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Protein design under competing 
conditions for the availability of 
amino acids
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Isolating the properties of proteins that allow them to convert sequence into the structure is a long-
lasting biophysical problem. In particular, studies focused extensively on the effect of a reduced 
alphabet size on the folding properties. However, the natural alphabet is a compromise between 
versatility and optimisation of the available resources. Here, for the first time, we include the impact 
of the relative availability of the amino acids to extract from the 20 letters the core necessary for 
protein stability. We present a computational protein design scheme that involves the competition for 
resources between a protein and a potential interaction partner that, additionally, gives us the chance 
to investigate the effect of the reduced alphabet on protein-protein interactions. We devise a scheme 
that automatically identifies the optimal reduced set of letters for the design of the protein, and we 
observe that even alphabets reduced down to 4 letters allow for single protein folding. However, it 
is only with 6 letters that we achieve optimal folding, thus recovering experimental observations. 
Additionally, we notice that the binding between the protein and a potential interaction partner could 
not be avoided with the investigated reduced alphabets. Therefore, we suggest that aggregation could 
have been a driving force in the evolution of the large protein alphabet.

The amino acid alphabet encoding the protein function is common to all living organisms and is the result of mil-
lions of years of evolution. It is composed of 20 letters, in contrast to the ones of other biopolymers, such as DNA 
and RNA, which possess 4 letters only. Such a large alphabet gives to proteins the vast variety of configurations 
and functions that we know so far.

The advent of computational protein evolution (also known as protein design)1–16 opens the possibility to 
address fundamental questions about the nature of the amino acid alphabet17–20. Protein design consists in 
searching for protein sequences capable of folding into a given backbone conformation. The search is usually 
done by point mutations while keeping the backbone structure fixed. In addition to several applications to medi-
cine12,14,21–23 and material science15,24–27, protein design offers the possibility to explore fundamental problems of 
protein evolution.

One of the questions that mostly attracts the attention of the scientific community is about the universality 
of the 20 letters. Of course, the complex spectrum of proteins functionalities calls for a wide range of building 
blocks. However, could it be possible to design proteins to fold using a reduced alphabet? And, if yes, why not 
simply stick with such a reduced alphabet?

The early work on protein design with alphabets of different sizes was carried out for protein lattice models in 
which the protein chain is constrained to be on a cubic lattice. With such models it was possible to design heter-
opolymers with a large variety of alphabets defined by the amino acid interactions28–37. It became rapidly apparent 
that even in such simplified systems it is necessary to have a minimum number of residue types to encode the 
target configurations38. Moreover, such simple models allowed to explore the related question on how the alpha-
bet size influences protein-protein interactions39–42. Finally, works done on realistic models offer substantial evi-
dence that protein design with a minimalistic alphabet is possible43–47. In particular, statistical analysis of protein 
databases48–54 demonstrated that a considerable fraction of the information encoded in natural proteins could be 
packed into smaller efficient alphabets from 1254 all the way down to just 5 residue types43,45,54–57. However, all the 
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mentioned studies completely neglect the possibility that a competition for the availability of amino acids may 
have played a role in the evolution of the protein alphabet size.

In this work, we devised a design strategy that includes such a competition to spontaneously drive the selec-
tion towards the minimal subset of residues essential for protein folding.

Our principal result is the identification of an optimal protein alphabet with the minimum number of letters, 
without the need of imposing neither the size nor the composition of it. The results show that for the folding of a 
small protein the minimum number of amino acid types needed is just 4. Incidentally, 4 is also the alphabet size 
of RNA that was hypothesized to be a precursor of proteins during the early stages of life. Additionally, by having 
a binary system, we can explore the effect of the alphabet reduction on aggregation in different protein-protein 
binding scenarios. From our simulations we observe that the alphabet reduction compromises the heterogeneity 
of the protein-protein interactions28,36,40–42 and binding cannot be avoided.

These results have interesting implications towards the understanding of the evolution of protein sequences 
and structures when the amino acid availability is taken into account. In fact, living systems are under constant 
pressure for using the smallest variety of amino acids as possible, e.g. to limit the resources needed to construct 
specialised tRNA molecules necessary for the translation process58. Hence, it is reasonable to assume that during 
the early stages of life, the protein capable of being designed with a smaller alphabet could have been advanta-
geous. If protein aggregation was not crucial at that stage, then our results demonstrate that protein-based life 
could have started with an alphabet size compatible with the one of DNA and RNA. On the other hand, the simple 
condition of avoiding protein aggregation could be a strong driving force against alphabet reduction.

Methods
We consider systems composed of the natural protein G structure (already successfully redesigned with several 
protein models3,7) and a competing element (a mould of a part of protein G, that mimics with a surface-like shape 
a potential binding site of a larger protein). Both proteins are represented with the caterpillar coarse-grain model, 
which has been successfully tested to design and refold natural and artificial proteins7,9 including the protein G.

In the following we will use the denominations: protein G referring to both natural structure and sequence as 
stored in the PDB with the ID 1pgb; protein G  referring to an artificial sequence designed for the natural protein 
G structure; protein Γ referring to the surface-like competing protein partner.

The protein Γ is created immersing the protein G structure into a flat surface until its centre of mass (CM) 
reaches the desired relative height ζ  with respect to it. The flat surface is pushed down creating a mould, which is 
kept at fixed distance μ = 13 Å from the surface of the protein G. Then, the protein G is rotated around its CM to 
maximise the mould surface area, which represents the binding site of a second protein. We create four moulds, 
each corresponding to a different value of ζ  and composed by a different number of amino acids, labelled as Csurf . 
The systems are characterised by ζ  = (0.20, 0.40, 0.60, 0.80), thus leading to surface areas = (4717.5, 3842.2, 
3051.5, 2320.5) Å2 and Csurf = (158, 127, 100, 78) residues respectively (see the Modelling protein Γ of the 
Supplementary Materials SM for details). For the sake of simplicity, we call sequence the amino acid identities of 
protein Γ, although its surface-like structure is frozen and far from a polymeric chain of beads.

The procedure employed in the present work follows the steps pictorially represented in Fig. 1,
Once the protein Γ modelling is complete, the structures of both proteins are frozen, with the protein G 

immersed into the mould Γ and kept at distance μ from it (as represented in Fig. S1b). The design scheme consists 
of a computational exploration of the sequence space via point mutations, looking for the ones that minimise the 
total energy among the ones that maximise the permutations =

…
NP

N
n n n

!
! ! !A B C

 of the total amino acid composi-
tion (N is the total number of amino acids and …n n n[ , , , ]A B C  are the abundance on amino acids of type 

..A B C, , ,  respectively). See the subsection Design of Technical aspects of the methodology in the SM for details. It 
is important to stress that > ΓN N NP P

G
P , where NP

G  and ΓNP  are the permutations of protein G  and Γ respectively. 
This inequality implies that, indeed, the sequences of G  and Γ are correlated, since the most heterogeneous 
sequence is not the one that maximises NP

G  and ΓNP  separately. In turns it means also that NP can be maximised 
without maximising NP

G and ΓNP  separately, and the residues can be distributed dishomogeneously between pro-
tein and substrate.

The choice of the distance μ between the two proteins guarantees that, during the design, the protein-protein 
interaction energy is negligible. Under such conditions, the design scheme leads inherently to sequences that 
minimise the energy of the protein G  and optimise the exposure to the solvent of each residue of protein Γ. Since 
protein G  and Γ are energetically uncorrelated, the coupling between the proteins is then only through the maxi-
misation of the total permutations NP.

Results
For each scenario, i.e. for each ζ ∈ . . . .(0 2, 0 4, 0 6, 0 8), the design algorithm generates a basin of solutions con-
taining approximately 105 sequences. From each basin, we select the sequence with highest permutation number 
and lowest energy, considering it as representative of the whole basin, and use it to test the folding and binding 
properties. The selected protein G  sequences for each scenario are shown in Table S1, while in Table S2 we show 
how much they differ from each other. To search for the smallest alphabet, we decided to focus on a single 
sequence instead of an average over a basin. Taking as a reference the centroid of the basin would have shifted the 
solution space towards higher energy sequences that tend to have larger alphabets.

We observe that the residues of protein G  tend to adopt a limited set of letters. Moreover, increasing the pro-
tein Γ area (and hence the number of amino acids belonging to it) reduces de facto the amino acids accessible by 
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the protein G  to minimise its energy. Hence, the fractionation of the alphabet is not caused by specific interactions 
between the residues but by the coupling through the maximisation of the total permutations NP.

We can control the competition pressure by changing the size of protein Γ. This competition leads to an effec-
tive reduced alphabet used by the protein G . We observe that the effective alphabet grows from 4 to 6 letters going 
from larger (ζ = 0.20 and 0.40) to smaller Γ proteins (ζ = 0.60 and 0.80) respectively. It is interesting to notice that 
the alphabets are made of amino acids with an average attractive pair-interaction energy and high variability in 
terms of the residue-solvent interactions (see Table S1 in ref. 9). Moreover, the alphabets differ from each other 
(letters GKVY and GKRV corresponding to ζ = . .(0 20, 0 40) and FGHKRY common to both ζ = . .(0 60, 0 80)), 
and for each scenario the protein amino acids are not present in the corresponding protein Γ sequence (see SM 
Fig. S11). Therefore, part of the 20 letters are segregated on the protein Γ sequence.

Our finding shows that the design process indeed mimics a process under competition for available amino 
acids. It is important to stress that such competition is the results of the coupling alone as we impose neither the 
size nor the composition of the reduced alphabet. Hence, the particular letters that the design process chooses for 
protein G  are presumably optimal to stabilise the folded structure. This feature is the crucial element of our design 
scheme that allows us to isolate the critical set of residues in our alphabet for design and folding.

Finally, we test the folding and binding properties of the designed sequences. Hence, we perform Monte Carlo 
simulations keeping fixed the amino acid sequence generated for each scenario, and extensively exploring the 
conformational space of the protein G .

To test the selected sequences, we first examine the folding stability of the protein G  alone, therefore perform-
ing a folding simulation in an empty box starting from a fully stretched configuration. Figure 2 shows the free 
energy profiles as a function of the distance root mean square displacement DRMSD (defined in Eq. S10 of SM). 
From previous works7,9, the criterion for assessing a stable fold is to observe a funnel shape of the free energy 

Figure 1.  Pictorial representation of the steps employed to enforce a competition for amino acid availability 
between protein G  and a protein Γ, and to test its effect on the folding ability of protein G  in presence and 
absence of the artificial partner. (I) Create a Caterpillar version of the experimentally determined crystal 
structure of protein G (II) Shape four competing partner proteins Γ modelled as moulds of increasing portions 
of the protein G. The size of the mould will influence the competition for resources, as further explained in the 
following sections. The larger the surface, the higher the competition. (III) Design each of the four systems 
considering simultaneously the proteins G  and Γ. The procedure consists in searching for the ensemble of 
sequences that minimise the energy of both protein G  and Γ while keeping the system conformation frozen in 
space. The competition for the amino acids is created at this stage of our simulations. (IV) After selecting the 
best designed sequence (see the Design subsection for details about the criterion) for each system, isolate the 
portion relative to the protein G  and test its folding ability in a single-protein folding simulation. (V) Check how 
the folding of the latter sequences is influenced by the presence of protein Γ frozen in the simulation box 
(bearing the sequence designed concurrently to protein G).
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profile and a global free energy minimum for ≤DRMSD 2 Å. Using this criterion, we can say that all protein 
sequences fold back into the target configuration, although with different precision. Sequences with a larger effec-
tive alphabet fold with higher precision, as can be seen from the DRMSD value of the configurations correspond-
ing to the global free energy minimum for each system (The DRMSD values correspond to 4.9; 5.5; 2.4 and 2.7 Å 
in RMSD respectively). The sequence optimised at ζ = .0 40 shows a secondary minimum in the free energy, 
corresponding to misfolded compact structures, therefore being the system less stable for the folding in the bulk. 
A possible explanation of such a behaviour is that the effective 4 letters protein G  alphabet for ζ = .0 40 involves 
only hydrophilic residues (GKRY), thus leading to a lower stability.

From the described scenario, we can draw two important conclusions: firstly, design with a limited alphabet 
of 4 letters can produce a funnel-like folding free energy landscape; secondly, with 6 letters we recover the folding 
precision of previous caterpillar designs made with 20 letters9. Our results are consistent with the experimental 
observation that 6 letters are a minimal set necessary to maintain protein structure and function43,45,54–57.

The Random Energy Model59–61 provides a criterion for a heteropolymer to be designable: it has to satisfy the 
relation ω>q exp( ), where q is the alphabet size and ω the conformational entropy per residue. Hence, a 4 letters 
alphabet gives an upper bound to the conformational entropy ω of the caterpillar backbone and therefore of the 
more restricted natural protein backbones. Such a result is compatible with the recent observations of Cardelli et al.62  
who mapped the designability phase space for a general heteropolymer decorated with directional interactions 
similar to the hydrogen bonds present along the protein backbone. For polymers with two directional interactions 
per particle the minimum alphabet measured was four, as the one presented here.

To test the effect of the alphabet reduction on protein-protein interaction, we also perform folding simulations 
in the presence of the protein Γ, that represent a potential binding site. In Fig. 3 we plot the free energy landscape 
as a function of DRMSDintra and DRMSDinter. DRMSDintra is the DRMSD intra protein G , and uses the native pro-
tein G structure as target configuration. DRMSDinter is the DRMSD between protein G  and protein Γ, and uses the 
folded bound configuration (shown in the insets of Fig. 3 for each scenario) as a target. This choice allows us to 
monitor the folding and binding properties of the system independently. Conformations that are folded and 
bound can be found in the bottom left corner, while folded unbound ones in the top left corner.

Additionally, we also separately check the free energy profiles as a function of DRMSDintra for conformations 
with protein G  in contact with protein Γ (see Fig. S9 in the SM) and in the bulk solution (i.e. where no 
inter-protein contacts are possible, see Fig. S10) in the SM. For a sketch of the definition of contact and bulk solu-
tion configurations see Fig. S6 in the SM. To verify the consistency of the two different folding simulations, we 
checked that the free energy profiles of configurations in the latter region correctly fold into the target structure 
(Fig. S10), reproducing the behaviour observed in the isolated protein folding simulations (Fig. 2).

For all scenarios, upon binding to protein Γ, we observe a significant enhancement of misfolded configura-
tions with respect to what observed in the bulk solution (compare Figs. S9(a) and S10 in the SM). In particular, 
there is a considerable shift in the equilibrium towards states at ∼DRMSD 3 Å that have a free energy that is now 
comparable to the one of properly folded configurations. It should be noticed that natural binding sites expose 
much smaller surface areas then the one modelled with protein Γ. Hence, the latter effect might be mitigated 
considering smaller surfaces for protein Γ.

Analysing the behaviour of the binding process as a function of temperature we find that the random binding 
is overall very strong and it decreases while increasing the temperature. The van’t Hoff plot63,64 shows positive 
binding affinities and an exothermic process above the folding temperature (Fig. S7 SM; see Fig. S6 SM for details 

Figure 2.  Folding free energy profiles F/kBT of single protein (only protein G , no protein Γ) at reduced 
temperature 0.55 as a function of DRMSD from the native target structure (protein G structure, PDB ID: 1pgb). 
Different colours correspond to protein G  sequences obtained via the design procedure in the presence of the 
protein Γ characterised by the ζ  value specified in the key. Right hand side: configurations corresponding to the 
free energy minimum for each system are represented in red, compared to the native protein G (in green). 

= .DRMSD 2 1 Å for ζ = .0 20; = .DRMSD 1 9 Å for ζ = .0 40; = .DRMSD 1 3 Å for ζ = .0 60 and 
= .DRMSD 1 5 Å ζ = .0 80.
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about the evaluation of the association constant and Fig. S8 SM for the folding temperature evaluation). At the 
same time, while increasing the temperature, the equilibrium shifts from partially-misfolded to fully-misfolded, 
indicating that the unfolding process takes place at the surface while the protein remains bound (see Fig. S9(b)). 
This is particularly evident for extended protein Γ surfaces, i.e. systems characterised by ζ = . .(0 20, 0 40). Hence, 
we observe a strong tendency of the protein G  designed with 4 letters to absorb and aggregate on protein Γ.

Overall, this binding behaviour is an unexpected result. In the crowded cellular ambient, natural protein 
designed by evolution with the 20 letters alphabet are not aggregating. As such, in the present work, protein G  and 
Γ should not aggregate, since they interact through the total caterpillar alphabet of 18 letters. However, our design 
scheme imposes a segregation of few letters on the protein G  sequence. We identify the following observation as 
a possible cause. The 4 letters alphabets (GKVY and GKRY corresponding to ζ = . .(0 20, 0 40)) have an average 
intra-protein residue interaction of −0.2kBT, while the average interaction of the single protein G  letters with all 
the others, i.e. the inter-protein interaction, is much lower −0.3kBT. This makes impossible for the protein G  to 
stabilise the folded state in contact with protein Γ. Conversely, the 6 letter alphabet (FGHKRY common to both 
ζ = . .(0 60, 0 80)) has an average intra-protein residue interaction of −0.4kBT, that is lower than the inter-protein 
one of −0.3kBT. This helps in stabilizing the folded structure upon binding. If, on the other end, the residues 
would have been properly mixed, there would be no difference between inter and intra averages, and the random 
interactions should be washed out by thermal fluctuations28. Hence, there is a fundamental pressure to increase 
the alphabet size and fully use it to achieve folding and avoid strong absorption.

This is an essential factor that could explain why natural proteins tend to have and use a larger alphabet than 
6 letters. However, the origin of the 20 letters is still only matter of speculation. In fact many molecular process 
require additional chemical modification of the proteins like glycolisation that effectively increases the available 
pools of potential letters. Hence, it is not even accurate to consider 20 as the upper limit, that is why in this study 
we focused on the lower limit that has more clear definition.

In conclusion, the design procedure employed in our work has a significant segregation effect on the alphabet 
letters used in the protein G  sequence. The larger the number of residues on the competing protein Γ, the smaller 
is the effective alphabet available for the protein G  sequence. On the one side, the design is capable of selecting a 
subset of letters that still allows the folding of the protein in the bulk solution even for the smallest effective alpha-
bet (4 letters). The precision of the folding increases with the effective alphabet size. Interestingly, the experimen-
tally determined minimum alphabet size of 6 letters is also what we identify as minimum alphabet that recovers 
the design accuracy commonly obtained with a 20 letter alphabet. This implies that functionality will push the 

Figure 3.  Folding free energy landscapes F/kBT at reduced temperature 0.76 as a function of the DRMSDintra 
distance from the native protein G as target and the DRMSDinter inter-protein distance from the folded protein 
bound to protein Γ (configurations depicted in the panels). The binding affinity decreases along with the protein 
Γ surface size, as shown by the value of the association constants Ka in the plot key.
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alphabet to grow. This trend could explain why reduced alphabets obtained form the analysis of natural proteins 
then to be larger54.

It is important to stress that the reduced alphabet presented here might not be the only possible solution. It 
would be interesting to perform a larger study of the folding sequences and generate a spectrum of possible 4 
letters alphabets, and with models that include amino acids charges more explicitly.

Our results have far-reaching implications both in the field of protein design and for the understanding of 
protein evolution. In protein design, the possibility of using a reduced alphabet would considerably accelerate the 
search of the sequence space for good folders. In the field of protein evolution instead, the understanding of the 
smallest alphabet necessary for accurate protein design is still an open question. To the best of our knowledge, 
this study represents the first successful design of a full natural protein structure with a reduced alphabet of just 
4 letters. Moreover, such a result offers an interesting parallelism with the 4 letter alphabet of RNA which studies 
speculates had a role in the early stages of life before the advent of proteins.
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