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Abstract

UAVs are becoming common devices and are gradually coming into ordinary people’s houses and industrial installations,
while their domains of applications are continuously growing. Thanks to the development of compact and micro sized Unmanned
Aerial Vehicles (UAVs), their use in dynamic and complex environments is becoming increasingly common. Many are the fields
where UAVs can be exploited, from disaster rescue to logistics transportation to precision agriculture. This paper presents a Leader
Follower application for Human Robot interaction. The system is based on ranging measurements and exploits only low cost UWB
radio avoiding complex and expensive vision based systems. The system performance was assessed using HIL simulations and
outdoor tests. The results show good accuracy and robustness of the tracking system and acceptable error levels while always
ensuring the right level of safety for the human involved.

Index Terms

Ranging-based positioning, Ultra-Wide Band, Global Positioning System, Indoor positioning

I. INTRODUCTION

UAVs are becoming common devices and are gradually coming into ordinary people’s houses and industrial installations,
while their domains of applications are continuously growing. For instance, researchers have focused on the study of different
application problems, such as autonomous navigation [1], obstacle avoidance [2], goods transportation [3], [4], logistics
management [5] and precision agriculture [6].

In recent years, UAV control techniques have progressed steadily, and one of the still most investigated topics tackle the
localisation and positioning problem. In the classical approach, UAVs obtain their position, and eventually the one of a target,
exploiting the Global Positioning System (GPS). This approach, however, is not always reliable or available as in the case
of GPS-denied environments [7], such as airports, alleys, parking lots and underground locations, where satellite signals and
other technologies lack precision or fail entirely.

To solve this problem, researchers have proposed different positioning and localisation technologies. These solutions can be
categorised into 3 main families: Vision based, like Visual-Inertial Navigation, Infrared and/or Lidar; Radio Frequency based,
such as Ultra-Wide Band (UWB), Bluetooth and Radio Frequency IDentification; Audio signal based, exploiting Ultrasound
technologies [8]–[11]. Among all the listed solutions, UWB presents some unique characteristics like low-cost, low latency, low
energy consumption, and centimeter-level accuracy that have attracted researchers’ interest lately [12], [13]. Moreover, unlike
vision-based technologies, the RF will never suffer from the low-visibility condition and does not require costly infrastructures
or computationally hungry processing algorithms. Therefore, fuelled by recent advancements in the development of localisation
infrastructures based on UWB [14], [15], researchers have investigated the application of such technologies in robotics [16],
[17], even for multi-agent formation control [18]. For instance, in [19], a combination of UWB ranging with GPS way pointing
is adopted to achieve cooperative flight for cooperative goods transportation. In [20], a swarm of miniature, fully autonomous
flying robots capable of exploring unknown environments autonomously while satisfying various requirements, including flight
efficiency, obstacle avoidance, inter-robot collision avoidance, and swarm coordination has been presented.

As the number of personal UAVs is constantly growing, it becomes important to study the interaction between humans
and such systems [21], [22]. Currently, most of the research is devoted to the evaluation and the development of new control
modalities to enhance human-drone interaction and extend the set of possible use cases [23], [24]. However, the need for
complex hardware interfaces, such as joysticks or haptic devices along with visual/auditory control as voice recognition or
the interpretation of face poses and body postures, limits the possible use cases and the wide spread application of UAVs
in service robotics scenarios [25]. In this paper, we present the preliminary results of a human-robot interaction use case in
which an autonomous UAV is in charge of following a human subject exploiting only UWB-based positioning. The paradigm
chosen for the UAV control is known as Leader-Follower and consists of an autonomous UAV follower that plans its action
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Fig. 1. (a) UAV follower prototype. (b) Follower system architecture. On the left the three UWB radios along with the RPi 4 companion board. The master
DWM1001C is in charge of collecting the data from the other UWB radios and stream them to the RPi 4. On the right the UAV avionics. Companion board
to flight controller communication is implemented using a MAVLINK.

from the action of a human leader. This paradigm applies to different type of mobile robots and it is based on the computation
of a reference point placed in the neighbours of the human being and used for scheduling its motion [26]. In the proposed
application, the human being is equipped with a single UWB transceiver (referred to as the target or tag), while the follower
is a compact 250 mm wheelbase UAV equipped with 3 UWB transceivers (called anchors) deployed in a triangular shape to
avoid positioning ambiguities [27] (see Figure 1 for a snapshot of the developed UAV follower prototype). Within the described
application, the main contributions of this paper are:

• An analysis of the impact of the geometric shape and baseline of the 3 UWB anchors mounted on the follower on the
accuracy of the position estimates;

• The development of an algorithm that given the position estimates, track the tag with desired precision;
• The development of Hardware-in-the-Loop simulations for the algorithm evaluation and the integration of the proposed

solution on a commercial compact 250 mm UAV with preliminary experimental results.
The rest of the paper is organised as follows: Section II presents the positioning algorithm and the techniques for estimating

the leader location. Section III discusses the hardware in the loop simulations, UWB accuracy and presents the real outdoor
test results. Section IV closes the paper with some final remarks and future outlooks.

II. THE CATCH-ME-IF-YOU-CAN SOLUTION

Let us consider the UAV follower prototype reported in Figure 1, which is endowed with three UWB anchors placed at
distance b with respect to the centre of mass of the UAV on an equilateral triangular configuration. The target person, i.e.,
the leader, is tracked using an UWB tag, whose position is determined by the Cartesian coordinates of the tag in the UAV
reference frame, dubbed ⟨U⟩, and whose coordinates are expressed as p = [x, y, z]T . The three UWB anchor positions, i.e.,
ai = [xi, yi, zi]

T , are known and expressed in the same reference frame ⟨U⟩, with zi = 0, ∀i = 1, 2, 3, and are depicted with
blue circles in Figure 2. The i-th anchor is able to deliver a distance to the UWB tag, i.e.,

ρi =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 + ηi = ρi + ηi, (1)

where ηi is the uncertainty contribution, which is supposed to be normally distributed, zero-mean and white, that is ηi ∼
N (0, σ(ρi)

2). Its variance in general depends on the actual distance ρi and on the UWB signal bandwidth [28]. Considering Line
of Sight (LOS) conditions and neglecting shadowing and multipath effects (a customary assumption for outdoor applications),
the UWB module introduces a delay in the timestamp due to internal circuitry [29], which is different for each radio and a
function of the actual distance [30]. Therefore, the ranging measurements (1) turns to

ρi = βi(ρi) + ρi + ηi, (2)

where βi(ρi) is a bias that has to be taken into account for the foreseen application.
In order to keep the structure of the UAV compact and cheap, only three planar anchors can be installed on the platform

at distance b. As a consequence, having just three anchors, only planar estimates can be carried out using trilateration [31],
which is, however, a quite common assumption when UAVs are considered [17]. To solve this issue for the problem at hand,
we assume that the UAV collects the measurements about its height h from the ground using additional sensors (e.g., a sonar
pointing downwards and/or a barometer). Assuming that the target moves on the ground as well, the z coordinate of the tag
p in ⟨U⟩ along the Zu axis (that is the axis pointing downwards in Figure 2) is actually unknown and cannot be estimated if
no knowledge about the motion of the target is considered. Therefore, let us denote with d∗ the desired distance between the
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Fig. 2. Reference systems considered for the leader-follower application. The blue circles represent the positions of the three UWB anchors, all expressed in
the depicted UAV reference frame ⟨U⟩.

leader and the follower along the Xu axis (see Figure 3), while d is the actual distance in ⟨U⟩, i.e., d = ∥p∥ =
√
x2 + y2 + z2.

If the z coordinate of the tag p would be known, it would be possible to consider the projection p∗ of the vector p onto the
Xu × Yu plane, i.e., p∗ = [x, y, 0]T , and then control the UAV in order to have p∗ → [d∗, 0, 0]T . Since the coordinate z is
unknown and not observable, we conservatively assume that z = h, i.e., the height of the UAV from the ground, thus yielding
a projection p̃∗ = [x− δx, y− δy, 0]

T , with δx ≥ 0 and δy ≥ 0. This way, the target appears closer than it is in reality. Hence,
when p̃∗ → [d∗, 0, 0]T , the UAV will be at a larger distance from the leader. Notice that, in the worst scenario, that is when
z = 0, the distance from the tag will be

√
d∗2 + h2.

Another issue to deal with is the presence of the bias, reported in (2). As a matter of fact, this bias cannot be estimated
online without the knowledge of the motion of the leader. However, its effect can be highly mitigated through calibration.
Indeed, by assuming that the bias is mainly induced by the available hardware, it can be considered time invariant. Albeit its
value still depends on the actual distance, we can safely assume for the i-th anchor that βi(ρi) ≈ βi(d

∗), which allows us to
increase the efficacy of this approximation once the UAV is driven towards the desired location. Similarly, we will assume that
the uncertainty ηi standard deviation σ(ρi) is sufficiently small, constant and equals to σ. Therefore, we will consider from
this point on the availability of the bias-compensated ranging measurement (1) instead of (2). The validity of this assumption
and the calibration procedure will be investigated in Section III.

In light of the previous discussion and the conservative assumption derived, we will consider henceforth the planar problem
that can be solved with a trilateration approach. In particular, we will propose two different approaches for positioning, namely
the Linear Least Square (LLS) and the Non-Linear Least Square (NLLS), and the Kalman filter for continuous tracking of the
leader. Notice, nonetheless, that the distance between the anchors ai plays a crucial role in the reachable positioning uncertainty
of the leader. Indeed, geometry matters in the deployment of the anchors for positioning problem, which can be related to the
Geometric Dilution of Precision and to the Cramer-Rao Lower Bound (CRLB), as reported in [27].

A. Leader positioning solutions

In what follows, we will assume that the sampling frequency of each anchor ai, i = 1, 2, 3, is approximately the same. As
reported in [32], the estimates of the planar coordinates pr = [x, y]T in ⟨U⟩, dubbed p̂r = [x̂, ŷ]T , can be retrieved by the
following unconstrained minimisation problem

p̂r = argmin
pr

3∑
i=2

(
∥pr − ai∥2 − ρ2i

)
−

(
∥pr − a1∥2 − ρ21

)
, (3)

which turns to the following LLS problem and related solution

p̂r = argmin
pr

(Apr − c)T (Apr − c) = (ATA)−1AT c (4)



where
A = −

[
2(x2 − x1) 2(y2 − y1)
2(x3 − x1) 2(y3 − y1)

]
,

and
c =

[
(x2

1 + y21 − ρ21)− (x2
2 + y22 − ρ22)

(x2
1 + y21 − ρ21)− (x2

3 + y23 − ρ23)

]
,

and the implicit approximation that p̂ = [p̂T
r , h]

T , i.e., the tag is on the motion plane, as discussed above.
The NLLS solution, instead, solves the following nonlinear cost index directly

p̂r = argmin
pr

3∑
i=1

(∥pr − ai∥ − ρi)
2
. (5)

This problem can be solved with many different numerical methods, however it has been shown in [27] that, starting from
the LLS solution (4) as first initial guess, the estimation precision reaches the CRLB with just a couple of iterations of the
Gauss-Newton method.

It is worthwhile to point out that if the dynamic of the leader is slow enough in comparison with the sampling time of the
anchors, it is possible to use multiple measurements from each anchor. In such a way, assuming that mi is the number of
measurements available for the i-th anchor, (3) turns to

argmin
pr

3∑
i=2

mi∑
j=1

(
∥pr − ai∥2 − ρ2i,j

)
−

(
∥pr − a1∥2 − ρ21,j

)
,

while (5) turns to

argmin
pr

3∑
i=1

mi∑
j=1

(∥pr − ai∥ − ρi,j)
2
,

where ρi,j stand for the j-th measurements from the anchor ai. Of course, in both cases, the solutions remains the same as in
the single measurement case.

B. Kalman filter for tracking

The measured positions p̂r obtained either by (4) or by (5) are used in the update step of a Kalman Filter (KF) that keeps
track of the location of the leader in ⟨U⟩. Such measurements are considered affected by an uncertainty ν, which is assumed
to be Gaussian, zero-mean and white, i.e., ν ∼ N (0, R). The covariance matrix R is hence a 2× 2 matrix whose entries are
experimentally determined in Section III.

Instead, for the prediction step of the KF, we first assume that both the velocity of the UAV and of the target are limited
by vm = 2.0 m/s, which is a standard choice when the leader is a human being walking in free space. The dynamic model
considered in the prediction step represents the relative motion between the follower and the leader, i.e., a motion model
expressing the difference of the dynamic between the UAV and the target. Even though human beings motion models exists in
the literature, for instance [33], we decided to use a constant velocity model due to its simplicity and due to the effectiveness
in non-cluttered environments [34]. The effect of such assumptions is that the motion of the human being does not change
abruptly during the KF time step δt, which is usually the same of the sampling time of the ranging measurements and in
the order of tens of milliseconds. As such, the Euclidean distance between the UAV and the tracked person does not change
significantly, while a change of direction can be entirely devoted to the yaw angle rate of the UAV. Therefore, the simplified
model for predicting the person’s position in ⟨U⟩ boils down to

p̂f,k+1 = Ckp̂f,k + εk (6)

where p̂f,k+1 is the estimate of the KF at time (k + 1)δt and where, assuming that θk is the yaw of the UAV, the transition
matrix

Ck =

[
cos(θk−1 − θk) − sin(θk−1 − θk)
sin(θk−1 − θk) cos(θk−1 − θk)

]
.

The model uncertainty εk is responsible of the inaccurate motion model assumed, and it is generated by a Gaussian, zero-mean,
white and stationary stochastic process, whose covariance matrix Q is given by

Q =

[
(vmδt)

2 0
0 (vmδt)

2

]
.

The KF estimation error covariance matrix at time kδt, i.e., Pk, is initialised with R, that is P0 = R, since the first estimate
of p̂f,0 is given directly by (4) or by (5).



Fig. 3. Position of the UAV desired position pd, which is computed using two consecutive KF position estimates p̂f,k+1 and p̂f,k .

TABLE I
VALUE OF BIAS βi AND σi FOR THE UWB ANCHORS. THE SIZE OF THE BATCH FOR EACH ANCHOR IN EACH POSITION IS OF 2000 SAMPLES.

Parameter a1 a2 a3

βi [mm] 584 695 617
σi [mm] 41 48 38

As reported in Figure 3, when two consecutive position estimates p̂f,k+1 and p̂f,k are determined in ⟨U⟩ and by knowing
the motion of the UAV (obtained directly by the applied control law), it is possible to identify the desired robot position pd,
which is on the back of the leader at distance d∗. Now, the controller has all the ingredients to generate a velocity set-point
v = [vx, vy]

T for the UAV in order to move towards pd and, hence, follow the target at the desired distance d∗. In particular,
v is generated so as to let the UAV asymptotically approach pd plus the estimated target velocity, i.e., 1

δt
(p̂f,k+1 − p̂f,k). To

further enforce safety, the UAV stops when the detected distance to the target is smaller than d∗.

III. CHARACTERISATION AND PRELIMINARY RESULTS

A proper characterisation of the target positioning error is required for designing the system and finding the right balance
among the elements to ensure the effectiveness of the system.

A. UWB characterisation and calibration

To characterise the precision and improve the accuracy of the ranging measurements, as well as to compensate for the effect
of the bias term in (2), we conducted static and dynamic indoor experiments in which we compare the ranging measurements
ρi obtained from the available UWB anchors with the distances ρi retrieved from the motion capture (MOCAP) system, here
considered as ground truth. As aforementioned, considering an outdoor obstacle-free area, where the UWB anchors can operate
in LoS conditions, we first analyse the influence of the bias βi(ρi). From the results in Figure 4-a where the anchor a1 has
been tested (similar results are obtained for all the other anchors), it turned out how the bias is indeed independent from ρi,
since for different actual locations of the tag, the difference between the MoCap data (blue line, corresponding to ρi) and
the UWB data (red line, corresponding to ρi) is approximately the same. In order to collect quantitative results, during the
calibration process, we removed the outliers that consist on average of around 0.5% of each given batch of data, thus obtaining
the estimates for both the bias and the standard deviations for all the anchors reported in Table I. Figure 4-(b) illustrates the
histogram of the estimated distance after the bias compensation for anchor a1.

B. Simulation results

In this section, we assess the performance and the sensitivity of the positioning LLS and NLLS solutions presented in
Section II-A through comprehensive simulations using the Gazebo simulator and with the purpose to analyse the effects of
1. Distance b between anchors and centre of mass of the UAV;
2. Bias in measurements;
3. Number of measurements available.

In the simulator the ranging measurements for the three anchors installed on the drone are corrupted by a gaussian noise
η ∼ N (0, σ2

i ) with reference to (2) and Table I.
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Fig. 4. (a) Distance measured by a1 (red line) and the actual distance (blue line) to infer the bias β1(ρ1). (b) Error histogram of ρ1 − ρ1 after the bias in
Table I has been compensated.

1) Anchors distance: The three UWB anchors are deployed around the UAV centre of mass in a triangular configuration
to reduce the detrimental effects of the position dilution of precision [27]. The output of this first analysis shows how the
performance of the positioning method is affected by the baseline b of the anchors. To this end, we set up a Monte Carlo
experiment with 52000 trials in which we vary the baseline between the anchors as b ∈ [0.1, . . . , 0.5] [m]. The average position
error considering mi = 5 repeated ranging measurements for each anchor are reported in Figure 5. As expected, the increase
of the baseline b leads to a better accuracy. However, a baseline b = 20 cm is sufficient to have good precision and to place
the radio hardware on most compact commercial drone airframes (i.e., 250-class). Moreover, we also noticed that the NLLS
solution yields better results with respect to the LLS.

2) Effect of bias on measurements: WE additionally conducted Monte Carlo simulations with 4000 trials to understand
the effect of the bias βi on both the solution NLLS and LLS. In each experiment, we change the value of the bias as
βi = {0, 5, 10, 15, 20} [cm]. The results obtained in the worst case are reported in Figure 6 with respect to the position error
∥pr − p̂r∥. Also in this case the error is well contained by the NLLS, while the LLS returns quite bad results. By comparing
Figure 5 and Figure 6, it becomes evident how the bias calibration and compensation turns to be a clear performance booster.

3) Consistency of the position algorithms: To verify that the NLLS positioning algorithm is consistent even in our case
when more data is made available [31], the following cycle is repeated Nrep times:

• A set of mi = 5 ranging measurements between the target and each anchors is collected;
• The average position of the target is estimated using both the LLS and the NLLS algorithms.
Looking at Figure 7 we can see that increasing Nrep significantly improves the accuracy of the position estimate. Using

the results obtained for the NLLS and with the aforementioned parameters, it is possible to compute the empirical Monte
Carlo-based covariance matrix of the position estimation error for the NLLS solution to be used as the matrix R in the KF,
i.e.

R = E
{
eeT

}
≈

[
0.627 m2 0.001 m2

0.001 m2 0.630 m2

]
,

where ex = x − x̂ and ey = y − ŷ are the positioning errors along the Xu and Yu axis of ⟨U⟩, respectively, while e =
[ex − E {ex} , ey − E {ey}]T .
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Fig. 5. Average position error ∥pr − p̂r∥ of the Monte Carlo simulations for different values of the baseline b and for both the LLS and the NLSS solutions.

C. Validation

A Hardware-in-the-Loop (HITL) experiment was conducted to validate the proposed low-cost UWB-based person tracking
system. Based on the previous analysis, the distance between the UAV centre and the UWB anchors is chosen to be b = 20 cm,
while the number of repeated measurements for each UWB radio is set to mi = 5. To test the positioning and control algorithms,
a typical motion pattern is applied to the target based on [35], as shown in Figure 8.

The histogram of the error of the estimated positions is shown in Figure 9. It can be noticed that, despite the approximations
described, the error remains limited even in the human beings sharp change of directions reported in Figure 8-b.

D. Preliminary experimental results

At the stage of the writing, the outdoor test are executed without a ground truth. In Figure 10 is shown a frame of the
outdoor test, while a full video of the experiment is available at the following link1. In the video material, there is a manoeuvre,
called twirl, executed during the lock on target: its purpose is only to give a visual feedback to the user and increase the user
confidence and trustfulness. The outdoor experiments are very promising and the system was able to correctly track the human
being at the desired distance with minor errors (in the order of some tens of centimetres) even along sharp turns.

IV. CONCLUSION

In this paper, we have proposed a solution for unmanned aerial vehicle target tracking based on onboard UWB ranging
measurements. The main focus of this work has been the design of all the hardware and software architecture required to
accomplish the goal mentioned above. After briefly describing the UWB transceiver, we characterised its measurement process
and presented the NLLS and LLS algorithms, which solve the trilateration problem and retrieve a position estimate. A Monte
Carlo analysis has been performed to validate the two methods and to set some design parameters. In order to avoid sharp
variations of the point to track, a Kalman filter-based tracking system has been developed as well. Hardware in the loop
simulations and preliminary experimental results showed a very smooth behaviour of the UAV under acceptable accuracy
performance given the considered simple and cheap design choices.

1https://www.youtube.com/watch?v= SPHzfz6aXU



Fig. 6. Histogram of the position error ∥pr − p̂r∥ for the NLLS and LLS solutions with a bias βi = 0.2 m.

For future works, we firstly aim at testing the system in a more challenging outdoor scenario and using external MoCap
systems for ground truth generation. Then, we aim at improving the proposed solution with more advanced estimation filters
endowed with more sophisticated human motion models as well as at implementing tailored control policy. Finally, we are
currently studying the possibility to estimate the height of the tag when the human is standing still and the UAV undergoes
specifically conceived controlled manoeuvres.
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