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articles complied with our parameters of query. The 
articles were divided in seven categories to enhance 
existing commonalities. In some cases, converging 
conclusions were extracted, and generalizations were 
derived. In other cases, contrasting or inconsistent 
findings were found, and possible explanations were 
provided. From the results of our survey, we extrapo-
lated a routine for the production of epidemiological 
geography analyses, we highlighted the different steps 
of investigation that were attained, and we underlined 
the most critical nodes of the methodology. Our find-
ings may help to point out what are the most critical 
conceptual challenges of epidemiological mapping, 
and where it might improve to engender informed 
conclusions and aware outcomes.

Keywords COVID-19 · GIS · Health Geography · 
Medical Geography · Spatial analysis · Pandemic 
determinants

Introduction

Background

Pandemics are multifactorial events with complex 
origin (Che, 2019), and many of their contributing 
determinants, both fostering or hampering the infec-
tion, are not well-known, or even unknown (Tscherne 
and García-sastre, 2011). Territory represents the log-
ical framework where epidemiological determinants’ 
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influence can be traced (Eisenberg et  al., 2007), but 
also, pragmatically, the field where their assessment 
becomes partially possible (Kundi, 2006). However, 
the mere territorial coincidence being not decisive to 
prove causality nexuses (Susser, 1991), it becomes 
imperative to set out strong interdisciplinary method-
ologies to attain consistent validations whereas geo-
graphical factors are explicitly invoked as amplifying 
or hindering elements for the pandemic propagation, 
to avert confounding effects (Vineis, 2003). Along-
side, the use of cartography and GIS in infectious 
disease studies has traditionally been a strong line of 
applied research, both in the sense of providing the 
professionals with the technical tools able to systema-
tize epidemiological information within a geographi-
cal framework apt to inform the management of 
disease control, and in the sense of summarizing sci-
entifically based information to be communicated to 
the general public (Carroll et al., 2014). Nonetheless, 
quantitative geography brings with it a series of spe-
cificities which imply a high level of awareness about 
the potential and the limitations of cartography as an 
epidemiological instrument.

Context

During 2020, the researchers had to set out the sys-
tematic analysis of a partially unknown phenom-
enon while it was and is still (quickly) evolving day 
by day. In hindsight, the geographic research carried 
out during the first year of the pandemic developed 
within two different contexts. The first pulse of the 
pandemic, approximatively identifiable with the 
“2020 spring wave” (from the point of view of the 
temperate latitudes of northern hemisphere) forced 
the researchers to react to an almost unknown emer-
gency that was spreading at a fast pace across man-
kind. During this early stage, the virus was substan-
tially able to propagate freely in a business-as-usual 
scenario. Accordingly, geographers had the opportu-
nity to sketch out an inventory of the epidemiologi-
cal dynamics within several human networks. GIS 
became a “radioactive tracer” potentially able to 
spot the “basin outlets” through which the infection 
was exported from one community to another, thus 
giving a bird’s eye view on what was happening in 
each territorial subset of mankind. During the sec-
ond stage, also mediatically known as “second wave” 
(2020 autumn pulse), the context radically changed. 

After the failure of containment measures, mitigation 
interventions were massively implemented, together 
with an increased preparedness of the medical staff, 
and the virus propagation restarted its exponential 
behavior from endemic sources, spreading not in the 
absence of countermeasures, but notwithstanding 
them. Hence, geographers were supposed to partially 
readjust their perspective and to confront local vari-
ances in the pandemic propagation, whose anisotropy 
was deemed to mirror—more or less faithfully—
unconformities in the anthropic fabric of human col-
lectivities. Our approach was, therefore, to identify 
the most developed investigation pathways that epide-
miological geography began to tread in the quantita-
tive study of the COVID-19 pandemic. Clearly, such 
a work could not be in any case considered exhaus-
tive. The narrower purpose was to gather a selection 
of sources and offer an organic summary apt to build 
further research perspectives. The second scope was 
to discover to what extent geographers and research-
ers were able to find and explain recognizable pat-
terns in the pandemic spreading, and to check if any 
shared commonalities could be excerpted. The third 
objective was to look for the existence of a routine in 
epidemiological geography able to produce reliable 
scientific information, and if so, to understand which 
methodology could be derived. Overall, this survey 
provided a hint about the urgency of an increased 
methodological awareness while addressing the 
geography of infectious diseases, because we deem 
that GIS could be a pivotal element in this subject 
(Charlier et al., 2020), but under the strict condition 
of a careful check of the classic biases of quantitative 
geography, as well as the full acknowledgement of the 
intrinsic interdisciplinarity of this field.

Methods

To explore and sift the highest possible number of 
spatial correlation tests and pandemic pattern stud-
ies, an iterative “browsing and berrypicking” pro-
cess was carried out, as suggested by a classic online 
exploratory research approach (Bates, 1989). A 
series of specific keywords was applied in combi-
nation with Boolean operators, resumable with the 
synthetic expression “[#GIS AND (#Geography OR 
#Cartography OR #Mapping OR (#Spatial AND 
#Analysis))] AND [#COVID OR #Coronavirus OR 
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#SARS-COV-2]”, to investigate six search engines 
(Google Scholar, Scopus, DOAJ, IURN, CORE, 
BASE) and the periodical reports issued by the Insti-
tute of Development Studies (K4D COVID-19). 
Finally, the sole two content reviews found hitherto 
(Ahasan et al., 2020; Franch-Pardo et al., 2020) were 
addressed as a benchmark to validate the query out-
come. It was deemed acceptable to overlook a well-
known inconvenient (Gusenbauer, 2019) concern-
ing the fact that the exact repeatability of a single 
Boolean query is not guaranteed even in the short 
term, independently from the natural growth of online 
repositories. The queries were performed between 
July 1st and July 8th,2020 and between November 
25th and December 15th,2020. Two parameters were 
defined to filter the relevant papers: 1) The study 
has a geographical-epidemiological perspective or 
design; 2) the study uses spatial/geostatistical analy-
sis, GIS, or cartography in its rationale, and considers 
the territory as an element of inquiry. As the present 
survey was merely explorative, several papers that 
had not yet undergone the peer-review process were 
also included, by marking them with the acronymous 
NPR (not peer-reviewed) or APP (Advanced Preprint 
Publication) or PP (Pre-Print) in the table. Like-
wise, some Working Papers (WP) were included. The 
papers were assessed by considering their study area, 
their scale ratio, the prevailing type of data, the meth-
odology—divided, wherever possible, in general sta-
tistic methods and more specifically geostatistical or 
GIS methods—and their findings. Through this rou-
tine we sifted, screened and classified the geographic 
analyses with the scope to identify common research 
patterns, shared methods, generalizable findings and 
cross-cutting biases.

Results

Raw data: general overview

The results are available at https:// doi. org/ 10. 5281/ 
zenodo. 46859 64. According to the above-mentioned 
criteria, 209 papers were selected to undergo the sur-
vey. The trend in absolute number of spatial analyses 
devoted to COVID-19 geographical studies is shown 
in Fig. 1. Indeed, the pace of production of these stud-
ies could have been heavily altered by the lockdown 
affecting the researchers’ activities, and, in late 2020 

by the reintroduction of classic peer-review processes 
after a first period of pre-print circulation allowed by 
many journals.

Among the 209 output papers that complied with 
the selection criteria, 154 papers (≈74%) relied upon 
daily and/or cumulative cases for their conclusions, 
48 (≈23%) extended their analysis to deceases, 8 
(≈4%) to recovered, 7 (≈3%) to hospitalized, 7 (≈3%) 
to performed tests. In 10 cases (≈5%) the authors 
had to rely upon suspected cases. Only 3 (≈1%) 
papers attempted to make comparisons with 2003 
SARS-CoV-1 confirmed cases. 10 papers (≈5%) uti-
lized symptom-related data, and 8 (≈4%) dealt with 
the disaggregation of local infections and imported 
cases. Albeit being one of the most precious datasets, 
the usage of the latter was significantly lower than 
expected, probably because of the meteoric fading 
of local health authorities’ ability to keep recording 
this differentiation within the frantic course of the 
first wave of infections, and maybe, we suppose, also 
due to the early decision of almost all countries to 
give up the containment and focus only on mitigation 
(Fig. 2a).

Moving to the non-epidemiological data processed 
(Fig. 2b), as expected, population was the most used 
type of data (71 papers, ≈ 34%), followed by popu-
lation density (41 papers, ≈20%), age groups (32 
papers, ≈15%), mobility indexes (18 papers, ≈9%), 
income (17 papers, ≈8%) chronic diseases (15 papers, 
≈7%), and deprivation and poverty (15 papers, ≈7%). 
At least 19 papers (≈9%) also considered mitiga-
tion measures and their date of enforcement. As for 
the environmental data, temperature was the most 
investigated variable (38 papers, ≈18%), followed 
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by humidity (28 papers, ≈13%), precipitation (17 
papers, ≈8%), airborne pollutant concentration (17 
papers, ≈8%), and wind speed (13 papers, ≈6%). The 
researchers, overall, addressed the main traditional 
epidemiologically relevant independent variables in 
quite different proportions. Verisimilarly, their choice 
was often driven by data availability, with a predict-
able preference for demographic data and far lower 
percentages for crucial factors that can be less easily 
retrieved (e.g., local trends for chronic diseases) or 
less effectively built (e.g., indicators on human mobil-
ity). Demographic data, together with the temporal 
dimension, were the promptest solution to give a first 
insight to the health emergency and they were used 
to build up a huge number of spatiotemporal analyses 

during the first pandemic wave (Fig. 3b) and its dou-
bled pulse (the Chinese primary outbreak and then 
the secondary major outbreaks in Europe, the US, 
Brazil, India). A parallel peak could be noticed for 
the use of environmental and climatic data: tempo-
rally, this choice could be related to the strong pres-
sure deriving from the authorities and the general 
public in knowing whether the pandemic would be 
faded by the arrival of boreal summer, or whether the 
virus propagation would be hindered within tropical 
climate ranges (Fig. 3b).

On the basis of our thematic classification (Fig. s 
3a and 3b), 74 (≈35%) papers were presented in the 
form of spatiotemporal analyses, while 38 (≈18%) 
analyzed the socioeconomic context of the pandemic. 

Fig. 2  On the left (a) the 
surveyed papers sorted by 
the epidemiological datasets 
they adopted. On the right 
(b), the surveyed papers 
sorted by the non-epide-
miological datasets they 
used to test the existence of 
correlations
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23 papers (≈11%) considered preexisting health fac-
tors, and 14 (≈7%) the demographic structure. Envi-
ronmental factors were studied by 43 papers (≈21%), 
while pollution by 17 papers (≈8%). Mobility was 
the main subject of 38 papers (≈18%). 27 out of 
209 papers were included in more than one category 
(≈13%). A specific cross-cutting analysis is provided 
for each category in Paragraph 3.2, to understand 
the stronger or weaker explanatory efficacy reached 
within each subject, without detracting from the 
assumption that in an idiographic discipline it is usu-
ally inadvisable to generalize single case studies.

Data availability and their level of disaggrega-
tion may also explain the peculiar distribution of the 
scale ratio chosen for the analyses (Fig. 4). 11 studies 
(≈5%) adopted a global scale ratio, while, amongst 
the papers that investigated the pandemic at the sub-
national scale, 32 (≈15%) analyses adopted a generic 
urban scale, but only 15 (≈7%) a formal municipal-
ity scale. 16 (≈8%) papers used the neighborhood 

scale, 10 (≈5%) the census area scale and 15 (≈7%) 
the individual scale. Unsurprisingly, the country scale 
was among the most recurring options (46, ≈22%), as 
the most easily available open datasets are generally 
gathered and released by national health authorities or 
are aggregated by country by the biggest data aggre-
gators. However, a similar or even higher number of 
analyses was carried on at the regional (44) and pro-
vincial (54) scale, thus revealing that many research 
teams had at least a fair accessibility to intermediate 
scale datasets. Less intuitively, analyses at the finest 
geographical scale ratios (neighborhood, census area) 
were not markedly more frequent than the individual 
scale ratio: this could be due to the combined effect of 
the severe data scarcity at a very granular level, and 
the increasing diffusion of studies based upon mobile 
phone tracking data.

The most studied countries (Fig.  5a) were China 
(47 papers, ≈23%), the U.S. (36, ≈17%), Brazil (16, 
≈8%), Italy (15, ≈7%) and India (10, ≈5%). Taking 
into account the ordinary delay due to data process-
ing, writing and peer-review validation, it is easy 
to check out (Fig. 5b) how the choice upon the case 
study areas was strongly determined by the concrete 
pattern of the pandemic. Concomitantly with the very 
first pandemic pulse (January 2020), the highest pro-
portion of publications used China (and mainly Hubei 
province) as their study area (March/April 2020). A 
second possible concentration was in June, when a 
second “peak” can be seen relatively to papers analyz-
ing Brazil and the United States, which experienced 
a catastrophic exponential growth in infections along 
the previous month. A smoother research focus might 
be represented by the studies investigating two other 
severe nationwide outbreaks: Italy and India. These 
first observations may witness to what extent the evo-
lution of the object of study did affect the researchers’ 
approaches and their study designs along the whole 
period, and how that influence was remarkable even 
upon basic elements like the scale ratio, the studied 
area, and the supplementary data, thus conditioning 
the category of spatial analysis that each research 
team finally chose.

As for the methodology (Fig.  6a), the statistical 
approaches were frequently based upon by the adop-
tion of the classic epidemiological deterministic com-
partment models like SIR (Susceptible—Infected—
Recovered) and its modified versions, including the 
stochastic ones, to treat the datasets (15 papers, ≈7%). 
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Other slightly recurring methods were the ordinary 
least square regression OLS (9 papers, ≈4%) the gen-
eralized additive method GAM (6 papers, ≈3%) and 
the artificial neural network (ANN) -based models (4 
papers, ≈2%).

Furthermore, some recurring geostatistical meth-
ods were detected (Fig. 6b): 25 papers (≈12%) relied 
upon the Moran’s I spatial autocorrelation index, 
whose 14 papers (≈7%) explicitly addressed its local 
version based upon Anselin’s LISA method, while 11 
papers (≈5%) carried out hotspot analysis through 
the Getis-Ord Gi* statistic. Among the several exist-
ing regression techniques, 10 papers (≈5%) opted 
for the geographically weighted regression (GWR) 

often in its multivariate version (MGWR). 11 papers 
(≈5%) adopted the inverse distance weighting (IDW); 
6 papers (≈3%) applied the Kulldorff’s Poisson pro-
spective (or retrospective) spatial-scan statistic. Other 
less recurring spatial statistics were the kernel density 
estimation, KDE (5 papers, ≈2%), the kriging inter-
polation and its modified versions (4 papers, ≈2%), 
and the standard deviation ellipse SDE (4 papers, 
≈2%). We will further discuss a possible way to 
frame this variegated array of methods in Paragraph 
3.3.

As for the findings of the surveyed papers, we 
grouped them in seven thematic categories, so that 
their contents could be lato sensu comparable:

Fig. 5  The surveyed papers 
divided by country of 
investigation (left, a) and 
by month of publication 
(right, b). Only the first five 
most recurring countries 
are disaggregated. Red: 
China. Light blue: USA. 
Purple: Brazil. Green: Italy. 
Orange: India
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3.2.1 Spatiotemporal analyses
3.2.2 Studies on socioeconomic cofactors
3.2.3 Studies on health cofactors
3.2.4 Studies on demographic cofactors
3.2.5 Studies on environmental and climatic 

cofactors
3.2.6 Studies on pollution
3.2.7 Mobility analyses

Categorized data: in-depth screening

Spatiotemporal analyses

This category encompasses the papers that primar-
ily focused upon the very geographical characteristic 
of the pandemic, i.e., its territorial propagation with 
the passing of time. Spatiotemporal analyses were 
the most frequent and multidisciplinary contribu-
tions. They tried to answer a simple but paramount 
question: “what did happen within a specific area?”. 
Research strategies were quite diverse, but all built 
on the widely verified assumption that pandemic data 
showed strong spatial autocorrelation (Ye and Hu, 
2020) and that spatial autoregressive models could 
approximate the real behavior of the pandemic better 
than aspatial models (Sun et al., 2020).

From a more “nomothetic” point of view, it was 
possible to draw out some tentative generalizations. 
Among the 74 surveyed spatiotemporal analyses, 15 
(≈20%) found that confirmed cases were spatially 
autocorrelated; 5 (≈7%) found that the local propa-
gation rate of the pandemic was positively correlated 
with the proximity to a known outbreak; 5 (≈7%) 
found that the insurgence of secondary outbreaks 
was positively correlated to the proximity to a pri-
mary outbreak; 9 (≈12%) found that the insurgence of 
secondary outbreaks was positively correlated to the 
level of connectedness between the area of insurgence 
and the area affected by a primary outbreak; 12 (16%) 
observed that the mitigation measures had a measur-
able impact upon the spreading of the virus. 10 (14%) 
observed that at the local level, the pandemic attacked 
a given society starting from the wealthier neighbor-
hoods and then propagated across the poorer areas; 5 
(≈7%) noticed that the apparent primary hotspot in a 
given area was not the very first outbreak of the given 
community; 5 (≈7%) observed that, at any scale ratio, 
the spreading of the pandemic was sustained by the 
occurrence of recognizable superspreading events.

Altogether, 11 papers (≈15%) were able to deal 
with at least some medically ascertained epidemio-
logical links. 13 papers (≈18%) directly engaged 
the time dependency of the COVID-19 dynamics. 9 
papers produced prospective scenarios or simulations, 
and 26 papers (≈35%) carried on the primary map-
ping of the epidemiological situation of a given area 
for the first time.

The very first spatiotemporal studies tried to 
extract new information about the extent of the pan-
demic from geographical patterns. Many authors 
noticed that, during the early stage of the pandemic, 
in each Chinese province the confirmed case number 
was positively correlated to the intensity of travelers’ 
flows incoming from Wuhan or Hubei (Tang et  al. 
2020); however, in the following stage this correlation 
vanished, and new secondary outbreaks occurred. The 
strict Hubei lockdown led finally to the exhaustion of 
the community transmission (Fan et al., 2020; Ye and 
Hu, 2020). Sun et al. (2020), merging the knowledge 
about coronaviruses’ phylogenetics, potential animal 
carriers and anthropic disturbance of their distribu-
tion, framed the conditions that could have fostered 
the SARS-CoV-2 cross-species transmission.

Several authors dealt with the relationship between 
primary and secondary outbreaks: by disaggregat-
ing the growing infection data, Huang et  al., (2020, 
China, PP) pointed out that the second massive Chi-
nese COVID-19 outbreak was located in Wenzhou 
city, while Arab-Mazar et  al., (2020) observed that, 
albeit Teheran had got the highest number of con-
firmed cases, Qom should be indicated as the Ira-
nian primary outbreak. Desjardins et al. (2020, USA) 
proposed a mapping method that allowed emerging 
COVID-19 clusters detection: the early clusters were 
related to King County (Washington) and Westchester 
County (New York). During the same weeks, the first 
geographical works about intertropical countries were 
published. The general feeling of the researchers was 
that they had to face a critical lack of epidemiological 
data, or an inefficient local virus transmission, or both 
conditions (Likassa, 2020). Nevertheless, Adekunle 
et  al. (2020) managed to extract a linear relation 
between confirmed cases and suspected COVID-
19 deaths throughout 52 African countries, while 
Mousavi et al. (2020) ascertained that in Afghanistan, 
after an infected pilgrim’s return from Qom (Iran), 
almost all provinces were infected. In India, the 
researchers observed that, even if the first cases were 



1110 GeoJournal (2023) 88:1103–1125

1 3
Vol:. (1234567890)

in Kerala (three students back from Wuhan), the first 
community transmission epicenter occurred in Maha-
rashtra state (Bag et al., 2020).

In the Americas, Melin et  al. (2020) drafted the 
phases through which the pandemic took root in 
Mexican states; Zambrano et  al. (2020, Honduras, 
NPR) noticed that emerging positive cases seemed 
to come mainly from the biggest urban settlements; 
Cuartas et al., (2020) studied the infection pattern in 
the Colombian city of Cali, while in Brazil Santos 
et al. (2020) did the same for Rio de Janeiro. Still at 
the urban scale, but halfway around the world, Kala-
bikhina and Panin (2020, Russia) estimated the virus 
propagation speed across the metropolitan area of 
Moscow.

Afterward, with the exponential and ubiquitous 
growth of confirmed cases, the researchers performed 
deeper geostatistical analyses on the massive amount 
of data. Bermudi et al., (2020, NPR), while studying 
the pandemic effects in São Paulo, observed the shift 
of epidemic risk from the more affluent neighbor-
hoods to the deprived ones. This detail was pointed 
out also by other urban-scale studies in the Americas 
(Cuartas et al., 2020, Colombia; Santos et al., 2020, 
Brazil; Zhang and Schwartz, 2020, USA).

Kergaßner et  al. (2020, NPR) simulated the 
three-phase spatiotemporal behavior—from interna-
tional case import, to local superspreading events, to 
exponential growth—through which the pandemic 
aggressed Germany, and noticed that the southwest-
ern federate states were the most affected; likewise, 
Scarpone et al. (2020) identified a strong North–south 
COVID-19 incidence rate gradient, and warned that 
many examined independent variables tended to 
exhibit multiple non-linear behaviors. Some spati-
otemporal analyses also shared a specific target, the 
ex-post assessment of mitigation effects, and stated 
unanimously that the government interventions, 
whereas timely adopted, were concretely able to mod-
ify the community transmission (Fan et al., 2020).

Studies on socioeconomic cofactors

Contemporary societies exhibit a high internal diver-
sification, and socioeconomic factors are expected 
to be relevant in driving the infectious dynamics 
(Khalatbari-Soltani et  al., 2020), as already perceiv-
able from the first retrospective cohort studies (Shi 
et  al., 2020). Geographic analyses in this category 

attempted to shape the possible interactions between 
the pandemic and the substratum of socioeconomic 
heterogeneity of the susceptible population, with the 
aim to understand whether preexistent inequalities 
could mirror inequalities in terms of epidemiological 
outcomes.

Overall, among the 38 available studies on socio-
economic cofactors, 11 papers (30%) had a specific a 
priori approach and produced one or more vulnerabil-
ity maps or risk maps taking into account many of the 
variables that are going be mentioned below. Among 
the a posteriori approaches, 12 papers (≈32%) found 
relevant association between the pandemic spreading 
and population density, and 4 papers (≈10%) found 
relevant association between the pandemic spread-
ing and absolute population entity. 13 papers (≈34%) 
found relevant association between COVID-19 inci-
dence and household financial status. In particular, 
deprivation (4 papers), income inequality (5 papers) 
and income/GDP per capita (6 papers) were found 
to be associated to the pandemic spreading. 5 papers 
(≈13%) found relevant association with the usage of 
private/public transport, and 5 papers (≈13%) found 
relevant association with the urban/rural classification 
of the given administrative units. 6 papers (≈16%) 
found relevant association with local job market fea-
tures (job type, essential services, low-income jobs, 
unemployment) and 3 papers (≈8%) with the level of 
education. 7 other papers (≈18%) found that social 
connectedness and social interaction were also sig-
nificantly associated with the propagation of the pan-
demic, and 3 papers (≈8%) that the family structure 
and the typology of dwelling had significant asso-
ciation with the infections. More widely, 6 papers 
(≈16%) found that the granular features of the built 
environment (presence, distance and density of shops, 
supermarkets, bus/subway stops, road network etc.) 
were statistically associated to the pandemic evolu-
tion across urban populations.

As expected, population density was the main 
investigated covariate, and it gave the strongest signal 
of statistical association with the pandemic spread-
ing. Human community uneven distribution across 
the countries can therefore be claimed as the most 
general and immediate anisotropic factor regard-
ing the asymmetrical territorial propagation of 
COVID-19. Other relevant covariates may follow. 
First, socioeconomic indicators like income, poverty, 
deprivation—when related to financial status at the 
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household scale—were often found to be correlated 
to the pandemic dynamics. These indicators, how-
ever, did not manifest unidirectional forms of covari-
ance: the wealthier or more deprived condition of 
a given urban area resulted, from time to time, in a 
hindering or boosting cofactor. Admittedly, the ine-
quality—and not the absolute degree—in economic 
wellbeing across the communities was a good predic-
tor of pandemic outcomes at the local level, as it can 
emerge within a comparative overview, and as it is 
indeed a secondary proxy of the primary epidemio-
logical determinant related to the “host’s condition”. 
Secondly, another relevant covariate was traced in the 
“built environment”, a wide definition through which 
the researchers tried to find a connection between the 
physical structure of highly urbanized communities 
and the COVID-19 human-to-human transmission. In 
this case, again, the location, travel-time, density of 
facilities like shops, supermarkets, public transports 
were used as a secondary proxy for the classic epide-
miological determinant related to the “host’s behav-
ior” but also to the “host’s environment”, as the built 
environment tacitly determines humans’ displace-
ments, points of gathering and occasions of diminish-
ing the interpersonal distance below the threshold apt 
for an effective airborne viral transmission. It is obvi-
ously a “statistical space” where interactions are mul-
tiple and non-linear and where many uncontrollable 
variables have to be parametrized, but it did not pre-
vent some researchers to draft risk maps (e.g., San-
giorgio and Parisi, 2020) or to apply the ecological 
niche model in order to forecast the possible future 
urban hotspots (e.g., Ren et al., 2020) or just produc-
ing feasibility studies for the implementation of social 
distancing in crowded suburbs with vector analysis 
(Gibson and Rush, 2020).

This category is highly heterogeneous, but a gen-
eral trend can be noticed, as the research questions 
were mainly built up in the form of exploration 
of spatial correlations between variables. A com-
mon thread was economic inequality. In the United 
States, this issue led inevitably to the profound and 
unsolved ethnicity-based injustices, which reverber-
ate on the healthcare service access. Mollalo et  al. 
(2020), by investigating the U.S. at the county scale, 
found significant association between infections and 
income inequalities, urban deprivation, crowding 
and ethnic-economic segregation. Conclusions were 
consistent in several contributions: minority status, 

low level of English, family structure, private trans-
ports, type of dwelling and disability were good 
predictors of local cumulative cases (Karaye and 
Homey, 2020). Moreover, while cold-spots were 
more likely to be found in affluent neighborhoods, 
where levels of education, percentage of white peo-
ple and proportion of managers are greater, hotspots 
tended conversely to be found in areas with lower 
education levels, larger households and higher per-
centage of African-American inhabitants (Maroko 
et al., 2020), and that happened even despite popu-
lation density patterns.

Besides, the different behavior of urban and rural 
environments emerged: Ramirez and Lee(2020, 
USA), observed that not only some factors seem to 
be associated with high incidence rates, as population 
density and asthma prevalence (in urban areas) and 
poverty and unemployment (in rural areas), but also 
that, while absolute death percentage was higher in 
urban counties, case-fatality rate was higher in rural 
counties. Also, in France, Amdaoud et  al., (2020) 
found positive correlation between infections and 
income inequalities, population density and percent-
age of workers in essential services.

Shortly thereafter, the situation in Germany was 
investigated by Scarpone et  al. (2020); the research-
ers concluded that built-environment density and 
socioeconomic variables were important predictors 
of incidence rates, however, the strongest factors were 
community interconnectedness, geographic position, 
transport networks and job-market structure.

Studies about the Chinese situation led to simi-
lar conclusions: in Wuhan COVID-19 prevalence 
appeared positively correlated to population density, 
urbanized soil, tertiary value per area, good sales 
per area, and negatively correlated to mean building 
dimension, PIL per area and hospital density (You 
et al., 2020). Throughout China, the infection trends 
by county showed an extremely strong correlation 
with resident population, mobility index, local GDP, 
and good sales, however the association with popula-
tion density appeared to be strong only at the county 
level, not for the prefectures (Xiong et al., 2020), thus 
revealing unexpected scale-dependent correlation 
patterns.
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Studies on health cofactors

Studies on health cofactors endeavored to answer this 
question: “to what extent the pre-existing sanitary sit-
uation could have an impact on the general outcomes 
of the pandemic in a given territory?” On this basis, 
at least two main research lines were identified: retro-
spective works, that explored how chronic conditions 
already affecting a community could modify the trend 
of epidemic indicators, and prospective works, that 
attempted to map the organization of the health sys-
tems to understand which patient burden and which 
kind of cure could be sustained before trespassing 
critical thresholds of collapse, thresholds that Gross 
et al., (2020) statistically detected in the detachment 
of death and recovery rates from new infection num-
ber decay during the lockdown.

Once the statistical advantage that an increased 
number of trained personnel have in mitigating 
COVID-19 mortality was clarified, many authors 
investigated the health system capacity to sustain the 
pandemic impact (Verhagen et al., 2020, UK; Silalahi 
et  al., 2020, Indonesia). Besides medical resource 
scarcity (Zhou et al., 2020, China), most studied pre-
dictors for the shaping of the health demand surge 
were elderly population, education, unemployment, 
exposure to poverty and deprivation, and interest-
ing suggestions about the cartographic quantifica-
tion of sanitary burden were proposed at suburban 
scale to ease adjustments (Verhagen et al., 2020, UK; 
Ogojiaku et  al., 2020, USA). Health service acces-
sibility was a recurrent issue: by applying big-data 
raster analysis, some continent-wide studies were car-
ried out to compare the healthcare venue availability 
(Geldsetzer et  al., 2020). Finally, a group of papers 
analyzed the role of chronic conditions and their geo-
graphic prevalence in affecting the pandemic trends, 
treating them as a predictive risk factor (Melin et al., 
2020, Mexico), or seeking statistical correlations at 
the local level (Ramirez and Lee, 2020, USA), or in 
retrospective cohort studies (Zambrano et  al., 2020, 
Honduras, NPR).

Overall, 9 out of 23 papers of this category 
(≈39%) addressed the study of the influence of pre-
existing chronic diseases on the outcome of the pan-
demic propagation; 3 out of them found relevant spa-
tial association between chronic disease clusters and 
COVID-19 clusters. Other 5 utilized the pre-existing 
chronic disease patterns to extract vulnerability maps 

and vulnerability indexes. The most investigated 
chronic diseases were diabetes (6), heart diseases (5), 
hypertension (3), asthma (3), obesity (3); also, inci-
dence rates of pneumonia, cancer, suicide, overdose, 
disability, depression, smokers, mental illness, and 
HIV were taken in consideration for correlation tests 
with COVID-19 incidence rate and above all with 
case-fatality rate.

It may be surprising that the spatial correlation 
between chronic conditions was investigated (and 
found) in quite few cases, since the correlative nexus 
between the two variables was soon robustly ascer-
tained at the individual level (Liu et al., 2020). A pos-
sible explanation could be that, collectively, this kind 
of correlation may easily fade whereas many parallel 
confounding factors can alter the statistical outcome 
of the disease, like the socioeconomic factors men-
tioned hereinabove.

As for the logistic studies, 6 papers used the num-
ber of hospitals as a spatial proxy, 5 papers utilized 
the availability of hospital beds, and 5 papers the 
availability of ICU beds. 7 papers (≈30%) addressed 
the risk of sanitary resource scarcity, including medi-
cal personnel and nurses. The threat of hospital sat-
uration was the core of 6 analyses (≈26%), which 
intended to offer practical indications about the most 
fragile sanitary districts and the geographical areas 
which were more prone to health system collapse.

Studies on demographic cofactors

The pandemic propagation was supposed to be 
strongly correlated with the population composition 
(Beam Dowd et  al., 2020). Papers in this category 
wondered to what extent demographic structures did 
condition the transmission dynamics. Overall, 13 
papers (whose 5 from the socioeconomic category) 
found relevant spatial association between COVID-
19 incidence rate, hospitalization rate or case-fatality 
rate and age groups.

Case-fatality rate (CFR) is the most common age-
specific indicator disaggregated by cohort (Dudel 
et  al., 2020). It can suffer from some critical under-
estimations (deaths outside hospitals, real number 
of asymptomatic confirmed cases), but its reliable 
estimation is crucial. During the early stage of the 
pandemic, its crude estimation arose some misun-
derstandings. In March 2020 apparent CFR in China 
showed to be 0.4% for 40–49 age interval, but it 
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peaked 14.8% in patients older than 80 years. In Italy, 
those values were even worse (0.7% and 27.7%) with 
almost 97% of deaths occurring to patients older than 
60  years (data quoted by Beam Dowd et  al., 2020), 
but they were conditioned by the huge number of 
undetected cases.

Goldstein and Lee (2020, WP) suggested to define 
a CFR disaggregated not only by age but also by 
cause, to circumvent the heterogeneity of counts; 
thus, they could enhance the strong age-dependency 
of illness outcomes, with a death risk manifold higher 
in the elders. Levin’s et al. (2020) systematic review 
found a solid exponential relation between age and 
COVID-19 CFR, that ranges from 0.01% at 25 years 
to 4.6% at 75 years, and 15% at 85 years. Geographi-
cally, many authors agreed that almost the whole 
observed CFR variation among countries and regions 
mirrored their differences in age structure and in age-
related exposition (Beam Dowd et  al., 2020; Dudel 
et al., 2020; Levin et al., 2020). These interpretative 
corrections allowed to resize the exceptionality of the 
Italian case. The intensity in intergenerational con-
tacts (Beam Dowd et al., 2020), was also indicated as 
able to shorten the “network distances” between the 
first imported cases and the elders, who would not 
be directly exposed per se to the mobility fluxes sus-
pected to have spread COVID-19 (such as meetings, 
business travels; Bontempi et al., 2020).

By controlling this interference, the age structure 
of the first cases may predict which population cohort 
will be first hit, and that could explain the different 
evolution of the first pandemic stage in Germany, 
Italy and South Korea, whose starting outbreaks 
occurred in very different age cohorts. The age of the 
first COVID-19 cases could have even affected the 
reaction of the public authority, pushing it to under-
estimate the risk whereas first data came from less 
susceptible cohorts (Beam Dowd et  al., 2020). This 
is what occurred in the UK, for which Verhagen et al. 
(2020) proposed to diversify the map of hospital satu-
ration risk by the higher percentage of elders in some 
areas (Wales, Cornwall, Northumberland and Suffolk, 
the London neighborhood of Harrow).

Some studies coupled the GIS methods with tra-
ditional retrospective analyses: Dagnino etal. (2020, 
Brasil, NPR) found that the incidence peak in Rio 
Grande do Sul occurred in the 30–69 years cohorts; 
Zambrano et al. (2020, Honduras, NPR), noticed that 
almost 60% of confirmed cases were 60–79 years old, 

while the least affected cohorts were younger than 
10 years (< 5%).

A core of demographic studies was related to the 
ethnic decomposition of the pandemic risk, typi-
cally in the United States. In New York City, Wad-
hera et  al. (2020) observed that the Bronx, that has 
the highest percentage of minorities, people in dep-
rivation and the lowest degree of education, had also 
the highest COVID-19 hospitalization and death rate. 
On the contrary, these rates were consistently lower 
in the wealthier Manhattan and Staten Island areas, 
mainly inhabited by whites, albeit their higher per-
centage of elderly. In Chicago, Kim and Bostwick 
(2020) observed that a higher percentage of African-
American inhabitants was associated with higher pan-
demic risk levels, and that minorities were overrepre-
sented in COVID-19 death rates. As already noticed 
in influenza epidemiology (Hutchins et  al., 2009), it 
should be highlighted that the “ethnic variable” is but 
a proxy of deteriorated conditions stemming from 
long-term discriminations, and that it mediates other 
risk factors like economic status, household structure, 
chronic diseases, jobs in essential services (Ramirez 
and Lee, 2020). That could explain why covariance 
between COVID-19 and ethnicity appeared inconclu-
sive in the geographical regression proposed by Mol-
lalo et al. (2020), who found, indeed, a neat predomi-
nance of income inequalities.

Studies on climatic and environmental cofactors

The research question in these studies was whether 
(and how much) environmental variables could con-
dition the virus transmission, and whether geographi-
cal patterns could be found and explained.

Within the medical community, the cyclization 
of the SARS-CoV-2 aggressiveness was strongly 
expected across all the communities in the temperate 
latitudes (Neher et  al., 2020). It is known that coro-
naviruses have a typical seasonal trend, with a char-
acteristic diffusion peak each year from December 
to March in the northern hemisphere (Neher et  al., 
2020). Influenza seasonality is generally explained 
(Mathews et al., 2009) through the cyclical weaken-
ing of the herd immunity induced by the previous 
seasonal flu.

A mediate correlation between the higher flu trans-
missibility and the reduction of air temperature seems 
also well-established, whereas the real correlation 
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might be with the higher percentage of time spent 
indoor, in spaces where viral airborne concentration 
can maximize, and interpersonal distance is minimal 
(Mathews et al., 2009). This “correlation leap”, that is 
still not solidly ascertained in the medical literature, 
caused difficulties.

What geographers cared about the most was to 
understand whether the anisotropic propagation of the 
pandemic could be climate dependent. Researchers 
(Sajadi et  al., 2020, NPR; Araújo and Naimi, 2020, 
NPR) could not avoid noticing that the pandemic 
had a clear preferential development along the mid-
latitudes, like in Europe and North America, rather 
than getting rooted within other territories that are 
geographically and statistically better connected with 
China (like South-East Asia). A recurring conclu-
sion was that this pattern was determined by the virus 
need of fresh and dry climate conditions to success-
fully complete its airborne phase.

Many of the surveyed analyses found, in fact, a 
significant negative correlation between COVID-
19 incidence and temperature and humidity (Sajadi 
et  al., 2020, NPR; Wang et  al., 2020, NPR; Oto-
Peralías, 2020, NPR; Araújo and Naimi, 2020, NPR; 
Paez et  al., 2020; Runkle et  al., 2020). This conclu-
sion was the most recurring and was in line with the 
expected seasonality. Nevertheless, there were stud-
ies that found positive correlation between infections 
and humidity (Pirouz et  al., 2020), positive correla-
tion with temperature (Ma et al., 2020; Bashir et al., 
2020), and no climatic correlations at all (Gupta 
et al., 2020). On the whole, 14 papers (≈33%) out of 
43 papers constituting this thematic category found 
a negative correlation between COVID-19 propaga-
tion and atmospheric temperature, while 13 papers 
(≈30%) found negative correlation with atmospheric 
humidity. 5 papers (≈12%) found positive correla-
tion with atmospheric temperature, 5 papers found 
positive correlation with atmospheric humidity, 8 
papers (≈19%) found inconclusive results respect to 
temperature, 5 papers found no correlation respect 
to humidity, and 4 papers found no correlation with 
precipitation. 8 papers (≈19%) proved the relevance 
of latitude in the pandemic spreading, thus alluding 
to the expected seasonal forcing of viral infectious 
diseases. Significantly, 9 papers (≈21%) established 
the existence of a non-linear relationship between 
the COVID-19 incidence and climatic variables, or 
explicitly invoked climatic suitability ranges with 

upper and lower limits affecting the non-monotone 
trends.

Insofar, the general conclusion was that some 
form of correlation does exist, but it is challenging 
to be clarified, and some authors (Pirouz et al., 2020) 
acknowledged the existence of unknown patterns 
between the pandemic and climate, or patterns that 
are too ambivalent and non-conclusive to be general-
ized (Runkle et al., 2020; Zhang et al., 2020). Indeed, 
some researchers underlined the incomparably greater 
weight of other covariates, like population density 
(Gupta, et  al., 2020). As for the geomorphological 
covariates, relevant patterns were not found, except 
for a weak association with altitude (Xiong et  al., 
2020; Gupta et al., 2020).

In the first part of 2020 the researchers had the 
urgency to understand if the boreal summer would 
slow down the exponential growth of cases without 
keeping the mitigation measures: that was disproved 
(Wang et  al., 2020, NPR; Oto-Peralías et  al., 2020, 
NPR). The covariance of ultraviolet radiation was 
also investigated, to bypass the mediate temperature-
infection correlation, but results were non-conclusive 
(Gupta et al., 2020; Runkle et al., 2020).

Environmental analyses, in summary, encoun-
tered strong hindrances in converging towards general 
conclusions. The first one was that the global virus 
transmission could have easily concealed the weak 
climate-dependent signal. SARS-CoV-2 found an 
entirely available planet, with a ubiquitous and 100% 
susceptible host population, an ecological privilege 
not deemed to exist for the other seasonal coronavi-
ruses (Baker et  al., 2020). Thus, geographically, the 
pandemic beginning could develop very differently 
from interpandemic phases. Secondly, the different 
reactions of the public authorities could have strongly 
altered the distribution of cases, namely by how much 
they decided (or managed) to invest in diagnostic 
activities. This, indeed, exasperated the problem of 
undetected cases. Thirdly, many covariates might 
allegedly exist whose weight was disproportionally 
higher than the climate factors in fostering COVID-19 
propagation, among which there is the “host’s behav-
ior” (O’Reilly et al., 2020; Wang et al., 2020, NPR). 
This point is crucial, because, in many communities, 
indoor infection could be neatly preponderant (Araújo 
andNaimi, 2020, NPR), as witnessed by superspread-
ing events and by the ambiguity of the findings about 
the infection rates in intertropical cities, where a 
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positive correlation between infections and precipita-
tion (Falcao Sobral et al., 2020) or temperature (Auler 
et al., 2020) is occasionally found. Finally, the biases 
induced by the preferred statistical methods could 
be so strong to affect the results (Briz-Redòn 2020, 
NPR). Therefore, current findings of spatial analyses 
about climate correlations dictate to be cautious, and 
to consider them as circumstantial.

Pollution studies

In late February 2020, the pandemic began its rapid 
community spreading in Europe, and the most harm-
ful outbreaks first occurred in the middle of Po Plain, 
(Northern Italy), where, in the last week of March, 
apparent CFR reached 12% (Conticini et  al., 2020), 
an alarming level if compared with the rest of Italy 
and the globally expected CFR. While the research-
ers were discussing about the CFR age-decomposi-
tion, other authors parallelly tried to find associations 
between the anisotropic progression of the pandemic 
and the different levels of exposure to pollutants 
experimented by human communities.

Northern Italy often shows some of the worst val-
ues of Air Quality Index (AQI) in Western Europe.1 
This indicator, albeit not uniformly gauged in differ-
ent countries, is mainly based on the ground air con-
centrations of  PM10,  PM2.5,  O3,  SO2 and  NO2. They 
were the most studied compounds in the surveyed 
spatial analyses. A first exploratory study (Setti et al., 
2020, WP) suggested that atmospheric particulate 
could operate as a physical carrier apt to ease the 
viral transmission by prolonging virus permanency in 
air suspension. It hypothesized also that an excessive 
number of days with  PM10 and  PM2.5 above the legal 
limits could become a boosting factor.

This interpretation encountered some perplexities 
because other almost coeval studies (Mollalo et  al., 
2020) found no correlation between incidence rate 
and pollution, or highlighted how, from a global com-
parison, this nexus should not be automatically taken 
for granted (Bontempi et al., 2020).

In medical literature, pollution is a notorious fac-
tor of prolonged inflammation and impairment of the 
respiratory tract (Conticini et  al., 2020). Long-term 
exposure to  PM2.5 e  PM10 is known to lead to immune 

system overactivation, (Conticini et al., 2020), there-
fore, an individual living in a geographical area with 
high pollution levels is more likely to develop chronic 
respiratory diseases. Moreover, the long-term expo-
sure to pollutants tends to maintain a high chronic 
inflammatory stimulus in the organism, also in young 
and healthy individuals. Altogether, 8 papers (which 
means ≈ 90% of this subset of studies) found posi-
tive association between at least one pollutant atmos-
pheric compound and COVID-19 spatiotemporal 
increase. The most investigated compounds were 
 PM2.5 (5) and  PM10 (3), but also  NO2,  SO2 and  O3 
were considered for association.

On this basis, Coccia, (2020) found correlation 
between the number of days with  PM10 excesses and 
infections and concluded that, in the first pandemic 
stage, pollution could predict the community trans-
mission even better than social contacts. Murgante 
et  al. (2020) observed a relevant spatial correlation 
between the worst pollution-affected and the worst 
COVID-19-affected Italian provinces.

These conclusions were consistent also in other 
countries like Peru (Badillo-Rivera et al., 2020, NPR) 
and China (Yao et al., 2020). Wu et al. (2020), study-
ing more than 3000 U.S. counties, concluded that 
1 μg/m3 increase in  PM2.5 concentration was associ-
ated with 8% increase in COVID-19 CFR. Likewise, 
Xu et  al. (2020), studying 33 Chinese cities, found 
significative correlation between AQI values and con-
firmed cases. Zhang et al. (2020) cautioned, however, 
that reciprocal feedbacks between pollution and mete-
orological variables may trigger complex nonlinear 
effects, with even opposite outcomes, and the direc-
tion of correlation was not always clearly explainable 
(Bashir et al., 2020).

A second subset of these studies investigated the 
“pollution covariate” as a dependent variable and 
assessed how it changed because of the pandemic. 
The multitemporal comparison of satellite images led 
the researchers to the unanimous constatation that, 
for some pollutants (above all  NO2), the atmospheric 
concentration visibly dropped during national lock-
downs (Baoand Zhang, 2020; Kanniah et  al., 2020). 
This elicited many reflections about the extraordinary 
almost real-time capability of humans to modify the 
atmospheric composition, but some pernicious feed-
backs did not go unnoticed, like the abrupt increase 
of  O3, made possible by its trade-off with nitrogenous 
compounds (Collivignardelli et al., 2020). Overall, 8 1 https:// airin dex. eea. europa. eu/ Map/ AQI/ Viewer/.

https://airindex.eea.europa.eu/Map/AQI/Viewer/
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papers found  NO2 atmospheric reduction during the 
lockdown; 6 papers found  PM2.5 reduction, 4 papers 
 PM10 reduction, 5 papers CO reduction, 4 papers  SO2 
reduction, 4 papers  O3 increase.

Mobility analyses

SARS-CoV-2 manifested high aggressiveness in its 
quick spreading among local communities, leap-
ing from its circulation throughout the global busi-
ness networks to the thinnest contact networks of the 
most remote villages, in just few weeks. This behav-
ior prompted many authors in mapping its possible 
access routes. Hence, their research question was: 
“how did the pandemic take advantage of human 
mobility to expand worldwide?”

On the whole, 9 (≈24%) of the 38 mobility analy-
ses worked on international flight fluxes to evaluate 
quantitatively the risk of importation of confirmed 
cases from abroad. 5 papers (≈13%) relied upon 
the analysis of visits/contacts with the primary out-
break of Wuhan finding positive correlation between 
the number of these connections and the secondary 
outbreak entity. 4 papers (≈11%) mapped the possi-
ble role of local transport infrastructures (roadways, 
seaports, airports) in fostering the pandemic propa-
gation. 6 papers (≈16%) considered contact-tracing 
measures at the individual level. More widely, 17 
papers (≈45%) adopted data mining on big data 
repositories to detect aggregate mobility flows. 10 
out of them extracted their data from social net-
works or data aggregators (Google, Baidu, Tencent, 
Facebook). Travel bans were the focus of 14 papers 
(≈37%), while, in general, 9 papers (≈24%) adopted a 
“scenario” study design to carry out prospective anal-
yses and forecasting.

Mobility studies in China focused upon the mas-
sive relocations that took place in connection with the 
Lunar New Year holydays. The recurring methodol-
ogy was based on the analysis of the mobile phone 
big data (through Baidu, Tencent), and their combina-
tion with transportation companies’ data. Zhou et al., 
(2020) found the maximum pandemic risk in those 
areas, like the Shanghai-Hangzhou and Canton-Shen-
zhen megacities, that received intense inward fluxes 
of workers coming back from their vacation. Another 
investigation strategy was the modeling of outward 
flows from Wuhan’s primary outbreak, with the aim 
to identify the relative frequency and the geographical 

distribution of the confirmed cases stemming from 
secondary outbreaks.

Shared conclusions were that the volume of trave-
lers leaving Wuhan was strongly correlated with 
confirmed cases in the destination provinces or pre-
fectures, and, conversely, the number of cumulative 
confirmed cases was strongly correlated with the 
total flow of arrivals from Wuhan. Thus, the variable 
“arrivals from the primary outbreak” was an excel-
lent predictor of secondary outbreaks’ entity outside 
Hubei (Jia et al., 2020). Exported cases from Wuhan 
before the quarantine triggered local transmission 
chains in different provinces, both adjacent and dis-
tant (Henan, Guangdong, Zhejiang), but, once the 
cordon sanitaire was settled, this correlation faded, 
and new locally expressed factors took over (Chow 
et al., 2020), which indirectly documented the efficac-
ity of quarantine in halting mobility fluxes (Jia et al., 
2020).

The researchers soon turned their attention on 
international mobility because Chinese pre-lockdown 
clusters were open routes for the virus’ planetary 
propagation (Chow et  al., 2020). Big data gener-
ated by flight data aggregators (IATA, SABRE) were 
mostly employed to build risk cartographies by merg-
ing data about travelers exiting China with destina-
tions’ vulnerability indexes. However, Christidis and 
Christodoulou (2020) highlighted the unexpected 
weakness of mobility correlations: once the pandemic 
made its access to global transportation networks, 
stochastic fluctuations seemed to be more relevant for 
the outcome than the network structure itself.

Many analyses used mobility to assess the over-
all effect of mitigation measures: Chinazzi et  al. 
(2020) concluded that quarantining Hubei delayed 
global pandemic progression by 3–5 days in China 
and much more abroad, where imported cases were 
reduced by 80% since mid-February. de Oliveira 
et  al., (2020, NPR) shared similar findings: they 
compared ten countries in South and Central Amer-
ica and found that only the countries that imposed 
an official lockdown were able to flatten the epi-
demic curve. Besides, Jarynowski et  al., (2020, 
Poland, PP) found that local workers’ mobility 
could explain most of the variance of the pandemic 
dynamics across Polish districts, while workers’ 
mobility abroad operated as a statistical accelera-
tor for the virus importation. Brazilian geographers 
noticed how air, motorway, and fluvial displacement 
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facilities showed strong association with the ter-
ritorial propagation of the pandemic, and indeed 
allowed the virus to carry out the “scale ratio leap” 
from global to local networks (Aleixo et al., 2020).

Through this excursus, we were able to deepen 
the rich production of epidemiological mapping and 
spatial analyses of COVID-19. Hence, we drafted a 
balance about the main sub-fields of investigation, the 
most followed approaches, and the possible points of 
friction.

A general routine for COVID-19 epidemiological 
mapping and spatial analysis

Following the screening and the analysis of the exist-
ing research, a tentative (problematized) eight points 
routine for a “COVID-19 epidemiological-geograph-
ical study” could be drawn out from the surveyed 
manuscripts (Fig. 7).

(1) In every case the first assumption is that the pan-
demic spatial diffusion is not randomly deter-

mined. The basic principles of epidemiology are 
that three global Determinants are required for an 
epidemic (or pandemic) to occur (Desenclos and 
de Valk, 2005; Che, 2019): the new or existing 
Pathogen attain characteristics able to trigger its 
exponential replication; the Host presents suit-
able characteristics and favorable behaviors apt to 
sustain the replication of the pathogen; the Envi-
ronment (sensu Eisenberg et al., 2007) guarantees 
prolonged idoneous conditions for the spreading 
of the pathogen.

(2) Secondarily, in most cases a geography-based 
method is applied with the general purpose to 
produce a map or a spatially-based statistic output 
and the specific purpose to generate new infor-
mation. A first severe hindrance occurs: data are 
tendentially scarce, and the very first choice is to 
rely solely upon “stricto-sensu” epidemiological 
data (confirmed cases, deaths, hospitalizations). 
This is the case of spatiotemporal analyses: sim-
ple synchronic or diachronic maps were obtained, 
but they proved to be quite effective in general-
izing (see paragraph 3.2.1). For these results, 

Fig. 7  The workflow sum-
marizes and condenses the 
possible steps (in black), 
the available instruments 
(in blue) and the critical 
points (in red) of a generic 
epidemiological-geographi-
cal study, on the basis of the 
outputs of this survey

the spa�al propaga�on of the pandemic/epidemic 
is not random

three pandemic determinants:
Host - Pathogen - Environment

aim to produce:
maps, spa�al sta�s�cs, new informa�on

Primary datasets (confirmed cases, deaths, recovered) -
> Spa�otemporal analyses

tools: coropleths, dotmaps, interpola�ons, heatmaps
risk: data scarcity, MAUP bias, MTUP bias

Spa�al autocorrela�on is tested for sta�c outputs
tools: monovariate spa�al analysis, hotspot analysis

risk: data quality

SIRs models are implemented to incorporate 
�me in dynamic outputs

risk: aggregate vs disaggregate outputs

Non-epidemiological covariates are tested
Host determinant-> demographic, socioeconomic, 

health, pollu�on covar.
Pathogen determinant-> environmental covar.
Environmental determinant-> environmental, 

socioeconomic covar.
tools: bivariate/mul�variate spa�al analysis

risk: false correla�on outputs, mul�plicity bias

Ecological regression methods are implemented
risk: ecological bias

Medical cohort retrospec�ve studies should be 
used to validate the analysis

An informed choice among 
spa�al models should be made
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vector analysis in GIS environment appeared to 
be the best and the most immediate methodology 
(coropleth maps, temporal overlay, IDW, kriging 
and other interpolations, heatmaps) used by the 
researchers to produce the primary explorative 
mapping of affected territories.

(3) Spatial autocorrelation of epidemiological data 
can inform more conclusions, but researchers are 
required to rely on strong and updated knowledge 
of the territory to draw out more well-grounded 
observations about the pandemic behavior. In this 
case some well-known geostatistical algorithms 
were massively adopted (monovariate Moran’s 
I, Getis-Ord G*, Kulldorff spatial scan statistic) 
and hotspot analysis was successfully addressed 
to detect and hierarchize outbreaks (Desjardins 
et al., 2020; Ramirez and Lee, 2020).

(4) Refined conclusions can be attained by strength-
ening the treatment of time as the main geo-
graphical variable: here the link with classic 
epidemiology is robust and relies upon the imple-
mentation of the compartment models like SIR, 
which however implies that the scientific commu-
nity has already reached consensus upon a realis-
tic value of the basic replication number. Again, 
in that case, the previous knowledge of the terri-
tory and the studied communities and the ability 
to implement disaggregated solutions is crucial to 
let the researchers elaborate new spatially related 
findings, and results may be notably consistent 
and innovative (Kergaßner et al., 2020; Scarpone 
et al., 2020; Bizzarri et al., 2020).

(5) Another step is to add non-epidemiological 
covariates to the study. Demographic covari-
ates are easily available. In this case (paragraph 
3.2.4), following the traditional epidemiological 
theory, the researchers address the Host Deter-
minant in term of population entity, age, and 
distribution. Health covariates (paragraph 3.2.3) 
are less easily available, but they can manifest 
strong relations: through them, the researchers, 
again, address the Host Determinant (in term 
of organism susceptibility to the infection or 
in term of probability to receive adequate treat-
ment). Socioeconomical covariates are, instead, 
utterly uneven. With them, the Host Determinant 
is addressed more ambiguously (Does income 
affects health? Does built environment condition 
gatherings? Does accessibility to services affect 

lifestyle?). Covariates can be spatially managed 
with spatial bivariate or multivariate correla-
tion; in this case, besides the traditional Pearson, 
Kendall, Spearman and other tests, also Anselin’s 
LISA method, geographically weighted regres-
sions, and Getis-Ord statistics were frequently 
applied. Environmental covariates are instead 
more ephemeral, and their spatial analysis gave 
more erratic results (paragraph 3.2.5). They are 
used to address both the Environment and the 
Pathogen Determinant. Anyway, for a new dis-
ease the second is originally unknown, and only 
the first one can be parametrized, but it is made 
of territorially continuous variables not inher-
ently attached to the host. The contribute of tem-
perature, humidity, precipitation, and climate 
to the spreading can be excessively smoothed 
respect to other stronger host-related cofactors. 
Moreover, in many cases, the climatic spatial 
analyses, hurried by the emergency, were forced 
to define “static” study designs and drafted only 
partial snapshots of the epidemiological situation, 
biased by the fact that a 100% susceptible host 
population acted as the main driver of the pan-
demic (Carlson et  al., 2020a). Pollution covari-
ates might appear, in their turn, as an exception, 
as they are virtually “incorporable” within the 
host as health conditions (paragraph 3.2.6). This 
probably makes the outputs of their correlation 
studies slightly more coherent. Nonetheless, no 
conclusion should be pointed out without prior 
ascertainment of the medical effects of the indi-
vidual long-term exposure to pollution. Mobility 
is one of the nearest covariates to spatiotemporal 
analysis (see Paragraph 3.2.7), and it addresses 
the Host Determinant in term of host’s behavior. 
Big data were used to evaluate the effect of travel 
bans and proved how mitigation can be attained 
at least acting on human displacements. In our 
opinion, this type of datasets should be investi-
gated more granularly respect to the geographi-
cal pattern of the pandemic propagation, above 
all in the onset period, whereas the disaggrega-
tion between imported and local cases is still fea-
sible, and containment measures might be still 
implemented. Mobility appeared to be the most 
promising variable, but it is still the least easily 
manageable, because it appears to be affected by 
stochastic dynamics that are difficult to be mod-
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eled (Christidis and Christodoulou, 2020) and 
because an excessive disaggregation of mobility 
data may entail data confidentiality issues (Zhou 
et al., 2020).

(6) As already mentioned, medical cohort retro-
spective studies should always inform a spatial 
analysis to corroborate its conclusions or to give 
a well-grounded basis for the spatial generaliza-
tions, as long as their results become available. In 
that way, the mapping of covariances can profi-
ciently intervene in the epidemiological study to 
generate, with GIS, new knowledge in terms of 
new “reasonably justified inferences”. That is 
probably the sole possibility to incorporate the 
“raster” suspected covariate (built environment, 
pollution, climate range) or the “metonymic” sus-
pected covariate (income, job, chronic conditions, 
provenance, historical exposure) into the “vector 
point” epidemiological variable (the confirmed 
case, the death, the recovered, etc.) to have a bet-
ter counterproof about the spatial covariance.

(7) Ecological regression methods could represent 
another efficient escape rope in epidemiologi-
cal geography, as suggested by Wu et al. (2020), 
because they can approximate the exposure story 
of the patient in the absence of individual clinical 
data. This kind of models suffers, however, from 
the ecological bias and prevent the researchers to 
directly derive conclusions about individual-level 
association, but adding retrospective cohort stud-
ies can moderate this risk.

(8) That finally leads to the open question about the 
best method to spatially shape the COVID-19 
dynamics. This question, indeed, is feeding an 
ongoing vigorous debate in biogeography. As 
SARS-CoV-2 is a new species of virus, some 
ecologists attempted to define its most probable 
areal of expansion through the species distribu-
tion models, which implies to apply the eco-
logical regression on environmental variables 
(Araújo and Naimi, 2020, NPR). The proposal 
was criticized on the basis of the incompara-
bly higher weight of the host’s behavior (human 
interactions) respect to the environmental suit-
ability in letting the airborne phase of COVID-
19 complete successfully (Carlson et  al., 2020b; 
Gutiérrez-Hernández and García, 2021a). Indeed, 
both sides have strong arguments for their choice 
(Araújo et  al., 2020). In fact, other authors 

noticed that traditional SIR methods are very effi-
cient at the coarse level, but, when they are not 
spatially disaggregated or they have poor access 
to real data, they threaten to miss many granular 
dynamics that may turn out to be crucial (Biz-
zarri et al., 2020; Benedetti et al., 2020).

Discussion

Along the first pandemic year, the researchers 
attained remarkable results by applying geographi-
cal approaches. We identified few core topics that 
elicited high inquiry concerns, and in which applied 
geography rapidly specialized, attaining, in some 
cases, converging conclusions. Some background 
elements seem to have emerged. Dependent vari-
ables (e.g., confirmed cases) and socioeconomical 
covariates appeared to be better to be managed, and 
their analysis produced consistent results, with some 
possibilities of generalization. Common spatiotem-
poral trends were that the pandemic had a first rapid 
stage, in which, by aggressing a given community as 
an exogenous disturbance, it attacked wealthy classes 
and areas, verisimilarly because of their higher global 
interconnectedness with foreign sources (tourism, 
job travels, study permits, pilgrimages). In a second 
stage the pandemic became epidemic and took advan-
tage of preexisting weakness lines in human societies. 
Everywhere an abrupt shift of epicenters towards the 
most fragile and deprived social classes was noticed. 
The latter were, in the end, far more exposed to infec-
tions and suffered from their smaller material chances 
to exert self-protection (lower access to remote-
work, poor physical space for social distancing, bad-
quality information, no savings to face prolonged 
confinement, less customized cures, fewer protec-
tion devices). Therefore, the first signs of endemism 
were given by the rooting of long-period outbreaks 
within crowded and deprived urban areas (Bermudi 
et al., 2020, NPR; Bag et al., 2020). The demographic 
covariate pattern was quite clear as well: the pan-
demic arrived through young and subclinical indi-
viduals, and then manifested its worst effects on the 
elders, among which only the most affluent compo-
nent had enough means to guarantee self-protection. 
The specific structure of national population pyra-
mids informed the real case-fatality rate (Beam Dowd 
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et al., 2020). Likewise, the outcome related to health 
covariates was quite precise: the pandemic quickly 
manifested its worst outputs in those cohorts already 
burdened with the chronic diseases typical of wealthy 
societies (asthma, obesity, hypertension, diabetes, 
heart conditions) and triggered the collapse of all the 
ordinary health systems that lacked conversion pro-
tocols or resources to implement them (Gross et  al., 
2020). However, whereas climatic and environmental 
independent variables were examined, such an unam-
biguous interpretation tended to fade, and some con-
clusions could even be perceived as contradictory. At 
this very point, the MAUP bias, i.e., the strong scale-
sensitiveness of many spatial associations, and the 
MTUP bias, i.e., the variability of geographical data 
when aggregated in different timespans, fatally mani-
fested themselves (Briz-Redon, 2020; Kwan, 2018). 
Indeed, they stem from the Achilles’ heel of epide-
miological geography, namely the metonymical usage 
of territory to study population health issues. In that 
way, contrasting and counterintuitive observations 
were produced (Bashir et al., 2020; Ma et al., 2020; 
Paez et al., 2020) and the scale-dependency of spatial 
correlations emerged (Xiong et al., 2020). This might 
be unavoidable, for at least two structural factors. The 
first one is ingrained in the object of study and corre-
sponds to the “host’s behavior” factor, namely the fact 
that the statistical reaction of humans to the variation 
of climate and environmental drivers can often out-
pace the impact that the latter exert upon the airborne 
phase of the viral cycle, or, also, the possibility that 
another covariate may trigger some form of positive 
or negative feedback (Zhang et al., 2020). The second 
factor is inherent to the research process and may be 
defined as “the multiplicity bias”. Recently, in fact, 
Gutiérrez-Hernández and García (2021b) pointed 
out how observational studies in COVID-19 cor-
relation tests research risk to be affected by a much 
greater number of type I errors than what is gener-
ally believed. This should not discourage a pragmatic 
epidemiological geography in its effort to build up 
coherent and consistent overviews (Kundi, 2006). On 
the contrary, it urges geographers to keep constant 
awareness on the “host’s behavior” factor, to multiply 
statistical models and to strengthen the controls upon 
spatial covariates with the help of an interdisciplinary 
approach stricto sensu, as well as to implement tools 
to control type I error inflation. Through a proper 
study design, epidemiological geography is asked to 

engage with a permanent and critical confrontation 
with cohort (Shi et  al., 2020) and laboratory (Baker 
et  al., 2020) experimental data, so that a litmus test 
may always be available in the description of the non-
linear and multifactorial structure of reality.

Conclusions, limitations and further developments

With this survey we hopefully offered a more pains-
taking grounding to the systematization of the geo-
graphical analyses of the pandemic, both by letting a 
possible study design routine emerge from the mag-
matic scientific production of 2020, and by emphasiz-
ing the major known weak points that geographers 
encountered in their task. A limit of this study is that 
the chosen thematic categories might be question-
able. A future effort should be to engage the system-
atic review of each category. The sole fact that the 
pandemic is still ongoing, at the time we are writing, 
urges to perform a radical update of our findings as 
soon as possible. No language filters were applied on 
the paper retrieval, but a strong bias may be derived 
using keywords in English. The number of papers 
circulating in the second half of 2020 was likely to 
be underestimated, because paper indexing in search 
engines may require long time to become effective. 
Finally, it cannot be excluded that the number of 
papers not finding any relevant correlation among 
the covariates was underestimated because of the 
“publication bias” (Gutiérrez-Hernández, 2021b). 
Future research should consider that the geographers’ 
toolkit, constituted by GIS, statistical analysis and 
geostatistics may be fruitfully applied in spatial anal-
ysis of infectious diseases, but with the highest pos-
sible awareness about the fundaments of epidemiol-
ogy. The classic theory about the epidemic/pandemic 
determinants (the Pathogen, the Host, the Environ-
ment) informs the entire reliability and robustness 
of COVID-19 studies, be they spatial or not. Epide-
miological Geography stands between these three 
subjects—cartography, statistics, and epidemiol-
ogy—and can borrow all their explanatory potential 
to produce high quality cartography. At the same 
time, it should carefully deal with the weak point of 
each one: the MAUP/MTUP bias in cartography, the 
impossibility of statistics to give self-explanatory 
causative links, and the and multicausal and non-lin-
ear origin of epidemic pulses. Through the framework 
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we tried to draft, we hope that the geographers and 
spatial analysts interested in epidemiological maps 
could get some hints about the risks and the potenti-
alities in approaching the mapping of emerging infec-
tious diseases, and, in particular, two specific clues 
about forthcoming investigations. The first one is the 
methodological urgency to incorporate individual-
level clinical data from retrospective studies in spatial 
correlations, to couple multivariate epidemiological 
cartography with field data, and to alleviate the three 
mentioned drawbacks. The second one is the general 
need to refine the geographical appraisal of correla-
tions using the host’s behavior covariates, inasmuch 
as they are demonstrating to be the most relevant for 
the pandemic outcome, but also the less known and 
the most poorly modelized.
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