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Abstract—Whenever time-critical applications supporting re-
mote interactions are deployed on the Internet they may face
the issue of packet loss. This is particularly true for remote
interactions that are audio-based and require low latency and
high reliability, such as those enabled by networked music
performance systems, where packet losses are detrimental to
the quality of experience of the users. Packet Loss Concealment
(PLC) for audio signals is then mandatory to cope with such an
issue. PLC is a technique that aims at masking the effect of packet
loss on human auditory perception. Many PLC algorithms have
been developed over the last three decades, initially focusing on
speech and more recently addressing broadband audio. However,
to date, developers of PLC methods face the issue of the
lack of tools supporting the design, comparison, and testing of
such methods. To bridge this gap, this paper introduces PLC
Testbench, a software tool that enables researchers to study,
compare, and evaluate various PLC algorithms for audio. The
software is modular and comprises a Python backend and a web
user interface. It is open-source and is conveniently distributed
as a docker container.

Index Terms—Packet loss concealment methods, networked
music performances, Internet of Sounds.

I. INTRODUCTION

The digitalization process of the last two decades had many
impacts on society. It revolutionized many areas of our every-
day lives, from social interactions through the rise of social
media to entertainment through on-demand video streaming
services. This ongoing process is fueled by the rise of new
technologies and services and the continuous improvement of
the worldwide Internet infrastructure. Currently, one of the
main efforts of tech giants like Meta and Microsoft is towards
the achievement of the so-called “social presence” during
remote interactions among people [1], i.e., the sense of “being
there” in a digital environment together with other connected
users. To date, videoconferencing software like Zoom and
Skype are the most adopted tools for remote interactions,
however, the user experience they deliver is very different
from that of an actual real-life meeting. The rise of Virtual
Reality and Augmented Reality is set to drastically improve
the experience of remote interactions with the introduction of

visual depth perception, spatial audio, and eye/face tracking
that aim at enabling a high degree of immersion in the shared
virtual/augmented environment.

A particular case in this space is represented by musical
interactions. Today musicians can benefit from dedicated tools
for remote interactions, called Networked Music Performance
(NMP) systems [2], [3], which tackle the specific needs of
low-latency and high audio quality that musical interactions
require. These include latency of a maximum of 20–30 ms,
a low and constant jitter (i.e., the variation of the latency),
and a minimal amount of packet losses that hamper the
perceived audio quality. Notable examples of such systems, at
the commercial or experimental level, are Elk Live [4], LoLa
[5], jacktrip [6], fast-music [7], Jamulus, and JamKazam.

When using remote interaction tools, it is important to
remember that they typically rely on the public Internet. While
we might think of the Internet as reliable, the truth is that the
protocol at its core, the Internet Protocol (IP), is designed
with a “best effort” approach to service quality, meaning that
it does not guarantee reliable communication. Reliable com-
munication can be achieved thanks to higher-level protocols
like TCP at the cost of introducing unbounded latency. Since
that is not acceptable for real-time applications, UDP must be
adopted instead of TCP, effectively doing nothing to improve
the reliability of the communication. This can cause packet
loss, which occurs when network packets are not available
when they are needed, resulting in perceivable (and typically
not tolerable) glitches and artifacts in the received signal.
For remote interaction tools that aim to provide a sense of
social presence, this represents a serious problem because
it drastically impacts the user experience. While redundancy
and retransmission mechanisms can help mitigate some packet
loss, an effective Packet Loss Concealment (PLC) algorithm
is necessary to prevent or reduce the effect of perceivable loss.

Packet Loss Concealment is a technique to mask the effects
of packet loss, mainly developed for Voice Over IP (VoIP)
applications [8]. In real-time data transmission scenarios, PLC
algorithms are necessary to conceal the loss of one or more



consecutive packets. The purpose is to ensure that the negative
effects on the quality of service of the application consuming
the data stream are limited. For a PLC algorithm to be
effective, it must meet two main requirements [9]:

1) the output of the PLC algorithm should be perceptually
indistinguishable from the original audio stream, even
though it does not need to be an exact match;

2) its execution time should be shorter than the interval
between packet consumption.

There are several ways to perform PLC on audio signals,
ranging from simpler waveform-based solutions like waveform
repetition and WSOLA [10] to more advanced autoregressive
models [9], [11]. Recently, Deep Learning-based PLC has
emerged in the literature, with some significant examples in
speech and music [12]. Regardless of the type of PLC used,
they all rely on the audio data received immediately before
the lost packet as input to the algorithm. The algorithm then
outputs the number of samples contained in the lost packet.

However, to date, developers of PLC techniques face the
issue of the lack of tools supporting the design, compar-
ison, and testing of such techniques. To bridge this gap,
this paper introduces PLC Testbench, a software tool that
enables researchers to study, compare, and evaluate various
PLC algorithms for audio. The software is freely available
and open source1.

The remainder of this paper is organized as follows: Section
II provides some background notions on the core topic of this
paper and presents the related literature, in Section III we
present the testbench with all of its modules and in Section
IV we present its user interface. Section V concludes the
discussion with some closing remarks and discusses future
works.

II. RELATED WORK

This section covers the main topics discussed in the paper
and introduces the most relevant research related to them.

A. Packet Loss Simulation

There are many ways to simulate packet loss. The simplest
consists in drawing a realization from a uniform distribution.
This model is governed by a single parameter called the
Packet Error Ratio (PER), which determines the probability
of losing any packet. A more realistic model is the Gilbert-
Elliot model [13], which consists of a two-state finite-state
machine. The states represent the good and bad behavior of
the transmission channel. This model is governed by four
parameters: the two probabilities of transitioning from one
state to the other, and the probabilities of losing packets in each
state. A more detailed description, along with other models,
is provided in [14].

B. PLC

Several contributions to the field of PLC have been made
over the last three decades. In the beginning, the focus was

1https://github.com/cimil/plc-testbench

on VoIP (Speech) [8], mainly due to the premature state
of the Internet infrastructure that could not sustain real-time
communication of broadband audio. Over the past decade,
however, the research community has begun working on PLC
for audio too.

1) Waveform substitution: The simplest form of PLC is
zeros substitution, where silence is used in place of the
missing packet. Waveform repetition is and consists of using
the last correctly received packet in place of the missing one.
It is as simple as zeros substitution but it can perform better or
worse depending on the type of audio it is used on. A more
complex example of waveform substitution is the WSOLA
algorithm. It performs time-scaling on several of the frames
preceding the lost one to extend their time duration in order to
make them span across the gap of the lost frame [15]. The low-
computational-cost algorithm presented in [10] is a more
heuristic oriented approach, but is still working on waveforms
of previous packets in the time domain. It leverages simple
techniques like zero-crossing, derivatives and cross-fading to
produce a very low-computational-cost algorithm that is able
to outperform the zeros substitution technique.

2) Autoregressive models: A different approach to PLC
is to model the signal as an autoregressive process. This
works especially well on the human voice because it can
be described with the source-filter model, which in turn is
usually autoregressive. While not as good, its effectiveness on
broadband musical audio is still better than waveform substi-
tution techniques in most cases. Notable implementations of
autoregressive models for PLC on real-time audio are reported
in [9] and [11].

3) Deep Learning models: Deep Learning is the current
frontier of research in virtually any computer science field.
A few Deep-Learning-based PLC implementations have been
proposed so far. Most of them target speech [16]–[18], but
there are a few implementations targetting broadband audio,
like [12]. However, while speech can be represented using
the simple and compact source-filter model, broadband audio
is more complex and challenging to model. Therefore, de-
veloping a deep-learning model that is both small enough to
be computed in real-time and capable of generalizing on any
audio is a difficult task. For this reason, studies that develop
a deep-learning model for broadband audio usually restrict
the scope of the algorithm to just the audio that it has been
trained on (e.g., same instrument, same room, or even same
performer).

C. Metrics

There are many ways to compare the similarity of two
signals, the classic examples are the Mean Square Error (MSE)
and the Mean Absolute Error (MAE). However, the space of
solutions to the PLC problem is bigger than just the single
solution matching the original signal. Since the target of PLC
is just to “conceal” the packet loss from the listener’s ears, the
problem is of perceptual nature. As such, perceptual metrics
should be used. The most widely used are the Perceptual
Evaluation of Speech Quality (PESQ) [19] for speech and



the Perceptual Evaluation of Audio Quality (PEAQ) [20] for
broadband audio. However, these metrics have been developed
in the early 2000s to evaluate audio codec artifacts. So,
despite being widely adopted as the only available perceptual
metrics, there is no consensus on whether they are actually
representative of human perception when it comes to the
extremely short and glitchy noises produced by packet loss
[21]. Nonetheless, we decided to include the PEAQ metric in
the PLC Testbench as it is the de-facto perceptual metric used
on broadband audio PLC.

III. PLC TESTBENCH

The purpose of the proposed testbench is that of providing
developers with a platform supporting the efficient comparison
of different PLC algorithms across different metrics. The
performance of these algorithms may differ based on the
distribution of lost packets and the type of musical audio
they are used on. Therefore, it is important to measure the
performance of each algorithm by varying both these factors.
Moreover, the metric utilized to measure the performance
of PLC algorithms can also impact the comparison, so it
is essential to use multiple metrics and determine the most
pertinent ones.

A. Architecture

Our tool was designed to be highly adaptable. It can be fully
customized, with each execution receiving a complete set of
inputs that specify which audio files to consider, which packet
loss distribution to generate, which PLC algorithm to use, and
which metrics to compute on the outputs. These inputs also al-
low for configurable settings of the related components. Figure
1 illustrates the module types along with a representation of
the function. A NoSQL database has been used to manage the
persistence of the data and avoid unnecessary computations of
already computed data.

1) Inputs: Before conducting a measurement, the testbench
requires the following pieces of information. A list of audio
files describes which files to consider and where to find them.
The list of packet loss simulators informs the software on what
probability models to use to compute realizations of packet-
loss time series. Similarly, a list of PLC algorithms specifies
which of them can be selected for use and finally, a list of
output metrics contains the metrics that will be used to evaluate
the reconstruction quality of the PLC algorithms. Attached
to each element of the input lists there are settings that
provide essential information about the configurable options
of the related module. For example, other than specifying
which probability model to use for packet loss, it is possible
to change the packet error ratio or the seed of the random
function. This allows to have multiple entries of the same type
that differ in at least one of the configurable parameters.

Once this information is provided, the testbench will gener-
ate a tree of depth 4 for each audio file with the audio file as
the root node and the metrics as the leaves. The packet loss
simulators and PLC algorithms are the intermediate nodes of
the tree (see Fig. 2).

Fig. 1. The four module types used to carry out all the computations.

2) Outputs: After completing all the combinations, the
testbench generates various types of results. The final out-
come includes performance evaluation metrics calculated for
every combination. Nonetheless, intermediate results may also
interest researchers who are studying and developing a PLC
algorithm. These intermediate results include the realizations
drawn from the chosen statistical distributions of lost packets
and the audio files to which the PLC algorithm was applied.
Moreover, the unmodified original audio files can also be
considered an interesting output of this testbench as they serve
as the ground truth for the PLC algorithms.

B. Modules

The tool is designed to be modular, with the execution
pipeline separated from the units performing the computations.
There are various types of modules, namely, OriginalAudio,
PacketLossSimulator, PLCAlgorithm, and OutputAnalyser.
Each module type has an abstract base class, and any
implementation of these classes can be easily added by
inheriting from the base class. The following provides a
summary of the module types.

OriginalAudio
For this type, we built just one simple module that loads the
audio content into memory and extracts metadata information
(i.e., Sampling Frequency).

PacketLossSimulator



Audio File

Packet Loss Simulator 2Packet Loss Simulator 1

PLC Algorithm 1 PLC Algorithm 2 PLC Algorithm 3 PLC Algorithm 1 PLC Algorithm 2 PLC Algorithm 3

Metric 1 Metric 2 Metric 3 Metric 1 Metric 2 Metric 3 Metric 1 Metric 2 Metric 3 Metric 1
Output

Analysis
2

Metric 3 Metric 1 Metric 2 Metric 3 Metric 1 Metric 2 Metric 3Metric 2

Fig. 2. The diagram shows an example of the computation tree that is generated on each run based on the provided input. In this case, there is one audio
file, two packet loss simulators, three PLC algorithms, and three metrics.

This family of modules represents all the available ways of
generating packet loss sequences.

• BinomialPLS: This is the simplest model for packet loss
simulation as it is the implementation of a uniform
distribution. Its only parameters are the Packet Error
Ratio (PER) and the seed of the random function.

• GilbertElliotPLS: A more practical approach to packet
loss simulation involves acknowledging that packet loss
is not always present in a network. However, it is possible
for a lost packet to trigger a series of lost packets,
known as a packet loss burst. The Gilbert-Elliot model
addresses this issue through a two-state machine. One
state represents when the channel is functioning properly,
while the other state signifies when a packet loss burst
occurs. The model is governed by four configurable
probabilities that determine the transitions between the
two states. Each state has a probability of remaining in
itself or transitioning to the other state and a probability
of producing a valid packet. These probabilities dictate
the behavior of the model.

PLCAlgorithm
This family of modules represents all the available PLC
algorithms.

• ZerosPLC: This is the simplest form of PLC consisting
in just setting every sample of the lost packet to zero. It
represents the baseline of “doing nothing”, below which
no PLC algorithm can be considered useful.

• LastPacketPLC: This is another simple PLC algorithm
consisting in filling the lost packet with the content of
the last valid packet.

• LowCostPLC: This is an implementation of the low-
delay with low computational overhead PLC algorithm
described in [10]. It represents the baseline of a very fast
and computationally efficient algorithm that can beat the
ZerosPLC most of the time but not by a lot.

• BurgPLC: This is the implementation found in [22] of
an autoregressive PLC with Burg estimation described in
[9]. It represents the baseline for autoregressive PLC al-
gorithms. Python bindings for C++ were used to integrate
this algorithm into the testbench.

• DeepLearningPLC: This is an implementation of the
Deep Learning-based PLC algorithm described in [12].
It represents the baseline for Deep Learning-based PLC
algorithms.

• ExternalPLC: This is a generic implementation of Python
bindings for C++. Thanks to this module, a PLC algo-
rithm written in C++ (and adhering to the specified API)
can be easily integrated into the testbench.

OutputAnalyser
This family of modules represents all the available output
metrics.

• MSECalculator: This module computes the Mean Square
Error (MSE) of the original signal against the recon-
structed one. Its parameters are the window size and the
hop size.

• MAECalculator: This module computes the Mean Ab-
solute Error (MAE) of the original signal against the
reconstructed one. Its parameters are the window size and
the hop size.

• SpectralEnergyCalculator: This module calculates the
difference between the magnitude of the DFT of the
original and the reconstructed signals. Its parameters are
the window size and the hop size.

• PEAQCalculator: This module runs the PEAQ imple-
mentation found in the GSTREAMER suite [23] as a
command line utility. PEAQ is a perceptual measure of
the quality of the reconstructed signal. It was originally
conceived to quantify the perceived degradation of audio
signals due to codec compression artifacts. Even though
its effectiveness in assessing PLC quality has been de-
bated, we include it as it currently represents the only
perceptual metric available for PLC [9], [21].

C. Technology

This project is developed entirely in Python 3.10. The
modules used are:

• numpy for fast and efficient mathematical calculations.
• soundfile for convenient management of audio files.
• anytree for the simple and flexible implementation of a

tree structure on which the entire project is built upon.



• pybind11 for easier interaction with the Python bindings
for C++

• pymongo for the interaction with a MongoDB database.
• tqdm for displaying progress bars in Jupyter Notebook,

terminals, and the GUI.
• matplotlib for plotting results as images.
• tensorflow for running Deep Learning-based PLC algo-

rithms.

The NoSQL database of choice is MongoDB 6.0.8 due to its
flexibility, scalability, and overall ease of use and deployment.

IV. UI

The purpose of the user interface for the Testbench PLC
is manifold: i) to make it easier to use; ii) to reduce the time
required to consult results; and iii) to increase the quantity and
quality of information obtained from the analysis of results.

Before the implementation of this user interface, the only
available kind of interaction took place directly in a Jupyter
Notebook, where inputs are given directly by modifying the
code. There was no aid in the interpretation of results, so the
only way was to consult the raw output in the form of audio
and image files. This type of interaction is suboptimal, espe-
cially when consulting the results, because the user is forced
to consider one element at a time, precluding the possibility of
increasing the quality of the analysis by considering multiple
aspects at once.

The user interface can be conceptually divided into three
parts:

1) Input Selection: Input selection is the set of all the in-
teractions occurring before the program execution. As detailed
in the previous discussion, the program inputs are a collection
of modules with the associated set of settings. Fig. 3 shows
the interface for choosing the PLC algorithms and setting
their parameters. User interaction in this section is intended
to simplify and speed up the input process and ends with the
start of program execution.

2) Progress Monitoring: This part represents the program
feedback aimed at informing the user about the status of the
execution of the various modules of the testbench. The layout
of this interface is strongly related to the choices described
in the previous section and is mainly focused on the loading
bars.

3) Result Analysis: Results consultation is the most rele-
vant part of this project in terms of its impact on the user
experience of this program. At the same time, it is also the
most challenging part in terms of design and implementation.
The results consultation groups all the interactions that occur
once the program execution is finished and is characterized by
browsing waveforms, series of lost packets, and listening to
the audio files involved. Since for each input audio file, there
are potentially many results to show, it would be ideal to be
able to overlay as many results as possible on the same graph.
This is made possible by the fact that all results for the same
audio file share the same time axis.

A. Architecture

The user interface application is made of a Web application
which is composed of two layers: one managing the user
interface representation and the interaction with the user and
the other providing the backend services to be consumed
by the graphical components. The application, therefore, can
be used both as a standalone application by deploying it
on the user machine, or in a multi-user environment where
the application is deployed on a remote server. The layers
exchange information via a RESTFul API which, if needed,
can be exploited also by third-party services. The API is
secured by using OAuth 2 protocol.

In the presentation layer, modularity has been achieved
through the creation of specialized but highly customizable
components, which can easily be reused across different pages.
In the backend layer, modularity is provided by the extensibil-
ity of the RESTFul API where new functions can be “plugged
in” by simply adding new endpoints. This layer is also hiding
the details of the interaction with the PLC Testbench from the
presentation layer, providing an abstract and stable view of the
library functions.

Persistence is based on a NoSQL database, where the
data is stored in JSON format in order to provide higher
flexibility to accommodate the future evolution of the schema.
Both on-premise and cloud databases are supported. The GUI
adapts automatically to the PLC Testbench library by using
introspection to retrieve the list of the algorithms used for
packet loss, PLC, and output analysis. This way any extension
made to the underlying tool does not require any manual
change to the UI code.

B. Technology

The product frontend is entirely written in the Javascript
language, while the backend is entirely written in Python to
allow for better integration with the PLC Testbench, as well as
to avoid the unneeded complexity of the technological stack.
The UI project can be installed as an ordinary Python appli-
cation or through a docker image available on DockerHub2.

C. Scalability

The application architecture has been designed to be as
stateless as possible and thus supports very well horizontal
scalability. You can split the workload among as many in-
stances of the application as you need by providing proper
load balancing in front of them. Scalability together with
containerized distribution makes the application suitable for
deployment in an orchestrated environment.

D. User Experience

In order to improve the user experience the GUI has been
made responsive so that it can automatically adjust to different
devices (PC, tablet, mobile). The interface has been designed
to be user-friendly, intuitive, and as fast as possible, consider-
ing the large dataset inherently involved in audio processing

2https://hub.docker.com/r/cimil/plc-testbench-ui



Fig. 3. The input section of the UI allows the user to choose which PLC algorithm to use. For each chosen algorithm, the related parameters can be changed.

Fig. 4. The progress monitoring section of the UI provides feedback on the status of the execution to the user.

applications and the overhead related to charting functions.
Whenever possible subsampling or caching techniques have
been applied to minimize latency and network bandwidth
waste.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a modular and configurable
software tool for the analysis and comparison of packet loss
distributions and PLC algorithms. Such a tool is meant to be a
companion of the researcher developing new PLC algorithms,
so it features a web GUI for easy and convenient interaction.
The project is fully open-source and modular making it easy to
add new packet loss distributions, PLC algorithms, or metrics.
It is also available as a Docker container for a zero-setup
configuration and as an online version (no data persistence)
for a quick look.

The output quality of a PLC algorithm is arguably the
more difficult aspect of its evaluation but, as stated in the
introduction, it is not the only one. Execution time is equally
as important but has not yet been included in this testbench.

Therefore, this aspect is the main point in the future roadmap
of this project.
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