax of the four TJMRs. We consider the Qmax as the
maximum Q among those of the two supermodes of the system. In particular, from
Eq. (1.111) we have

Qmax =
ω0

2(γtot − γ̃)
, (2.80)

where γ̃ :=
√︁

|βtot,12βtot,21| cos
[︁

arg [βtot,12βtot,21]/2
]︁

is always positive. In this
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Figure 2.17: Experimental spectra of the four TJMRs. In panel (a) the spectra corresponding to the
excitation from the left (forward) are plotted, while in (b) those corresponding to the
excitation from the right (reverse) are plotted. In blue and red are the measured output
responses on the right and left, respectively. The black curves show the fits of the
experimental data. The four reported resonances have a resonant angular frequency of
ω0 ≃ 2π · 196 THz. The gaps of the four TJMRs are gapTB = [241, 415, 472, 433] nm and
gapTS = [210, 410, 550, 440] nm. [47]

definition of Q, almost all influence of BS is removed by γ̃. Therefore, by using this
new definition, it is possible to compare different types of resonators in the presence
of BS. We also saw in Sec. 1.3 that by using interferometric excitation it is possible
to transform a doublet into a single Lorentzian with this Q. Thus, Figure 2.17 shows
that if the TJMR has a low Qmax then the BS is negligible and the device behaves
ideally, while if the TJMR has a high Qmax then the BS becomes dominant.

To study these four TJMRs in more detail, and to do some statistics on the
parameters describing these TJMRs, we decided to fit 9 different resonances from
5 different spectra of the four TJMRs (a total of 180 resonances). In Fig. 2.18 we
report the results of the fits of the experimental measurements made on the four
TJMRs as a function of Qmax. In particular, panel (a) reports γtot − Γ with blue
dots, (b) reports the extrinsic coefficient Γ with blue circles, and (c) and (d) instead
report the absolute value of the two BS coefficients, |βtot,12| and |βtot,21|, with red
squares and magenta triangles, respectively. Panels (a) and (b) of Fig. 2.18 show
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(a) (b)

(d)(c)

Figure 2.18: TJMR parameters obtained by fitting 5 measured spectra, each with 9 different reson-
ances, for each of the 4 TJMRs (180 resonance dips/peaks). These parameters are plotted
as a function of Qmax, see Eq. (2.80). (a) reports the values of γtot − Γ , (b) those of the
extrinsic coefficient Γ , (c) and (d) those of the absolute values of the two BS coefficients,
|βtot,12| and |βtot,21|, respectively. [47]

that, as expected and by design, increasing Qmax decreases both γtot−Γ and Γ . From
panels (a) and (b) of Fig. 2.18 it is observed that |βtot,12| ≫ |βtot,21| only for low
values of Qmax (Qmax ≲ 104), while when Qmax ≳ 5 × 104 the two absolute values
are comparable (|βtot,12| ≃ |βtot,21|) and so the device no longer behaves as an ideal
TJMR. For Qmax ≳ 5×104, the two absolute values of the two BS coefficients always
have a value between 2 GHz and 20 GHz. It is also worth noting that |βtot,21|

remains within this range for all resonances of all four TJMRs. Since the four TJMRs
are characterized by different directional couplers (different gap widths), we can
conclude that the observed BS does not depend on the gaps of the coupling regions,
but only on the surface roughness of the walls of the WGs and the radii of curvature
of the WGs. In conclusion, Fig. 2.18 shows that a MR similar to the studied TJMRs
will have a BS between 2 GHz and 20 GHz. This is a relevant parameter when
designing TJMRs or MRs. The Tab. 2.1 shows how the four TJMRs, which by
design have different coupling gap widths, consequently have different coupling
parameters. In particular, Tab. 2.1 show that as the gap width between the TJMR
and the bus waveguide increases, the coupling rate Γ decreases as expected.
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gapTB gapTS Γ γtot − Γ |βtot,12| |βtot,21| Qmax
[nm] [nm] [GHz] [GHz] [GHz] [GHz] ×103

241 210 48± 1 80± 2 155± 3 9.5± 0.4 5.8± 0.1
415 410 5.2± 0.1 5.77± 0.08 8.0± 0.5 6.4± 0.5 60.2± 0.7
433 440 3.60± 0.09 2.13± 0.05 8.7± 0.5 7.8± 0.5 119± 2
472 550 2.04± 0.04 5.94± 0.03 7.3± 0.5 6.2± 0.4 78.4± 0.7

Table 2.1: Table showing the design widths of the gaps and TCMT parameters obtained by fitting
the measured experimental spectra. The values corresponding to four different TJMRs
are shown. By design, the propagation losses are 2 dB/cm, the perimeter of the TJMRs is
L ≃ 196 µm, the effective refractive index of the waveguide is neff ≃ 2.36 and its group
index is ng ≃ 4.29.

2.4.2 Exceptional Point Behavior

As we demonstrated in Sec. 2.1, the TJMR is at an Exceptional Point (EP). In this
subsection, we will see how a device operating at an EP behaves as a function of a
perturbation of the BS coefficient. Finally, we will make a comparison between a
MR working at a DP and the TJMR working at an EP.

We begin by describing the variation of the eigenvalues of the TJMR as a function
of a perturbation of the BS coefficients. This perturbation can be thought as the value
we want to obtain from an experimental measurement. To understand the trend,
we rewrite here the eigenvalues of the system [Eq. 2.69]:

λ1/2 = ω0 ± i
√︁

(β12 + βBS,12) βBS,21 − iγtot , (2.81)

whereβBS,12 eβBS,21 can be seen as perturbations of the ideal TJMR. These perturba-
tions can be caused by surface wall roughness, but also by any molecules/substances
in the waveguide cladding. For simplicity, we assume a Hermitian perturbation,
i.e. δβ := βBS,12 = −β∗

BS,21. Consequently, the eigenvalues transform to:

λ1/2 = ω0 ± i
√︁

−(β12 + δβ) δβ∗ − iγtot . (2.82)

In both the formulas given in Eq. (2.81) and Eq. (2.82) it is evident that for small
perturbations (δβ≪ β12) the eigenvalues have a square root behavior as a function
of perturbation. This is different from what was observed for the MR (DP), in
which case there was a linear dependence. In fact, this square-root behavior is
characteristic of EPs, and we will see that it allows enhanced sensing compared to
that of a DP system.
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Before comparing the linear and square-root trends of the DPs and EPs, let us
analyze in more detail the variation of the eigenvalues as a function of the Hermitian
perturbation δβ. Assuming that we are ideally able to directly measure both the
real and imaginary parts of the eigenvalues, we analyze the sensing performance
of the TJMR. In Fig. 2.19 (a) and (b) the real parts (ℜ[λ]) and imaginary parts (ℑ[λ])
of the two eigenvalues divided by |β12| are shown as a function of ℜ[δβ/β12] and
ℑ[δβ/β12]. All parameters are normalized by β12 to make general graphs. In
Fig. 2.19, the red surfaces describe the values of the first eigenvalue (λ1), while the
blue ones report the values of the second eigenvalue (λ2). These surfaces are called
Riemann sheets [41, 3, 104, 4, 105, 106]. The panel (a) of Fig. 2.19 shows that the real
parts of the two eigenvalues are equal when ℑ[δβ/β12] = 0 and −1 ⩽ ℜ[δβ/β12] ⩽

0. Moreover, Fig. 2.19 (b) shows that the imaginary parts of the eigenvalues are equal
when ℑ[δβ/β12] = 0 and ℜ[δβ/β12] ⩽ −1 ∨ℜ[δβ/β12] ⩾ 0. In addition, panel (c)
of Fig. 2.19 shows the inner product of the two eigenvectors (| < ν1|ν2 > |) which
results equal to 1 only at (0, 0) and at (−1, 0). As a result, the TJMR is at an EP both
when there is no perturbation, at (0, 0), and when there is a perturbation δβ that can
reach the point (−1, 0). Note that these two EPs have two opposite chiralities, in
(0, 0) the αCCW mode is dominant, while in (−1, 0) it is αCW. From Fig. 2.19 we can
also see that only the Riemann surfaces of the two real parts of the two eigenvalues
intersect [panel (a)], while those of the imaginary parts [panel (b)] do not. This is due
to the fact that β̃ =

√︁
| (β12 + δβ) δβ∗| sin

[︁
arg [− (β12 + δβ) δβ

∗]/2
]︁

changes sign
when ℑ[δβ/β12] does, while γ̃ =

√︁
| (β12 + δβ) δβ∗| cos

[︁
arg [− (β12 + δβ) δβ

∗]/2
]︁

is always positive. In addition, we can observe that by imposing ℜ[δβ/β12] = −1/2

and varying only the imaginary part of the perturbation (ℑ[δβ/β12]), we have a
linear dependence of the real splitting as a function of this parameter (as in the
case of a DP). On the other hand, if we fix ℑ[δβ/β12] = 0 and ℜ[δβ/β12] ⩾ 0,
then we have the characteristic square root dependence of the real splitting of the
eigenvalues, while the imaginary splitting is always zero.

As discussed in Sec. 2.1, β12 = 4eiφΓS, where φ is the phase acquired by the
field as it passes through the S-shaped WG. Therefore, by varying the phase φ, for
example by a microheater on the S-shaped WG, it is possible to vary the eigenvalues
of the system along a circular-like path around the EP in (0, 0). This encircling of the
EP follows the Riemann sheets reported in panels (a) and (b) of Fig. 2.19. In this way,
it is possible to change the sensitivity of TJMR to get maximum splitting of the real
part of the eigenvalues and thus maximum splitting in the transmission spectrum.
In fact, by aligning β12 with δβ, we have that ℑ[δβ/β12] = 0 and ℜ[δβ/β12] ⩾ 0
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(a) (b) (c)

(f)(d) (e)

Figure 2.19: Normalized Riemann sheets for the TJMR as a function of the real ℜ[δβ/β12] and the
imaginary ℑ[δβ/β12] part of the Hermitian BS perturbation (δβ). All the quantities are
normalized to β12 to make the graphs independent of this parameter. Panels (a) and
(b) report the real ℜ[λ] and the imaginary ℑ[λ] parts of the eigenvalues. In ℜ[λ] the
resonance angular frequency ω0 is removed. The red Riemann surfaces correspond to
the first eigenvalue λ1, instead the blue ones to the second eigenvalue λ2. Panel (c) shows
the absolute value of the inner product between the two eigenvectors of the system as
a function of ℜ[δβ/β12] and ℑ[δβ/β12]. Panels (d), (e) and (f) show the dips position
evaluated through the spectra of |εLR|

2, |εRL|
2 + |εRR|

2 and |εLR|
2 + |εLL|

2, respectively. In
orange the position of the dip with lower angular frequency and in Dodger blue the
position of the dip with higher angular frequency. The holes in panels (d), (e), and (f)
are due to the inability to recognize two peaks. Here, we use γ = Γ = ΓS = 1/4 a.u.
(β12 = 1 a.u. and γtot = 1 a.u.).

and consequently we get the maximum difference between the real parts of the two
eigenvalues, ℜ[λ2] − ℜ[λ1], which will follow a square root trend as a function of
the perturbation. Note that by encircling the EP here we do not mean a dynamic
encircling of the EP as in [41, 105]. In fact, since the TJMR is a resonant cavity, its
memory (in the linear regime) lasts only for the lifetime of the cavity, which in our
case is very short, of the order of 10ps. This means that by exciting the system from a
single side with a continuous and coherent source and slowly varying the phase, we
are not able to perform dynamic encircling of the EP. However, through this feature
one can think of a way to study the encircling of the EP by studying a MR like TJMR
instead of using other devices as in [41, 105, 37, 40, 179, 180, 181, 182, 76, 183, 184, 185].

Experimentally, it is not possible to directly measure the eigenvalues of the
system with a single-side excitation. To estimate the real partℜ[λ] of the eigenvalues
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using the spectral response of the system (i.e. the actual observable of the system),
it is common to calculate the spectral position of the two minima of the spectral
doublet (two dips). Figure 2.19 (d) shows the Riemann surfaces computed from the
transmission spectra of the TJMR characterized by the Hermitian BS perturbation
(δβ). The orange and Dodger blue colors correspond to the positions of the two
different dips. Note that in panels (d), (e) and (f) of Fig. 2.19, in some regions it is not
possible to identify two distinct spectral dips, causing a cancellation of the TJMR
sensitivity (holes in the 3D plots). Thus, as also observed in the case of MR (Fig. 1.9),
using the spectral response in single excitation does not give the eigenvalues of the
system without a multiparametric fit, but only an estimate of them. Moreover,
in some regions, especially for small perturbations δβ, both TJMR and MR do
not show any clear splitting, which cancels out the sensitivity. To slightly reduce
the region of insensitivity of the TJMR, one can use the sum of the transmission
intensities with the reflection intensities (|εRL|

2+ |εRR|
2 and |εLR|

2+ |εLL|
2). The sum

of these spectra is easily obtained by using the spectra obtained with two different
calibrated detectors placed in transmission and reflection. The Riemann surfaces
corresponding to the two different sums are shown in panels (e) and (f) of Fig. 2.19.
Since, by varying the phase φ, it is possible to maximize the splitting by rotating
around the EP that lies in (0, 0), we can fix ℑ[δβ/β12] = 0 and see in more detail the
splitting trends as a function of ℜ[δβ/β12]. These trends are shown in Fig. 2.20.

First, we observe the square root dependence of the eigenvalues splitting as a
function of the perturbation (ℜ[∆λ]/|β12| vs ℜ[δβ/β12]), magenta line in Fig. 2.20.
In the range between −1 and 0 the eigenvalues change only their imaginary part,
and therefore ℜ[∆λ] is zero. However, since we can rotate around the EP varying
the phase φ, the region of interest is where ℜ[δβ/β12] ⩾ 0. The gray line in
Fig. 2.20 shows the splitting calculated from the transmission spectrum (|εLR|

2).
Note that the splitting is zero when −1.288 ≲ ℜ[δβ/β12] ≲ 0.288, after which the
splitting increases as a square root that tends to the splitting of the eigenvalues
(magenta line). The region of insensitivity (i.e. zero values in the splitting) is
related to the width of the two dips due to the total losses of the system. To reduce
this region, the transmission spectral response can be summed with the reflection
spectral response; in this way, the regions where the system has higher losses are
emphasized by dips in the spectrum, which will be closely related to the eigenvalues
of the system. The dash-dotted orange line corresponds to |εRL|

2 + |εRR|
2, while

the dashed black line corresponds to |εLR|
2 + |εLL|

2. By using |εRL|
2 + |εRR|

2 one
can reduce the region of insensitivity, in fact now the splitting for ℜ[δβ/β12] ≳
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Figure 2.20: Eigenvalues splitting of a TJMR as a function of the ℜ[δβ/β12]. The magenta, gray,
orange and black lines represent the splitting of the eigenvalues, of the doublets observed
in the transmission spectra, the one observed in the |εRL|

2 + |εRR|
2 spectra and the one

observed in the |εLR|
2 + |εLL|

2, respectively. Here, we use γ = Γ = ΓS = 1/4 a.u.
(β12 = 1 a.u. and γtot = 1 a.u.).

0.129 is greater than zero. Note that when ℑ[δβ/β12] = 0 and ℜ[δβ/β12] = −1

it is like having the TJMR with the S-shaped WG turned in the other direction.
Therefore for values of ℜ[δβ/β12] ≲ −1 the splitting corresponding to |εLR|

2 +

|εLL|
2 is more efficient. In conclusion, it is not possible to reconstruct the perfect

square root behavior of the eigenvalue splitting from the spectral responses without
performing multiparameter fits. However, by using the spectrum of |εRL|

2 + |εRR|
2,

it is possible to minimize the region of insensitivity of the TJMR and to obtain,
at smaller perturbations, a good match between the two splittings (dash-dotted
orange and magenta lines in Fig. 2.20).

2.5 Interferometric Excitation

In this section, we analyze both theoretically and experimentally how an ideal/semi-
ideal TJMR responds to symmetric interferometric excitation. The formulas used
are the same as in Eq. 2.74, Eq. 2.75 and θ := ϕ −

(︂
arg[βtot,21/βtot,12]

2 + π
2

)︂
from

Eq. (1.108).

Figure 2.21 shows the spectra of the output intensities for a TJMR for single-
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side excitation, panels (a1) and (a2), and interferometric excitation, panels (b1)-(b2)
and (c1)-(c4). In Fig. 2.21, the blue and red lines identify the spectral response of
the TJMR at the right and left output, respectively. Panel (a1) corresponds to the
excitation from left, while (a2) corresponds to the excitation from right. Panels (a1)
and (a2) highlight the unidirectional reflector behavior of the TJMR.

Looking at the spectral responses corresponding to the interferometric excitation
[panels (b1)-(b2) and (c1)-(c4)], it is clear that |εout,L|

2 is independent of the angle
θ and, thus, of the phase relationship between the input fields. Instead, |εout,R|

2

varies as a function of θ. This is due to the fact that the TJMR working at an EP has
different from zero only one of the two couplings between its counterpropagating
modes (β12 ≠ 0 and β21 = 0). Therefore, in the left output, no interference is
established since there is no reflection of the system. Thus, the spectral response
is characterized by a Loerentzian dip centered at the resonant angular frequency
(∆ω = 0). In fact, panels (c1)-(c4) report in red the spectral response of |εout,L|

2 for
different values of θ. This is identical to the transmission in the single-side excitation
[red curve in panel (a2)]. The non-zero reflection in the right port instead causes
that |εout,R|

2 is characterized by interference between reflection and transmission
and thus its spectrum changes as a function of angle θ, see Fig. 2.21 (b1) and blue
lines in panels (c1)-(c4).

Note that here we used a symmetric interferometric excitation (|εin,R|
2 = |εin,L|

2)
even though the system is non-Hermitian (β12 ≠ 0 andβ21 = 0). Actually, to derive
the eigenvalues of the system, as we saw in Sec. 1.3 [Eq. 1.106], we would need
an asymmetric interferometric excitation, which in this case would correspond to
a single-side excitation from left. In fact, the TJMR has a single eigenvalue, and
already from the single-side excitation transmission we can deriveℜ

[︁
λ1/2

]︁
, which is

equal toω0 (the position of the dip center), and ℑ
[︁
λ1/2

]︁
= −γtot, which corresponds

to minus half the FWHM of the Lorentzian dip.

To demonstrate the validity of the formulas for the interferometric excitation also
for TJMR, we experimentally measured the spectral responses of a TJMR with this
type of excitation, see Fig. 2.22. Here, we used the TJMR with lower Q among those
described in Sec. 2.4.1. We analyzed the resonance withω0 ≃ 2π · 194.430 THz. We
used the experimental setup described in Sec. 1.5.1 and followed a similar procedure
to the one described in Sec. 1.5.3 to measure the spectral responses of the MR.

First, we measured the spectra in the single-side excitation, see panels (a1)
and (a2) of Fig. 2.22. Here, it can be seen that the TJMR behaves as a unidirectional
reflector as in Fig. 2.21. By fitting these four spectra simultaneously, we obtained the
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(b1) (b2)

(c1) (c3)

(c2) (c4)

(a1)

(a2)

Figure 2.21: Spectral responses for a TJMR. Panels (a1) and (a2) report the transmission and reflection
spectra for an excitation from the left and right input sides, respectively. Maps (b1) and
(b2) show, respectively, the right and left output field intensities as a function of θ and
∆ω for a symmetric interferometric excitation (|εin,L|

2 = |εin,R|
2). (c1)-(c4) show the

output field intensity spectrum for fixed values of θ = {±π, π/4, π/2,−π/2}. The blue
and red curves correspond to the right and the left output field intensities, respectively.
The used coefficients are: Γ = γ+ 2ΓS = γtot − Γ = 6.8 GHz, β12 = 12 GHz, β21 = 0 and
ω0 = 2π · 193 THz. [102]
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(b1) (b2)

(c1)

(c2)

(a1)

(a2)

Figure 2.22: Experimental results for a TJMR. Here are reported response spectra of a TJMR for
both single-side excitation and a symmetric interferometric excitation. The blue and
red curves represent the measured output field intensity at the right and left sides,
respectively. The black curves report the fit of the experimental data. Panels (a1)
and (a2) report the transmission and reflection spectra for an excitation from the left
and right input sides, respectively. Panels (b1) and (b2) show the dips position as
a function of the phase ϕ between the two input fields for the right and left output
intensities, respectively. δω = ω< −ω0 and δω = ω> −ω0 are the angular frequency
detuning for the dip with lower angular frequency (ω<) and the one with higher angular
frequency (ω>). The experimental data are reported in magenta (purple) dots for
δω = ω< −ω0 and in black (gray) squares for δω = ω> −ω0. The theoretical curves
are dashed magenta (purple) and dash-dotted black (gray) forω< andω>, respectively.
Panels (c1) and (c2) show two examples of spectral responses for an interferometric
excitation with a phase ϕ = 0.93π and −0.35π, respectively. From the fit we obtain
the following coefficients: Γ = (75.1 ± 0.1) GHz, γtot − Γ = γ + ΓS = (42.6 ± 0.1) GHz,
βtot,12 = [(−90.8±0.1)− i(24.17±0.03)] GHz, βtot,21 = [(8.7±0.1)− i(7.30±0.09)] GHz.
[102]
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following parameters: ω0 ≃ 2π ·194.430 THz, γtot − Γ = γ+2ΓS = (42.6±0.1) GHz,
Γ = (75.1± 0.1) GHz, βtot,12 = [(−90.8± 0.1) − i(24.17± 0.03)] GHz and βtot,21 =

[(8.7 ± 0.1) − i(7.30 ± 0.09)] GHz. Note that the experimental data shown in blue
and red are well described by the obtained fits (black lines). At this point, using
a symmetric interferometric excitation (|εin,R|

2 = |εin,L|
2), we measured the spectra

as the relative phase between the two input fields, ϕ, changed. Two examples
of spectral responses related to interferometric excitation, when ϕ is about 0.93π
and −0.35π, are given in panels (c1) and (c2), respectively. Again, although with
less precision, the theoretical fits accurately describe the experimental data. It is
also important to note that even experimentally it is observed that the spectrum
of |εout,L|

2 remains almost constant as a function of phase ϕ, while that of |εout,R|
2

varies considerably. To emphasize this fact, in (b1) and (b2) the positions of the
minor detuning dips (magenta and purple dots) and the major detuning dips (black
and gray squares) are shown as a function of the phase ϕ obtained from the spectra
of |εout,R|

2 and |εout,L|
2, respectively. The dashed curves represent the theoretical

trend derived using the parameters fitted from the single-side excitation spectra.
Fig. 2.22 (b2) shows that there is only a dip in the spectral response on the left, which
shifts only imperceptibly fromω0 asϕ changes. The small oscillation is given by the
non-ideality of the TJMR. In fact, because of the BS, the coefficient βtot,21, although
|βtot,21| ≪ |βtot,12|, is different from zero (βtot,21 = [(8.7±0.1)−i(7.30±0.09)] GHz).
In Fig. 2.22 (b1) it is observed that the position of the dips varies as a function of ϕ,
as also found in Fig. 2.21. Note the agreement with the theoretical predictions.





Chapter 3
Infinity-Loop Microresonator

In the literature, there are many applications for systems operating at an EP,
but still, there are few integrated structures that have this particular coalescence of
their eigenvalues and eigenvectors [3, 4, 5, 36, 44]. In Ch. 2 we presented the TJMR,
which is an example of an integrated structure that is at an EP.

In this chapter, we will present a new structure that we call Infinity-Loop Mi-
croresonator (ILMR) [93]. The ILMR consists of an infinity-shaped WG coupled
twice with a bus waveguide. In Sec. 3.1 we will model this structure with the
TCMT and show that the ILMR works at an EP. We will show that the ILMR always
remains at an EP even if the two couplings with the bus waveguide are changed
symmetrically or asymmetrically. In addition, we will give examples of spectral
responses in which we will show how this device can have completely different re-
sponses simply by changing the couplings with the bus waveguide It could become
either a unidirectional reflector or it can have identical reflections. In Sec. 3.2, we
will add the BS to the model of the ILMR described by the TCMT. In this section,
the Riemann sheets are also shown and the ILMR is analyzed for its sensing char-
acteristics. In Sec. 3.4, the ILMR is modeled by the TMM, and two other ways to
construct a structure with the same properties as the ILMR are reported. Finally,
Sec. 3.5 reports experimental results on four different ILMRs that we have designed
and measured. Specifically, the spectral responses of four ILMRs will be reported,
one of which has a symmetric structure, while the other three have two asymmetric
bus waveguide couplings.

This chapter is based on the work reported in [93].



134 Infinity-Loop Microresonator

3.1 Design and Temporal Coupled Mode Theory model

The ILMR is a microresonator formed by an infinity-shaped WG coupled to the
bus waveguide in each of its two lobes, see Fig. 3.1. To create the infinity-shaped
WG, we need a crossing that connects the two lobes of the infinity WG. We will
consider the crossing ideal, i.e. the optical mode can only pass through it in a
straight line and no excitation of the modes in the crossed WG is possible (zero
insertion loss and zero crosstalk). We assume that all WGs are single mode.

α2

α1

β12 

eiφ

ΓRΓL
Eout,L
Ein,L

Ein,R
Eout,R

γ

Figure 3.1: Sketch of the Infinity-Loop Microresonator (ILMR). γ and Γ are the intrinsic and the
extrinsic damping rate. The index R,L refer to left and right. Ein and Eout are the input
and the output fields, respectively. All the parameters are described in the text. [93]

As can be seen from the sketch in Fig. 3.1, the characteristic parameters of the
system, in addition to the angular frequency of resonance (ω0), are the intrinsic
loss rate γ, the two coupling rates ΓL and ΓR (for the left and the right coupling
with the bus waveguide), the phase φ acquired by the field propagating in the bus
waveguide between the two coupling regions of the two lobes, and the total loss
rate (γtot = γ+ ΓL + ΓR).

Like the MR or TJMR, the ILMR supports two counterpropagating modes, α1
and α2, see Fig. 3.1. The first mode, α1, rotates in the CCW direction in the left
lobe and in the CW direction in the right lobe. In addition, α1, when near one of
the two coupling regions with the bus waveguide, is always directed toward the
center of the ILMR, i.e., toward the crossing (Fig. 3.1). The second mode, α2, is
counterpropagating to α1, and thus near the couplings with the bus waveguide is
always directed to the borders of the structure, see Fig. 3.1. Consequently, the two
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modes interact differently with the bus waveguide. In fact, we notice that no matter
which direction the system is excited from (left or right excitation), the first excited
mode is always α1, while the second is α2. More importantly, the α1 mode is the
only one that can exchange energy with α2 through the bus waveguide. In fact,
when α1 couples to the bus waveguide, it propagates toward the other coupling
region and excites α2. This does not happen for α2. In fact, when it couples to the
bus waveguide it always propagates directly to one of the two outputs of the bus
waveguide and, consequently, does not transfer energy to α1. These considerations
can be simplified by saying that the coupling coefficient from α1 to α2 is non-zero
(β12 ≠ 0), while that from α2 to α1 is zero (β21 = 0). Thus, by these simple
considerations, we can already say that the ILMR is at an EP.

To more rigorously demonstrate that the ILMR is at an EP, we model the system
using the TCMT and calculate the eigenvalues and eigenvectors of the ILMR. Here
we will describe an ideal ILMR, i.e. neglecting the presence of BS due to waveguide
surface-wall roughness, which would cause coupling between the two modes of
the ILMR. Furthermore, we will study the system in the linear regime, i.e. at low
input optical intensities (|Ein|

2 ≪ 1 mW), and in order to use the TCMT we will
assume γtot ≪ ω0. The TCMT equations that govern the ILMR are:

i
d
dt

(︄
α2

α1

)︄
=

(︄
ω0 − iγtot −iβ12

0 ω0 − iγtot

)︄(︄
α2

α1

)︄

−

(︄√
2ΓRe

iφ
√
2ΓLe

iφ

√
2ΓL

√
2ΓR

)︄(︄
Ein,L

Ein,R

)︄
,

(3.1)

where the coupling coefficient from α1 to α2 can be written as a function of the
coupling rates with the bus waveguide, β12 = 4eiφ

√
ΓLΓR. In addition, Ein,L and

Ein,R are the left and right input electric fields, respectively. The subscripts L and R
are used to refer to the left and right sides in Fig. 3.1. The Hamiltonian of the ILMR
is thus:

HILMR =

(︄
ω0 − iγtot −iβ12

0 ω0 − iγtot

)︄
. (3.2)

This Hamiltonian is non-Hermitian (HILMR ≠ H
†
ILMR) and is equivalent to that of

the TJMR at an EP (ideal TJMR), see Eq. (2.3). Therefore the eigenvalues and
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eigenvectors of the ILMR are:

λ1 = λ2 = ω0 − iγtot , ν1 = ν2 =

(︄
1

0

)︄
. (3.3)

Note that both eigenvalues and eigenvectors coalesce, so we have demonstrated
that the ILMR is at an EP. Note also that this is true for any value of the couplings
ΓL and ΓR, it suffices that both are different from zero [EP ⇐⇒ (ΓL ≠ 0 & ΓR ≠ 0)].
It is worth noting that both α1 and α2 modes are excited by both input fields (Ein,L

and Ein,R), see Eq. (3.1).

To obtain the spectral responses of the ILMR, it is necessary to relate the output
electric fields (Eout,R,Eout,L) to the input electric fields (Ein,L,Ein,R) and to the internal
modes of the ILMR (α2,α1). These relations are:(︄

Eout,R

Eout,L

)︄
= eiφ

(︄
Ein,L

Ein,R

)︄
+ i

(︄√
2ΓR

√
2ΓLe

iφ

√
2ΓL

√
2ΓRe

iφ

)︄(︄
α2

α1

)︄
. (3.4)

Note that in the ILMR system, unlike the case of the MR and that of the TJMR,
both Eout,R and Eout,L depend on both α1 and α2 modes, see Eq. (1.31), Eq. (2.2)
and Eq. (3.4) for comparison. Solving Eq. (3.1) and Eq. (3.4) in the steady state and
assuming

Ein,L := εin,L e
−iωt , Ein,R := εin,R e

iϕ e−iωt , (3.5)

α2 := a2 e
−iωt , α1 := a1 e

−iωt , (3.6)

Eout,R := εout,R e
−iωt , Eout,L := εout,L e

−iωt , (3.7)

we obtain:

εout,R =eiφ

(︄
1−

2 (ΓL + ΓR)

−i∆ω+ γtot
+

8ΓLΓR

(−i∆ω+ γtot)
2

)︄
εin,L (3.8)

−
4eiφ

√
ΓLΓR

−i∆ω+ γtot

(︃
1−

2ΓR

−i∆ω+ γtot

)︃
eiϕεin,R ,

εout,L =eiφ

(︄
1−

2 (ΓL + ΓR)

−i∆ω+ γtot
+

8ΓLΓR

(−i∆ω+ γtot)
2

)︄
eiϕεin,R (3.9)

−
4eiφ

√
ΓLΓR

−i∆ω+ γtot

(︃
1−

2ΓL

−i∆ω+ γtot

)︃
εin,L ,
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a2 =
i
√
2ΓRe

iφ

−i∆ω+ γtot

(︃
1−

4ΓL

−i∆ω+ γtot

)︃
εin,L (3.10)

+
i
√
2ΓLe

iφ

−i∆ω+ γtot

(︃
1−

4ΓR

−i∆ω+ γtot

)︃
eiϕεin,R ,

a1 =
i
√
2ΓL

−i∆ω+ γtot
εin,L +

i
√
2ΓR

−i∆ω+ γtot
eiϕεin,R . (3.11)

Note that here, in addition to the terms also present in the case of TJMR [Eq. (2.8),
(2.9), (2.10), and (2.11)], we have additional terms. We will see that these completely
change the transmission and reflection spectra. Equation (3.8), Eq. (3.9), Eq. (3.10)
and Eq. (3.11) can be used either for an interferometric excitation [102], where the
system is excited by both input ports of the bus waveguide with two coherent fields
with relative phaseϕ, or for a single-side excitation. In fact, in the case of single-side
excitation, it is sufficient to set one of the two amplitudes of the input fields equal
to zero. It is worth noting that if the ILMR is ideal (no BS), then the spectral shape
of the intensity of the output fields will be independent of the value of the phase
φ that the field acquires as it propagates in the bus waveguide between the two
coupling regions. In fact, in Eq. (3.8) and Eq. (3.9) the term eiφ can be collected.
This means that one can vary the phase of the parameter β12 = 4eiφ

√
ΓLΓR without

changing the spectral response of the ideal ILMR.

Let us now look at some examples of spectral responses of the ILMR for single-
side excitation. In Fig. 3.2 the spectral responses corresponding to four ILMRs are
given. In particular, in (a) the ILMR is symmetric ΓL = ΓR, while in (b), (c) and (d) the
ILMRs are asymmetric ΓL ≠ ΓR. The parameters used to generate Fig. 3.2 are given
in Tab. 3.1. These parameters were obtained through simulations of the couplings
during the design of the ILMRs. More details about the design parameters can be
found in Sec. 3.5 and especially in Tab. 3.2. As in Ch. 2, we identify the field at the
o output when the device is excited from the i input as εio, where i = L,R and
o = L,R (L stands for Left and R stands for Right).

Figure 3.2 (a) reports counterintuitive spectral responses for a structure without
BS that is at an EP. In fact, unlike what we observed for the TJMR, here the reflections
are equal and all four spectra show a doublet (two dips/peaks), even though the
eigenvalues and eigenvectors of the system coalesce. This splitting is not induced
by the presence of the BS, but by the interference established in the bus waveguide
between the field continuing in the bus waveguide and that coming from the two
modes α1 and α2. Since the structure is symmetric, it is observed that both trans-
missions and reflections of the ILMR are equal, see Figure 3.2 (a). By changing the
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(a)

(c)

(b)

(d)

Figure 3.2: Spectral responses of the four different ILMRs whose parameters are given in Tab. 3.1.
In (a) the ILMR is symmetric (ΓL = ΓR), while in (b), (c) and (d) the ILMR is asymmetric
(ΓL ≠ ΓR). Solid lines show transmission spectra in gray and reflection spectra in orange
when the system is excited from left. The dashed lines show transmission spectra in blue
and reflection spectra in red when the system is excited from right. [93]
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ΓL [GHz] ΓR [GHz] γtot [GHz]
Fig. 3.2 (a) & Fig. 3.3 (a) 12.6 12.6 35

Fig. 3.2 (b) & Fig. 3.3 (b) 5.1 21.6 36.5

Fig. 3.2 (c) & Fig. 3.3 (c) 25 15.2 50

Fig. 3.2 (d) & Fig. 3.3 (d) 94.1 104 207.9

Table 3.1: Parameters used in Fig. 3.2 and in Fig. 3.3. [93]

couplings ΓL and ΓR a zoo of spectral shapes can be obtained. For example, in Fig-
ure 3.2 (b) we observe that the transmissions and also the reflection on the left have
a quasi-single dip/peak, instead, the reflection on the right has two peaks. We also
notice that the transmission spectra reach almost zero at resonance (∆ω = 0). Here
the reflections at resonance are very different, their ratio is about |εLL|

2/|εRR|
2 ≃ 15

and therefore the ILMR can also be used as a unidirectional reflector. By asym-
metrically changing the parameters ΓL and ΓR it is also possible to get the reflection
|εLL|

2 equal to zero at resonance, see panel (c) of Fig. 3.2. This condition is easily
obtained from Eq. (3.9) by imposing |εin,R|

2 = 0 and |εout,L|
2 = 0 at ∆ω = 0. The

condition to get |εLL|
2 = 0 at resonance is then: 2ΓL = γtot and then ΓL = ΓR + γ.

In Fig. 3.2 (c), in addition to |εLL|
2 = 0 at resonance, it is observed that all four

spectra show splitting. As reported in Fig. 3.2 (d), by increasing ΓL and ΓR it is also
possible to obtain a peak in transmission and a dip in reflection, both centered at
∆ω = 0. Here, because of this behavior, it almost seems as if the reflection spectra
have been swapped with the transmission spectra. Again, all these different spectra
are obtained by staying at an EP.

In order to observe what happens to the fields inside the ILMR in these four
cases, we have reported in Fig. 3.3 the spectra of the square of the absolute values
of the two modes a1 and a2 multiplied by f̃ := c/(ngL), where in this case L is the
length of the infinity-shaped WG. Here we have multiplied |a1|

2 and |a2|
2 by f̃ to get

the Enhancement Factor (EF) multiplied by the input optical power |εin|
2 = 1 a.u..

In the following, we refer to the ILMR mode number j exited from i as ai,j, where
i = L,R and j = 1, 2 (L stands for left and R for right). Figure 3.3 shows that the
spectrum of |ai,1|2 always has a single Lorentzian peak centered at ∆ω = 0. This
can be easily verified by Eq. (3.11) and is due to the fact that the α2 mode cannot
transfer energy to the α1 mode. On the other hand, the spectra of |ai,2|2 are very
different from each other; in fact, they can be characterized by either two peaks or
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(a)

(c)

(b)

(d)

Figure 3.3: Enhancement Factor (EF) of the two modes of the ILMR α1 and α2 as a function of the
detuning ∆ω. Here are the four cases corresponding to the coefficients in Tab. 3.1. In
(a) the ILMR is symmetric (ΓL = ΓR), while in (b), (c) and (d) the ILMR is asymmetric
(ΓL ≠ ΓR). ai,j corresponds to the ILMR mode number j exited from i, where i = L,R and
j = 1, 2 (L stands for left and R for right). The solid lines show the cases where the system
is excited from left. The dotted lines show the cases where the system is excited from
right. Gray and blue lines refer to |a1|

2, while orange and red lines refer to |a2|
2.
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a single peak. In Fig. 3.3 (a) we have that |aL,2|
2 and |aR,2|

2 are equal and have
a doublet. In Fig. 3.3 (b) |aL,2|

2 shows a doublet while |aR,2|
2 has only one peak.

A special case is given in panel (c), where the condition we set earlier γtot = 2ΓL

makes |aL,2|
2 = |aR,1|

2 and its spectral peak is Lorentzian. In Fig. 3.3 (c) |aR,2|
2

instead shows an evident doublet. Figure 3.3 (d) shows that by increasing the two
couplings ΓL and ΓR the EF decreases.

Figure 3.2 (a) and Fig. 3.3 (a) show that although the spectral responses are
symmetrical, the ILMR is chiral because |ai,1|

2 > |ai,2|
2.

It is worth noting that in panel (a) the sum |aL,1|
2 + |aL,2|

2 (solid lines) is equal
to |aR,1|

2 + |aR,2|
2 (dashed lines), while this is not the case in the other panels. In

fact, in Fig. 3.3 (b) and in Fig. 3.3 (d) |aL,1|
2 + |aL,2|

2 < |aR,1|
2 + |aR,2|

2, while in
Fig. 3.3 (c) |aL,1|

2+ |aL,2|
2 > |aR,1|

2+ |aR,2|
2. This can be very useful to break Lorentz

reciprocity by going into the nonlinear regime, equivalent to what we did with the
TJMR in Sec. 2.3.

3.2 Backscattering, Riemann Sheets and Sensing

To describe a real ILMR, we must take into account that the WGs have a surface-
wall roughness that causes BS. As the Q of a MR increases, the BS becomes increas-
ingly relevant and cannot be neglected (Sec. 2.4.1). In this section we will add the
BS to the TCMT model of the ILMR and see how the ILMR responds to a Hermitian
δβ perturbation of the BS coefficients.

To incorporate the BS we need to add the following coupling matrix to the
Hamiltonian of the system:

KBS :=

(︄
0 −iβBS,12

−iβBS,21 0

)︄
. (3.12)

Thus, the Hamiltonian of the system [Eq. (3.2)] becomes:

H =

(︄
ω0 − iγtot −i (β12 + βBS,12)

−iβBS,21 ω0 − iγtot

)︄
. (3.13)

Thus, the eigenvalues and eigenvectors of the system are:

λ1/2 = ω0 ± i
√︁
(β12 + βBS,12) βBS,21 − iγtot ⇒ λ1 ≠ λ2 , (3.14)
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ν1/2 =
1√︁

|β12 + βBS,12|/|βBS,21|+ 1

⎛⎝∓
√︂
β12+βBS,12
βBS,21

1

⎞⎠ (3.15)

⇒ < ν1|ν2 >=
1− |β12 + βBS,12|/|βBS,21|

1+ |β12 + βBS,12|/|βBS,21|
.

Note that now the eigenvalues and eigenvectors for βBS,21 ≠ 0 do not coalesce.
Note also that this Hamiltonian, and thus its eigenvalues and eigenvectors, is equi-
valent to that of the TJMR with BS, reported in Eq. (2.68). Note, however, that the
coefficients β12 and γtot are different for the two devices.

The system of equations linking the modes of the ILMR and the input and output
fields [Eq. (3.1) and Eq. (3.4)] turns into:

i
d
dt

(︄
α2

α1

)︄
=

(︄
ω0 − iγtot −i (β12 + βBS,12)

−iβBS,21 ω0 − iγtot

)︄(︄
α2

α1

)︄

−

(︄√
2ΓRe

iφ
√
2ΓLe

iφ

√
2ΓL

√
2ΓR

)︄(︄
Ein,L

Ein,R

)︄
,

(3.16)

(︄
Eout,R

Eout,L

)︄
= eiφ

(︄
Ein,L

Ein,R

)︄
+ i

(︄√
2ΓR

√
2ΓLe

iφ

√
2ΓL

√
2ΓRe

iφ

)︄(︄
α2

α1

)︄
. (3.17)

In the stationary regime, the solutions of this system are:

εout,R = εin,Le
iφ
[︂
1−

2ΓR (−i∆ω+ γtot) + 2ΓL (−i∆ω+ γtot − 4ΓR)

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

+

+
2
√
ΓLΓR

(︁
e−iφβBS,12 + e

iφβBS,21
)︁

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

]︂
+ εin,Re

iϕeiφ
[︂
−

4
√
ΓLΓR (−i∆ω+ γtot − 2ΓR)

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

+
2eiφΓLβBS,21 + 2e

−iφΓRβBS,12

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

]︂
(3.18)
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εout,L = εin,Re
iϕeiφ

[︂
1−

2ΓR (−i∆ω+ γtot) + 2ΓL (−i∆ω+ γtot − 4ΓR)

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

+

+
2
√
ΓLΓR

(︁
e−iφβBS,12 + e

iφβBS,21
)︁

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

]︂
+ εin,Le

iφ
[︂
−

4
√
ΓLΓR (−i∆ω+ γtot − 2ΓL)

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

+
2e−iφΓLβBS,12 + 2e

iφΓRβBS,21

(−i∆ω+ γtot) 2 −
(︁
βBS,12 + 4eiφ

√
ΓLΓR

)︁
βBS,21

]︂
(3.19)

We will use these equations to fit the experimental data reported in Sec. 3.5. These
solutions are more complex than those obtained in the ideal case. It is worth noting
that, when the coefficients βBS,12 and βBS,21 are non-zero, the absolute squares
of the outgoing fields (|εout,R|

2 and |εout,L|
2) depend on the phase φ that the field

acquires as it passes through the bus waveguide between the two coupling regions.
We will see later that this can be used to rotate the BS perturbation δβ around the
EP.

The BS can also be seen as a perturbation that we want to detect in the system.
In fact, we can think that the presence of a molecule/particle near the WG causes
some BS [35, 98, 99, 100, 101]. To study how the ILMR behaves as a function of a
BS perturbation, we assume that this perturbation is Hermitian, i.e., δβ := βBS,12 =

−β∗
BS,21. In this situation the eigenvalues of the system change to:

λ1/2 = ω0 ± i
√︃

−
(︂
4eiφ

√︁
ΓLΓR + δβ

)︂
δβ∗ − iγtot . (3.20)

∆λ2−1 := λ2 − λ1 = −2i

√︃
−
(︂
4eiφ

√︁
ΓLΓR + δβ

)︂
δβ∗ . (3.21)

We begin with the ideal case where we know the eigenvalues of the system exactly.
We then plot the real part ℜ[λ] and the imaginary part ℑ[λ] of the two eigenvalues
as a function of the real part ℜ[δβ] and the imaginary part ℑ[δβ] of the perturbation,
see panels (a) and (b) of Fig. 3.4.

In Fig. 3.4, to make the plots independent ofβ12, we normalized to this value. In
panels (a) and (b), the Riemann surface corresponding to the first eigenvalue (λ1) is
shown in red, and that for the second eigenvalue (λ2) is shown in blue. Note that in
the real part of the eigenvalues we have removedω0 because it is simply a constant.
From Fig. 3.4 (a) it can be seen that the real parts of the two eigenvalues are equal
in the region where ℑ[δβ/β12] = 0 and −1 ⩽ ℜ[δβ/β12] ⩽ 0. Figure 3.4 (a) shows
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(a) (b) (c)

(f)(d) (e)

Figure 3.4: Normalized Riemann sheets for the ILMR as a function of the real ℜ[δβ/β12] and the
imaginary ℑ[δβ/β12] part of the Hermitian BS perturbation (δβ). All the quantities are
normalized to β12 to make the graphs independent of this parameter. Panels (a) and
(b) report the real ℜ[λ] and the imaginary ℑ[λ] parts of the eigenvalues. In ℜ[λ] the
resonance angular frequency ω0 is removed. The red Riemann surfaces correspond to
the first eigenvalue λ1, instead the blue ones to the second eigenvalue λ2. Panel (c) shows
the absolute value of the inner product between the two eigenvectors of the system as
a function of ℜ[δβ/β12] and ℑ[δβ/β12]. Panels (d), (e) and (f) show the dips position
evaluated through the spectra of |εLR|

2, |εLL|
2 and |εLR|

2 + |εLL|
2, respectively. In orange

the position of the dip with lower angular frequency and in Dodger blue the position of
the dip with higher angular frequency. The holes in panels (d), (e), and (f) are due to the
inability to recognize two peaks. Here, we use ΓL = ΓR = 1/4[a.u.] to get β12 = 1[a.u.] and
γ = ΓL (γtot = 3/4 a.u.). [93]

that the imaginary parts of the two eigenvalues are equal only if ℑ[δβ/β12] = 0,
ℜ[δβ/β12] ⩽ −1 ∨ ℜ[δβ/β12] ⩾ 0. Consequently, the eigenvalues at (0, 0) and at
(−1,−1) are equal. Moreover, at these two points, the inner product of the two
eigenvectors is 1, see Fig. 3.4 (c). So at (0, 0) and at (−1,−1) the system is at an EP,
because both eigenvalues and eigenvectors coalesce. Note also that the Riemann
sheets intersect in panel (a) while they do not in panel (b).

The coefficient β12 in the case of the ILMR is equal to 4eiφ
√
ΓLΓR, whereφ is the

phase acquired by the field propagating along the bus waveguide between the two
coupling regions, see Fig. 3.1. By tuning this phase, e.g. by placing a microheater
on the bus waveguide, it is possible to change the eigenvalues along a circular
path around the EP in (0, 0) while keeping δβ constant. This encircling of the EP
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follows the Riemann surfaces given in Fig. 3.4. This is easily demonstrated by
Eq. (3.20). Moreover, this phenomenon is also found in the output fields εout,R and
εout,L when considering a Hermitian perturbation δβ, see Eq. (3.18) and Eq. (3.19).
In fact, in these equations [Eq. (3.18), Eq. (3.19) and Eq. (3.20)] it is observed that
if δβ = βBS,12 = −β∗

BS,21, then the change of φ (rotation in the complex plane of
β12) corresponds to a rotation of δβ in the negative direction (e−iφ). This ability to
rotate β12 in the complex plane with respect to δβ allows us to change the spectral
sensitivity of the ILMR to the perturbation. In particular, by aligningβ12with δβwe
can maximize the splitting of the real part of the eigenvalues, see Fig. 3.4 (a). In fact,
aligning β12 with δβ corresponds to imposing ℑ[δβ/β12] = 0 and ℜ[δβ/β12] ⩾ 0.

As also reported in Sec. 2.4.2, it is not possible to directly measure the eigenvalues
of the system using the single-side excitation. Normally, the spectral position of
the two minima of the Autler-Townes splitting doublet [129, 35] is used to get an
estimate of them. However, as we have already pointed out, the frequencies of the
minima (maxima) of the spectral dips (peaks) in transmission (reflection) do not give
the eigenvalues. In fact, we have seen that the eigenvalues degenerate into an EP,
while in Fig. 3.2 (a) the transmission and reflection of the ILMR show a doublet. In
order to study how to use the ILMR as a sensor of a δβperturbation by exploiting the
spectral responses, let us consider a symmetric ILMR having ΓL = ΓR = 1/4 a.u. and
γ = ΓL/R. The normalized spectral minima or maxima for the transmitted power
(|εLR|

2), for the reflected power (|εLL|
2) and for the sum of the two (|εLR|

2+ |εLL|
2) are

reported in panels (d), (e) and (f) of Fig. 3.4, respectively. In these three panels, the
orange Riemann surfaces correspond to the dips/peaks at lower angular frequency,
while the Dodger blue surfaces correspond to the dips/peaks at higher angular
frequency. In some regions it is not possible to distinguish two distinct peaks and
therefore holes are observed in panels (d), (e) and (f) of Fig. 3.4. In these regions,
there is either only one dip/peak in the spectrum with non-zero detuning or the
second dip/peak is masked by the first. In Fig. 3.4 it can be seen that the Riemann
surfaces are different in the three cases [|εLR|

2, (d)], [|εLL|
2, (e)] and [|εLR|

2+|εLL|
2, (f)].

In addition to the different trends, it can also be seen that the regions of insensitivity
(when the two Riemann surfaces overlap or when one of them is undefined) are
different in the three cases. In addition, it is worth noting that the Riemann surfaces
corresponding to |εLR|

2 + |εLL|
2 [Fig. 3.4 (f)] curiously have a good correspondence

with those for the eigenvalues [Fig. 3.4 (a)]. This can be explained by the fact that
the spectrum of |εLR|

2 + |εLL|
2 yields the frequencies where the system has greater

losses. Finally, by using the three spectra simultaneously and taking advantage of
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(a) (b)

(c)

Figure 3.5: Theoretical results for a symmetric ILMR (ΓL = ΓR). Panel (a) shows the transmission
and reflection spectra for left or right excitation. Panel (b) reports the sum of the output
field intensities at the right (transmission) and left (reflection) ports when the ILMR is
excited from left (|εLR|

2 + |εLL|
2). Panel (c) represents with different colors the splitting

of the eigenvalues (magenta) or of the doublets observed in the spectra of |εLR|
2 (gray),

|εLL|
2 (orange) and |εLR|

2 + |εLL|
2 (black) as a function of the backscattering perturbation

ℜ[δβ/β12]. Here, we use ΓL = ΓR = 1/4[a.u.] to get β12 = 1[a.u.] and γ = ΓL (γtot =
3/4 a.u.). [93]
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the fact that one can encircle the EP, one is able to improve the accuracy in detecting
the δβ perturbation.

To explore this concept further, we can set ℑ[δβ/β12] = 0 with φ and observe
the splitting (ℜ[∆λ]/|β12|) as a function of the perturbation (ℜ[δβ/β12]), see Fig. 3.5.
Looking at panels (a) and (b) of Fig. 3.5, it is observed that by summing the trans-
mission (|εLR|

2) with the reflection (|εLL|
2) of an ideal ILMR (δβ = 0), the spectrum

changes from a doublet to a single dip. In panel (c) of Fig. 3.5 it is observed that the
splitting of the eigenvalues (magenta curve) is well reproduced/represented by the
splitting present in the spectrum of |εLR|

2+ |εLL|
2 (black curve), as in panels (a) and

(f) of Fig. 3.4. However, for a small perturbation (ℜ[δβ/β12] ≲ 0.044) in the spec-
trum of |εLR|

2 + |εLL|
2, it is not possible to distinguish two dips, and therefore the

splitting calculated using this spectrum is insensitive to the perturbation variation.
In any case, as can also be verified by Eq. (3.20), the splitting follows a square root
for small δβ perturbations, this is the characteristic trend of the EPs [35, 44, 47]. In
contrast, the splitting in the transmission and reflection spectra (gray and orange
curves) follow a linear trend for δβ around or greater than zero. Thus, by using the
ILMR, one is able to simultaneously use both the enhanced sensitivity of the EP due
to the square root trend and the linear trend, which can be used not only for calibra-
tion but also to remove the region of insensitivity observed for small perturbations.
The ability to remove the region of insensitivity present in the structures used so
far is a great advantage for a device that has to be used as a sensor.

3.3 Coherent perfect absorption condition

In this section, we will see how the Coherent Perfect Absorption (CPA) condition
[186, 92] can be achieved and what it implies. To obtain the CPA condition, we need
to study the eigenvalues of the scattering matrix of the ideal ILMR. For the ILMR
we define the scattering matrix as follows:(︄

Eout,L

Eout,R

)︄
= SILMR

(︄
Ein,R

Ein,L

)︄
(3.22)
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Hence

SILMR =

(︄
εRL εLL

εRR εLR

)︄
(3.23)

= eiφ

⎛⎝1− 2(ΓL+ΓR)
−i∆ω+γtot

+ 8ΓLΓR
(−i∆ω+γtot)

2 − 4
√
ΓLΓR

−i∆ω+γtot

(︂
1− 2ΓL

−i∆ω+γtot

)︂
− 4

√
ΓLΓR

−i∆ω+γtot

(︂
1− 2ΓR

−i∆ω+γtot

)︂
1− 2(ΓL+ΓR)

−i∆ω+γtot
+ 8ΓLΓR

(−i∆ω+γtot)
2

⎞⎠ .

Thus, the eigenvalues of the scattering matrix are:

σ1/2 = e
iφ

(︄
∆ω− 2iΓR + iγtot

∆ω+ iγtot
+
2ΓL (−i∆ω− 4ΓR + γtot)

(∆ω+ iγtot)
2

±
4
√︁
ΓLΓR (i∆ω+ 2ΓL − γtot) (i∆ω+ 2ΓR − γtot)

(∆ω+ iγtot)
2

)︄
(3.24)

Only the first eigenvalue of the scattering matrix (σ1) has a zero, while only the
second eigenvalue (σ2) has a pole. The zero of σ1 is for:

ωσ1,zero = ω0 − i (γtot − 2 (ΓL + ΓR)) . (3.25)

Instead, the pole of σ2 is for:

ωσ2,pole = ω0 − iγtot . (3.26)

Note that the pole of σ2 corresponds to the eigenvalues of the Hamiltonian of the
system [Eq. (3.3)].

The CPA condition is obtained when an eigenvalue of the scattering matrix
is zero, restricted to the case of real frequencies [186]. This condition holds for
γtot = 2(ΓL + ΓR). Satisfying this conditionωσ1,zero is only real [186, 92].

Figure 3.6 (a) shows the transmission and reflection spectral responses of an ideal
and geometrically symmetric ILMR in the CPA condition (ΓL = ΓR = Γ , γtot = 4Γ ,
Γ = 1/4 a.u.). Here we can see the presence of a doublet (two dips/peaks) in both
transmission and reflection. Note that at resonance both spectra are different from
zero. Adding the two spectra of transmission and reflection (|εLR|

2 + |εLL|
2) yields

a spectrum characterized by a quartic pattern, see the black curve in Fig. 3.6 (b). In
fact, by expansion in Taylor series around ∆ω = 0 we get

|εLR|
2 + |εLL|

2 =
1

2
+
∆ω4

512 Γ4
−

∆ω6

4096 Γ6
+O

[︁
∆ω8

]︁
. (3.27)
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(a) (b)

(c)

Figure 3.6: Theoretical results for a symmetric ILMR (ΓL = ΓR) in the Coherent Perfect Absorption
(CPA) condition γtot = 2(ΓL + ΓR). (a) Transmission and reflection spectra for left or
right excitation. (b) Sum of the output field intensities at the right (transmission) and left
(reflection) ports when the ILMR is excited from left (|εLR|

2+ |εLL|
2, black curve). The dark

green line reports |εout,R|
2 when a symmetric interferometric excitation (|εin,L|

2 = |εin,R|
2 =

1) is used. The yellow curve shows the square absolute value of the first eigenvalue of the
scattering matrix of the ILMR (|σ1|2). (c) Splitting of the eigenvalues or of the doublets
observed in the spectra of |εLR|

2, |εLL|
2 and |εLR|

2+ |εLL|
2 as a function of the backscattering

perturbation δβ/β12. The color code is given in the inset. Here we use ΓL = ΓR = 1/4 a.u.
to get β12 = 1 a.u. and γ = ΓL + ΓR = 1/2 a.u. to reach the CPA condition. [93]
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Note, however, that although we are in the CPA condition at resonance, the total
absorption, 1 − (|εLR|

2 + |εLL|
2), turns out to be 0.5 a.u. instead of 1 a.u.. This is

due to the fact that in our case, in order to have the CPA, it is necessary to use an
interferometric excitation [102, 186], i.e. by exciting the ILMR from both sides of the
bus waveguide. In this way, at resonance, the output electric field from both ports
of the bus waveguide is zero, see the dark green curve in Fig. 3.6 (b). As expected,
the spectrum obtained by symmetric interferometric excitation is equivalent to the
spectrum of the squared modulus of the first eigenvalue of the scattering matrix
(|σ1|2), see the yellow curve in Fig. 3.6 (b). |σ1|

2 has a quartic trend around zero
detuning (∆ω = 0); in fact, expanding it in Taylor series around ∆ω = 0, we obtain:

|σ1|
2 =

∆ω4

256 Γ4
−

∆ω6

2048 Γ6
+

3∆ω8

65536 Γ8
+O

[︁
∆ω10

]︁
. (3.28)

As a result, even the absorption line shape of the first eigenchannel has the quartic
dependence as observed in [186, 57, 92]. Note that, in this case, |σ1|2 = 2(|εLR|

2 +

|εLL|
2) − 1.

Fig. 3.6 (c) shows the splitting of the eigenvalues or of the doublets observed
in the spectra of |εLR|

2, |εLL|
2 and |εLR|

2 + |εLL|
2 as a function of the backscattering

perturbation δβ/β12. Here the ILMR is in the CPA condition and the used para-
meters are: ΓL = ΓR = Γ = 1/4 a.u., β12 = 4Γ = 1 a.u., γ = 2Γ = 1/2 a.u. and
γtot = 4Γ . Interestingly, the splitting of the spectrum of |εLR|

2+ |εLL|
2 [black curve in

Fig. 3.6 (c)] equals the splitting of the eigenvalues (magenta curve). Consequently,
there is no region of null splitting around the zero of the perturbation. In fact, at
the CPA EP, the splitting evaluated from the spectrum of |εLR|

2 + |εLL|
2 depends as

2
√︁
δβ(δβ+ 4Γ). This corresponds to the splitting of the Hamiltonian eigenvalues

reported in Eq. (3.21). Here we have imposed: ΓL = ΓR = Γ , ℑ[δβ] = 0, ℜ[δβ] ⩾ 0

and eiφ = 1.

3.4 Transfer Matrix Method with Backscattering

The ILMR can also be modeled using the TMM. In this section we will report the
equations that characterize the electric fields inside the ILMR and, as in the Ch. 1,
we will describe the backscattering as a single scatterer inside the ILMR. We will
also report the relationships between the parameters of the TCMT and those of the
TMM.

If we consider the crossing to be ideal, then the geometry we used to create this
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particular MR can be modified. In fact, the ILMR [Fig. 3.7 (a)] is also equivalent to a
TJMR excited by the S-shaped WG [Fig. 3.7 (b)] or even to a two-point coupled MR
with the bus waveguide and the crossing present in the bus waveguide between
these two coupling regions [Fig. 3.7 (c)] [93]. The ILMR-equivalent structure shown
in Fig. 3.7 (c) may appear similar to the device reported in [50]. However, the latter
differs from the ILMR by the presence of an optical isolator that halves the coupling
from α1 to α2. Thus, unlike the ILMR, the response of this device does not exhibit
a doublet in the transmission spectrum when its response is not perturbed by the
presence of a scatterer. Moreover, although the devices described in [52, 49, 50]
have the same Hamiltonian as ILMR, they do not have the same spectral responses
because their scattering matrix is different from that of ILMR.
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Figure 3.7: Sketches of MRs ideally equivalent to a ILMR. Panel (a) shows an ILMR, panel (b) schem-
atizes a TJMR excited from the S-shaped WG, and panel (c) represents a MR having two
couplings with the bus waveguide having within it a crossing. The black arrows identify
the En fields, where n = 0, ..., 9, and their propagation direction. Instead, the red arrows
identify the Enr fields, which have opposite propagation directions. All the parameters
are described in the text. [93]
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To easily demonstrate the equality of the three structures schematized in Fig. 3.7,
it is useful to use the TMM instead of the TCMT. In Fig. 3.7 the black arrows identify
the En fields, where n = 0, ..., 9, and their propagation directions, instead the red
arrows identify the Enr fields, which have opposite propagation directions. By
using Fig. 3.7, we can write the equations that connect the different fields:

E1 = t1E0 + ik1E9 , E0r = t1E1r + ik1E4r , (3.29)

E2 = e
iφE1 , E1r = e

iφE2r ,

E3 = t2E2 + ik2E8r , E2r = t2E3r + ik2E7 ,

E4 = t1E9 + ik1E0 , E4r = σ45e
iψ45E5r ,

E5 = σ45e
iψ45E4 , E5r = tBSE6r − bBS,12E5 ,

E6 = tBSE5 − bBS,21E6r , E6r = σ67e
iψ67E7r ,

E7 = σ67e
iψ67E6 , E7r = t2E8r + ik2E2 ,

E8 = t2E7 + ik2E3r , E8r = σ89e
iψ89E9r ,

E9 = σ89e
iψ89E8 , E9r = t1E4r + ik1E1r ,

ψjl :=
2π

λ
neffLjl , L := L45 + L67 + L89 ,

σjl := e
−αLjl , σ := e−αL ,

ψ :=
2π

λ
neffL .

Note that these equations describe all three systems, so we can say that the three
geometries reported in Fig. 3.7 are equivalent. The parameter Ljl identifies the WG
length between the numbers j and l reported in Fig. 3.7. Here neff is the effective
refractive index of the WG, α is the propagation loss coefficient, L is the perimeter
of the infinity-shaped WG. In the following, for simplicity, we assume that all the
couplings have no losses (t21 + k

2
1 = 1 and t22 + k

2
2 = 1).

The solution of the system of equations in Eq. (3.29) yields

εLR = εRL =
N

D
, εLL =

NLL

D
, εRR =

NRR

D
(3.30)

εout,R = εin,LεLR + εin,Re
iϕεRR , (3.31)

εout,L = εin,Re
iϕεRL + εin,LεLL . (3.32)
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where

N =
[︁(︁
t22 − 2

)︁
t21 − 2t

2
2 + 1

]︁
tBSσe

i(ψ+φ)+

+ t1

(︂
k1k2σ

2
45σ89e

i(2ψ45+ψ89)bBS,12 + t2e
iφ
)︂
t1σ

2
67σ89e

i(2ψ67+ψ89+φ)[︂
t2σ

2
45σ89e

i(2ψ45+ψ89)
(︁
t2BS − bBS,12bBS,21

)︁
− k1k2e

iφbBS,21

]︂
(3.33)

NLL = 2k1k2σ45σ67e
i(ψ45+ψ67+φ)

[︂
− t1tBS + t2σe

iψ
(︁
t2BS − bBS,12bBS,21

)︁ ]︂
+ k21σ

2
45e

2iψ45bBS,12 + k
2
2t
2
1σ
2
67e

2i(ψ67+φ)bBS,21 (3.34)

NRR = σ289e
2iψ89

[︂
k22t

2
1σ
2
45e

2iψ45bBS,12 + k
2
1σ
2
67e

2i(ψ67+φ)bBS,21

]︂
+ 2k1k2σ89e

i(ψ89+φ)
(︁
−t2 + t1σe

iψtBS
)︁

(3.35)

D = 1+ t2σ67σ89e
i(ψ67+ψ89)

[︂
t2t

2
1σ45σe

i(ψ45+ψ)
(︁
t2BS − bBS,12bBS,21

)︁
− 2k1k2σ67e

i(ψ67+φ)bBS,21 − 2t1σ45e
iψ45tBS

]︂
(3.36)

Now, to simplify the discussion we impose the following conditions on the
position of the scatterer inside the ILMR: L89 = 2L45 = 2L67 = L/2 (ψ89 = 2ψ45 =

2ψ67 = ψ/2 and σ = σ289 = σ445 = σ467). If the conditions describing a situation of
"low" couplings (k1/2 ≪ 1, t1/2 ≃ 1, |bBS,12/21| ≪ 1, tBS ≃ 1, σ ≃ 1) are met, and
performing the following substitutions:

t1/2 ≃ 1−
ΓL/R

f̃
, k1/2 ≃

√︄
2ΓL/R

f̃
(3.37)

tBSσ ≃ 1− γ

f̃
, σ := e−αL (3.38)

β12 = 4e
iφ
√︁
ΓLΓR (3.39)

bBS,12 ≃
βBS,12

f̃
, bBS,21 ≃

βBS,21

f̃
(3.40)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

, ψ =
∆ω

f̃
(3.41)
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it is straightforward to verify that we obtain the same results derived in the steady
state regime through the TCMT equations reported in Eq. (3.16), Eq. (3.17), namely
Eq. (3.18) and Eq. (3.19).

Similar to what we did in Ch. 1 and Ch. 2, we have demonstrated that, if the
following relations are satisfied (k1/2 ≪ 1, t1/2 ≃ 1, |bBs,12/21| ≪ 1, tBsσ ≃ 1) equi-
valent to (ΓL&ΓR&γtot&|β12|&|βBs,12|&|βBs,21| ≪ f̃), to move from the coefficients of
a TCMT to the ones of a TMM model one has to use the following relations:

ΓL/R ≃ f̃(1− t1/2) , ΓL/R ≃ f̃k21/2/2 (3.42)

γ ≃ f̃(1− tBsσ) , σ := e−αL (3.43)

β12 = 4e
iφ
√︁
ΓLΓR ≃ 4eiφf̃

√︁
(1− t1)(1− t2) (3.44)

β12 ≃ 2eiφf̃kLkR (3.45)

βBs,12 ≃ f̃bBs,12 , βBs,21 ≃ f̃bBs,21 (3.46)

f̃ :=
c

ngL
=
c FSR
λ20

, FSR :=
λ20
ngL

. (3.47)

3.5 Experimental Measurements

3.5.1 Samples and experimental setup

To experimentally verify the theoretical model of the ILMR, we designed four
ILMRs. Specifically, we fabricated one symmetric ILMR (ΓL = ΓR) and three asym-
metric ILMRs (ΓL ≠ ΓR) whose parameters are given by design in Tab. 3.1. The ILMRs
are fabricated in Si using channels WGs with a cross section of 450 nm × 220 nm
surrounded by a cladding in SiO2. The samples were fabricated by the IMEC/Euro-
practice facility within a multi-project wafer program (the design of the whole chip
is shown in Fig. A.1 of Appendix A).

In Fig. 3.8 the designs of the two structures are shown, in panel (a) the symmetric
ILMR and in panel (b) the asymmetric ILMR. The symmetric ILMR [Fig. 3.8 (a)] is
realized by a crossing from which four Euler curves of 135° with minimum radius
equal to 15 µm depart, these WGs are connected two by two by straight WGs; finally
both lobes of the infinity-shaped WG are point coupled with the bus waveguide.
Here the gap widths between the lobes and the bus waveguide are 165 nm. The
three asymmetric ILMRs are formed by a crossing, four Euler curves of 45° and
minimum radius of 10 µm, four straight WGs of 10 µm, four Euler curves of 90°
and minimum radius of 10 µm connected by two straight WGs of about 17.24 µm;
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ΓL

ΓR

ΓL

ΓR

Symmetric
ΓL = ΓR

Asymmetric
ΓL ≠ ΓR

(a) (b)

40 µm

Figure 3.8: The design of a symmetric (a) and an asymmetric (b) ILMRs. The Si WGs are indicated by
the black lines. Black triangles surmounted by white circular lines identify the input/out-
put grating couplers.

finally, both lobes of the infinity-shaped WG are coupled with the bus waveguide.
In this case, the gap widths between the bus waveguide and the infinity-shaped
WG are gapL = [392, 288, 205] nm and gapR = [300, 326, 198] nm, for the left and
right couplings, respectively. The crossings used in these structures are those of
the design kit of the IMEC/Europractice facility, which from our measurements at
1550 nm have losses of 0.18± 0.01 dB/crossing and negligible reflections. To make
the coupling between the fiber and the bus waveguide, we used grating couplers
from the IMEC/Europractice design kit, see Fig. 3.8.

The same experimental setup described in Sec. 1.5.1 (Fig. 1.20) was used to
measure these ILMRs. With this setup, we are actually able to measure both the
transmission and reflection spectra of the structure under investigation simultan-
eously, and we can quickly change the excitation direction of the system.

3.5.2 Results

In Fig. 3.9 the experimental spectra and their theoretical fits for the four ILMRs
are shown. The transmissions obtained by exciting the system from left and right
are represented by gray and blue curves, while the reflections are shown in orange
and red. The dashed black curves show the theoretical fits made by Eq. (3.18) and
Eq. (3.19). The results of the fits are listed in Tab. 3.2.

Fig. 3.9 shows that the theoretical model can reproduce the experimental spectra.
We also observe that the experimental spectra are similar to those expected by
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(a)

(c)

(b)

(d)

(a1)

Figure 3.9: Experimental spectra of four different ILMRs. The solid curves report the experimental
data instead the dashed black lines identify the fits with the TCMT equations [Eq. (3.18)
and Eq. (3.19)]. The gray and blue curves show the transmission spectra while the orange
and red ones show the reflection spectra. Moreover, the gray and orange lines correspond
to an input excitation from left while the blue and red lines from right. The inset (a1) shows
with a solid black curve the sum of the transmitted and reflected measured intensities
as a function of ∆ω, when the ILMR is excited from left (|εLR|

2 + |εLL|
2). The coefficients

derived at the design stage are listed in Tab. 3.1, while those derived from the fits are
listed in Tab. 3.2. [93]
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Fig. 3.9 (a) Fig. 3.9 (b) Fig. 3.9 (c) Fig. 3.9 (d)
design symmetric asymmetric asymmetric asymmetric

gapL [nm] 165 392 288 205

gapR [nm] 165 300 326 198

ΓL [GHz] 12.86(7) 5.81(3) 23.90(6) 183(1)

ΓR [GHz] 13.25(7) 30.8(3) 12.1(1) 182(1)

γtot [GHz] 39.9(3) 43.7(3) 47.0(3) 400(2)

|β12| [GHz] 52.2(8) 54(1) 68(1) 732(14)

arg[β12] 0.1436(6) −2.148(3) −1.865(6) 1.64(1)

|βBs,12| [GHz] 2.21(2) 5.90(3) 5.93(6) 18.77(1)

arg[βBs,12] 0.782(7) 1.567(8) 1.85(1) 1.000(9)

|βBs,21| [GHz] 3.40(2) 13.1(1) 8.90(8) 23.12(1)

arg[βBs,21] 1.11(1) 0.981(4) 1.047(7) 1.77(1)

Table 3.2: Design parameters and TCMT parameters derived through fits of experimental data re-
ported in Fig. 3.9. For each ILMR, a simultaneous fit of the four spectral responses with
the same parameters was performed using Eq. (3.18) and Eq. (3.19). [93]

the design (Fig. 3.2), where BS was not taken into account. This means that the
simulations performed to obtain the correct gap widths of the coupling regions
were quite accurate. In the design simulations, the coupling coefficients related
to the TMM were calculated and then converted to those of the TCMT using the
relations given in Sec. 3.4. Comparing the values of the parameters reported in
Tab. 3.1 and in Tab. 3.2, a fair agreement is observed. The partial disagreement is
mainly due to the presence of BS.

The presence of the non-Hermitian BS can also be detected by the asymmetry of
the spectral responses with respect to the zero detuning axis (∆ω = 0). Although
the presence of the BS deforms the experimental spectra, we can also find the main
features of each individual ILMR in the experimental measurements. In Fig. 3.9,
as assured by the Lorentz reciprocity theorem, the system transmission spectra
excited from left (|εLR|

2) are equivalent to those excited from right (|εRL|
2). In panel

(a) [symmetric ILMR ] we observe that the two reflections are also equivalent and
that, like the transmission, they show an evident splitting (two peaks/dips). In
panel (b), the transmission and reflection from the left show almost only a spectral
dip/peak, while the reflection from the right shows a clear doublet. Note also that
in Fig. 3.9 (b) the ILMR at resonance behaves approximately like a unidirectional
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reflector, in fact, the reflection on the left is much higher than that on the right
(|εLL|

2/|εRR|
2 ≃ 19 at ∆ω = 0). In panel (c) we have that |εLL|

2 is close to zero
at resonance and that all spectra show an evident doublet. As in panel (b), the
asymmetric ILMR can be used as a unidirectional reflector, but in this case, the
largest reflection at resonance is on the right. In panel (d), on the other hand, a peak
at resonance is observed in the transmission spectra and a dip at resonance in the
reflection spectra [as in Fig. 3.2 (d)].

In the inset (a1) of panel (a) of Fig. 3.9, the sum of the transmission spectrum
and the reflection spectrum |εLR|

2 + |εLL|
2 is shown. This spectrum should ideally

consist of only one symmetrical dip at resonance, similar to what we reported in
Fig. 3.5 (b). Here we observe a dip at resonance, but because of the BS, there is an
asymmetry with respect to the axis with ∆ω = 0. Also from Tab. 3.2 we can see that
the BS is non-Hermitian and that in the complex plane the vector β12 is not aligned
with the vector βBS,12. Because we did not have the opportunity in the designed
chip to insert the microheater over part of the bus waveguide between the two
coupling regions, we were not able to vary the phase φ to perform the encircling of
the EP.

In the theoretical model, we have not taken into account the non-idealities of the
crossing present in the ILMR, but they can be incorporated in the other parameters
of the system. In fact, the loss of the crossing can be taken into account in the
coefficient γtot, while its possible reflections or cross-talk can be included in the
coefficients βBS,12 and βBS,21, without loss of generality.

In conclusion, in this section, we have experimentally verified the presented
theoretical model by also experimentally observing some of the interesting features
of ILMRs.



Chapter 4
A comparison of the Microring, the
Taiji, and the Infinity-Loop
microresonators

In this chapter, we compare the three microresonators analyzed in chapters 1,
2 and 3. In Sec. 4.1 we will compare the spectral responses and in Sec. 4.2 their
sensing performances.

4.1 Spectral responses

In this section, we will neglect the BS and discuss the ideal microring resonator
(ideal MR), the ideal TJMR, and the ideal ILMR.

The MR, unlike the other two structures, has both zero reflections, in fact, its
geometry does not create any intrinsic coupling between its two counterpropagating
modes. The TJMR, on the other hand, is designed to transfer optical energy only
from the CW field to the CCW field. This coupling causes the reflection on the
right to have a peak at resonance, while the reflection on the left is zero, as in
the case of the MR. This allows the TJMR to be used as a unidirectional reflector.
The transmission spectra of these two devices (MR and TJMR) are characterized
by a single Lorentzian dip. In contrast, the ILMR, although it also has degenerate
eigenvalues, generally exhibits a transmission with two dips (a doublet). This
peculiar phenomenon is given by a special interference between the outgoing fields
of the ILMR and those of the bus waveguide.
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The ILMR, unlike the other two structures, has two couplings to the bus wave-
guide instead of just one, which makes the ILMR much more tunable. In fact, it can
have a variety of spectral responses. It can have both symmetrical and completely
different reflections, so it can work at resonance as a unidirectional reflector (similar
to TJMR). It can also have a single dip in transmission and a single peak in either
reflection, or even a peak in transmission and a dip in reflection, see Fig. 3.2.

In the linear regime, these three structures cannot break Lorentz reciprocity
(transmission relative to excitation from left is equal to that relative to excitation
from right). In fact, the Lorentz reciprocity theorem is based on the linearity of
the electric field and the absence of magnetic materials, as in this case. To break
Lorentz reciprocity with these MRs, we need to enter the nonlinear regime, where
the refractive index and thus the resonant frequency of the MR varies as a function of
the optical intensity inside it. The simplest and most trivial way to get two different
transmissions is to make sure that exciting the system in one direction (left, forward)
couples less light inside the MR than when the system is excited from the other
direction (right, reverse). To achieve this, it is sufficient to have greater losses in
the left bus waveguide than in the right bus waveguide (MR not centered with
respect to the bus waveguide). In this way, however, the maximum transmission
that can be obtained is reduced due to the presence of this additional loss on the
left side of the sample. If a symmetric system is used from the excitation point of
view (excitation from both sides couples the same light intensity within the MR),
then a simple passive MR cannot break Lorentz reciprocity. The TJMR and even
an asymmetric ILMR, on the other hand, can break Lorentz reciprocity by going
to the nonlinear regime. In fact, due to their special energy recirculation and non-
Hermitianity, they exhibit a higher internal optical intensity when excited from one
direction than from the other. In Sec. 2.3.1 we observed an isolation ratio of about
5.5 dB but by designing a TJMR or an asymmetric ILMR in the critical-coupling
regime, much greater isolation can be achieved. However, we emphasize the fact
that the optical isolator realized using the thermo optic nonlinearity of the system
as a function of the electric field is strictly dependent on the input optical intensity.

4.2 Sensing performances

Let us now compare the three MRs from the point of view of their ability to
detect a Hermitian perturbation δβ = βBS,12 = −β∗

BS,21 of the BS. Note that the
δβ perturbation changes the spectral shape of the resonances and is thus to a first
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approximation separable from the simple spectral shift caused, for example, by
a change in temperature. To compare the three geometries, we assume that the
propagation losses are the same (γILMR = γTJMR = γMR = γ = 1/4 a.u.) and that
the coupling rates are also the same (ΓMR = ΓTJMR = ΓS = ΓL = ΓR = γ = 1/4 a.u.
and β12,TJMR = β12,ILMR = β12 = 1 a.u.), see Fig. 4.1. Therefore, we consider a
symmetric ILMR (ΓL = ΓR). Note that with these parameters, the MR is in the most
favorable coupling regime, the critical coupling one.

(c)

ΓL ΓR

γILMR

eiφ

δβ

(b)

ΓS

γTJMR

eiφ

δβ

ΓS

ΓTJMR

(a)

ΓMR

γMR
δβ

Figure 4.1: Sketch of a microring resonator (a), a TJMR (d), and a ILMR (c).

A very important difference between the MR and the other two structures is
that it works at a DP, while the TJMR and the ILMR work at an EP. The former
has degenerate eigenvalues and orthogonal eigenvectors, while for the other two
both eigenvalues and eigenvectors coalesce. This causes a linear dependence of
the eigenvalue splitting as a function of δβ in the case of a MR, while it has a
square root dependence in the case of a TJMR and a ILMR, see Fig. 4.2. It is also
worth noting that both the TJMR and the ILMR remain at an EP even when the
characteristic parameters of the system, such as resonant frequency, propagation
losses, or coupling coefficients, change. This means that, like the structures studied
in [49, 50, 57], the TJMR and ILMR are on an exceptional surface. Consequently, a
large class of unwanted perturbations will move the system along the exceptional
surface, from one EP to another [49]. Thus, the TJMR and the ILMR are robust,
and only a perturbation that causes backscattering leads to enhanced sensitivity.
Equivalently, we can say that a simple MR is on a diabolic surface; in fact, it remains
at a DP even if its resonant frequency, propagation losses, and coupling to the bus
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waveguide vary.

Figure 4.2: Eigenvalues splitting for a MR (light blue curve), a TJMR (black curve) and a ILMR
(orange curve), as a function of the Hermitian perturbation δβ. The used parameters are:
γILMR = γTJMR = γMR = γ = 1/4 a.u., ΓMR = ΓTJMR = ΓS = ΓL = ΓR = γ = 1/4 a.u. and
β12,TJMR = β12,ILMR = β12 = 1 a.u..

The Fig. 4.2 shows that the TJMR and ILMR have a higher sensitivity (slope
of the curve) than the MR for small perturbations. At high perturbation values,
however, the sensitivity of the three structures is equivalent, in fact all three curves
converge to the same slope. Nevertheless, the splitting for the TJMR and the ILMR
is larger than that found for the MR. We also note that the splitting of the real part
of the eigenvalues is the same for the TJMR and the ILMR.

We now compare these three devices by calculating the splitting using the spec-
tral responses (using the positions of the minimum/maximum dips/peaks), see
Fig. 4.3.

In Fig. 4.3 the splittings corresponding to the MR, the TJMR and the ILMR are
shown in light blue, black and orange. Since by varying the phase φ we have
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Figure 4.3: Spectral resonance splitting for a MR (light blue curves), a TJMR (black curves) and a ILMR
(orange curves), as a function of the Hermitian perturbation δβ. The used parameters
are: γILMR = γTJMR = γMR = γ = 1/4 a.u., ΓMR = ΓTJMR = ΓS = ΓL = ΓR = γ = 1/4 a.u. and
β12,TJMR = β12,ILMR = β12 = 1 a.u..

observed that we can perform an encircling of the EP for both the TJMR and the
ILMR, we focus our attention on the region where ℜ[δβ/β12] ≳ 0. From Fig. 4.3 it
is clear that the ILMR is able to detect smaller perturbations than the TJMR, which
in turn is better than the MR. Recall that the regions of insensitivity are given by
the inability to observe two distinct dips/peaks in the spectra. This is largely due
to the global losses of the system, which spectrally broaden the resonances. This
causes all three types of MR to exhibit a nonlinear splitting behavior as a function of
δβ. Fig. 4.3 shows that by using the sum of the transmission and reflection spectra
(dotted lines) it is possible to reduce the region of insensitivity.

Unlike the TJMR and the MR, the ILMR already exhibits transmission or reflec-
tion splitting for a zero δβ perturbation. Thus, only the ILMR does not have the in-
sensitivity region. In fact, the splittings relative to |εLR|

2 = |εRL|
2 and |εLL|

2 = |εRR|
2



164 A comparison of the Microring, the Taiji, and the Infinity-Loop microresonators

of the ILMR for perturbations around zero and larger are linear as a function of
δβ. This can then be used to remove the region of insensitivity and also for device
calibration. We also note that the splitting relative to |εLR|

2 + |εLL|
2 = |εRL|

2 + |εRR|
2

of the ILMR (dotted orange curve) is the one that most closely matches the ideal
splitting of eigenvalues near an EP (orange and black curves in Fig. 4.2). In Sec. 3.3
we saw that to get a perfect match between the splitting of the eigenvalues and that
computed using the spectrum of |εLR|

2 + |εLL|
2, we need the ILMR to satisfy the

CPA condition.

Let us define the responsivity enhancement as ℜ[∆λ]/ℜ[∆λMR], i.e. the respons-
ivity with respect to the ideal splitting of the eigenvalues of the MR. Figure 4.4 (a)
shows the responsivity enhancement as a function of the perturbation. We see that
for ℜ[δβ/β12] ≃ 0.1, using the spectrum |εLR|

2 + |εLL|
2 of the ILMR yields a re-

sponsivity that is 2.5 times higher than that of the MR eigenvalues. This result is in
agreement with the enhancement factor obtained experimentally in [35]. Further-
more, using the spectra |εLR|

2 and |εLL|
2 separately, we observe a 2.5 times larger

splitting for ℜ[δβ/β12] values below about 0.4 [dash-dotted and dashed orange
lines in Fig. 4.4 (a)]. If we look at the splitting curves obtained from the MR or the
TJMR transmission spectra, we observe a lower responsivity than for ILMR with
the same propagation losses.

Figure 4.4 (b) shows the relative sensitivity of the three structures with respect
to the sensitivity computed by the splitting of the MR eigenvalues. The sensitivity
is computed by the derivative of the splitting as a function of the backscattering
perturbation δβ. Figure 4.4 (b) shows that the ILMR has a higher sensitivity than
the MR, which is about 2.5 times higher for ℜ[δβ/β12] ≃ 0.1 (orange dotted curve,
|εLR|

2 + |εLL|
2). Using the spectra of |εLR|

2 and |εLL|
2 separately, the sensitivity is

almost constant and almost equal to 1 even for very small perturbations, whereas the
sensitivity obtained using the MR or TJMR spectra is zero at very small perturbations
since the splitting vanishes, see Fig. 4.3.

Although the ILMR has both higher responsivity and a larger sensitivity at small
perturbations than the MR and the TJMR, in my thesis I did not investigate how
the signal-to-noise ratio behaves in the three different structures [144]. The latter
may penalize the ILMR more than a simple MR, partially reducing the advantage
of using an ILMR. This aspect needs a dedicated study. In the future, we would like
to investigate this experimentally. In particular, we have designed a new integrated
sample with different types of Hermitian and non-Hermitian microresonators with
integrated scatterers characterized by different backscattering strengths, see red
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(a)

(b)

Figure 4.4: (a) Ratio of the splittings shown in Fig. 4.3 with the splitting of the MR eigenvalues as a
function of the backscattering perturbation strength δβ. (b) Ratio of the derivative of the
splittings shown in Fig. 4.3 to that corresponding to the splitting of the MR eigenvalues
as a function of δβ. The used parameters are: γILMR = γTJMR = γMR = γ = 1/4 a.u.,
ΓMR = ΓTJMR = ΓS = ΓL = ΓR = γ = 1/4 a.u. and β12,TJMR = β12,ILMR = β12 = 1 a.u.. In
this figure the conditions ℑ[δβ/β12] = 0 and δβ = βBs,12 = −β∗

Bs,21 are used. The solid
lines represent eigenvalues, while the dashed, dotted and dash-dotted lines represent
experimentally measurable quantities. The light blue curves correspond to the MR, the
black ones to the TJMR and the orange one to the ILMR.
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boxes in Fig. A.3 in Appendix A.
Instead, comparing the structures analyzed here with those found in the liter-

ature that works at an EP, for example a SiO2 microtoroid cavity with two silica
nanotips [35], we observe that in this case it is very difficult to align β12 with δβ,
which leads to a very complicated use of these devices. Instead, for the TJMR, the
ILMR and the structures reported in [49, 50, 57], it is sufficient to vary the phase φ
using an integrated phase shifter to maximize the real splitting of the eigenvalues.
However, it must be said that whispering gallery mode microresonators have the
possibility of having higher Q (lower losses) than integrated MRs, and consequently
the sensitivity of these devices will be higher.

A final comment concerns the role of the crossing in the ILMR, which is a critical
element of the proposed geometry. If the crossing losses predominate over the other
losses, the efficiency of the square root trend to detect small perturbations would
decrease, but the linear trend still provides a way to detect the perturbation. This
is another advantage of the ILMR that makes it robust to imperfections.

In conclusion, the ILMR seems to have potential as a sensor of a BS perturbation.
In addition, the fact that the ILMR has both a linear and a square-root trend, can
be both symmetric and asymmetric, and has the possibility of having very peculiar
spectral responses is, in my opinion, one of the strong points of the geometry which
can be used for cutting-edge applications.



Chapter 5
Matrix of Hermitian and
non-Hermitian microresonators

Few works in the literature report on the possibility of using appropriately
coupled resonator arrays to realize Hamiltonians corresponding to the quantum
spin Hall effect [108, 187, 188, 69]. By creating this special configuration, topological
edge states are created that are protected from local defects. These topological
edge states have also been studied to realize topological laser insulators that can
have higher efficiency and narrower bandwidth than those with the usual cavities
[188, 69].

Therefore, we studied how our devices can be used to generate complex Hamilto-
nians or to generate synthetic magnetic fields. We also want to study in more detail
what happens when the nodes of the array (MRs sites) are TJMRs. In fact, the
TJMR has asymmetric responses and can therefore be used to break the symmetry
between the two CW and CCW modes even in a topological structure [69].

In the following, I will briefly describe the basis for the construction of these
arrays of MRs. In order to study these structures both theoretically and experiment-
ally, we start with simple structures, characterized by few MRs, and then proceed
to more complex structures, characterized by the generation of the synthetic mag-
netic field. In this way, we will also be able to study the limitations imposed by
fabrication errors and find a way to compensate for them.

In Fig. 5.1 the key elements of a MRs structure with a synthetic magnetic field
are given [108, 187, 188, 69]. We first distinguish two different types of MRs, the site
MRs and the link MRs. The former are the main resonators characterized by two
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Figure 5.1: Panel (a) shows the scheme of coupling between site MRs using a link MR. Panel (b)
highlights the asymmetric hopping phase. Panel (c) shows the design of the 4× 4 TJMRs
matrix. All asymmetric hopping phases and the composition of a plaquette are also
shown in panel (c).
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counterpropagating modes, the CCW and the CW. These can also be either ring
microresonators or even TJMRs and are ideally thought to be identical. Instead,
the link MRs are used to link the site MRs and play a key role in implementing the
asymmetric hopping phase. The hopping phase is defined as the phase accumulated
by an optical signal which propagates between two site MRs. In order to use the
link MR to insert a hopping phase, it should be out of resonance with respect to the
site MRs. We define Lsite the perimeter of the site MR and Llink the perimeter of the
link MR. We also connect the two perimeters as follows:

Llink = nLsite +ψ
λres

2πneff
, with n ∈N+ , (5.1)

where λres is the resonance wavelength of the MR site, for example 1550 nm. To
impose the off-resonance condition of the link MR, we can for example usen = [1, 2]

and ψ = π. Instead, to have an asymmetric hopping phase by moving from the
left to the right site MR and vice versa, we shift the link MR vertically by x, see
Fig. 5.1 (a). As a result, the hopping phase is equal to

ϕ =
4πneff

λres
x . (5.2)

As shown in Fig. 5.1 (b), this hopping phase is asymmetric [108, 109, 187].

The next step is to create a two-dimensional (2D) array of MRs to implement a
system that can be described by a Hamiltonian for charged bosons on a square lattice
(tight-binding), but with the addition of a perpendicular, pseudo-spin-dependent
effective uniform magnetic field [108]. To do this, we need to build the basic
structure consisting of four site MRs and four link MRs. We call this structure a
plaquette, see Fig. 5.1 (c). The link MRs responsible for tunneling in y direction
are symmetrically positioned (zero hopping phase ϕy = 0). In the x direction, the
MRs links are positioned asymmetrically to obtain an asymmetric hopping phase.
Furthermore, as shown in Fig. 5.1 (c), each row presents a different asymmetric
hopping phase. In particular, two consecutive rows show a difference between the
two hopping phases equal toϕi−ϕi+1 = 2πα. Thus, if one moves counterclockwise
(blue path), the field gains a phase of+2πα, while if one moves clockwise (red path),
the field gains a phase of −2πα, as shown in Fig. 5.1 (c). α is the quanta of magnetic
flux penetrating each plaquette [108, 189, 190]. Note that if instead we look at the
CW mode of the site MRs, then the signs of the two phases are the opposite. To
construct a larger matrix and thus be able to observe the topological edge state, it
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is sufficient to concatenate the plaquettes as shown in Fig. 5.1 (c). In particular, by
changing the synthetic magnetic field, which is set by the parameter α, any finite
lattice shows bulk and edge bands. The former are organized in the Hofstadter
butterfly [189] and the latter are located in the gaps of the bulk dispersion [187, 108].
To study topologically protected edge modes, α = 1/4 is usually used, as in [108].
In [108, 109, 69, 187] the authors show that this type of topological structure can
have topological edge states that are protected against defects also present at the
edges of the structure. This makes the study of this type of structure interesting for
different applications, such as lasing [69].

To study this physics, we designed the various structures shown in Tabs. 5.1, 5.2
and 5.3 (the design of the whole chip is shown in Fig. A.1 of Appendix A). Tables 5.1,
5.2 and 5.3 refer to structures with 2× 1, 2× 2 and 4× 4 site MRs, respectively, see
Figs. 5.2 (a), 5.2 (b) and 5.1 (c). The S-bend parameter, if equal to 1, means that
the site MRs are TJMRs [as shown in Figs. 5.2 (a1), 5.2 (b1) and 5.1 (c)], while if it
is equal to 0 the S-shaped WG inside the TJMRs is cut [as shown in Fig. 5.2 (a2),
(b2)]. The TJMR with the cut S-shaped WG is equivalent to a normal MR, but it
has the same total losses (γtot) as the TJMR, which makes it easier to compare the
considered structures.

2× 1 n ψ ϕ S-bend

1 1 0 0 1

2 2 0 0 1

3 2 π/4 0 1

4 2 π/2 0 1

5 1 π 0 1

6 2 π 0 1

7 2 π 0 0

8 2 3π/2 0 1

Table 5.1: Parameters of the TJMRs matrices 2× 1, see Fig. 5.2 (a), Eq. (5.1) and Eq. (5.2).

From the Tabs. 5.1, 5.2 and 5.3 it can be seen that we chose to study structures
characterized by link MRs in resonance or off-resonance with the site MRs, and that
we used α = 1/4 for the 4 × 4 structure, while for the single plaquette we listed
more cases of α.

Even though the smaller structures (see Fig. 5.2) will not be able to exhibit the
topological edge states because the number of site MRs is too small, we included
them to study step by step each single part of the larger structure and at the same
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2× 2 n ψ ϕ1 ϕ2 S-bend

1 2 0 0 0 1

2 2 π 0 0 1

3 2 π π/3 0 1

4 2 π π/2 0 0

5 2 π π/2 0 1

Table 5.2: Parameters of the TJMRs matrices 2× 2, see Fig. 5.2 (b), Eq. (5.1) and Eq. (5.2).

4× 4 n ψ ϕ1 ϕ2 ϕ3 ϕ4 S-bend

1 2 π 3π/2 π π/2 0 1

Table 5.3: Parameters of the TJMRs matrix 4× 4, see Fig. 5.1, Eq. (5.1) and Eq. (5.2).

time to study the non-idealities given by the fabrication (site MRs with different
resonances, BS, lengths and displacements of the link MRs that are incorrect). The
idea is to study these structures first in the linear regime and then move to the
nonlinear regime. In addition, we want to observe if going to the nonlinear regime
can eliminate/correct any differences between the resonances of the site MRs.

Our study of these structures is still in its very early stages. In the following,
I will present some simulations for 2 × 1 structures [Fig. 5.2 (a1)] in the ideal case
where we have zero BS and all parameters are as designed.

In Fig. 5.2 (a), the numbers identify the input/output ports of the structure. We
call |tio|2 the intensity spectrum observed at port number o when the structure is
excited from port i.

Using the TMM or TCMT, we can derive the transmission spectra of the 2 × 1
matrix, similar to what was done in previous chapters. Figure 5.3 reports the
spectral responses of the 2 × 1 structure when the link MR is in resonance with
the two site TJMRs (ψ = 0, S-bend= 1). When the three MRs have the same
resonance λres = 1550 nm, they exhibit a strong Hermitian coupling. This strong
coupling between the three modes of the system causes three dips/peaks in the
spectral responses. Note from Fig. 5.2 (a) that the S-shaped WG does not couple
the counterpropagating modes of the TJMR when the system is excited by ports
1 and 4. In fact, Fig. 5.3 shows that in these two cases the non-zero spectra are
only those corresponding to the port on the same side of the structure and the
symmetrically opposite one [blue and red curves, for excitation by 1(4): ports 2(3)
and 3(2)]. In contrast, for the other two excitations (excitation from port 2 and
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(a1) (b1)

(a2) (b2)

1 2 4 3 1 2 4 3

ϕ1

ϕ2

Figure 5.2: The design of the 2 × 1 (a) and 2 × 2 (b) TJMRs matrices. In panels (a1) and (b1) the
S-shaped WG of the site TJMRs are not cut, while in (a2) and (b2) are cut. The numbers 1,
2, 3 and 4 identify the input/output ports of the structures. ϕ1 and ϕ2 are the asymmetric
hopping phases corresponding to the two different rows of link MRs.

port 3), all the spectra are different from zero, because the S-shaped WG couples the
counterpropagating modes of the TJMR. Since the structure is symmetric, symmetry
is also present in the spectra shown in Fig. 5.3.

If instead the link MR is off-resonance with respect to the site TJMRs (ψ = π),
then we no longer have the strong coupling between the three MRs and thus a
single dip in transmission is observed (blue curves in Fig. 5.4). Here withψ = π the
spectral peak of |t13|2, |t24|2, |t31|2 and |t42|

2 is smaller than in the previous case
where the three MRs had the same resonant frequency. Also here we can observe
the symmetry of the spectra. Furthermore, Fig. 5.4 shows that the S-shaped WG is
only relevant for the spectra |t22|

2, |t33|2, |t23|2 and |t32|
2. In fact, when the system

is excited by port 1 or 4, the S-shaped WG contributes only to the losses (γtot).

This discussion is very preliminary since measurements are still in progress. Our
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Figure 5.3: Theoretical spectral responses of a TJMRs matrix 2×1with the link MR in resonance with
the two site MRs (ψ = 0).

goal, before moving to topological effects, will be to model the system taking into
account the fabrication errors and estimate them from experimental measurements
and find a way to reduce or bypass the possible problems.
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Figure 5.4: Theoretical spectral responses of a TJMRs matrix 2× 1with the link MR in off-resonance
with the two site MRs (ψ = π).



Conclusions and Perspectives

In this thesis, I presented three different types of integrated microresonators: a
microring resonator (MR), the Taiji Microresonator (TJMR) and the Infinity-Loop
Microresonator (ILMR). They have been modeled by using either the Temporal
Coupled Mode Theory (TCMT) or the Transfer Matrix Method (TMM). For all three
resonant structures, the characteristic parameters of these two models were related.
In this way, it is possible to design the Microresonators (MRs) using the advantages
of both models. Although the TCMT is easier to handle and interpret, it describes
only a single resonance and does not have the dimensions of the system within it.
The formulas derived with TMM describe the complete spectral response of the
system (multiple resonances) and are closely related to the system dimensions and
the transmission and coupling coefficients that can be derived by simulation. At
the same time, these formulas are more difficult to interpret and cannot be used to
calculate the time response of a MR. Having the relation between the coefficients of
the two models, allows to use the most appropriate one for the specific scope.

In addition to the study of the three ideal MRs, the backscattering (BS) has been
introduced. The BS couples the counterpropagating modes of the MR, causing a
splitting of both the eigenvalues of the system and its resonances. Indeed, the BS is
an element that must be taken into consideration when designing integrated optical
MRs with high Quality Factor (Q). In fact, as we have reported, by increasing the
ideal Q of the MR, the BS mainly due to the waveguide (WG) surface-wall roughness
becomes relevant. In our experiments with silicon (Si) structures, the measured BS
coefficients (β) were found to be between 2 GHz and 20 GHz.

In my thesis, I introduced a new excitation method capable of exciting one of the
supermodes of the MR at a time: the interferometric excitation. The interferometric
excitation consists of a simultaneous and coherent excitation of the system from
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both sides. With this technique, it is possible to excite the proper combination of
clockwise (CW) and counterclockwise (CCW) modes corresponding to one of the
supermodes of the system by using a correct relationship between the amplitudes
and phases of the excitation fields. Consequently, even in the presence of a non-
Hermitian BS, it is possible to transform the doublet in transmission into a single
Lorentzian, from which it is straightforward to calculate the real and imaginary
parts of the eigenvalue corresponding to the excited supermode. In fact, its po-
sition corresponds to the real part of the eigenvalue, while its Full Width at Half
Maximum (FWHM) is twice the absolute value of the eigenvalue’s imaginary part.
It is important to emphasize that in the non-Hermitian case, where the two input
fields must have two different intensities, the required ratio between the excitation
fields is easily measured by a single-side excitation measure of the two system re-
flections. In this way, the only parameter to be varied is the phase between the two
fields. By using the interferometric excitation, it is also possible to increase the Q of
the MR. In fact, one is able to remove the doublet caused, for example, by the BS.
In Sec. 1.4 I have also shown that the interferometric method works not only in the
stationary regime but also in the transient regime, i.e. when studying the charge
and discharge of the MR (time response).

In the dissertation, I used TCMT to show that a normal MR is at a Diabolic Point
(DP) while the TJMR is at an Exceptional Point (EP). The TJMR working at an EP
has some very interesting features. First, the TJMR is chiral, i.e. one of its modes
dominates over the other (in our case the CCW), in fact, the embedded S-shaped
WG only transfers energy from the CW mode to the CCW one and not vice versa.
For this reason, the TJMR is a unidirectional reflector at resonance, i.e. it exhibits
a spectral peak in reflection only when excited from one side and not from the
other side. We have also shown, both theoretically and experimentally, that in the
nonlinear regime a TJMR breaks the Lorentz reciprocity. In fact, the transmission
depends on the excitation direction of the system. This is a first step towards
the creation of a passive integrated optical isolator without magnetic materials.
The disadvantage of this technique is that the non-reciprocity of the transmission
depends strongly on the input power, so that a signal of low intensity has the same
transmission. One way to partially solve this problem is to use two different lasers,
one high power and one low power, with a wavelength corresponding to a different
resonance, so that the signal from the pump can be filtered. In this case, even the
low-power signal, which is collinear with the pump, is affected by the transmission
non-reciprocity.
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In this work a new MR was also studied, which we called Infinity-Loop Mi-
croresonator (ILMR). The ILMR, which is characterized by an infinity-shaped WG
coupled twice to a bus waveguide, is, like the TJMR, at an EP. The ILMR, which
always works at an EP, also has some interesting features. Like the TJMR, it can be
a unidirectional reflector, but thanks to the possibility of changing the two coup-
lings with the bus waveguide (ΓL and ΓR), it is able to present a variety of spectral
shapes while always remaining at an EP. In fact, the geometrically symmetric ILMR
(ΓL = ΓR) has equal reflections and exhibits splitting in transmission, even if, being
at an EP, its eigenvalues and eigenvectors coalesce. This splitting is in fact given by
the interference between the fields leaving the ILMR and those present in the bus
waveguide. In fact, we have shown that from the sum of the intensities in trans-
mission and in reflection we are able to observe the resonance of the system, going
from a doublet to a single dip. In addition, the condition for obtaining the Coherent
Perfect Absorption (CPA) for the ILMR has been derived. Under this condition, and
when the ILMR is geometrically symmetric, there is a quartic behavior as a function
of detuning in the absorption spectrum of the system. We also showed that the
geometrically asymmetric ILMR has a different total internal intensity when it is
excited from left or from right. This implies that even the ILMR in the nonlinear
regime is able to break the Lorentz reciprocity.

Perhaps the most interesting study, which I reported in my thesis, is the use of
the three devices as sensors of a Hermitian perturbation of the BS (δβ). In fact, the
normal MR at a DP presents a linear dependence of the eigenvalue splitting as a
function of δβ, while both the TJMR and the ILMR at an EP present a square root
dependence of the eigenvalue splitting as a function of a small δβ perturbation,
obtaining a higher responsivity and sensitivity. I studied the Riemann surfaces
not only of the eigenvalues but also of the spectra (the observables of the system).
I demonstrated that the overlap caused by the imaginary part of the eigenvalues
which spectrally broadens the resonances masks spectrally the resonance splitting.
To reduce this region of insensitivity of the MRs, I observed that the sum of the
intensities in transmission and reflection can be used. Using this method, it is
observed that the spectral splitting for the symmetric ILMR more closely follows
the splitting of the eigenvalues, presenting a much smaller region of insensitivity
than that observed for the other two structures. Furthermore, since the transmission
and reflection of the ILMR, taken individually, have a non-zero split even at δβ = 0,
and their trend is linear as a function of the δβ perturbation, using the ILMR not
only makes it possible to calibrate the sensor more rigorously, but also to completely
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remove its region of insensitivity. I have also shown that using a simple phase shifter
placed on the S-shaped WG (for the TJMR) or on the part of the bus waveguide
between the two lobes of the ILMR, it is possible to encircle the EP and thus position
the MRs at the point where the two Riemann surfaces are furthest apart (largest
splitting). In this way, we can maximize the responsivity and the sensitivity of the
sensor. In the future, it will be interesting to study whether dynamic encircling
around the EP can be performed using an integrated phase shifter and to see if
there are any applications that can take advantage of this phenomenon.

In my thesis I showed that both the TJMR and the ILMR are on an exceptional
surface; in fact, they remain at an EP even if the characteristic parameters of the
system (such as the resonant frequency, the propagation losses, and the coupling
coefficients) are changed. This means that a large class of unwanted perturbations
will move the system along the exceptional surface, from one EP to another [49].
Thus, the TJMR and the ILMR are robust and only a perturbation that causes
backscattering leads to enhanced sensitivity.

A future perspective is, therefore, to use the ILMR as a sensor of a local per-
turbation, such as the one caused by a particle near the WG, as done in [35, 44, 45,
46, 32, 47, 48, 49, 50] with other types of MRs. Unlike traditional sensors, which
exploit the change in refractive index caused by the presence of a substance or a
particle, here we use the coupling between counterpropagating modes generated
by the perturbation. This means that since we are interested in the spectral shape
of the resonance and not its position in the spectrum, these types of sensors, are
independent of temperature. To move further in this direction, we have designed
different Hermitian and non-Hermitian integrated MRs, characterized by scatter-
ers of different sizes, in order to verify experimentally the higher sensitivity of the
structures operating at an EP.

As we have seen, the interferometric excitation method is able to excite the
supermodes individually, allowing us to increase the Q of the MR and to more
clearly determine the eigenvalues of the system. At present, this technique has been
developed for two modes, but it may be useful to extend this excitation method to
a system with n number of modes/levels, so that the eigenvalues of more complex
systems can be measured.

As presented in Ch. 5, another perspective is to use matrices of Hermitian or
non-Hermitian MRs to create a global Hamiltonian of the system corresponding to
a physical phenomenon such as the quantum spin Hall effect [108, 109, 69, 187].

Finally, the study of the TJMR and the ILMR in the nonlinear regime may lead
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to interesting applications based on both the chirality of these structures and, for
example, the four-wave mixing [80].
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Appendix A
Chips design

We designed two integrated chips, both with devices related to the study of
non-Hermitian and Hermitian systems and other integrated circuits related to the
projects BACKUP (https://r1.unitn.it/back-up/) and Photonic Extreme Learning
Machine (PELM, https://r1.unitn.it/pelm/). The first chip, Fig. A.1, was designed
at the end of 2020 and then realized by IMEC/Europractice facility within a multi-
project wafer program, which delivered it to us at the end of 2021. The second
chip, Fig. A.2 and Fig. A.3, was designed at the end of 2022. This second chip
will be manufactured at the AMF facility (Singapore) within a multi-project wafer
program and should reach us in mid-2023. We will call the first chip Mask2020
and the second chip Mask2022. Both designs were implemented using the nazca
python library [194].

Figure A.1 shows the design of the Mask2020 chip. In Mask2020 we have
included TJMRs (red boxes in Fig. A.1) with different couplings, some to achieve
a very efficient unidirectional reflector [see Fig. 2.17 (a1)-(b1)], others to achieve
the maximum internal intensity difference in the TJMRs when excited from left or
right, so that there is a very pronounced Lorentz reciprocity break when used in
the nonlinear regime. The geometry used to create the TJMRs is shown in Fig. 2.16.
Scattered in the lower right corner of Fig. A.1, the four ILMRs are also visible (blue
boxes). The spectra of these four ILMRs are shown in Fig. 3.9. The two types of
designed ILMR geometries are shown in Fig. 3.8. In addition, various test structures
(mainly placed on the left and right edges of the chip, cyan boxes in Fig. A.1)
are designed, which are needed to calculate the propagation losses in the curved
waveguides, the transmission, reflection and crosstalk coefficients of the crossings,

https://r1.unitn.it/back-up/
https://r1.unitn.it/pelm/
https://r1.unitn.it/pelm/
https://r1.unitn.it/pelm/
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TJMRs
TJMRs matrices
ILMRs
PELM
MRs CROWs
SCISSORs
Test structures

Figure A.1: Design of the Mask2020 chip. Red boxes highlight the TJMRs, the orange boxes the TJMRs
matrices, the blue ones the ILMRs, the black ones the PELM structures, the fuchsia ones
the microring resonators, the side-coupled integrated sequences of resonators (SCISSORs)
and coupled resonators optical waveguides (CROWs) and lastly the cyan boxes highlight
the test structures.
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the reflection coefficient of the tapering of the WG, the coupling coefficients and
the fiber-grating coupling losses. In this chip, mainly at the bottom center and in
the middle (orange boxes), there are also the matrices of TJMRs described in Ch. 5,
which will be used for an initial study of multi-MR structures and later to study
the topological edge states. Note that some structures are designed to be coupled
with one fiber on the left and another on the right, while others are designed to be
coupled with an array of fibers, so that all gratings are oriented in the same direction
and are 127 µm spaced. Using the fiber array, it is possible to couple several fibers
simultaneously, and using it with the TJMRs matrices (see Fig. 5.2), for example, will
allow us to measure all the combinations of transmissions reported in Fig. 5.3. We
have also included simple MRs, side-coupled integrated sequences of resonators
(SCISSORs) and coupled resonators optical waveguides (CROWs) [195], which can
also be heated by an integrated resistor to change their resonant frequency (see
fuchsia boxes in Fig. A.1). Finally, we have also included arrays of MRs coupled
with WGs to realize a Photonic Extreme Learning Machine (see black/gray boxes
in Fig. A.1) [196, 192]. This particular structure consists of a single input that is
equally divided into four different paths whose optical intensity is varied by Mach
Zhender Interferometers (MZIs) and phase shifters. This first part is used to insert
the input with at most four features into our network. The network consists of 18
MRs whose internal intensity is measured by an infrared camera. The presence of
the randomness of the perimeters of these 18 MRs (caused by the manufacturing
errors), the various interferences established within this structure and the square
absolute value given by the detector (nonlinear response of the camera), make this
device capable of solving some nonlinear tasks. In [192] we have shown that by
using this structure we are able, for example, to perform the logical operations
(AND, OR and XOR) and to improve the classification of the three species of Iris
flowers [197, 198] compared to a linear classifier. Using this structure, we were also
able to see that the variation between the perimeters of the 18 MRs (L ≃ 196.5 µm)
is about 25–100 nm and therefore ∆L/L ≃ 1–5×10−4. This will cause the different
resonance frequencies of the MRs to be taken into account in the TJMRs matrices
reported in Ch. 5.

Figure A.2 shows the design of the Mask2022 chip. In the design of Mask2022 we
have implemented new Hermitian and non-Hermitian MRs (red boxes in Fig. A.3).
This time we also added the phase shifter inside the TJMRs and ILMRs to realize
the EP encircling. In addition, in this new design, we have taken into account
that the surface roughness of the WGs causes a BS of about 10–20 GHz (as shown
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Figure A.2: Design of the Mask2022 chip.

in Fig. 2.18) and have therefore adjusted the coupling coefficients so that the BS
is not dominant. In this design, we also included integrated scatterers within the
different types of MRs to experimentally compare the sensitivity in detecting a BS
perturbation (similar to what is reported in Fig. 4.3).

In the Mask2022 design, we also included a new version of the structure used
to make Photonic Extreme Learning Machine (PELM), which also implemented
integrated detectors (black/gray boxes in Fig. A.3). In this chip there are also
structures for the BACKUP and ALPI (https://r1.unitn.it/back-up/projects/
projects/erc-poc-alpi-project/) projects, which I have only marginally dealt with
(fuchsia box in Fig. A.3). Finally, there are test structures to calculate e.g. propaga-
tion and insertion losses (cyan boxes).

As can be seen in Figure A.2, in Mask2022 many metal connections were made
to connect the pins of the phase shifters, integrated detectors, and pn junctions to
the PADs needed to realize the wire bounding. Given the number of connections
to realize (more than 300 pins to connect) and the number of regions to avoid (all
the gratings, phase shifters, detectors, and pn junctions), I developed a package
in Python that would autonomously trace all the necessary electrical connections
in an optimized manner. This program takes into account the minimum distances
between layers from the design created with nazca, imports the regions where the
metal cannot pass, imports the coordinates of the pins to be connected, and then
uses two different metals to connect the pins to the closest metal PADs. In fact,
there is an option in the program to use the two different metals that both AMF and
IMEC use to create metal path crossings. In addition, it is possible to distinguish
the pins that will later be connected to ground (GND) from the others, so that the

https://r1.unitn.it/pelm/
https://r1.unitn.it/back-up/projects/projects/erc-poc-alpi-project/
https://r1.unitn.it/back-up/projects/projects/erc-poc-alpi-project/
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Non-Hermitian
structures
PELM
Neural network
structures
Test structures

Figure A.3: Design of the Mask2022 chip without the metal layers. The colored boxes highlight the
different types of structures.
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GND pins can be connected in groups to the same PAD to save PADs. In fact, in
Mask2022, the program connected more than 300 of pins even though it only had
200 of PADs available.

A.1 Couplings simulations

I designed the gap widths of the structures present in the two designs. I used
both a COMSOL Multiphysics® [199] simulation and the Coupled Mode Theory
(CMT) developed with MATLAB® [136]. In fact, using the CMT, I was able to
simulate large coupling regions with MATLAB® in a short time without having to
do a heavy simulation in COMSOL Multiphysics®.

To simulate the coupling between two adjacent waveguides (directional coupler),
I first simulated in COMSOL Multiphysics® the Si waveguide with the proper cross
section. In this way, I calculated the electric and magnetic fields in and around the
WG (silica (SiO2) cladding). Then, I used MATLAB® to calculate the coefficients
needed to the CMT [200, 201, 202, 203, 204, 205] as a function of the gap width
between two WGs. Namely, the mode coupling coefficients (k12 and k21), the butt
coupling coefficients (c12 and c21), and the propagation constant change coefficients
(χ1 and χ2).

Assuming that the two WGs are far enough that the modes of the two WGs are
not deformed by the presence of the second WG, the equations of the CMT are as
follows [200, 201, 202, 203, 204, 205]:

dA
dz

+ c12
dB
dz
e−i(β2−β1)z + iχ1A+ ik12Be

−i(β2−β1)z = 0 , (A.1)

dB
dz

+ c21
dA
dz
e+i(β2−β1)z + iχ2B+ ik21Be

+i(β2−β1)z = 0 , (A.2)

whereA and B are the amplitude of the first and the second mode (first and second
waveguide). z is wave the propagation direction. In our case, using two equal
WGs, the two modes will also be equal and δ = β2 − β1 = 0. The mode coupling
coefficient is [200]:

kpq =
ωε0

∫︁∞
−∞ ∫︁∞

−∞(εr − εr,q)E⃗
∗
p · E⃗q dxdy∫︁∞

−∞ ∫︁∞
−∞ ẑ ·

(︂
E⃗
∗
p × H⃗p + E⃗p × H⃗∗

p

)︂
dxdy

, (A.3)

where εr is the dielettric function containing both WGs, εr,q is the dielettric function
containing only the qWG and p, q ∈ {1, 2}. The butt coupling coefficient is defined
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as [200]:

cpq =

∫︁∞
−∞ ∫︁∞

−∞ ẑ ·
(︂
E⃗
∗
p × H⃗q + E⃗q × H⃗∗

p

)︂
dxdy∫︁∞

−∞ ∫︁∞
−∞ ẑ ·

(︂
E⃗
∗
p × H⃗p + E⃗p × H⃗∗

p

)︂
dxdy

. (A.4)

The change in propagation constant is instead [200]:

χp =
ωε0

∫︁∞
−∞ ∫︁∞

−∞(εr − εr,q)E⃗
∗
p · E⃗p dxdy∫︁∞

−∞ ∫︁∞
−∞ ẑ ·

(︂
E⃗
∗
p × H⃗p + E⃗p × H⃗∗

p

)︂
dxdy

. (A.5)

Normalizing for the power in the pWG and assuming that the coupling is lossless,
we can rewrite the CMT [200]:

dA
dz

= −ikaBe
−i2δz + iαaA , (A.6)

dB
dz

= −ikbAe
+i2δz + iαbB , (A.7)

where

ka =
k12 − c12χ2
1− |c12|2

αa =
k21c21 − χ1
1− |c12|2

, (A.8)

kb =
k21 − c

∗
12χ1

1− |c12|2
αb =

k12c
∗
12 − χ2

1− |c12|2
. (A.9)

For each directional coupler, I first calculated the gap width as a function of
the wave propagation direction (z). Then, using this parameter, I calculated the
coefficients given in Eq. (A.8) and Eq. (A.9) as a function of z. At this point I solved
the system of equations given in Eq. (A.6) and Eq. (A.7) starting from the initial
condition where the whole field is in a waveguide (A[0] = 1 and B[0] = 0). At
this point, using the final intensities in the two WGs, I calculated the coupling and
transmission coefficients corresponding to the TMM (k = |B[zend]|/|A[0]| and t =

|A[zend]|/|A[0]|). For the coupling between three WGs I followed a similar procedure,
but I used the formulas for the coupling between three WGs [206, 207, 208, 209, 210].





Appendix B
Experimental procedure for the
interferometric excitation

In this section, we describe the experimental procedure used to obtain a symmet-
ric interferometric excitation by using the experimental setup reported in Fig. 1.20
[102]. First of all, we have measured the losses of each of the components of the
experimental setup and we have calibrated the responses of the detectors. Then, the
light was coupled into the MR. Calibration can be done using a straight waveguide,
but for greater accuracy and precision, we used the bus waveguide and the MR sys-
tem under test. In fact, when the MR is out of resonance, its presence is negligible
and the system can be considered as consisting only of the bus waveguide. Using
the detectors PDC1, PDC2, PDL and PDR and Variable Optical Attenuators (VOAs),
we set the intensity in the two arms almost equal and low enough not to observe
nonlinear effects. At this stage, the first step is to balance the length of the two optical
paths after the first splitter. This is necessary to reduce the relative phase variation
between the two input fields as a function of wavelength (2πneff∆L/λ), and thus
to achieve an almost constant relative phase ϕ for a MR resonant wavelength. To
find the condition where the period of the observed oscillations at the PDR and PDL

detectors is maximum, we performed repeated wavelength scans at a scan rate of
100 nm/s over the entire spectrum and we varied the optical length of the right
arm.

Once the delay line was set, we used the following procedure to apply the same
intensities to the bus waveguide sides, i.e., to perform a symmetrical interferometric
excitation.



194 Experimental procedure for the interferometric excitation

1. We block one of the two arms of the setup. Then we maximize the transmission
of the device at a non-resonant wavelength (1530 nm).

2. We repeat step 1. for the other arm.

3. We set the VOAs to guarantee the same transmissions from both device out-
puts (taking into account the different loss of the Optical Circulators (OCs)
and the sensitivity of the photodetectors (PDs)).

4. We determine the ratio of the powers at the two detectors PDC1 and PDC2

(I3,C1/I3,C2).

5. We set the VOAs to get the same reflections from both device outputs.

6. We determine the ratio of the powers at the two detectors PDC1 and PDC2

(I5,C1/I5,C2).

7. By using these data, we derive the relation between the grating couplers
coefficients:

gL

gR
=

√︄
I5,C2

I5,C1

I3,C1

I3,C2
, (B.1)

where gL and gR are the coupling coefficients with the fibers for the left and
right gratings at the bus waveguide edges.

8. Considering the ratio of the coupling coefficients (gL/gR), we set the VOAs
such that the field intensities within the bus waveguide are the same for both
the excitation directions.
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[100] Lina He, Şahin Kaya Özdemir, Jiangang Zhu, Woosung Kim, and Lan Yang.
Detecting single viruses and nanoparticles using whispering gallery micro-
lasers. Nature Nanotechnology, 6(7):428–432, July 2011. Number: 7 Publisher:
Nature Publishing Group. doi:10.1038/nnano.2011.99.

[101] Frank Vollmer and Lan Yang. Review Label-free detection with high-Q
microcavities: a review of biosensing mechanisms for integrated devices.
Nanophotonics, 1(3-4):267–291, December 2012. Publisher: De Gruyter.
doi:10.1515/nanoph-2012-0021.

[102] Stefano Biasi, Riccardo Franchi, Filippo Mione, and Lorenzo Pavesi. Inter-
ferometric method to estimate the eigenvalues of a non-Hermitian two-level
optical system. Photonics Research, 10(4):1134, April 2022. doi:10.1364/PRJ.

450402.

[103] Stefano Biasi, Riccardo Franchi, and Lorenzo Pavesi. Interferometric cavity
ringdown technique for ultrahigh Q-factor microresonators. Optics Letters,
47(16):4083–4086, August 2022. Number: 16 Publisher: Optica Publishing
Group. doi:10.1364/OL.467590.

[104] Qi Zhong, Mercedeh Khajavikhan, Demetrios N. Christodoulides, and Ramy
El-Ganainy. Winding around non-Hermitian singularities. Nature Communic-
ations, 9(1):4808, November 2018. Number: 1 Publisher: Nature Publishing
Group. doi:10.1038/s41467-018-07105-0.

[105] Xu-Lin Zhang, Tianshu Jiang, and C. T. Chan. Dynamically encircling an
exceptional point in anti-parity-time symmetric systems: asymmetric mode
switching for symmetry-broken modes. Light: Science & Applications, 8(1):88,
October 2019. Number: 1 Publisher: Nature Publishing Group. doi:10.1038/
s41377-019-0200-8.

[106] Midya Parto, Yuzhou G. N. Liu, Babak Bahari, Mercedeh Khajavikhan, and
Demetrios N. Christodoulides. Non-Hermitian and topological photonics:
optics at an exceptional point. Nanophotonics, 10(1):403–423, January 2021.
Publisher: De Gruyter. doi:10.1515/nanoph-2020-0434.

https://doi.org/10.1038/nphoton.2009.237
https://doi.org/10.1038/nphoton.2009.237
https://doi.org/10.1038/nnano.2011.99
https://doi.org/10.1515/nanoph-2012-0021
https://doi.org/10.1364/PRJ.450402
https://doi.org/10.1364/PRJ.450402
https://doi.org/10.1364/OL.467590
https://doi.org/10.1038/s41467-018-07105-0
https://doi.org/10.1038/s41377-019-0200-8
https://doi.org/10.1038/s41377-019-0200-8
https://doi.org/10.1515/nanoph-2020-0434


BIBLIOGRAPHY 209

[107] Bahaa Saleh and Malvin Teich. Fundamentals of Photonics, 2nd Edition. June
2007. Journal Abbreviation: Canada Wiley Interscience Publication Title:
Canada Wiley Interscience.

[108] Mohammad Hafezi, Eugene A. Demler, Mikhail D. Lukin, and Jacob M.
Taylor. Robust optical delay lines with topological protection. Nature Physics,
7(11):907–912, November 2011. Number: 11 Publisher: Nature Publishing
Group. doi:10.1038/nphys2063.

[109] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor. Imaging to-
pological edge states in silicon photonics. Nature Photonics, 7(12):1001–
1005, December 2013. Number: 12 Publisher: Nature Publishing Group.
doi:10.1038/nphoton.2013.274.

[110] Stefano Biasi, Pierre Guillemé, Andrea Volpini, Giorgio Fontana, and Lorenzo
Pavesi. Time Response of a Microring Resonator to a Rectangular Pulse in
Different Coupling Regimes. Journal of Lightwave Technology, 37(19):5091–
5099, October 2019. Conference Name: Journal of Lightwave Technology.
doi:10.1109/JLT.2019.2928640.

[111] Lorenzo Pavesi. Thirty Years in Silicon Photonics: A Personal View. Frontiers
in Physics, 9, 2021. URL: https://www.frontiersin.org/articles/10.3389/

fphy.2021.786028.

[112] Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Mano-
latou, and H. A. Haus. Theoretical analysis of channel drop tunneling pro-
cesses. Physical Review B, 59(24):15882–15892, June 1999. Publisher: American
Physical Society. doi:10.1103/PhysRevB.59.15882.

[113] Min-Suk Kwon and William H. Steier. Microring-resonator-based sensor
measuring both the concentration and temperature of a solution. Optics
Express, 16(13):9372–9377, June 2008. Publisher: Optica Publishing Group.
doi:10.1364/OE.16.009372.

[114] A. Ksendzov and Y. Lin. Integrated optics ring-resonator sensors for protein
detection. Optics Letters, 30(24):3344–3346, December 2005. Publisher: Optica
Publishing Group. doi:10.1364/OL.30.003344.

[115] Chung-Yen Chao, W. Fung, and L.J. Guo. Polymer microring resonators for
biochemical sensing applications. IEEE Journal of Selected Topics in Quantum

https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1109/JLT.2019.2928640
https://www.frontiersin.org/articles/10.3389/fphy.2021.786028
https://www.frontiersin.org/articles/10.3389/fphy.2021.786028
https://doi.org/10.1103/PhysRevB.59.15882
https://doi.org/10.1364/OE.16.009372
https://doi.org/10.1364/OL.30.003344


210 BIBLIOGRAPHY

Electronics, 12(1):134–142, January 2006. Conference Name: IEEE Journal of
Selected Topics in Quantum Electronics. doi:10.1109/JSTQE.2005.862945.

[116] Paul V Lambeck. Integrated optical sensors for the chemical domain.
Measurement Science and Technology, 17(8):R93–R116, August 2006. doi:

10.1088/0957-0233/17/8/R01.

[117] Kevin D. Heylman, Niket Thakkar, Erik H. Horak, Steven C. Quillin, Charles
Cherqui, Kassandra A. Knapper, David J. Masiello, and Randall H. Goldsmith.
Optical microresonators as single-particle absorption spectrometers. Nature
Photonics, 10(12):788–795, December 2016. Number: 12 Publisher: Nature
Publishing Group. doi:10.1038/nphoton.2016.217.

[118] E. Gavartin, P. Verlot, and T. J. Kippenberg. A hybrid on-chip optomechanical
transducer for ultrasensitive force measurements. Nature Nanotechnology,
7(8):509–514, August 2012. Number: 8 Publisher: Nature Publishing Group.
doi:10.1038/nnano.2012.97.

[119] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris,
A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop. Cavity Optomech-
anical Magnetometer. Physical Review Letters, 108(12):120801, March 2012.
Publisher: American Physical Society. doi:10.1103/PhysRevLett.108.120801.

[120] Bipin Bhola and William H. Steier. A Novel Optical Microring Resonator
Accelerometer. IEEE Sensors Journal, 7(12):1759–1766, December 2007. Con-
ference Name: IEEE Sensors Journal. doi:10.1109/JSEN.2007.910070.

[121] P. Rabiei, W.H. Steier, Cheng Zhang, and L.R. Dalton. Polymer micro-
ring filters and modulators. Journal of Lightwave Technology, 20(11):1968–
1975, November 2002. Conference Name: Journal of Lightwave Technology.
doi:10.1109/JLT.2002.803058.

[122] Francesco Testa, Claudio J. Oton, Christophe Kopp, Jong-Moo Lee, Ruben Or-
tuno, Reinhard Enne, Stefano Tondini, Guido Chiaretti, Alberto Bianchi, Paolo
Pintus, Min-Su Kim, Daivid Fowler, Jose Angel Ayucar, Michael Hofbauer,
Mattia Mancinelli, Maryse Fournier, Giovan Battista Preve, Nikola Zecevic,
Costanza L. Manganelli, Claudio Castellan, Gabriel Pares, Olivier Lemonnier,
Fabrizio Gambini, Pierre Labeye, Marco Romagnoli, Lorenzo Pavesi, Horst
Zimmermann, Fabrizio Di Pasquale, and Stefano Stracca. Design and Imple-
mentation of an Integrated Reconfigurable Silicon Photonics Switch Matrix in

https://doi.org/10.1109/JSTQE.2005.862945
https://doi.org/10.1088/0957-0233/17/8/R01
https://doi.org/10.1088/0957-0233/17/8/R01
https://doi.org/10.1038/nphoton.2016.217
https://doi.org/10.1038/nnano.2012.97
https://doi.org/10.1103/PhysRevLett.108.120801
https://doi.org/10.1109/JSEN.2007.910070
https://doi.org/10.1109/JLT.2002.803058


BIBLIOGRAPHY 211

IRIS Project. IEEE Journal of Selected Topics in Quantum Electronics, 22(6):155–
168, November 2016. Number: 6. doi:10.1109/JSTQE.2016.2547322.

[123] M. L. Gorodetsky and V. S. Ilchenko. Optical microsphere resonators: optimal
coupling to high-Q whispering-gallery modes. JOSA B, 16(1):147–154, January
1999. Publisher: Optica Publishing Group. doi:10.1364/JOSAB.16.000147.

[124] Yisheng Fang and Zhichao Ruan. Temporal Coupled-Mode Theory for
Light Scattering and Absorption by Nanostructures. In Eugene Kamenet-
skii, Almas Sadreev, and Andrey Miroshnichenko, editors, Fano Resonances
in Optics and Microwaves: Physics and Applications, Springer Series in Op-
tical Sciences, pages 157–183. Springer International Publishing, Cham, 2018.
doi:10.1007/978-3-319-99731-5_7.

[125] Wonjoo Suh, Zheng Wang, and Shanhui Fan. Temporal coupled-mode theory
and the presence of non-orthogonal modes in lossless multimode cavities.
IEEE Journal of Quantum Electronics, 40(10):1511–1518, October 2004. Confer-
ence Name: IEEE Journal of Quantum Electronics. doi:10.1109/JQE.2004.

834773.

[126] Qiang Li, Tao Wang, Yikai Su, Min Yan, and Min Qiu. Coupled mode
theory analysis of mode-splitting in coupled cavity system. Optics Ex-
press, 18(8):8367–8382, April 2010. Publisher: Optica Publishing Group.
doi:10.1364/OE.18.008367.

[127] Hua-Xing Xu, Li Ke, Li Yang, and Jing-Ren Qian. Temporal coupled-mode
theory for resonators. In Proceedings of 2011 Cross Strait Quad-Regional Radio
Science and Wireless Technology Conference, volume 1, pages 82–84, July 2011.
doi:10.1109/CSQRWC.2011.6036890.

[128] M Borghi, C Castellan, S Signorini, A Trenti, and L Pavesi. Nonlinear silicon
photonics. Journal of Optics, 19(9):093002, September 2017. Number: 9. doi:

10.1088/2040-8986/aa7a6d.
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