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Abstract

Sorting by Reversals (SBR) is one of the most widely studied models of genome re-
arrangements in computational molecular biology. At present, % is the best known ap-
proximation ratio achievable in polynomial time for SBR. A very closely related problem,
called Breakpoint Graph Decomposition (BGD), calls for a largest collection of edge dis-
joint cycles in a suitably-defined graph. It has been shown that for almost all instances
SBR is equivalent to BGD, in the sense that any solution of the latter corresponds to a
solution of the former having the same value. In this paper, we show how to improve the
approximation ratio achievable in polynomial time for BGD, from the previously known
% to % + € for any € > 0. Our result uses the best known approximation algorithms for
Stable Set on graphs with maximum degree 4 as well as for Set Packing where the max-
imum size of a set is 6. Any improvement in the ratio achieved by these approximation
algorithms will yield an automatic improvement of our result.

Key words: sorting by reversals, breakpoint graph, alternating cycle decomposition, set
packing, stable set, approximation algorithm.

1 Introduction

Sorting by Reversals (SBR) is one of the most widely studied models of genome rearrange-

ments in computational molecular biology, and is defined as follows. Let 7 = (w1 ... )
be a permutation of {1,...,n}. A reversal of the interval (3, j) is an inversion of the subse-
quence 7; ... w; of m, yielding permutation (71 ... m_1 T Tj_1 ... Tig1 T Tjp1... Tp).

SBR calls for a shortest sequence of reversals transforming 7 into the identity permutation
(12 ... n—1n). The length of such a sequence is denoted by d.
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A problem very closely related to SBR is the following Breakpoint Graph Decomposition
(BGD). A breakpoint graph [1] G = (V, E) is one in which:

e the edge set E is partitioned into subsets B of black edges and Y of grey edges (G is
“bicolored”);

e there are no parallel edges (G is “simple”);

e each node of G is either isolated, or incident with one black and one grey edge, or
incident with two black and two grey edges (G is “balanced” and A(G) < 4);

e there is no monochromatic cycle, i.e. no cycle is fully contained in B or Y

where A(G) denotes the maximum degree of a node of G. Let bg := |B|(= |Y]). An
alternating cycle of G is a cycle whose edges are alternately black and grey, possibly visiting
some nodes twice, but visiting each edge at most once. BGD calls for the maximum number
of edge-disjoint alternating cycles of G, denoted by cg. More precisely, the objective is to
minimize bg — c*, where ¢* is the number of alternating cycles in the solution, and the optimal
solution value is bg — cg. In the following, we will refer to alternating cycles by calling them
simply cycles.

In [1] it is shown that, given a permutation 7, one can define a breakpoint graph G(m)
such that dr > bg(r) — cg(r)- (On the other hand, [5] shows that any breakpoint graph
is isomorphic to G(w) for some permutation 7.) For short, we will omit subscripts in the
following and simply use the notation d, b, and c. Even if in the worst case d may be as large
as 3(b— c) (but not more) [5], the extensive computational results carried out in [13, 7, §]
as well as the probabilistic analysis of [6] showed that d = b — ¢ in almost all cases, namely
with probability 1 — @(n—15) for a permutation of n elements. More precisely, given a BGD
solution of value b — ¢, in almost all cases one can immediately derive an SBR solution of
the same value. This motivates the study of BGD itself, which has the advantage of being
simpler than SBR in many respects. In particular, in the study of BGD one does not have to
deal with complex combinatorial objects called hurdles [11], that typically make results for
SBR much harder to prove than their counterparts for BGD.

At present, the best known approximation ratio achievable for both SBR and BGD is
%, due to Christie [9]. One may wonder whether this ratio is the best possible. In [4],
Berman and Karpinski showed that the two problems are APX-hard, namely they cannot
be approximated within a ratio better than 1,0008 in polynomial time unless P=NP, and
posed as a challenging question the improvement of either the 1,0008 lower bound or the
% upper bound. In this paper, we improve the approximation achievable for BGD, showing
how to get a % + € approximation for any € > 0. This proves that the % ratio is not the best
possible, at least for BGD. Moreover, our result makes use of the best known approximation
algorithms for Stable Set on graphs with maximum degree 4 as well as for Set Packing
where the maximum size of a set is 6, and any improvement in the ratio achieved by these
approximation algorithms will yield an automatic improvement of our result.



2 The main scheme

Consider an optimal BGD solution and let cg5 denote the number of corresponding cycles of
length 2k for k = 2,3,.... Note that b = 2c4 + 3cg + 4cg + ... > 2¢, and assume without loss
of generality b > 1, as BGD is trivial when E = (} (this happens if and only if the input 7 to
SBR is the identity permutation). The results in [4] imply that finding a largest collection of
cycles of length 4 (and also of length < 2k for any given k£ > 2) is NP-hard.

Our approximation algorithm is based on efficiently finding two collections of edge-disjoint
cycles, one containing at least acy cycles (of length 4) and the other containing at least
B(cs + cg) cycles (of length < 6). Therefore, the final objective value for BGD is b — c*,
where ¢* > max{acy, f(cs + ¢6)}. Before our work, the best known guarantees achievable in
polynomial time for o and 3 were 3 (see [9]) and § — € for any € > 0 (see [12]), respectively.
It is known and it will be clear from the discussion below that the bottleneck in order to
improve on the % approximation for BGD is the value % for a. Accordingly, most of the paper
will be devoted to the illustration of an improvement on this value. In particular, we will
show that the problem of finding a largest collection of cycles of length 4 in G' can be stated
as the problem of finding a largest stable set in a suitable graph G* with A(G*) < 4. Hence,
we will be able to push « up to % — € for any € > 0, which is the best known approximation
guarantee for this version of Stable Set [3]. In particular, this guarantee is ﬁ —e. Here
is a formal statement of the result that we will prove in the next section.

Lemma 2.1 The problem of finding a largest collection of edge disjoint cycles of length 4 in
a breakpoint graph G can be reduced to a Stable Set problem on a graph G* with A(G*) < 4,
for which the currently best known ratio achievable in polynomial time is % —€ for any e > 0.

We did not succeed in improving the % — € value for 8. The same approach used to
improve the value of « seems useless for this purpose. In particular, this approach considers
only cycles of length 4 along with the fact that not many (at most 6, as shown in the next
section) such cycles may share an edge with another given cycle of length 4. When also cycles
of length 6 are considered, it is easy to realize that the number of such cycles sharing an edge
with a given cycle of length 6 can be much larger, e.g. equal to 18.

The approximation ratio of % — € is achieved by using a general technique to approximate
the following problem, called p-Set Packing. The well known Set Packing problem is defined
by a ground set F' and a collection Si,...,5, of subsets of F. Two subsets S; and S; are
called independent if S; N S; = 0, and the objective is to find a largest subcollection of
pairwise independent subsets. If the cardinality of each subset in the collection is bounded
by a constant p, the problem is called p-Set Packing. Hurkens and Schrijver [12] described a
local search scheme for p-Set Packing that achieves an approximation ratio of % + € for any
e > 0. Clearly, the problem of finding a largest collection of cycles of G of length at most
6 can be formulated as a 6-Set Packing problem where F' = FE and the collection of subsets
corresponds to all cycles of length < 6. To formalize this discussion, we state the following

Lemma 2.2 The problem of finding a largest collection of edge disjoint cycles of length < 6
in G can be formulated as a 6-Set Packing problem, for which the currently best known ratio
1

achievable in polynomial time is 5 — € for any € > 0.

The next result illustrates the approximation ratio that is achieved by the BGD solution
depending on the values of @ and . In particular, one should compare the heuristic solution



value b — ¢*, where ¢* > max{acs,(cs + c6)}, and the optimal solution value b — c. We
note that, generalizing Lemma 2.2 in a straightforward way, we may also obtain a number of
cycles at least equal to %(04 +cg+...+cop) —eforany € >0 and k = 4,6, ..., but this does
not help in improving the approximation guarantee.

Lemma 2.3 Let ¢* > max{acy, 3(cs + cg)}, where 0 < B < a < 1. Then,
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Proof: We prove the claim by solving the optimization problem

max boe (2)
b—c
subject to

c2cy+ ¢, (3)

b—2c4 —
CSC4+66+C+3CG, (4)
c* > max{acy, B(cs + cs)}, (5)
b>1, (6)
C4,Cq > 0. (7)

Constraint (4) follows from the fact that every cycle of length > 8 contains at least 4 black
(and grey) edges. The integrality of the variables does not have to be imposed explicitly, as
any rational solution can be scaled by a suitable factor so as to obtain an integer solution of
the same value (below we will show that we can restrict our attention to rational solutions).
Note first that ¢ appears at the denominator of the objective function (2) with negative
coefficient and is bounded by (3) and (4), therefore the maximum is attained when c takes
its maximum value, i.e. when (4) is satisfied at equality. This allows us to remove variable ¢

along with (4), replace (3) by
b > 2c4 + 3cs, (8)

and write the new objective function

b—c*
maxX g1 1 (9)
49~ 364 — 1%
Of course, the maximum is attained when (5) is satisfied at equality. We consider separately
the two cases ¢* = acq and ¢* = [(ca + cg)-
In the first case, acy > (cs + cg). The problem can therefore be rewritten as (9) subject
to

acy > [es + cg) (10)
b > 2¢4 + 3c (11)
b>1 (12)

cg > 0. (13)



In particular, the non-negativity of ¢4 is implied by (10) and the fact that o« > 3. This is
a fractional linear programming problem, which is the generalization of a linear program-
ming problem in which the objective function is the ratio of two linear functions. It is
well known [10] WARNING: Alberto, mi sbagliavo quando avevo fornito questa
referenza that, provided the objective function is bounded in the feasible region F', the
maximum is attained in an extreme point of F'. Note that in our case the objective function
is bounded both from below and from above.

The extreme points are found by imposing equality in three out of the four inequality
constraints. We consider separately the 4 cases, indicating the inequality that is not tight for
each of them.

(10) is not tight: We have ¢¢ =0, b=1 and ¢4 = %, and the objective value is

2—a. (14)
(11) is not tight: We have ¢4 = ¢¢ = 0 and b = 1, and the objective value is

3
= (15)

(12) is not tight: We would have b = ¢4 = ¢g = 0, which is clearly infeasible.

(13) is not tight: We have b = 1, ¢4 = a‘%ﬁcﬁ and cg = %, le. ¢y = %, and the
objective value is

B
1- 3255 _3a-p—-af

af _— 2a—f

; (16)
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We now consider the case ¢* = [(cs + ¢g), implying acy < (cs + cg). The problem can
be rewritten as (9) subject to

acy < B(eq + o) (17)
b > 2cy + 3ce (18)
b>1 (19)

cs > 0. (20)

In particular, the non-negativity of ¢4 is implied by (17) and the fact that « > (. In this
case, the extreme points correspond to the following cases:

(17) is not tight: We have ¢4 =0, b =1 and ¢s = %, and the objective value is

i%@. (21)

(18) is not tight: We have ¢4 = ¢ = 0 and b = 1, and the objective value is as in (15).

(19) is not tight: We would have b = ¢4 = ¢ = 0, which is clearly infeasible.



(20) is not tight: We have b =1, ¢4 = OLI‘%ﬂCG and ¢cg = 3"__%, and the objective value is
as in (16).

The proof then follows from (14), (15), (16), and (21). O
As a consequence of Lemmas 2.1, 2.2 and 2.3, we have the improved approximation for BGD,
obtained by plugging in the values of « and § in (1).

Theorem 2.4 The approzimation ratio achieved for BGD is % + € for any € > 0.

3 Cycles of length 4 and stable sets: Proof of Lemma 2.1

In this section we prove Lemma 2.1. We will only consider (alternating) cycles of length 4,
called C4’s for short. In many points in our proofs we will exclude the presence of monochro-
matic cycles, also called black or grey cycles depending on the color of their edges.

Let G* be the graph having one node for each C4 of G and one edge connecting each pair
of C4’s that share an edge in G. The problem of finding a largest collection of edge disjoint
C4’s in G is clearly equivalent to the problem of finding a stable set of maximum cardinality
in G*. We will propose simple reductions for this second problem, in case G* has a node of
degree > 5. The effect will be to transform the problem of finding a largest collection of edge
disjoint C4’s into a stable set problem in a graph G* with A(G*) < 4, proving the lemma.

We say that two edges of G are independent if they have no common endpoint. The fact
that G is simple implies

Fact 3.1 Let e and f be two edges contained in a same C4. Then e and f are independent
if and only if they have the same color.

Fact 3.2 Two C4’s can share at most two edges. Moreover, if they share two edges then
these two edges have different colors.

Proof: Let Cy and Cs be two C4’s. If Cy and C5 have at least three edges in common then
C1 = (s since G is simple. Let e and f be two edges contained both in C; and in C3. By
Fact 3.1, if e and f have the same color then they are independent. Here, C; = C5 follows
again since G has no monochromatic cycle. O

Fact 3.3 Fach edge belongs to at most three C4’s.

Proof: Let Cy, C1,Cy and C3 be four distinct C4’s using edge uv. We can assume that uv
is black, and that zu and yv are the two grey edges of Cy. By Fact 3.2, there must exist
two further grey edges zu and yv adjacent to uv and we can assume w.l.o.g. the following
scenario: zu,uv,vy € C1, Tu,uv,vy € Cy, and ZTu,uv,vy € C3. But then G would contain a
black cycle, made up by the following 4 edges: zy from C, yz from Cs, Zy from Cy, and yz
from Cj. O

The next lemma shows that A(G*) < 6 and identifies those configurations in G that lead
to a node of degree 5 or 6 in G*. Since Stable Set on graphs with maximum degree 6 can
be approximated within g — ¢ for any € > 0, by Lemma 2.3 this would already imply an
approximation of % + ¢ for BGD.
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Figure 1: Configuration corresponding to a node of degree 6 in G*.

Lemma 3.4 No node of G* has degree more than 6. Moreover, to each node of degree 6
there corresponds the configuration given in Fig. 1. Excluding cases which are equivalent
by symmetry, to each node of degree 5 there corresponds one of the configurations given in
Figs. 2, 8, 4, and 5, called Type A, Type B, Type C and Type D configuration, respectively.

Proof: Let C be a node of G*, i.e. a C4 of G. Let ab and cd be the two grey edges of C' and
bc and da be the two black edges of C. Let = be the number C4’s of G sharing precisely one
edge with C. Let y be the number C4’s of G sharing precisely two edges with C.

Claim 1: z < 4. Indeed, assume z > 4. Let C; and C3 be two C4’s containing a same
edge (w.l.o.g. ab) of C and such that C; and C5 share only edge ab with C. Since at most
two black edges are incident with every node of G, it follows that C; and C5 must have both
black edges in common. This is in contradiction with Fact 3.2. o

Assume A(G*) > 6, i.e. x +y > 7. By Fact 3.3, each edge of C belongs to at most two
C4’s other than C. Since C has four edges £ + 2y < 4-2 = 8. Combining the two inequalities
we get © > 6, a contradiction.

Next, let us consider the case in which C has degree 6, i.e. £ + y = 6. Combining again
with z 4+ 2y < 8 we get y < 2 and z > 4. By the claim above, this implies £ = 4 and y = 2.
Let Cgp (resp. Cpe, Ceq and Cy,) be the C4 sharing precisely edge ab with C (resp. edges be, c¢d
and da). Let aap and bbg be the two black edges of Cy,. Even if in this way a same node can
be referred to by more than one name, we call bby and ccy the two grey edges of Cy., ccp
and ddp the two black edges of C.q4, ddy and aay the two grey edges of Cy,. Since y = 2, we
must now exhibit the two C4’s, say C; and Co, having precisely two edges in common with
C. By Fact 3.2, we can assume w.l.o.g. that C; contains edges ab and bc. Again, by Fact 3.2,
this forces the edges of C to be ab,bc, ccy and aap. Therefore, cy and ap are actually the
same node.

If C5 contains edges cd and da, then the remaining two edges of Cy are ccg and aay
and cg = ay. This case corresponds to the configuration given in Fig. 1, as stated by the
lemma. Note that nodes bp and dg can still coincide. The same holds for nodes by and
dy, even if the two pairs cannot coincide at the same time, otherwise G would contain a
monochromatic cycle. No two other nodes can coincide, since G is simple, with A(G) < 4
and no monochromatic cycle.

Otherwise, we can assume by symmetry that Co contains edges bc and cd. In this case,



Figure 2: Type A configuration corresponding to a node of degree 5 in G*.

the remaining two edges of Cs are bby and ddp and by = dg. But then G contains the black
cycle dpd, da,aap, cyby.

Finally, let us consider the case in which C' has degree 5, i.e. £ +y = 5. Combining again
with £ 4+ 2y < 8, we get y < 3 and = > 2.

Case 1: £ =2 and y = 3. (Type A configuration, see Fig. 2.)
Let C; and C5 be the two C4’s with precisely one edge in common with C.

Assume first C; contains edge ab and Cs contains edge cd. We will show that this leads
to a contradiction. Even if a same node can receive several names, call aag and bbg the two
black edges of Ci, and ccg and ddp the two black edges of Cs. Since y = 3, we must now
exhibit the three C4’s having precisely two edges in common with C. By symmetry, we can
assume to have one which contains edges ab and bc and another which contains edges ab and
ad. By Fact 3.2, the first one contains edge aap and a grey edge with one endpoint in ap
and the other in ¢. The second one contains edge bbp and a grey edge with one endpoint in
bp and the other in d. But then G contains the grey cycle apc, cd, dbp,bpap.

Assume now, by symmetry, that C; contains edge ab and C5 contains edge bc. Even if
a same node can receive several names, call aap and bbp the two black edges of C7, and
bby and ccy the two grey edges of (5. Since y = 3, we must now exhibit the three C4’s
having precisely two edges in common with C. By symmetry, we can assume that one of
these C4’s contains edges ab and ad, containing also edge bbp as well as a grey edge with one
endpoint in bp and the other in d. Note that none of these C4’s can contain both ab and be,
since otherwise it would also contain edges aap and ccy, i.e. ap and cy would coincide, with
the consequence that G would contain the grey cycle dbg,bpap, cyc,cd. It follows that we
must also have a C4 containing edges bc and cd, and a C4 containing edges ad and dc. The
first one contains edge bby as well as a black edge with one endpoint in by and the other
in d. The second one contains a grey edge with an endpoint in a and a black edge with an
endpoint in ¢, and these two edges must have their other endpoint in common. Call z this
common endpoint. Hence, this case corresponds to the configuration given in Fig. 2. Note
that z cannot coincide with any of the other nodes seen so far. In fact, no two nodes of the
configuration in Fig. 2 can coincide, since G is simple, with A(G) < 4 and no monochromatic
cycle. o
Case 2: z =3 and y = 2. (Type B and Type C configurations, see Figs. 3 and 4.)
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Figure 3: Type B configuration corresponding to a node of degree 5 in G*.

By symmetry, we can assume that the three C4’s containing exactly one edge of C' are Cy,,
Cap and Cp,, sharing with C edges da, ab and bc respectively. Even if a same node can receive
several names, call ddy and aay the two grey edges of Cy,, aap and bbg the two black edges
of Cyp, bby and ccy the two grey edges of Cp.. Since y = 2, we must now exhibit the two
C4’s, say C7 and Cy, having precisely two edges in common with C.

Assume first C; contains the edges ab and bc. Then, by Fact 3.2, C; contains edges aap
and ccy, and nodes ap and ¢y must coincide. Now, Cy cannot contain edges ab and ad since
otherwise bp and dy would coincide, and G would contain the grey cycle cyc, cd, ddy,bpap.
Moreover, C cannot contain edges bc and cd since otherwise Cy would contain edge bby as
well as a black edge with one endpoint in by and the other in d. Again G would contain the
black cycle da, aap, cy by, byd. Hence, Cs contains the edges ad and dc. So, Cy contains edge
aay as well as a black edge with one endpoint in ay and the other in ¢. This case corresponds
to the configuration given in Fig. 3. Note that nodes by and dy can still coincide. No two
other nodes can coincide, since G is simple, with A(G) < 4 and no monochromatic cycle.

I I cy — b
GYI\a|>db/IbY -

dy d c cy

Figure 4: Type C configuration corresponding to a node of degree 5 in G*.

Assume now, by symmetry, that C; contains edges ad and dc and C5 contains edges bc
and cd. So, C; contains edge aay as well as a black edge with one endpoint in ay and the
other in ¢. Moreover, Cy contains edge bby as well as a black edge with one endpoint in by
and the other in d. This case corresponds to the configuration given in Fig. 4. Note that
nodes cy and bp can still coincide, as well as nodes dy and ap, even if the two pairs cannot
coincide at the same time. No two other nodes can coincide, since G is simple, with A(G) < 4
and no monochromatic cycle. o
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Figure 5: Type D configuration corresponding to a node of degree 5 in G*.

Case 3: z =4 and y = 1. (Type D configuration, see Fig. 5.)

Let Cgup (resp. Cpe, Ceq and Cy,) be the C4’s sharing precisely edge ab with C (resp. edge
bc, cd and da). Even if a same node can receive several names, call aap and bbg the two black
edges of Cyp, bby and ccy the two grey edges of Cy., ccg and ddp the two black edges of
C.q, ddy and aay the two grey edges of Cy,. Since y = 1, we must now exhibit a C4, say C,
having precisely two edges in common with C. We can assume w.l.o.g. that C contains edges
ab and bc. This forces the edges of C to be ab, bc, ccy and aap, i.e. cy and ap are actually
the same node. Hence, this corresponds to the configuration given in Fig. 5. We can also
identify one of the following pairs: ay and bp; ay and dp; by and cp; dy and cp; dy and by.
Note that we cannot identify ay and cp as we would get the degree 6 configuration in Fig. 1. O

3.1 Degree 6 configurations

In this subsection, we show how to get rid of the nodes of degree 6 in G* by proving that a
certain set of neighbors of a degree 6 node in G* is contained in some optimal stable set of
G*. This allows one to remove from G* this set of nodes, and address a reduced problem on
a graph G* with A(G*) < 5. Note that

Fact 3.5 The graph obtained from a breakpoint graph by removing the edges in a C} is a
breakpoint graph as well.

Accordingly, the above reduction on G* has an immediate counterpart on GG, and one can
operate on a reduced breakpoint graph in which each C4 intersects at most five C4’s.

Due to Lemma 2.3 and the results in [2], limiting the degree of G* to 5 already yields an
approximation of % — ¢ for BGD.

Let H be the graph given in Fig. 6. Let H be the subgraph of H induced by the nodes in
V(H)\ {Cs,Cy4}. One can easily check that all nodes in V(H) = V(H) \ {Cy, C;} correspond
to C4’s actually present in the configuration given in Fig. 1 and that G* contains H as an
induced subgraph. We have the following.

Lemma 3.6 Assume G* contains a node of degree 6. Correspondingly, G* contains H as
an induced subgraph. Then there exists a mazimum stable set of G* which includes the nodes
Cadyddg > Cooybby s Carade and Cycpa-

10
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Figure 6: Degree 6 configuration in G*.

Proof: Note first that the four nodes Cy 4y ddp, Covoybbg ) Cd'ade and Cly e form a stable set
in H and hence in G*. To prove the lemma, we will show that four is the size of a largest
stable set in the graph [H], which is defined as the subgraph of G* induced by the nodes of
H and their neighbors. To this end, we will first examine these possible neighbors.

Let C be a C4 of G which is not a node of H. Since the degree of Cypeq is 6, C cannot
contain any of the edges ab, bc, cd or da. Moreover, C cannot contain any of the edges ad',
cd', ab' or b either. Indeed, by symmetry, assume C contains edge ad’. Since C' does not
contain ad, then it contains ab’. If the other black edge of C is d'c, then C' = Cyape, ie. C
is a node of H. If the other black edge of C is d'dy, then C contains a grey edge with one
endpoint in b’ and the other in dy. But then G contains the grey cycle dyd, dc,cb’,b'dy and
we have a contradiction.

Consider now the case in which C contains one of the edges ddy,ddg,bby or bbg. By
symmetry, assume that C contains edge ddy. Since da ¢ C then ddp € C. If dyd' € C then
C = Cadyd'dg 1-€- C is a node of H. Hence, C contains a black edge with an endpoint in dy
and a grey edge with an endpoint in dg. These two edges must have their other endpoint
in common. Note that C is adjacent to the following nodes in G*: Cycqdy, Caddyar and
Cadyddy- Hence, C corresponds to node Cy in Fig. 6. Analogously, if C' contains edge bby,
then it corresponds to node Cj in Fig. 6.

Consider now the case in which C contains one of the edges d'dy,d'dg,b'by or b'bg. By
symmetry, assume that C contains edge b'by. As already seen above, C cannot contain edge
Ve, So, b'bg € C. Now, if C # Cypytby, then C does not contain bgb or byb. Hence,
C contains a black edge with an endpoint in b and a grey edge with an endpoint in by-.
These two edges must have their other endpoint in common. Note that Cis adjacent to the
following nodes in G*: Cyepy , Cappgey and Cypypp,- Hence, C corresponds to node Cj in
Fig. 6. Analogously, if C contains edge d'dy, then it corresponds to node C, in Fig. 6.

By the discussion above, the possible neighbors in V(G) \ V(H) for the nodes in H are
Cp and Cy depicted in Fig. 6. It is well known that the size of a stable set in a graph is at
most k if there exists a set of cliques @1,..., Q% such that each node is contained in one of

11



these cliques. Let X be a stable set of [H] with | X| = 5.

If Capeq € X, then X \ {Cupeq} is a size 4 stable set in the graph obtained from [H] by
removing Cgpeq and all of its neighbors. However, the nodes of this graph are all covered by
the three cliques: Q1 = {Cyapc}; Q2 = {Cadydag,Ca} (or simply Q2 = {Cyaydas} if Cq is
not present in G*); Q5 = {Cypypby, Cp} (or simply Q5 = {Cp} if Cp is not present in G*).
Otherwise, if Cypg ¢ X, then X is a size 5 stable set in the graph obtained from [H]
by removing Cgpq. However, the nodes of this graph are all covered by the four cliques:
Q1 = {Caade, Caddy d'> Caratr e }; Q2 = {Cvcba, Cavbtr }; Q3 = {Cacardys» Cardyday, Ca} (simply
Q3 = {CacadpCardyddg } if Ca is not present in G*); Q4 = {Chetrvy , Corybog, Cp} (simply
Qs = {Cbcb’bya Cb’bybbB} if Cy is not present in G*). O

3.2 Degree 5 configurations

In the previous subsection, we saw how to get rid of degree 6 nodes in G*. Here we will do
the same for the nodes of degree 5. In the previous subsection, this was based on showing
that a certain set of nodes S of G* can simply be assumed to be contained in a maximum
stable of G*. A key reason why this actually leads to a reduction is that, after removal of the
nodes in S and their neighbors, G* still represents a breakpoint graph, namely the breakpoint
graph obtained from G by deleting all edges contained in cycles corresponding to nodes in
S. With degree 5 nodes we will most often only show the existence of a maximum stable of
G* which does not take certain nodes. We will hence have to exhibit also some operations
for G, which on one side transform G into a new breakpoint graph, and on the other are
counterparts for the reductions shown in G* for the maximum stable set problem. In almost
all cases this will be based on showing that removing some avoidable nodes in G* corresponds
to splitting a degree 4 node in the original breakpoint graph G, as illustrated in the following.
Given a breakpoint graph, the splitting of a node w incident with black edges wup,wvp and
grey edges wuy , wvy corresponds to replacing w by two nodes w' and w"” and the associated
edges by w'up,w"vp and either w'uy,w"vy or w"uy,w'vy. We will say that two edges are
separated by the splitting if their counterparts after the splitting are independent. We have
the following

Fact 3.7 The graph obtained from a breakpoint graph by splitting a node is a breakpoint graph
as well.

Consider a node of degree 5 in G*. By Lemma 3.4, G contains one of the configurations given
in Figs. 2, 3, 4, and 5. In G*, these correspond to the configurations given in Figs. 7, 8, 9,
10, 11. In the next subsections, we will consider these configurations one by one.

3.2.1 Type A configuration

Fig. 2 illustrates a degree 5 configuration of type A in G, while Fig. 7 illustrates the same
configuration in G*. Let H be the graph given in Fig. 7. Let H be the subgraph of H induced
by the nodes in V(H)\ {C}. One can easily check that all nodes in V(H) correspond to C4’s
actually present in the configurations given in Fig. 2 and that G* contains graph H as an
induced subgraph.

12
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Figure 7: Type A degree 5 configuration in G*.

Lemma 3.8 Assume G contains the configuration shown in Fig. 2. Correspondingly, G*
contains the graph H as an induced subgraph. Then, there exists a mazimum stable set X of
G* with Cgaped, Cbdeby ¢ X.

Proof: We first show that if a node C in V(G*)\ V(H) is adjacent to Chaapy O Chedpy , then
the following happens:

(i) é is adjacent to Cbade, Cbcdby and Cbdeby;
(ii) no node in V(G*) \ V(H) \ C is adjacent to Cpagp, O Chegpy -

Indeed, assume by symmetry that Cis adjacent to Chpagp,- Since Cypeq is a node of degree 5
of G*, C cannot contain any of the edges ab, be, cd or da.

Assume bbg € C. Since ab ¢ C, then bby € C. So, if bgd € C, then C = Chbpdby -
Otherwise, if bgap € C, then C contains a black edge with one endpoint in ap and the other
in by. But then G contains the black cycle aga, ad, dby,byap.

Assume therefore bbp ¢ C and hence dbg € C. Since da ¢ C, then dby € C and C
contains a grey edge with an endpoint in by and a black edge with an endpoint in bg. These
two edges must have their other endpoint in common. In this case, C is adjacent to Chadby
Chedby > and Chpdby, - Since this was the only remaining possibility for C , we have proved the
claim above.

Consider a maximum stable set X of G*. The following arguments apply both if G* con-
tains a node C as considered above or not. If Cypeqs Chozdby € X, then X U{Chadbg> Chedby |\
{Cubcd> Chbpdby } is a maximum stable set of G* with Cypeq, Copgdby, ¢ X. Assume Copeg € X
and Cppyap, ¢ X. In this case, C € X since otherwise X U {Chadbg > Cbedvy } \ {Cabea} would
be a larger stable set. Therefore, X U {Chadb,, Cocdby } \ {C’abcd,é’} is a maximum stable
set of G* with Cuped; Coppary ¢ X. Finally, assume Cypeqg ¢ X and Chpyap, € X. In this
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Cobgbby

Figure 8: Type B degree 5 configuration in G*.

case, Cyaze € X since otherwise X U {Chadby, Cocdby } \ {Chbpaby } Wwould be a larger stable
set. Therefore, X U {Chaaby, Cocdby } \ {Cobpdby » Cdazc} 1S @ maximum stable set of G* with

Coabeds Cobgdby & X. O

The following observation shows how to modify G according to Lemma 3.8.

Observation 3.9 Let H be the breakpoint graph obtained from G by splitting node b as to
separate ab from bc and bby. Then H* is the graph obtained from G* by removing the two
nodes Cabcd and Cbdeby'

Proof: Clearly, H* is an induced subgraph of G*. The C4’s that are removed by splitting b
as above are either of the form C— with ab,bc € C—, or of the form C,— with bgb, bby €
abc abc bbby
bB/IEY ) .
If C’gb\c contains the edge ad, then Cgb\c = Clybed, Whereas, if C;b\c contains the edge aap,
then G contains a grey edge apc and hence the grey cycle apc, cd, dbp,bpap. Moreover, if
C,— contains the edge bpd, then Cgb\c = Chbpdby , Whereas, if C’;b\c contains the edge bpap,

brbb
thgn YG contains a black edge apby and hence the black cycle apby, byd,da,aap. O

3.2.2 Type B configuration

Fig. 3 illustrates a degree 5 configuration of type B in G, while Fig. 8 illustrates the same
configuration in G*. Let H be the graph given in Fig. 8. One can easily check that all nodes

in V(H) correspond to C4’s actually present in the configuration given in Fig. 3 and that G*
contains graph H as an induced subgraph.
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Lemma 3.10 A_Ssume G contains the configuration shown in Fig. 8. Correspondingly, G*
contains graph H as an induced subgraph. Then, there ezists a mazimum stable set of G*
containing Coy ade-

Proof: We first show that no node in V(G*) \ V(H) is adjacent to Cyyadc or Cyape- Let
C be a node in V(G*) \ V(H) adjacent to Cyyade- Since Cypeq is a node of degree 5 of G*,
then C cannot contain any of the edges ab, bc, cd or da. Assume aay € C. Since ad ¢ C,
then ag € C. So, if gc € C, then C = Caycqa- Otherwise, gbp € C and C contains a black
edge with one endpoint in bp and the other in ay. This is not possible as there are already
two black edges incident with ay and neither dy nor ¢ can coincide with bg. Now, assume
ayce C, implying gc € C.IfqaeC, again we have C = Cay cqa- Otherwise, gby € C and C

contains a grey edge with one endpoint in by and the other in ay. But then G contains the
grey cycle aya,ab, bby, by ay. Hence, no node in V(G*) \ V(H ) is adjacent to Cuy ade-

Now, let C be a node in V(G*) \V(H T) adjacent to Cyape- Note that C is neither adjacent
to Cgped nor to Cyyqde- Assume aq € C. Since ab ¢ C and aay ¢ C we 1mmed1ately have a
contradiction. Similarly, assuming gc € C, we have a contradiction as be ¢ C and ayc & C.
Hence, no node in V(G*) \ V(H) is adjacent to Cyapc.

Consider a maximum stable set X of G* with Cypaac ¢ X. If Chegpy € X, then
Coabeds Cay cqa € X. Hence, X U{Cluy adc} \ {Caddy ay } is @ maximum stable set of G* contain-
ing Cyy ade- Assume therefore Cyeqp,, ¢ X. Note that X contains at most one node out of
Caycqar Cayades Caddy oy and at most one node out of Cyped, Cabbyqs Cqabe, since these induce
triangles. Therefore, X U {Coy adcs Cqavc} \ {Caycqar Caddy ay » Cabed> Cabbpq} i a maximum
stable set of G* containing Cgy dc- O

3.2.3 Type C configuration

Fig. 4 illustrates a degree 5 configuration of type C in G, while Figs. 9 and 10 illustrate
the same configuration in G*. Let H be the graph given in Fig. 9. Let H be the subgraph
of H induced by the nodes in V(H) \ {Cby cytz> Coyddy s> Cayceyy> Caydyzy}- This is also a
subgraph of the graph in Fig. 10. One can easily check that all nodes in V (H) correspond to
C4’s actually present in the configuration given in Fig. 4 and that G* contains graph H as
an induced subgraph.

Lemma 3.11 Assume G contains the configuration shown in Fig. 4. Correspondingly, G*
contains graph H as an induced subgraph. If no neighbor of Cupeq in G* has degree 5, then
there exists a mazimum stable set X of G* with Cypeq & X. In case a neighbor C of Cupeq has
degree 5, then no other neighbor of Cupeq or C has degree 5, and, given any stable set X in
the graph obtained from G* by deleting the edge CCypeq, a stable set X' of G* with |X'| = | X]|
can be derived from X in constant time. WARNING: Alberto, tutto lo statement del
lemma va adeguato al fatto che invece diamo una riduzione completa. Tuttavia
é meglio questo lo faccia tu parché ho visto che abbiamo gusti radicalmente
diversi su come strutturare l’esposizione e tu hai piu autoritd su quale sia il
gusto ufficiale. (Tu tendi ad accorpare evidenziando solo i risultati espressivi
per 'applicazione, io cerco di scomporre ed organizzare in maniera modulare per
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Figure 9: Type C degree 5 configuration in G* (first case).

facilitare la comprensione). Io qui scomporrei anche questo lemma in almeno
due blocchi.

Proof: Excluding cases which are equivalent by symmetry, one of the cases considered in
the following must occur.

Case 1: either no node in V(G*) \ V(H) is adjacent to C,ay ¢4, Or n0 node in V(G*) \ V(H)
is adjacent to Cppy 4c- Let X be a maximum stable set of G* containing C,p.q and assume no
node in V(G*) \ V(H) is adjacent to Cagyecq- Then, X U{Caayca} \ {Cabea} is a maximum
stable set of G* which does not contain Cypq. The case in which no node in V(G*) \ V(H)
is adjacent to Cpp, 4. is identical. This completes Case 1. o

From now on, we will assume that Case 1 does not occur and hence both Cy4y cq and
Chby dc have neighbors in V(G*) \ V(H). Let C be a node in V(G*) \ V(H) adjacent to
Cuaycd- Since Cypeq is a node of degree 5 of G, C cannot contain any of the edges ab, be, cd
or da.

Assume aay € C. Since ad ¢ é, then aap € C. So, if aydy € C~’, then C contains a grey
edge with one endpoint in dy and the other in ap, i.e. C = Cuaydyap- Otherwise, ayc € C’,
and C contains a grey edge with one endpoint in ¢ and the other in ap. This is not possible
as there are already two grey edges incident with ¢ and neither ¢y nor d can coincide with
ap.

Now assume ayc € C and aay & C. Then, ccy € C. If cyby € C~', then C con-
tains a grey edge ayby: This is not possible because then G would contain the grey cycle
aya,ab, bby ,byay. Hence, C must contain a black edge c¢yy and a grey edge yay for some
node y, which may be a new node or it may coincide with bp (coincidence with other nodes
is easily excluded). In this case, C = Cay ceyy-

Summarizing, the two possible nodes in V(G*) \ V(H) adjacent to Cyaycd ate Caaydyap
and Cgycepy- Symmetrically, the two possible nodes adjacent to Chyp, 4. are Chpy ey and
Chy ddy o for some node x which may be a new node or it may coincide with ap. Note that z and
y cannot coincide because otherwise G would contain the grey cycle aya,ab, bbby, byx, zay.
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If G contains neither a grey edge apdy nor a grey edge bpcy, we get Case 2 below.
Case 2: G does not contain grey edge apdy or grey edge bgcy, and there are two nodes in
V(G*)\V (H), one adjacent to Cyay cqg and Chpy ¢y and the other with Chpy 4. and Cuay gy a- In
this case, we next show that either no other node in V(G*)\ V (H) besides Ch,, 44, + is adjacent
to Caaydyd, Or a cycle Cy, 4y -y is present, where node z maybe new or coincide with bg or
z. Indeed, a new cycle C adjacent to Cyq, 4, 4 cannot contain edge aay (otherwise it would
be adjacent to Cpgy cq) nor edge ad (Cgpeq has degree 5) nor edge dy d (otherwise it would be
adjacent to Chp, 4c). Hence, C must contain both aydy and ayy. Symmetrically, either there
is no other node in V(G*) \ V(H) besides Cyy ccyy adjacent t0 Chpyeye, OF cycle Chyepry 18
present, where node ¢t maybe new or coincide with ap or y. This situation, considering the
possible presence of nodes Cy,, 4y »y and Cpy ¢y 1y is illustrated in Fig. 9. Let X be a maximum
stable set of G* containing Cpypcq. Then, X contains at most one of the two nodes Cy, 44y »
and Cp,y ¢yt and at most one of the two nodes C,y 4y »y and Cyy ccyy. Moreover, X contains
no neighbor of Cypeq. Hence, X contains at most three of the nodes displayed in Fig. 9. Note
that, however chosen a node Ci € {Chyddy 2, Coycytz} and a node Co € {Cyydy 2y, Cayceyy s
there exists a node in {Chpy cy ¢, Coby des Caay cds Caay dyd} Which is neither adjacent to C nor
to Cy. Hence, there exists a maximum stable set of G* not containing Cgp.q. This completes
Case 2. o
From now on, we will assume that Case 2 does not occur and hence that G contains
either a grey edge apdy or a grey edge bpcy. Note that these two edges cannot be present at
the same time, for otherwise G would contain the grey cycle dyd,dc, ccy,cybp,bpap,apdy.
Assume therefore, by symmetry, that G contains edge apdy. This implies the presence of
cycle Coay dyap, adjacent to Cggy cq- Since we are assuming that also Cpp, 4. has a neighbor
in V(G*) \ V(H) (otherwise we would be in Case 1), G must contain edges dyz and zby,
yielding cycle Cy,, 44, - Note that edges yay and cyy may or may not be present, yielding in
the first case Case 4 and in the second Case 3. The situation is illustrated in Fig. 10, where
node Cgy ceyy is present only in Case 4.
Case 3: G contains a grey edge apdy and the only node in V(G*)\ V(H) adjacent to Cyqy cd
is Caaydyap- Let X be a maximum stable set of G* containing Cyped- If Chpy ey has no
neighbor in V(G*) \ V(H), then the set of neighbors of Chp, ¢, is a subset of the neighbors
of Cgaped- Therefore, X U {Chpycyc} \ {Cabed} is a maximum stable set of G* not containing
Cuabed- Otherwise, let C be a node in V(G*) \ V(H) adjacent to Chbycyce- The arguments
above exclude the presence in C of edges be, bby ((:‘ would contain edge bpcy), and ccy (é
would contain either edge bc or ayc, being adjacent to Cpgyeq in the latter case). Hence
C= Chy ¢y to for some node ¢. Note that C is also adjacent to Chy ddy z- If X does not contain
Chy ey ta, then the above considerations apply. Otherwise, X does not contain Cj, 44, , and
X U{Ctbydc} \ {Cabed} is a maximum stable set of G* not containing Cgpeq. This completes
Case 3. o
Case 4: G contains grey edge apdy as well as black edges dy z, cyy and grey edges zby, yay,
where x may be a new vertex or it may coincide with bp and y may be a new vertex or it
may coincide with ag. We have the situation depicted in Fig. 10. We first show that the
only neighbors of Cygyayq in V(G*) \ V(H) are Cuaydyap and Chyday - Indeed, reasoning
as in the previous paragraph for the cycle incident with Cyp, ¢y, namely Cpy ¢y 1z, the only
possibility for a cycle C incident with Caay dyd Would be C = Clay dy 2y for some node z, but z
cannot coincide with ap nor with d, which are the two nodes connected to dy by a grey edge.
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Figure 10: Type C degree 5 configuration in G* (second case).

Hence, all the neighbors in G* for the nodes in V(H) \ {Capbpay } are depicted in Fig. 10.

Consider the duality between the two nodes Cgpcq and Cyqy cq, which are both centers of
Type C degree 5 configurations in Case 4, under switching black and grey and substituting
cy ¢ ap, b ay, by <> dy, bp <> y, etc..

If node Cyq, dy ap has in G* only the two neighbors depicted in Fig. 10, then there exists
a maximum stable set X of G* with Cppcq ¢ X. Thus we assume Cyqy dyaj; to have a further
neighbor, but it is easily verified that this can only happen as follows: G contains a grey edge
hk and black edges hbp and kap. Dually, if node Cyppyq, has in G* only the two neighbors
depicted in Fig. 10, then there exists a maximum stable set X of G* with Cpqycqd ¢ X. Thus
we assume Cgppra, to have a further neighbor, but it is easily verified that this can only
happen as follows: G contains a black edge pq and grey edges py and gcy. If z = p (or dually,
x = h), then it is easily shown that there exists a maximum stable set of G* containing
the following nodes: Cuppzaps Caaydyans Cbbyder, Caaydyd- Assume therefore « # p, h. It is
easily verified that, among the C4’s already present in the configuration now, only Chp,apk
and Cpyey g can be adjacent to further C4’s. So, Chppapk and Cpyeyq give a 2-node cut in
G*, and, where C is the set of C4’s already present in the configuration now and X is a
maximum stable set in G*, then either | X N C | = 5 and X contains both Chp ek and Cpyey g
or X NC| = 4 and we can assume Chbpapk: Cpyeyq € X. But then we have a reduction
which does not spoil the approximation guarantee if we substitute the whole configuration
in G with the configuration shown in picture. It can be verified that this can not introduce
monochromatic cycles, hence we obtain a new breakpoint graph.
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The following observation shows how to modify G according to Lemma 3.11 in case there
exists a maximum stable set X of G* with Cypq ¢ X.

Observation 3.12 There exzists a breakpoint graph G, obtained from G by suitably splitting
node a or node b, such that G* is the graph obtained from G* by removing the node Cpcq.

Proof: Consider a C4 C which is removed by splitting node a as to separate ab from ad and
aay. Then, either C contains both ab and ad, or C contains both aap and aay. If ab,ad € C
then either dc € C and C = Clubed, Or ddy € C and C contains a black edge dyb, 1mp1y1ng
the existence of a black cycle bc, cay, aydy,dyb. It aap,aay € C, then either ayc € C and
C contains a grey edge agc, or aydy € C and C contains a grey edge agdy. To summarize,
if there does not exist a splitting of node a with the properties stated in the lemma, then
there exists in G a grey edge with an endpoint in ap and the other in ¢ or dy. Symmetrically,
if there exists not a splitting of node b with the properties stated in the lemma, then there
exists in G a grey edge with an endpoint in bp and the other in d or cy. Note however that
if these two grey edges were present at the same time, then G would contain a grey cycle. O

3.2.4 Type D configuration

Fig. 5 illustrates a degree 5 configuration of type D in GG, while Fig. 11 illustrates the same
configuration in G*. Let H be the graph given in Fig. 11. Let H be the subgraph of H
induced by the nodes in V(H) \ {Chypby > Cagbpay s Cegbycr }- One can easily check that all
nodes in V(H) correspond to C4’s actually present in the configuration given in Fig. 5 and
that G* contains graph H as an induced subgraph.

Lemma 3.13 Let G be a breakpoint graph containing no Type A configuration and such that
A(G*) = 5. Assurr_ze G contains the configuration shown in Fig. 5. Correspondingly, G*
contains the graph H as an induced subgraph. Then, there exists a mazimum stable set X of

G* with Cabcd ¢ X.

Proof: Excluding cases which are equivalent by symmetry, one of the cases considered in
the following must occur.
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Figure 11: Type D degree 5 configuration in G*.

Case 1: no node in V(G*) \ V(H) is adjacent to Cygpe. Let X be a maximum stable set of
G* containing Cgpeqg. Then, X U {Cyapc} \ {Cabea} is @ maximum stable set of G* which does
not contain Cypeq- o

From now on, we will assume that Case 1 does not occur and hence there exists a node
C in V(G*)\ V(H) adjacent to Cygpe- Since Capeq is a node of degree 5 of G*, then C cannot
contain any of the edges ab, bc, cd or da. Assume ga € C. Since ab ¢ C, then aay € C.
So, if gc € O, then C contains a black edge with one endpoint in ¢ and the other in ay.
This is not possible, since there are already two black edges incident with cg and ay and cp
cannot coincide (otherwise we would have a node of degree 6). Therefore, gbg € C and then
C contains a black edge with one endpoint in bg and the other in ay, namely C = Cagbpay -
Symmetrically, assuming gc € C, then one has that C = Cegbycp-

By the above discussion, if there are two nodes in V(G*) \ V(H) adjacent to Cygpe, then
these two nodes are Cygppay and Cigpycp and the following case occurs.
Case 2: two nodes in V(G*) \ V(H), namely Cagbpay and Cegpycpy, are adjacent to Cygpe-
Here, one can verify that node Cygpc is @ node of degree 5 in a type A configuration as in
Fig. 2 after renaming the nodes as follows: ¢ — a (node ¢ in Fig. 2 corresponds to node a in
Fig. 5), a = ¢,z — d,b — ¢q,d = b,ap — cp,bp — by,by — bp,cy — ay. This contradicts
the first assumption in the lemma. o

From now on, we will assume that Case 2 does not occur and hence only one node in
V(G*)\ V(H) is adjacent to Cyap.. By symmetry, we can assume that this node is Cugpgay -
This node is also adjacent to Cgpppg and implies the presence of a black edge bpay in G.
Suppose that no other node of V(G*)\ V(H) is adjacent to Cappyq O t0 Chegpy» then we have
the following case.
Case 3: one node in V(G*) \ V(H), namely Cogppay , is adjacent to Cygpe and Cyppyq and no
other node in V(G*) \ V(H) is adjacent to Cyape Or Capbpq OF Cheghy - Let X be a maximum
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stable set of G* containing Cypq4. Note that at most one out of Cypy gpp and Cygppay is in
X. If Cooyqpy & X, then X U{Chcqby } \ {Cabea} is @ maximum stable set of G* and does not
contain Coped. If Cogppay & X, then X U{Cuapc} \ {Cabea} is @ maximum stable set of G* and
does not contain Clpeq- o

We now consider, as last possibility, a node C' # Cagppay in V(G*)\ V(H) and adjacent
to Capbgq Or to Chegp, - We first show that such a C is actually adjacent to both Copp,e and
Chegby - Indeed, assume by symmetry C to be ad_]acent t0 Chegby -

If bby € C, then bbg € C. Clearly, bgg € C, since otherwise C = Chby gbp- Therefore, C
must also contain a black edge with one endpoint in by and a grey edge with one endpoint
in bp having a common endpoint z. In this case, C = Chopaby is also adjacent to Cupppg-

If gc € C, then ccg € C. Now, if ga € C, then G contains grey edge acg, which is
not possible as already two grey edges are incident with a and ay and cp cannot coincide,
otherwise gby € C and G contains edge bycp, and we would be in Case 2. Hence we can
assume gc ¢ C.

Finally, if gby € C, then gbp € C. If also bgb € C, then C = Chpy by, else bpay € C and
G contains a grey edge with one endpoint in ay and the other in by. This is a contradiction
as G would contain the grey cycle aya,ab, bby,byay .

Summarizing, Cpp,zb, is the only possibility for C and we are left with the following case.
Case 4: one node in V(G*) \ V(H), namely Cogppay, is adjacent to Cyepe and Cupppq and
another node in V(G*)\ V(H) is adjacent to Cappyq O Cheghy - Here, one can verify that node
Clabbyq is a node of degree 5 in a type A configuration as in Fig. 2 after renaming the nodes
as follows: ¢ — bg,a = a,z — ay,b — b,d = q,ap — d,bp — ¢,by — by,cy — z. This
contradicts the first assumption in the lemma. O

The following observation shows how to modify G according to Lemma 3.13.

Observation 3.14 There ezists a breakpoint graph G, obtained from G by suitably splitting
node a or node c, such that G* is the graph obtained from G* by removing the node Cgpeq-

Proof: Qui non é affatto soddisfacente che ti riferisci ai casi interni ad un‘altra
dimostrazione. Tra il resto da qua confonde il fatto che esamini (giustamente)
solo 2 di 4 casi If Case 1 in the proof occurs, let G be the breakpoint graph obtained from G
by splitting node a as to separate ab from ad and aay. Then, G* is the graph obtained from
G* by removing the node Cypcq- Indeed, let C be a C4 which is removed by the splitting.
Then, either C' contains both ab and ad, or C contains both ag and aay. In both cases C is
adjacent to Cyqp.. However, the only nodes adjacent to Cyape are Cyped, Cappgg and Cpegpy, -
Note that Cypp,q and Cpegp, are not affected by the splitting.

Otherwise, Case 3 must occur. Let G be the breakpoint graph obtained from G by split-
ting node ¢ as to separate ¢b from cd. Then, G* is the graph obtained from G* by removing
the node Cgypeq. Indeed, let C be a C4 which is removed by the sphttlng Then, either C
contains both ¢b and cd, or C contains both cq and ccg. In both cases C is adjacent to Cygpe-
However, the only nodes adjacent to Cygpe are Copedy Capbrgr Cbegby and Cogbpay - Note that
Cavbpg> Coeghy and Cougppay are not affected by the splitting. O
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