
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
PEER-TO-PEER OPTIMIZATION IN LARGE UNRELIABLE 
NETWORKS WITH BRANCH-AND-BOUND AND PARTICLE 
SWARMS 
 
Balázs Bánhelyi, Marco Biazzini, Alberto Montresor, and Márk Jelasity 
 
 
January 2008 
 
Technical Report # DISI-09-005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



Peer-to-peer Optimization in Large Unreliable Networks

with Branch-and-Bound and Particle Swarms⋆

Balázs Bánhelyi1, Marco Biazzini2, Alberto Montresor2, and Márk Jelasity3

1 University of Szeged, Hungary, banhelyi@inf.u-szeged.hu
2 University of Trento, Italy, biazzini,montreso@dit.unitn.it

3 University of Szeged and HAS, Hungary, jelasity@inf.u-szeged.hu

Abstract. Recent developments in the area of peer-to-peer (P2P) computing

have enabled a new generation of fully-distributed global optimization algorithms

via providing self-organizing control and load balancing mechanisms in very

large scale, unreliable networks. Such decentralized networks (lacking a GRID-

style resource management and scheduling infrastructure) are an increasingly im-

portant platform to exploit. So far, little is known about the scaling and reliability

of optimization algorithms in P2P environments. In this paper we present empiri-

cal results comparing two algorithms for real-valued search spaces in large-scale

and unreliable networks. Some interesting, and perhaps counter-intuitive findings

are presented: for example, failures in the network can in fact significantly im-

prove performance under some conditions. The two algorithms that are compared

are a known distributed particle swarm optimization (PSO) algorithm and a novel

P2P branch-and-bound (B&B) algorithm based on interval arithmetic. Although

our B&B algorithm is not a black-box heuristic, the PSO algorithm is competitive

in certain cases, in particular, in larger networks. Comparing two rather different

paradigms for solving the same problem gives a better characterization of the

limits and possibilities of optimization in P2P networks.

1 Introduction

During the past decade various large scale networks have emerged as computing plat-

forms such as the Internet, the web, in-house clusters of cheap computers, and, more

recently, networks of mobile devices. The exploitation of these networks for comput-

ing and for other purposes such as file sharing and content distribution has followed

a different path. Whereas computing is normally performed using GRID technologies,

other applications, due to legal and efficiency reasons, favored fully decentralized self-

organizing approaches, that became known as peer-to-peer (P2P) computing.

It is an emerging area of research to transport some of the P2P algorithms back

into the world of scientific computing, in particular, distributed global optimization.

P2P algorithms can replace some of the centralized mechanisms of GRIDs that include
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monitoring and control functions. For example, network nodes can distribute informa-

tion via “gossiping” with each other and they can collectively compute aggregates of

distributed data (average, variance, count, etc) to be used to guide the search process [1].

This in turn increases robustness and communication efficiency, allows for a more fine-

grained control over the parallel optimization process, and makes it possible to utilize

large-scale resources without a full GRID control layer and without reliable central

servers.

The interacting effects of problem difficulty, network size, and failure patterns on

optimization performance and scaling behavior are still poorly understood in P2P global

optimization. In this paper we present empirical results comparing two fully P2P algo-

rithms for real-valued search spaces in large-scale and unreliable networks: a distributed

particle swarm optimization (PSO) algorithm [2] and a novel P2P branch-and-bound

(B&B) algorithm based on interval arithmetic. Although our B&B algorithm is not a

black-box heuristic, the PSO algorithm is competitive in certain cases, in particular, in

larger networks. Some interesting, and perhaps counter-intuitive findings are presented

as well: for example, failures in the network can in fact significantly improve the per-

formance of P2P PSO under some conditions.

Related work. Related work can be classified as parallel optimization, P2P networking,

and, very recently, the intersection of these two fields. We focus on this last category,

mentioning that, for example, [3] is an excellent collection of parallelization techniques

for various algorithms, and, for example, [4] is a useful reference for P2P computing in

general.

In P2P heuristic optimization, proposed algorithms include [5, 6, 2]. They all build

on gossip-based techniques [1, 7] to spread and process information, as well as to im-

plement algorithmic components such as selection and population size control. Our

focus is somewhat different from [5, 6] where it was assumed that population size is a

fixed parameter that needs to be maintained in a distributed way. Instead, we assume

that the network size is given, and should be exploited as fully as possible to optimize

speed. In this context we are interested in understanding the effect of network size on

performance, typical patterns of behavior, and related scaling issues.

In the case of B&B, we are not aware of any fully P2P implementations. The closest

approach is [8], where some components, such as broadcasting the upper bound, are

indeed fully distributed, however, some key centralized aspects of control remain, such

as the branching step and the distribution of work. In unreliable environments we focus

on, this poses a critical problem for robustness.

Contributions. Our contributions include (i) a completely decentralized self-organizing

B&B algorithm, presented in Section 2, where no manager or master nodes are needed

and (ii) a scalability analysis, presented in Section 3, with simulations of P2P networks

of various sizes involving node churn, and with a comparison to a P2P PSO implemen-

tation, that is designed to operate under the same conditions.



2 The Algorithms

Our target networking environment consists of independent nodes that are connected

via an error-free message passing service: each node can pass a message to any target

node, provided the address of the target node is known. We assume that node failures

are possible. Nodes can leave and new nodes can join the network at any time as well.

In the following we describe two algorithms that operate in such networking envi-

ronments. Both assume that all nodes in the network run an identical algorithm; thus no

special role exists such as a master or slave. This design choice increases both robust-

ness to failure and scalability.

None of the algorithms contain special methods to deal with leaving or joining

nodes. New nodes simply start participating after a default initialization procedure, and

failing nodes are tolerated automatically via the inherent (or explicit) redundancy of the

algorithm design, as we explain later.

The above self-organizing features are made possible via a randomized communi-

cation substrate both algorithms are based on. This is remarkable especially because the

two algorithms are rather different, yet they are based on similar basic P2P algorithms

and services. In this section we first briefly overview this communication substrate, and

then we discuss the two algorithms. Only our novel B&B algorithm is discussed in full

detail, as the other ideas are taken from previous publications.

2.1 Peer Sampling and its Applications

We assume that all nodes are able to send a message to a random node from the network

at any time. This very simple communication primitive is called the peer sampling ser-

vice that has a wide range of applications [9]. In this paper we will use this service as

an abstraction, without referring to its implementation; lightweight, robust, fully dis-

tributed implementations exist based on the analogy of gossip [9]. We note that one

of the earliest approaches to use a similar service, called newscast, was the DREAM

framework [10].

The algorithms below will rely on two particular applications of the peer sampling

service. The first is gossip-based broadcasting, and the second is diffusion-inspired load

balancing. In gossip-based broadcasting, nodes periodically communicate pieces of in-

formation they consider “interesting” to random other nodes. This way, information

spreads exponentially fast. Several techniques exist to increase the efficiency and per-

formance of the method [11].

In diffusion-based load balancing, nodes periodically test random other nodes to see

whether those have more load or less load, and then perform a balancing step accord-

ingly. This process models the diffusion of the load over a random network.

Although we do not discuss the implementation of these functions, it has to be

noted that their communication cost is moderate: gossiping involves periodically send-

ing small messages to random peers. The period of communication can be configured.

In our case this period will be in the order of a few function evaluations. For difficult

realistic problems this results in almost negligible communication costs.



Algorithm 1 P2P B&B

1: loop ⊲ main loop

2: I ← priorityQ.getFirst() ⊲ most promising interval; if queue empty, blocks

3: (I1, I2)← branch(I) ⊲ cut the interval in two along longest side

4: min1 ← upperBound(I1) ⊲ minimum of 8 random samples from interval

5: min2 ← upperBound(I2)

6: min← min(min,min1,min2) ⊲ current best value known locally

7: b1 ← lowerBound(I1) ⊲ calculates bound using interval arithmetic

8: b2 ← lowerBound(I2)

9: priorityQ.add(I1, b1) ⊲ queue is ordered based on lower bound

10: priorityQ.add(I2, b2)

11: priorityQ.prune(min) ⊲ remove entries with a higher lower bound than min

12: p← getRandomPeer() ⊲ calls the peer sampling service

13: sendMin(p, min) ⊲ gossips current minimum

14: if p has empty queue or local second best interval is better than p’s best then

15: sendInterval(p, priorityQ.removeSecond()) ⊲ gossip-based load balancing step

16: end if

17: end loop

18: procedure ONRECEIVEINTERVAL(I(⊆D), b)

19: priorityQ.add(I, b) ⊲ D ⊆ IRd is the search space, b is lower bound of I
20: end procedure

21: procedure ONRECEIVEMIN(minp)

22: min← min(minp,min)

23: end procedure

2.2 P2P PSO

Based on gossip-based broadcasting, a distributed implementation of a PSO algorithm

was proposed [2]. Here we will use a special case of this algorithm, where particles

are mapped to nodes: one particle per node. The current best solution, a key guiding

information in PSO, is spread using gossip-based broadcast. In a nutshell, this means

we have a standard PSO algorithm where the number of particles equals the network

size and where the neighborhood structure is a dynamically changing random network.

For more details, the reader is kindly referred to [2].

2.3 P2P B&B

Various parallel implementations of the B&B paradigm are well-known [3]. Our ap-

proach is closest to the work presented in [12] where the bounding technique is based

on interval-arithmetic [13]. The important differences stem from the fact that our ap-

proach is targeted at the P2P network model described above, and it is based on gossip

instead of shared memory.

The basic idea is that, instead of storing it in shared memory, the lowest known

upper bound of the global minimum is broadcast using gossip. In addition, the intervals

to be processed are distributed over the network using gossip-based load balancing.

The algorithm that is run at all nodes is shown in Algorithm 1. Each node maintains

a priority queue and a current best minimum value. The priority queue contains inter-



vals ordered according to their lower bound, where the most promising interval has the

lowest lower bound.

The lower bound for an interval is calculated using interval arithmetic, which guar-

antees that the calculated bound is indeed a lower bound. This way, in the lack of fail-

ures in the network, the algorithm is guaranteed to eventually find the global minimum.

However, we continuously have a current best value as well, so the algorithm can be

terminated at any time. Any function with a precise mathematical definition supports

interval arithmetic, although in some cases at a relatively large cost. Detailed discussion

of the details of interval arithmetic is out of the scope of the present paper, please refer

to [13].

We start the algorithm by sending the search domain D with lower bound b =∞ to

a random node. In faulty environments we can send this initial interval to more than one

node. Termination is not discussed here: since it is an any-time algorithm, as mentioned

above, any suitable termination condition (time-based, quality-based, etc) is applicable,

just like in the case of metaheuristics.

Note that there are countless points where the algorithm can be optimized and fine-

tuned, such as the branching step, the upper bound approximation, the load balancing

step, and so on. There are various techniques to optimize the bounding step as well,

such as using derivatives, etc. We intentionally keep the most basic version, which in

this form has very few parameters. One of them is the number of samples in the upper

bound approximation that we fix at 8. The other is the number of nodes the initial

problem is sent to at startup time. This will be 1 for networks without failures, and 10

for networks with churn (nodes joining and leaving).

3 Experimental Results

The algorithms described above were compared empirically using the P2P network

simulator PeerSim [14]. We first describe the experimental setup and methodology and

subsequently we present and discuss results.

3.1 Experimental Setup

We selected well-known test functions as shown in Table 1. We included Sphere2 and

Sphere10 as easy unimodal functions. Griewank10 is similar to Sphere10 with high fre-

quency sinusoidal “bumps” superimposed on it. Schaffer10 is a sphere-symmetric func-

tion where the global minimum is surrounded by deceptive spheres. These two functions

were designed to mislead local optimizers. Finally, Levy4 is not unlike Griewank10, but

more asymmetric, and involves higher amplitude noise as well. Levy4 is in fact specif-

ically designed to be difficult for interval arithmetic-based approaches.

We considered the following parameters, and examined their interconnection during

the experiments:

– network size (N ): the number of nodes in the network

– running time (t): the duration while the network is running. Note that it is is not the

sum of the running time of the nodes. The unit of time is one function evaluation.



Function f(x) D f(x∗) K

Sphere2 x2
1 + x2

2 [−5.12, 5.12]2 0 1

Sphere10
∑10

i=1
x2

i [−5.12, 5.12]10 0 1

Griewank10
∑10

i=1

x2

i

4000
−

∏10

i=1
cos

(

xi√
i

)

+ 1 [−600, 600]10 0 ≈ 1019

Schaffer10 0.5 + (sin2(

√

∑

10

i=1
x2

i )− 0.5)/ [−100, 100]10 0 ≈ 63

(1 + (
∑

10

i=1
x2

1)/1000)
2 spheres

Levy4 sin2(3πx1)+ [−10, 10]4 −21.502356 71000
∑3

i=1
(xi − 1)2(1 + sin2(3πxi+1))+

(x4 − 1)(1 + sin2(2πx4))

Table 1. Test functions. D: search space; f(x∗): global minimum value; K : number of local

minima.

– function evaluations (E): the number of overall function evaluations performed in

the network

– quality (ǫ): the difference of the fitness of the best solution found in the entire

network and the optimal fitness

For example, if t = 10 and N = 10 then we know that E = 100 evaluations are

performed.

Recall, that the simulated network consists of independent nodes that are connected

only via an error-free message passing service. Messages are delayed by a uniform ran-

dom delay drawn from [0, teval/2] where teval is the time for one function evaluation.

In fact, teval is considerable in realistic problems, so our model of message delay is

rather pessimistic.

To simulate churn, in some of the experiments nodes are replaced with a certain

probability (churn rate) with uninitialized nodes in any given fixed-length time. For

simplicity we applied one fixed churn rate: 1% of nodes are replaced during a time

interval taken by 20 function evaluations. The actual wall-clock time of one function

evaluation has a large effect on how realistic this setting is. In real P2P networks the

observed churn rate is around 0.01% per second, corresponding to 2-3 hour uptimes on

average [15]. In our setting we allow for 2000 function evaluations during average up-

time, which maps to 5 seconds per function evaluation. If a function is faster to evaluate,

our churn rate setting becomes more pessimistic.

To simplify discussion, we assume that the startup of the protocol is synchronous,

that is, all nodes in the network are informed at a certain point in time that the optimiza-

tion process should begin. The fine details of the startup process is out of the scope of

this paper, but even in the worst case, in the lack of synchrony and a priori knowledge

at the nodes, gossip-based solutions can be applied that are orders of magnitude faster

than the timescale of the optimization task.
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Fig. 1. Solution quality as a function of network size and churn. Geometric mean is plotted (aver-

age digits of precision) with error bars indicating the 10% and 90% percentiles of 10 experiments

(100 experiments for the more unstable Levy4). Note that lower values for quality are better

(indicate more precise digits).

3.2 Results and Discussion

Since neither of the algorithms is fine tuned, and since our focus is the exploitation

of very large networks, here we are interested in understanding the overall scaling be-

havior of the algorithms. We focus on two key properties in this context: (i) scaling

with the constraint of a fixed amount of available function evaluations, and (ii) with the

constraint of having to reach a certain solution quality.

Our first set of experiments involves running the two algorithms with and without

churn until 220 function evaluations are consumed.4 There are two questions one can

ask: what is the solution quality that is reached, and what is the running time of the

algorithms?

Solution quality is illustrated in Figure 1. The first clear effect is that for the larger

networks, where network size is close to the available function evaluations, performance

degrades quickly in all cases. This is not surprising, as in that case there are only very

4 We note here that for B&B, one cycle of Algorithm 1 was considered to take 20 evaluations,

that is, in addition to the 2 · 8 = 16 normal evaluations, the interval-evaluation was considered

to be equivalent to 4 evaluations (based on empirical tests on our test functions).



few evaluations available at all nodes, so search degrades to random search if the algo-

rithm is greedy and wants to utilize all available resources as quickly as possible.

There is an interesting case though: Sphere2. It is not shown because it is so easy

for both algorithms that it is solved to optimality by P2P B&B in all cases, and by

PSO in almost all cases except for the largest networks. The interesting effect we can

discover is that the B&B approach “refuses” to utilize the entire network, because it

cannot generate enough promising intervals (pruning is “too” efficient) and therefore

it can deliver optimal solutions irrespective of network size, but at the cost of longer

running times (see also Figure 2, as explained later). Depending on the context, this

effect can be very advantageous but harmful as well.

Another observation is that, while B&B is very efficient on the smaller networks,

PSO consistently outperforms B&B on the large networks. Whereas B&B can never

benefit from larger network sizes (since it only increases the chance of processing some

intervals unnecessarily), PSO has an optimal network size that represents enough possi-

bility for exploration, but that also allocates enough function evaluations for each node

to perform exploitation as well.

Function Levy4, that is hard for B&B, turns out to be easier for PSO, where PSO

significantly outperforms B&B (note, that in the case of Griewank10 and Schaffer10,

the situation is the opposite, and the sphere functions are easy for both algorithms). On

Levy4, PSO does actually get stuck in bad local optima occasionally, but it can break

out sufficiently often to provide a good average performance, whereas B&B gets bogged

down not being able to do enough pruning due to the characteristics of the function.

A further support for this explanation is the curious effect of churn. On Levy4,

churn increases the ability of PSO to break out of local optima via, in effect, restarting

the nodes every now and then, while of course the global best solution never gets erased;

it keeps circulating in the network via gossip. Indeed, in the experiments with churn, the

performance of PSO is both better on average and more stable (has a lower variance).

Again, just like larger networks, for B&B churn is always guaranteed to be harmful or

neutral at best; Figure 1 also supports this observation.

As of running time, P2P PSO always fully utilizes the network by definition, as-

suming a synchronous startup of the protocol, so its running time is 220/N . This of

course cannot be interpreted as linear scaling, since the actual quality of the output will

be different in different network sizes.

In the case of P2P B&B, the situation is more complex, as illustrated by Figure 2.

Only the sphere functions are shown: the other functions behave almost identically to

Sphere10. For larger networks the curve leaves linear scaling since there startup effects

start to become significant: B&B needs O(log N) cycles of its main loop (due to gossip-

based load balancing) until sub-tasks reach all nodes. In addition, for problems that are

especially easy, such as Sphere2, there are simply not enough sub-tasks to distribute

because pruning is too efficient. This way, the algorithm never utilizes more than a

given number of nodes, independently of how many are available. For more difficult

problems, this effect kicks in at much larger network sizes.

In the case of churn, for small network sizes there is a significant probability that

all nodes get replaced at the same time (that is, before old nodes could communicate
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with new ones). In such cases all sub-tasks get lost and the optimization process stops:

hence the short running times, that do never reach 220 evaluations.

Figure 3 shows results illustrating our second question on scaling: the time needed

to reach a certain quality. The most remarkable fact that we observe is that on problems

that are easy for B&B, it is extremely fast (and also extremely efficient, as we have seen)

on smaller networks, but this effect does not scale up to larger networks. In fact, the

additional nodes (as we increase network size) seem only to add unnecessary overhead.

On Levy4, however, we observe scaling behavior similar to that of PSO.

4 Conclusions and Future Work

We have seen evidence that the set of difficult problems is different for the two algo-

rithms tested, and overall they both show a rich set of behavioral patterns with respect

to various aspects of scaling.

An interesting observation is that parameters of the environment, such as size and

failure patterns should best be interpreted as (meta-)algorithm parameters controlling

exploration and exploitation. In the case of B&B this meta-level operates on the in-

tervals: if we increase network size, selection pressure decreases: more intervals get

evaluated and “branched”. However, since B&B is extremely conservative with the re-

moval of intervals, decreasing selection pressure often results in increasing overhead, if

the problem at hand is easy.

For P2P PSO, increasing the network size is equivalent to increasing the population

size. Interestingly, a non-zero churn rate introduces a restarting operator for PSO, that

can in fact increase performance on at least some types of problems.

Unlike in small-scale controlled environments, in P2P networks system parameters

(like network size and churn rate) are non-trivial to observe and exploit. An exciting
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research direction is to monitor these parameters (as well as the performance of the

algorithm) in a fully-distributed way, and to design distributed algorithms that can adapt

automatically.
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