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Abstract
Flood-induced scour is among the most common external causes of bridge failures worldwide. In the United States,
scour is the cause of 22 bridges fails every year, whereas in the UK, it contributed significantly to the 138 collapses of
bridges in the last century. Scour assessments are currently based on visual inspections, which are time-consuming and
expensive. Nowadays, sensor and communication technologies offer the possibility to assess in real time the scour depth
at critical bridge locations; yet, monitoring an entire infrastructure network is not economically feasible. A way to over-
come this limitation is to instal scour monitoring systems at critical bridge locations, and then extend the piece of infor-
mation gained to the other assets exploiting the correlations present in the system. In this article, we propose a scour
hazard model for road and railway bridge scour management that utilises information from a limited number of scour
monitoring systems to achieve a more confined estimate of the scour risk for a bridge network. A Bayesian network is
used to describe the conditional dependencies among the involved random variables and to update the scour depth dis-
tribution using data from monitoring of scour and river flow characteristics. This study constitutes the first application
of Bayesian networks to bridge scour risk assessment. The proposed probabilistic framework is applied to a case study
consisting of several road bridges in Scotland. The bridges cross the same river, and only one of them is instrumented
with a scour monitoring system. It is demonstrated how the Bayesian network approach allows to significantly reduce
the uncertainty in the scour depth at unmonitored bridges.
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Introduction and background

Scour is defined as the excavation of material around
bridge foundations as a result of the erosive action of
flowing water. The phenomenon is usually classified
into three different types, namely, degradation, con-
striction (or contraction) and local scour,1 which gener-
ally work simultaneously to give the total scour.2 When
the depth of scour develops significantly, the load-
bearing capacity of bridge foundations may be severely
compromised, leading to structural instability and ulti-
mately catastrophic failure.3

Flood-induced scour is among the main causes of
bridge collapses, resulting in significant loss of life, traf-
fic disruption and economic losses.4 In the United
States, a review of 1502 river crossing failures occurring
in the period 1966–2005 has shown that an average
annual rate of 22 bridges were closed or failed due to

scour.5 In the UK, there are more than 60,000 highway
and railway bridges crossing waterways6 and almost
95,000 spans and culverts are susceptible to scour pro-
cesses. According to van Leeuwen and Lamb,7 abut-
ment and pier scour were responsible of 138 rail bridge
failures recorded in the UK during the period 1846–
2013. In the past decade in Cumbria, a non-
metropolitan county in North-West England, more
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than 100 bridges were damaged or destroyed (e.g. the
Northside bridge in 2009 and the Pooley bridge in 2015
were washed away).8,9 Furthermore, the winter storms
of 2015 resulted in severe damage to bridges across
Scotland and other parts of England.10 This includes
the Lamington viaduct, which resulted in the closure of
the West Coast mainline between Glasgow and
London for nearly 2 months due to a scour failure at
one of its piers.11

The scour risk assessment is a crucial element of any
bridge management system. This evaluation should
combine information on the hazard, the bridge vulner-
ability and the consequences of failure.12 Regardless of
the approach employed, an accurate estimation of the
scour hole at the foundations of bridge piers and abut-
ments is at the base of any scour vulnerability and risk
assessment.13 Studies over the past four decades have
provided several methods for the estimation of scour
depth (see, e.g. Pizarro et al.14 for a state-of-the-art
review), which include empirical formulas fitted to
experimental data,3,15 theoretically based formula16

and numerical approaches involving, for example, arti-
ficial neural networks.17,18 However, most of these
approaches (e.g. especially the empirical model based
on lab experiments) follow the assumption that the
designed flood acts over an infinite duration,14 while
real flood events are characterised by hydrographs of
different duration and magnitude, resulting in non-
stationary hydraulic conditions that influence the scour
evolution.19,20 Moreover, the risk of failure due to
scour cannot be directly related to only one designed
flood scenario.21 Hence, comparisons between scour
estimates according to the mentioned methods and
actual scour depths observed on site have shown that
the first may be significantly biased on the conservative
side.22 This could be explained by the extreme complex-
ity of the scour evaluation, which involves many alea-
toric and epistemic uncertainties.23 Probabilistic
frameworks have been presented over the years to
incorporate the effect of these uncertainties.22–25

In the UK, Network Rail (NR) and Transport
Scotland (TS) assess the risks associated with scour on
road and railway bridges using the Procedures BD97/
1226 and EX2502,27 respectively. Both these procedures
rely on visual inspections, carried out at regular inter-
vals or after major flood events, to identify the bridges
that may be at risk of scour. More detailed assessments
are then carried out for these bridges, and the scour
depth is estimated through empirical formulas in order
to produce a scour-vulnerability index (i.e. expressed as
the ratio between the total scour depth at the base of
the pier DT and the foundation depth DF) used to rate
the bridge assets and prioritise scour risk mitigation
interventions. The risk assessment is, therefore, based

on an essentially deterministic approach, with a pre-
fixed flood scenario (e.g. the 1 in 200 years flood).

Although visual inspections are a predominant non-
destructive evaluation technique to check the state of
any bridge component, they have clear disadvantages
in the context of scour risk assessment. Their reliability
depends on the inspector’s experience and on the equip-
ment provided, and above all they are, in general,
expensive and time-consuming. Furthermore, it is too
dangerous to carry out underwater visual inspections
during the peak of a flood event, when the risk of scour
is the highest.

Nowadays, a wide range of sensor and communica-
tion technologies offer the possibility to assess in real
time the scour depth at bridge foundations.28 This
could help to overcome the limitations of visual inspec-
tions, by increasing the identification of the bridges
most at risk of scour. However, monitoring an entire
infrastructure network is not economically sustainable,
and for this reason, scour sensors may be installed only
at a few critical bridges.

Hence, for these reasons, current scour risk assess-
ment approaches could be improved by (1) explicitly
considering the various sources of uncertainty that
affect the problem, thus enabling the shift from a deter-
ministic to a probabilistic evaluation of the scour depth
and (2) incorporating the observations from scour sen-
sors, allowing the reduction of the uncertainty in the
scour risk estimates.

This article illustrates a probabilistic framework for
the assessment of the scour hazard of bridges in a net-
work, which is capable to use the data from scour mon-
itoring systems installed only at critical bridge locations
to improve the scour assessment for unmonitored loca-
tions within the same bridge network. In particular, the
proposed framework is based on a Bayesian network
(BN), which describes the conditional dependencies
among the random variables (RVs) involved in the
scour depth assessment at different bridges. Once a new
observation on the scour depth or the flow discharge is
available at a location, the BN is exploited to estimate
and update the scour depth at unmonitored locations.
It is noteworthy that a preliminary development of the
BN for scour estimation was presented in Maroni
et al.29 In that article, a highly simplified BN was con-
sidered to test and compare the effectiveness of two dif-
ferent numerical algorithms for the Bayesian updating,
namely, an algorithm to solve linear Gaussian BNs and
the transitional Markov chain Monte Carlo (TMCMC)
method. This article describes an extended version of
this BN, integrating improved scour estimation models
and better-defined sources of inherent uncertainty. To
the authors’ knowledge, it constitutes the first applica-
tion of BNs to bridge scour risk management.
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The rest of the article is organised as follows: Section
‘Bayesian statistical inference and model updating’ out-
lines the principal concepts of the Bayesian logic and
BN. Section ‘BN for scour estimation’ illustrates the
developed BN, the involved RVs and the models
employed to describe their conditional dependency. The
section also explains how the BN is fed with observa-
tions from various monitoring systems and how this
new information updates the variables of the network.
Section ‘Numerical algorithm for model updating’
briefly describes the numerical algorithm employed to
solve the BN and update the variables involved in the
scour estimation. In section ‘Case study’, we present
and describe the case study used to demonstrate the
functioning of the BN, consisting of bridges managed
by TS in South-West Scotland. These bridges cross the
same river and scour depths are assumed to be moni-
tored only in one of them. The outcomes of the applica-
tion of the proposed framework to the case study are
shown in section ‘Results’. The article ends with conclu-
sions and future works in section ‘Conclusion’.

Bayesian statistical inference and model
updating

The last three decades have seen a growing trend
towards the development of sensor technologies and
techniques for processing the data and assess the per-
formance of civil infrastructure under environmental
conditions. Bayesian inference provides a general,
rational and robust approach for evaluating the struc-
ture condition (e.g. damaged or undamaged) or judge
sensor and model performances, by taking into account
all the sources of uncertainty relevant to the problem.
Usually, information about a monitored structure
might come from different sources, such as observa-
tions collected by sensors, design documentation of the
structure, inspections and test reports or engineering
judgement.30 The inverse problem of estimation of the
parameters of a model is tackled by treating them as
uncertain and using available data to update their
probabilistic distribution. Hence, this approach consti-
tutes an accumulation of knowledge.31

Equation (1) illustrates the expression of the Bayes’
theorem for the problem of updating of state variables
distribution

p(statejdata) = p(datajstate) � p(state)
p(data)

ð1Þ

where the probability p(state) is called prior probability
and represents the perspective of the state prior to the
collection of data. The probability p(data|state) is called
likelihood of the observed data. Analogously, p(state|-
data) is called the posterior probability of the state

because it is the updated belief after new information is
gained through observed data. The dominator p(data)
is a normalising factor called evidence, which must be
calculated by integrating over the parameter space
through application of the total probability theorem.

Bayesian methods have received increased attention
across a number of disciplines in recent years; in partic-
ular, they have been successfully implemented in struc-
tural health monitoring (SHM) problems.32–34

Consequently, there has been an increased interest in
the use of graphical models, such as BNs, to enable
Bayesian model updating in complex and large-scale
problems.

Bayesian network

A BN, developed by Judea Pearl in 1985, is a graphical
model using a directed acyclic graph to represent a set
of RVs and their conditional dependencies.35 Each RV,
which can be discrete or continuous, is depicted by a
node and the probabilistic dependency between two
variables is represented by a link (Figure 1).

In BN terminology, it is unequivocal to refer to spe-
cific nodes as parent or child, since a directed acyclic
graph represents a hierarchical arrangement. Any node
extending from another one is denoted as a child, while
the inverse relationship defines a parent node. Nodes
without parents are known as root nodes and are
described by their probability density function (pdf),
which, in Bayesian terms, can be understood as their
pdf.

Two forms of probabilistic inference can be carried
out in BNs: predictive analysis that is based on evidence
(i.e. information that the node is in a particular state)
on root nodes, and diagnostic analysis, also called
Bayesian learning, where observations enter into the
BN through the child nodes.36 The child node pdfs can
be estimated from the roots’ pdfs by performing predic-
tive analysis, whereas Bayesian learning allows updat-
ing root node pdfs when new information enters into

Figure 1. An example of a Bayesian network.
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the BN through a child node. When evidence enter into
the BN, the piece of information is spread inside the
network to update variable’s probabilities through one
of the two forms of inference mentioned above. In par-
ticular, the second approach, the Bayesian learning, is
attractive when the analysed system is based on con-
stantly evolving information, as in the case of a real-
time monitoring system. Furthermore, BNs are well
suited for representing knowledge under uncertainty.
Uncertainties from variables, measurements and model
itself can be implemented into the BN such as compo-
nents of the model or even as an updatable node.

In recent years, there has been an increasing amount
of literature on the use of BNs. Although BNs were first
implemented in the context of the artificial intelligence
community,37 they have become quickly popular in
every field of study, thanks to their excellent perfor-
mance and suitability for dealing with a broad range of
problems that involve probabilistic reasoning and
uncertainty quantification. BNs started to be used for
Bayesian modelling in engineering risk analysis due to
their ability to manage many dependent RVs. One of
the earliest works dealing with risk assessment through
the use of BNs was carried out by Friis-Hansen.38 After
that, several works on the employment of BN for risk
assessment have been proposed starting from the article
by Faber et al.,39 where BNs were utilised for assessing
the risk related to the decommissioning of offshore
facilities. Following examples have been focused on the
natural hazard risk assessment,40–42 damage detec-
tion,43–46 optimal sensor placement47 and structural
deterioration due to metal corrosion and fatigue using
an extended version of BN that include time-variant
parameters (i.e. dynamic BNs).48,49 Dynamic BNs have
been recently used to assess the time-dependent resili-
ence of engineering systems.50 The applications in seis-
mic risk are many (see, for instance, Bensi et al.51) and
they address different topics such as the reliability anal-
ysis of critical infrastructures in the aftermath of a
hazardous event,52,53 bridge asset54 and road network55

management or post-earthquake risk assessment includ-
ing a decision making process.56 BNs have been also
used to evaluate multi-hazard risk.57–60

BN for scour estimation

This section illustrates the probabilistic framework used
to update the scour depths at any location of a bridge
network given the data from sensors monitoring scour
only at critical locations. The rationale of this frame-
work is as follows: a scour monitoring system measures
the scour depth at the pier of one bridge, and the piece
of information is then extended to the other piers and
the unmonitored bridges by exploiting the conditional

dependence between the scour depths at different loca-
tions, as described by a BN.

The developed BN is based on BD 97/12,26 which is
the procedure followed by TS to assess the scour risk of
their road bridges. This procedure can be divided into
four steps: (1) assessment of the flow hydraulic proper-
ties, (2) estimation of the constriction scour, (3) estima-
tion of local scour and (4) estimation of total scour. In
particular, starting from the river flow characteristics
(such as river flow Q), different models are applied to
estimate the depth of flow upstream of the bridge yU,
and the two components of scour, constriction scour
(DC) and local scour (DL), whose sum is equal to the
total scour depth DT. For the purpose of developing
the BN, model uncertainties are added to each model
to describe the randomness of the estimation processes.
Thus, each formula is structured in the following way

x= fx(y1, . . . , yN ) � 1+ ex +
(j)ex

� �
ð2Þ

where the model fx estimates the variable x through the
dependent variables y1, ..., yN, and ex and (j) ex are the
two model uncertainties: the first one represents the
random error of the equation and the second one is an
additional error that is associated with the specific jth
location (e.g. pier or bridge). Every RV representing
model uncertainty is set to be a root node of the BN
and thus is described by assigning to it a prior pdf.
These pdfs are expressed as normal distributions with
zero mean and a standard deviation (SD). The RVs (j)

ex are assumed to be independent and identically dis-
tributed for the different piers. Figure 2 illustrates the

Figure 2. BN for scour estimation at a single bridge location.
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BN for the problem of scour assessment at a single
bridge pier. The models employed in the four steps of
the assessment procedures are described more in detail
in the following subsections.

Flow analysis. Manning equation is used to describe the
relationship between Q and yU

yU =
Q n

BB s1=2

� �3=5

1+ eM + (j)eM
� �

ð3Þ

where n is the Manning coefficient, BB is the channel
width at bridge opening and s is the channel slope. Two
model uncertainties are employed: eM is the correlated
model error of the Manning equation and (j) eM is the
uncorrelated model error in the jth bridge. The SD of
each error is chosen equal to 0.10 in order to define a
total SD corresponding to 0.15.

Constriction scour. The reduction of channel width due
to the presence of bridge piers or abutments leads to an
increase in the water velocity vB. When the velocity
reaches the critical value vB,c (i.e. threshold velocity
below which scour does not occur), the erosion of the
riverbed starts.

The equilibrium (i.e. the final scour hole) is reached
when the increase in cross-sectional area of flow for
constriction scour is such that vB \ vB,c.

A nonlinear system of three equations in three vari-
ables is developed to estimate the constriction scour
depth. Q, yU and the bed material grain size d are the
input parameters of the system that enable us to evalu-
ate the average constriction scour DC,ave, the water level
through the bridge yB and the threshold velocity vB,c.
The nonlinear system consists of the Colebrook–White
equation (equation (4a)),1 the conservation of fluid
mass (equation (4b)) and the Bernoulli equation (equa-
tion (4c))

vB, c = �
ffiffiffiffiffi
32

p
v0(d) � log10

d

12 yB +DC, aveð Þ +
0:222 n

yB +DC, aveð Þ � v0(d)

� �

1+ evB, c +
(j)evB, c

� �
ð4aÞ

Q= vB, c yB +DC, aveð ÞBB ð4bÞ

yU +
Q=yUBUð Þ2

2g
= yB +

v2B, c

2g
ð4cÞ

where n is the kinematic viscosity of water and v0(d) is
the shear velocity at the threshold of movement.1 The
last two equations are considered deterministic; there-
fore, the model errors are added to the Colebrook–
White equation alone: the correlated, evB, c (i.e. it is the
bias of the Colebrook–White equation) and the uncor-
related error, (j)evB, c (i.e. it is the error in the estimation
in the jth bridge). The total SD is set equal to 0.15 and
it is split equally between the two types of model uncer-
tainties meaning that their SDs are equal to 0.10 each.

The previous step of the BN provides the average
value of the constriction scour DC,ave; this value is then
multiplied by a factor FS to obtain the constriction
scour depth along the channel width. Table 1 provides
the values of FS according to the shape of the river and
Figure 3 shows the two scenarios described in the table.

In order to include all the cases of Table 1, we define
the constriction scour depth at the pier DC,pier or, gener-
ally, the constriction scour at every location of the river as

DC, pier = DC, ave 1+ eFS
+ eDC, ave

� �
ð5Þ

To be consistent with the structure of equation (2),
two types of errors can be modelled for including the
multiplication factor FS in the estimation of DC across
the channel width. The two errors are again expressed
as a normal pdf with zero mean and an SD. According
to Table 1, we define eDC, ave

that is the error in the calcu-
lation of DC,ave itself, which occurs when the reach is
either straight or bended. The second error is eFS

, which
takes into account the error in the scour estimation

Table 1. Constriction scour distribution factor FS.
26

Location Outside of bend Centre of channel Inside of bend

On or downstream of sharp bend 2.0 1.25 1.0
On or downstream of moderate bend 1.5 1.25 1.0
On straight reach 1.25 1.25 1.25

(a) (b)

Figure 3. Constriction scour depth profile in a straight (a) and
bended (b) reach.

Maroni et al. 5
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where the river bends, that is, it takes into account the
additional component due to bend scour. This contri-
bution to total scour is caused by the increase in velo-
city around the outside of the bend.1 Table 2 provides
the two parameters defining the normal pdf N for the
two errors in both limit cases.

Local scour. The formation of vortices at pier base is the
principal mechanism causing the local scour,61 and the
pier width WP is the primary controlling parameter,
which is corrected by some factors depending on its
shape, its inclination with respect to the river flow and
the local water level.

The expression of the local scour depth according to
Highway Agency26 is

DL = 1:5 WP fPS fPA fy 1+ eDL
+ (j)eDL

� �
ð6Þ

where fPS is the shape factor, fPA is the pier alignment
factor and fy is the flood depth factor. Two model
uncertainties are again added: the correlated one, eDL

(i.e. the bias in the equation itself) and the uncorrelated
one, (j)eDL

(i.e. the error in the estimation in the jth
pier). The total SD is set equal to 0.30 and divided
equally between the two model uncertainties.

Total scour. The depth of total scour DT is simply the
sum of the two components, constriction scour depth
DC and local scour depth DL. This expression is
assumed as deterministic; consequently, no model
uncertainties are added

DT =DC +DL ð7Þ

It is noteworthy that, in general, the scour depth at a
bridge location is also affected by the natural evolution
of the riverbed. This contribution, denoted to as degra-
dation scour, is not considered in the BD 97/12,26 and
for this reason, it is not explicitly modelled in the BN.
However, the observations used to update the variables
of the BN should reflect this component.

Bayesian learning

With reference to the presented BN, it is assumed that
three quantities can be monitored, that is, the river level

upstream of the bridge yU, the total scour depth DT,
and the constriction scour D�

C in the middle of the chan-
nel. Environmental agencies can provide water level
data from gauging stations, while a wide range of SHM
sensors can be employed to measure scour,28 such as
time domain reflectometry,62 radar devices63 or dielec-
tric probes;64,65 therefore, a scour monitoring system
can provide data about the two scour depths. When
new observations become available, the BN model is
used to propagate the new piece of information through
the network and update probabilities.35

The solution of the BN can be broken down into
three steps:

1. Defining the prior pdf of the root nodes (grey nodes
in Figure 4(a)): water flow Q, grain size d, the corre-
lated model uncertainties eM, evB, c and eDL

and the
uncorrelated ones (not displayed in Figure 4(a)).
Observations of yU, D

�
C and DT enter into the net-

work (red nodes in Figure 4(a)).
2. Splitting the BN into three sub-networks to have

three different updating processes: yU updates eM;
D�

C and yU update evB, c and d; DT, yU and D�
C

(through DC,pier) update eDL
(Figure 4(b)).

3. Updating the descendant nodes (light yellow nodes
in Figure 4(c)).

The BN can be extended to a second bridge with N
piers because the scour estimation is based on the same
models. For instance, Figure 5 shows a BN for scour
estimation at two bridges, each of them with N piers.
The estimation of the scour depth at the second bridge
is based on the models corrected by the model uncer-
tainty updated by direct observations of (1)D�

C and (1)

DT at one pier of the first bridge. The three correlated
model uncertainties are root nodes of each sub-network
that represents a different bridge; these connections
allow the BN to extend information gained from the
scour monitoring system to each sub-network (i.e.
unmonitored bridges) because the models used to esti-
mate scour depths are the same for any bridge.
Consequently, the scour estimation at every pier is
affected by the same correlated error.

It is worth mentioning that the above BN can be
also used to perform predictive analysis, that is, the
first type of inference described in section ‘BN’. As its
name suggests, this analysis allows predicting the pdfs
of the child nodes by starting from the prior pdfs of the
parent nodes, without any observations entering the
BN.

Finally, it is noteworthy that the BN could also be
extended to incorporate other sources of information,
such as direct river velocity measurements or forecast
flood hydrographs. For this purpose, suitable hydraulic

Table 2. Parameters of normal pdfs defining the errors for
constriction scour.

Location eDC, ave
eFS

On bended reach N (0, 0:25) N (0, ½(x=BB)2 � 0:25�)
On straight reach N (0, 0:25) 0

6 Structural Health Monitoring 00(0)
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and hydrological models must be added to relate the
various parameters.

Numerical algorithm for model updating

Despite the numerous advantages associated with
Bayesian inference, its practical implementation
involves some challenges, especially when continuous
RVs are employed, as in the case of data collected by a
monitoring system. A closed form solution of equation
(1) is usually not available, and thus it is necessary to
resort to numerical algorithms to calculate the poster-
ior distribution’s parameters (e.g. mean value vector

and covariance matrix). Given this, equation (1) can be
rewritten as

p(statejdata)}p(datajstate) � p(data) ð8Þ

The class of algorithms belonging to the Markov
chain Monte Carlo (MCMC) methods66 is a common
choice when Bayesian inference must be carried on.
These methods are a broad family of numerical algo-
rithms that generate next sample values by performing
a random sampling from the previous sample values.
Their essential idea is using randomness to solve prob-
lems that might be deterministic in principle. Examples
of these sampling methods are Monte Carlo,

Figure 4. (a) Starting with prior pdfs, (b) updating of root nodes and (c) descendant nodes.

Figure 5. BN for scour estimation at two bridges on the same river, both with N piers.

Maroni et al. 7
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Metropolis–Hasting and TMCMC. These computer
algorithms can be used to draw an (approximate) ran-
dom sample from the posterior pdf, without having to
completely evaluate it. The posterior pdf can be
approximated to any accuracy level by taking a large
number of samples.

The Metropolis–Hastings algorithm67 is the most
used and simple approach to make inference for
Bayesian parameter estimation. It allows to extract
samples from the actual posterior pdf. However, the
method has some disadvantages: it does not calculate
the evidence, the required number of samples N might
be huge in some cases and it requires to always con-
sider the burn-in period, that is, a period after which
the samples are independent from the starting choice of
the parameter to estimate. In order to overcome the
issues above, the TMCMC method68 has been pro-
posed. In the TMCMC method, an iterative approach
is used to generate samples from the unknown poster-
ior distribution by changing the proposal pdf at each
step until the target distribution is reached. Thus, n
intermediate distributions pj are considered

pj}p datajstateð Þbj � p(state) ð9Þ

where the index j denotes the step number. The likeli-
hood function is scaled down by an exponent bj, with
0 = b0 \ ...\ bj \ ...\ bn = 1. It is worth noting
that this construction does not alter the Bayesian logic:
the series of intermediate distributions starts from the
prior pdf (i.e. p0 = p(state)) and ends with the poster-
ior (i.e. pn = p(state|data)). The algorithm starts at the
step j by generating samples from the prior pdfs using a
Monte Carlo simulation. Then, at the step j + 1,
Markov chains with the Metropolis–Hasting algorithm
are used to generate the pj+ 1 distribution, by choosing
selected samples taken from the pj distribution accord-
ing to ‘plausibility weights’. Before advancing to the
next step, bj is updated. The algorithm stops when bj is
equal to 1.

The TMCMC method is particularly convenient for
dealing with complex joint pdfs (e.g. multimodal distri-
butions) and does not require defining any proposal
distribution or removing samples in the burn-in period.
In Ching and Wang,69 a comparison is made between
the TMCMC and the Metropolis–Hastings algorithm,
and the advantages of the former are highlighted.

Case study

The functioning of the developed BN is demonstrated
using a small bridge network, consisting of bridges
managed by TS in South-West Scotland (Figure 6).
The bridges cross the same river (River Nith) and only
Bridge 1 is instrumented with a scour monitoring

system. The aim is to exploit the observations on
Bridge 1 to update the pdf of the total scour depth at
other bridge locations.

Three bridges with significant scour events in the
past are chosen from the TS scour database:

� Bridge 1: A76 200 Nith Bridge in New Cumnock
(Figure 7). It is a three-span (9.1, 10.7 and 9.1 m)
stone-masonry arch bridge, with two piers in the riv-
erbed. Both the abutments and the piers are founded
on spread footings on the natural riverbed. In
October 2018, a dielectric scour probe was installed
on the upstream side of Pier 1 in order to measure
the total scour at this pier. Moreover, another probe
was installed in the centre of the channel immedi-
ately upstream of the Nith Bridge, in order to obtain
a measurement of the degradation and constriction
scour. The development and deployment of the
scour probes are described in Maroni et al.65

� Bridge 2: A76 120 Guildhall Bridge in Kirkconnel
(Figure 8). It is a three-span (8.8, 11.3 and 11.3 m)
masonry arch bridge, with one pier in the riverbed.
Both the abutments and the piers are founded on
spread footings on natural ground, except one abut-
ment’s spread footing that is founded on rock.

� Bridge 3: A75 300 Dalscone Bridge in Dumfries
(Figure 9). It is a seven-span (spans of 35 m and
two of 28 m) steel–concrete composite bridge, with
one pier in the riverbed. The abutments are founded
on pile foundations on made up ground, while the
piers are founded on pile foundations on natural
ground.

The final BN for the estimation of the total scour at
every bridge pier is depicted in Figure 10. The sub-
networks corresponding to the three bridges are

Figure 6. Three bridges over the River Nith. Red circles
represent SEPA’s gauging stations.

8 Structural Health Monitoring 00(0)
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identifiable; correlated errors and the bed material
grain size are root nodes in common for all bridges.
The river flow Q is not a common root node because
the three bridges are far apart and numerous tributaries
of River Nith extend from Bridge 1 to Bridge 3. A
hydrological model may be employed to correlate the
river flows Q among the three sub-networks, but this is
out of the scope of the article. Furthermore, there is a

gauge station measuring the flow before each bridge;
therefore, upstream water flow data are available for
each of the bridges.

Results

Normal pdfs are employed for every variable except for
river flows, which are described by a log-normal pdf

Figure 7. (a) A76 200 Nith Bridge, (b) bridge elevation and (c) plan view.

Figure 8. (a) A76 120 Guildhall Bridge, (b) bridge elevation and (c) plan view.

Maroni et al. 9
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because the discharge cannot be negative. The para-
meters of the log-normal pdfs (i.e. mean and SD of
logarithmic values) are based on the gauging station
data of the last 10 years collected by the Scottish
Environmental Protection Agency (SEPA). They are
shown in Table 3, while Figure 11 depicts the pdfs fit-
ting the data. The prior pdfs of the model errors are set
as normal distributions with zero mean and SDs
defined previously.

Figure 9. (a) Bridge elevation, (b) A75 300 Dalscone Bridge and (c) plan view.

Figure 10. BN developed for the case study.

Table 3. Parameters defining the prior pdf of the flow
discharge Q based on SEPA’s data.

SEPA gauging
station

Bridge m (m3/s) s (m3/s)

Dalgig Nith –0.2810 1.1261
Hall Bridge Guildhall 1.1426 1.2021
Friar’s Carse Dalscone 2.9539 0.9925

SEPA: Scottish Environmental Protection Agency.
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2456 Structural Health Monitoring 20(5)

The predictive analysis is carried out by running a
Monte Carlo simulation. This type of analysis requires
only the parent nodes’ prior pdf and no observations
enters into the BN to make a prediction of the distribution
of the child nodes. A total of 10,000 samples of the root
nodes pdfs is considered to estimate the prior pdf of the
total scour depth DT,pier at each pier. The mean value,
mDT , pier

, and the SD, sDT , pier
, of the predictions are sum-

marised in Table 4. It can be observed that the scour depth
distributions at the various piers are characterised by a sig-
nificant dispersion, with SD values of the order of 0.75 m.

Although the scour probes installed in the A76 200
bridge provide continuous real-time scour data since 4
October 2018, no major flood events have been
recorded yet. Thus, the simulation of the inference
problem in the BN considers a hypothetical flood sce-
nario compatible with the historical record of floods
for the River Nith. In particular, the Bayesian learning
is carried out by assuming that observations are avail-
able for the river levels yU upstream of three bridges,

the degradation and contraction scour depth at the
A76 200 bridge and the total scour depth at Pier 1 of
the same bridge. Table 5 shows the water level values
recorded at the gauging stations, simulating a flood
event with return period of about 20 years. The scour
data are assumed equal to 0.20 m for constriction scour
depth D�

C and 0.45 m for total scour depth DT.
The TMCMC algorithm68 is then used to perform

the Bayesian learning analysis and update the root
nodes. Thousand samples are extracted at each stage of
the TMCMC method, and this is repeated 100 times for
each update to eliminate the influence of randomness.
To solve the whole network, five updates have to be
performed. Each update is connected to one observed
variables (i.e. water flow upstream of each bridge, con-
striction scour depth (1)D�

C and local scour depth (1) DT

at first bridge). Considering that each TMCMC appli-
cation requires on average seven stages, the number of
extracted samples, which corresponds to how many
times the calculation of the likelihood function is

Figure 11. Prior log-normal pdfs of the river flow at (a) Dalgig, (b) Hall Bridge and (c) Friar’s Carse gauging station.

Table 4. Total scour depth prediction (‘a priori’) from the
predictive analysis.

Nith Guildhall Dalscone

Pier 1 Pier 2 Pier 1 Pier 1

mDT, pier
(m) 1.979 1.992 2.297 1.855

sDT, pier
(m) 0.739 0.762 0.798 0.752

Table 5. Case scenario for river level observations.

SEPA gauging station Bridge Water level (m)
(30 Dec 2013)

Dalgig Nith 1.879
Hall Bridge Guildhall 3.015
Friar’s Carse Dalscone 1.512

SEPA: Scottish Environmental Protection Agency.

Maroni et al. 11
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performed, is equal to 5 3 100 3 7 3 10,000 =
3,500,000 samples.
Figure 12 shows the comparison between the results

of the total scour depth DT obtained ‘a priori’ with a
Monte Carlo simulation (i.e. predictive analysis) and
the estimations obtained after the Bayesian learning
with the TMCMC method. With regards to A76 200
Bridge, the total scour depth at Pier 2 has a mean value
equal to the one measured at Pier 1 (Figure 12(a)). This
is indeed an expected result, since the piers belong to
the same bridge, have the same geometry and the riv-
erbed material and the water conditions are identical
for them. However, it can be observed that while the
value of the scour depth at Pier 1 is known deterministi-
cally (assuming that the measurement is affected by no
uncertainty), the one at Pier 2 is uncertain, with an SD
of 0.17 m. It is noteworthy that this value of SD is sig-
nificantly lower than the one corresponding to the prior

pdf (0.76 m). The decrease in dispersion, of about 80%,
is the result of the added information and the high cor-
relation existing between the scour depths at the two
piers of the bridge. It can be observed in Figure 12(b)
and (c) that the Bayesian learning also allows the updat-
ing of the estimates of the total scour depth DT at the
piers of unmonitored bridges. In fact, the mean values
of the total scour depth at these piers reduce signifi-
cantly. Moreover, the SDs of the posterior distributions
are close to 0.21 m, which constitutes a significant
increase (more than 70%) in accuracy compared to the
prior estimates.

Conclusion

This article shows the development of a probabilistic
framework for scour hazard assessment that uses lim-
ited data from monitoring systems to update the

(a)

(b)

(c)

Figure 12. Comparison between prediction and estimation of total scour depths: (a) Pier 2 of Nith Bridge. (b) Pier 1 of Guildhall
Bridge. (c) Pier 1 of Dalscone Bridge.
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probability distribution of the scour depth at the foun-
dations of bridges in a network. The proposed frame-
work is based on a BN that describes the conditional
dependencies between the scour depth at different piers
within the same bridge or belonging to other bridges in
the network. Once new observations on the river flow
characteristics and/or scour data are available,
Bayesian learning with the TMCMC algorithm is used
to update the scour depth distribution at unmonitored
locations.

A case study consisting of three bridges managed by
TS in South-West Scotland is considered to demon-
strate the functioning of the BN. The bridges cross the
same river, and only one bridge (Bridge 1) is instrumen-
ted with a scour monitoring system. The aim is to
exploit direct observations of total scour depth DT and
the constriction scour D�

C measured at Bridge 1 in order
to predict the scour depth at other unmonitored piers.
A flood event is simulated using river level data from
gauging stations upstream of the bridges. It is shown
that the available limited data from the scour monitor-
ing system and the flow depths allow to increase signifi-
cantly the accuracy of the scour estimates at
unmonitored bridge piers. This increase in accuracy is
in the order of 70%.

It is currently planned that the continuous real-time
measurements of the scour depth at the monitored
bridge locations of the Nith Bridge in New Cumnock
will be fed into the developed BN to update in real time
the estimates of the scour depth at other locations of
the bridge network. Additional probes, installed at
other locations, will be used to validate the proposed
monitoring framework. Moreover, the outcomes of the
presented framework will be used in a future study in
combination with fragility curves to provide real-time
estimates of the risk of bridge failure due to scour and
inform a decision system, supporting transport agen-
cies’ decision processes under extreme flood events.
Future research will also consider the extension of the
BN with structural models, allowing to incorporate
also information from sensors mounted on the bridges,
such as accelerometers or inclinometers.
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