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Abstract

We study the structure of business firm networks in the Life Sciences (LS) and the Information

and Communication Technology (ICT) sectors. We analyze business firm networks and scale-free

models with degree distribution P (q) ∝ (q + c)−λ using the method of k-shell decomposition. We

find that the LS network consists of three components: a “nucleus,” which is a small well con-

nected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected

exclusively to the nucleus, and a “bulk body” which consists of the majority of nodes. At the same

time we do not observe the above structure in the ICT network. Our results suggest that the sizes

of the nucleus and the tendrils decrease as λ increases and disappear for λ ≥ 3. We compare the

k-shell structure of random scale-free model networks with the real world business firm networks.

The observed behavior of the k-shell structure in the two industries is consistent with a recently

proposed growth model that assumes the coexistence of both preferential and random regimes in

the evolution of industry networks.

PACS numbers: 89.75.Hc
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I. INTRODUCTION

Many real-world complex systems are described as graphs or networks [1–7]. Networks

appear in various areas of science such as physics, biology, computer sciences, economics

and sociology [3–7]. Real networks, despite their diversity, share many common properties.

Some real networks have been found to be “small-world” [3, 8–10]: despite their large size,

the typical distance between nodes is very small, of order of log(N) or less [3, 11, 12], where

N is the number of nodes. Also, some real networks are scale-free (SF) with a power-law

tail in their degree distribution

P (q) ∝ (q + c)−λ, (1)

where q is the number of links per node, λ and c are distribution parameters [13–16].

Many statistical physics and mathematical techniques have been successfully applied to

study network structure including percolation [12, 17–21], scaling [6, 7, 11], partitioning [22],

box covering [23–26], k-core percolation [27, 28] and k-shell decomposition [29] . The latter

has been recently used to study the topology of the Internet at the autonomous system (AS)

level [30]. It has been found that the AS Internet network can be decomposed into three

distinct components:

(i) The nucleus consists of highly connected nodes (hubs) and constitutes a tiny fraction

of the network (≈ 0.5%).

(ii) The tendrils (≈ 25%) are the subgraphs that connect to the network exclusively via

the nucleus.

(iii) The remaining nodes (≈ 75%) of the network constitute the bulk body. Unlike the

tendrils, the nodes in the bulk remain connected even if the nucleus is removed.

The appearance of the three components led to the association of the AS Internet structure

with that of a jelly-fish model [30]. For an alternative jelly-fish structure see also Ref. [31].

The nucleus plays a crucial role in data transfer throughout the Internet. If the nucleus

is damaged or blocked, nodes in the tendrils cease to communicate with other nodes both

in the bulk body and in other tendrils. However, the nodes in the bulk body can still

communicate with each other, but less efficiently since the average path length between

them almost doubles [30]. The network of workplaces in Sweden [32, 33] was also shown to
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possess a jelly-fish structure. Mean field analysis of the k-shell structure [34, 35] focuses on

random networks with a given degree distribution P (q).

In the present work we adopt the same methodology to address the long-standing question

of how long does a typical leader in an industry maintain its position. This question has

attracted continuing attention in the economics and management literatures over the past

generation [36]. Two rival views exist. The first asserts that leadership tends to persist for

a ’long’ time while the second one emphasizes the transience of leadership positions due to

radical innovation and “leapfrogging competition”. The Life Sciences (LS) sector is generally

cited as an archetypal example of stability of industry leaders [37], while on the contrary the

Information and Communication Technology (ICT) sector is widely considered as a good

example of high market turnover and instability [39]. We study the k-shell structure of the

LS and ICT industry in order to test these views and better understand the reasons behind

the higher stability of the leading firms in the LS sciences as compared to the ICT sector. The

networks of LS and ICT firms are networks of nodes representing firms in the worldwide

LS and ICT industries with links representing the collaborative agreements among them

[26, 37–39]. We also conduct a numerical analysis of model SF networks in order to better

understand their k-shell structure. We study how the size and the connectivity of the three

components of random SF model networks depend on the SF parameters. We compare the

k-shell structure of SF models with that of the LS and ICT industry networks in order to

get a better insight into the growth principles of the industry networks.

The rest of the manuscript is organized as follows: in Section II we define the k-shell

decomposition and apply it to both real and model SF networks. We then analyze the

leadership in the industry networks from the k-shell perspective. In Section III we conduct

a systematic analysis of the properties of the three components of model SF networks. In

section IV we compare the results for SF models with those observed in the two industrial

networks. We conclude our manuscript in Section V with a discussion and summary.

II. K-SHELL, K-CORE, AND K-CRUST

We start the process of the k-shell decomposition [30, 34] on a network by removing all

nodes with degree q = 1. After the first iteration of pruning, there may appear new nodes

with degrees q = 1. We keep on pruning these nodes until only nodes with degree q ≥ 2 are
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left. The removed nodes along with the links connecting them form the k = 1 shell. Next,

we iterate the pruning process for nodes of degree q = 2, thereby creating the k = 2 shell.

We further continue the k-shell decomposition for higher values of q until all nodes of the

network are removed. As a result each node in the network is assigned a k-shell index k.

The largest shell index is called kmax, which is also the total number of shells in the network,

provided all shells below kmax exist. The k-crust is defined as the union of all k-shells with

indices smaller than k. Similarly, the k-core is defined as the union of all nodes with indices

greater or equal k. (See Fig. 1 for demonstration.) As we explain later, the set of nodes in

the kmax shell is called nucleus provided there is a large number of nodes (tendrils) connected

to the network exclusively via the kmax shell.

We analyze the k-shell structure of LS and ICT industrial sectors in time periods between

1990 and 2002 and between 1990 and 2000 respectively. Data have been collected from

several sources including: Repec, Windhover, Bioscan, Pharmadeals, company press releases

and news. The LS network expanded linearly since the mid-1970s while the ICT network

took off in the 1990s and grew exponentially for a decade [see Fig. 2(a) and the inset].

The total number of firms in the LS is N = 6, 776 and in the ICT is N = 7, 759. These

sizes refer to the largest connected component of each of the networks at the last year of

observation. Both industrial networks feature SF degree distributions with λ ≈ 2.5, c ≈ 4.

(LS) and λ ≈ 3.4, c ≈ 6. (ICT) which we estimate with the maximum likelihood method

[see Fig. 2(b)]. We use the Kolmogorov-Smirnov test in order to examine the goodness of

fit of the degree distributions. The obtained p-values for 1000 trials are 0.24 and 0.33 for

the LS and the ICT industry networks respectively.

We next apply the k-shell decomposition procedure to the LS and the ICT networks. For

each k-crust we calculate N0, the total number of nodes in the k-crust, N1, the size of the

largest connected component in the k-crust and N2, the size of the second largest component

of the k-crust. As seen in Fig. 3, the LS network consists of kmax = 19 shells while the ICT

network (which consists of comparable number of firms) has only kmax = 6 shells. The size

of the largest cluster in the k-crust starts growing rapidly after k = 4 and k = 2 in the

LS and the ICT networks respectively. At these values of k, the size of the second largest

cluster in the k-crust reaches a maximum. The above behavior of the k-crust components

is consistent with the existence of a second order phase transition in the k-crust structure

[30]. The type of the phase transition taking place at the k-shell decomposition is similar
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to that of targeted percolation in SF networks [21, 40].

Unlike in the ICT network, the size of the largest connected component N1 in LS network

undergoes a large jump N1(k = 19) − N1(k = 18) = 745, while the total size N0 of the

crust experiences only a small change N0(k = 19) − N0(k = 18) = 43 (See Fig. 3(a)).

This can be explained as follows [30]. Approximately 10% of the he LS network are firms

(which we call “tendrils”) that prefer to sign collaborative agreements exclusively with the

43 firms that form the shell k = kmax = 19 (which we call the nucleus). Typically, each

of these firms (tendrils) signs a small number of agreements with firms in the nucleus and,

therefore, has small degree. Thus, the tendrils are removed in the decomposition of the

first few shells. However, being connected exclusively to the nucleus in the kmax = 19

shell, the tendrils do not contribute to the largest connected component of the k-crust

until the last kmax shell is decomposed. It is the inclusion of the tendrils firms into N1(k)

at the decomposition of the kmax shell that results in the observed jump in N1(k). The

appearance of the three components—the nucleus, the tendrils and the bulk body—allows

one to associate the structure of the network of LS firms with that of the jelly-fish similar

to the Internet at the Autonomous System level [30]. Interestingly, we do not observe the a

similar jump in N1(k) in the ICT network (See Fig. 3(b)).

In both LS and ICT industry sectors the kmax shells include market leaders such as Pfizer,

GSK, Novartis, J&J, Sanofi-Aventis, Bayer in the LS network and Microsoft, IBM, AT&T,

Yahoo, Cisco, AOL, Time Warner and Google in the ICT network. We find that the LS

network tendrils are mostly composed of the new start up firms and their university partners.

On the one hand, start up firms preferentially attach to market leaders. On the other hand,

market leaders compete to sign exclusive deals with new and promising start up firms. We

also notice the remarkable stability of the LS nucleus: once a particular firm enters the

nucleus it is very likely to remain there for many years.(See Fig. 3c) On the contrary, in the

ICT sector there is more emphasis on how to integrate different technologies and markets

[39]. Thus, there are more deals between firms of the same size and age but in different

technological and market areas. As a consequence, the k-shell of the ICT network is more

unstable and heterogeneous which may explain why we do not detect the emergence of a

nucleus such as in the LS sector.

As discussed above, one can in general calculate the size of the nucleus Sn as the total

number of nodes in the kmax shell
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Sn = N0(kmax) − N0(kmax − 1). (2)

The increase in N1(k) at k = kmax is comprised by the inclusion of tendrils St and the

nucleus Sn. Thus, the size of tendrils can be calculated as

St = N1(kmax) − N1(kmax − 1) − Sn. (3)

As seen in Fig. 2(b), both the LS and the ICT industrial networks exhibit a SF degree

distribution. Hence, in order to better understand the substructures of real networks—

the nucleus, the tendrils, and the bulk components—we analyze the k-shell structure of

the random SF models which were generated using the configurational approach [41]. We

calculate the k-shell structure of random SF networks with c ≥ 0, and degree distribution

exponent λ ∈ [2, 3]. For our simulations (Fig. 4) we choose networks sizes of N = 8, 000

(which is comparable to the size of the LS and ICT industry networks) and N = 106 in

order to test the influence of finite size effects.

Fig. 4 shows that both the number of shells kmax and the jump in the largest connected

component N1(k) decrease as the exponent λ increases. As the jump becomes less pro-

nounced it becomes harder to detect it motivating us to introduce a quantitative criterion

for the emergence of the three distinct components. We define the rate of change of the

largest connected component size as

R(k) ≡ N1(k) − N1(k − 1). (4)

We compare the increase of the largest connected component R(k) at k = kmax with that

at k = kmax − 1. The jump in N1(k) results in

R(kmax) > R(kmax − 1). (5)

We use Eq. (5) as a criterion for the existence of a nucleus and tendrils.

By examining R(k) plot we observe in the case of N = 8, 000 (Fig. 4c), that SF models

with λ > 2.5 already do not have a nucleus and tendrils. However, for N = 106 we do

observe nucleus and tendrils in SF models for λ ≤ 2.7. (Fig. 4d). These observations

suggest that all SF networks with 2 < λ < 3 have a nucleus and tendrils provided N is

sufficiently large. The above observations for SF models agree with the fact that we observe

jelly-fish topology for LS network (λ = 2.5) and do not observe it for ICT network λ = 3.4.
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However, SF model networks with N = 8000 with λ = 2.5 and λ = 3.4 have kmax = 5

and kmax = 2 respectively, while the measured kmax in LS and ICT networks (which have

the same λ values) are kmax = 19 and kmax = 6. The observed difference in kmax between

industry networks and SF models with similar parameters suggests to further explore the

k-shell structure of SF networks and consider SF model networks with c > 0 values in P (q)

(as found in the LS and the ICT networks).

III. K-SHELL PROPERTIES OF SCALE-FREE NETWORKS

SF networks may or may not have a jelly-fish structure, depending on the degree distri-

bution P (q) and size N . In order to better understand the k-shell structure of SF networks,

we calculate the sizes of the k-shells as a function of N and λ. For each pair of values N

and λ we generate 103 − 104 realizations of SF models and calculate the average number of

shells kmax constituting the network as well as their average size Sk (see Fig. 5). For small

k values, Sk is proportional to N . As the size of the network increases new shells start to

appear. When the size increases further, the new shell growth stabilizes and becomes also

proportional to N (See Fig. 5a,c). This result indicates that the size of each shell constitutes

a certain finite fraction of the network and this fraction decreases with increasing k. The

analytical analysis of k-core structure [34] leads to

Sk ∝ k−δ, (6)

where

δ =
2

3 − λ
. (7)

Hence δ ≈ 2.2 for λ = 2.1 and δ ≈ 4.0 for λ = 2.5, which agrees with our simulations.

[Figs. 5(b) and 5(d)]. The appearance of c > 0 in the SF degree distribution significantly

increases kmax [see Figs. 5(e) and 5(f)]. However, the asymptotic dependence of k-shell sizes

seems to remain the same as k approaches kmax: Sk ∼ k−δ [Figs. 5(e) and 5(f)].

One can estimate the total number of shells in a random SF network of size N as follows.

Since every shell constitutes a fixed fraction of N it follows that Sk ∝ Nk−δ. The last shell

kmax needs to possess at least one node Smax ≡ Sk=kmax
∼ 1, which leads to

kmax ≤ N1/δ, (8)
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Indeed, the total number of shells kmax seems to increase as a power law with the network

size N [Fig. 6(a)]. The smaller is λ the faster is the growth of kmax. As seen from Fig.

6(c), the estimated exponents 1/δ agree with those predicted by Eq. (8). Note that Eq. (8)

together with

δ = 2/(3 − λ) (9)

is consistent with the fact that networks with λ > 3 do not have a k-shell structure.

The dependence of Smax on N can be regarded as a crossover from the small N regime

with N < Nc(λ), where there is no nucleus, to the power-law regime for N > Nc(λ) where

Smax ∼ N τ(λ) ( Fig. 6b). We relate the observed crossover with the emergence of the

nucleus and tendrils in SF networks for N > Nc(λ). The critical size of SF networks, Nc(λ),

corresponding to the emergence of the nucleus and tendrils in SF networks seems to increase

as λ increases. In the N < Nc regime the size of the last shell Smax increases with λ, which

can be explained by the fact that SF networks with higher λ have fewer shells. On the

other hand, in the power-law regime, the size of the last shell, Smax, (which now becomes

the nucleus Sn) is smaller for larger values of λ.

IV. EVOLUTION AND STRUCTURE OF THE LS AND ICT INDUSTRY NET-

WORKS

We further analyze the k-shell structure of the LS and ICT industry networks. The

number of shells kmax in the LS industry grows as a power-law function of its size,

kmax ∼ N θ, (10)

and reaches kmax = 19 in 2002. Our estimates yield θ ≈ 0.6 (Fig. 7a). We find that the

number of shells in ICT sector, kmax, also grows and reaches kmax = 6 in 2000. Note that

Sn for the LS network exhibits fluctuations for N ∈ [2000, 5000] and stabilizes for N > 5000

(See Fig. 7b). As seen in Fig. 7(c,d), the sizes of shells Sk decrease as a function of their

index k in both networks. As we notice in Section II, the observed shell sizes Sk as well as the

number of shells kmax, measured for the LS and ICT networks, deviate from those obtained

from SF models with c = 0. We expect for random SF models with c = 0, λ = 2.5 and

λ = 3.4 and similar sizes as LS and ICT to find kmax = 5 and kmax = 2 respectively. Also,

a SF network with λ = 2.5 is expected to have Sk ∼ k−4. and kmax ∼ N0.25 which deviates
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from the observed shell sizes The measured Kolmogorov-Smirnov statistic is D ≈ 0.137 .

[see Fig. 7(c)]. The observed differences can be explained by taking into account the offset

c in SF degree distribution of both networks. The adjustment of the degree distribution

of random SF models with c = 4.0 and c = 6.0 allows one to obtain similar patterns Sk

which are in fair agreement with the industry networks, as seen in Figs. 7(c) and 7(d) (The

Kolmogorov-Smirnov statistic in this case, D ≈ 0.074).

As seen above, the offset c > 0 in the SF degree distribution plays a crucial role in the

formation of the k-shell structure of industry networks. A possible reason for the emergence

of c > 0 in growing networks is the combination of preferential attachment with random

attachment in network evolution [42]. The coexistence of preferential attachment regime

with random collaborative agreements was suggested to take place in industry networks

[37]. The random component is caused by the fact that sometimes firms choose exclusive

relationships and novelty, and do not prefer to make deals with hub firms. Even though the

coexistence of both preferential and random regimes seems to be crucial in the formation

of the industry networks, it does not fully reproduce the k-shell structure of LS and ICT

industries. We believe that a better understanding of the evolution of the LS and ICT

networks may be achieved by further improvements of the modeling.

V. DISCUSSION AND SUMMARY

We use the k-shell decomposition to analyze the structure of the LS and ICT industry

networks. We find that the firms in the LS industry can be naturally divided into three

components: the nucleus, the tendrils and the bulk body. The nucleus of the LS industry

consists mostly of the market leader firms while the tendrils are typically comprised of small

start-up firms that preferentially make deals with leading firms which are in the nucleus. We

show that the nucleus of the LS industry exhibits remarkable stability in time. In contrast,

the ICT industry does not have a nucleus. We also analyzed the dependence of the k-shell

structure of SF model networks on N , λ and c. We observed the formation of the nucleus

and the tendrils in SF networks only for λ < 3. The number of shells kmax and the size of the

nucleus Sn are larger for SF networks with c > 0 compared to those with c = 0. Our results

can partly explain the k-shell structure of LS and ICT industry networks. The coexistence

of preferential and random attachment leads to the appearance of the offset c > 0 in the
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SF degree distribution P (q) ∼ (q + c)−λ [42]. Thus, the appearance of c > 0 in the degree

distribution of LS and ICT networks might be explained by the interplay of random and

preferential agreements among firms in the industries [37].
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FIG. 1: Illustration of the k-shell decomposition method. (a) Original network. Nodes are

marked by corresponding k-shell indices. Note that the k-shell index does not coincide

with the node degree. (b) The 3-crust (left) and the 3-core (right) of the original network.
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FIG. 2: (a) The growth of the largest connected component of LS and ICT industries. The

LS industry expands almost linearly while the ICT industry exhibits exponential growth

(see inset, a semi-log plot of the ICT network size as a function of time). (b) Cumulative

degree distribution N(q > q0) of LS and ICT networks. The inset displays cumulative

degree distribution N(q > q0) of LS and ICT network without offset c.
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and the size of the second largest connected component of the k-crust, N2, as a function of

the k-crust index k. The sizes are normalized with the total number of nodes in the

network, N . N2 is multiplied by 100. The transition of the k-crust at shell k = 18 of the

LS network reveals a jelly-fish topology [30]. Since the change in F1 ≡ N1/N at the

k = kmax is smaller in the ICT network than in the previous shell k = kmax − 1, the ICT

does not have a jelly-fish structure. The insets of (a,b) show the rate R of the largest

connected component change as a function of shell index k. (c) The leadership persistence

LP (t, tR) as a function of years in the LS industry. We define LP (t, tR) as a number of

firms that were in the nucleus both at time tR and t. Note that most of the LS firms

remain in the nucleus after they first enter it.
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FIG. 4: (a,b) The k-shell structure of random SF models with (a) N = 8000 and (b)

N = 106 nodes are shown for comparison. Note that λ = 3.4 curve overlaps with that of

λ = 3.0. (c,d) The rate of the largest connected component change, R, as a function of

shell index k for (c) N = 8000 and (d) N = 106. Note that in order to avoid the overlap of

curves in (c,d) we subsequently shift the plots with respect to each other by the additive

factor 0.05 in (c) and the multiplicative factor of 10 in (d). The sizes of the nucleus and

the tendrils decrease as λ increases. The nucleus and the tendrils disappear in (a,c) for

N = 8000 at λ > 2.5 and in (b,d) for N = 106 at λ > 2.7.
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FIG. 5: Sizes of k-shells, Sk, for SF random models with c = 0 (a,b) λ = 2.1 and (c,d)

λ = 2.5 as a function of (a,c) N and the k-shell index (b,d) k. Note that sizes of k-shells

increases proportionally to N . (e,f) Sizes of k-shells, Sk, for SF networks with c = 5.0 and

(e) λ = 2.1, (f) λ = 2.5. SF models with c = 5.0 have significantly larger number of shells,

kmax, compared to SF models with the same λ and c = 0. Sk in SF models with c = 5.0

decreases significantly slower as a function of k compared to SF models with the same λ

and c = 0 in the small k region. In the large k region both types of SF models with c = 0.0

and c = 5.0 seem to have similar behavior Sk ∼ k−δ, where δ = 2/(3 − λ).16
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FIG. 7: (a) The largest shell index kmax of the LS and the ICT networks as a function of N

calculated for different years. The number of shells kmax of the LS network increases

approximately as a power-law function of the network size kmax ∼ N θ, where θ ≃ 0.6. (b)

Size of the nucleus of the LS network, Sn, as a function of N . Sn exhibits fluctuations as

LS network grows. Unlike in the analyzed SF models, Smax becomes stable for N > 5000.

(c) Sk as a function of the k-shell index k for the LS network (squares). Shell sizes Sk as a

function of k decrease significantly slower than Sk ∼ k−4, which is expected for a random

SF model with the same λ and c = 0 (triangles). However, the offset introduction of

c = 4.0 in the SF degree distribution, P (q), mimics the k-shell structure of the LS network

(circles). (d) Sk as a function of k-shell index k for the ICT network (squares). SF model

with λ = 3.4 and c = 0 does not possess a k-shell structure. However, the introduction of

c = 6.0 in the SF degree distribution yields similar k-shell structure (circles), but we

attribute it only to finite size effect.
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