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Abstract: Droughts are complex natural phenomena with multifaceted impacts, and a thorough
drought impact assessment should entail a suite of adequate modelling tools and also include
observational data, thus hindering the feasibility of such studies at large scales. In this work we
present a methodology that tackles this obstacle by narrowing down the study area to a smaller subset
of potential drought hot-spots (i.e., areas where drought conditions are expected to be exacerbated,
based on future climate projections). We achieve this by exploring a novel interpretation of a
well-established meteorological drought index that we link to the hydrological drought status of a
catchment by calibrating its use on the basis of streamflow observational data. We exemplify this
methodology over 25 sub-catchments pertaining to the Adige catchment. At the regional level, our
findings highlight how the response to meteorological drought in Alpine catchments is complex and
influenced by both the hydrological properties of each catchment and the presence of water-storage
infrastructures. The proposed methodology provides an interpretation of the hydrologic behavior of
the analyzed sub-catchments in line with other studies, suggesting that it can serve as a reliable tool
for identifying potential drought hot-spots in large river basins.

Keywords: drought hot-spots; SPEI; climate change; Alpine catchment

1. Introduction

The Italian Alps are historically regarded as Europe’s water tower, hosting in their
glaciers, snowfields, and aquifers the majority of freshwater feeding major European water
streams such as the Danube, Rhine, Po, and Rhone rivers [1]. Despite not being traditionally
threatened by persistent drought due to its continental climate and high altitude, the Alpine
region has been declared at drought risk for more than a decade [2] as a consequence of
the current trends of changing climate and of the reduction of its water resources [3,4], as
well as of the projected increases in competing water uses that are to be expected in the
future [5–7].

The projected trends in precipitation for the next century foresee a substantial decrease
over the Alpine region, accompanied by a stronger reduction in the frequency and intensity
of rainfall events during the summer season and a simultaneous increase in extreme events
concentrated during cold seasons [8]. The average temperature in the Alpine region in-
creased by about 2 ◦C during the 20th century, at a rate which is about two times higher than
the Northern Hemisphere average [9]; moreover, an average warming of 0.25 ◦C per decade
is expected over the Alps for the first half of the 21st century, a rate that is projected to
increase to 0.36 ◦C per decade during the second half of the century [10]. A possible explana-
tion for this faster-increasing trend is to be found in the snow-albedo feedback as indicated
by the recent works of Pepin and Lundquist [11], Scherrer et al. [12], Notarnicola [13]. In
this respect, the projected combination of meteorological changes toward a dryer, hotter,
and more extreme climate threatens the onset of worsening drought conditions in the
Alpine region [14].
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Droughts, which can be defined as extended periods of time characterized by below-
average water availability, can be further broken down into consequential events that
usually take place in a chronological order: First, decreased rainfall causes the so-called
meteorological drought. In combination with high temperatures, this results in increased
evapotranspiration and decreased soil moisture availability, known as agricultural drought.
Finally, the effect of anthropogenic stressors (e.g., industrial and household water usage,
seasonal water storage, irrigation, etc.) on water reserves such as lakes and aquifers might
result in decreased streamflow, often referred to as hydrological drought [15]. Notably, fresh-
water availability is crucial in several sectors related to the social–economical–ecological
nexus of the Alpine communities and environment, such as agriculture [16,17], biodiver-
sity [18], winter tourism [19], and hydropower generation [20–22]; in turn, this has led to
increasing scientific and institutional interest in drought monitoring and prediction, often
leading to the development of a variety of indexes, predictive tools, and early warning
systems (see, e.g., [23–25], etc.).

Meteorological droughts over the Alps showed a shift towards prolonged events over
the last two centuries [26] and are predicted to increase during the 21st century due to
climate change [27], although it was suggested that the strength of a given drought signal
strongly depends on the considered index [28] and that the use of different indexes might
even lead to conflicting results [29]. Furthermore, droughts are complex phenomena, caused
by a combination of events and pre-existing hydro-meteorological conditions, rendering
the possibility to validate the use of any drought indexes or to set up warning systems
based exclusively on observed data a very challenging task, especially in the case of large
spatial domains [30]. A first attempt at compiling a systematic inventory of recorded
drought events and climate evolution was recently made by an international consortium
(ADO, ref. [31]).

Noticeably, the reliable identification of present and future drought conditions in the
Alpine region carries several peculiarities that must be faced with adequate tools. First,
Alpine catchments are characterized by complex orography: to adequately cope with this,
the adopted climate models should be highly resolved in space and time and convective
permitting (i.e., that explicitly accounts for variations in precipitation due to altitude)
(see [32]), involving high computational costs. To the same end, detailed precipitation and
evapotranspiration observational datasets should be made available in order to reliably
validate or bias-correct the chosen climate models.

Managers and policymakers are often interested in hydrological and agricultural
drought modelling, which must include a thorough assessment of the potential stress on
a catchment’s water resources exerted by different and often competing water uses. In
this context, predictive drought modeling should explicitly consider the relevant processes
and characteristics of the domain [33] and should quantitatively assess the interactions
occurring between the study area in its natural conditions and the main alteration due to
anthropogenic water uses (see, e.g., [34,35]). Furthermore, it should be taken into account
that different systems (e.g., agriculture, ecosystem, hydrology, etc.) respond to drought
conditions at different timescales [36], which are in turn influenced by case-specific land
use and resource management [37]. Considering the huge number of uncertainty factors
revolving around drought prediction together with the related costs (e.g., computational
demand, efforts for data collection, impact evaluation, etc.), it comes as no surprise that sta-
tistical indexes are the most widely used approach to investigate such complex phenomena.
The Standardized Precipitation Index (ref. [38], SPI) and Standardized Precipitation Evap-
otranspiration Index (ref. [39], SPEI) are indeed the most widely used statistical indexes
for large-scale drought assessment. Such indexes have been adopted in several regions
to evaluate drought conditions during both historical (see, e.g., [40,41]) and future time
periods (see, e.g., [14,27,42,43]). Notably, the mutual relationship between meteorological
and hydrological drought indicators has catalyzed increasing attention in the last years
(see, e.g., [44–47]), acknowledging the existence of multiple interplaying factors that should
be considered in drought assessment.
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To partially overcome the aforementioned challenges associated with a thorough
drought assessment, we propose a reliable, yet parsimonious approach that is suitable for
identifying potential drought hot-spots in the context of climate change, leveraging rainfall
and streamflow observations for a reference historical period and climatic projections for the
future period. The identification of the areas at drought risk by means of this preliminary
screening will allow for a more focused investigation and efficient allocation of the available
resources. Being parsimonious, the methodology is ideal for screening large domains before
resorting to more detailed procedures and tools for the climatological, hydrological, and
data collection analysis. We show an application of the developed methodology to the
Adige catchment, whose sub-catchments can be considered representative of the hydro-
climatological conditions observed in several Alpine watersheds.

This paper is organized as follows: in Sections 2 and 3 we present the study area and
the data used in our approach, respectively; Section 4 provides an overview of the adopted
methodology. Section 5 showcases the results of our investigation, while in Section 6 we
discuss our methodology and provide some considerations on its applicability in different
contexts. Finally, in Section 7 we draw the final conclusions.

2. Study Area

This work focuses on the Adige catchment closed at the Vó Destro gauging station
(identified by code IDRTN27 in Figure 1), with a total drainage area of 10,500 km2. The
catchment is located in the eastern portion of the Italian Alps (see Figure 1) and is char-
acterized by a complex topography, with mountainous areas reaching over 3800 m in
altitude and downstream valleys around 200 m.a.s.l. Due to its morphology, precipitation
is unevenly distributed within the catchment. Lower precipitation is typically observed in
the highly elevated north-western part of the catchment (known as Val Venosta), averaging
600 mm/year, whereas an average precipitation of 1600 mm/year is observed at lower
altitudes, especially in the southern part of the catchment; mean temperatures range from
a minimum of −4 ◦C in January to a maximum of 14 ◦C in July, with a strong seasonal
variability mainly related to the altitude [48,49]. Streamflows along the Adige’s main stem
reach their minimum in winter when a large share of the precipitation is stored as snow;
high flows are typically observed in early summer mainly due to snowmelt and then later
in autumn due to cyclonic storms [49]; tributaries located in the north-western part of the
catchment (which has the highest average altitude) exhibit a typically glacio-nival stream-
flow regime, with low flows in winter and high flows in summer due to ice- and snowmelt.
Finally, the north-eastern headwaters show an intermediate behavior, defined as nivo-
pluvial, where earlier peak flows occur in late spring and relatively high flows are observed
in autumn [50]. The entire Adige catchment is strongly regulated by a number of reservoirs
and diversion channels that exploit freshwaters for hydropower production [51–53], exert-
ing a strong control on downstream flow regimes. Table 1 summarizes some properties of
the sub-catchments analyzed in the present work: the cumulative effective storage (VTOT)
present within each sub-catchment, the average streamflow (QAVG) for each sub-catchment,
and the recharge coefficient Rc, computed as the ratio between the former and the latter
[51], which provides an estimate of the degree of regulation of each sub-catchment. Finally,
the temporal coverage of monthly average streamflow time series is provided for each sub-
catchment (QMON , which computation will be further detailed in the ensuing Section 3.3).
The heterogeneous hydrological response to precipitation of the streams that are present
within the Adige catchment is expected to increase as a consequence of the projected effects
of climate change, thus making the Adige catchment a very interesting case for showcasing
the proposed drought hot-spot screening methodology.
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Figure 1. Location within the Adige river basin of the 25 stream-gauging stations and the correspond-
ing drainage sub-catchments, together with the main dams present in the basin. The inset shows the
location of the Adige catchment within the Italian territory.

Table 1. Main characteristics of the sub-catchments analyzed in the present work: catchment area,
cumulative effective reservoir storage (VTOT), long-term average streamflow (QAVG), coverage of the
monthly average streamflow time series (QMON), and recharge coefficient (Rc) computed as the ratio
between cumulative effective storage and long-term average streamflow.

Station Area [km2] VTOT [Mm3] QAVG [m3/s] QMON cov. [%] RC [Days]

05950PG 831.74 122.00 12.31 49.43 114.71
19850PG 1645.86 184.71 32.61 94.83 65.56
20750PG 47.76 0.00 3.56 35.34 0.00
29850PG 2726.27 241.74 54.88 95.69 50.98
31950PG 73.85 0.00 3.03 98.28 0.00
33550PG 107.98 0.00 4.06 41.38 0.00
36750PG 207.77 0.00 7.56 48.28 0.00
43350PG 265.73 0.00 5.36 52.73 0.00
45750PG 118.13 0.00 2.48 56.32 0.00
48750PG 70.42 0.00 1.98 48.28 0.00
51450PG 155.57 0.00 6.08 46.55 0.00
57150PG 418.87 0.00 14.60 51.72 0.00
59450PG 607.93 15.34 20.85 56.90 8.52
64550PG 392.62 0.00 8.09 76.44 0.00
67350PG 1921.53 20.14 44.74 94.68 5.21
71550PG 44.78 0.00 0.92 35.78 0.00
85550PG 6920.82 265.68 147.18 93.10 20.89
IDRTN06 467.15 28.91 10.96 32.90 30.53
IDRTN08 1354.35 201.54 35.34 33.76 66.01
IDRTN18 93.65 0.00 3.31 37.50 0.00
IDRTN20 205.76 16.00 6.07 85.20 30.51
IDRTN23 9793.21 531.26 198.72 100.00 30.94
IDRTN21 29.63 0.17 0.27 33.19 7.29
IDRTN17 174.29 12.39 4.48 33.62 32.01
IDRTN27 10,650.81 543.65 107.36 32.90 58.61
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3. Data

Our proposed methodology takes advantage of the information provided by the
spatially-distributed observational data of precipitation and air temperature to compute a
meteorological drought index, which is then correlated to a hydrological drought index
computed on the basis of historical streamflow observations collected during the same
period (see Section 3.1). Finally, the meteorological drought index is computed for the
future time window on the basis of available climatological model data (presented in
Section 3.2).

3.1. Observational Data

Monthly precipitation and evapotranspiration time series for the catchments under
investigation were computed on the basis of daily information provided by the ADIGE me-
teorological dataset [49]. The dataset consists of daily observations at 244 and 350 gauging
stations for precipitation and air temperature, respectively, that have been distributed on a
1 × 1 km grid using the Ordinary Kriging with External Drift (OKED) method, adopting
elevation as the secondary variable [54]. Starting from the minimum, maximum, and mean
daily air temperature present in the dataset, the daily potential evapotranspiration (PET)
was computed, according to the Hargreaves–Samani approach [55] for each grid cell. We
note that the ADIGE dataset was found to be the most reliable dataset for reproducing the
observed streamflows in the Adige catchment [48]. The ADIGE dataset is available over
the 1925–2013 time window with no gaps [49].

Daily streamflow observations at 25 stream gauging stations evenly spread within
the Adige river basin (whose locations are shown in Figure 1) were provided by the Hy-
drological Offices of Trento (http://www.floods.it/public/, accessed on 21 February 2022)
and Bolzano (http://www.provincia.bz.it/hydro/, accessed on 21 February 2022). The
available measurements cover the 1956–2013 time window at a daily scale, with few gaps.
The 25 stream-gauging stations identify the outlet of the sub-catchments, some of which
are nested, which were considered in the present work to exemplify our proposed method-
ology.

3.2. Climate Model Data

The climate model data were retrieved from the EURO-CORDEX programme (COordi-
nated Regional Downscaling EXperiment [56]), which provides future climate predictions
over the European domain. In order to reduce the overall computational burden of our pro-
posed methodology, we followed the selection procedure proposed by Vrzel et al. [57], who
identified, by means of a clustering analysis, 3 climate model combinations (as provided by
the selection of a driving Global Circulation Model, GCM, with a nested Regional Climate
Model, RCM) which, among all, ensured the largest climatological variability over several
analyzed catchments, including that of the Adige: the so-identified GCM–RCM combina-
tions are synthesized in Table 2. In particular, we considered GCM–RCM combinations at a
spatial resolution of about 12 km (EUR-11 ensemble). Note that the same 3 GCM–RCM
combinations were adopted in a recent work by Majone et al. [58] that analyzed the impact
of climate change on high streamflow extremes in the same study region. The adoption of
this sub-selection serves the dual purpose of reducing the overall computational burden
and of ensuring that the resulting outcome will entail the widest variety of scenarios, thus
making the identification of future drought hot-spots less computationally expensive, yet
accurate and reliable. Furthermore, in the analysis we only considered the RCP4.5 emission
scenario, adopting the 1981–2010 time window as the reference period and the 2041–2070
time window as the future period. These datasets contain records of the daily precipitation
and minimum, mean, and maximum temperature; similarly to what was performed for
the observational data, the corresponding PET time series were computed according to
Hargreaves and Samani [55].

http://www.floods.it/public/
http://www.provincia.bz.it/hydro/
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Table 2. GCM–RCM combinations adopted in the present study.

RCM GCM Acronym

CLMcom-CCLM4-8-17 EC-EARTH-r1 CLMcom

KNMI-RACMO22E EC-EARTH-r12 KNMI

SMHI-RCA4 HadGEM2-ES SMHI

Figure 2 compares the monthly average and cumulative precipitation (Figure 2a) and
monthly average temperature (Figure 2b) of the ADIGE dataset with those of the CORDEX
models, which were spatially averaged over the entire catchment for the purpose of this
comparison. The average precipitation in the ADIGE dataset is slightly higher than that
of the CORDEX datasets in the first six months of the year, with the largest discrepancy
observed in May (20 mm/month difference); in the second part of the year, the CLMcom
and KNMI datasets provide slightly larger precipitation values than ADIGE, compensating
for the first part of the year and resulting in similar cumulative yearly precipitation. On
the other hand, SMHI slightly underestimates the precipitation and this is reflected in the
annual cumulative value. The inter-annual variability of the models is similar, as captured
by the similar inter-quantile range (IQR) bars depicted in Figure 2a and synthesized in
Table 3. Concerning temperature, the CORDEX models exhibit slightly colder temperatures
from September to March, resulting in an average bias of about 0.5 ◦C over the entire
year. On the other hand, the monthly IQR values are comparable for all months, with an
annual average in the range between 2.16 ◦C and 2.21 ◦C (see Table 4), thus supporting
the conclusion that the four datasets are in substantial agreement as far as temperature is
concerned. Finally, the R-squared correlation coefficient between the long-term monthly
averages of ADIGE (i.e., 12 values of the barplot) and those of the CORDEX models was
computed for both precipitation and temperature. These values (displayed at the bottom
of Tables 3 and 4) are very close to 1 in all cases, further supporting our conclusion about
the overall similarity between the observed data and the chosen climate models over the
Adige catchment in the reference period 1981–2010.

(a)

Figure 2. Cont.
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(b)

Figure 2. Comparison between the ADIGE dataset and the three CORDEX datasets for (a) average
monthly precipitation and (b) average monthly temperature over the reference time window 1981–
2010. The IQR bars are also shown for each month (values shown in Tables 3 and 4).

Table 3. Inter-quantile ranges (IQR) of the monthly precipitation totals and corresponding 25-th
quantile (Q25) for the ADIGE dataset and the CORDEX models. The last rows display the average
IQR among all months and the correlation (R2 coefficient) between average monthly value time series
of ADIGE and those of corresponding values from CORDEX models (depicted in Figure 2a).

Precipitation
ADIGE CLM KNMI SMHI

Q25 IQR Q25 IQR Q25 IQR Q25 IQR

January 19.31 32.45 15.81 26.11 10.08 27.92 11.94 29.42
February 12.89 30.72 17.37 28.57 15.85 34.18 10.63 25.39
March 30.16 30.69 30.57 27.69 24.54 37.99 29.58 31.50
April 44.31 42.16 57.62 33.70 44.41 60.74 42.13 39.52
May 67.67 52.68 57.81 45.48 68.86 38.15 54.78 48.70
June 86.52 43.82 82.82 78.71 96.35 38.23 70.62 51.30
July 99.55 25.81 87.00 67.40 99.31 43.92 79.70 58.33
August 84.64 56.33 86.88 60.07 94.00 46.24 63.56 63.48
September 56.54 58.65 68.14 51.01 64.16 32.40 50.23 50.38
October 41.68 86.39 51.63 46.70 54.20 65.42 38.47 92.05
November 28.93 92.25 62.06 60.84 48.68 76.91 50.54 46.49
December 34.00 36.31 24.27 53.62 19.78 54.20 29.24 23.28

IQRAV 49.02 48.33 46.36 46.65
R2 0.9608 0.9657 0.9657

3.3. Preliminary Data Elaborations

Our methodology relies on the application of monthly indexes for each investigated
sub-catchment. The sub-catchments are uniquely identified by a streamflow-gauging
station at their closing point and are represented in Figure 1. Therefore, all data underwent
preliminary processing in order to suit our analysis. The streamflow data at the gauging
stations (available at a daily time scale) were considered as representative of their entire
sub-catchment: in this case, the data were only averaged at the monthly scale, producing
a time series of the average monthly streamflow for each sub-catchment. In particular,
we retained only months in which 90% or more of the daily measurements were present
(i.e., 27 or more days), while the other months were considered as missing values. The
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resulting percentage of time coverage associated with the monthly streamflow time series
is summarized in Table 1.

Table 4. Inter-quantile ranges (IQR) of the monthly temperatures and corresponding 25-th quantile
(Q25) for the ADIGE dataset and the CORDEX models. The last rows display the average IQR among
all months and the correlation (R2 coefficient) between average monthly value time series of ADIGE
and those of corresponding values from CORDEX models (depicted in Figure 2b).

Temperature
ADIGE CLM KNMI SMHI

Q25 IQR Q25 IQR Q25 IQR Q25 IQR

January −4.86 2.87 −5.18 1.54 −5.34 1.99 −5.73 2.60
February −4.60 3.69 −4.27 2.22 −4.53 2.33 −4.87 2.98
March −0.99 3.21 −1.67 2.60 −1.35 2.25 −0.50 1.60
April 3.20 1.39 2.78 1.91 3.37 1.35 2.74 2.04
May 8.37 1.70 7.93 2.80 8.14 3.00 8.71 2.25
June 11.65 1.56 11.96 1.85 12.05 2.59 12.41 2.94
July 13.68 1.99 14.66 2.19 13.83 2.79 13.52 2.71
August 13.79 1.52 12.63 2.39 12.60 2.47 13.28 2.10
September 9.55 2.24 8.90 1.59 8.65 2.14 8.99 1.84
October 5.78 2.12 4.13 2.03 5.06 1.32 4.32 2.21
November 0.12 1.94 −1.33 2.62 −1.73 2.35 −0.57 1.81
December −3.62 2.07 −5.89 2.74 −4.44 1.27 −4.15 0.99

IQRAV 2.19 2.21 2.16 2.17
R2 0.9959 0.9964 0.9956

The meteorological data provided by the ADIGE dataset were available at a daily
time scale and on a 1 × 1 km grid; therefore, they were first spatially aggregated at the
sub-catchment level and subsequently at the monthly time scale. Spatial aggregation
was performed considering the nested structure of the sub-catchments; therefore, all the
upstream contributing sub-catchments were considered when computing the input time
series for the downstream ones. The daily precipitation (P) values were averaged on all
grid cells pertaining to each sub-catchment (spatial aggregation) and then cumulated for
each month (temporal aggregation), yielding a monthly time series of precipitation for
each catchment. Likewise, monthly time series of potential evapotranspiration (PET) were
obtained starting from the daily PET data.

A similar procedure was carried out for obtaining monthly time series of P and PET
starting from the daily data of the CORDEX datasets. In particular, the CORDEX data were
resampled using the nearest-neighbor method to the ADIGE grid (1 km spacing) without
performing an additional downscaling procedure.

4. Methodology

The framework adopted in our analysis is applied at the sub-catchment scale. First,
the data are aggregated at the monthly time scale in each sub-catchment, as detailed in
Section 3.3. The meteorological and hydrological drought indexes are then computed as
detailed in Sections 4.1 and 4.2, respectively. Subsequently, the meteorological drought
index is associated with the hydrological response of each sub-catchment (i.e., streamflow
time series), as detailed in Section 4.3. The meteorological drought index is then computed
at each sub-catchment for the reference and future period. After defining proper thresholds
for the identification of drought events, the variation in meteorological drought statistics
between the future and reference periods is computed and adopted for hydrological
drought hot-spot identification (as detailed in Section 4.5).

Details about the methodology are provided in the ensuing subsections whilst a
graphical overview is depicted in Figure 3.
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Figure 3. Schematic overview of the proposed methodology.

4.1. Meteorological Drought Index

The meteorological drought index adopted in this work is the Standardized Precipita-
tion Evapotranspiration Index (SPEI) developed by Vicente-Serrano et al. [39]. The index
is conceived as an extension of the widely applied Standardized Precipitation Index (SPI,
ref. [38]): in SPEI, the input variable is provided by the normalized cumulative water
deficit (D) as defined in Equation (1) in place of the normalized time series of cumulative
precipitation used in the SPI. The SPEI is therefore designed to take into account both
precipitation and potential evapotranspiration in determining the droughts and, contrary
to SPI, it is able to capture the non-negligible impact of increased temperatures on the
water budget.

Di = Pi − PETi (1)

In Equation (1), Di, Pi and PETi represent the deficit, precipitation, and potential
evapotranspiration values during month i, respectively. Following the same procedure
typically adopted for the SPI the calculated Di values are then aggregated over different
characteristic timescales, ts:

Di,ts =
i

∑
j=i−ts+1

Pj − PETj (2)

where the summation indicates that at every i-th month, the preceding ts months (including
the current one) are included in the computation of the aggregated water deficit. Depending
on the target application, the timescales vary typically between 1 and 24 months. As an
example, if the considered timescale is 3 months, the input value for January will consider
the cumulative monthly water deficit of November, December, and January itself.

Standardization (i.e., normalization) of the water deficit variable (for a given timescale)
is then performed independently for each month of the year by fitting the monthly deficit
time series Di,ts to a parametric cumulative distribution function (CDF) from which the
non-exceeding probabilities are then transformed into a standard normal distribution
(with mean µ = 0 and standard deviation σ = 1). This last transformation makes the
SPEI easily interpretable, as its values represent the difference (in terms of multiples of
standard deviations) between the current month and a reference value. The standardization
procedure of the deficit values aggregated over a generic timescale (Di,ts) and the derivation
of the corresponding SPEI index is exemplified in Figure 4. Several studies suggest the use
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of a log-logistic distribution [39] for fitting the water deficit time series, although a recent
contribution suggests the generalized extreme values (GEV) distribution when referring
to applications in Europe [59]. In this work we tested both distribution families with the
Kolmogorov–Smirnov (KS) test and by computing the Akaike information criterion (AIC)
to assess the most appropriate distribution for fitting the monthly water deficit time series.
The results show that both distributions were not rejected from the KS test at a significance
level of α = 0.05 and that the log-logistic distribution presented the lowest average KS and
AIC statistics (across all months and sub-catchments). In particular, for the monthly water
deficit time series the KS average is 0.103 for GEV and 0.07 for log-logistic and the AIC
average is 588.0 for GEV and 587.1 for log-logistic. Although the differences between GEV
and log-logistic are small, the presented results justify the adoption of the latter as the
distribution to adopt in our work. The parameters for each distribution were inferred using
maximum likelihood estimation (MLE).

(a) (b)

Figure 4. Exemplification of SPEI index computation: (a) derivation of the empirical CDF of the
deficit values aggregated over a given timescale (Di,ts), fitting with a log−logistic distribution to the
sample, and transformation into a normal distribution from which SPEI values are extracted; (b) an
example of SPEI time series that identifies multiple drought events and their associated intensity,
duration, and severity.

The interpretation of the SPEI time series depicted in Figure 4b attributes wetter-than-
average conditions to SPEI values above the chosen threshold of 0 (highly positive values
representing an extremely wetter month compared to the reference distribution for that
month), whereas negative SPEI values represent dryer-than-average months.

4.2. Hydrological Drought Index

In this work, we also evaluated hydrological drought conditions of the investigated
sub-catchment by computing the Standardized Streamflow Index (SSFI) [60,61]. Similarly
to the SPEI, SSFI is also computed at the monthly time scale. The monthly streamflow time
series were computed by averaging the observed daily streamflow time series available
at the different gauging stations, as detailed in Section 3.3; standardization was then
performed following the same procedure described for SPEI in Section 4.1. Furthermore, in
this case, both log-logistic and GEV distributions were used as a fitting CDF for each month,
with the former providing slightly better performances among all sub-catchments and
months of the year. In particular, the KS average is 0.146 for GEV and 0.106 for log-logistic
and the AIC average is 286.8 for GEV and 286.3 for log-logistic. Validation of the inference
procedures was performed by means of the successful application of the Kolmogorov–
Smirnov and Pearson tests. The SSFI time series were therefore computed considering a
1-month timescale, fitting a log-logistic distribution with MLE to each month’s average
flows. The interpretation of the SSFI is similar to that of the SPEI, as positive values indicate
higher-than-average streamflows, and vice versa.
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4.3. Characteristic Timescale

For the purposes of our work, we introduce and adopt the concept of the characteristic
timescale of a catchment. Indeed, meteorological drought indexes such as SPEI can be
computed at any timescale; hence, their interpretation can vary widely (see, e.g., [23,39]).
Our objective here is to link meteorological droughts to the hydrological drought conditions
of a sub-catchment. In order to do so, we computed the SPEI at all timescales ranging
between 1 and 12 months and the SSFI at the 1-month timescale; then, we selected as
the characteristic timescale for a given sub-catchment the aggregation time for the SPEI
leading to the highest linear correlation with the SSFI (computed with the Spearman
rank correlation test [62]). This allows us to identify in a simplified way the hydrological
response time of the sub-catchments, or, in other words, to estimate the average delay
between the occurrence of the meteorological drought and reduced in-stream freshwater
availability (i.e., hydrological drought).

SPEI was computed over the 1956–2013 time window based on precipitation and
evapotranspiration data retrieved from the ADIGE dataset (cfr. Section 3.1), which was
shown recently to provide the highest accuracy in reproducing the observed streamflow
time series at selected gauging stations in the Adige river basin [48]. Similarly to the SPEI,
SSFI was also computed over the 1956–2013 time window, based on monthly streamflow
time series pertaining to each gauging station.

4.4. Identification and Definition of Drought Events

Once the characteristic timescale has been identified for each sub-catchment, drought
events can be determined based on the monthly time series of SPEI values. The procedure
is exemplified in Figure 4b. A drought event is considered to start whenever the SPEI
value falls below a certain threshold and to end whenever the SPEI value goes back above
it: the duration of a drought event is hence defined as the number of consecutive months
during which the SPEI remains under the drought threshold. The intensity of the drought
is the value of SPEI in a single month, while the severity of a drought event is the sum of
the drought intensities within the duration of the event. The identification of the drought
threshold is in principle arbitrary and can vary depending on the area under investigation
and on the goals of the analysis, though most applications adopt values of 0 or −1. In this
study we adopt 0 as the drought threshold value. Finally, the average frequency of drought
events within a time window can be evaluated by computing the ratio between the total
number of identified drought events and the period duration expressed in years.

4.5. Identification of Future Drought Hot-Spots

The screening for potential future drought hot-spots is performed by analyzing the
variation of meteorological drought characteristics between the future (2041–2070) and
reference (1981–2010) conditions. First, the median severity of drought events in both the
reference and future time windows was computed, and then the two values were compared
by computing their ratio, according to Equation (3):

RSEV =
S f ut

Sre f

(3)

where Sre f and S f ut represent the median of the severity values associated with drought
events in the reference and future time windows, respectively. For the calculation of this
index, the median severity was preferred over the mean: the drought event distribution
indeed tends to be skewed towards extreme values; hence, the adoption of the median is
preferable, as also suggested by other work on related topics (see, e.g., Barker et al. [63]).
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Second, the number of dry months (i.e., months with SPEI lower than 0) in both the
reference and future time windows was computed. Here, the comparison is shown in terms
of percent variation over the whole period, computed according to Equation (4):

RDM =
DM f ut − DMre f

360
∗ 100 (4)

where DMre f and DM f ut represent the number of months with SPEI values under the
chosen threshold of 0 in the reference and future time windows, respectively, and 360 rep-
resents the number of months in each time window. Indeed, the severity and dry months
are often used by local administrations and policymakers for drawing drought-response
strategies. In this work, the identification of future drought hot-spots is indeed associated
with the interpretation of the aforementioned indicators.

To this end, the characteristic timescales that have been identified for each sub-
catchment using observational data (following the procedure described in Section 4.3)
are here adopted for computing the SPEI index using the projections provided by the
CORDEX datasets. The underlying hypothesis is that the hydrological response time to the
meteorological droughts that was identified based on the observational datasets remains
unchanged when applied to the future time window. This assumption is justified by the
similarity between the observations and the climate model data in the reference period, as
discussed in Section 3.2.

5. Results

5.1. Characteristic Timescale for Each Catchment

The characteristic timescales for each of the 25 sub-catchments investigated in this
study were computed following the methodology described in Section 4.3: their values are
summarized in Table 5 and visually presented in Figure 5. The timescales range between 6
and 10 months, with Spearman’s rank correlation scores ranging between 0.395 and 0.722.
The correlation between SPEI and SSFI is statistically significant in all sub-catchments
(p-values always lower than 10−13 at a confidence level of 95%).

The results depicted in Figure 5 highlight that SPEI computed with a timescale of
7–9 months (here defined as long timescales) correlates better with SSFI in highly elevated
sub-catchments, whereas the timescale of the highest correlation decreases moving towards
downstream sub-catchments. However, visual inspection of Figure 5 also reveals some devia-
tions in the spatial pattern followed by characteristic timescales and that some sub-catchments
present relatively lower correlations (corrbest < 0.5). We attribute this to two concurring,
independent causes: first, the availability of observed streamflow time series, which can
cover a limited timespan in some gauging stations, thus affecting the reliability of the rank-
correlation computation; second, a stream-gauging station located immediately downstream
of large anthropogenic water-withdrawal or restitution infrastructure will inevitably record
streamflow values that may be not representative of the natural hydrological response of a
catchment.

The correlation plots for the two sub-catchments presenting the highest (station
IDRTN23) and lowest (station IDRTN27) Spearman’s rank correlation between SPEI and
SSFI are displayed as an example in Figure 6. It is worth noting that for the IDRTN23 station
the correlation exhibits a regular dependency with respect to changing timescales, benefit-
ing from the availability of a long streamflow observation record. On the other hand, for the
IDRTN27 station the correlation plot shows an irregular pattern, which can be attributed to
the limited streamflow record (see the lower right inset of Figure 6). Furthermore, consider-
ing the temporal coverage of monthly time series and the recharge coefficient summarized
in Table 1, it can be observed that low correlation values are often associated with a high de-
gree of regulation (e.g., 05950PG, 19850PG, IDRTN08, IDRTN17, IDRTN21, and IDRTN27)
or with reduced data availability (e.g., 43350PG, 51450PG, 57150PG, IDRTN17, IDRTN21,
and IDRTN27). Finally, it should be noted that these two causes are most likely concurrent,
with the former possibly influencing the latter in some cases.
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Table 5. Maximum Spearman’s rank correlation score between SPEI (computed at timescales ranging
from 1 to 12 months) and SSFI (1-month) at each sub-catchment. The SPEI timescale producing the
highest correlation for each metric is shown in the last column.

Station ID corrbest tsbest

05950PG 0.416 9
19850PG 0.513 9
20750PG 0.564 9
29850PG 0.655 7
36750PG 0.565 7
31950PG 0.696 10
33550PG 0.509 10
51450PG 0.409 10
57150PG 0.481 9
59450PG 0.581 7
48750PG 0.623 7
45750PG 0.579 6
43350PG 0.519 6
64550PG 0.578 8
67350PG 0.678 7
71550PG 0.584 7
85550PG 0.660 7
IDRTN06 0.544 9
IDRTN08 0.395 7
IDRTN18 0.609 7
IDRTN20 0.559 7
IDRTN23 0.722 6
IDRTN21 0.432 6
IDRTN17 0.692 3
IDRTN27 0.533 4

Figure 5. Characteristic timescale (in months) for each sub-catchment. The numbers within each
circled marker represent the timescale producing the highest Spearman rank correlation between
SPEI and SSFI, whereas the size of each marker represents the correlation magnitude. The shading
color for each catchment is based on the average elevation of the catchment.
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Figure 6. Correlation plots in two analyzed sub-catchments. Top plots display the correlation between
SPEI and SSFI in the selected sub-catchment as a function of the timescale adopted for computing the
SPEI. The bottom plots show the time series of the SPEI presenting the highest Spearman’s correlation
(blue bars) and of the SSFI (red lines).

5.2. Drought Hot-Spots

The characteristic timescales identified for each sub-catchment (see Table 5) were then
employed to compute SPEI time series for each climate model simulation in the reference
(1981–2010) and future (2041–2070) time windows. Based on these time series, the evolution
of drought conditions was analyzed with reference to the drought severity and frequency
indexes defined in Section 4.5.

The resulting values of the drought severity index for each climate model are displayed
in Figure 7a–c, whereas panel (d) shows the inter-model average values. Moving from
the reference time window to the future one, CLMcom projects the lowest increase in the
average drought severity (RSEV = 1.96, computed by averaging all the sub-catchments),
with some sub-catchments facing a slight decrease (i.e., RSEV < 1, shaded in blue in Fig-
ure 7a); conversely, KNMI projects a widespread strong increase in drought severity in
almost all of the considered sub-catchments (RSEV = 4.64) with respect to the reference
time window. Finally, SMHI projects a larger-severity increase along Adige’s main stem,
located in the central and north-western part of the river basin, whilst moderate increases
of severity are observed in the upstream sub-catchments (RSEV = 2.96). The inter-model
average highlights that the north-western sub-catchments are more likely to face drought
severity increases, according to all climate models.

As far as drought frequency is concerned, the results for the percentage variation in
the total number of dry months are presented in Table 6. It can be observed that CLMcom
shows a relatively large increase in the number of dry months (13% on average among
all sub-catchments). KNMI projects the largest increase (17% average overall), whereas
the SMHI projection concerning this index is the lowest overall (4%). Nevertheless, the
inter-model average shows that an increase in dry months of 6–14% is to be expected among
all sub-catchments.
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Figure 7. Drought severity ratio computed according to Equation (3) between the future (2041–2070)
and reference (1981–2010) time windows. Subplots (a–c) display the drought severity ratio for each
climate model simulation while the inter-model average is presented in subplot (d).

Table 6. Variation in the number of dry months between the future (2041–2070) and the reference
(1981–2010) time windows for each sub-catchment and climate model simulation. Variations shown
in this table are expressed as percentage values computed according to Equation (4).

Station ID CLMcom KNMI SMHI Average

05950PG 1 14 2 6
19850PG 7 18 6 10
20750PG 13 17 12 14
29850PG 11 18 8 12
31950PG 17 11 6 12
33550PG 10 18 1 10
36750PG 16 17 7 13
43350PG 14 17 1 11
45750PG 11 14 2 9
48750PG 14 15 −4 8
51450PG 6 20 4 10
57150PG 8 21 4 11
59450PG 11 17 0 9
64550PG 21 16 4 14
67350PG 16 18 1 11



Water 2023, 15, 1731 16 of 22

Table 6. Cont.

Station ID CLMcom KNMI SMHI Average

71550PG 20 10 2 11
85550PG 16 17 5 13
IDRTN06 10 27 9 15
IDRTN08 17 23 7 15
IDRTN17 10 9 5 8
IDRTN18 10 23 2 12
IDRTN20 20 19 4 14
IDRTN21 18 17 8 14
IDRTN23 18 15 5 13
IDRTN27 13 15 −5 8

6. Discussion

The main goal of this work is to provide a simple screening procedure to gauge
potential threats to freshwater supplies posed by climate change. This is in line with the
concept explored by Nayak et al. [64], with the difference that we do not rely on the use of
a hydrological model to further reduce the complexity of the methodology and its inherent
uncertainty. Indeed, relying on the use of a hydrological model to perform a thorough
drought prediction involves the acquisition of reliable supporting information (e.g., land
use, stressors to the water budget, etc.) and performing the simulation at a scale that can
reliably simulate land-surface characteristics and small-scale processes in the atmosphere
such as convection. As a consequence, the use of spatially-distributed hydrological models
over large domains is often unfeasible. For this reason, our proposed framework exploits
the information contained in measured streamflow time series to gauge the effects of
meteorological forcing on the water budget [65] and allows us to calibrate the use of the
SPEI for anticipating potential drought hot-spots based solely on meteorological projections
provided by climate models.

6.1. Characteristic Timescales

The correlation analysis between SPEI and SSFI highlighted the timescale (at which
SPEI is computed) that produces the highest correlation between the two indexes, termed
the characteristic timescale of each sub-catchment. Noticeably, the results highlighted a de-
pendency between the characteristic timescales and the average altitude of their respective
sub-catchment. In particular, larger characteristic timescales (9–10 months) are observed
in the high-elevation headwater sub-catchments, intermediate values (7–8 months) are
found for the central and north-eastern part of the catchment, while the lowest character-
istic timescales were found in the southern part of the catchment (3–7 months). Indeed,
larger timescales are typically associated with a delayed hydrological response of glacier-
and snow-dominated catchments (Eder et al. [66], Brauchli et al. [67]), whereas a shorter
hydrological response to precipitation is more common in rainfall-dominated catchments
(Soulsby et al. [68]). The spatial variability of the characteristic timescales among the sub-
catchments resulting from our analysis is indeed in strong agreement with the findings of
Larsen et al. [50], who categorized the hydrological regime of several reaches within the
Adige catchment. Furthermore, López-Moreno et al. [69] highlighted that timescales of
6–10 months are characteristic of strongly regulated catchments, which is the case for the
majority of the sub-catchments located in the northern part of the Adige basin as well as
some side valleys in the southern part, as can be observed in Figure 5.

A similar practice of correlating SPEI with SSI (Standardized Streamflow Index, de-
veloped by Vicente-Serrano et al. [61], which shares many similarities with SSFI adopted
in this work) was explored by Vicente-Serrano et al. [44] in the Iberian Peninsula. These
authors also concluded that an informed use of the timescale parameter can explain the lag
time between meteorological drought and the hydrological response and that the response
time depends on the size and degree of regulation of a catchment, with large downstream
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catchments showing highest-correlating timescales at around 6 months. This latter result
is indeed in strong agreement with our findings. The study of Wu et al. [46] also found
that a non-linear relationship exists in the response time of hydrological drought to mete-
orological drought, highlighting that relevant dam operations caused a reduction in the
hydrological drought severity and duration compared to the pre-existing natural condi-
tions, although the delay time between meteorological and hydrological drought decreased
significantly, similarly to what was found by Lorenzo-Lacruz et al. [45]. In the same study
by Wu et al. [46], another interesting finding is the introduction of the propagation time
concept (i.e., the lag time between the start of meteorological drought and the beginning of
the related hydrological drought event). Such a concept is indeed similar to our concept
of the characteristic time scale, though the propagation time is related to drought events
obtained with a fixed accumulation time.

SPEI is commonly computed referring to canonical timescales (ranging from 1 to 12 months
or above) and its values are linked to different types of hydrological response [39]. On
the other hand, the concept of characteristic timescale adopted herein represents a shift in
this paradigm, where the use of a meteorological drought index is calibrated against the
observed response of a catchment (i.e., streamflow time series). The use of characteristic
timescales in the computation of SPEI provides a simplified, yet reliable link between
meteorological droughts and freshwater availability within each sub-catchment, indirectly
accounting for all its related stressors. Despite our encouraging results, the interplay be-
tween rainfall and all of the natural and anthropogenic factors that underlie the hydrological
response of a catchment is very complex and indeed calls for further investigation.

6.2. Drought Hot-Spots

Drought hot-spot identification was based on the comparison of aggregated drought
severity and frequency indexes between the future and reference time windows. The
projected variation in the drought severity ratio RSEV varies considerably among the
climate models, each one presenting different spatial distribution and magnitude of the
index. This result is indeed expected as the choice of the climate models we performed (see
Vrzel et al. [57]) was aimed at preserving the maximum variability of the projections for
the investigated case study. Indeed, mid-future (i.e., 2041–2070) precipitation anomalies
over the Greater Alpine region vary considerably among all CORDEX models, as was
also shown by Spinoni et al. [43]. In this sense, averaging the predictions of more climate
models can provide further insight as to which areas can be confidently expected to become
a drought hot-spot.

All climate model simulations project an increase in the number of dry months during
the 2041–2070 time window compared to the reference period. The increase is evenly
spread among all sub-catchments (see Table 6), and minor differences exist between the
models, with KNMI projecting the largest increases and SMHI projecting the smallest.
Linking this result with the projected large increases in severity (which is, de facto, the
product of drought duration and its average intensity) leads to the conclusion that future
dry spells might be more extreme while not necessarily more frequent. This result is in
agreement with other studies conducted in the Italian Alpine region, which projected
prolonged dry periods in the mid-future under RCP 4.5 emission scenario [14,43]. The
authors attributed these results to widespread temperature increase and, to a minor extent,
to the expected decrease in summer precipitation. It can also be noted that the dry-month
variation projected by CLMcom come in slight opposition to what could be expected
judging from Figure 7. Indeed, despite the projected severity only showing minor increases,
the projected drought conditions will affect longer periods in the future.

We, therefore, argue that the joint evaluation of multiple drought-event characteris-
tics (i.e., drought severity and duration) is mandatory for a reliable prediction of future
drought scenarios.
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6.3. Strengths and Limitations of the Methodology

Drought prediction is a challenging task that requires complex modeling techniques
and the availability of accurate input datasets. In this perspective, large-scale drought
assessment often results in prohibitive computational demands. The proposed method-
ology aims to identify future drought hot-spots in a fast yet reliable manner, linking the
interpretation of the SPEI index to the physical characteristics of each identified catchment
by correlating it with observational streamflow and meteorological data. It is evident that
the inherent drawback of such an approach is its reliance on high-quality data to ensure
an accurate identification of the characteristic timescale. Indeed, we identified two pitfalls
of our methodology when referring to stream-gauging stations in which streamflow time
series are too short (Figure 6) and stations that are located close to significant alterations
of the water budget (e.g., hydropower or agricultural water diversions, see, e.g., stations
05950PG, IDRTN08, and IDRTN17 in Figure 1). This can either lead to low correlation
values or to less meaningful characteristic timescales (Table 5). Furthermore, it should
also be noted that modifications to the storage capacity of the catchments (such as, e.g.,
variation in the effective storage capacities of hydropower reservoirs, changes in their
operating policies or aquifer recharge management activities) could affect the characteristic
response time of a catchment over a long time span. In this perspective, the hypothesis that
the hydrological response time to the meteorological droughts remains constant in time
might be substantial. On the other hand, water management in small storage reservoirs,
as is the case for most systems present in the Adige, entails daily or weekly time scales,
which are lower than the monthly time scales adopted in our framework and are therefore
not affected by this kind of operation. Finally, we remark that our methodology should
be considered a preliminary screening step of a more detailed drought assessment over
large-scale watersheds, which typically require a wealth of information [51] and involve
high computational effort [52] to set up a thorough hydrological modeling framework.

The framework presented in this paper aims to showcase the potentiality of a rapid
screening procedure, although further research should be devoted to the identification of
the most representative drought indexes, drought event definitions (threshold, lag-time,
etc.), and statistical analyses aimed at the identification of drought hot-spots in order to
generalize the presented framework. The selection is also strictly dependent on the area of
investigation and on the personal decision of the modeler, and therefore, we decided to rely
upon widely adopted drought indexes and definitions for the purposes of this work. Similar
considerations might be drawn for the optimal selection of climate change scenarios and
their related bias-adjustment techniques, the identification of which is, however, beyond
the objectives of the present contribution.

7. Conclusions

In this work we propose a framework to quickly and reliably determine potential
future drought hot-spots. The methodology is based on a novel interpretation of the SPEI
index that is linked to the hydrological response of a catchment. This is achieved by
correlating SPEI computed at several timescales (1 to 12 months) with the hydrological
drought index SSFI: the timescale producing the highest correlation between the SPEI and
SSFI monthly series is herein defined as the characteristic timescale of the catchment. To
exemplify our approach we selected a well-instrumented watershed in the Italin Apine
region, the Adige river basin. The study area was subdivided into 25 sub-catchments and
characteristic timescales were computed for each of them based on available meteorological
and streamflow observations in the 1956–2013 time window. The characteristic timescales
were then used to compute SPEI time series over a reference (1981–2010) and future
(2041–2070) time window for three different climate model simulations under the RCP 4.5
emission scenario. The drought event statistics in these two periods and their inter-model
average were then compared, highlighting which sub-catchments are more likely to face
worsening drought conditions in the context of climate change.
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This study also provides interesting insights at the regional scale. The evolution
of drought statistics in the study area predicts widespread drying trends with variable
intensities, which is in accordance with the findings of similar investigations. The spatial
distribution of the resulting characteristic timescales exhibits a complex, yet clear depen-
dence on the catchments’ hydrological regimes and the degree of streamflow regulation
(i.e., reservoir storage) of each catchment. The spatial variability of characteristic timescales
is in line with the findings of previous hydrological regionalization studies: glacial and/or
highly regulated catchments tend to have longer characteristic timescales, as water is stored
either in the form of ice or in reservoirs, whereas when moving toward the valleys the
characteristic timescales tend to decrease, as rainfall becomes the dominant driver of the
hydrological response compared to seasonal storage capabilities. This result branches
off from the canonical interpretation of SPEI, where certain hydrological processes are
associated in a simplistic way to specific timescales. Here, the index is computed at a single
timescale that is assumed to be the most representative of the aggregate response of a
catchment, indirectly accounting for all the processes that link precipitation to streamflow,
achieved by calibrating the SPEI against the observed data.

Provided that sufficient and reliable observations are available, the present framework
can be adopted as a preliminary screening phase of every large-scale drought assessment
in order to focus the computational effort of the analysis only where drought hot-spots are
identified. It should be noted that the framework can (and should) be modified in order to
better suit different study areas or to meet different modeling goals.
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