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Preserving data privacy is an important concern in the research use of patient
data. The DataSHIELD suite enables privacy-aware advanced statistical analysis in
a federated setting. Despite its many applications, it has a few open practical
issues: the complexity of hosting a federated infrastructure, the performance
penalty imposed by the privacy-preserving constraints, and the ease of use by
non-technical users. In this work, we describe a case study in which we review
different breast cancer classifiers and report our findings about the limits and
advantages of such non-disclosive suite of tools in a realistic setting. Five
independent gene expression datasets of breast cancer survival were
downloaded from Gene Expression Omnibus (GEO) and pooled together
through the federated infrastructure. Three previously published and two
newly proposed 5-year cancer-free survival risk score classifiers were trained
in a federated environment, and an additional reference classifier was trainedwith
unconstrained data access. The performance of these six classifiers was
systematically evaluated, and the results show that i) the published classifiers
do not generalize well when applied to patient cohorts that differ from those used
to develop them; ii) among the methods we tried, the classification using logistic
regression worked better on average, closely followed by random forest; iii) the
unconstrained version of the logistic regression classifier outperformed the
federated version by 4% on average. Reproducibility of our experiments is
ensured through the use of VisualSHIELD, an open-source tool that augments
DataSHIELD with new functions, a standardized deployment procedure, and a
simple graphical user interface.
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Introduction

The data-driven research paradigm supported by large datasets and collaborative
initiatives has been successful, but sharing medical data requires preserving patient
privacy and respecting the legitimate concerns of authors about intellectual
ownership. DataSHIELD (Wolfson et al., 2010; Gaye, 2014) was introduced to perform
advanced statistical analysis across multiple, remotely hosted datasets without sharing any

OPEN ACCESS

EDITED BY

Alfredo Pulvirenti,
University of Catania, Italy

REVIEWED BY

Alan Cleary,
National Center for Genome Resources,
United States
Pavel Loskot,
The Zhejiang University-University of Illinois at
Urbana-Champaign Institute, United States

*CORRESPONDENCE

Mario Lauria,
mario.lauria@unitn.it

RECEIVED 31 July 2023
ACCEPTED 08 January 2024
PUBLISHED 29 January 2024

CITATION

Tomasoni D, Lombardo R and Lauria M (2024),
Strengths and limitations of non-disclosive data
analysis: a comparison of breast cancer survival
classifiers using VisualSHIELD.
Front. Genet. 15:1270387.
doi: 10.3389/fgene.2024.1270387

COPYRIGHT

© 2024 Tomasoni, Lombardo and Lauria. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 29 January 2024
DOI 10.3389/fgene.2024.1270387

https://www.frontiersin.org/articles/10.3389/fgene.2024.1270387/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1270387/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1270387/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1270387/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1270387/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1270387&domain=pdf&date_stamp=2024-01-29
mailto:mario.lauria@unitn.it
mailto:mario.lauria@unitn.it
https://doi.org/10.3389/fgene.2024.1270387
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1270387


individual-level data. To the best of our knowledge, DataSHIELD is
the only community-driven open-source framework for privacy-
aware data analysis currently available. The data analysis is
conducted in compliance with the legal and ethical regulations of
the data-hosting country as the data never leave the institution
where it was created. Only non-disclosive summary statistics
computed at each data center are sent to the remote research
institution that requested the analysis where they are aggregated
to produce the final result. In this way, DataSHIELD combines the
privacy of non-disclosive summary statistics with the aggregation of
data kept at geographically remote federated institutions.

In the DataSHIELD architecture, each data center hosts a database
such asMongoDB, anOpal data store, and aRock analysis server.Opal is
OBiBa’s (Doiron et al., 2017) core data warehouse and provides all the
necessary tools to import, transform, and describe locally stored
observational data. Rock is OBiBa’s analysis server, enabling the
execution of non-disclosive statistical analyses. DataSHIELD
orchestrates the interaction between Opal and Rock in order to carry
out federated non-disclosive algorithms. Figure 1 provides a summary of
the DataSHIELD privacy-preserving federated framework. An
undesirable side effect of such a multi-site architecture is that
variations in the deployment of the infrastructure, due to different
software versions and their interactions, can negatively impact the
reproducibility of analyses performed on it.

Recent extensions to the original DataSHIELD suite have been
published, resulting in a progressive increase in its functionality and
ease of use. The “resources” architecture (Marcon et al., 2021)
extends the functionality to the handling of data type beyond
those for which the platform was originally designed.
ShinyDataSHIELD (Xavier et al., 2022) addresses the ease-of-use
concern with a Shiny app (Rstudio, 2013) that allows researchers to
perform many types of statistical analyses without using the R

command line. None of these extensions address the need for an
easy and standardized deployment for researchers, consortiums, and
system administrators (Data sharing in the age of deep
learning 2023).

These and other tools were deployed, integrated, and
harmonized within the Nutritional Phenotype Database in the
European Nutritional Phenotype Assessment and Data Sharing
Initiative (ENPADASI) project (Pinart et al., 2018a; Vitali, 2018)
involving 51 institutions in nine countries, with the aim of building a
decentralized infrastructure to store, query, and share observational
data and metadata on research nutrition interventions.

As participants of the ENPADASI initiative, we were able to
directly observe and collect specific concerns raised within the
research community that need addressing for the tool to achieve
its full potential. One such concern is the overall complexity from an
end-user point of view: federated analyses in DataSHIELD require
proficiency in R programming, while the sharing of data requires
system administration skills in order to set-up a complex multi-site
infrastructure (see Figure 1). Furthermore, the required federated-
aware functionality is scattered across a number of packages:
federated randomForest, K-nearest neighbors, and principal
component analysis are available through a dedicated R package,
dsSwissKnife (Dragan et al., 2020), while visualization of the results
requires other R packages such as randomForestExplainer
(Paluszynska et al., 2020), ggpubr, cowplot, and ggplot2. In view
of these concerns, we were unable to find any previous work
providing a satisfactory analysis of the issues of usability,
reproducibility, and/or functionality disadvantages one can expect
from using a non-disclosive federated framework.

In an attempt to address the usability and reproducibility issues,
we developed VisualSHIELD, an open-source, extensible web
interface that simultaneously provides a standardized deployment

FIGURE 1
Summary of the DataSHIELD privacy-preserving federated framework.
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of the DataSHIELD infrastructure and a graphical user interface to
dsSwissKnife and other R packages in order to simplify the
definition of an analysis workflow and the visualization of
the results.

Then, using VisualSHIELD, we aimed to characterize the
functional penalty of a federated analysis, by selecting a
representative case study and comparing the results obtained in
the federated setting with those obtained in an unconstrained
traditional analysis.

The case study we selected was the identification of breast cancer
relapse based on patient expression profiles. Correct identification of
the patient’s risk of recurrence ensures she receives adequate
therapy, and to this aim, multiple prognostic classifiers have
been proposed to determine the 5-year cancer-free survival
probability (Huang et al., 2013; Skye Hung-Chun et al., 2017;
Chen et al., 2021). However, results on this topic are known to
suffer from a lack of reproducibility. A convincing validation for
such a classifier would require the measurement of its accuracy on a
sufficiently large and heterogeneous collection of datasets, and we
reasoned that this would represent an ideal application for a
federated collection of data repositories. Motivated by these
considerations, we reviewed a set of previously published breast
cancer prognostic classifiers using a collection of multi-cohort
expression profiles that differ from those originally used by the
respective authors. Additionally, we compared the results of the
distributed analysis with those that would be obtained in a
conventional setting, in which the same data held on a single
machine are processed using conventional R packages, and by
difference, we characterized the federated computation
performance and functional penalty.

The main contributions of this work are as follows: first, we
address the usability aspect by describing the VisualSHIELD
approach to friendly GUI design and making available an
open implementation of the tool. Then, we address the
manageability and reproducibility aspect by providing scripts
to automatically perform the installation of a minimal,
standardized, and fully functional reference system to simplify
the initial deployment by researchers and system administrators.
Lastly, we characterize the performance penalty induced by the
non-disclosive constraints using a mix of previously published
and novel breast cancer prognostic classifiers and discuss the
clinical applicability of such models.

Methods

The VisualSHIELD tool (Tomasoni and Lombardo, 2024) was
implemented as a Shiny module (Rstudio, 2013), a graphical R
package that can be embedded into any user-defined Shiny app to
provide the federated analysis capability. It was designed with an
open-source architecture that makes it extensible and provides a
clear framework for the addition of user-defined federated analyses.

The tool provides a simple graphical user interface that integrates
DataSHIELD analysis methods such as histograms, contour plots,
heatmaps (Supplementary Figure S1), boxplots, correlation matrix,
generalized linear models (GLMs) (Supplementary Figure S2), and
dsSwissKnife methods, such as K-nearest neighbors, principal
component analysis, and randomForest.

Furthermore, we added an interactive feature selection
functionality that fits a single-gene logistic model for all the
genes in a list and collects the respective beta coefficients and the
p-values, which can be downloaded and visualized as a volcano plot
(Supplementary Figure S3).

A novel interactive linear regression functionality was
implemented in VisualSHIELD by augmenting the GLM
functionality with some statistics not available in DataSHIELD
such as R2, adjusted R2, and F-score (Supplementary Figure S2).

Logistic regression models (henceforth referred to as logit) are a
special case of generalized linear models (Nelder and Wedderburn,
1972), abbreviated GLMs. They are widely used in medicine to
measure the association between the occurrence of an event (such as
5-year cancer-free survival), called the dependent variable, and a set
of independent variables (such as the expression level of a set of
genes). A number of medical prognostic tools using logistic
regression-based classifiers have been proposed (Biondo et al.,
2000; Kologlu et al., 2001).

In logistic regression, the dependent variable is forced to take a
value in the interval [0, 1], which can be interpreted as the
probability of the outcome being assigned to one of two groups,
such as alive/not-alive 5-year survival status.

To evaluate the performances of the classifiers under
consideration, we used the area under the receiver operating
characteristic (AUROC) (Hastie et al., 2017). The ROC curve is a
widely used plot that illustrates the performance of a classifier,
measured using a two-valued metric, such as true positive rate
(TPR)/false positive rate (FPR).

In a context like ours, where we need to compare different
curves, the area under the ROC curve provides a single value that
simplifies the comparison.

In order to provide a robust estimate of each method’s
performance, we use the well-known cross-validation procedure
(Hastie et al., 2017). Every classifier analyzed in this paper was
trained five times, by using four out of five datasets as the training set
and the remaining dataset as the test set. This method allows us to
test the classifier performance stability when trained with different
data. This version of the procedure is often referred to as the leave-1-
dataset-out cross-validation.

In this work, we evaluate the performances of five different
models using data stored in a non-disclosive federated environment,
plus an additional “full” reference model validated with unrestricted
access to locally stored data; all the models are designed as
prognostic classifiers to predict the probability of breast cancer-
free survival at 5 years using gene expression data.

Three of the five models are previously published GLMs; the
remaining two are newly proposed models, specifically a GLM and
random forest (Ho, 1995), which is abbreviated RF. The additional
“full” reference model trained with full data access is also a GLM.

The three published GLMs were trained with the genes
identified by the respective authors, while the two novel GLM
and the RF models proposed in this paper were built starting
from a small subset (262 genes) extracted from the full list
(13,041 genes) of genes available in the profiles.

The subset was identified with the feature selection functionality
available in VisualSHIELD, by fitting a single-gene logistic
regression model for all the gene profiles in the datasets and
collecting the beta coefficient and the p-value assigned to the

Frontiers in Genetics frontiersin.org03

Tomasoni et al. 10.3389/fgene.2024.1270387

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1270387


gene by the respective model. The beta coefficient of the
independent variable measures the change in the dependent
variable for a unit change in the independent variable. Thus,
independent variables with higher beta coefficients have a

stronger influence on the dependent variable. The p-value
estimates how likely it is to observe an association of the same or
higher strength purely by chance.

Using these two measures, a volcano plot was constructed
(Supplementary Figure S3), and only the significant genes (p <
0.05) with the most extreme beta values (below 1 and above
99 percentile) were retained.

Our two newly proposed logistic regression models are named
“full” and “restricted.”

The ‘full’ model was obtained with a forward stepwise variable
selection method (Hastie et al., 2017) applied to the 262 genes and all
their interaction terms, accessing the data in a federated setting via
VisualSHIELD. We implemented the stepwise selection because we
were unable to find a federated implementation. The final model
includes single genes and interaction terms for a total of 25 terms.
Since the DataSHIELD-federated GLM implementation prevented
us from running the “full”model in a leave-1-dataset-out setting (on
the grounds that the model is disclosive of individual-level data
when used on a small number of datasets), we derived a “restricted”
version that was considered non-disclosive. “Restricted” was
obtained starting from “full” by removing each gene/interaction
term in turn, starting with the ones with the largest significant
p-values and lower beta coefficients until it became acceptable from
a non-disclosive point of view, according to the
DataSHIELD criteria.

The random forest model was similarly trained on the list of
262 genes, again accessing the federated collection of five datasets
through VisualSHIELD.

AUROC curves were estimated for all six classifiers for every
train/test round of a leave-1-dataset-out validation
scheme (Figure 2).

With respect to the actual implementation of the analyses
described above, we followed a hybrid approach: the feature
selection and training phase were executed through the
VisualSHIELD web interface in a federated environment, except
for the “full”model, that was built in a local R environment with the
glm function. The test phase, the ROC curve analysis, and the plots
were generated in a local R environment, by loading the models
previously exported from VisualSHIELD to a file in the rData
format and by direct use of the “full” model.

The five logistic regression-based classifiers were trained with
the federated version of the GLM using logit as the link function.

The random forest (RF) model was developed using the
dsSwissKnife function dssRandomForest (Dragan et al., 2020) that
implements a federated version of the algorithm and is built on top
of the RandomForest R package.

Docker (Merkel, 2014) is a tool used to automatically configure
and run complex software infrastructures across very different
machines. This technology has been used in VisualSHIELD to
allow researchers to quickly configure and run the full
DataSHIELD infrastructure (Figure 1) ready to be connected to
the VisualSHIELD GUI for data analysis. Setting up this instance
requires the researcher only to install Docker and run a single set-
up command.

The five datasets used are publicly available for download in
Gene Expression Omnibus (Edgar et al., 2002), abbreviated GEO,
and contain independent gene expression datasets of breast cancer
survival. They were harmonized with a custom R script and then

FIGURE 2
AUROC curves for all six classifiers for every train/test round
using a leave-1-dataset-out validation scheme.

Frontiers in Genetics frontiersin.org04

Tomasoni et al. 10.3389/fgene.2024.1270387

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1270387


imported in the Opal instance created through the VisualSHIELD
Docker images.

We choose datasets created at different institutions at different
times to maximize between-dataset diversity. They all share a
phenotypic column with the 5-year cancer-free survival status
and a large common set of gene expression profiles, which is
used for prediction.

All the datasets come from gene expression studies using the
DNA microarray platform Affymetrix Human Genome U133 Plus
2.0, except that GSE2034 used its predecessor, the Affymetrix
Human Genome U133A (AffyMetrix datasheet 2023).

Raw probe ids were mapped to official gene symbols through the
R AnnotationDbi suite of packages (Pagès et al., 2023), de-
duplicated, and the raw profiles were normalized by subtracting
the mean and dividing by the standard deviation.

The data were then imported into different Opal servers for the
subsequent federated analyses. The five datasets we used are
the following:

• GSE102484 (Cheng et al.): this contains breast cancer
samples obtained from 683 patients, originally used to
develop a 18-gene prognostic classifier to estimate distant
metastasis risk.

• GSE2034: this contains samples obtained from 286 lymph
node negative patients, used to develop a 76-gene signature to
identify patients who developed distant metastases
within 5 years.

• GSE48390 (Huang et al.): this contains breast cancer samples
obtained from 81 Taiwanese women, used to develop a breast
cancer relapse risk model based on 16 genes.

• GSE61304: this contains samples from 57 patients used to
entail the novel bio-marker discovery of tumor aggressive
grade (TAG) signature genes that allowed developing a novel
patient prognostic grouping method selecting the 12 survival-
significant sense–antisense (SA) gene pairs (SAGPs).

• GSE19615: this contains samples obtained from 115 patients
from which the authors identified a small number of
overexpressed and amplified genes from chromosome
8q22 that were associated with early breast cancer recurrence.

The three published classifiers, henceforth called Chen, Huang,
and Cheng, from the names of their respective first authors, are
the following:

• Chen et al. (2021) proposed a 20-gene classifier for predicting
patients with a high/low risk of breast cancer recurrence
within 5 years and validated it on a dataset of Asian breast
cancer patients.

• Skye Hung-Chun et al. (2017) proposed and validated an 18-
gene classifier to predict 5-year distant metastasis risk and
defined a threshold score for high/low-risk patients. The
primary outcome was the 5-year probability of freedom
from distant metastasis (DMFP). In this paper, we
repurposed this model to predict 5-year disease-free
survival by equating absence of metastasis to disease-
free survival.

• Huang et al. (2013) derived signatures associated with clinical
ER and HER2 status and disease-free survival. Furthermore,

they derived a 16-gene model to identify patients with a low
risk for 5-year recurrence on a dataset of Han Chinese breast
cancer patients that we used for our analysis.

The independent variables for all the logistic regression models
under consideration are summarized in Table 1.

Results

We analyzed five independent gene expression datasets of breast
cancer patients from Gene Expression Omnibus (GEO), collected
from different times and different institutions to maximize the
between-dataset diversity. We harmonized and pooled them
together through the federated infrastructure.

They all share a phenotypic column with the 5-year cancer-
free survival status that was used to train six prognostic
classifiers: three previously published and two newly proposed
classifiers that were trained in a federated environment, and an
additional “full” reference classifier that was trained with
unconstrained data access.

Five of the classifiers are based on logistic regression, and the
respective formulas are reported in Table 1. The remaining one is
based on a federated implementation of the random forest method.

All these classifiers were obtained training different algorithms
on a small subset of genes (n = 262) extracted from the full list (n =
13,041), using the volcano-plot-based feature selection function we
implemented in VisualSHIELD (Supplementary Figure S3).

The “full” model is the classifier that one would expect to
obtain after training a traditional logistic regression model on the
small subset of genes. Since the federated GLM implementation
available in DataSHIELD prevented us from training the model
because of privacy constraints, we resorted to training it on a
single machine with full access to a local copy of the data. The
resulting “full” reference model was used for comparison
purposes and ended up including 17 genes and 8 gene–gene
interaction terms as predictors.

We then progressively restricted the “full” model by removing
less relevant terms, namely, the terms with lower beta values or
higher p-values, until the new model was deemed safe and
acceptable for training by DataSHIELD. The formula for the
restricted model can be found in Table 1 and ended up
containing 10 genes and 7 gene–gene interaction terms as
predictors.

This incident shows that in order to preserve privacy, federated
alternatives of canonical algorithms are not always able to reproduce
the analyses that would be possible in an unrestricted environment.
One might argue that a federated analysis carried out using tools
such as DataSHIELD compensates for this penalty by enabling
access to a potentially larger selection of datasets that would be
possible without privacy guarantees.

The ROC curves for each model in each of the five train/test
rounds are shown in Figure 2, while the average and standard
deviations of the AUC for every model considered are shown
in Figure 3.

These results show a consistently superior performance of our
newly proposed models, in particular RF, compared to the published
breast cancer prognostic classifiers on unseen datasets.
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Another observation is that, as expected, the unconstrained
version of the logistic regression classifier (“full logit”)
outperforms the federated version (“restricted logit”) but only by
a modest 4% on average.

Finally, we sought to characterize the impact of distributed
implementation of the linear model fitting algorithm. To
compare the performance of the federated versus the canonical
GLM algorithm, we trained the restricted model with full
data access.

After performing the same cross-validation scheme and
averaging the AUCs obtained, we found that the restricted model
built with full data access shows the same performance as the

restricted model trained in the federated environment (data
access average AUC: 0.667, with standard deviation 0.091;
federated average AUC: 0.666, with standard deviation 0.091).
This result supports the conclusion that when not limited by
disclosure risks, statistical models trained in a federated
environment have the same predictive power of equivalent
models trained with full data access, a testament to the quality of
the implementation of the federated GLM in DataSHIELD.

Discussion

We systematically evaluated three previously published and
three newly proposed breast cancer relapse or cancer-free
survival classifiers and found that our models outperform
previous state-of-the-art classifiers.

Even if our models show superior performance, it is not clear
whether they reach the level required for clinical use. To make
things worse, our experiments show that the published results
can be hard to replicate. To address both issues, it has been
shown that a substantially larger sample size is required (Ein-
Dor et al., 2006; Forouzandeh et al., 2022). An important
contribution of our work is to make available a tool that
facilitates experiments needing access to large
collections of data.

Our analysis shows a limit of statistical modeling in a federated
environment: some models cannot be trained because they are
disclosive of individual-level data in some datasets. Training such
a model in a canonical full-data access setting with the standard glm
command led to a marginally higher average AUC and thus better
average prediction performances.

On the other hand, training the same privacy-preserving model
both in a federated and non-federated setting showed comparable
performances, supporting the notion that when not limited by
disclosure risks, statistical models trained in a federated
environment have the same predictive power of equivalent
models trained with full-data access.

From a biological point of view, limiting the number of
independent variables in the statistical model is not necessarily
an unsurmountable issue since a model with many variables is
often of little practical applicability in a clinical setting.

TABLE 1 Summary of the classifiers based on logistic regression (logit). For all models, the dependent variable (not shown for brevity) is the 5-year cancer-
free survival status. The remaining classifier (not shown) is based on a random forestmodel, and it includes all the 262 genes resulting from the initial feature
selection.

Name Formula Reference

Chen BLM + BUB1B + CCR1 + CKAP5 + CLCA2 + DDX39 + DTX2 + ERBB2 + ESR1 + MKI67 + OBSL1 + PGR + PHACTR2 + PIM1
+ PTI1 + RCHY1 + SF3B5 + STIL + TPX2 + YWHAB

PMC8010242

Huang RCAN3 + MCOLN2 + DENND2D + RWDD3 + ZMYM6 + CAPZA1 + TRIM45 + GPR18 + WARS2 + SCRN1 + CSNK1E +
HBXIP + MRPL20 + CSDE1 + COL20A1 + IKZF1 + batch

PMC3789693

Cheng TRPV6 + DDX39 + BUB1B + CCR1 + STIL + BLM + C16ORF7 + PIM1 + TPX2 + PTI1 + TCF3 + CCNB1 + DTX2 + ENSA +
RCHY1 + NFATC2IP + OBSL1 + MMP15

PMC5590926

Logit full BTN2A2 + ALDH3B2 + EML1 + FKBP5 + IGFBP6 + LRRC32 + STX5 + RABAC1 + BCAM + TFIP11 + PLIN3 + SGK1 +
TXNRD1 + PPP1CC + KATNBL1 + CHPT1 + IMP3 + GLUD1:SLC26A3 + SLC26A3:NDUFB1 + RLN1:RLN2 + SREK1:
GORASP1 + SREK1:NTM + RLN1:RECQL4 + TXNIP:GORASP1 + PHF10:POLQ

New

Logit restricted EML1 + IMP3 + BTN2A2 + FKBP5 + IGFBP6 + LRRC32 + STX5 + RABAC1 + TXNRD1 + KATNBL1 + GLUD1:SLC26A3 +
SLC26A3:NDUFB1 + RLN1:RLN2 + SREK1:GORASP1 + TXNIP:GORASP1 + PHF10:POLQ + SREK1:NTM

New

FIGURE 3
Average and standard deviations of the AUC for every model
considered. Logit full was trainedwith full data access, while the others
were trained in the privacy-preserving environment provided by
VisualSHIELD. Although the full model has an average AUC
greater than RF, the latter has a smaller standard deviation.
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From an analytical point of view, this may be viewed as an issue
since it is limiting the choice of models that can be trained. We argue
that this is an unavoidable trade-off of the DataSHIELD framework,
ideally compensated by the larger choice of the federated dataset it
allows access to.

One interesting question to address is whether privacy is too
restrictive for medical studies. Based on our results, we conclude that
the smaller choice of the GLM trainable in a privacy-preserving
environment is not necessarily damaging as we observe a relatively
small performance penalty. Additionally, alternative approaches
such as random forest can provide better overall results.

An open issue is the potential bias introduced by the reduction
in the overall availability of data for research due to the privacy
burden, which might disproportionally affect under-represented
patient groups and/or diseases. We believe that the ongoing
development of tools such as VisualSHIELD will ease such
concerns by reducing the cost and complexity of compliance to
privacy regulations.

DataSHIELD natively includes several federated algorithms, and
other authors have proposed additional federated algorithms as
independent R packages. Furthermore, canonical non-federated R
packages can be used to analyze and plot federated results
(Paluszynska et al., 2020). It should be noted that the DataSHIELD-
federated analysis framework is by nomeans specific to gene expression
data; it can be applied to virtually to any type of biomedical data that can
be organized in a tabular format.

These tools collectively expand the possibility to derive insights
from the federated analyses but require R proficiency to be set up
and effectively used.

VisualSHIELD is an attempt to address these concerns with an
open-source, customizable, and modular Shiny module. It integrates
additional functionalities and a set of standardized, ready-to-use
Docker containers. We believe this is another step toward
reproducible federated data analysis, and to encourage this trend,
we make VisualSHIELD available as an open-source tool.
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