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Linear Array Thinning Exploiting Almost Difference Sets

G. Oliveri, M. Donelli, and A. Massa

Abstract

This paper describes a class of linear thinned arrays widiptable and well-behaved
sidelobes. The element placement is based on almost differeets and the array power
pattern is forced to pass throughuniformly-spaced values that, although neither equal nor
constant as for difference sets, ar@riori known from the knowledge of the aperture size,
the number of active array elememnit§ and the features of the correlation function. Such
a property allows one to predict the bounds of the confideange of the peak sidelobe
of the admissible arrays obtainable through simple shifirafpons on a binary sequence.
The expected peak sidelobe performances turn out to be cabipawith those from dif-
ference sets, even though obtainable in a wider set of amafygurations, and improved in

comparison with cut-and-try random-placements.

Key words: Array Antennas, Thinned Arrays, Linear Arrays, Almostierence Sets, Sidelobe

Control.



1 Introduction

Massive thinning of arrays (i.e., the reduction of the numifehe array elements below half
of its filled counterpart) is of great importance in practiapplications because of the reduc-
tion of the array costs, weight, power consumption, HW anmdmatational complexity [1][2].
However, such advantages usually come at the cost of a lossl@bbe level § L) control
and gain compared to the filled arrangement [1][2].

In order to overcome these drawbacks, several thinninghiqolks have been proposed [1]-[5].
Deterministic thinning has been first studied, but no sigaiit improvements af L L control
compared to a random element placement [4][5] have beemnetaMore recently, dynamic
programming [6] and stochastic optimization techniqueghsas simulated annealing 4)
and genetic algorithmg{As) have been successfully applied [7]-[11]. Despite thisfsatory
results, statistical methodologies have not an easy atit to large arrays because of the
computational burden and convergence issues. Moreoveriatheir stochastic nature, it is
often difficult to a-priori estimate the expected performances for a given apertuecasid
thinning factor [1].

The synthesis of massively thinned arrays has been facedkirygromising fashion by consid-
ering equally-weighted arrays [1][12]. Such an approadifased on the use of binary sequences
derived fromdifference set§DS's), which are known to possess two-level periodic autotaire
tions. In [1][12], it has been shown that, if the element &ttns are chosen according to the
binary distribution derived fronD S's, the peak sidelobe levePG L) of the synthesized linear
array is3 dB lower than that of the corresponding random distributi8ach a result has been
successfully exploited for the design of both linear [134 awtanar arrays [1][14], although the
PSL reduction is about.5 dB smaller when planar architectures are dealt with [1]. &ppli-
cation of DSs has also allowed some improvements in thinned-array dgsmcedures based
on G A optimization [2].

The exploitation ofDS sequences is a powerful and numerically-effective tealmifpr the
thinning of large arrays. However, such a possibility dejgean the availability of &S for
whatever sizeV of the array [1][2][14]. Although several families @iSs have been determined

and extensive collections are also available [15], it islAkebwn that there is no a correspond-



ing DS for several values oN [16] (i.e. it is not possible to define a binary sequence with a
two-level periodic autocorrelation of lengfk).

Recently, the definition of binary sequences of lenithwith suitable autocorrelation proper-
ties, for whichD S's are not available, has been carefully investigated irriné&tion theory and
combinatorial mathematics. It has been found that it isroftessible to determine sequences
with a three-level autocorrelation function by taking iatmount the so-callealmost difference
sets(ADSSs) [16]-[18]. ADS's are a research topic of great interest in combinatorialriheith
important applications in cryptography and coding thewge( [16]-[18] and the references
therein). Moreover, althougid DS generation techniques are still subject of research, large
collections of these sets are already available [22]. Aanggthe array synthesis, a preliminary
application, although limited to a particular subsetd? S's, has been reported in [13]. In such
a framework, the whole class ofDSs seem to be a good candidate for enlarging the set of
admissible analytic configurations with respect to ihg€ case, despite a reduction of expected
performances. From this viewpoint, it is of interest to ¢allg detail the ADS features for
antenna arrays synthesis.

In this paper, the exploitation ol DS's properties for the design of linear thinned arrays is
discussed and analyze in depth through a solid mathemdgsatiption. The proposedDS-
based technique is aimed at synthesizing arrays with padbces close to those withS's,

but enhancing the set of admissible array configurationss #lso worthwhile to point out
that the paper is not aimed at defining an optimal method #®d#sign of thinned arrays, but
its purpose is to propose some guidelines to the array dersigmho, whether by necessity
or choice, are synthesizing a thinned array without considestochastic optimizations or a
random placement, but using a deterministic strategy wigldiptable results.

The outline of the paper is as follows. After a short summamtlze basicADS definitions
and properties (Sect. 2), the expectelL of ADS-arrays is bounded by theoretically defining
upper and lower values (Sect. 3) starting from infinite seges (Sect. 3.1) up to finite arrays
(Sect. 3.2). The numerical validation is carried out by canmgy the performances ofDS-
based arrays with those of simil&xS configurations when available and, more in general, with

random arrays (Sect. 4). Finally, some representativerarpats concerning the exploitation



of ADS-based arrays when non-isotropic elements are at hand asteep(Sect. 4.4). Some

conclusions and comments on future developments followt(S8.

2 Almost Difference Sets - Definitions and Properties

Let us provide just some basic definitions and main propedfed DS's, while more detailed
information and applications o1 D S's can be found in [16][17][18].

A K-subseD = {d, € [0, N — 1], d), # dy; k,h, £ =0,..., K — 1} of an Abelian groupgz"

of orderN is called a(V, K, A, t)-almost difference set if the multis®d = {m; = (d; — d,),

dy #dp;j=0,...,K x (K —1)— 1} containst nonzero elements @& each exactly\ times,
and the remainingy — 1 —t nonzero elements each exactly- 1 times [18]. As a consequence,
DSs areADSs for whicht = N — 1 ort = 0[18].

If G=ZandDisa(N, K,A,t)-ADS of G, then the cyclic repetition of the binary sequence
A ={a,€]0,1];n=0,..., N —1} of length N, whosen-th element is

1 if neD
ap = 5 (l)
0 otherwise

defines the characteristic sequesice {s,; n € Z} of D [16], where

1 if mody(n) e D
S = Fomedvm el (2)
0 otherwise

The corresponding autocorrelation functidny z), is a periodic function defined as follows [1]

N-1
Co(2) = susnsz 2 €L 3)
n=0

and equal to [16][18]

(1) An Abelian group is a group satisfying the requirement thatproduct of elements does not depend on
their order. In addition to the other axioms of a group, thedurct operation is associativ€ has an identity
element, and every element Gf has an inverse.



K z2=0
CAPS () =<{ A+1 el . K>A+1 (4)

A otherwise

inthe period: € [0, N — 1], LbeingasetoN—1—telements(i.eL={l, € Z;p=1,...,N —1—1t}).
For illustrative purposes, let us consider the example$6t's [17] reported in Tab. | together

with the corresponding binary sequences and autocowelfdinctions. For completeness, the

plots of CAP5 (%) are shown in Fig. 1.

It is worth noting that the autocorrelation functiei!?*(z) of a (N, K, A,t)-ADS is close to

that of the (if any) correspondingV, K, A)-D.S [1]

ersy= T 5)

A otherwise

In fact, the difference is limited to just a unity iN — 1 — ¢ points whereC4P5(z) = A + 1
[16][18]. Moreover, theADSs share several other properties with thé's. In particular,
neitherDS nor ADS can be defined for every value of, K, A andt. Indeed, for( NV, K, A, t)-

ADSSs in an Abelian group, the following existence conditiondsairue [17][18]
KIK-1)=tA+(N—-1—-t)(A+1) (6)

beingKk >A+1,0< K < N,and0 <t < N — 1.

On the other hand, ID is anADS, then the set
D) — {d}j’ — mody (dy +0), dp # dp: k, b, 0 =0, ..., K — 1} @)

whereo € Z, is still an ADS. Therefore, starting from aqV, K, A, t)-ADS, it is possible
to build N different (N, K, A, t)-ADSs by applying a cyclic shift to its elements (i.e., a cyclic
shift on the associated binary sequedce

Mathematical proofs of existence or non-existencedd?Ss for different choices ofV are



currently topic of research in the framework of combinabtiheory and suitable techniques for
the generation of new families ofDS's are still in progress [18]. However, severaD Ss has

been already found [16]-[18] and their properties can bétataly exploited for array synthesis.

3 ADS-Based Linear Arrays - Mathematical Formulation

3.1 ADS-based Infinite Arrays

An infinite thinned array can be defined from whatever binaguenceA of length N by

introducing thearray element location functio¥r, (=) [1]

o0

Uoo(x) = Z $p0(x — nd) 8)

n=—oo

whered( . ) is the Dirac delta function] andz are the lattice spacing and the spatial coordinate
along the linear array, respectively (both expressed inelength). In practice, the infinite
thinned array is defined by locating the array elements akouogiform lattice with spacing

[1] at those positions wherg . (z) # 0.

As with any array, the power pattern of tieD S-based infinite linear array turns out to be the

Fourier transform of the autocorrelation functionbf, () [1], C3P%(z), that is

PP.(u) =F {C3"5(2)} 9)

wheref { .} denotes the Fourier transform operato&: sin(6), u € [-1,1], and

CaP3(z) = A i §(z—nd)+ _Z_t{ i 6(z—nNd—lpd)}+(K—A) i §(z—nNd)

n=—oo p=1 n=—oo n=-—oo

where the indeX, satisfies the conditiofs (I,) = A + 1.
By substituting (10) in (9) and recalling the Fourier traorshation properties of an infinite train
of pulse functions, one can show that
PP.(u) = i PP, (u - ﬂ) (11)
0 oo,n Nd

n=—oo

7



where

Ay (K_A+Z;V:—11—tea’%) n=0,£N,£2N, ...

PPy, = (12)

1 _ N—1—t j27rlpn .
N <K A+ ) ew otherwise

Expression (11) is the analogous of Eq. (14) in [1] fo6's. However, unlikeDS's, further

simplifications of Eq. (11) are not trivial since the follavg term of PP, ,,

N—1-t .27'rlpn N—1-t .27'rlpn
K—A+ ) v |=[K-A-1+ > &~ |, lh=0 (13)

p=1 p=0

cannot be evaluated in closed form. In fact, thelsdepends on thd DS at hand and® P, (u)
has to be evaluated on a case-by-case basis instead of irrebfshion. However, it is still

possible to provide aa-priori estimate of the peak sidelobe level of the infinite arfay,L ..,

defined as
PPy
PSLy = maxy.g PPoo’,O. 14

Actually, it turns out that (Appendix APS L. is limited by the following upper

PSLMAX _ K-—A-14+t(N-1) (15)

(N-1D)A+K -1+ N —t
and lower bounds
T )
pspymy - ATV (16)

(N-1)A+K—-1+N-—t
respectively. Figure 2 shows the plots of tA§ L., values and the corresponding bounds in cor-
respondence with the representativel3gtvailable in [17] and detailed in Tab. I. As expected,
PSLMIN <Q((’)> < PSL.. (Q(")) < PSLMAX (Q("))(2> since [PSLMAX (QE;’)) — 1159
dB, PSLa (ng”) = —14.29dB, PSLMIN (Qﬁj”) — —18.03 dB]. Moreover, for fixed values

A K

ofn £ ~— and of the thinning percentage factar(v = %), the range of variation oP S L,

reduces agV increases until a threshold. Such a behavior is pointedmilig pictures reported

(2) please notice that for an infinitéD S-based arrayP S L. (Q(”)) = PSLo, (Q(O)) since everyD(?)
generates the same power patt&h,, (u).



in Fig. 3 that summarizes the results of a study on the depereds the confidence range index

Ay 2 PSLZ™™ \vhich by Egs. (6), (15), and (16) turns out to be (see AppeBili

PSLMIN »

AL = N Nt (N = DYNR =) N@2 ) —n? oy
h N*(v —v2) =N + 1 — (N = 1)y/N(n — 1) + ’

on N for different values of thed D S-parameters. The asymptotic thresholdXof appears to

be equal to

limyn (A = VTV =) (18)

v— 2

As expected, the conditiof,, = 0 dB is asymptotically verified when =1 (i.e.,t = N — 1
and theADS coincides with aDS), sincePSL., = PSLY [Eq. (19) in [1]] [see Fig. 3§)

- “dashed brown curve”]. Such a conclusion identically tsotcue forn = 0 (i.e.,t = 0),
whatever the admissible value of(see Fig. 34) - » = 0.5). Figure 3 also confirms that
A (1) = Ax (1 — n) starting from a threshold valug,,, which decreases from,_, o = oo
asn — 0.5.

As far as Figure 3f) is concerned, neither the plots with= 0 (i.e., K = 0 - Empty array) nor
those concerning = 1.0 (i.e., K = N - Filled array) are considered since they do not admit a
three-level autocorrelation function as neededA@rSs. Let us also notice from Eq. (17) that
the following propertyA,, (v) = A (1 — v) holds true as pointed out in by the plots in Fig.
3(b). Moreover, the analysis and the corresponding plots arigédd to the range ol values for
which anADS sequence can exist[i.e., (), > A+1,0 < K < N,and0 <t < N—1]. Asit
can be observed, the value of the confidence index decredssgmv— 0.5| — 0 and it attains
its minimum value whemw = 0.5. In such a case),, — [1 + 4\/7@] asymptotically
with a maximum value equal taaz, { A ,_, s} ~ 4.77 dB forn = 0.5 [Fig. 3(b)].

3.2 ADS-Based Finite Arrays

As regards finite arrays, since theray element location functiow (x)

N-1

U(x) = Z $p0(x — nd) (19)

n=0



is now a truncated version df (), then it can be easily shown th&tP,,(u) and the power

pattern of the finite configuratio®? P(u), are related by the following relationship [1]

DI (el 7).
Nd |

PP, (u) = PP(u) (20)

Accordingly, PP(u) necessarily satisfies the sampling condition at each coatelic = u,, =
+ [1], thatis

PP(uy,) = NdPPs,, n=0,.., gJ . (21)

In order to illustrate such a behavior, Figure 4 shows théspdP P(u) and of the coefficients
PP, , for the thinned array of{ = 22 elements on & = 45-locations latticed = %) defined
from the ADS D, [16]. It is worth noting that, sinc& (z) is real-valued, the beampattern is
symmetric with respect ta = 0 and only the range < [0, 1] is considered.

Staring from (20), it is then possible to estimate th&€ L of a finite array

max,, e[t (D<o)) 1] {PP(u)}

N
PSL = P 0

(22)

whereU), is the width of the mainlobe region, by using the associatditiite array power

pattern PP, (u). It is worth noting that (see Fig. 4) thBSL value is determined by the

behaviour of the power pattern at= w,,,, 1 = (mj\fd )

e e

1
beingu,,,1 = a2

To evaluateDP(uer%), let us consider the sampling theorem [12][19] and (20)ollbfvs that

N sin [tNd (u— 55)] '2 (24)

J¢n
Z NdPPoone Nsin [Wd (u — L)]

n=0

whereg,,,n =0, ..., N — 1, are the phase terms of the sampled array factoe= 0) [1], which

are known quantities only when th&D S at hand is specified [1]. By evaluating (24)dn= 0

10



andu = Uy 1 and substituting in (23), we obtain

PSL = (25)

,  sin [r(m—n+3 )} 2
mal,, { ‘Z \/Wmej(b N sin[r(m—n+3 )/N} ‘ } \\NJ
, m=1,.., .

PPy 2

Consequently, thé’S L of an AD S-basedinite array is fully specified from the knowledge of
PP, ,and¢,, n = 0,..., N — 1. However, since thé’P,, ,, coefficients ofADS sequences
neither can be expressed in closed-form (as&@»Ss [13]) nor have equal expressions (as
for DSs [1]), it is not available (although approximated) a thidhvalue for thePSL as for
DSs [1] [Eq. (40)]. Nevertheless, it is possible to yield (sggpAndix B) the following set of
inequalities

PSIMIN < pSLPW < pSLoPt < PSLYY < pSLMAX (26)

WherePSL = mingepn -1 { PSL (D) }, PSLMIN = PSLAIN, PSLPW — maz {PSLu,
PSL™n}, PSLVP = E{®7in} PSL.,, andPSLMAX = E {@min} PSLMAX beingE {®T7i"} ~
0.8488 + 1.128 log;oN and PSL™" = E {®W"} M. In should be pointed out that
PSLPY and PSLUT are determined when théDS sequence is available since they require
the knowledge of the coefficien8P,,,,. On the contrary,PSLM!N and PSLMAX can be
alwaysa-priori computed from (16) and (15), respectively.

For a preliminary check of the reliability of (26), let us cder the finite arrays coming from
the ADSsD, andD, in Tab. I. ThePSL values of thed D S-based finite arrays deduced from
theseADSs and their cyclic shifts are given in Fig. 5 and compared whthP S L confidence
ranges, while the associatét’s are reported in Fig. 6. As expected, the value of fiie.
changes when thé DS is cyclically shifted ofo positions (Fig. 5), although each power pattern
always passes through the fixed points.at u,, = 3 (Fig. 6). Notwithstanding, thé&SL*
lies into the confidence range prescribed by (26). Such aevialyielded for different shift
values (Fig. 5), pointing out that less thantrials/shifts are needed to identify a “good” (i.e., a
solution within the bounda-priori known) ADS configuration with negligible computational

Costs.
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4 Numerical Analysis

This section is devoted to numerically assess the potdrgahnd limitations of thedDS-
based array thinning theory for antenna synthesis. A coatparstudy is carried out and some
experiments concerning directional arrays (i.e., arraith directive elements) are reported to
point out features and characteristics of thB.S-based deterministic thinning.

For fair comparisons, let us consider as reference randaamysendD S-based placements for
which beam pattern performances canabpriori envisaged [3] as foA DS-based configura-
tions. More specifically, the estimator of the normalizedlpsidelobe level ofandom arrays

(RND)® is equal to [3]

B+1+2
PSLrnp = — B (27)
K
whereB = —In [1 — W(N{l)}’ [ being the probability or confidence level that no sidelobe

exceeds thé’S Ly p value. Moreover, the random placement of the array elennéslattice

enables a further reduction of tl#&S . compared to random arrays [1]

PSLRNL == (1 - V) PSL, (28)

although it becomes vanishingly small with increased timgrti.e., — 0).

Figures 8 and 9 summarize the behaviors of /. bounds for both random andlD S-based
finite arrays versus the array aperture in correspondentfeavset of representative thinning
values and for, = 0.5. Figure 9 also shows the estimated L bounds versus whenN = 45,
the value of PSL}", and the associated optimal power pattern. LikewddeS curves and
because of the asymptotic nature of the random array th&nPSLryp and PSLgyy, are
plotted only for values of< large enough to guarantee that Egs. (27)-(29) providefaatsy
estimates [3]. More specifically, the minimum valueffto have a reliable estimation of the

PSLinrandom arrays is equal to [3]

(3) Random arraysre characterized by element locations chosen by randooegses. Generally, they are
designed starting from filled configurations and removingaadom a given fraction of the elements. Moreover,
a random latticearray is an array in which the elements are located at rangetmsen positions in a set of
uniformly-spaced points (callddttice) in the aperture.

12



KRND = max {15, 2B} . (29)

On the other hand, it should be pointed out that the estinafttine P.SL of random arrays
is evaluated, instead of the power ratio of the average aigeto the main lobe, since this
latter may be somewhat misleading and the arising predictioven by E {PSLrnp} = %
inadequate due to possible significant differences Wit v p [3].

As it can be observed, although tBelB improvement ofD.S arrays does not verify, tha DS
upper boundPSLM4X is always lower thanPSLzy. (PSLrn. < PSLgpyp) except for
highly filled large arrays [Fig. &) - v = 0.8, N = 450]. On the other hand, it should be
noticed that thePSLMA4X value usually overestimates the actual peak sidelobe ofithe
array. Such a behavior is pointed out by A8 L. values actually obtained from a set4D S's-
based arrays in [22] for which = v = 0.5 [Fig. 7({0)]. A further assessment is also given
by the sample alv = 45 in Fig. 8(@) and pictorially shown in Fig. &) where the plot of the
corresponding power pattern is drawn.

As regards the confidence ind&x(A £ %), similar conclusions to those obtained when
dealing with infinite ADS arrays (Sect. 3.1) hold true, but teDS values are shifted of
E{®7"} sinceA = E{d7"} A,. The plots in Fig. 7f) assess such a behavior when
dealing with large apertures\( = 10%). As a matter of factA still decreases d — 0.5 — 0
with a minimum value for = 0.5 [Fig. 7(b)].

As far as the dependence of the' L on the index; is concerned, the results in Fig. 9, where
the behavior of thePSL bounds versug and for different values ofV and v is pictorially
described, and Fig. 8) further confirm the indications on the reliability of th&DS-based
design. TheADS peak sidelobe turns out to be still lower than those cominghfrandom
placements. Moreover, one should notice that the worsttsitn takes place in correspondence
with n = 0.5, further strengthening and extending to differgntalues the indications drawn
from Fig. 7 (g = 0.5) about the efficiency ofADS arrays over the random ones. Furthermore,
the PSLMAX tends to theDS value when, = 0 andn = 1 (N — oo) as shown in Fig. 9 and
Fig. 8(C).

Figure 8€) also points out that the actual value®6' L (QZ’”) Is quite close to that predicted

13



by Eq. (40) in [1] for the admissible (i.e., theoreticallyigting, but whose explicit form is
not yet available)D.S array E?”* with equal number of element§ and thinning percentage
(v = 0.489). This event suggests that usirdg)Ss for array thinning can provide, besides a
wider set of admissible array configuratio®s$ L performances which are expected on average
to be close to those from equivalent (i.g.= 0.0 or = 1.0) or similar (i.e.,N4P% ~ NP3,
KAPS ~ KPS andA4PS ~ APS) DS sequences.

In order to point out such an issue, let us compare the patéatures of the finite arrays
generated from the sequencgé") and Eg’) ={l4+0,3+0,13+0,16+ 0, 17T+ 0},
c=20,.,N—1, N = 21 (derived from the(21,5,1)-DS in [15] with a cyclic shift by
10). Figures 14) and 10b) show the normalized power patterns of the optimal finiteygsr
obtained by cyclic shifting the corresponding binary seges, while Figs. 1@j-10(d) provide

the PSLs and beamwidtly/,, versusos of the arrays. The pattern values at the control points
u=un,n=0,.,|¥], where PP(u,)] N dPP2DS and PP (uy,)) N dPPZS

2g:r) == Eéo') =

are reported in Figure 18), as well. As expected, the beBtS-based array slightly overcomes
its ADS counterpart only in terms of array beamwidth [Fig. d)J( while equal PS L values
appear [Fig. 109)].

On the other hand, it is worthwhile to note that the radiapattern fromD3”* has lower side-
lobes in the angular range near the mainlobe [see Figh)[L0%uch a feature oA DS place-
ments [see also the plot ¢fP(u) | Do in Fig. 11€)] can be profitably exploited when directive
array elements are at hand. For instance and likewise [AJsleonsider aos(#) element pat-
tern and ideal conditions by neglecting mutual coupling@t. In such a case, the radiated
array power pattern is obtained by the product of the isatrapray pattern with the element
pattern [2][7]. As it can be seen [Fig. 1] and confirmed by the values of the quantitative
pattern indexes in Figs. 1€¢10(d), the PSL of the directional array in correspondence with
DY turns out to be of about dB smaller that that of the isotropiS-based array, despite the
use of low-directive elements and starting from the sdm9€. value of the the isotropic case.
Such a possibility is not related to a particular test case wery-special element pattern, but
it is due to the distribution of the even-numbered samplethefpower pattern that assume

only two-constant values fab.S-arrays, while multiple levels when dealing withD S-based

14



configurations. Therefore, thBS patterns are asymptoticallyN( — oo) constrained to the
constant vaIuéDPOQﬁL, n # 0. On the contrary, the variability of th& DS samples admits some
(even non-negligible) variations both in the angular raofya pattern [see the isotropic curves
in Fig. 100) and Fig. 11¢)] and among different patterns related to the satieS sequence
(Fig. 4 and Fig. 6).

Unlike DS coefficients, the fact thaP PZD?, n # 0, are not constant provides an additional
degree of freedom to the design of thinned arrays thradifft sequences. In fact, besides the
possibility to easily find the optimall D S-based finite array through simple cyclic sequence
shift, the availability of differentA DS patterns with various characteristics [Fig. &jl{ PSL
value; Fig. 116) - Beamwidth,U,,] depending orv can be further profitably exploited to
minimize the sidelobes of the array power pattern outsidenhin lobe of the element pattern.
The arising effect is then to reduce the number of sidelob@isiwcan compete to theSL
and, by properly selectingB®'”) sequence, the resulting peak sidelobe level of the whoéy arr
keeping or decreasing the array beamwidty. Towards this end, it turns out to be more
convenient to choose the cychith S-based array with the minimum sidelobe level in the region
near the mainlobe and not that with the low&st L in the whole angular range as for isotropic
elements.

For illustrative purposes, let us consider the test caseaomgD, (Fig. 11). Despite the
minimum P S L of the isotropic array is obtained for = 15 — 18, the best directional array in

terms of peak sidelobe level comes from a differdii2S shift (i.e.,c = 14) indicated a4

in the following and defined as
Dgir =arg {minoe[O,N—l} |:mCLLL’uE [UM <Qég)>71] <PP(U)JD§J) [1 — u2}>:| } . (30)

As it can be seen, the improvement allowed by the use of dreelements is enough to
minimize the sidelobe peaks in the angular region far fromrtrain lobe, thus reducing the
arising PSL also in comparison with the directive pattern generatechfd” (i.e., DY =

arg {mz’nge[o,zv—l} {ma%e[UM(gg@),l] (PP(U)JQ?’))} })'

Finally, the performances expected by thinned arrays desigising ADSs are compared with

15



those from robust stochastic optimization techniquesdaseg~ As [7][9][8][2]. Towards this

end, an array ofV = 200 elements is used as benchmark test case. Figure 12 shows the
ADS bounds whem = 0.5 (i.e., the worst case fad D.Ss) and thePSL values of the arrays
synthesized with thé; A-based methods. Moreover, ti5 L of the arrangement defined by

the ADS (197,147,109, 98) [22] is reported, as well. As it can be observees LM N <
PSLaga < PSLMAX PSLq 4 referring to theG A-optimized designs. Moreover, théD S-
based array favorably compares in termd#f L with the state-of-the-ai’ A arrays despite its

slightly smaller aperturelQ7 elements versuz0).

5 Conclusions and Discussion

In this paper, the thinning of linear arrays has been stuolyezkploiting the properties oA DS's

to provide some guidelines for the design of thinned arraiis predictable performances. Such
a deterministic approach is not aimed at obtaining optinesighs, but at being applied either
when stochastic optimizers or random placement technigaesot be applied or to speed up
the convergence to optimal thinning solutions of optim@atechniques. In fact, evolutionary
or statistical techniques (e.g=As, SA, and PSO) could be computationally expensive when
dealing with very large or massively thinned arrays. Moeptheir performances in terms of
pattern features of the arising placements are difficultreajzt a-priori. On the other hand,
cut-and-try variations of the element locations in randamays usually require several trials
before providing the satisfactory results expected frondam theory.

Unlike standard synthesis techniques, the proposed melitgyd exploits the properties of
ADSs rather than using a search algorithm for the placementeofithay elements within a
regular lattice. Such a deterministic thinning does notinegsearch or minimization or trial-
and-error procedures, but it determines the array arraegéjust through simple shifts of suit-
able sequences. Moreover, the array performancesa-preori estimated thanks to the analytic
features of the arising D .S-based power patterns. Thanks to these outcomes, the faudtisef
the research work is the description of a practical desigomhwhere the key-role descriptive
design parameters are in evidence as well as their impatteoartay performances.

From the numerical analysis, it appears that likewisg& placements, but in a theoretically
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wider admissible set of configurations, tAé .S array performances definitely overcome those
of their random counterparts except for large almost fillecdys. In these cases, the actual
improvement has to be evaluated on a case-by-case basis@rthot be assured in advance
without the knowledge of thd DS sequence.

A detailed comparison ofi D S-based arrays with stochastically-thinned solutions. (&:gl-
based [7] oS A-based arrays [10][11]) is postponed to future researd@edainly, it seems to
be convenient to hybridize the two approaches in some a waéyfanexample, as suggested in
[1] dealing with DS's and shown in [2] with quite satisfactory results.

Future works will be also devoted to find new expligitD.S sequences, but such a topic is
out-of-the-scope of the present paper since not pertinemtenna arrays, but concerning com-

binatorial mathematics.

Appendix A

This appendix is aimed at determining the range of variatidhe P.S L of ADS-based infinite

arrays. Therefore, let us determine the upper bound andotkerlone forPSL.,. Towards

N-1—t
p=0

this end, let us first notice that the réal coefficient3, = 3 ¢ %" defines the discrete

Fourier transform D F'T') of the binary sequend = {b,,; m =0,...., N — 1}
B, = DFT{B} (31)

whereb,, = 1 if m € {L Uy} andb,, = 0 otherwise. Therefore, the value £S5 L., depends
onB and since

By=N —t, (32)

it turns out that
K —A—-1+maz,{Bn}

PSL‘X’_(N—l)A+K—1+N—t' (33)

() It can be proved tha,, < R, sincePP,, , is real-valued as a sample of the power pattern and the other
terms in the right-hand side of (12) are still real quartitie
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Let us now observe that, from the Parseval’s theorem [19,"&mergy” of the sequencB

€z 2 3N |B,I) is a constant value
Es=N D bl =N (N-1), (34)

then the bounds faP S L, are obtained when the following conditions hold trua: PSL., =
PSLMAX if only one B, = BMAX (n # 0) is non null; @) PSL., = PSLMINif B, = —B,

n = 1,..., N — 1. Moreover, the Blahut's theorem [20][21] states that thenbar of non-null
coefficientsB,,, n = 0, ..., N — 1 is equal to the linear sp&# of B.

As regards the upper boundS LA 4X the condition &) verifies in correspondence with the
non-trivial B having the shortest linear span. Such a binary sequencéaset wherL is a

collection of even integers

L={l,=2xp;p=1..,N—-1-t}. (35)

In such a case, thanks to the Blahut’s theorem [20], it resh#t

Ep = |Bol® + B4 (36)

Therefore, by substituting (32) and (34) in (36) and consmie(33), one obtains

K — A — 1+ BYAX

PSLJ\/[AX —
> T IN“DA+K-—1+N—¢

(37)

beingBMAX = |/t (N —t).
As far asPSLMIN is concerned, the conditio) holds true when the linear span Bf is

maximum (i.e.,N). Such condition corresponds to the case in which a constaertgy is

(1) The linear span of a binary sequence of petidds defined as the order of the least order homogeneous
linear recursion satisfied by the binary sequence. In gracit can be identified as the size of the smallest lin-
ear feedback shift register that generates the sequenceprésents a measure of the complexity of the binary
sequence.
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forced in the sidelobe region. Consequently,

Ep— B> [t(N —1)

B=\"~=1 = (N—-1)’

(38)

then

K-A-1-B

P LMIN:
S = NCT AT K1+ N1

(39)

under the conditionthak — A — 1> B.

Appendix B

This section is devoted to derive (26).
As far as the upper bound for th#&S L of a finite AD.S-based array is concerned, let us consider

that PP, ,, < max,, (PPx,),n =1,..., N — 1, therefore

2

—1 m-n__j'?)
L <3 | PSS S
Nsm[ N2 } n=1 Ngin {TQ}

(40)
wherePSL®) = PSL (Q(”)>. In thesidelobe regioH’)) of PP (u), itis possible to approxi-

mate the right side of (40) to obtain the following

2

N— )m n J¢§f)

PSL©Y) < PSL mazr,_ _ N Z (41)
~Y m=1,..., |_2J m— TL—‘rl)
=1 Nsin T2

Let us now model the phase termfg), n=1,..,N —1, as independent random variables with

uniform probability function over the whole angular rangden, analogously to the treatment

(1) Thesidelobe regioris defined as the angular range= [UM (Q(">) : 1} where the first term in (40) is
negligible.
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in [1], it can be deduced that

PSL) < &) PSL, (42)

() being another random variable defined as

i@ |
- (43)

However, it should be noticed that we are interested in defittireshold values faP.S LP =

mingeo,n-1) { PSL }. Accordingly, it turns out that
PSL < PSL @™ (44)
where®%™ £ min,cp n—1) {® } has an average value equal to
E{®%™"} ~ 0.8488 + 1.128 logio (N) (45)
for sufficiently large values oiV [1]. Finally, by also exploiting (15), one obtains that
PSL < PSLo E{®F"} < PSLYAY E{oF™}. (46)

With reference to the lower bound for theSL, let us observe that the power pattern of a
finite ADS-based array (whatever the cycling shift) must necesspaids through the sampling
points atu,, = 3. Therefore, the correspondingSL cannot be smaller than the maximum
value of PP (u,,) = Nd x PP, ,. Accordingly and also taking into account (16), the follogi

inequality must be satisfied

PSL") > PSL.,, > PSLMIN, (47)

Such a condition can be further detailed by considering &meesproof guidelines used for the

PSL upper bound and the condition thaf,, ,, > min,, (PP ), n = 0,..., N — 1. It follows
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that
2

1 N-1 men ()
por@ > Mt (PPoon) i (—1)™" edoh
- PPOO 0 m=hen L?J . W(m—n+l)
’ n=1 Nsin TQ

and by introducing the random variabé", we obtain

min, (PPaxp)

PSL™ 2 E{95"} =5
00,0

Finally, by suitably merging (47) and (49), the lower boumahdition states that

min, (PP )

PSLP > max {PSLOO’ E {<1>]mvm} PPy o

}zR%yN

Appendix C

This section is aimed at deriving (17).

Starting from Egs. (15) and (16) we have that

A KA1 VI D)

t(N—t)
K—-—A-1- =y

whereA can be expressed as follows

KK—-1)4t+1-N VN*+Nin—v—-1)+1-n

A= N—1 N—1

(48)

(49)

(50)

(51)

(52)

by using (6) and recalling that’ = vN andt = n(N — 1). Finally, Equation (17) is obtained

by simple algebra substituting (52) in (51).
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FIGURE CAPTIONS

e Figure 1. Autocorrelation functiorC4”%(z) of D, andD, in Tab. I.

e Figure 2. Plots of PSL., (D), its boundsPSLY4%X (D) and PSLYMN (D), and of
PP, , (D) for the infinite arrays derived from thé DS D = D, in Tab. (I).

e Figure 3. Plot of A, versus the array dimensiofy, when: @) v = 0.5-7 € [0, 1] and

b)n=05-ve]o,1].

e Figure 4. NormalizedP P(u)s derived from thedADS D, (i.e.,D, = Qi")J ) and its

o=0
cyclic shiftsQi") (o = 17,0 = 24). Number of elementsN = 45 - Aperture size22).
e Figure 5. PSL values of theADS-finite arrays generated from the sequenf_lég),
0=0,.,N—1:(@i=1-N=13,andb)i =2- N =21,

e Figure 6. NormalizedPP(u)s of the ADS-finite arrays generated from the sequence

D", 0=0,...,N-1:(@i=1-N=13andp)i=2- N = 21.

e Figure 7. Comparative Assessmer®lots of thePSL bounds of thed DS-based finite
arrays and of the estimator of theS L of random arrays RN D - random arrayRN L
- random lattice array) versus the array dimensidn,when @) v = 0.3, (b) v = 0.5,
and €) v = 0.8. Plots of the confidence ranges 4D S-based arrays versus the thinning

indexrv whenn = 0.5 andN = 10* (d).

e Figure 8. Comparative Assessmer®lots of theP.SL bounds of thed DS-based finite
arrays and of the estimator of theS L of the random arraysRN D - random array,
RN L - random lattice array) whem = 0.489 versus &) the array dimensiony, and €)

opt

the indexn. NormalizedP P(u) generated fronD}"” and estimated®S L values of the

corresponding random sequencis (

e Figure 9. Comparative Assessmer®lots of theP.SL bounds of thed DS-based finite
arrays, of the estimator of th2SL of random arrays RN D - random array,RN L -
random lattice array), and values of tR&' L of D S-based finite arrays versysvhen @)

v=0.3,(b)yr=0.5,and @) »r = 0.8.
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e Figure 10. Non-Isotropic ElementsFinite arrays generated from theD S-sequences
DY) and theDS-sequence&!”’, o = 0, ..., N — 1; N = 21. Optimal PP(u)s radiated

from the arrays with &) isotropic elements and) directive radiators. Pattern features

versuso: (¢) PSL and @) Uy, (x x x Isotropic array; Directional array).

e Figure 11. Non-Isotropic ElementsFinite arrays generated from theD S-sequences
Qé"), c=20,..,N —1; N = 33. Pattern features:aj PSL and p) U,,;. Normalized
PP(u)s of theADS-finite arrays generated from the sequenB4$¥ andD4" by using

isotropic and directive elements.

e Figure 12. Comparative Assessmertlots of theP.S L bounds of thed D S-based finite
arrays ¢ = 0.5) and of the estimator of th&S L of random arrays RN D - random
array, RN L - random lattice array) versuswhen N = 200. PSL values of the arrays
genetically optimized in [7]§ = 200), [9] (N = 200), [2] (N = 200) and of the
ADS-based array [22]§ = 197).

TABLE CAPTIONS

e Table I. Examples ofA DSs and their descriptive functions.
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Table | - G. Oliveri et al., “Thinned Arrays...”

N 13 21 33 45
G G, ={0,..,12} G, ={0, ..., 20} G, ={0,..., 32} G, ={0, ..., 44}
K 3 6 16 22
A 0 1 7 10
t 6 10 16 22
24 = {Oa1727374~75767
D; = {0,1,2,3,4,5,6,
D, = {0,1,3,13 7,9,11,12,15,
D D, ={5,6,9} 8,13, 14, 18, 20,
16,17} 16,19, 23, 24, 29,
22,25,28,29}
30, 32, 35, 37, 39}
A, = {1111111101
A, = {0000 A, = {1101000 A, = {11111110100
01100110010
A 01100 00000010 00110001010
001100001101
1000} 0110000} 10010011000}
001010100000}
§ &1 = {“’7A17A17 } §2 = {'-'7A27A25 } §3 = {~-~7A3aé3a } §4 = {"'3A47A47 }
3,2=0 6,z2=0 16, 2 =0 22, 2=0
1,z= 2,6,7,9, 7, 2= 3,6,7,9,10,11, 10, z= 6,9,10,11,12,14, 16,18
DS 0,z= 2,5,6,
CiP5(2) 10,11,12, 13,15, 18, 20, 22, 19,20, 21, 24, 25, 26, 27,
7,8,11
14,15,19 23,24, 26,27, 30 29,31, 33,34, 35, 36, 39
l,zeL= {1,3, 2, zeL= {1,3,4,5, 8, zeL={1,2,4,58,12, 11, ze L= {1,2,3,4,5,7,8,13,15,
4,9, 8,13,16, 14,16,17,19, 21, 17,22, 23,28, 30, 37,
10,12} 17,18, 20} 25,28, 29, 31,32}

38,40,41,42, 43,44}




	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE


