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Abstract

This thesis focuses on the analysis of heavy-tailed distributions, which are
widely applied to model phenomena in many disciplines. The definition of
heavy tails based on the theory of regular variation highlights the importance
of the tail index, which indicates the existence of moments and characterises
the rate at which the tail decays. Two new approaches to make inference for
the tail index are proposed.

The first approach employs a regression technique and constructs an
estimator of the tail index. It exploits the fact that the behaviour of the
characteristic function near the origin reflects the behaviour of the
distribution function at infinity. The main advantage of this approach is
that it utilises all observations to constitute each point in the regression,
not just extreme values. Moreover, the approach does not rely on prior
information on the starting point of the tail behaviour of the underlying
distribution and shows excellent performance in a wide range of cases:
Pareto distributions, heavy-tailed distributions with a non-constant slowly
varying factor, and composite distributions with heavy tails.

The second approach is motivated by the asymptotic properties of a
special moment statistic, the so-called partition function. This statistic
considers blocks of data and is generally used in the context of
multifractality. Due to the interplay between the weak law of large numbers
and the generalised central limit theorem, the asymptotic behaviour of the
partition function is strongly affected by the existence of moments even for
weakly dependent samples. Via a quantity, the scaling function, a graphical
method to identify the existence of heavy tails is proposed. Moreover, the
plot of the scaling function allows one to make inference for the underlying
distribution: with infinite variance, finite variance with tail index larger
than two, or all moments finite. Furthermore, since the tail index is
reflected at the breakpoint of the plot of the scaling function, this gives the
possibility to estimate the tail index.

Both these two approaches use the entire distribution, not just the tail,
to analyse the tail behaviour. This sheds a new light on the analysis of
heavy-tailed distributions. At the end of this thesis, these two approaches
are used to detect power laws in empirical data sets from a variety of fields
and contribute to the debate on whether city sizes are better approximated
by a power law or a log-normal distribution.

Keywords: Heavy tails, Tail index, Regular variation, Partition function,
Scaling function, Power law, Distribution of city sizes
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Chapter 1

Introduction

1.1 Normal distributions and the central

limit theorem

Normal distributions are widely applied when probabilistically modelling
phenomena in the real world, ranging from the natural sciences to the social
sciences. Omne reason for assuming a normal distribution is that its bell
shape fits empirical data fairly well, especially for data clustering around an
average value. For instance, the average height of an adult female in the US
is around 165 cm and the height of each individual rarely deviates
substantially far from this value. The mean and variance characterise the
distribution of the height well because the probability of meeting an adult
female with twice or half as tall as the mean height is infinitesimal.

The central limit theorem (CLT) is another reason for using a normal
distribution. Roughly speaking, the CLT states that the average of a
sufficiently large number of independent and identically distributed (i.i.d.)
random variables, with a finite mean and a finite variance, approximately
has a normal distribution. Furthermore, normal distributions have some
nice mathematical properties. For instance, the sum of two independent

normally distributed variables is still normally distributed.



1.2 Heavy-tailed phenomena

However, there are many phenomena whose distributions deviate from the
assumption of normal distributions. For instance, in the US, the average
population of a place (city, town, or village) in 2010 was 7877". However,
quite a few places, such as New York, Los Angeles, Chicago and etc, have
inhabitants more than 100,000, i.e., more than 100 times the average size.
Another example one might encounter is damage from hurricanes. The
estimated total property damage of Hurricane Katrina (2005) is $108 billion
(2005 USD), nearly twice the damage of Hurricane Sandy (2012), the
second costliest US hurricane. The cost of Hurricane Katrina is nearly
triple the damage brought by Hurricane Andrew (1992), the costliest
hurricane in the US prior to 2005. Similar examples can be found in daily
returns of financial assets, the intensities of earthquakes, transmission rates
of files and file sizes stored on a server, and fire insurance losses.

All the above phenomena have some common properties, i.e., the
behaviour of the data is dominated by large values and the probability of
exhibiting a huge value is relatively big. This kind of empirical data is
described as heavy-tailed distributed, or following a power-law distribution.
The description “heavy tails” or “power law”, used frequently in the
literature, refers to the fact that the tail probability decays to 0 at a
constant power rate of the value of the observation x in contrast to an
exponential rate of x (e.g., a normal distribution). This is opposite to many
phenomena which can be easily characterised by their average values.
Therefore, sometimes the commonly adopted assumption that the random
variables under investigation follow a normal distribution is highly
questionable. With regard to modern finance, Mina & Xiad (2001) (p.25)
note:

“However, it has often been argued that the true distribution of returns
(even after standardizing by the volatility) implies a larger probability of
extreme returns than that implied from the normal distribution.”

Heavy-tailed distributions discussed in this thesis are defined according

!This figure is derived from the tabulates in the US Census 2010.



to the theory of regularly varying functions, which behave asymptotically like
power functions. A function G is regularly varying at infinity, if for every

x>0,
. Gl(to)
O

If « = 0, G is the so-called slowly varying function, which is generically

—Q

denoted by L(z). Thus, the heavy-tailed distribution, or the power-law

distribution, is defined as
P(X >z)=2"L(z), as x— o0, (1.1)

where a > 0 (Fellen, T967). Examples of such distributions are Pareto,
Student’s ¢, Cauchy, F', and stable distributions. Some standard heavy-tailed
distributions with specific forms of L(z) (Wang & Tsai, 2009) are listed in
Table . The tail index « is always positive in the analysis of heavy-tailed
phenomena. Moreover, it is a commonly used parameter to describe the
behaviour of the tail of a distribution: the smaller o the slower the decay
of P(X > z) to 0 as * — oo, and thus the more likely to generate extreme
values.

To illustrate the marked difference between a power-law distribution and
a normal distribution, the tail probability of each distribution is analysed
here. Suppose N and H are random variables from the standard normal
distribution with density function ¢ (z), and a power-law distribution, the
standard Cauchy distribution with o = 1, respectively. As z — oo, the
right-tail probabilities are

1/1(35) ~ ﬁe—$2/27

P(N >z) ~
T x

(1.2)

by Mill’s ratio and
P(H > z) ~ Cox™?, (1.3)

where o = 1, respectively.
Figure [ plots the two tail probabilities against the values of . It is

obvious that the tail of the standard normal distribution goes to 0 much
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faster than does the tail of the Cauchy distribution. Mathematically, for
any positive a, C, and Cy, the ratio of the tail probability in (I2) to that
in (I3) goes to 0 as x — oo. It is straightforward that modelling using
power-law distributions instead of normal distributions generates a much
higher probability of larger values and thus captures the important feature

of heavy-tailed phenomena.

Figure 1.1: Tail probabilities of the standard normal and Cauchy
distributions
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However, modelling using power-law distributions is very different from
modelling using classical normal distributions. A number of classical
statistics and their inferences are established based on averages and
moments of samples. If the tail probability follows (I23) with o > 0,
moments with order higher than or equal to o do not exist. This follows

since

< S < oo, ifp<a,
E(Xp):/ x P(X>:17)dx%/ o de
0 1 =o00, ifp>a,

where [ f(z) ~ [ g(z) means that the limiting behaviours of both integrals
are the same, i.e., either convergent or divergent (Resnick, 2006).

What will happen to a statistical world relying heavily on moments if

12



the moments do not exist? As a minimum, the classical CLT does not apply
to the cases with tail index a < 2, since the finite variance assumption
is violated. Instead, one appeals to the generalised central limit theorem
(GCLT), which says that the only possible non-trivial resulting limits are
stable distributions for infinite variance models. Another statement of the
GCLT is that the normalised sum of i.i.d. random variables belongs to the
domain of attraction of a stable distribution. A random variable X is in the
domain of attraction of a stable distribution Z if constants a, > 0, b, exist
such that
(X1 4+ X+ +X,) — by 5 Z

holds when X7, X5, X3,... are i.i.d. copies of X (Rachev 2003). Here let 4,

denote convergence in distribution.

1.3 Statistical inference for heavy-tailed

phenomena: the tail index o

The research question in this thesis is, thus, how to analyse heavy tails by
statistical method. Generally, the following two questions should attract

attention when heavy tails are suspected:
1. identify the existence of heavy tails, and then
2. estimate the tail index a of the underlying distribution.

To investigate these two questions, numerous graphical and estimation
methods have been proposed in the literature: log-log  plot,
quantile-quantile (QQ) plot, Pickands estimation, Hill estimation, etc. In
the rest of this section, a number of commonly used techniques to detect
heavy tails and methods of estimating the tail index are presented.

Perhaps the simplest tool for detecting heavy tails is the tail-probability
plot in a log-log scale, which dates back to Parefd (I896) who studied the
distribution of income. Taking the logarithm of both sides of (), with L(x)

replaced with a real non-zero constant C, it can be seen that a power-law

13



distribution satisfies the relation
ImP(X >z)=InC —alnz.

This suggests that the log-log plot of the tail probability for a power-law
distribution is a straight line, whose absolute slope is the tail index a.
However, the approximately straight line may also be caused by some
non-power-law distributions. Figure I shows the log-log plots for two data
sets drawn from Pareto and exponential distributions, respectively.
Although over the entire distribution these two plots are very different,
both plots approximately follow a straight line for Inz > 1.5. Hence, it may
be intrinsically difficult to discern a power-law distribution by the log-log
plot of the tail probability, if the threshold = from which onwards a power

law holds is unknown.

Figure 1.2: Log of tail probabilities versus log of inputs for Pareto and
exponential distributions, n = 10°

L L I L L | L L L L L L L L | L L L L | L L L L |
-2 - A@AAAZ: 1 2 3

O Pareto, a=2
A Exponentia, 1=0.5

A graphical technique called the QQ plot is another exploratory method
often applied to analyse heavy tails. For a sample X1, Xo,..., X, set

Xl,n§X2,n S SXnn

)

14



for the order statistics indexed smallest to largest. Plot the quantiles

{(—ln(l— ! ),lnXm), 1§2’§n}.
n+1 ’

If the distribution has a heavy tail, or at least has approximately a heavy tail,

the plot should be roughly linear with slope 1/a. The essence of this method
is the standard QQ plot of log-transformed data on exponential quantiles.
This graphical method is exploited to define a QQ estimator, which is based
on the k upper-order statistics chosen by visual observation of the linear
portion of the QQ plot (Krafz & Resnick, 1996). This QQ estimator is
usually highly sensitive to the choice of k.

The Pickands estimator which uses three kinds of upper order statistics
(Pickands 111, T975) and the moment estimator based on the “moments” of
the Hill estimator (Dekkers et all, T989) are other methods for deciding
whether a distribution is heavy-tailed or not. Both these two methods
estimate 7, a parameter used to characterise the family of extreme-value
distributions, which is equal to 1/« if v > 0. If v < 0, it indicates that the
assumption of a heavy-tailed distribution is inappropriate.

An extensive literature deals with the estimation of the tail index «

using the Hill estimator (Hill, T975). The Hill estimator is defined as
follows: let Xy > X9 > -+ > X, denote the order statistics of the
nonnegative observations Xi, Xs,--- X,,. The Hill estimator based on k

upper order statistics is

& —1
. 1 X

~ Hill Z (4)

Y <k — t X(kJrl))

The consistency of the Hill estimator for i.i.d., weakly dependent, or linear
data were subsequently shown by Masonl (T982), Hsing (T991), and Resnick
& Staricd (T995), respectively. Its asymptotic normality was discussed by
Hall (1982); Haeusler & Teugels (985); de Haan & Resnick (T99R), etc.
However, the Hill estimator is subject to the same difficulty as the QQ

estimator, namely the choice of k. Several adaptive selection methods have
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been proposed (see Hall & Welsh (T98H); Beirlant ef_all (T996) and
references therein).  Furthermore, unlike the Pickands and moment
estimators, the Hill estimator is uninformative on whether the assumption
of heavy tails is appropriate or not.

Most of the aforementioned estimators are constructed from the extreme
order statistics based on the tail probability (). This tail probability
function is only specified in the neighbourhood of infinity. It is reasonable to
expect that only a relatively small proportion of the upper order statistics is
used in the estimation. The estimation is therefore surprisingly difficult even
when large samples are available.

As an alternative, some other statistics, rather than upper order statistics,
are used to build up estimators of the tail index. Several examples are listed
here: the estimators proposed by Palifid (2002) using diverging statistics, by
Meerschaerf. & Schefffer (T99R) using the sample variance and sample size,
and by McElroy & Politi§ (2007) using over subsets of the whole data set.

1.4 Motivation and structure

This thesis introduces two new techniques which utilise the entire data set
to detect heavy tails and estimate the tail index. Both techniques start with
the assumption about the tail probability of the distribution. However, in
order to avoid the use of extreme order statistics in the estimation, they
consider different aspects rather than the cumulative distribution function
(CDF). The first approach builds on the relation between the characteristic
function (CF) and the CDF. The second approach is constructed from the
partition function (PF), a special kind of moment statistic. In the asymptotic
mean squared error sense, no estimator can dominate others as studied in dé
Haan & Peng (I99R). Hence, the estimators proposed in this thesis are not
designed to outperform others in all contexts. Instead, the purpose of this
thesis is to shed a new light on considering the entire sample, not just the
tail section, in the analysis of heavy-tailed phenomena.

This thesis consists of three main chapters. Chapter @ suggests an

estimator based on the empirical characteristic function (ECF) using a

16



regression technique.  This regression estimator is motivated by the
two-point-ratio estimator introduced by Welsh (T986), which exploits the
relationship between the distribution function at infinity and the
characteristic function near the origin (Pifman, T968). The ECF is also
utilised by Konfronvelis (T980) to estimate the four parameters for stable
distributions, whose characteristic function is specified. His estimation is
based on a log-log regression on a variant of the logarithm of the ECF ¢,(t)
and variable t. However, he does not discuss the theoretical properties of
the proposed estimators. The properties are investigated only through a
simulation study. Furthermore, the relation between the CF and its
empirical counterpart with the tail behaviour of the underlying distribution
has been exploited by Meinfanis & Konfrouvelis (1990) and Donafos &
Meinfanis (I996). For the regression estimator proposed in this thesis,
theoretical properties such as consistency and asymptotic normality are
obtained. Simulation studies and an empirical example are subsequently
presented to illustrate the theoretical findings.

Chapter B uses the PF to analyse heavy tails. The PF is a sample
moment statistic often used in the context of multifractality.  The
asymptotic behaviour of the PF is strongly influenced by the tail of the
underlying distribution. The scaling function links the PF and the tail
behaviour. A graphical method to detect heavy tails and estimation
methods of the tail index based on the scaling function and the PF are
proposed. To some extent, the underlying idea of these methods is based on
the asymptotic properties of sums, which is analogous to the estimation
method proposed by Meerschaerf & Scheffler (1998). However, the methods
introduced in this thesis are more general and work not only for the i.i.d.
variables but also for weakly dependent samples.

Chapter @ focuses on applications of the two methods presented in
Chapters B and B. In order to evaluate the performance, several empirical
data sets in various fields, especially data sets on the distribution of city
sizes, are analysed. There is a heated ongoing debate on whether the
distribution of city sizes is fitted better by a power-law tail or a log-normal

tail. Besides the curiosity of the nature of the underlying distribution, there
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are theoretical reasons for investigating this issue: distinct implications are
derived by different laws. For instance, Zipt’s law, a power law with o = 1,
is suggested by Gabaix (I999), while the log-normal distribution is
consistent with the proportionate growth process proposed by Gibraf
(1937).  Hence, two potential approaches are proposed to distinguish

power-law tails from log-normal tails. Chapter B summarises and concludes.
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Chapter 2

Regression estimation of the

tail index

2.1 Introduction

Heavy-tailed distributions occur in a wide range of situations where
extreme events are more likely to happen than they would under a
Gaussian distribution. Insurance losses, financial log returns, hyperlinks on
the World Wide Web, intensities of earthquakes, the population of cities are
all examples that follow heavy-tailed distributions.

One definition of distributions with heavy tails is based on the theory of
regularly varying functions. Roughly speaking, regularly varying functions

resemble those functions which behave like power functions at infinity.

Definition 2.1. (IFellet, 1967) A measurable function G : (0,00) is reqularly
varying at infinity with exponent —a (0 < o < 00) if for every x > 0,

G(tx)

—Q

m Gy

where a is called the index of reqular variation, or the tail index. We refer
to a-varying functions as RV,. If a =0, G is said to vary slowly, which is
generically denoted by L(x). In other words, G varies reqularly iff it is of the

form x=*L(x).
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The problem of estimating the tail index of a distribution has a long
history. Parefd (I896) uses the absolute slope of the log-log plot of the tail
probability to determine the tail index of the distribution of income.
However, the accuracy of this estimator entirely depends on the upper
percentage of the data used to make the log-log plot and the starting point
of the tail convergence behaviour for the underlying distribution (Eofack &
Nolan, T999).

At present, a range of estimators for the unknown tail index exist. A
simple and old estimator is the Pickands estimator, a linear combination of
log-spacing order statistics (Pickands 111, 0975). Improvements of this
estimator have been sought and discovered by scholars (e.g., Falk, 1994;
Segers, 2005). The Hill (T975) estimator based on the upper order statistics
and their asymptotic properties can be considered as the classical tail index
estimator.  Extensions of the Hill estimator have been proposed: for
instance, the family of j-moment ratio estimators (Danielsson ef all, T996)
and the smoothing Hill estimator (Resnick & Staricd, 1997). Maximum
likelihood estimation, which relies on numerical optimisation, has been
considered by Smifh (I987). The moment estimator introduced by Dekkers
ef_all (I98Y) utilises empirical moments of the limiting distribution.

Estimators of the tail index are usually based on extreme order statistics
and their asymptotic properties. As an alternative, estimators proposed by
Polifis (2002) and McElroy & Politi§ (2007) are based on the growth of
appropriately chosen diverging statistics. The inspiration for this approach
is the introduction of an estimator based on the ratio of the logarithm of
sample variance to the logarithm of sample size (Meerschaerf & Schefflex,
I99R).

In general, for a clear distinction between tail weights, very large
samples are required. The reason is that the distinction rests on a very
small percentage of the empirical data, possibly less than 0.01 per cent
(Heyde & Kou, 2004). For instance, if the 99.9 per cent or higher quantile
is used in the distinction, one would require nearly 50,000 observations even
at a 95 per cent confidence level. Therefore, an estimator based on extreme

order statistics is not reliable when large samples are not available. For
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instance, the “Hill horror plot” (Embrechfs et all, 1997), displaying the Hill
estimate against the number of order statistics used for the construction of
the Hill estimate, shows that the Hill estimator may have poor behaviour,
even under conditions where the estimation method applies. It is not
surprising that the literature on the estimation of the tail index is subject
to considerable uncertainty and controversy.

To avoid the use of extreme order statistics, the characteristic function
(CF) can be applied in the estimation. The idea is based on the relation
between the behaviour of the distribution function at infinity and the
behaviour of the CF near the origin (Piftman, T968). In this approach, the
whole sample is utilised. For instance, Welsh (T986) investigates simple
estimators by using two-point ratio estimation around the origin. However,
in the absence of prior information, the practical way of choosing these two
points near the origin is not clear. A variant of the empirical characteristic
function (ECF) is used by Koufronvelis (T980) to estimate the parameters
for stable distributions by regression techniques. His results rely on
simulations but the theoretical properties of the estimators have not been
investigated yet. Further research to exploit the relation between the CF
and its empirical counterpart with the tail behaviour of the underlying
distribution has been carried out by Meinfanis & Konfronvelis (1990) and
Donafos & Meinfanid (T996).

In this chapter, we present a regression method to estimate the tail
index « utilising the ECF. This method is based on a linear regression on
the logarithm of the real part of the ECF near the origin. The theoretical
properties of the estimator, including its bias, variance and asymptotic
distribution, are derived. = Moreover, this method is applied under a
semi-parametric assumption about the tails of the distribution rather than
a fully parametric assumption as that in Kounfrouvelid (T980).

This chapter is organised as follows. In Section 22, we outline the
framework of the methodology and describe the proposed estimator. The
theoretical properties of this estimator and potential implementation
problems are discussed in Section EZZ3.  Section P4 summarises the

performance of the proposed estimator compared with that of the Hill
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estimator in a simulation study. An empirical example is presented in
Section 4. A short summary is provided in Section Z@. Proofs of
theoretical details are deferred to Section P2

Throughout this thesis, we let 4, denote convergence in distribution. Let
a, = O(b,) if the ratio |a,/b,| is bounded for large n. Let a, = o(b,) if the
ratio |a,/b,| converges to zero. Also, X,, = 0,(1) means that X,, converges
in probability to zero. Finally, Let X, = O,(1) mean, for every n > 0, a
constant K (n) and an integer n(n) < n exist to make P{|X,| < K(n)} > 1—n
hold.

2.2 Methodology

We provide some formal definitions first. Suppose we observe n independent
random variables X, Xy, ..., X,, with distribution function F(x). The tail
sum, H(x), is defined for x > 0 by

H(z)=1-F(z)+ F(—x),

where 1 — F(z) and F(—xz) represent the upper and lower tails, respectively.
We assume that the tail sum of F' is regularly varying at infinity, but

otherwise arbitrary, i.e., the tail sum satisfies the assumption that
H(z)=2"%L(x), as x — o0, (2.1)

where o > 0 and L(x) is slowly varying at infinity.

Remark 2.1. Here, we suppose that both the upper and lower tails are
reqularly varying at infinity with indexr o and o, respectively. If the two
tails have the same indez, i.e., oy = g = «, then the tail sum H(x) will
reqularly vary with index «. If the two tails have different indices, the one
with the smaller index (the tail probability decays to zero more slowly)
dominates in the tail sum, i.e., « = min(ay,an). Moreover, if X is a
non-negative random variable, i.e., F(x) = 0 for x < 0, the tail sum H(x)

is equal to 1 — F(x). In this case, the tail sum just reflects the upper tail.
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Let ¢ denote the CF of X, i.e., for all real t,

o(t) = E[e] = / ¢t dF (z),

[e.e]

where 7 is the imaginary unit. Furthermore, let
o(t) =U(t) +iV(t), (2.2)

where U(t) = [ cos(tz) dF(x) is the real part of the CF, and V(t) =
J75 _sin(tz) dF(x) is the imaginary part. Integrating (E2) by parts (more
details in the proof of Theorem E), we obtain

1-U(t) = t/ooo sin(tz)H (z) dz. (2.3)

This means that the behaviour of the tail sum H(z) depends only on U(t),
the real part of the CF.
By Pitman (T968), for an infinite-variance distribution whose H(x) is of

index 0 < a < 2 as x — o0,
1—=U(t) ~s(a)H(1/t) = s(a)L(1/)tY, as t]0,

where the function s(g) is defined as follows.

/2
s(q) = I'(g) sin(gm/2)’

1, if ¢ = 0.

if g >0,

s(q) is finite for any g which is not an even positive integer.

For the special case that H(z) is of index o = 2 as x — 0o, we obtain
1/t
1-U(t) ~ t2/ rxH(x)dz, as t]O0. (2.4)
0

The term fol/ "2H(z) dz will be analysed in detail later.
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In the case o > 2, the distribution has a finite second moment us, i.e.,

[y = /_OO 2?dF(r) = — /Ooo v?dH(r) = /OOO 22 H (z)dz < oo. (2.5)

o0

By a Taylor expansion,

t/oo sin(tr)H(x)de = #* /OO zH(z)dx + O(t)

1
= §u2t2+0(t2), as t{0.

Therefore,
1
1-U(t) = §u2t2 +o(t?), as tl]O.

In summary, as t | 0, we have a relation of the form

s(a)L(1/t)te, if 0 <a <2,
1=U@®) ~ 2 [ eH(z)dz, ifa=2,

Tuot?, if @ > 2.

Taking the logarithm of both sides of the above equation, as t | 0, we

obtain

In(s(a)L(1/t)) + alnt, f0<a<?2,
In(1=U(t)) ~ { In fol/t rH(z)dx +2Int, if a =2, (2.6)
In £ +21Int, if a > 2.

In order to define an estimator of « in this chapter, relationships in (278) are
exploited.

Since the real part of the CF, U(t), is generally unknown, we simply
replace it with the real part of the ECF, i.e., U,(t) = £ 3" | cos(X;t). We
evaluate (21) at points ty,to,...,t, around the origin and rearrange it to

obtain

1— Un(tj)

In(1—U,(t;)) ~InC"+ a'Int; + In ,
1-U(t;)

i=1,2,....m, (2.7
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where the values of C” and o depend on which case of (E8) is considered.

Set
1 —Uy(t;)

vi=In(1—-U,(t)), Z; =Int; and ¢; =1In U,
and note the formal similarity of (EZ0) to a simple linear regression. The
proposed estimator of « is the least squares estimator of the slope coefficient
in the least squares regression data (y;,Z7;), j = 1,2,...,m. To obtain
the ECF and then each point in the regression, all the observations in the
sample, rather than only a few extreme order statistics, are used. In the next
section we will carefully evaluate the properties of this estimation strategy
by discussing the choice of points ¢4, ts, ..., %, and analysing the impact on

the errors €; and the “constant” C'.

Remark 2.2. This estimation method has some analogy to the method used
by [Geweke ¥ Porter-Hudak (T983) in the estimation of long memory time
series models. In that paper, the relation between the spectral density function

at the origin and the covariance function at infinity is exploited.

Since the size of the bias of the proposed estimator depends critically on
the behaviour of “L(x)” in (E), some expansions must be elaborated upon
if we are to describe the bias. In this chapter, we follow the same assumption
as Hall (T982), i.e., let

L(z) = C[1 + Dx™" 4 o(2™")].

Stated formally:
Assumption 2.1.

H(z) = Cz [l + Dz " +o(xz™")], as x— oo, (A1)

where C' > 0,a > 0,8 >0 and D is a non-zero real number.

Remark 2.3. Some classes of distributions which satisfy (A1) are displayed
below (Hall #3 Welsh, TU83):

1. Stable distributions with index 1 < oo < 2. In this case, we have /2 <
a < B, a relationship which also holds for o = 1.
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2. Extreme wvalue distributions with F(x) = e ", x > 0 or stable

distributions with index 0 < o < 1. In this case, we have o = 3.

3. Powers of “smooth” distributions X. It means that if X =Y =Y/, then
Y admits a Taylor series expansion of at least three terms about the

origin. In this case, we also have a = f3.

Analogous to Pitmanl (T968) and Welsh (I986), we formally connect the
CF near the origin and the distribution function at infinity in the following

theorem:

Theorem 2.1. Suppose ([AQ) holds with 0 < o < 2 and there exists a non-
negative integer p such that 2p < a4+ B < 2p+ 2. Then ast | 0,

1—=U(t) = Cs(a)t + Dit” + o(t7), (2.8)

where v = min{a + (3,2} and the constant Dy = CDs(a+ B) if a + 5 < 2,
otherwise Dy is not specified unless the form of the remainder term in ([AQ)

1s known.

Remark 2.4. Although relation (ZR8) only applies to the case 0 < a <
2, it can be easily extended to the general case a > 0. In more detail, if
the distribution of X satisfies (AQ) with tail index o > 0, for any w >
a2, XY has a distribution function satisfying (ER) with tail inder 0 <
ajw < 2. Moreover, if w > (a+ B)/2, then (o + B)/w < 2 and thus
Dy s specified. Therefore, it is convenient to focus on the case 0 < a < 2
first. The most important class of distributions satisfying ([AD) is the class

of stable distributions.

Under (ATD), as t | 0, for 0 < o < 2, relation (28) is rewritten as

In(1-U()) = alnt+n[Cs(a)]+1In |1+ C%(;)ﬂ_a +o(t"™)

D
1 t»yfa_i_o(tvfa)’

Cs(a)

= alnt+In[Cs(a)] +

where the second step is obtained by a Taylor expansion on t close to zero.
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In summary, the final form of the regression is

1—U,(t
y=Cy+alnt+1In ®)

1——U(z€)’ as t]0. (2.9)

7

Here, the “constant” of this regression is

Co =In[Cs(a)] + Cf(l&)t”_o‘ +o(t7Y).

The regression estimator of « is given by

m
Zj:l a;jY;
SZZ ’

o=

where a; = Z; — Z = Int; — #Z;’ll Inty, and S,, = >." (Z; — Z)* =
> a?. The intercept is calculated by C, = § — &Z.

i

2.3 Theoretical properties and extensions

This section starts by analysing the theoretical properties of the proposed

estimator. Some extensions of this regression method are given afterwards.

2.3.1 Theoretical properties

The error term can be rewritten as

U(t;) — Un(ty)
1=U(t;)

6j:1n[1+

.
The definition and convergence properties of the ECF show that

E{U(t:)=U(t:) {UA(t;) = U (t;)} = (2n)"H{U (i) +U (ti—t;) 20U (1)U (1) }.
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As t; | 0 and with relation (), we obtain

[U(2t;) + U(0) — 2U(;)?]
o[l — UL,
G N

~ Cs(a)nt;®

Var{[1 = U(t;)] ' [U(t;) = Un(t;)]} =
(2.11)

To make sure this variance is finite, nt§ needs to diverge as n — oo for all
t;’s. Heuristically, one needs to evaluate the CF at the origin. Let ¢; = j/n"
with j = 1,2,...,m = n? for some 0 < § < n < 1 be the general form
to select all points in the regression. In order to make nty — oo hold as
n — oo for all 0 < a < 2, the condition 0 < 6 < n < 1/2 is necessary.
Moreover, to have as many points as possible in the regression, t; = j/\/n
with j =1,2,...,m =n’ and 0 < § < 1/2 seems to be a sensible choice (this
issue will be further discussed in Section EZ32). The closer t; to zero, the
higher the variance of the corresponding term is and the higher variability
presents in the regression.
Furthermore, the term %(Ut’jgm

with mean zero and variance (211). A Taylor expansion of In (1 + ) equal

can be treated as a random variable
to z + o(z) as x — 0 allows us to get rid of the logarithm in the error term
(e.g., Theorem 14.4-1 in Bishop et all (2007)), i.e.,

U(t;) — Un(ty)
1-U(t))

N

). (2.12)

€j = —i—op((nt;“)_

Based on the discussion above, the following conclusion is derived:

Lemma 2.1. Suppose (A1) holds with 0 < a < 2, as n — oo, fort; >t; >0

E(e;) = 0.
Var(e;) = (nt7C0s(a))™(2 - 2" {1 +o(1)}.
i3 B 0P 1), 3 <
(nteC's(a)) Y1+ 0(1)}, if A — oo.
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Note that the dependence between two errors decays as the distance
between them increases.
With Lemma P, asymptotic expressions of the bias and variance of the

estimator are obtained:

Theorem 2.2. Suppose (A1) holds with 0 < « < 2, and & is defined in
(210) with t; = j/v/n for j = 1,2,....,m = n® with 0 < § < 1/2. Then as
n — 0o,

B@a) —a= 2079 eama-a o)),

Cs(a)(y—a+1)

Since v > «, the bias goes to zero as n — oo. For the same « and +, the
bias goes to zero faster as n — oo for a smaller §. The size of the bias is
jointly determined by the ¢ we choose and C,, the constant in (279).

The variance of the estimator is given in the following theorem:

Theorem 2.3. Suppose (A1) holds with 0 < a < 2, and & is defined in
(10) with t; = j//n for j = 1,2,....,m = n® with 0 < § < 1/2. Then as
n — oo,

Var(@) = O{n317%},

Here, the exponent of n, § —1—da;, is always less than 0 in the regression.
Therefore, the variance of & converges regardless of the value of §.
Combining Theorems 22 and 23, the mean squared error (MSE) is
derived as
MSE(&) = O{n?0~ Y20 L O{n2 170} (2.13)

as n — oo, under (AT) with 0 < a < 2. Similarly, the MSE goes to zero as
n — oo for all 0 < 0 < 1/2. Therefore, & is a consistent estimator of « for
all 0 < v < 2.

With regard to the explicit size of the MSE, it is determined by the term

which prevails on the right-side of (2Z13). The difference between these two

1
2y—a’

orders is 20y —v —da+ 5 + 1. If this value is less than zero, i.e., § < % —

the second term dominates in the MSE. More precisely, if v = 2, 2y — a is

1

always between 2 and 4 for all 0 < a < 2 and the solution of § < % ~ %5-a
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exists under the condition 0 < § < 1/2. If v = a+ 3, a combination of small

a and [ can make %— 27%& negative, which conflicts with the condition > 0.

In this case, the first term determines the size of the MSE.
The asymptotic normality of the estimator is stated in the following

theorem:

Theorem 2.4. Suppose (A1) holds with 0 < a < 2, and & is defined in
(M) with t; = j//n for j = 1,2,...,m = n® with 0 < § < 1/2. Then as

n — oo,
S

5 (& — B(a) S N(0,02), (2.14)

IN)

1
n?2
where o* < 0o is a real constant (given in the proof).

From this theorem and Theorem 222 we deduce that, as n — oo,

Di(y — )
Cs(a)(y —a+1)?

|
INe)
+
|3

(@ —a)=N(0,0%) + nS T E TR {1 4 o(1)).

If the second term on the right-hand side of the above equation is finite, i.e.,
oy—1—% 424+ 1 <0 (as analysed in the MSE part), the distributional
information about & — « is derived:

At the point § = % — 271_(}

if it exists, as n — 00,

Dy(y —a)
Cs(a)(y —a+1)2

+

|3

(&@—a) L N(0,0%) +

ol
INe)

n

1_a holds, as n — oo,

Otherwise, in the event that the condition 0 < § < %— 5

FE (6 —a) 5 N(0,0%).

=R

1
nz

Remark 2.5. As discussed in the MSE part, the condition of the asymptotic
normality of n%’%r%a(o? — ) always holds if v = 2. However, if vy = a+ f3,
whether the condition holds depends on both the values of o and 3. Therefore,
the general conclusion about the asymptotic normality of n%_%Jr%a(éz —E(&))

15 provided in Theorem [Z4.
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2.3.2 Implementation of the regression estimation
method

During the application of our estimation strategy, we encounter five main
problems: the choice of d; the selection of ¢;, the estimation of the standard
error of &, the case a = 2, and the case a > 2. These five problems are

analysed in turn.

The choice of ¢

In the sense of the MSE, the “optimal” rate of convergence equates the
order of the squared bias with the order of asymptotic variance. Suppose
(ATD) holds with 0 < a < 2 and as n — oo, bias>{a} ~ n>@~1/20-2) and
Var{a} ~n2717% which implies § = %—ﬁ Hence, the “optimal” rate of
convergence can be achieved with ¢; of the order of magnitude of n=/(7=%),

As mentioned in the analysis of the MSE and of asymptotic normality,

1
27—«

the existence of § = % — needs to be carefully considered. Again, for

v # 2 with a combination of small a and 3, the “optimal” rate of convergence
does not exist and the condition of asymptotic normality for & does not hold

either. For the three groups of distributions in Remark P23, a rough idea

about the value of % — %%a can be obtained. For 0 < a < 1, « = 3 and

then 0 < 27 — o = 3a < 3, finally this value should be less than 1/6. Hence,

if @ < 2/3, the “optimal” rate does not exist. For 1 < a < 2, @« <  then

y=2and2<2y—a=4—a < 3. Inthiscase,0<%—Q,y%agéandthe
1

“optimal” rate exists. Generally, % ~ 5 is not larger than 1/6 for these

three groups of distributions.

The selection of ¢;

From a practical point of view, if we always set t; = j/y/n, too few points
are included in the regression for small sample sizes. Therefore, in order to

have more points in the regression, we introduce the following rule to select
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point ¢;:

1 j=1,2,..m=n’ 0<6§<1, if n < N,
\/Lﬁ) j=1,2,...,m=n’ 0<6<1/2, otherwise.

The threshold level N is an integer chosen by the researcher. This practical
rule is applied and compared with the theoretical rule in the simulation
study. From the simulation results, it seems reasonable and sensible to have

this specific small sample rule in practice.

The estimation of the standard error of &

Theorem P23 gives the variance of & for large samples. A natural, simple
procedure is to use the heteroscedasticity-and-autocorrelation-consistent
(HAC) standard error, or Newey-West standard error, denoted by syac, to
replace the standard error of & (for further detailed computations, see
formula (5) and theorem 2 in Newey & West (1987)). The reason is that if
the least squares intercept C, converges in probability to the population
intercept, the residuals e; from the usual ordinary least squares (OLS)
arithmetic become asymptotically equivalent to the error terms ¢; and s% 4.
consistently estimates the variance of &.

Therefore, the next step is to check whether the least squares intercept
C, converges in probability to the population intercept. Since C, = y—az,

this will occur if (& — @)Z = 0,(1). As argued above, as n — oo,
Z=Inm—1+ (Inm)/(2m)+ O(1/m) — In /n,

so lim, o Z/In(m//n) = 1. The asymptotic standard error of & is

Hence C, is consistent for the population intercept for all 0 < a < 2 and

0 > 0. Therefore, the condition of using sysc as a consistent estimator for
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the standard error of & is guaranteed.

The case a = 2

As stated in (24), 1 — U(t) ~ ¢ Ol/t zH(x)dx for « = 2, as t | 0. Since
H(z) € RVa, it is obvious that zH(z) € RVj. Then either the integral
is fol/t rH(z)dr < oo or fol/t rH(zr)dr = oo. Moreover, by Karamata’s
theorem (Resnick, 2006), if G € RV;, then fo)\ G(z)dx € RV;. In the case of

a=2,
A 1/t
/ G(z)dx = / xH(z)dz € RV,.
0 0

This integral is denoted as L;(1/t). Thus, one can estimate « if
lim L, (1/1) < oo. (2.16)

For instance, condition (Z8) is satisfied for any function with a finite non-
zero limit.
By taking the logarithm and plugging U, (t) into (24), we obtain
Un(t)

ln(l—Un(t))NlnLl(l/t)+21nt+ln11__—U(t), as t10. (2.17)

As t | 0, the expected value of %(Ut’;gm
of it is equal to O{(nt)~'}. The statistical properties of the error term
1-Un(t)
1—U(1)

is still zero and the variance

€ =ln

are obtained as well: as t | 0,
E(¢}) =0, Var(¢;) = O{(nt3)~"}, and Cov(e}, €}) = O{(nt]) "}
with ¢; > ¢;, using the same criterion to choose t;, i.e.,

J o 5
—.,7=12..m=n°, 0<d<1/2
Nk /
The expected value of the estimated slope in (2I4) depends on Li(1/t).
However, the estimated slope approaches the true value as n — oo because

Ly(1/t) converges to a finite constant as n — oo. The variance of the
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estimator is equal to O(n=%°). Consistency and asymptotic normality still
hold. The Newey-West standard error sy c can be used as a consistent

estimator of the standard error of the estimated «.

The case o > 2

All the results for a@ = 2 can be extended to the case a > 2, i.e., a distribution
with finite variance. The only change needed is to replace L;(1/t) with ps,
the second moment of the underlying distribution. No further assumption is
required because s is finite.

It is worth noting that, even for the case 0 < a < 2, assumption ([AT)
could be relaxed. The estimator & is consistent as long as the
corresponding slowly varying function L(x) has a finite non-zero limit as
x — 00. Accordingly the term C' in Section P23 has to be replaced with
the finite limit.

2.4 Testing the estimator on simulated data

In this section, we evaluate the performance of the proposed estimator on
simulated data. Four groups of data are considered. The first group
consists of symmetric a-stable distributions which satisfy ([AT). The second
group considers several distributions which do not follow ([AT) as
extensions: Student’s t-distributions, Pareto distributions, normal
distributions, and exponential distributions. The third group is about a
distribution with a non-constant slowly varying tail. The last group
considers a composite distribution whose central part fits a normal
distribution but tails are of Pareto form (DuMouchel, T983).

Although many tail index estimators exist in the literature, the proposed
estimator is compared with the Hill estimator in this chapter. The Hill
estimator is chosen because it is usually regarded as a benchmark due to its
small asymptotic variance. Moreover, the Hill estimator is a representative
of estimators based on the specified form of the distribution function at

infinity. Hence, it can be used as a reasonable comparison with the estimator
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proposed here based on the CF near the origin. Finally, a complete and
general comparison of estimators of the tail index is hard to make because
of different second-order conditions (de Haan & Ferreira, 2006).

The Hill estimator is defined as follows. Let X1y > X > -+ > X,
denote the order statistics of the sample X, X5, -+ X,,, and let k, be a
sequence of positive integers satisfying 1 < k, < n, lim,,_,, k, = oo, and

lim,, o (kn/n) = 0. The Hill estimator based on k, upper order statistics is

K -1

N 1 i X(i)

ag, = | — E In .
kn <]<;n — X(kn+1)>

1

In order to improve the performance of the Hill estimator, the absolute values
of samples are used in the estimation.

Simulation results focus on data generated from symmetric a-stable
distributions. We ran simulations with sample size n = 100, n = 1000, and
n = 5000 for symmetric a-stable distributions. For the other three groups
only sample size n = 1000 is analysed. The results reported here are
obtained from 250 iterations.

Let N = 1000 in (ZT1H) be the threshold for the selection of ¢;. For
n = 100, the small sample version, the rule ¢; = j/n is applied. For n = 5000,
the large sample version, the rule t; = j/y/n is used. For n = 1000, in order to
make a comparison, we show the results of both ¢t; = j/n and t; = j/v/n. Let
d be equal to 1/2,2/3,3/4,4/5,5/6,6/7 for all simulations where t; = j/n.
Let 0 be equal to 1/6,1/4,1/3 for all simulations where t; = j/\/n.

2.4.1 Symmetric a-stable distributions

For symmetric a-stable distributions, we set o = 0.5,1.0,1.5,1.8,1.9,1.95.
The simulation results are presented in Figures P-1 to 2ZG. For each sample
size, the difference between the mean of regression estimates and « and the
root MSE are plotted against § on the left-hand side. Meanwhile, the
difference between the mean of Hill estimates and o and the root MSE are
plotted against the number of upper order statistics k,, for the construction
of the Hill estimate on the right-hand side.
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Figure 2.1: Estimates for independent symmetric a-stable distributions, n =
100
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Figure 2.2: Root MSE for independent symmetric a-stable distributions,
n = 100
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Figure 2.3: Estimates for independent symmetric a-stable distributions, n =
1000
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Figure 2.4: Root MSE for independent symmetric a-stable distributions,
n = 1000
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Figure 2.5: Estimates for independent symmetric a-stable distributions, n =
5000
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Figure 2.6: Root MSE for independent symmetric a-stable distributions,
n = 5000
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For a < 1, the performance of the proposed estimator & is generally
similar to that of the Hill estimator. However, the accuracy of the Hill
estimator relies heavily on the number of high order statistics included in the
estimation. In order to obtain the optimal number of high order statistics,
some adaptive procedures which require more computing effort are needed
(Beirlant_ef all, 2004). While as shown by the small value of the root MSE,
the performance of the regression estimator is quite reliable if relatively large

¢ is chosen.
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For 1 < a < 2, the regression estimator performs much better than the
Hill estimator does, especially when « is very close to 2. The Hill estimator
is highly inaccurate no matter how many order statistics are included in the
estimation when a approaches 2. By contrast, the root MSE of the regression
estimator is always quite small regardless of the value of .

We also note that the selection methods ¢; = j/n and t; = j//n work well
for n = 100 and n = 5000, respectively. For n = 1000, the accuracy of the
regression estimator changes slightly as the selection method changes. Both
selection methods show the same trend, namely that the regression estimator
approaches the true value as 9§ increases. Therefore, it is reasonable to use
t; = j/n instead of t; = j/\/n when sample size is small. Moreover, the
convergence of both the regression and Hill estimators is investigated. For
both methods, estimators converge to the true value and root MSEs reduce

as sample size increases.

2.4.2 Several alternative distributions

In the second group, the following distributions are analysed: Student’s t-
distributions (a = 0.5), Pareto distributions (o = 1 and z,;,, = 1), standard
normal distributions, and exponential distributions (A = 2). With respect to
the last two distributions, we expect our regression estimator to be around
2 and the Hill estimator should be quite large due to the absence of heavy
tails. Therefore, we only report the mean values of regression estimates
(Figure 2Z7a) and of Hill estimates (Figure EZ7H) here.

From Figure P74 we see that, for Student’s ¢-distributions and Pareto
distributions, the regression estimates and Hill estimates are very close to
the true value of a. For distributions with finite variance, the regression
method always returns a value almost equal to 2 as expected. By contrast,
the Hill estimator decreases as the sample fraction increases for finite
variance distributions. Indeed, the Hill estimator changes substantially
from more than 8 to slightly above 2. Therefore it is quite difficult to find
the appropriate percentage included in the estimation, let alone to obtain

inference on whether heavy tails exist or not.
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Figure 2.7: Estimates for several alternative distributions, n = 1000
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2.4.3 A distribution with a non-constant slowly
varying tail

We now turn to the third comparison, where L(x) is not a constant. We

consider a distribution whose survival function is defined as

F(z)=1—F(z) = — , T >e. (2.18)
r2lnw

Since the Hill estimator is designed mainly for Pareto distributions, we
introduce the above example in which the Hill estimator may not know how
to make correct inference apart from the slowly varying factor Inx
(Resnick, 2006). Due to the non-constant slowly varying function in (ZI8),
the Hill estimator behaves poorly compared with the proposed estimator in
this case. The mean and root MSE of the regression estimates against  are
presented in Figure ERa, while the mean and root MSE of the Hill
estimates against k, are presented in Figure P—8H.

Figure P.8H shows that the Hill estimator is highly sensitive to the non-
constant slowly varying function. The mean of Hill estimates is far away
from the true value. The root MSE of Hill estimates is around 0.5. In Figure

2784, the effect of the non-constant slowly varying function on the regression
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estimator is not as dramatic as that on the Hill estimator. The mean of the
regression estimates gets closer to the true value as ¢ increases and the root
MSE is generally less than 0.2. It seems that the regression estimator retains
its accuracy regardless of the presence of some kind of non-constant slowly

varying function.

Figure 2.8: Estimates for distributions with non-constant slowly varying tails,
n = 1000
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2.4.4 Distributions with composite density functions

Finally, the proposed estimation method is extended to distributions with
composite density functions. In general, this kind of distribution has a
distribution function with finite variance in the center and follows a
regularly varying function in the tails. In this example, we use a density
function which has Pareto tails but matches a normal density function in
the center (DuMouchel, T983). With 0 < 1/ < 2, the corresponding
density function denoted by f,(z) is defined as

e /2 if |z| <1
27 I )
fy(@) =

_771_1
2D [mwfl)} i o] > 1,

o o~

(2.19)

41



where 0 = ®(—1)v/2me to make the density function continuous at points
2] =1, and ¢ = 1/(®(1) — &(—1) +2 [ 2EN LD -1 44) . The tail

1 - o~

index of this distribution is equal to 1/7.
Using (E23) and due to the symmetry of this density function, the

following relation is derived
1 o)
I—U(t) ~ t/ sin(tz)H,(x)dx + t/ sin(tz)Hs(z)dx, as t]0,
0 1

where H;(x) is the tail sum with respect to the normal distribution part and
Hy(x) € RV, By a Taylor expansion, the first term on the right-hand side

can be rewritten as
1 1
t/ sin(tzx)Hy(z)dx = t2/ vHy(z)dz + O(tY), as t]0,
0 0

where the coefficient of #? is bounded in the range from 0 to 1. Moreover, as
tl10,

t/loo sin(tx)Hy(z)dx = /too sin(x) Hy(x/t)dx
~ /00 (z/t)" 7 sin(z)dx

= s/

Hence, the final result is
1
1—U(t) ~ s(1/y)t"7 + t2/ vHy(z)dx +O(tY), as t|O0.
0

The term with ¢'/7 dominates the limiting behaviour of 1 — U(t) for 1/ < 2
ast | 0. Hence, the regression estimation method can be applied to this kind
of composite distribution.

To evaluate the performance of the regression method, we generated data
with the density function defined in (219) with v = 0.67 and 1. In Figure
2794, the mean and root MSE of regression estimates against ¢ are presented.

The mean and root MSE of Hill estimates against k,, are shown in Figure
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P_9H.

Figure 2.9: Estimates for distributions with composite density functions,
n = 1000
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In Figure 9, for o = 1, the Hill estimator generally performs better.
However, the accuracy of the regression estimator is comparable to that of
the Hill estimator, since the regression estimates are not far away from the
true value and root MSEs are less than 0.3 for large ¢ by ¢; = j/n and all
§’s by t; = j/v/n. For a = 1/0.67 ~ 1.49, the regression estimator works
slightly better from the point of view of the mean and root MSE.

2.5 An empirical application

In this section, the proposed estimation method is applied to an empirical
data set: Danish fair insurance claims. The data set consists of 2167 claims in
millions of Danish Krone (1985 prices) from the years 1980 to 1990 inclusive.
The claims comprise damage to furniture and personal property, damage to
buildings, and loss of profits. The data are analysed in McNeil (T996)". The
Hill plot in Figure 2-T0H indicates that the Hill estimator is relatively stable

around 1.4 for k,, larger than 200. For the regression method, we present the

!Data source: http://www.macs.hw.ac.uk/ meneil/data.html
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results in Figure ZZT0a. The regression estimator suggests that the tail index
is around 1.5, which is nearly consistent with the result obtained from the
Hill method.

Figure 2.10: Estimates for Danish fair insurance claims
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2.6 Conclusion

In this chapter, we present an approach to estimate the tail index « for
independent random variables. This approach exploits the reflection of the
distribution function at infinity on the CF near the origin. The method
performs an OLS regression near the origin which is based on the cosine part
of the ECF. Therefore, the entire sample is used to calculate every point in
the regression. Consistency and asymptotic normality are obtained under
some conditions. Simulations and comparisons illustrate the great potential
of the proposed method. In order to apply this method in practice, different
selection methods of regression points with respect to t; are proposed for
small and large samples, respectively. Our simulation results show that the
practical methods work quite well. One main advantage of this regression
method is that the accuracy of the estimator is not very sensitive to the choice
of 9, and consistency holds regardless of the value of . Another advantage

is that it works well even when « is close to 2.
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2.7 Proofs

Some preliminary lemmas are needed for the proofs.

Lemma 2.2. Assume that 0 < 8 < 1, then as m — oo ((Chan_ef_all, 1995),

%i (In j)? ( Zhu) =1+0{m Y(lnm)?}.

LS (A5 (A o)
—

= mF m~tlnm).
e + O( Inm)

Remark 2.6. For the first equation, if § = 1, the result is —(Inm)?/2m +
O(lnm/m); if 1 < B < 2, the result is O(lnm/m).

Lemma 2.3. For 0 < 8 < 2, then as m — oo,

1 — Inm
— Inj =1 -1+ — 1 ) 2.20
m;nj nm +2m +O(1/m) ( )
1 & 1 & 1 &
TOOULER OB ICOIED

7j=1 7=1 7j=1

= LQmB +O(m?Inm). (2.21)
(B+1)

ForO0<pg <1, asm— oo,

m —B+1
Nt = fbﬁ — 0. (2.22)

J=1

Proof. Lemma 3 follows from the Euler-Maclaurin formula for asymptotic

expansions of infinite series (Abramowitz & Stegun, T965). The formula is
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displayed as follows.

b b f(a) + 1(b)
s~ [ s B

£ G 0 1)

(2.23)

where B1 = —1/2, B2 = 1/6, B3 = 0, B4 = —1/50, B6 = 1/42, B7 = 0,

Bs = —1/30, ..., are the Bernoulli numbers.

For (2220), as m — oo, according to (ZZ23),

1 & Ly ™ 1

—Zlnj ~ —{/ lnzzz:drzc‘—irﬂ

m < m\ Jy 2

j=1
2k—1 2k—1
30 2 () - 0
k=1

The first term on the right-hand side of (E=24) is

/ Inzdr = xlnxﬁn—/ rdlnz
1 1
= mlnm—/ l1dx
1

= mlnm-—m-+1.

Bay,
(k)]

(2.24)

(2.25)

To get the last term on the right-hand side (2224), first we calculate that

fi(z) = Inzx
V) =
@) = -
O(z) = 2273

A (@) = (26— 2)la= 0,

Then calculate the difference between derivatives with the same order at
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different points:

i m) = 7)) = w1
A m) = 7)) = 2m™ - 1)

P m) = V(1) = @k =2Um R 1) (2.26)

Finally, we plug in (2229) and (2Z28) into (ZZ24) and obtain

1
—Zln] ~ {mlnm m—i—l—i—M

>
—(2k-1) _
—l—Z 2k: .y (m 1)}
k=1
In
— lnm— 1+2—m—|—0(1/m) (2.27)

With regard to (2ZZ11), as m — oo, the first term on the left-hand side is

1 & L] m
_Zjﬁlnj ~ —{/ 2° Inz dz +m” Inm/2
m i m | Jq

With similar procedures, we get

/ Pnzdr = L/ Inz dz?*t
1 g+1/;

1 m
— —{xﬁ+11nx|1 / xﬁﬂdlnx}
pf+1 1
= —1 {mﬁﬂlnm— il }
b+1 B+1|
- mP T Inm — ﬁ+1+ ! (2.29)
+1 6+1 [g+1
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fo(z) = 2P lnx
fz(l)(l') = B tlnx+ 277!
f2(2) (x) = B(B— 1)$”B_2 Inz + Bz~ 2 + (B — 1)936—2

= B(B— 1)x5_2 Inz+ (28 — 1);55—2
@) = BB-1B -2 nz+ 48— 1)a" 3+ (28— 1)(8 — 2)2"°
= B(B—1)(B—2)2" 3z + (36% - 68 +2)z"3
2(1)(m) - 2(1)<1> = APt lnm+mP -1
Pm) = 20 = BB -1)(B-2m P Inm+ (362 — 65+ 2)(m° > — 1)
' (2.30)
With (2229) and (2230), the result of (Z22R) is
LR QW Lor) 1 8 - mt 1 ) mP Inm
m;J In j m{6+1(m+11nm 5+1+5+1 ;
+17/6 (ﬁmﬁ_llnm +mPt — 1)
+ 210 55— 1)(5 — 2m hum
+(38% — 68 +2)(m"? — 1)] + 0(1)}
1 1 5 mB+1
~ E{m (m Hnm — 5+1>
m’ ;nm +o(m” In m)} (2.31)
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Similarly, the last term on the left-hand side of (EZ21) is

1 1 m 41
—Z]ﬂ ~ —{/ Pde+ T
m m| J; 2

fa(x) = af

@) = gt
@) = 5 -1
3 ()

= B(B-1)(8~2)"

) - £ = g(mP -1)
fm) - 191 = BB-1)(B-2) (M2 -1)

(2.33)
Plugging in (2233) to (2232),
1 & . Lmftt—1 mfP+1  1/6 _
E;Jﬁ - E{ CES R I G
%/f’%(ﬁ ~DE-2) (M7 -1) + 0<1>}
mP mP1 _
= gy1T ot O(m”~2). (2.34)
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Therefore, combining the results in (2227), (E231), and (2234), the following

result is obtained by simplification

(5m)- (150 45

1 A A-1]
~ {— (mﬂlnm— Tj_l)—irm nm+0(m511nm)]

g+1 B 2
— {lnm -1+ 12n_ + O(l/m)} [Bm——i—ﬁl + mz_l + O(m/fﬁ?)}
= B(B+1)7°m? +O0(m”tnm). (2.35)
For (E222), as m — oo, according to (2=23),
o "o mP+1 X B _ _
I [ P S (6 - )
ComT -1 mTP 4l S8 Bae [k (2k—1)
“B+1 2 +;(2k)!<f4 om) = £ ()
fale) = a7

fl@) = —Ba=

f2@) = —B(=p -1

[P@) = —B(=p = 1)(=f 22"
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Therefore,

m -B+1 _1q 841
6 m m + 1
Zj 51~z el
7j=1
m_ﬁ‘f'l
= +O(1). 2.36
(2=22), (2239), and (EZ38) complete the proof of Lemma PZ3. O

Lemma 2.4. As m — o0,

i (Inj— % iln k)?j=F
Jj=1 k=1
(ap + 155 — aoap)m {1 +o(1)}, f0<B<1,
= 9 3(nm)3{1+o(1)}, if B=1, (2.37)
O{(lnm)?}, ifl<f<2
i(lnj— iilnk)%jﬁ
Jj=1 m k=1
2 ; _
_Jm+O((lnm)%), if =0, (2.38)

(& + 55 — ae)m ™ {1 +0(1)}, f0<B<1

Proof. Lemma 24 is proved according to (2223) as well. The term on the
left-hand side of (2237) can be expanded as

L _ N e, 1O oL
oj—=>"mk)?*" = > ()% + 5O k3> 7
j=1 M4 j=1 - j=1
2 m m
S —B
lenk‘Zj In j
k=1 j=1
~ Z(lnj)Qj_f6+(lnm—1+0(1))22j_ﬁ
Jj=1 j=1
—o(tnm —1+0(1)) S50,
j=1
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where the second step is derived by plugging in (2220).2
Splitting the cases:

o0 < f <1 By (=R),

m m nm)?m="
Z (Inj)%=" ~ /1 (Inx)?z~" dz + (nm)7m? +o((Inm)?m™")

Jj=1

~ ﬁ /lm (In x)2 dae'=% + O((In m)zm—ﬁ)

1 2
~ Inm)?m'=" — ————m!' P Inm
e )
By (£22),
(lnm —1+40(1)*) 57
j=1
1-8
~ (Inm — 1+ o(1))? ;n_ 3
L B — 2 s m' " 15
1_ﬁm (Inm) 1_ﬁm lnm—l—l_ﬁ—iro(m ).
(2.40)
According to (ZZ23),
—2(lnm —1+40(1)) Y 5 ’Inj

1

~ —2(Inm — 1+ o(1)) </1m g P Inzdr+0O(m™* lnm)>

<.
Il

m~P1lnm m'~’
N_Q(lnm—1+0(1))< 1-3 _(1—5)2
1 m P Inm
g TOm T ) o

2To simply the proof, only the first two orders of each component in all the equations
about Lemma P are considered.
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Combining (2239), (240), and (Z4T), we derive

Zm: (Inj — % Zm:mk)%’ﬁ
j=1 k=1

2 1 2

~ + — ymP{1 4 0(1)}. (2.42)

(1=pp 1=-5 (@A-p)

o3 =1 With similar procedures,
Jj=1

(Inm)?
3

+O((Inm)*m™1).

~

1n] -1 / (In 93)227_1 dz + O((In m)Qm_l)
1

(2.43)

(nm =1+ 35 ~ (nm—1+o(1)}(nm+ % +o(1))

~ (Inm)® 4+ O((Inm)?).

—2(Inm —1+0(1)) Y j 'Inj
j=1

(2.44)

~ —9(lnm — 1+ o(1)) (/1m vz dz + O(m~'n m))

~ —(Inm)*(lnm — 1+ o(1))%

With (£43), (244), and (Z43),

m

Z(lnj—%ka)?j

j=1 k=1

(Inm)*{1 +o(1)}.

OJl*—‘

ol < <2

33

(2.45)

(2.46)



Similar to (2239),

m

J=1

(lnm —140(1))*) ;™"

~(lnm—1+ 0(1))2(/1m m ™ dx + % +0(1))

1 L O(1)).

~(Inm—-1+ o(l))Z(W 5

Analogous to (240),

m

—2(Inm — 1+ 0(1)) Zj_ﬂ In j

=1

ln] —B / (In :c)Qx”B dz + O((In m)2m’5)
1

(2.47)

(2.48)

~ —20nm — 1+ o(1)) (/1m v nzde +O(m~"In m>>

1
(1-5)

Therefore, by (241), (228), and (249),

~ (Inm — 1+ o(1))*( + O(1)).

m

> (g - %Zln k)28 ~ O((Inm)?).

j=1 k=1

Thus (2242), (2248), and (250) complete the proof of (2231).
With regard to (2238), splitting the cases:

o5 =0 By Lemma 22

Zm:(lnj—%zmzlnkf = Zm: (Iny) —%(Zmzlnk’f
j=1 k=1 j=1 =1

= m+O((Inm)?).

(2.49)

(2.50)



o0 < 5 < 1 Substituting g for —f in the exponent in (EZ39), (220), (241), and
(222), all the results still hold.

This completes the proof of Lemma 24. O

Before proving the theorems, another form of s(q) is provided here.

Suppose for some non-negative integer p,

Jo ¥ sinydy, if 0 < q <2,

Iy Ysinyg =30 (- )“Zzl.}dy, if2p<qg<2p+2, p>0.
(2.51)

s(q) =

Proof of Theorem 2. The characteristic function ¢(t) can be rewritten as

o(t) = /_ i e dF (z) + /0 N e d[F(x) — 1]

o0

- /_ cos(tz) dF (z) + /OOO cos(tz) d[F(z) — 1]

o0

1 / " in(tr) dF(2) + /0 h sin(tr) [ () ~ 1]}.

Integrating by parts,

o(t) = F(O)—i—t/ sin(tx)F(z) dz

—0o0

—(F(0)—1) —}—t/OOO[F(a:) — 1] sin(tx) dx
_it{ /0 cos(tx)F(z)dx + /000 cos(tz)[F(z) — 1] dx}.

—00

Therefore, we derive

Ut -1 = ¢ / sin(tz) F(z) de + ¢ /0 () — 1] sin(tr) da

= t/ooo sin(tx)F(—z)dz + t/OOO[F(x) — 1] sin(tx) dx

= t/ sin(tz)H (z) dz. (2.52)
0
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If ¢g =0, ie, 0 < a+p < 2, combined with (A1) and (Z351), it is
straightforward to show that

1 - U(t) = Cs(a)t* + CDs(a + B)t*TP + o(t*P).
For ¢ > 0, i.e., 2¢ < a+ f < 2¢q + 2, we split (Z52) into two parts:
1 e’}
1-U(t) = t/ sin(tx)H (z) dz +/ sinzH (x/t)dx
0 t

As t ] 0, the Maclaurin series for sin(tx) shows

' / sin(tzx)H (z)dz| =

With (A1) and s(« + 5) defined in (2251), for ¢ > 0,

_ / el (@) de 4+ O,

/ sinxH (xz/t)dx
¢
:Cto‘/ r “sinxdx
¢
2i—1
at+B —a—B _ i-1_ T
+CDt / {smx (—1) i) } dx

* 2ic1-a-8 2
+CDZ 2@—1 / x dx + o(t7).
Then, for ¢ > 0,
1 —U(t) = Cs(a)t* + Dit* + o(t?),

where D7 is not specified. This completes the proof of Theorem P n

Proof of Theorem Z3. The difference between & and « is

D "oaitl™® " ajo(t] aje
PN i1 4t +ZJ_1J(J )_{_211]]‘ (2.53)
CS(CV) SZZ Szz SZZ
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As m — oo and n — oo, by Lemma 22,

m m

See=m{ 3" (g — (> i)}

=1 e (2.54)
=m{l+ O{m '(Inm)*}}.

As m — oo and n — oo, by Lemma P73,

- Y rma (I ar . (= N/l s
Do asty ™ =mn = ST g = () (L3 )
7=1 7j=1 7j=1 7j=1

=mn 7 [(7 —a)(y—a+1)m ™+ O0(m ™ n m)] :
The result follows from m = nd. O]

Proof of Theorem EZZ3. The variance of & only comes from the error terms,
and it is given by
m m

a;a;Cov(e;, ;). (2.55)
1

Z j=1i=j+

Var(a) = 3 Z aiVar(e;) +

e

As m — oo and n — oo, according to Lemma P10 and Lemma 22, the first
term and the second term of the right-hand side of (E553) can be written as

m o _ @

1 ) n3 S IR DR 0 N,
5 ZajVar(&tj)N o Zajj ~ Z(IHJ_E;IHI{;)]

2z =1 2z =1 j=1

57



and

m  i—1
ZZaza]Cov €iy€5)
=2 j=1
,_1 m  1—1

P

2
zz

ZZ i=2 j=1
ng_lzm:(lni—izmjlnk)iO‘il:(lnj—lzmzlnk)

m? =2 ma =1 ma
PN i - LS k- Dt - 1) - L3 k)
m2 - n? m 1 7 7 niz mk:1 1

n2 L O(m'=) + O(m*)), if0<a<l,
Var(a) = 22 1(O0((nm)*) + O(m)),  ifa=1, (2.56)
ni: (O((Inm)?) + O(m*)), ifl<a<?2.

It is straightforward that the second term in the parentheses for each case on
the right-hand side of (E58) is the leading term of the order of the variance.
Therefore, the order of the variance of & is n2 ~'m~* for all 0 < a < 2. This

completes the proof of Theorem P3. n

Proof of Theorem Z4. From (353), &— E(&) is equal to Li21%9  Combined

Szz
)

with (212), it can be rewritten as

N[

a—E@) = ) L T

Un(t;)—U(t; aN—
m_a; (P + o, ((ntg)

7j=1
[cos(X;t;)—U(t;)] ay—1L
_ 121 Yy =) +ZJ 1 aj0p((ntF)"2)

(2.57)
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For the second term on the right-hand side of (E31), by Lemma P2, as

m — oo and n — 00,

With (E254), we obtain that

1
ajop((nts)™ 2 o o a—2-2a
ZJ 1 J;(( ]) >=0p{n72m_5}:0p{n 2-2 5}'

For the first term on the right-hand side of (251), we change the order

of the summations. Then it is rewritten as

1 = o= aj(cos(Xit;) — Ulty))
E Z Z Szz[l - U<t]>] '

i=1 j=1

Define the random variable

=< a;(cos( Xt —Ul(t;))
LD Sy v )

Note that W; ,,’s with ¢ = 1,2, ..., n for a given m are i.i.d. random variables

with null mean and variance

lim Var(Wi,,) = O{n®/?7%}.

n—oo
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)

The variance is derived by noting that, for ¢, > ¢; and m = n°, as n — oo,

cos(Xity) — U(ty) cos(Xit;) — U(t))
e 1o )
leos(Xity) — U(t)feos(Xity) — U(L,)]
- 5( 1= Ut — U() )
_U(tk—i-t)—i—U(tk—t]) 20U (t)U(t5)
- UL - O]

which is equal to nCov(eg, ;). Similarly, as n — oo,

Cov(

cos(X;t;) — U(t;)
1-U(t)

ar(

) =nVar(e).

Next, for m = n%, define the random variable

1
‘1/* — Mi
ind — 5o VVimd
2

N
IN|)

and let
o® = lim Var(W;;).

K3
n—oo

Then denote .
Sn == Z W P
i=1

and

n

2 _ _ * _ 2
o, =Var( g ims) E Var(W;,s) =nVar(Wy,s) = noy,..

i=1

The next step is to show that the Lindeberg condition, a sufficient
condition, for the central limit theorem holds. The sequence of W ;
satisfies the Lindeberg condition (see details in Kari (1993)) if for every
€ >0,

lim — Z E[W; 2 {IW; 5| > eon}] = 0. (2.58)

Since
[ zn57{| zn5| >60n}]: [ 1n57{|W1n5’ >€Un}]
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the term inside the limit on the left-hand side of (2Z58) can be written as

1
—ZEW*% wal>e00)] = —nEW2s (Wi | > eowev/n}]
TLO'W*
1
— B2 {[Wi | > eowev/n}l.
O-W*

Note that, by Chebyshev’s inequality, as n — 0, for every € > 0,

*
V(IT(WLn(;) 0"2/[/*
2 2 = 2. 2 — 0.
e2og,.n e2oy.n

P([Wi 5| > eowv/n) <

Since
17215]]'{|Wln5| > 60”} <

zn5

and F (Wl*i(;) < 00, by the dominated convergence theorem, the Lindeberg
condition (Z58) holds. Therefore, the sequence of W ; satisfies the central

limit theorem, i.e., as n — oo,
1 n
d
v i=1

By Slutsky’s theorem, as n — oo,

\/ﬁsa (a—EB(&) % N(0,02).

a
na 2

This completes the proof of Theorem 2. m
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Chapter 3

Taill index inference via the

empirical scaling function

—Based on the asymptotic properties of the partition
function

3.1 Introduction

Distributions with heavy tails are of considerable importance in financial
modelling. The history of heavy tails in finance dates back to Benoit
Mandelbrot’s fundamental work in the 1960s. He conjectured that the
variation of speculative prices follows the so-called “stable Paretian” law,
for instance cotton prices investigated in Mandelbrofl (T963). Student’s
t-distributions have been considered notably in the literature on modelling
the return distributions of financial assets (see Heyde & Leonenkd (2005)
and references therein).

Since there are different types and definitions of heavy tails, in this
chapter, the heavy-tailed distribution is clarified as follows. The
distribution of a random variable X is defined as heavy tailed with index
a > 0 if it has a regularly varying tail, i.e.,

L(z)

PX] > o) = 22 2] = o0,
l.a
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where L(z) is the so-called slowly varying function, satisfying L(tz)/L(x) —
1 as |z| — oo, for any ¢ > 0 (Embrechfs ef"all, [997). The existence of
the moments of the random variable is determined fully by the tail index «.
More precisely, F(]X|?) is finite only when ¢ < «, otherwise this expected
value goes to infinity. Due to the importance of «, a new technique to make
inference for « is investigated here.

In the literature, estimators of the tail index are usually based on extreme
order statistics and their asymptotic properties: for instance, the Pickands
estimator (Pickands 11, T975), the Hill estimator (Hill, 1975) and the moment
estimator (Dekkers_ef"all, 1989). Various extensions and refinements have
been proposed and a nice survey on the comparison of these estimators has
been done in de Haan & Peng (T99R) (see references therein).

Alternatively, estimators based on the diverging properties of some other
statistics are presented. An estimator based on the asymptotics of the sum
for 0 < a < 2 is introduced in the pioneering work of Meerschaert & Scheffler
(I99R). The asymptotic behaviour of the sum for heavy-tailed data depends
on the tail index «, which is related to the extreme values of the underlying
distribution somehow. More precisely, this method is based on the fact that
sample variance diverges at a rate depending on a. For o > 2, a power-
transformation of data is needed. Estimators presented in Polifis (2002) and
McElroy & Politi§ (2007) exploit this idea.

The underlying assumption of the estimators mentioned above is that
random variables are independent distributed. Consequently, most of these
estimation methods are not applicable to dependent cases and the
performance of these estimators are questionable. While, estimators under
dependent structures are also proposed. For instance, Hill (2010) introduces
an estimator considering stationary and strong-mixing data. In this
chapter, the important question of relaxing the independent condition for
estimating « is considered and a similar assumption is introduced.

A novel graphical method applied as an exploratory tool to conjecture
heavy tails and the range of the tail index of the underlying distribution
is proposed here. Based on the graphical method, estimation methods are

also established for the tail index. This approach does not rely on upper
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order statistics or their asymptotic properties. Indeed, it is motivated by
the scaling property of risky asset returns. The scaling function, denoted by
7(q), is always applied to the turbulence and multifractal theory to check
multifractality in data (Erisch, T980; Mandelbrot et all, 1997). It is defined
by the relation

B(X (1)) = (g}t (3.1)

where 7(q) takes into account the influence of time ¢ on moment ¢. In
practice, the scaling function is typically estimated by partitioning the data
into blocks and calculating the partition function (defined later).

The limiting behaviour of 7(¢) is influenced by heavy tails, namely the
tail index «. For instance, Heydd (2009) has shown that the plots of
empirical scaling functions for independently and heavy-tailed distributed
random variables with index o« > 2 are initially linear and ultimately
concave. For a < 2, the bilinear property of the plot of the empirical
scaling function arises naturally from the infinite moments of fractional
Lévy motion (Heyde & Slyi, POOR).

In this chapter, the relation between the tail index and the scaling
function is exploited for a more general range of a under a weakly
dependent condition. This relation builds on the asymptotic properties of
the partition function, whose blocking structure enables us to extract more
information on the tail property. To some extent, this idea goes on the
same line as that in Meerschaerf & Scheffferi (T998).

We present the asymptotic properties of the partition function in Section
B2. In Section B3 we apply these results to make inference for the tail index.
Various simulations are conducted in Section B4 to evaluate the performance
of the proposed methods. An application on exchange rates is presented as

well. A summary and further discussions are provided in Section BZ3.
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3.2 Asymptotic properties of the partition

function

The instrument to estimate the scaling function is the partition function, also
called the empirical structure function, which is a special kind of moment
statistic. The relationship between the tail index and the scaling function is
based on the partition function. Suppose a sample X3, ..., X,, comes from a
strictly stationary stochastic process { Xy, t € Z, } (discrete time) or {X;,t €
R4} (continuous time) which has a heavy-tailed marginal distribution with

tail index a. The partition function is defined as the following quantity:

In/t] | 1] 1

Sq(n,t) = ﬁ Z ZXt(i—l)—i-j ; (3.2)

i=1 |j=1

where ¢ > 0 and 1 < t < n. Roughly speaking, the partition function
considers the average of different orders of moment statistic on consecutive
blocked data. The special case, i.e., the empirical g-th absolute moment, is
obtained by setting t = 1. To allow the size of blocks to grow as sample
size increases, let ¢ be equal to n®. By doing this, we can consider the
limiting behaviour of In S, (n,n*)/Inn, which indicates the rate of divergence
of S,(n,n®).

Before presenting the theorem about the asymptotic properties of

Sy(n,n®), some definitions are introduced first.

1. The strong mixing, or a-mixing coefficient: for two sub-o-algebras,
A C F and B C F on the same complete probability space (2, F, P),

the strong mixing coefficient is defined as

a(A,B) = S |P(ANB) — P(A)P(B)|.

2. Strong mixing, or a-mixing, property with an exponentially decaying

rate: a process {X;, t > 0} has a strong mixing property with an
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exponentially decaying rate if

a(t) =supa(F, F*7) =0, as T — oo,
>0
and meanwhile a(7) = O(e™") holds for some b > 0, where F; =
o{Xs, s <t} and F'7 = o{X;,s >t + 7}

The next theorem establishes the rate of growth. Basically, this theorem
summarises the result of the interplay between the generalised central limit
theorem and the weak law of large numbers. The explanation and proof of

this theorem are presented in Grahovac et all (2014).

Theorem 3.1. Suppose {X;,t € Z,} is a strictly stationary sequence that
has a strong mixing property with an exponentially decaying rate and has a
heavy-tailed marginal distribution with tail index o« > 0. Assume E(X;) =0
for a> 1. Then for ¢ >0 and every s € (0,1), as n — oo,

(

=, if g <a and o <2,
InS s s+4 -1, if g > o and o < 2,
M2glt 1) il(n’n>£>Ra(q,s) = @ fa
nn s .
3 if g <aand a > 2,
\max{s—i—%—l,% . ifqg>a and a > 2,

(3.3)

where 2 refers to convergence in probability.

Remark 3.1. The zero-expectation assumption in this theorem is not a
restriction indeed since one can always demean a sequence to satisfy it.
Special cases of this theorem have been proved in |Siy (2004) and (Chechkind
¥ _Gonchard (12000).

3.3 Applications in heavy-tailed phenomena

In this section the results in Theorem BT are extended to the scaling
function. Based on the scaling function, we propose a graphical method for

detecting heavy tails and identifying whether the tail index « is larger than
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2 or not. More precisely, the idea is to make inference for « from the
asymptotic behaviour of InS,(n,n*)/Inn for a range of values of s and g.
Two regression methods are also presented as extensions of the graphical
method.

3.3.1 Scaling function

According to a variant of (B), for fixed ¢ > 0, the scaling function 7(¢) at

a single point ¢ is estimated by regression y; = In .S, (n,n®)/Ilnn on z, = s,

for a range of values of s € (0,1). From the well known formula for the slope

of the regression line, we get an estimate 7y (gq) based on N — 1 equidistant
102 N-1

points in (0,1), ie., s = &, %, "5

N—lz_ N-1
Z‘:1Nﬁ_N1Zle ]1y’

) - (BN )

Notice that, by choosing enough regression points, 7(q) can be estimated

n(q) =

arbitrarily precisely. Therefore, the continuous form of the previous equation

is obtained by letting N — oo,

fol Slnshgzn ds — fo sds fl 1nslnn

lim 7y(q) = :

N=eo fo s2ds — <f0 sds>
1 1 s 1 1 s
_ 12/ SMOZS_G/ InSy(n, %) ,
0 Inn 0 Inn

As n — oo and with Theorem BT, we obtain the asymptotic plot of 7(q):
for a < 2,

1, if0<qg<a,
(q) = (3.4)
1, if¢> a.
The asymptotic plot of 7(¢) in (B3) is bilinear with slope 1/a > 1/2 for
¢ < a and then a horizontal line for ¢ > a. Therefore, when o < 2, there
will be a sharp slope change at the point where ¢ is equal to the tail index

in the graph.
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For o > 2, R.(q,s) is not linear in s due to the maximum term for
g > « in (B3). The reason is that for large ¢, the estimated 7(q) is
particularly sensitive to extreme values as max |X;|? =~ > |X;|?. Moveover,
a small s makes the rate of convergence to normal much slower. However, it
is approximately linear. If we assume R, (q,s) =~ 7(q)s + ¢(q), the previous

approach gives

5 it0<qg<e,

oa— 2 (07 —oQ
+ 2( qlg(éj;;g 3 q)’

7(q) = (3.5)

N Nk

if g > a.

Then, the asymptotic plot of 7(q) is concave and appears approximately
bilinear with slope 1/2 for ¢ < a and slowly decreasing for ¢ > a.
Figure 3.1: Plots of scaling function 7(¢) against moment ¢

()
.

The baseline is shown by a dashed line. The case a < 2 (o = 0.5,1.0,1.5)
and a > 2 (o = 2.5,3.0,3.5,4.0) are shown by dot-dashed and solid lines,

respectively.

When « is large, i.e., @« — o0, it follows from (B3) that 7(¢) = ¢/2. This
case corresponds to data from a distribution with all moments finite, e.g.,
an independent normally distributed sample. This line will be referred to as

the baseline. It is worth noting that the asymptotical shape of the scaling
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function calculated for heavy-tailed data significantly depends on the value
of the tail index a.. Plots of the asymptotic scaling functions for a range of
values of « are shown in Figure Bl. The baseline is shown by a dashed line.
The case o« <2 (= 0.5,1.0,1.5) and o > 2 (v = 2.5, 3.0,3.5,4.0) are shown
by dot-dashed and solid lines, respectively.

3.3.2 A graphical method

Since the tail index strongly affects the shape of the scaling function, it
motivates to use a graphical method based on the scaling function to
conjecture the tail index of the underlying distribution. In particular, the
asymptotic results indicate that a sharp difference exists between the plots
of distributions with infinite variance (o < 2) and the others (o > 2).

In practice, for a finite sample and chosen N, the empirical scaling

~

function 7(q) for fixed ¢ > 0 is estimated from
InS,(n,n")/Inn =1Inc(q) + 7(q)s (3.6)

by ordinary least squares for a range of s. Repeating this for a range of values
of ¢ gives the plot of the empirical scaling function T(Aq) against q.

By examining the plot and comparing it with the baseline, one can make
inference about the tails of the underlying distribution. If T(q) is above the
baseline for ¢ < 2 and nearly horizontal afterwards then true « is probably
less than 2. By examining the point where the graph breaks, one can roughly
estimate the interval containing «. If T(q) coincides with the baseline for
q < 2 and diverges from it for ¢ > 2, then true « is probably greater than
2. The point at which deviation starts can be treated as an estimator of a.
This establishes a graphical method for distinguishing two cases, i.e., a < 2
and o > 2.

If the graph coincides with the baseline, then we can suspect that the
data do not exhibit heavy tails and the moments are finite for the considered
range of q. This establishes a useful method to distinguish between heavy
tails and non-heavy tails. We illustrate how the method works on simulated

and real world examples in the next section.
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3.3.3 Regression estimation methods

In this subsection, we define two regression methods to estimate the tail
index. Following the assumptions of Theorem BTl estimators defined here
work for stationary strong mixing samples.

The first method (Method 1) is related to the graphical method and relies
on the estimated scaling function. Since both (B4) and (B3) can be treated
approximately as a piecewise linear function and « is the breakpoint of the
piecewise function, we estimate a by regressing 7(¢) on a range of values of

q. More precisely, the estimator of « is derived from the function

TAq)— Boo + Bo1q, if 0 <q<a,
Boo + Bora + By (¢ — ), if ¢ > «a,

by minimising the sum of squared residuals. Therefore, nonlinear least
squares regression techniques, for instance Levenberg-Marquardt algorithm
(Smyth, 2002), can be used to fit the model to given data.

Method 1 may have two main potential problems. The first one is that
the estimated scaling function T(q) instead of the asymptotic scaling function
7(q) is used in the regression, which may cause bias in the estimation. The
second one is that for o > 2, the breakpoint may be not so easy to identify,
since the result in (B3) is just approximately linear. Moreover, from Figure
B, we can find that the change of the slope is not so obvious for large a.
Therefore, we purpose another method which may improve the accuracy of
the estimation.

The second method (Method 2) utilises the partition function at some
fixed point sq to avoid estimating the empirical scaling function by regression.
If we fix s = s € (0, 1) and reconsider the limit in (B33), we can find for a < 2,

=g, if ¢ < a,

Ra<a(q; 80) = (3.7)

so—l—l—éq, if ¢ > «.

The breakpoint of this piecewise linear function is g, < 2.
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For a > 2,

24q, if ¢ < a,

Ra>2(q, 30) = (3'8)

max {sop — 1 + ¢, 2q}, ifg>a.

With regard to the max term in the second segment, if there is a change of

slope, it should occur at the point

pr_s_o_l_
2 e

)

. 80—]. _2(1-80)
2

where sg € (0,2/a). Therefore, we can rewrite (B8) as

SEO(L if q < Qovp;

Ro>2(q; 80) = (3.9)

so—1+21q, if ¢> gy
Comparing (B7) with (89), we find the slope of the second part of the
broken line is always equal to 1/a no matter whether « is larger than 2 or

not. Therefore, we obtain our estimator of a by regressing In.S;(n,n*°)/Inn

on a range of values of ¢. Due to continuity at the breakpoint, the function

is given by
InSy(n,n*) ) P+ fug, if 0 < g < gy, (3.10)
Inn 510 + Bllqm; + Bil(q - pr)a if q > pr-

Then the estimator is the reciprocal of the slope for the second part of the
piecewise function in (BIM), i.e., & = 1/5},. By Theorem B, this estimator
is consistent. It is worth mentioning that the change of the slope is sharper
for smaller sy as shown in Figure B2. As mentioned above, if we consider
« less than 6, we should choose sy € (0,1/3). Hence, we set sp = 0.1 in
Figure B2. However, this method may have a similar drawback that the

slope change is not substantial for large .
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Figure 3.2: Plots of R,(q, so) against ¢ with so = 0.1

R:(9,5=0.1)

The case a = 1,2,3,4 are shown by solid, dashed, dotted, and dot-dashed

lines from left to right.

3.4 Simulations

We provide a simulation study to illustrate how the graphical and estimation
procedures defined in the last section work in practice. The data used in the
Monte Carlo study are either i.i.d. or dependently distributed. We describe
the cases considered here in the next subsection. It is worth mentioning that
the conclusion from the simulation is quite general and not generated by an

unusual sample selection.

3.4.1 Data
Independent and identically distributed random variables

We first consider i.i.d. random variables. @~We choose three types of
heavy-tailed distributions in our study: stable distributions, Student’s
t-distributions, and Pareto distributions. The corresponding characteristic
function or probability density function for each type of distributions is

introduced below.
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First, recall that a random variable X is said to follow a stable distribution
with index of stability a € (0,2) (except for the normal distribution o = 2)

if it has a characteristic function of the following form:

ox(C) = Elexp{iCX})
exp {—o®|¢|* [1 — iBsgn(C) tan &F +iCu] }, if o # 1,
exp{—a|§| [1—i,3%sgn(§)ln|§|+i§,u}}, ifa=1,

where o € (0, 00) is the scale parameter, § € [—1, 1] the skewness parameter,
and p € (—o00, 00) the location parameter. Let S, (3,0, 1) denote the stable
distribution. Additionally, when p = 0, X is strictly stable. If 5 = 0, X
is symmetric. When 1 < a < 2, E(X) = p. It can be proved that with
—l<pf<land0<a<?2 asx — 00,

P(X >1x) ~co(1+ B,

where ¢, = I'(a)(sin %) /7. It is obvious that stable distributions follow a
power law under the conditions mentioned above.

Second, we consider Student’s t-distribution T'(v,d,p) with the
probability density function

v+1

student[v, 0, u|(z) = F(V—FT:Z) (1 + ($ g M>2> 2 , zeR, (3.11)

(the so-called symmetric scaled Student’s ¢-distribution), where 6 > 0 is the
scaling parameter, v the tail parameter (usually called degrees of freedom)
and p € R the location parameter. It follows that both the left-hand and the
right-hand tails of Student’s ¢-distribution density (81) decrease as |z|™*~!,
i.e., this distribution has heavy tails. Moreover, the expectation E(X) = p
for v > 1 and the variance Var(X) = f—jz is finite for v > 2.

Finally, if X is a random variable from a Pareto (Type I) distribution,
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then the survival function of X is given by

T\ O .
(zm) ) 1fx2mmina

P(X >x) =
1, if z < Trmin,

where x,,;, > 0 is the minimum possible value of X, and a > 0 is the
tail index. We denote the Pareto distribution as Pa(q, ). For a > 1,

B(X) = “min,

Remark 3.2. The increments of homogenous Lévy processes can be
considered here as well: for instance, Lévy-Student processes, Lévy-stable
processes (0 < a < 2), and Wiener processes (or standard Brownian
motions). Indeed, suppose a discretely observed sample Y1, ...,Y, are drawn

from a homogenous Lévy process {Y;}, t > 0. Denote one step increments
as X; =Y (i) =Y (i — 1), then the quantity

(/] Z:: [Yitg = Yinal"

is equivalent to that in (B2) and Xi,...,X, are ii.d.. Hence, the
stationary independent increments of homogenous Lévy processes satisfy the

assumptions of Theorem [E.

Dependent data

According to the assumptions of Theorem B, our methods can not only be
applied to the case of independent random variables, but also to dependent
cases. In order to generate appropriate data sets, we introduce Student
diffusion processes and Ornstein-Uhlenbeck (OU) type processes with heavy-
tailed marginal distributions.

To define the Student diffusion, we introduce the stochastic differential
equation (SDE) first:

J

2652 X, — )’
dX, = —0(X, — p)dt + 1<1+<t “) )dBt, t>0, (3.12)
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(see Bibby et al] (2005) and Heyde & Leonenkd (2007)), where v > 1, § >
0,u€R, §>0,and B ={By,t > 0} is the standard Brownian motion. SDE
(B12) admits a unique ergodic Markovian weak solution X = {X;,¢ > 0}
which is a diffusion process with a symmetric scaled Student’s ¢-distribution
defined in (BTM). The Student diffusion is the diffusion process which solves
the SDE (BI2). This diffusion is strictly stationary if Xo ~ T'(v, 4, u)."

According to Leonenko & Suvaki (2010), the Student diffusion is a strong
mixing process with an exponentially decaying rate, i.e., there exists A > 0
such that

a(t) < ie‘”.

For the simulation of paths of the Student diffusion process X = {X;,¢ > 0}
with known values of parameters, we use the Milstein scheme, which has
strong and weak orders of convergence both equal to one ([acud, POOR).

Following Heyde & Leonenkd (2005) two OU type processes are considered
here: Student OU type processes and a-stable OU type processes. Recall that
a stochastic process X = {X;,t > 0} is said to be of the OU type if it satisfies
a SDE of the form

AX, = —A\X,dt +dLy, t>0, (3.13)

where L = {L;,t > 0} is the background driving Lévy process (BDLP) and
A > 0.

There exists a strictly stationary stochastic process X;, ¢t € R, which has
a marginal t-distribution T'(v, d, i) with density function (B) and BDLP,
L, such that (BL3) holds for arbitrary A > 0. This stationary process X is

referred to as the Student OU-type process. Moreover, the cumulant

'For v > 1, the conditional expectation is
E[Xs-‘rt‘Xs = x] = xe—Gt + ,LL(l - e_Gt)a

where p is the expectation of the invariant distribution. The autocorrelation function of
the Student diffusion is explicit for v > 2, in which the invariant distribution has finite
variance.

p(t) = corr(Xpys, Xo) =€ % >0, s>0, v>2.
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transform of BDLP, L, can be expressed as

Kyjoa(Cp)

k1) (¢) = log E{e“rWY = ¢y — 5|¢| K, p(Cp)

CeR, ¢#0,
where K is the modified Bessel function of the third kind and HL(l)(O) =0
(Heyde & Leonenkd, 2004).2 Since for 0 < p < v, the p-moment of T'(v, §, j1)
is finite, according to Masuda (2004), Student OU type processes are strong
mixing with an exponential decaying mixing coefficient. For the Student OU
process, the exact law of the increments of the BDLP is unknown, therefore,
we use the approach introduced by Manfer & T.eonenkd (2009) to simulate
discrete Student OU processes. This approach circumvents the problem of
simulating the jumps of the BDLP and is easily applicable when an explicit
expression of the cumulant transform is available (for more details see [Tanfer
& Leonenkd (2009))°.

The a-stable OU type process with parameter A > 0 and 0 < a < 2
introduced by Doob (1942) is the solution of the SDE (BT3), with
L = {L;t > 0} as the standard a-stable Lévy motion (Janicki & Weron,
1994). An OU process with any operator-stable marginal distribution is
strong mixing with an exponentially decaying rate (Masuda, P004). Since

the distribution of increments for the BDLP, L, is known in this case, we

2If v > 1 then E(X;) = p, and if v > 2 then the correlation function is given by

p(1) = corr(Xegr, Xy) =M1 7€ R

3In this case, k(¢) can be transformed from the characteristic function of T'(u,d,v),
which is expressed as

Ky (6 )
1050 = e LD i e,

The key point of this simulation is to generate €;, t = 1,2,...,n in a variation of (8I3)

X,=e X, 1 +e, €= / e M AL(\s),
(0,1]

and Xog ~ T'(v,0, ). € is a sequence of i.i.d. random variables, whose distribution F' is
not generally available in an analytical form. With this approach, a numerical version of
F' is obtained via the inversion of the characteristic function of €;, which can be directly
worked out from x(().
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consider the Euler’s scheme of simulation by replacing differentials in (BT3)

with differences.

3.4.2 Plots of empirical scaling functions

In the simulation, ten samples, each with n = 1000 i.i.d. observations were
generated for distributions: S15(0,1,0), T(2,v2,0), T(4,2,0), Pa(0.5,3),
Pa(1.5,3) and N(0,1). Sets of s and ¢ were generated from 0.10 to 0.90
in steps of 0.035, and from 0.25 to 10 in steps of 0.25, respectively. After
calculating In S,(n,n®)/Inn for each sample, 7(¢) was estimated by using
(81). All scaling functions are estimated by regression on nearly 30 points.
There is no strong evidence that a different number of points in the regression
improves the estimation substantially.

For Pa(1.5,3), the sample mean is subtracted to adjust in the
calculation of InS,(n,n®)/Inn due to the zero-expectation assumption.
Finally, we plot the estimated scaling functions (dotted) against ¢ together
with the corresponding asymptotic plot (solid) and the baseline ¢/2
(dot-dashed) as shown in Figure B33.

The plots show a clear-cut behaviour in most cases. It is clear from
shapes of the empirical scaling functions that the variance is infinite from
Figure B23d to B33d, since the plots lie above the baseline 7(q) = ¢/2 then
become nearly horizontal at the point ¢ = a. The plots for the normal case
in Figure nearly coincide with the baseline 7(q) = ¢/2, thus, one can
doubt the existence of heavy tails in this case. In Figure B33, the plots for
T(4,2,0) diverge from ¢/2 gradually after ¢ = v = 4. For the critical case
a = 2 as shown in Figure B233d, the plots are close to the horizontal line for
g larger than some value as the theorem predicts, although the property is
not so conspicuous as that for a strictly less than 2.

We next generated 10 sample paths for each of the following processes:
(a) a stationary Student diffusion with parameters =0, § = 2, § = 2, and
v = 3 at time interval [0,7], T = 0.35n; (b) a Student OU process with
autoregression parameter A\ = 1 and ¢t-marginal distribution 7'(4,1,0); (c)

an a-stable OU process with marginal distribution S75(0,1,0) and
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autoregression parameter A\ = 1.

Figure 3.3: Plots of 7(¢q) against ¢ for i.i.d. variables

e (@

5r . 51 -

(e) N(0,1) (f) T'(4,2,0)

Plots of the empirical scaling functions for samples are shown by dotted lines
together with the corresponding asymptotic plot (solid line) and the baseline
(dot-dashed line).
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Figure B4 plots the results of the empirical scaling functions for
dependent cases. We get results similar to those from the independent
cases. It means that the shape of the scaling function is not influenced by
the presence of weak form dependence. In short, the plot of the empirical
scaling function is quite close to, rather than ideally coincides with, its

asymptotic form in most cases.

Figure 3.4: Plots of 7(q) against ¢ for dependent cases

(@ )

(a) Student Diff. (b) Student OU

(@)
5

(c) a-stable OU

Plots of the empirical scaling functions for samples are shown by dotted lines
together with the corresponding asymptotic plot (solid line) and the baseline
(dot-dashed line).
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3.4.3 Regression estimation methods

In order to evaluate the performance of the two estimation methods, we
compare our estimators with the Hill estimator. Let Xy > Xy > -+ >
X(n) denote the order statistics of the sample X, X5,--- X,,, and k, be a
sequence of positive integers satisfying 1 < k, < n, lim,_,, k, = oo, and

lim,, o (kn/n) = 0. The Hill estimator based on k,, upper order statistics is

i -1
N 1 = X(i)
ag, = | — E In .
kn (kn - X(kn+1)>

For each data introduced in Section B4 we generated 250 samples with

n = 1000 observations. We set s in the range (0,0.5) with step size 0.04 in
Method 1 and denote the estimator as RE;. In Method 2, we set the size of
the block equal to 3, therefore, s = In3 &~ 0.16. The estimator derived from
Method 2 is denoted as RFE5. The sample mean is subtracted in order to
satisfy the zero-mean assumption in both estimation methods. For the Hi