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Linear Array Thinning Exploiting Almost Difference Sets

G. Oliveri, M. Donelli, and A. Massa

Abstract

This paper describes a class of linear thinned arrays with predictable and well-behaved

sidelobes. The element placement is based on almost difference sets and the array power

pattern is forced to pass throughN uniformly-spaced values that, although neither equal nor

constant as for difference sets, area-priori known from the knowledge of the aperture size,

the number of active array elementsK, and the features of the correlation function. Such

a property allows one to predict the bounds of the confidence range of the peak sidelobe

of the admissible arrays obtainable through simple shift operations on a binary sequence.

The expected peak sidelobe performances turn out to be comparable with those from dif-

ference sets, even though obtainable in a wider set of array configurations, and improved in

comparison with cut-and-try random-placements.

Key words: Array Antennas, Thinned Arrays, Linear Arrays, Almost Difference Sets, Sidelobe

Control.
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1 Introduction

Massive thinning of arrays (i.e., the reduction of the number of the array elements below half

of its filled counterpart) is of great importance in practical applications because of the reduc-

tion of the array costs, weight, power consumption, HW and computational complexity [1][2].

However, such advantages usually come at the cost of a loss ofsidelobe level (SLL) control

and gain compared to the filled arrangement [1][2].

In order to overcome these drawbacks, several thinning techniques have been proposed [1]-[5].

Deterministic thinning has been first studied, but no significant improvements ofSLL control

compared to a random element placement [4][5] have been obtained. More recently, dynamic

programming [6] and stochastic optimization techniques, such as simulated annealing (SA)

and genetic algorithms (GAs) have been successfully applied [7]-[11]. Despite the satisfactory

results, statistical methodologies have not an easy application to large arrays because of the

computational burden and convergence issues. Moreover, due to their stochastic nature, it is

often difficult to a-priori estimate the expected performances for a given aperture size and

thinning factor [1].

The synthesis of massively thinned arrays has been faced in avery promising fashion by consid-

ering equally-weighted arrays [1][12]. Such an approach isbased on the use of binary sequences

derived fromdifference sets(DSs), which are known to possess two-level periodic autocorrela-

tions. In [1][12], it has been shown that, if the element excitations are chosen according to the

binary distribution derived fromDSs, the peak sidelobe level (PSL) of the synthesized linear

array is3 dB lower than that of the corresponding random distribution. Such a result has been

successfully exploited for the design of both linear [13] and planar arrays [1][14], although the

PSL reduction is about1.5 dB smaller when planar architectures are dealt with [1]. Theappli-

cation ofDSs has also allowed some improvements in thinned-array design procedures based

onGA optimization [2].

The exploitation ofDS sequences is a powerful and numerically-effective technique for the

thinning of large arrays. However, such a possibility depends on the availability of aDS for

whatever sizeN of the array [1][2][14]. Although several families ofDSs have been determined

and extensive collections are also available [15], it is well-known that there is no a correspond-
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ing DS for several values ofN [16] (i.e. it is not possible to define a binary sequence with a

two-level periodic autocorrelation of lengthN).

Recently, the definition of binary sequences of lengthN with suitable autocorrelation proper-

ties, for whichDSs are not available, has been carefully investigated in information theory and

combinatorial mathematics. It has been found that it is often possible to determine sequences

with a three-level autocorrelation function by taking intoaccount the so-calledalmost difference

sets(ADSs) [16]-[18]. ADSs are a research topic of great interest in combinatorial theory with

important applications in cryptography and coding theory (see [16]-[18] and the references

therein). Moreover, althoughADS generation techniques are still subject of research, large

collections of these sets are already available [22]. As regards the array synthesis, a preliminary

application, although limited to a particular subset ofADSs, has been reported in [13]. In such

a framework, the whole class ofADSs seem to be a good candidate for enlarging the set of

admissible analytic configurations with respect to theDS case, despite a reduction of expected

performances. From this viewpoint, it is of interest to carefully detail theADS features for

antenna arrays synthesis.

In this paper, the exploitation ofADSs properties for the design of linear thinned arrays is

discussed and analyze in depth through a solid mathematicaldescription. The proposedADS-

based technique is aimed at synthesizing arrays with performances close to those withDSs,

but enhancing the set of admissible array configurations. Itis also worthwhile to point out

that the paper is not aimed at defining an optimal method for the design of thinned arrays, but

its purpose is to propose some guidelines to the array designers who, whether by necessity

or choice, are synthesizing a thinned array without considering stochastic optimizations or a

random placement, but using a deterministic strategy with predictable results.

The outline of the paper is as follows. After a short summary on the basicADS definitions

and properties (Sect. 2), the expectedPSL of ADS-arrays is bounded by theoretically defining

upper and lower values (Sect. 3) starting from infinite sequences (Sect. 3.1) up to finite arrays

(Sect. 3.2). The numerical validation is carried out by comparing the performances ofADS-

based arrays with those of similarDS configurations when available and, more in general, with

random arrays (Sect. 4). Finally, some representative experiments concerning the exploitation
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of ADS-based arrays when non-isotropic elements are at hand is reported (Sect. 4.4). Some

conclusions and comments on future developments follow (Sect. 5).

2 Almost Difference Sets - Definitions and Properties

Let us provide just some basic definitions and main properties of ADSs, while more detailed

information and applications ofADSs can be found in [16][17][18].

A K-subsetD = {dk ∈ [0, N − 1] , dh 6= dℓ; k, h, ℓ = 0, ..., K − 1} of an Abelian groupG(1)

of orderN is called a(N, K, Λ, t)-almost difference set if the multisetM = {mj = (dh − dℓ) ,

dℓ 6= dh;j = 0, ..., K × (K − 1) − 1} containst nonzero elements ofG each exactlyΛ times,

and the remainingN −1−t nonzero elements each exactlyΛ+1 times [18]. As a consequence,

DSs areADSs for whicht = N − 1 or t = 0 [18].

If G ≡ Z andD is a(N, K, Λ, t)-ADS of G, then the cyclic repetition of the binary sequence

A = {an ∈ [0, 1] ; n = 0, ..., N − 1} of lengthN , whosen-th element is

an =











1 if n ∈ D

0 otherwise
, (1)

defines the characteristic sequenceS = {sn; n ∈ Z} of D [16], where

sn =











1 if modN (n) ∈ D

0 otherwise
. (2)

The corresponding autocorrelation function,Cs(z), is a periodic function defined as follows [1]

Cs(z) =

N−1
∑

n=0

snsn+z z ∈ Z (3)

and equal to [16][18]

(1) An Abelian group is a group satisfying the requirement that the product of elements does not depend on
their order. In addition to the other axioms of a group, the product operation is associative,G has an identity
element, and every element ofG has an inverse.
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CADS
s (z) =























K z = 0

Λ + 1 z ∈ L

Λ otherwise

, K ≥ Λ + 1 (4)

in the periodz ∈ [0, N − 1], L being a set ofN−1−t elements (i.e.,L = {lp ∈ Z; p = 1, ..., N − 1 − t}).

For illustrative purposes, let us consider the examples ofADSs [17] reported in Tab. I together

with the corresponding binary sequences and autocorrelation functions. For completeness, the

plots ofCADS
s (z) are shown in Fig. 1.

It is worth noting that the autocorrelation functionCADS
s (z) of a (N, K, Λ, t)-ADS is close to

that of the (if any) corresponding(N, K, Λ)-DS [1]

CDS
s (z) =











K z = 0

Λ otherwise
. (5)

In fact, the difference is limited to just a unity inN − 1 − t points whereCADS
s (z) = Λ + 1

[16][18]. Moreover, theADSs share several other properties with theDSs. In particular,

neitherDS norADS can be defined for every value ofN , K, Λ andt. Indeed, for(N, K, Λ, t)-

ADSs in an Abelian group, the following existence condition holds true [17][18]

K(K − 1) = tΛ + (N − 1 − t)(Λ + 1) (6)

beingK ≥ Λ + 1, 0 ≤ K ≤ N , and0 ≤ t ≤ N − 1.

On the other hand, ifD is anADS, then the set

D
(σ) =

{

d
(σ)
k = modN (dk + σ) , dh 6= dℓ; k, h, ℓ = 0, ..., K − 1

}

(7)

whereσ ∈ Z, is still anADS. Therefore, starting from an(N, K, Λ, t)-ADS, it is possible

to buildN different (N, K, Λ, t)-ADSs by applying a cyclic shift to its elements (i.e., a cyclic

shift on the associated binary sequenceA).

Mathematical proofs of existence or non-existence ofADSs for different choices ofN are
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currently topic of research in the framework of combinatorial theory and suitable techniques for

the generation of new families ofADSs are still in progress [18]. However, severalADSs has

been already found [16]-[18] and their properties can be profitably exploited for array synthesis.

3 ADS-Based Linear Arrays - Mathematical Formulation

3.1 ADS-based Infinite Arrays

An infinite thinned array can be defined from whatever binary sequenceA of lengthN by

introducing thearray element location functionΨ∞(x) [1]

Ψ∞(x) =

∞
∑

n=−∞

snδ(x − nd) (8)

whereδ( . ) is the Dirac delta function,d andx are the lattice spacing and the spatial coordinate

along the linear array, respectively (both expressed in wavelength). In practice, the infinite

thinned array is defined by locating the array elements alonga uniform lattice with spacingd

[1] at those positions whereΨ∞(x) 6= 0.

As with any array, the power pattern of theADS-based infinite linear array turns out to be the

Fourier transform of the autocorrelation function ofΨ∞(x) [1], CADS
Ψ (z), that is

PP∞(u) = ̥
{

CADS
Ψ (z)

}

(9)

where̥{ . } denotes the Fourier transform operator,u , sin(θ), u ∈ [−1, 1], and

CADS
Ψ (z) = Λ

∞
∑

n=−∞

δ(z−nd)+
N−1−t
∑

p=1

{

∞
∑

n=−∞

δ(z − nNd − lpd)

}

+(K−Λ)
∞
∑

n=−∞

δ(z−nNd)

(10)

where the indexlp satisfies the conditionCs (lp) = Λ + 1.

By substituting (10) in (9) and recalling the Fourier transformation properties of an infinite train

of pulse functions, one can show that

PP∞(u) =

∞
∑

n=−∞

PP∞,nδ
(

u −
n

Nd

)

(11)
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where

PP∞,n =











Λ
d

+ 1
Nd

(

K − Λ +
∑N−1−t

p=1 ej
2πlpn

N

)

n = 0,±N,±2N, ...

1
Nd

(

K − Λ +
∑N−1−t

p=1 ej
2πlpn

N

)

otherwise
. (12)

Expression (11) is the analogous of Eq. (14) in [1] forDSs. However, unlikeDSs, further

simplifications of Eq. (11) are not trivial since the following term ofPP∞,n

(

K − Λ +
N−1−t
∑

p=1

ej
2πlpn

N

)

=

(

K − Λ − 1 +
N−1−t
∑

p=0

ej
2πlpn

N

)

, l0 = 0 (13)

cannot be evaluated in closed form. In fact, the setL depends on theADS at hand andPP∞(u)

has to be evaluated on a case-by-case basis instead of in a general fashion. However, it is still

possible to provide ana-priori estimate of the peak sidelobe level of the infinite array,PSL∞,

defined as

PSL∞ = maxn 6=0
PP∞,n

PP∞,0

. (14)

Actually, it turns out that (Appendix A)PSL∞ is limited by the following upper

PSLMAX
∞ =

K − Λ − 1 +
√

t (N − t)

(N − 1)Λ + K − 1 + N − t
(15)

and lower bounds

PSLMIN
∞ =

K − Λ − 1 −
√

t(N−t)
(N−1)

(N − 1)Λ + K − 1 + N − t
, (16)

respectively. Figure 2 shows the plots of thePSL∞ values and the corresponding bounds in cor-

respondence with the representative setD4 available in [17] and detailed in Tab. I. As expected,

PSLMIN
∞

(

D
(σ)
)

≤ PSL∞

(

D
(σ)
)

≤ PSLMAX
∞

(

D
(σ)
)

(2) since [PSLMAX
∞

(

D
(σ)
4

)

= −11.59

dB,PSL∞

(

D
(σ)
4

)

= −14.29 dB,PSLMIN
∞

(

D
(σ)
4

)

= −18.03 dB]. Moreover, for fixed values

of η , t
N−1

and of the thinning percentage factorν, (ν , K
N

), the range of variation ofPSL∞

reduces asN increases until a threshold. Such a behavior is pointed out in the pictures reported

(2) Please notice that for an infiniteADS-based array:PSL∞

(

D
(σ)
)

= PSL∞

(

D
(0)
)

since everyD(σ)

generates the same power patternPP∞ (u).
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in Fig. 3 that summarizes the results of a study on the dependence of the confidence range index

∆∞ , PSLMAX
∞

PSLMIN
∞

, which by Eqs. (6), (15), and (16) turns out to be (see Appendix 3)

∆∞ =
N2(ν − ν2) − ηN + η + (N − 1)

√

N2(η − η2) + N(2η2 − η) − η2

N2(ν − ν2) − ηN + η − (N − 1)
√

N(η − η2) + η2
, (17)

onN for different values of theADS-parameters. The asymptotic threshold of∆∞ appears to

be equal to

limN→∞ (∆∞) =
ν − ν2 +

√

η (1 − η)

ν − ν2
. (18)

As expected, the condition∆∞ = 0 dB is asymptotically verified whenη = 1 (i.e., t = N − 1

and theADS coincides with aDS), sincePSL∞ = PSLDS
∞ [Eq. (19) in [1]] [see Fig. 3(a)

- “dashed brown curve”]. Such a conclusion identically holds true forη = 0 (i.e., t = 0),

whatever the admissible value ofν (see Fig. 3(a) - ν = 0.5). Figure 3 also confirms that

∆∞ (η) = ∆∞ (1 − η) starting from a threshold valueNη, which decreases fromNη→1.0 = ∞

asη → 0.5.

As far as Figure 3(b) is concerned, neither the plots withν = 0 (i.e.,K = 0 - Empty array) nor

those concerningν = 1.0 (i.e.,K = N - Filled array) are considered since they do not admit a

three-level autocorrelation function as needed forADSs. Let us also notice from Eq. (17) that

the following property∆∞ (ν) = ∆∞ (1 − ν) holds true as pointed out in by the plots in Fig.

3(b). Moreover, the analysis and the corresponding plots are limited to the range ofN values for

which anADS sequence can exist [i.e., (6),K ≥ Λ+1, 0 ≤ K ≤ N , and0 ≤ t ≤ N−1]. As it

can be observed, the value of the confidence index decreases when|ν − 0.5| → 0 and it attains

its minimum value whenν = 0.5. In such a case,∆∞ →
[

1 + 4
√

η (1 − η)
]

asymptotically

with a maximum value equal tomaxη {∆∞⌋ν=0.5} ≈ 4.77 dB for η = 0.5 [Fig. 3(b)].

3.2 ADS-Based Finite Arrays

As regards finite arrays, since thearray element location functionΨ(x)

Ψ(x) =

N−1
∑

n=0

snδ(x − nd) (19)
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is now a truncated version ofΨ∞(x), then it can be easily shown thatPP∞(u) and the power

pattern of the finite configuration,PP (u), are related by the following relationship [1]

PP∞(u) = PP (u)

∑∞

n=−∞ δ
(

u − n
Nd

)

Nd
. (20)

Accordingly,PP (u) necessarily satisfies the sampling condition at each coordinateu = un =

n
Nd

[1], that is

PP (un) = N d PP∞,n, n = 0, ...,

⌊

N

2

⌋

. (21)

In order to illustrate such a behavior, Figure 4 shows the plots ofPP (u) and of the coefficients

PP∞,n for the thinned array ofK = 22 elements on aN = 45-locations lattice (d = 1
2
) defined

from theADS D4 [16]. It is worth noting that, sinceΨ(x) is real-valued, the beampattern is

symmetric with respect tou = 0 and only the rangeu ∈ [0, 1] is considered.

Staring from (20), it is then possible to estimate thePSL of a finite array

PSL ,
maxu∈[UM(D(σ)), 1] {PP (u)}

PP (0)
(22)

whereUM is the width of the mainlobe region, by using the associated infinite array power

patternPP∞(u). It is worth noting that (see Fig. 4) thePSL value is determined by the

behaviour of the power pattern atu = um+ 1
2

=
(m+ 1

2
)

Nd
[1]

PSL =
maxm

{

PP
(

um+ 1
2

)}

PP (0)
, m = 1, ...,

⌊

N

2

⌋

(23)

beingum+ 1
2

=
(m+ 1

2
)

Nd
.

To evaluatePP (um+ 1
2
), let us consider the sampling theorem [12][19] and (20). It follows that

PP (u) =

∣

∣

∣

∣

∣

N−1
∑

n=0

√

N d PP∞,ne
jφn

sin
[

πNd
(

u − n
Nd

)]

Nsin
[

πd
(

u − n
Nd

)]

∣

∣

∣

∣

∣

2

(24)

whereφn, n = 0, ..., N − 1, are the phase terms of the sampled array factor (φ0 = 0) [1], which

are known quantities only when theADS at hand is specified [1]. By evaluating (24) inu = 0
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andu = um+ 1
2

and substituting in (23), we obtain

PSL =

maxm

{

∣

∣

∣

∑N−1
n=0

√

PP∞,ne
jφn

sin[π(m−n+ 1
2
)]

N sin[π(m−n+ 1
2
)/N ]

∣

∣

∣

2
}

PP∞,0

, m = 1, ...,

⌊

N

2

⌋

. (25)

Consequently, thePSL of anADS-basedfinite array is fully specified from the knowledge of

PP∞,n andφn, n = 0, ..., N − 1. However, since thePP∞,n coefficients ofADS sequences

neither can be expressed in closed-form (as forRDSs [13]) nor have equal expressions (as

for DSs [1]), it is not available (although approximated) a threshold value for thePSL as for

DSs [1] [Eq. (40)]. Nevertheless, it is possible to yield (see Appendix B) the following set of

inequalities

PSLMIN ≤ PSLDW ≤ PSLopt ≤ PSLUP ≤ PSLMAX (26)

wherePSLopt = minσ∈[0,N−1]

{

PSL
(

D
(σ)
)}

, PSLMIN = PSLMIN
∞ , PSLDW = max {PSL∞ ,

PSLmin}, PSLUP = E {Φmin
N }PSL∞, andPSLMAX = E {Φmin

N }PSLMAX
∞ , beingE {Φmin

N } ≈

0.8488 + 1.128 log10N andPSLmin = E {Φmin
N } minn(PP∞,n)

PP∞,0
. In should be pointed out that

PSLDW andPSLUP are determined when theADS sequence is available since they require

the knowledge of the coefficientsPP∞,n. On the contrary,PSLMIN andPSLMAX can be

alwaysa-priori computed from (16) and (15), respectively.

For a preliminary check of the reliability of (26), let us consider the finite arrays coming from

theADSsD1 andD2 in Tab. I. ThePSL values of theADS-based finite arrays deduced from

theseADSs and their cyclic shifts are given in Fig. 5 and compared withthePSL confidence

ranges, while the associatedPPs are reported in Fig. 6. As expected, the value of thePSL

changes when theADS is cyclically shifted ofσ positions (Fig. 5), although each power pattern

always passes through the fixed points atu = un = n
Nd

(Fig. 6). Notwithstanding, thePSLopt

lies into the confidence range prescribed by (26). Such a value is yielded for different shift

values (Fig. 5), pointing out that less thanN trials/shifts are needed to identify a “good” (i.e., a

solution within the boundsa-priori known)ADS configuration with negligible computational

costs.
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4 Numerical Analysis

This section is devoted to numerically assess the potentialities and limitations of theADS-

based array thinning theory for antenna synthesis. A comparative study is carried out and some

experiments concerning directional arrays (i.e., arrays with directive elements) are reported to

point out features and characteristics of theADS-based deterministic thinning.

For fair comparisons, let us consider as reference random arrays andDS-based placements for

which beam pattern performances can bea-priori envisaged [3] as forADS-based configura-

tions. More specifically, the estimator of the normalized peak sidelobe level ofrandom arrays

(RND)(3) is equal to [3]

PSLRND =
B + 1 + 2

B

K
(27)

whereB = −ln
[

1 − β
λ

d(N−1)

]

, β being the probability or confidence level that no sidelobe

exceeds thePSLRND value. Moreover, the random placement of the array elementson a lattice

enables a further reduction of thePSL compared to random arrays [1]

PSLRNL = (1 − ν) PSL, (28)

although it becomes vanishingly small with increased thinning (i.e.,ν → 0).

Figures 8 and 9 summarize the behaviors of thePSL bounds for both random andADS-based

finite arrays versus the array aperture in correspondence with a set of representative thinning

values and forη = 0.5. Figure 9 also shows the estimatedPSL bounds versusη whenN = 45,

the value ofPSL
opt
4 , and the associated optimal power pattern. LikewiseADS curves and

because of the asymptotic nature of the random array theory [3], PSLRND andPSLRNL are

plotted only for values ofK large enough to guarantee that Eqs. (27)-(29) provide satisfactory

estimates [3]. More specifically, the minimum value ofK to have a reliable estimation of the

PSL in random arrays is equal to [3]

(3) Random arraysare characterized by element locations chosen by random processes. Generally, they are
designed starting from filled configurations and removing atrandom a given fraction of the elements. Moreover,
a random latticearray is an array in which the elements are located at randomly chosen positions in a set of
uniformly-spaced points (calledlattice) in the aperture.
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KRND = max {15, 2B} . (29)

On the other hand, it should be pointed out that the estimatorof the PSL of random arrays

is evaluated, instead of the power ratio of the average sidelobe to the main lobe, since this

latter may be somewhat misleading and the arising prediction, given byE {PSLRND} = 1
K

,

inadequate due to possible significant differences withPSLRND [3].

As it can be observed, although the3 dB improvement ofDS arrays does not verify, theADS

upper boundPSLMAX is always lower thanPSLRNL (PSLRNL ≤ PSLRND) except for

highly filled large arrays [Fig. 8(c) - ν = 0.8, N & 450]. On the other hand, it should be

noticed that thePSLMAX value usually overestimates the actual peak sidelobe of theADS

array. Such a behavior is pointed out by thePSL values actually obtained from a set ofADSs-

based arrays in [22] for whichη = ν = 0.5 [Fig. 7(b)]. A further assessment is also given

by the sample atN = 45 in Fig. 8(a) and pictorially shown in Fig. 8(b) where the plot of the

corresponding power pattern is drawn.

As regards the confidence index∆ (∆ , PSLMAX

PSLMIN ), similar conclusions to those obtained when

dealing with infiniteADS arrays (Sect. 3.1) hold true, but theADS values are shifted of

E {Φmin
N } since∆ = E {Φmin

N }∆∞. The plots in Fig. 7(d) assess such a behavior when

dealing with large apertures (N = 104). As a matter of fact,∆ still decreases as|ν − 0.5| → 0

with a minimum value forν = 0.5 [Fig. 7(b)].

As far as the dependence of thePSL on the indexη is concerned, the results in Fig. 9, where

the behavior of thePSL bounds versusη and for different values ofN andν is pictorially

described, and Fig. 8(c) further confirm the indications on the reliability of theADS-based

design. TheADS peak sidelobe turns out to be still lower than those coming from random

placements. Moreover, one should notice that the worst situation takes place in correspondence

with η = 0.5, further strengthening and extending to differentη values the indications drawn

from Fig. 7 (η = 0.5) about the efficiency ofADS arrays over the random ones. Furthermore,

thePSLMAX tends to theDS value whenη = 0 andη = 1 (N → ∞) as shown in Fig. 9 and

Fig. 8(c).

Figure 8(c) also points out that the actual value ofPSL
(

D
opt
4

)

is quite close to that predicted
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by Eq. (40) in [1] for the admissible (i.e., theoretically existing, but whose explicit form is

not yet available)DS arrayE
opt
4 with equal number of elementsN and thinning percentage

(ν = 0.489). This event suggests that usingADSs for array thinning can provide, besides a

wider set of admissible array configurations,PSL performances which are expected on average

to be close to those from equivalent (i.e.,η = 0.0 or η = 1.0) or similar (i.e.,NADS ≈ NDS,

KADS ≈ KDS, andΛADS ≈ ΛDS) DS sequences.

In order to point out such an issue, let us compare the patternfeatures of the finite arrays

generated from the sequencesD
(σ)
2 andE

(σ)
2 = {1 + σ , 3 + σ, 13 + σ, 16 + σ, 17 + σ},

σ = 0, ..., N − 1; N = 21 (derived from the(21, 5, 1)-DS in [15] with a cyclic shift by

10). Figures 10(a) and 10(b) show the normalized power patterns of the optimal finite arrays

obtained by cyclic shifting the corresponding binary sequences, while Figs. 10(c)-10(d) provide

thePSLs and beamwidthUM versusσ of the arrays. The pattern values at the control points

u = un, n = 0, ...,
⌊

N
2

⌋

, wherePP (un)⌋
D

(σ)
2

= N d PP ADS
∞,n andPP (un)⌋

E
(σ)
2

= N d PP DS
∞,n

are reported in Figure 10(a), as well. As expected, the bestDS-based array slightly overcomes

its ADS counterpart only in terms of array beamwidth [Fig. 10(d)], while equalPSL values

appear [Fig. 10(c)].

On the other hand, it is worthwhile to note that the radiationpattern fromD
opt
2 has lower side-

lobes in the angular range near the mainlobe [see Fig. 10(b)]. Such a feature ofADS place-

ments [see also the plot ofPP (u)⌋
D

opt
3

in Fig. 11(c)] can be profitably exploited when directive

array elements are at hand. For instance and likewise [7], let us consider acos(θ) element pat-

tern and ideal conditions by neglecting mutual coupling effects. In such a case, the radiated

array power pattern is obtained by the product of the isotropic array pattern with the element

pattern [2][7]. As it can be seen [Fig. 10(b)] and confirmed by the values of the quantitative

pattern indexes in Figs. 10(c)-10(d), thePSL of the directional array in correspondence with

D
opt
2 turns out to be of about1 dB smaller that that of the isotropicDS-based array, despite the

use of low-directive elements and starting from the samePSL value of the the isotropic case.

Such a possibility is not related to a particular test case ora very-special element pattern, but

it is due to the distribution of the even-numbered samples ofthe power pattern that assume

only two-constant values forDS-arrays, while multiple levels when dealing withADS-based

14



configurations. Therefore, theDS patterns are asymptotically (N → ∞) constrained to the

constant valuePP DS
∞,n, n 6= 0. On the contrary, the variability of theADS samples admits some

(even non-negligible) variations both in the angular rangeof a pattern [see the isotropic curves

in Fig. 10(b) and Fig. 11(c)] and among different patterns related to the sameADS sequence

(Fig. 4 and Fig. 6).

Unlike DS coefficients, the fact thatPP ADS
∞,n , n 6= 0, are not constant provides an additional

degree of freedom to the design of thinned arrays throughADS sequences. In fact, besides the

possibility to easily find the optimalADS-based finite array through simple cyclic sequence

shift, the availability of differentADS patterns with various characteristics [Fig. 11(a) - PSL

value; Fig. 11(b) - Beamwidth,UM ] depending onσ can be further profitably exploited to

minimize the sidelobes of the array power pattern outside the main lobe of the element pattern.

The arising effect is then to reduce the number of sidelobes which can compete to thePSL

and, by properly selecting aD(σ) sequence, the resulting peak sidelobe level of the whole array

keeping or decreasing the array beamwidthUM . Towards this end, it turns out to be more

convenient to choose the cyclicADS-based array with the minimum sidelobe level in the region

near the mainlobe and not that with the lowestPSL in the whole angular range as for isotropic

elements.

For illustrative purposes, let us consider the test case concerningD3 (Fig. 11). Despite the

minimumPSL of the isotropic array is obtained forσ = 15 − 18, the best directional array in

terms of peak sidelobe level comes from a differentADS shift (i.e.,σ = 14) indicated asDdir
3

in the following and defined as

D
dir
3 = arg

{

minσ∈[0,N−1]

[

max
u∈

h

UM

“

D
(σ)
3

”

, 1
i

(

PP (u)⌋
D

(σ)
3

[

1 − u2
]

)

]}

. (30)

As it can be seen, the improvement allowed by the use of directive elements is enough to

minimize the sidelobe peaks in the angular region far from the main lobe, thus reducing the

arisingPSL also in comparison with the directive pattern generated from D
opt
3 (i.e., Dopt

3 =

arg

{

minσ∈[0,N−1]

[

max
u∈

h

UM

“

D
(σ)
3

”

, 1
i

(

PP (u)⌋
D

(σ)
3

)

]}

).

Finally, the performances expected by thinned arrays designed using ADSs are compared with
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those from robust stochastic optimization techniques based onGAs [7][9][8][2]. Towards this

end, an array ofN = 200 elements is used as benchmark test case. Figure 12 shows the

ADS bounds whenη = 0.5 (i.e., the worst case forADSs) and thePSL values of the arrays

synthesized with theGA-based methods. Moreover, thePSL of the arrangement defined by

the ADS (197, 147, 109, 98) [22] is reported, as well. As it can be observed,PSLMIN <

PSLGA < PSLMAX , PSLGA referring to theGA-optimized designs. Moreover, theADS-

based array favorably compares in terms ofPSL with the state-of-the-artGA arrays despite its

slightly smaller aperture (197 elements versus200).

5 Conclusions and Discussion

In this paper, the thinning of linear arrays has been studiedby exploiting the properties ofADSs

to provide some guidelines for the design of thinned arrays with predictable performances. Such

a deterministic approach is not aimed at obtaining optimal designs, but at being applied either

when stochastic optimizers or random placement techniquescannot be applied or to speed up

the convergence to optimal thinning solutions of optimization techniques. In fact, evolutionary

or statistical techniques (e.g.,GAs, SA, andPSO) could be computationally expensive when

dealing with very large or massively thinned arrays. Moreover, their performances in terms of

pattern features of the arising placements are difficult to predict a-priori. On the other hand,

cut-and-try variations of the element locations in random arrays usually require several trials

before providing the satisfactory results expected from random theory.

Unlike standard synthesis techniques, the proposed methodology exploits the properties of

ADSs rather than using a search algorithm for the placement of the array elements within a

regular lattice. Such a deterministic thinning does not require search or minimization or trial-

and-error procedures, but it determines the array arrangement just through simple shifts of suit-

able sequences. Moreover, the array performances area-priori estimated thanks to the analytic

features of the arisingADS-based power patterns. Thanks to these outcomes, the final results of

the research work is the description of a practical design theory where the key-role descriptive

design parameters are in evidence as well as their impact on the array performances.

From the numerical analysis, it appears that likewiseDS placements, but in a theoretically
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wider admissible set of configurations, theADS array performances definitely overcome those

of their random counterparts except for large almost filled arrays. In these cases, the actual

improvement has to be evaluated on a case-by-case basis and it cannot be assured in advance

without the knowledge of theADS sequence.

A detailed comparison ofADS-based arrays with stochastically-thinned solutions (e.g., GA-

based [7] orSA-based arrays [10][11]) is postponed to future researches.Certainly, it seems to

be convenient to hybridize the two approaches in some a way and, for example, as suggested in

[1] dealing withDSs and shown in [2] with quite satisfactory results.

Future works will be also devoted to find new explicitADS sequences, but such a topic is

out-of-the-scope of the present paper since not pertinent to antenna arrays, but concerning com-

binatorial mathematics.

Appendix A

This appendix is aimed at determining the range of variationof thePSL of ADS-based infinite

arrays. Therefore, let us determine the upper bound and the lower one forPSL∞. Towards

this end, let us first notice that the real(I) coefficientBn =
∑N−1−t

p=0 ej
2πlpn

N defines the discrete

Fourier transform (DFT ) of the binary sequenceB = {bm; m = 0, ..., N − 1}

Bn = DFT {B} (31)

wherebm = 1 if m ∈ {L ∪ l0} andbm = 0 otherwise. Therefore, the value ofPSL∞ depends

onB and since

B0 = N − t, (32)

it turns out that

PSL∞ =
K − Λ − 1 + maxn 6=0 {Bn}

(N − 1) Λ + K − 1 + N − t
. (33)

(I) It can be proved thatBn ∈ R, sincePP∞,n is real-valued as a sample of the power pattern and the other
terms in the right-hand side of (12) are still real quantities.
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Let us now observe that, from the Parseval’s theorem [19], the “energy” of the sequenceB

(EB ,
∑N−1

n=0 |Bn|
2) is a constant value

EB = N

N−1
∑

m=0

|bm|
2 = N (N − t) , (34)

then the bounds forPSL∞ are obtained when the following conditions hold true: (a) PSL∞ =

PSLMAX
∞ if only oneBn = BMAX (n 6= 0) is non null; (b) PSL∞ = PSLMIN

∞ if Bn = −B̂,

n = 1, ..., N − 1. Moreover, the Blahut’s theorem [20][21] states that the number of non-null

coefficientsBn, n = 0, ..., N − 1 is equal to the linear span(II) of B.

As regards the upper boundPSLMAX
∞ , the condition (a) verifies in correspondence with the

non-trivial B having the shortest linear span. Such a binary sequence is obtained whenL is a

collection of even integers

L = {lp = 2 × p; p = 1, ..., N − 1 − t} . (35)

In such a case, thanks to the Blahut’s theorem [20], it results that

EB = |B0|
2 +

∣

∣BMAX
∣

∣

2
. (36)

Therefore, by substituting (32) and (34) in (36) and considering (33), one obtains

PSLMAX
∞ =

K − Λ − 1 + BMAX

(N − 1)Λ + K − 1 + N − t
(37)

beingBMAX =
√

t (N − t).

As far asPSLMIN
∞ is concerned, the condition (b) holds true when the linear span ofB is

maximum (i.e.,N). Such condition corresponds to the case in which a constantenergy is

(II) The linear span of a binary sequence of periodN is defined as the order of the least order homogeneous
linear recursion satisfied by the binary sequence. In practice, it can be identified as the size of the smallest lin-
ear feedback shift register that generates the sequence. Itrepresents a measure of the complexity of the binary
sequence.
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forced in the sidelobe region. Consequently,

B̂ =

√

EB − |B0|
2

N − 1
=

√

t (N − t)

(N − 1)
, (38)

then

PSLMIN
∞ =

K − Λ − 1 − B̂

(N − 1)Λ + K − 1 + N − t
(39)

under the condition thatK − Λ − 1 > B̂ .

Appendix B

This section is devoted to derive (26).

As far as the upper bound for thePSL of a finiteADS-based array is concerned, let us consider

thatPP∞,n ≤ maxn (PP∞,n), n = 1, ..., N − 1, therefore

PSL(σ) ≤ maxm=1,...,⌊N
2 ⌋















∣

∣

∣

∣

∣

∣

∣

∣

(−1)m

Nsin

[

π(m+ 1
2)

N

] +
√

PSL∞

N−1
∑

n=1

(−1)m−n
ejφ

(σ)
n

Nsin

[

π(m−n+ 1
2)

N

]

∣

∣

∣

∣

∣

∣

∣

∣

2













,

(40)

wherePSL(σ) = PSL
(

D
(σ)
)

. In thesidelobe region(III) of PP (u), it is possible to approxi-

mate the right side of (40) to obtain the following

PSL(σ) . PSL∞maxm=1,...,⌊N
2 ⌋















∣

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=1

(−1)m−n
ejφ

(σ)
n

Nsin

[

π(m−n+ 1
2)

N

]

∣

∣

∣

∣

∣

∣

∣

∣

2













. (41)

Let us now model the phase termsφ
(σ)
n , n = 1, ..., N −1, as independent random variables with

uniform probability function over the whole angular range.Then, analogously to the treatment

(III) Thesidelobe regionis defined as the angular rangeu ∈
[

UM

(

D
(σ)
)

, 1
]

where the first term in (40) is

negligible.
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in [1], it can be deduced that

PSL(σ) . Φ(σ) PSL∞ (42)

Φ(σ) being another random variable defined as

Φ(σ) =

∣

∣

∣

∣

∣

∞
∑

n=−∞

ejφ
(σ)
n

[

π
(

n − 1
2

)]

∣

∣

∣

∣

∣

2

. (43)

However, it should be noticed that we are interested in defining threshold values forPSLopt =

minσ∈[0,N−1]

{

PSL(σ)
}

. Accordingly, it turns out that

PSLopt . PSL∞Φmin
N (44)

whereΦmin
N , minσ∈[0,N−1]

{

Φ(σ)
}

has an average value equal to

E
{

Φmin
N

}

≈ 0.8488 + 1.128 log10 (N) (45)

for sufficiently large values ofN [1]. Finally, by also exploiting (15), one obtains that

PSLopt . PSL∞ E
{

Φmin
N

}

≤ PSLMAX
∞ E

{

Φmin
N

}

. (46)

With reference to the lower bound for thePSL, let us observe that the power pattern of a

finiteADS-based array (whatever the cycling shift) must necessarilypass through the sampling

points atun = n
Nd

. Therefore, the correspondingPSL cannot be smaller than the maximum

value ofPP (un) = Nd×PP∞,n. Accordingly and also taking into account (16), the following

inequality must be satisfied

PSL(σ) ≥ PSL∞ ≥ PSLMIN
∞ . (47)

Such a condition can be further detailed by considering the same proof guidelines used for the

PSL upper bound and the condition thatPP∞,n ≥ minn (PP∞,n), n = 0, ..., N − 1. It follows
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that

PSL(σ) &
minn (PP∞,n)

PP∞,0
maxm=1,...,⌊N

2 ⌋















∣

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=1

(−1)m−n
ejφ

(σ)
n

Nsin

[

π(m−n+ 1
2)

N

]

∣

∣

∣

∣

∣

∣

∣

∣

2













(48)

and by introducing the random variableΦmin
N , we obtain

PSLopt & E
{

Φmin
N

} minn (PP∞,n)

PP∞,0
. (49)

Finally, by suitably merging (47) and (49), the lower bound condition states that

PSLopt ≥ max

{

PSL∞, E
{

Φmin
N

} minn (PP∞,n)

PP∞,0

}

≥ PSLMIN
∞ . (50)

Appendix C

This section is aimed at deriving (17).

Starting from Eqs. (15) and (16) we have that

∆∞ =
K − Λ − 1 +

√

t (N − t)

K − Λ − 1 −
√

t(N−t)
(N−1)

, (51)

whereΛ can be expressed as follows

Λ =
K(K − 1) + t + 1 − N

N − 1
=

ν2N2 + N(η − ν − 1) + 1 − η

N − 1
(52)

by using (6) and recalling thatK = νN andt = η(N − 1). Finally, Equation (17) is obtained

by simple algebra substituting (52) in (51).

21



References

[1] D. G. Leeper, “Isophoric arrays - massively thinned phased arrays with well-controlled

sidelobes,”IEEE Trans. Antennas Propag., vol. 47, no. 12, pp. 1825-1835, Dec 1999.

[2] S. Caorsi, A. Lommi, A. Massa, and M. Pastorino, “Peak sidelobe reduction with a hybrid

approach based on GAs and difference sets,”IEEE Trans. Antennas Propag., vol. 52, no.

4, pp. 1116-1121, Apr. 2004.

[3] B. Steinberg, “The peak sidelobe of the phased array having randomly located elements,”

IEEE Trans. Antennas Propag., vol. 20, no. 2, pp. 129-136, Mar. 1972.

[4] B. Steinberg, “Comparison between the peak sidelobe of the random array and algorith-

mically designed aperiodic arrays,”IEEE Trans. Antennas Propag., vol. 21, no. 3, pp.

366-370, May 1973.

[5] K. C. Kerby and J. T. Bernhard, “Sidelobe level and wideband behavior of arrays of ran-

dom subarrays,”IEEE Trans. Antennas Propag., vol. 54, no. 8, pp. 2253-2262, Aug. 2006.

[6] S. Holm, B. Elgetun, and G. Dahl, “Properties of the beampattern of weight- and layout-

optimized sparse arrays,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, no.

5, pp. 983-991, Sep. 1997.

[7] R. L. Haupt, “Thinned arrays using genetic algorithms,”IEEE Trans. Antennas Propag.,

vol. 42, no. 7, pp. 993-999, Jul. 1994

[8] R. L. Haupt, D. H. Werner,Genetic algorithms in electromagnetics.Hoboken, NJ: Wiley,

2007.

[9] D. S. Weile and E. Michielssen, “Integer-coded Pareto genetic algorithm design of antenna

arrays,”Electron. Lett., vol. 32, pp. 1744-1745, 1996.

[10] A. Trucco and V. Murino, “Stochastic optimization of linearsparse arrays,”IEEE J. Ocean

Eng., vol. 24, no. 3, pp. 291-299, Jul. 1999.

22



[11] A. Trucco, “Thinning and weighting of large planar arrays bysimulated annealing,”IEEE

Trans. Ultrason., Ferroelectr., Freq. Control, vol. 46, no. 2, pp. 347-355, Mar. 1999.

[12] D. G. Leeper, “Thinned periodic antenna arrays with improved peak sidelobe level con-

trol,” U.S. Patent 4071848, Jan. 31, 1978.

[13] L. E. Kopilovich and L. G. Sodin, “Linear non-equidistant antenna arrays based on differ-

ence sets,”Sov. J. Commun. Technol. Electron., vol. 35, no. 7, pp. 42-49, 1990.

[14] L. E. Kopilovich, “Square array antennas based on hadamard difference sets,”IEEE Trans.

Antennas Propag., vol. 56, no. 1, pp. 263-266, Jan. 2008.

[15] La Jolla Cyclic Difference Set Repository (http://www.ccrwest.org/diffsets.html).

[16] C. Ding, T. Helleseth, and K. Y. Lam, “Several classes of binary sequences with three-level

autocorrelation,”IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2606-2612, Nov. 1999.

[17] K. T. Arasu, C. Ding, T. Helleseth, P. V. Kumar, and H. M. Martinsen, “Almost difference

sets and their sequences with optimal autocorrelation,”IEEE Trans. Inf. Theory, vol. 47,

no. 7, pp. 2934-2943, Nov 2001.

[18] Y. Zhang, J. G. Lei, and S. P. Zhang, “A new family of almost difference sets and some

necessary conditions,”IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2052-2061, May 2006.

[19] A. B. Carlson, P. B. Crilly, and J. C. Rutledge,Communication Systems. San Francisco:

McGraw-Hill, 2001.

[20] R. Blahut, “Transform techniques for error-control codes,” IBM J. Res. Develop., vol. 23,

pp. 299-315, 1979.

[21] M. Goresky, A. M. Klapper, and L. Washington, “Fourier transforms and the 2-adic span

of periodic binary sequences,"IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 687-691, Mar

2000.

[22] ELEDIA Almost Difference Set Repository (http://www.ing.unitn.it/~eledia/html/).

23



FIGURE CAPTIONS

• Figure 1. Autocorrelation functionCADS
s (z) of D1 andD2 in Tab. I.

• Figure 2. Plots of PSL∞ (D), its boundsPSLMAX
∞ (D) and PSLMIN

∞ (D), and of

PP∞,n (D) for the infinite arrays derived from theADS D = D4 in Tab. (I).

• Figure 3. Plot of∆∞ versus the array dimension,N , when: (a) ν = 0.5 - η ∈ [0, 1] and

(b) η = 0.5 - ν ∈ [0, 1].

• Figure 4. NormalizedPP (u)s derived from theADS D4 (i.e.,D4 = D
(σ)
4

⌋

σ=0
) and its

cyclic shiftsD(σ)
4 (σ = 17, σ = 24). Number of elements:N = 45 - Aperture size:22λ.

• Figure 5. PSL values of theADS-finite arrays generated from the sequencesD
(σ)
i ,

σ = 0, ..., N − 1: (a) i = 1 - N = 13, and (b) i = 2 - N = 21.

• Figure 6. NormalizedPP (u)s of theADS-finite arrays generated from the sequence

D
(σ)
i , σ = 0, ..., N − 1: (a) i = 1 - N = 13 and (b) i = 2 - N = 21.

• Figure 7. Comparative Assessment- Plots of thePSL bounds of theADS-based finite

arrays and of the estimator of thePSL of random arrays (RND - random array,RNL

- random lattice array) versus the array dimension,N , when (a) ν = 0.3, (b) ν = 0.5,

and (c) ν = 0.8. Plots of the confidence ranges ofADS-based arrays versus the thinning

indexν whenη = 0.5 andN = 104 (d).

• Figure 8. Comparative Assessment- Plots of thePSL bounds of theADS-based finite

arrays and of the estimator of thePSL of the random arrays (RND - random array,

RNL - random lattice array) whenν = 0.489 versus (a) the array dimension,N , and (c)

the indexη. NormalizedPP (u) generated fromDopt
4 and estimatedPSL values of the

corresponding random sequences (b).

• Figure 9. Comparative Assessment- Plots of thePSL bounds of theADS-based finite

arrays, of the estimator of thePSL of random arrays (RND - random array,RNL -

random lattice array), and values of thePSL of DS-based finite arrays versusη when (a)

ν = 0.3, (b) ν = 0.5, and (d) ν = 0.8.
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• Figure 10. Non-Isotropic Elements- Finite arrays generated from theADS-sequences

D
(σ)
2 and theDS-sequencesE(σ)

2 , σ = 0, ..., N − 1; N = 21. OptimalPP (u)s radiated

from the arrays with (a) isotropic elements and (b) directive radiators. Pattern features

versusσ: (c) PSL and (d) UM (××× Isotropic array;______Directional array).

• Figure 11. Non-Isotropic Elements- Finite arrays generated from theADS-sequences

D
(σ)
3 , σ = 0, ..., N − 1; N = 33. Pattern features: (a) PSL and (b) UM . Normalized

PP (u)s of theADS-finite arrays generated from the sequencesD
opt
3 andD

dir
3 by using

isotropic and directive elements.

• Figure 12. Comparative Assessment- Plots of thePSL bounds of theADS-based finite

arrays (η = 0.5) and of the estimator of thePSL of random arrays (RND - random

array,RNL - random lattice array) versusν whenN = 200. PSL values of the arrays

genetically optimized in [7] (N = 200), [9] (N = 200), [2] (N = 200) and of the

ADS-based array [22] (N = 197).

TABLE CAPTIONS

• Table I. Examples ofADSs and their descriptive functions.
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Figure 5 - G. Oliveri et al., “Linear array thinning ...”
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Figure 6 - G. Oliveri et al., “Linear array thinning ...”
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Figure 8 - G. Oliveri et al., “Linear array thinning ...”
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Figure 9 - G. Oliveri et al., “Linear array thinning ...”
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Figure 11 - G. Oliveri et al., “Linear array thinning ...”
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Figure 12 - G. Oliveri et al., “Linear array thinning ...”
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Table I - G. Oliveri et al., “Thinned Arrays...”

N 13 21 33 45

G G1 = {0, ..., 12} G2 = {0, ..., 20} G2 = {0, ..., 32} G2 = {0, ..., 44}

K 3 6 16 22

Λ 0 1 7 10

t 6 10 16 22

D D1 = {5, 6, 9}
D2 = {0, 1, 3, 13

16, 17}

D3 = {0, 1, 2, 3, 4, 5, 6,

8, 13, 14, 18, 20,

22, 25, 28, 29}

D4 = {0, 1, 2, 3, 4, 5, 6,

7, 9, 11, 12, 15,

16, 19, 23, 24, 29,

30, 32, 35, 37, 39}

A

A1 = {0000

01100

1000}

A2 = {1101000

00000010

0110000}

A3 = {11111110100

00110001010

10010011000}

A4 = {1111111101

01100110010

001100001101

001010100000}

S S1 = {...,A1,A1, ...} S2 = {...,A2,A2, ...} S3 = {...,A3,A3, ...} S4 = {...,A4,A4, ...}

3, z = 0 6, z = 0 16, z = 0 22, z = 0

CADS
s (z)

0, z = 2, 5, 6,

7, 8, 11

1, z = 2, 6, 7, 9,

10, 11, 12,

14, 15, 19

7, z = 3, 6, 7, 9, 10, 11,

13, 15, 18, 20, 22,

23, 24, 26, 27, 30

10, z = 6, 9, 10, 11, 12, 14, 16, 18,

19, 20, 21, 24, 25, 26, 27,

29, 31, 33, 34, 35, 36, 39

1, z ∈ L = {1, 3,

4, 9,

10, 12}

2, z ∈ L = {1, 3, 4, 5,

8, 13, 16,

17, 18, 20}

8, z ∈ L = {1, 2, 4, 5, 8, 12,

14, 16, 17, 19, 21,

25, 28, 29, 31, 32}

11, z ∈ L = {1, 2, 3, 4, 5, 7, 8, 13, 15,

17, 22, 23, 28, 30, 37,

38, 40, 41, 42, 43, 44}
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