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Introduction

Let X and W be projective varieties defined over the field C and let
p: X —-W

be a projective and surjective morphism, i.e. a proper surjective morphism
which is given by the global sections of a base point free linear system on X.

If the varieties X and W are normal and the projective morphism ¢ : X — W
has only connected fibers, we say that ¢ is a contraction.

In this thesis we are interested in the study of some special classes of these
contractions: in particular we will assume that the variety X is smooth.

Notice that this is a crucial assumption since, though some of the results
presented in this work hold also if we assume some “mild” singularities,
the approach in the smooth case is quite different from the one used in the
singular case.

Let ¢ : X — W be a contraction from a smooth variety onto a normal one
and let Kx be the canonical divisor of X. If —Kx is ¢p-ample, we say that
the contraction is extremal or Fano Mori (F-M).

Fano Mori contractions were introduced at the beginning of the eighties by
S. Mori ([Mor82]) in the case of smooth threefolds and were generalized to

higher dimensional varieties, admitting also some mild singularities, by Y.
Kawamata ([Kaw84b|, [Kaw84a]) and V. Shokurov ([Sho85]).

Their results, in the smooth case, can be summarized as follows.

Let X be a smooth variety which contains a curve C' with Kx - C < 0 (a
negative curve), let N1(X) be the R-vector space generated by 1-cycles of X
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modulo numerical equivalence, let N E(X) be the cone in N;(X) generated
by the classes of the effective curves and let N F(X) be its closure.

e (Cone Theorem) Let NEko(X) be the part of NE(X) formed by the
negative curves.
Then NE g o(X) is locally polyhedral and its rays, i.e. its one dimen-
sional faces, are generated by rational curves with bounded degree with
respect to —Kx.

Let o be a face of NEg(X), then o is called extremal face of X. Given an
extremal face o of X, there exists a nef divisor H on X such that

c={2€NEX)|H-z=0}

The divisor H is called a supporting divisor of o; moreover we can always
assume that H is of the form Kx 4 7L, with L an ample divisor on X.

e (Contraction Theorem) The extremal faces of X can be contracted.
This means that, given an extremal face ¢ with supporting divisor
H, the linear system |mH| is base point free for m > 0 and gives a
projective morphism ¢ : X — W onto a normal projective variety W
which is characterized by the following properties:

1. For any irreducible curve C' on X, ¢(C) is a point in W if and
only if H - C' =0, i.e. if and only if [C] € o in N;(X);

2. © has connected fibers;

3. H = ¢*A, for some ample Cartier divisor A on W

The morphism ¢ is an extremal contraction and is called the contraction
of the face o, while H is a supporting divisor of .

Thus we have that a Fano Mori contraction of a smooth variety is defined by

linear systems
|m(KX + TL)|,

with L an ample divisor on X, m > 0 and 7 a positive integer.

One possible way to study Fano Mori contractions of a smooth n-fold X
supported by Kx + 7L is to classify them according to the values of 7.

From the Cone Theorem one can deduce that

T<n+1
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and from the Kobayashi Ochiai theorem 7 = n + 1 if and only if X is the
projective space.

Moreover S. Mori, for the case of smooth threefolds, T. Fujita ([Fuj87]) and
P. Ionescu ([Ion86]), in the general case, classified all these contractions for
n—2<r71<n.

More recently Y. Kawamata ([Kaw89]), M. Andreatta and J. Wisniewski
([AW98]) dealt with the case n = 4 and 7 = 1 and gave a complete classifi-
cation of these contractions.

To go further, i.e. to study the cases 7 =n — 3 with n > 4 and 7 < n — 3,
the first step is to consider the general non trivial (i.e. non 0-dimensional)
fibers of the extremal contractions from a smooth n-fold X.

G. Nakamura ([Nak95]) considered the case of F-M contractions supported
by Kx + (n — 3)L, assuming that the “exceptional locus” of the contraction
has codimension 0 or 1 in X (i.e. the extremal contraction is divisorial or of
fiber type).

In particular he showed that the general non trivial fibers of these contrac-
tions are irreducible and he gave a classification of these general fibers.

In this thesis we classify the general non trivial fibers of some extremal con-
tractions.

In particular, after recalling the classical results, we deal with the case of
extremal contractions supported by

Kx+(n—3)L
to give a different proof of the results in [Nak95], and the case
Kx+(n—4)L

assuming that the extremal contraction is divisorial or of fiber type.

The main ingredients in this study will be the theory of deformation of curves,
developed by S. Mori and others, and some cohomological methods, such as
vanishing theorems, due to Y. Kawamata and E. Viehveg, and the classical
theory of Fujita A-genus.

In particular, in this range of 7, all these ingredients are sufficient to give a
description of the general non trivial fiber of the contraction, if we assume
that the fiber is irreducible.

The most delicate part of this work is the study of the irreducibility of the
general non trivial fiber:
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Bertini theorems and Generic Smoothness assure the smoothness and so also
the irreducibility of the general fiber for a contraction of fiber type from a
smooth variety, but they are not sufficient for the singular case or for the
birational case.

Indeed the core of our work is to prove that, except in one case, the general
non trivial fiber of a F-M contraction, which is divisorial or of fiber type,
supported by Kx + 7L with 7 = n — 3,n — 4, is irreducible. Moreover this
“exceptional case” is effective:

in the last Chapter of this thesis we give an example of divisorial elementary
F-M contraction from a smooth fivefold supported by Kx + 7L with 7 =
5—4 = 1 whose fibers are all reducible. In order to construct this example we
also give an example of birational contraction (not extremal) from a smooth
threefold such that all the fibers are reducible.

Going into detais, the contents of the single Chapters are the following.

In Chapter 1, after recalling some results of the intersection theory, we define
the cone of curves on a proper scheme and state the Kleiman’s Criterion of
ampleness. Then we recall the basic facts of Mori Theory for a smooth variety
and the definitions and the first properties of Fano varieties and of the Fujita
A-genus.

In Chapter 2 we develop the theory of deformations of curves on a projective
variety to construct the families of deformations of a rational curve which
are, is some sense, minimal: in particular we study the unsplit families, the
generically unsplit families, and the minimal dominating families of rational
curves, to state the lonescu-Wisniewski inequality and a very useful property
concerning the Picard number of the locus of an unsplit family of rational
curves.

In Chapter 3 we introduce the study of elementary F-M contraction (i.e.
F-M contraction of a ray of NE(X)); in particular we deal with the fiber
type case to give the classification of the general fiber of an elementary F-M
contraction supported by Kx + 7L, withn —4 <7 <n+ 1.

In Chapter 4 we study divisorial F-M contraction supported by Kx + 7L,
with 7 > n — 4, using the techniques of T. Fujita and T. Ando, which have
been used also by G. Nakamura: in particular we classify the general non
trivial fiber of these contractions, under the assumption that this fiber is
irreducible.

In Chapter 5 we investigate the irreducibility of the general non trivial fiber of
the contraction studied in the previous chapter. The main theorem concerns
the case 7 = n — 4 and it is the following
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Theorem. Let X be a smooth n—fold, let px : X — W be a divisorial,
elementary F-M contraction supported by Kx + (n — 4)L and let E be its
exceptional divisor. Then the general fiber G of wx s irreducible, except in
the following case:

wx 15 the contraction of a 5-fold associated to an extremal ray of length 1,
which maps the wrreducible divisor E to a curve and its general non trivial
fiber is the union of two P*-bundles of the form Pp (O & O & O(2)), which
meet along a quadric P* x P,

In the Appendix we recall very briefly some results concerning the projec-
tivization of a vector bundle.






CHAPTER 1

Background material

In this chapter we collect the standard material that will be used throughout
the thesis; the main references for the topics will be given at the beginning
of each section.

We will always work over C, the field of the complex numbers.

1.1 Intersection numbers

The results in this section as well as in the next one are taken from the first
chapter of the book [Deb01].

Let X be a proper scheme of dimension n and let D;,..., D, be Cartier
divisors on X; we want to define the intersection number

Dy---D,.

Theorem 1.1.1. Let Dy, ..., D, be Cartier divisors on a proper scheme X
of dimension n and let F be a coherent sheaf on X. The function

(ma,...,my) — x(X, F(miDy +---+m,D,))

takes the same values on Z" as a polynomial with rational coefficients of
degree at most the dimension of the support of F.

Taking F = Ox, we get the following definition.

Definition 1.1.2. Let Dy, ..., D, be Cartier divisors on a proper scheme X
with dim X < r. The intersection number

D,---D,
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is the coefficient of my - - - m,. in the polynomial
x(X,miDy +---+m,.D,).
If Y is a closed subscheme of X of dimension at most s, we set
Dy---D,-Y = Dyly - Dily.

Moreover if F is any coherent sheaf on X whose support has dimension at
most 7, we can define the intersection number

D,---D,-F
as the coefficient of my - - - m, in the polynomial

X(X,F(miDy +---+m,D,)).
Remark 1.1.3. If » > dim X, then the intersection number D --- D, = 0.
Here are the basic general properties of these intersection numbers.

Proposition 1.1.4. Let Dq,..., D, be Cartier divisors on a proper scheme
X of dimension n.

1. The map
(Dl,...,Dn)’—)Dl"'Dn

18 multilinear, symmetric and takes integral values.

2. If D, is effective with associated subscheme Y,
Dy---D,=D,---D, Y.

Proposition 1.1.5 (Projection formula). Let 7 : X — Y be a surjective
morphism between proper varieties and let D+, ... D, be Cartier divisors on
Y, with dim X <r. Then

7Dy D, = deg(m)(Dy--- D,).

With these intersection numbers we can generalize the Riemann-Roch theo-
rem to higher dimensional schemes.

Theorem 1.1.6 (Asymptotic Riemann-Roch). Let D be a Cartier divi-

sor and F a coherent sheaf on a proper scheme X of dimension n. Then

D" F
n!

m™ + terms of lower degree,

X(X, F(mD)) =
where D™ is the intersection number

D"=D---D.
_—

n times
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1.2 The cone of curves

Let X be a proper scheme of dimension n, D a Cartier divisor on X and let
C be a complete curve on X, i.e. an integral and proper subscheme of X of
dimension 1. Then we can consider the intersection number

D-C,

which is, by Definition 1.1.2, the coefficient of the leading term of the poly-
nomial x(C,mD|¢).
The Riemann-Roch theorem for curves (see 1.1.6 or also [Har77]) gives

X(C,mD|¢c) = mdeg(Oc(D)) + x(C, O¢),

and so

D - C = deg(Oc(D)).

Using Proposition 1.1.5 we can compute this intersection number in another
way, which will be useful in the following chapter.

Proposition 1.2.1. Let X be a proper scheme of dimension n, D a Cartier
divisor on X and let C' be a complete curve on X and v : C — C its
normalization. Then

D-C =degsv*D.

A 1—cycle is a formal linear combination of curves I' = > n;C; with integral
coefficients and it is called effective if all the coefficients are nonnegative.
We denote with Z;(X) the free abelian group generated by 1-cycles and with
ZE,(X) the semigroup of effective 1-cycles.

By linearity we can extend the definition of the intersection number D - T for
Cartier divisors and 1—cycles.

Definition 1.2.2. Let X be a proper scheme.
1. Two Cartier divisors D and D’ on X are numerically equivalent if
D-C=D".C

for every curve C' in X. In this case we will write D = D'.

The quotient of the group of the Cartier divisors by this equivalence
relation is denoted by N'(X)z and we can consider the R-vector space
NY(X)=N'(X)z®R.
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2. Two 1—cycles C,C" € Z;(X) are numerically equivalent if
D-C=D-C'

for every Cartier divisor D on X. In this case we will write C' = C".
The quotient group Z;(X)/ = is denoted by N;(X)z and we can con-
sider the R-vector space N1(X) = N1(X)z @ R.

The intersection numbers induce a nondegenerate paring
NY(X) x Ni(X) =R

which makes these vector spaces canonically dual.

Moreover by the Neron-Severi theorem we have that these vector spaces are
finite dimensional.

The number p(X) = dim N;(X) = dim N*(X) is called the Picard number
of X.

In N;(X) we consider

NE(X) := the closed convex cone generated by effective 1—cycles of X
(Mori cone).

NEp(X):={C e NE(X) | D-C >0}, with D € N}(X).

Definition 1.2.3. Let X be a proper scheme and let D be a Cartier divisor.
D is ample if some multiple of it is very ample, i.e. gives an embedding of X
in a projective space. X is projective if there exists on it a ample divisor.

We have the following numerical characterization of ampleness for projective
variety.

Theorem 1.2.4 (Kleiman’s criterion). Let X be a (projective) variety.
A Cartier divisor D on X is ample if and only if

D-T>0forall '€ NE(X)\ {0}.

The Figure 1.1 gives an intuitive picture of this theorem.

This criterion naturally leads to the following definition.

Definition 1.2.5. Let X be a proper scheme and let D be a Cartier divisor
on X. D is numerically effective (nef) if and only if

D-T>0forall ' € NE(X)\ {0},

or equivalently
D-C >0 forall C curve in X.
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H ample
D nef not ample

Figure 1.1: The Mori cone with a nef and an ample divisors

Definition 1.2.6. Let X be a proper scheme of dimension n and let D be a
nef divisor on X. Then D is big if and only if D™ > 0.

The following is a technical result due to Kawamata and Viehweg (for the
definitions of Q-divisor, round up and fractional part of a Q-divisor and
simple normal crossing see [KMMS87]).

Theorem 1.2.7 (Kawamata-Viehveg vanishing theorem). Let X be a
smooth complex projective variety and let D be a nef and big Q-divisor on X
whose fractional part has simple normal crossing. Then

H'(X,Kx +[D])=0, Vi>0,
where [ D] is the round-up of the Q-divisor D.

We conclude this section with a definition concerning 1-cycles on a proper
scheme X which will be useful in the next chapters.

Definition 1.2.8. Two 1-cycles Dy, Dy € Z1(X) are algebraically equivalent
if there exists an effective 1-cycle E' € ZF;(X) such that D; + E and Dy + E
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Figure 1.2: Bend and break

are effective and belong to a flat family of effective 1-cycles.
We will write B;(X) for the group of 1-cycles modulo algebraic equivalence.

Definition 1.2.9. Two 1-cycles Dy, Dy € Z1(X) are rational equivalent if
there exists an effective 1-cycle £ € ZFE;(X) such that D; + F and Dy + FE
are effective and belong to a rational flat family (i.e. a flat family over a
rational curve) of effective 1-cycles.

We will write A;(X) for the group of 1-cycles modulo rational equivalence.

Clearly two 1l-cycles on X which are rationally equivalent are also alge-
braically equivalent and two 1-cycles on X which are algebraically equivalent
are also numerically equivalent (in fact Ni(X)z is a quotient of A;(X) and
By (X)).

1.3 Mori theory for smooth varieties

For the results in this section we refer again to the book [Deb01, Chapter 6.

From now on X will be always a smooth projective variety.

Definition 1.3.1. A curve C' C X is rational if and only if it has P! as
normalization.

Using the existence and the deformations of rational curves on a smooth
variety with Kx not nef (see Chapter 2 for details) Mori proved the following
facts.

The starting point is the “bend and break” technique (see Figure 1.2); es-
sentially it is divided into two steps.
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1. A curve deforming nontrivially in X, while keeping a point fixed, must
break into an effective 1-cycle with a rational component which passes
through the fixed point.

2. If a rational curve deforms nontrivially while keeping two points fixed,
it must break up into an effective 1-cycle with rational components.

These facts leads to the following theorem.

Theorem 1.3.2. Let X be a smooth projective variety, let H an ample divi-
sor on X and let C be a smooth curve such that Kx -C < 0. For every point
x € C there exists a rational curve I' in X passing through x with

H-C

—Kx -

As a consequence of this theorem, we have the following

Theorem 1.3.3 (Cone Theorem). Let X be a smooth projective variety.
There exists a countable family {T;};c; of rational curves on X such that

0<—Ky-T; <dim(X)+1

and
NE(X)=NEx, (X)+ > R
i€l
Moreover the R[] are locally discrete in the half-space of N1(X) given by
{Z e Ny(X) | Kx-Z <0}.

This theorem says that the negative part of the Mori cone NE(X) is poly-
hedral (see Figure 1.3).

Definition 1.3.4. A face in the negative part of the Mori cone is an extremal
faceof X. The R; = R*[I';] are the one dimensional extremal faces of NE(X)
and they are called extremal rays of X. Note that, by the Cone Theorem
extremal rays are generated by rational curves.

Corollary 1.3.5. Let X be a smooth projective variety and let o be an ex-
tremal face of X. There exists a nef divisor H on X such that

1.o={Z e NEX)| H-Z=0};

2. the dimsor mH — Kx is ample for all integers m > 0.
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Figure 1.3: The Cone Theorem

Definition 1.3.6. The divisor H is called supporting divisor for the extremal
face o.

Notice that, for 2 of Corollary 1.3.5, (a multiple of) the supporting divisor
can be written as mH = Kx + 7L where L is an ample divisor on X and 7
is an integer.

The following result is due to Kawamata and Shokurov.

Theorem 1.3.7 (Base-point-free theorem). Let X be a smooth variety
and let H be a nef divisor on X such that aH — Kx 1is nef and big for some
positive number a. Then the linear system |mH| is base-point-free for all
integers m > 0.

Thus the linear system |mH | of Corollary 1.3.5 for m > 0 gives a morphism
PlmH| X — IED(HO(X, mH))

Consider the Stein factorization of this morphism:
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X P(H°(X,mH))

X/
where ¢ has connected fibers, X’ is a normal variety and p is a finite mor-
phism; it turns out that the connected parts of the morphisms ¢, and
©|(m4+1)H| are the same.
As a consequence of this fact, of Corollary 1.3.5 and of Theorem 1.3.7 we
have the following theorem, which is a starting point of the Minimal Model
Program.

Theorem 1.3.8 (Contraction Theorem). Let X be a smooth variety and
let H be a nef divisor such that o := H* N NE(X) is entirely containd in
{Z e N\(X) | Kx-Z <0} (i.e. H is a supporting divisor of the extremal
face o of X ). Then there exists a projective morphism

p: X —Y,

onto a normal projective variety Y, which is characterized by the following
properties:

1. For any curve C C X, p(C) is a point if and only if H-C = 0;
2. @ has connected fibers;

3. H = ¢*A for some ample Cartier divisor A on 'Y .

The morphism ¢ is called the contraction of the face o and the divisor H s
called also the supporting divisor of the contraction .

Remark 1.3.9. A contraction (i.e. a proper morphism with connected fibers
between normal varieties) always corresponds to a face of the Mori cone (not
necessarily in the negative part of it) (see [Deb01][Section 1.3]); this fact is
sometimes called fundamental triviality of the Mori’s program.

The contraction theorem gives a class of the faces of the Mori cone of a smooth
variety for which the converse holds.

Definition 1.3.10. A Fano-Mori (F-M) contraction of a smooth variety X
is a contraction such that the anticanonical divisor —Kx is ¢-ample.

By the previous remark we have that a F-M contraction of X is a contraction
of an extremal face of X.
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We conclude this section with a proposition which shows an important prop-
erty of the contractions.

Proposition 1.3.11. (See [Deb01][Proposition 1.14]) Let XY and Y' be
normal projective varieties and let

7: X —Y X —Y'

be two contractions, associated to the faces o, and o of the Mori cone of
X.

If 0, C oy, then there exist a unique morphism f :Y — Y’ such that the
following diagram commutes:

1.4 Singularities

The study of the F-M contractions naturally leads to consider some special
singularities.

Proposition 1.4.1. [Har77, Cor. I, 7.7] Let X be a projective Cohen-
Macaulay scheme of equidimension n (e.g. X is a local complete intersec-
tion). Then there exists a unique coherent sheaf on X w% which is called
dualizing sheaf of X, such that for each locally free sheaf F on X there exist
a natural isomorphisms

HY(X,F)= H" (X, F'@uwy)".

Definition 1.4.2. X is called Q-Gorenstein if there exists an integer m such
that the sheaf (W% )®™ is a Cartier divisor; X is called Gorenstein if W% is
Cartier and X is Cohen-Macaulay.

If moreover the projective scheme X is normal, we can associate a Weil
divisor class Ky to the dualizing sheaf: this class coincides with the class
of the closure of the canonical divisor on the smooth locus of X. We will
call the divisor Kx the canonical divisor of X and the previous definition
becomes:

Definition 1.4.3. Let X be a normal projective scheme; X is called Q-
Gorenstein if there exists an integer m such that the Weil divisor mKx is
also a Cartier divisor; X is called Gorenstein if Kx is Cartier and X is
Cohen-Macaulay.
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In the Minimal Model Program the following classes of singularities are very
important.

Definition 1.4.4. A normal projective scheme X is said to have terminal
(respectively canonical) singularities if the following conditions are satisfied:

1. X is Q-Gorenstein;

2. There exists a resolution of singularities f : Y — X such that Ky =
f*Kx + > a;E;, with a; € Q and a; > 0 (respectively a; > 0), where
E; are the exceptional divisors for f.

When X is normal and projective we can give also the following class of
singularities:

Definition 1.4.5. X is called Q-factorial if for each Weil divisor D on X
there exists an integer m such that mD is a Cartier divisor; X is called
factorial if each Weil divisor is also Cartier.

We conclude this section with a property of a birational morphism whose
target is Q-factorial.

Proposition 1.4.6. [Deb01, Sec. 1.10] Let m : X — Y be a birational
morphism and let E' be its exceptional locus, i.e.

E ={z € X | 7 is not an isomorphism at x}.

If Y is normal and Q-factorial then every irreducible component of E has
codimension 1 in X and its image has codimension at least 2 in Y .

1.5 Fano varieties

In this section we recall some facts about a very important class of varieties
which are called Fano varieties.

Definition 1.5.1. A normal projective variety X is called Fano variety if
1. X is Gorenstein;
2. the anticanonical divisor —Kx is an ample Cartier divisor.

Let X be a Fano variety, then there is an important invariant of X, which
in some cases allows us to classify these varieties.
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Definition 1.5.2. The index of a Fano variety X is defined as
i(X) :=max{t € N| — Kx =tH, for some ample Cartier divisor H}

We have the following theorem, due to Kobayashi and Ochiai in the smooth
case

Theorem 1.5.3. Let X be a Fano variety of dimension n with rational sin-
gularities. Let i(X) be the index and let L be an ample Cartier divisor on X
such that —Kx = i(X)L. Then

1. i(X)<n+1;
2. i(X)=n+1if and only if (X,L) = (P, 0(1));
3. i(X) =nif and only if (X,L) = (Q™, O(1)).

Then the n-dimensional Fano varieties with index ¢(X) > n are complitely
classified. For the next steps we can give the following definitions

Definition 1.5.4. Let X be a projective variety of dimension n and let L
be an ample line bundle on it. the pair (X, L) is a del Pezzo variety if

1. X has only Gorenstein singularities;
2. - Kx=(n-1)L;
3. HY(X,tL) = 0 for any integers ¢,t with 0 < ¢ < n.

Remark 1.5.5. If X is smooth condition 2 of Definition 1.5.4 implies the
other two conditions. Moreover this Definition is consistent also when X is
non normal (see [Fuj90]).

Definition 1.5.6. Let X be a projective variety of dimension n and let L be
an ample line bundle on it. the pair (X, L) is a Mukai variety if i(X) = n—2.

Remark 1.5.7. If X is Fano with only canonical singularities then Pic X is

torsion free and so —Kx = i(X)L.

1.6 Fujita A-genus and Hilbert polynomial

The results in this section are contained in [Fuj90].
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Definition 1.6.1. Let X be a projective variety of dimension n and let L
be an ample line bundle on it. The A-genus of the pair (X, L) is

A(X,L) :=n+L" - h°(X,L).
The number d = L" is called the degree of the pair (X, L).

The A-genus of a pair (X, L) is always nonnegative and moreover the follow-
ing facts, which explain the importance of this invariant, hold.

Theorem 1.6.2. Let X be a projective variety of dimension n and let L be
an ample line bundle on it.
If A(X, L) =0, the pair (X, L) is one of the following:

1. (X,L) = (P",Op(1)) if d = 1;
2. (X,L) = (Q", 0gu(1)) if d = 2;

3. (X,L) is a P t-bundle on P!, X = P(€), with € a vector bundle on
P! which is the direct sum of line bundles of positive degree;

4. (Xa L) - <P270P2(2>>;

5. (X, L) is a generalized cone on a smooth subvariety V. C X with
A(V,Ly) =0 (for a definition of generalized cone see [BS95]).

Proposition 1.6.3. Let (X, L) be a del Pezzo variety, then A(X,L) = 1.

Proposition 1.6.4. (see [Fuj90, Sec. 1.6]) Let X be a projective variety
of dimension n and let L be an ample line bundle on it. Suppose that the
following conditions are satisfied:

1. A(X,L)=1;

2. X is Gorenstein and Cohen-Macaulay (e.g. X is locally complete in-
tersection (see [Har77, Sec. 11.8]));

3. —KX = (n — 1>L
Then the pair (X, L) is a del Pezzo variety.

To compute the A-genus of a pair (X, L) we will need the following tool,
which comes from the intersection numbers defined in Section 1.1.
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Definition 1.6.5. Let D be an ample divisor on a projective scheme X of
dimension n and let F be a coherent sheaf on X. The Hilbert polynomial of
(X, F) is the numerical polynomial

P(t) = x(X, F(tD)).

If Y is a closed subscheme of X, then the Hilbert polynomial of (Y, Oy (D))
is the numerical polynomial

P(t) = x(Y, Oy (tD)).

Remark 1.6.6. If dimY = m, the coefficient of the leading term of P(t) =
x(Y, Oy (tD)) is

(D[y)™

m!

where (D]y)™ is the degree of the pair (Y, D|y) (see Theorem 1.1.6).
Moreover if Y is equidimensional the degree of (Y, D|y) is the sum of the
degrees of the irreducible components: if Y7, ..., Y, are the irreducible com-
ponents of Y and D; = Dy, for i =1...7, we have

(Dly)™ =) _ Dy



CHAPTER 2

Rational curves on projective varieties

In this chapter we collect the results concerning rational curves and their
deformations that will be used throughout the study of the Fano-Mori con-
tractions. The main reference for this chapter will be the book [Kol96].

2.1 Parametrizing schemes

Let Y be projective variety and let X be a smooth quasi-projective variety.
Then there is a scheme which parametrizes all morphisms f : ¥V — X;
we denote this scheme with Hom(Y, X) and we write [f] for the point in
Hom(Y, X) corresponding to the morphism f. The scheme Hom(Y, X) and
the evaluation morphism:

ev:Y x Hom(Y, X) — X with  (y,[f]) — f(v)

have the universal property that for each scheme D and for each morphism
F:Y x D — X there exists a unique morphism F’: D — Hom(Y, X) such
that the following diagram commutes:

Y x Hom(Y, X) = X

1xF’

Y x D

In general Hom(Y, X) is not a variety, since usually it has countably many
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irreducible components; however each irreducible component of Hom(Y, X)
is a (quasi-projective) variety.
The following theorem gives us very important information about it.

Theorem 2.1.1. [Kol96, Sec.1.2] Let Y be a projective variety (or a projec-
tive scheme without embedded points), X a smooth quasi-projective variety
and fo:Y — X a morphism.

1. The tangent space of Hom(Y, X) at [fo] is
Tis,) Hom(Y, X) = H'(Y, fgTx),
where T'x is the tangent bundle of X;

2. If HY(Y, fiTx) = 0 then Hom(Y, X) is smooth at the point [fo] and has
dimension h°(Y, fiTx);

8. In general dimz Hom(Y, X') > hO(Y, f5Tx) — h*(Y, f;Tx).

We can also consider morphisms from Y to X which fix a closed subscheme
B of Y. Let g : B — X a given morphism, then there exists a scheme
Hom(Y, X, g) which parametrizes all the morphisms f : Y — X such that
fls = g. Clearly Hom(Y, X, g) is a subscheme of Hom(Y, X)) and has the
same properties.

Moreover for the scheme Hom(Y, X, ¢g) holds an analogous of the previous
theorem:

Theorem 2.1.2. [Mor79, Prop. 3] Let Y be a projective variety (or a pro-
jective scheme without embedded points), B a closed subscheme of Y and X a
smooth quasi-projective variety. Let moreover g : B — X a given morphism
and let fo : Y — X a morphism such that fo|p = g.

1. The tangent space of Hom(Y, X, g) at [fo] is
Tig) Hom(Y, X, g) = H(Y, f5Tx ® ),
where Lg is the sheaf of the defining ideal of B in'Y;

2. If H\(Y, f;Tx @ Ig) = 0 then Hom(Y, X, g) is smooth at the point [fo]
and has dimension h°(Y, f;Tx @ Ig);

8. In general dimys) Hom(Y, X, g) > h°(Y, fiTx ®Zp) —h'(Y, fiTx @Lp).
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2.1.1 The case of curves

We want to study the scheme Hom(C, X'), where C'is a proper curve without
embedded points; in this case the previous theorems are simpler:

Theorem 2.1.3. [Ko0l96, Theorem I1.1.2] Let X be a smooth quasi-projective
variety, C' a proper curve without embedded points and of genus g(C') and let
f:C — X a morphism.

1. Tiy Hom(C, X) = HO(C, f*T);
2. dimpy Hom(C, X) > — f.[C] - Kx +dim X (1 — ¢g(C)).

Proof. Since C is a curve h°(C, f*Tx) — h'(C, f*Tx) = x(C, f*Tx). Then
from Riemann-Roch

X(C, f*Tx) = deg(f*Tx) +dim X - x(C, O¢);
from the projection formula and linear algebra we get
deg(f*Tx) +dim X - x(C,0¢) = —fi[C] - Kx + dim X (1 — g(C)).

]

The analogous of this theorem concerning the scheme Hom(C, X, g) which
parametrizes morphisms f : C' — X with fixed points is the following

Theorem 2.1.4. [Ko0l96, Theorem 11.1.7] Let X be a smooth quasi-projective
variety, C' a proper curve without embedded points and of genus g(C') and let
f:C — X a morphism. Moreover let B be a closed subscheme of C' of finite
length I(B) and let g : B — X be a morphism.

1. TipHom(C, X, g) = H(C, f*Tx ® Ip);

2. dimy; Hom(C, X, g) > —f.[C] - Kx + dim X (1 — g(C) — I(B)).
Remark 2.1.5. [Kol96, Theorem II.1.3] These two theorems holds also when
X is a quasi-projective variety with local complete intersection singularities,

if we assume that the image through f of every irreducible component of the
curve C' intersects the smooth locus of X.
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2.2 Deformations of rational curves

2.2.1 The scheme Hom(P!, X)

The aim of this section is to study in more detail the scheme Hom(P!, X).

Let Homy,, (P!, X) € Hom(P!, X) be the open subscheme corresponding to
those morphisms which are birational onto their image (indeed this is an open
condition in Hom(PP!, X)). At least set theoretically Homy,, (P, X) contains
all information about Hom(P!, X) and so we can restrict ourselves to this
subscheme.

In fact the scheme Homy,;, (P!, X) is still too large: if f : P! — X is any
morphism and h € Aut(P!), then f o h is counted as a different morphism.
Let Homy, (P!, X) be the normalization of Homy,, (P!, X): the group Aut(P!)
acts on Homj, (P!, X') and the quotient exists.

Definition 2.2.1. We define the space RatCurves"(X) as the quotient of
Homy, (P!, X) by Aut(P!).

We define the space Univ(X) as the quotient of the product action of Aut(P!)
on Homp,. (P!, X) x P!,

Moreover there is the following commutative diagram:

ev

Hom (P, X) x P! —Y— Univ(X)

i |

Homy, (P!, X) “> RatCurves™ (X)

X (2.2.2)

where u and U are principal Aut(P!)-bundles and 7 is a universal P*-bundle.

There exists a “pointed” version of this constructions. Explicitly, let x € X
be a point and let Homy;,(P', X,0 — z) the scheme that parametrizes the
morphisms f : P! — X which sends the point 0 € P! to x € X. Let
Aut(P!,0) be the group of the automorphisms of P! which fix a point 0 € P*.
Let Homp,. (P!, X,0 — z) be the normalization of Homy;,.(P*, X,0 — x): the
group Aut(P!,0) acts on Homjp,. (P!, X,0 — z) and the quotient exists.

Definition 2.2.3. We define the space RatCurves"(x, X') as the quotient of
Homy, (P!, X,0 — z) by Aut(P!,0).

We define the space Univ(x, X) as the quotient of the product action of
Aut(P', 0) on Homy; (P', X,0 — z) x P,
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Moreover the previous diagram becomes

evy

Hom?. (P, X,0 — xm (2.2.4)

) Univ X

| |

Homy, (P', X,0 — z) — = RatCurves"(z, X)

Ly

where u, and U, are principal Aut(P!, 0)-bundles and 7, is again a universal
P'-bundle.

2.2.2 Families of rational curves

In view of these facts we can give the following definition (which is different
from Kollar’s one).

Definition 2.2.5. Let X be a quasi-projective variety and let € X be a
point.

1. A family of rational curves in X is an irreducible component V of
Homy (P!, X') which is closed under the action of Aut(P!).

2. Given a family of rational curves V', we can consider the subfamily
of curves of V' which pass through a fixed point z € X: V, .=V nN
Homp, (P!, X,0 — x).

3. If C C X is a rational curve, f : P! — C C X is the normalization
and [f] € V C Homp, (P!, X), then we say that V is a family of the
deformations of the rational curve C.

Given a family of rational curves V' C Homj,.(P!, X') and a point = € X, we
can consider the restriction of the evaluation map

ev: Hom}, (P! X) x P! — X
to the families V' and V:
evy : V x P = X, evvx:\/;xPlﬁX.

Moreover we can consider the restriction of the diagrams 2.2.2 and 2.2.4 to
the families V' and V, (see Figure 2.1).

Definition 2.2.6. With this notation:
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A /\/
Figure 2.1: The universal family of rational curves

1. Locus(V) :=evy(V x P') C X is the locus of V' ;
2. Locus(V,) :=evy, (Vi x PY) C X is the locus of V.

Definition 2.2.7. Let V' be a family of rational curves on X and let £ C X
be a closed subset (it can be £ = X). We say that V' dominates E or V is a
dominating family for E if Locus(V) = E.

Let C' C X be a rational curve and let f : P! — C' C X be the normalization.
Since each vector bundle on P! is decomposable there exist integers a; >
.-+ > a, such that

f*Tx =O0(ay) + -+ + O(ay);

since f is nonconstant, we have a; > 2.
Moreover we can consider the anticanonical degree of f:

deg y(f) = —deg f*Kx =deg f'Tx = Zai.

Definition 2.2.8. We say that f : P! — C C X is free if all a; > 0, i.e.
f*Tx is nef.

Let V' C Homy, (P!, X) be the family of the deformations of the rational curve
C’; then the numbers a; are common to the general curves in the family. Then
we can give the following definition.

Definition 2.2.9. With the previous notations, the splitting type of the
tangent bundle of X on the family V' is the n-tuple (ay,...,a,) defined
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before for the general morphism f.
The anticanonical degree of the family V' is

deg (V) :=deg_(f) = a;.

Remark 2.2.10. Given an ample line bundle H on X, it is well defined the
degree of the family V' with respect to H:

degy (V) = degy(f) := deg f*H.

In some cases the splitting type of the family V' gives some information about
the locus of the family V.

Proposition 2.2.11. [Kol96, Prop. IV.2.7, Cor. IV.2.9] Let V be a family
of rational curves on a variety X with splitting type (aq,...,a,) and let x be
a general point in Locus(V):

1. if a; > =1V i, then dim Locus(V) = #{i | a; > 0};
2. ifa; >0V i (i.e. f is free for general [f] € V), then
dim Locus(V,,) = #{i | a; > 1}.

2.2.3 Minimizing families of rational curves

Definition 2.2.12. Let X be a quasi-projective variety and consider a family
of rational curves V' C Homy, (P!, X).

1. V is unsplit if V// Aut(P') is proper.

2. Let
Im:v —XxX, with [f] — (f(O),f(OO)),

we say that V' is generically unsplit if the general non trivial fiber of 11
(i.e. the fiber over the generic point of ImII) has dimension at most
Z€ro.

2.2.13 (Explanation). Let us explain these definitions.

1. V/ Aut(P!) is an irreducible component of RatCurves”(X) and this
has a natural inclusion in Chow(X), the scheme that parametrizes the
effective cycles of X.

Let W be the image of V/ Aut(P') in Chow(X): V/ Aut(P') is proper
if and only if W is closed in Chow(X). A point w € W\ W corresponds
to a l-cycle Y a;[Cy], with C; rational curves and ) a; > 2. Thus the
general rational curve in V/ Aut(P!) degenerates into a reducible cycle.
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2. V is generically unsplit if for two general points of Locus(V') pass only
a finite number of rational curves of V. Moreover, it can be shown that
if V' is unsplit then it is also generically unsplit: using Mori bend and
break it can be shown that every nontrivial fiber of the map I : V —
X x X is zero dimensional if the family V is unsplit.

Generically unsplit families of rational curves are important, thanks to the
following result.

Theorem 2.2.14. Let X be a projective scheme and let W C Hom(P!, X)
be a family of rational curves. Then there exists a family of rational curves
V C Hom(PY, X) such that

1. 'V is generically unsplit;

2. for every 1-cycle z € V/ Aut(P!) there exists an effective 1-cycle E €

ZE1(X) such that z + E is effective and algebraically equivalent to a
1-cycle 2/ € W/ Aut(P');

3. Locus(W) = Locus(V).
Definition 2.2.15. A free morphism f : P! — C C X is called minimal if

f*TX:0(2)+\(’)(1)+~~~—|—O(1)J—|—(’)_§_..._|_(’)7

(d—2) times

where d = deg_,(f).
Using Proposition 2.2.11 it can be shown the following result.

Proposition 2.2.16. Let V be a family of rational curves on X such that f
is free for the general [f] € V. Then:

1. 'V dominates X, i.e. Locus(V) = X;

2. 'V is generically unsplit if and only if f is minimal for general [f] € V;
in this case, if x is a general point of Locus(V)

dim Locus(V,) = deg_g (V) — 1.
There is also a kind of converse of the first statement of this proposition (for
which is necessary that the characteristic is 0):

Proposition 2.2.17. Let X be a smooth quasi-projective variety and let V' be
a family of rational curves which dominates X. Then for the general [f] € V,

f is free.
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The following definition is due to Jan Wierzba and Jaroslaw A. Wisniewski
(see [WWO02]).

Definition 2.2.18. Let X be a projective variety with an ample divisor H,
let £ C X a closed subset and let V' be a family of rational curves on X.
We say that V' is a minimal dominating family for E if V' dominates E and
degy; (V) is minimal among all families of rational curves which dominate E.

Proposition 2.2.19. With the above notation if V is a minimal dominating
family, then it is generically unsplit. Moreover if x is a general point of
E = Locus(V), then the family V, is unsplit (in particular this fact shows
that a generically unsplit family is not, in general, a minimal dominating

family).

2.2.4 TIonescu-Wisniewski inequality

In this section we will prove a very important inequality concerning the di-
mension of the loci of families of rational curves which are generically unsplit.

Proposition 2.2.20. Let X be a projective variety and let V be a family of
rational curves on X.
If V' is generically unsplit and z is a general point in Locus(V) we have

dim V' = dim Locus(V') 4+ dim Locus(V;,) + 1.

Moreover if we assume that V' is unsplit, then for every point x € Locus(V)
we have

dim V' < dim Locus(V') 4+ dim Locus(V;) + 1.

Proof. Let x be a point in Locus(V') and consider the diagram

evy

V x P! Locus(V) 3 z

lp

v

Note that V,, = {[f] € V | £(0) = 2} = p(evy,'(z)); by upper semi continuity
of the fiber dimension we have

dim p(evy! (7)) = dimevy! (r) — 1 > dim V — dim Locus(V)

Similarly, if y € Locus(V,,) we have
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ev

V, x P! > Locus(V,) 3y
Vi
In this case {[f] € V | f(0) =z, f(o0) =y} = pz(ev‘_,zl(y)) and so

dim p,(evy' (y)) > dim V, — dim Locus(V;) >
> dim V' — dim Locus(V') — dim Locus(V;,)

Moreover these two inequalities are equalities for general x and y.
Let IT: V — X x X as in Definition 2.2.12. By construction

(2, y) = pa(evy, (y))

is not empty and, since by definition V is closed under Aut(P'), we have
dim T (z,y) > 1.
Now, if V' is generically unsplit we have dim II7!(x,y) = 1 for general x and
y in Locus(V'), while if V' is unsplit dim I~ (x,y) = 1 for every x and y in
Locus(V).
Thus, if V' is generically unsplit and x is general, we have:

1 =dimV — dim Locus(V') — dim Locus(V},),
while, if V' is unsplit and z is any point in Locus(V'), we get:

1 > dim V — dim Locus(V') — dim Locus(V;).

O

Using the results in Subsection 2.1.1 we get the following inequality, due
to Ionescu and Wisniewski. We state it allowing some singularities of the
variety X.

Corollary 2.2.21. Let X be a projective variety with only local complete
intersection singularities and let V' be a family of rational curves such that
Locus(V') meets the smooth locus of X.

Assume that V' is generically unsplit and let x be a general point in Locus(V),
or that 'V is unsplit and x is any point of Locus(V'). Then

dim Locus(V') 4+ dim Locus(V,) +1 > dim X + deg_, (V).

Remark 2.2.22. In the previous notations, let C' be a rational curve in X
such that, if f : P! — C C X is its normalization, [f] € V. Then the Ionescu
Wisniewski inequality is

dim Locus(V') 4+ dim Locus(V,) + 1 > dim X — Kx - C.
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2.2.5 Unsplit families and Picard number

In Chapter 1 we have defined for a proper scheme X the groups B;(X) and
A;(X) consisting of 1-cycles modulo algebraic (resp. rational) equivalence.

Proposition 2.2.23. Let f : X — Y be a morphism between proper schemes.
Assume that every fiber of f is a connected curve with (geometrically) rational
components. Let i : Z — X be a closed subscheme such that foi:Z —Y
18 surjective.

Then
Ay (X)g = ([irred. components of fibers of f|,1.A1(Z)q).

Therefore also
N1(X) = ([irred. components of fibers of f],1.N1(Z)).
Proof. See [Kol96, Prop. 11.4.19]. O

Corollary 2.2.24. Let f : X — Y andi: Z — X as before. Letp: X — W
be a proper and dominant morphism such that p o i(Z) = point.

/M;\\

Z : X W > pt

Ll

Y

Then
Ay (W) = (pslirred. components of fibers of f]).

Therefore also
N1 (W) = (p.lirred. components of fibers of f]).

Proof. Since p is dominant we have A;(W)q = p.A;(Xg); then for the pre-
vious proposition

A1 (W)g = p.(Jirred. components of fibers of f]) + (po).A1(Z)g;

since p 0 i(Z) = point we get (poi).,A1(Z)g =0 and so we are done. O
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Corollary 2.2.25. Let X be a projective variety, let x be a point of X and
V' be a family of rational curves such that V, is unsplit. Then

dim By (Locus(V;))g = p(Locus(V,)) = 1.

Proof. Considering the restriction of the diagram 2.2.4 to the family V., we
obtain the universal family (see Figure 2.1):

U, —2> X
Vi

The point z gives a (multi-)section of 7, say i : V, — U,. We can apply the
previous corollary with f =7, : U, — V, and p = ¢, : U, — Locus(V,) = W:

Vi . Uy
\\ if
Ve

By (Locus(V,))g = p«([fibers of f]).

Since V, is connected, all the fibers of f are algebraically equivalent, and so
we are done. O]

Locus(V;) 3 pt

to get

As a consequence of the results stated in this subsection, we have the follow-
ing proposition.

Proposition 2.2.26. Let X be a projective variety (not necessarily normal)
and let x be a point of X. Suppose that there exists a family of rational
curves V. C Homp, (P, X) such that the subfamily V, is unsplit and it is also
dominant for X. Then the Picard number p(X) = 1.



CHAPTER 3

Fano Mori contractions

In this chapter we will develop the study of Fano Mori contractions, intro-
duced in the first chapter. Our general reference is [KMMS87].

3.1 General facts

Let X be a smooth n-fold and let ¢ : X — W be a F-M contraction of an
extremal face o of the Mori cone.

There are different types of F-M contraction, according to the dimension of
the “exceptional locus” E of the contraction ¢ defined as

E :={x € X | ¢ is not an isomorphism at z},

which is a closed subscheme of X (it can be E' = X); of course dim E denotes
the maximum of the dimensions of the components of E.

Definition 3.1.1. If ¥ = X, i.e. dim X > dim W, then we will say that ¢
is of fiber type, otherwise ¢ is birational.

In the latter case if dim £ = n — 1 we will say that ¢ is divisorial, otherwise
@ is small.

If dimo = 1, i.e. ¢ is an extremal ray, we will say that ¢ is an elementary
contraction.

The following proposition gives information about the Picard groups of the
target and the source of a F-M contraction.

Proposition 3.1.2. Let ¢ : X — W be a F-M contraction of an extremal
face o of the Mori cone and let ¢* : Pic(W) — Pic(X) be the induced map
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between the Picard groups. Then the image of the map ¢* coincides with the
set {D € Pic(X)|D-2=0,Vzeo}.
This gives also that the following dual sequences are exact

0— N(X/W) — Ny (X) — Ny(W) — 0,

0 — NY (W) — N'(X) — NYX/W) — 0,

where N1(X/W) is the vector space generated by the curves in X which are
contracted by @ and N*(X/W) is its dual via the intersection number with
Ny (X/W).

Corollary 3.1.3. Let F' be a general fiber of a F-M contraction ¢ : X — W
supported by Kx + L. Then (Kx +7L)|r = Op.

Proof. From the previous proposition we have (Kx + 7L)|r = Op and from
the Base Point Free Theorem we have that there exists an integer mg such
that m(Kx 4+ 7L) is base point free for m > mg. Thus we have that m(Kx +
TL)|F:(m+1)(Kx+TL)|F:OF and so (Kx+TL)|F:OF ]

Lemma 3.1.4. If two curves Cy, Cy in a fiber F' of ¢ are such that [C1] = [Cy]
in N1(F), then [C1] = [Cs] also in Ni(X).

Proof. Let C7 and Cy be two curves in F' and let D € Pic(X). Since these
two curves are numerically equivalent in F', we have

ClchlD’F:CQDh?:OQD,
and so ] and (5 are numerically equivalent in X. O

The contraction theorem asserts that the exceptional locus of a F-M contrac-
tion of an extremal face o is the union of the curves whose numerical classes
are in ¢; we can say more:

Proposition 3.1.5. (¢f. [Deb01, Prop. 6.10]) Let ¢ : X — W be a F-M
contraction of an extremal face o of the Mori cone. Then the exceptional
locus E of ¢ s covered by a family of rational curves whose class is in o.

Proof. First we will show that through each point of E passes a rational
curve of o of bounded degree.
Any point x of F lies in a curve C' whose class is in ¢ by definition of F-M
contraction. The face o is generated by a finite number of extremal rays
Ry,... Ry if I'y, ..., 'y are the rational curves that generate these rays we
have that

C = Zaifi, a; € R.
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Let H be the supporting divisor of the contraction ¢, let L be an ample
divisor and let

a=max{L -I; |i=1,...,k} >0,
For each curve C in o we have

—Kx-C  —Kx-Y al;

a
-

Thus for each C' in o there exists an integer m, which depends on ¢ and not
on C', such that

L-C
—Kx-C’
The Cartier divisor mH + L is ample; thus by Theorem 1.3.2 there exists in
X a rational curve I' through the point x such that

m > 2dim(X)

(mH+L)-C L-C
T KeC =2dim(X)——— <m

0< (mH+L)-T < 2dim(X) e
o

from which it follows that H-T' =0 and L-T' < m: the class of I' is in ¢ and
so I' is contained in the exceptional locus of ¢.

The exceptional locus of ¢ is therefore the union of all the rational curves of
L-degree at most m, whose classes are in o.

The scheme Hom(P!, X) has at most countably many components and we
have shown that it dominates FE; thus there exist at least one irreducible
component of Hom(P!, X) which dominates E, i.e. F is covered by a family
of rational curves whose class is in o. O

3.1.1 Local setup

Let ¢ : X — W be a F-M contraction from a smooth variety. If we want to
study the fibers of ¢ it is useful to shrink the target and to consider a local
contraction:

choose a fiber F' of ¢ and an open affine subset Z C W such that p(F) € Z
and let Y = o= 1(Z); we will call ¢ : Y — Z a local F-M contraction around
F. If L is a p-ample divisor on Y and 7 is a rational number such that
Ky + 7L is trivial on the fiber of ¢, we say that the local contraction ¢ is
supported by the divisor Ky + 7L.

Using this construction Andreatta and Wisniewski proved the following the-
orem
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Theorem 3.1.6. [AW93] Let X be a smooth variety and let p : X — W be
a local F-M contraction supported by Kx + 7L, with L p-ample divisor on
X. Let F be a fiber of ¢ and assume that

dim F' <7+ 1 if p is of fiber type
dim F < 7+ 1 if ¢ is birational
then |L| is base-point-free.
From this theorem they get the following results

Lemma 3.1.7 (Horizontal slicing). [AW93] Suppose that ¢ : X — W is
a local contraction supported by Kx + 7L, and let X' be a general divisor in
the linear system |L|. Then, outside of the base locus of |L|, the singularities
of X' are not worse than those of X and any section of L on X' extends to
X.

Moreover, if we set @' := pxs and L' = Lx+, then Kx/+(1—1)L" is ¢'-trivial.
If 7 > 14+e(dim X —dim Z) then ¢’ is a contraction, i.e. has connected fibers.

Lemma 3.1.8 (Vertical slicing). [AW93] Assume that ¢ : X — W is
a local contraction supported by Kx + 7L and let X" C X be a non trivial
divisor defined by a global function h € H*(X, Kx+7L) = H°(X, Ox); then,
for a general choice of h, X" has singularities not worse than those of X and
any section of L on X" extends to X.

3.1.2 Elementary contractions

From now on we want to study in more detail elementary F-M contraction
from a smooth n-fold.

Let ¢ : X — W be a contraction of an extremal ray R. From the Cone The-
orem there exists at least one rational curve in R; one of the most important
invariant for the ray R and thus for the contraction associated to it is the
following.

Definition 3.1.9. Let R be an extremal ray; then
[(R) =min{—Kx - C | C is a rational curve in R}
is the length of the extremal ray R. A rational curve in R that realizes the

length of the ray is called minimal extremal curve.

Remark 3.1.10. From Theorem 1.3.2 we have 1 < [(R) < dim(X) + 1.
On the other hand we have that if R is supported by a divisor of the form
Kx + 7L, then [(R) > 7.
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Lemma 3.1.11. Let V C Hom(P', X) be the family of the deformations of
a munimal extremal rational curve; then V is unsplit.

Proof. Let C be a curve in V and let R be the extremal ray to which the
curve belongs.

Assume by contradiction that [C] = a;[C] + a3][Cs] in NE(X), with a; and
as integers. Since C'is extremal we have that C; and C5 are rational curves
which belong to R; but this is impossible, since C is a curve which has
minimal intersection number with Kx among the curves of R. O]

From Proposition 3.1.5 we have that the exceptional locus F of an elementary
F-M contraction is covered by a family of rational curves whose class is in the
extremal ray associated to the contraction. Thus we can give the following
definition.

Definition 3.1.12. Let R be an extremal ray of a smooth projective variety.
Then
Locus(R) := U {curves of R} =F,

where FE is the exceptional locus of the contraction associated to R.

Moreover from Theorem 2.2.14 we have that E is covered by a generically
unsplit family of rational curves whose class is in the extremal ray. In general
it is not true that E can be covered by an unsplit family of rational curves,
as shown in the following example.

Example 3.1.13. (see [Mor82]) Let ¢ : X — W an elementary F-M con-
traction of fiber type from a smooth 3-fold to a smooth surface which is a
conic bundle (i.e. the fibers of this map are conics).

The general fiber of ¢ is a smooth conic, while there exists a possibly empty
curve in W such that the fibers over this curve are singular, hence reducible,
conics; the generically unsplit family which covers X is the family of the
smooth fibers which are of degree 2, while there exist rational curves of
degree 1 (i.e. the irreducible components of the singular fibers) which are
contracted by ¢: these lines belongs to the extremal ray associated to ¢,
they are the minimal rational curves and do not cover X.

In view of these facts, we can apply the theory of deformation of ratio-
nal curves developed in the previous chapter to the case of generically un-
split family coming from extremal rays: this provides important informations
about the fibers of an elementary F-M contraction.

Lemma 3.1.14. Let X be a smooth variety and let p : X — W be the
elementary contraction of the extremal ray R; let C be a (extremal) rational
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curve in R, let V' C Hom(P', X) be the family of deformations of C and let
x be a point of Locus(V) C X. Then Locus(V,,) is entirely contained in the
fiber of ¢ which contains C' (i.e. the fiber over ¢(x)).

Proof. Every curve in V' and so in V. is numerically equivalent to C' and so
is in R; then every curve in V,, is in a fiber of ¢ and passes through = and so
is in the fiber of ¢ over z. ]

Thanks to this fact, we can state the Ionescu-Wisniewski inequality in the
case of extremal contraction.

Proposition 3.1.15. Let X be a smooth variety and let ¢ : X — W be
the elementary contraction of the extremal ray R, supported by Kx + 7L,
with L ample divisor on X. Let C' be a rational curve in R whose family
of deformations V. C Hom(P!, X) is generically unsplit and dominates the
exceptional locus E of ¢; if we denote with F an irreducible component of
any fiber of this map and with I[(R) the length of the ray R and we let x be a
general point of X, we have

dimFE +dimF +1 >

3.1.16
> dim Locus(V')+ dim Locus(V,,) + 1 > dim X + 7L - C, ( )

From this it follows that
dim FF > I(R) — 1> 71— 1 if v is of fiber type,
dim F' > I(R) > 7 if ¢ is birational.

We conclude this section with a lemma concerning varieties with at least two
extremal rays.

Lemma 3.1.17. Let X be a smooth variety which has at least two extremal
rays. Then the fibers of two different elementary contractions cannot have a
common curve.

Proof. Each curve in a fiber of an elementary contraction belongs to the
extremal ray associated to this contraction: if a curve in X belongs to two
fibers of two different contractions, it should belong to two different extremal
rays; thus this two extremal rays should meet in a point of the Mori cone
different from the vertex of the cone and this is not possible. Il
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3.2 Fibers of a contraction of fiber type

The aim of this section is to give a classification of the general fibers of F-M
contractions of extremal rays with high length, which are of fiber type. More
precisely we want to study the elementary contractions of fiber type from a
smooth n-fold X, n > 3, supported by Kx + 7L, withn —4 <7 <n+ 1.
These results come from classical Mori theory and adjunction theory (see for
example [Bel87] and [BS95]).

3.2.1 (Set-up). Let X be a smooth n-fold and let
p: X =W

be an elementary F-M contraction of an extremal ray R of X, which is of
fiber type and is supported by Kx 4 7L, with L an ample line bundle on X;
with G we will denote the general fiber of the map ¢.

We will always assume that the ample line bundle L is numerically reduced
on X with respect to R (i.e. it does not exist an ample line bundle L’ on
X such that [L] = m[L/], with m > 1 in N'(X/W) = R or, equivalently,
L-C=mlL'-C foracurve C in R).

Remark 3.2.2. In this set-up we have that 7 is an integer.

Proof. Suppose, by contradiction, that
T=a+ -,
c

where a, b, ¢ are integers with a > 0 the integral part of 7 and 0 < b < c.
Then, in N'(X/W), we have that

(K —al] = [1

and so the line bundle —Kx — aL is gp-ample.
Thus, for a suitable choice of an ample divisor A on W, the line bundle L’
on X defined as

L':=—-Kx —aL + ¢p*A

is ample on X and in N'(X/W) we have
(L) =S[L], with g > 1.

But this contradicts the fact that L is numerically reduced on X with respect
to R, and so 7 must be an integer. O
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Remark 3.2.3. The assumption “L numerically reduced on X with respect
to R” is only needed to make the classification simpler. We will classify the
general fibers of F-M contraction according to the value of 7 and if we have
a contraction supported by Kx + 7L with [L] = m[L'] in N'(X/W), then
this contraction is supported also by Kx +7mL’. Thus it is enough to study
the case L numerically reduced.

Remark 3.2.4. The assumption “L numerically reduced on X with respect
to R” does not imply that the line bundle Ls is numerically reduced in G
(see Example 3.2.9).

The following proposition gives us some information about the “geometry”
of the general fiber of a contraction of fiber type.

Proposition 3.2.5 (Generic smoothness). (see [Har77, Cor. 111.10.7])
Let ¢ : X — W be a morphism from a smooth variety X. Then there exists
a nonempty subset V of W such that, if we call U = o~1(V'), the morphism
oly : U — V is smooth.

In particular we have that all the general fibers of ¢ are smooth, of the same
dimension and have the same Hilbert polynomaial.

The main tool in the classification will be the theory of the deformations of
rational curve developed in the second chapter and the Proposition 3.1.15.

Remark 3.2.6. With the notations as in Proposition 3.1.15, in this case
E = Locus(V) = X. Thus, from Proposition 2.2.17, the rational curve C'is
free and so, by Propositions 2.2.16 and 3.1.15

n > dim G > dim Locus(V,) = 7L - C — 1. (3.2.7)
Hence we get 7 < n + 1.

Proposition 3.2.8. Let X be a smooth n-fold and let ¢ : X — W be an
elementary F-M contraction of an extremal ray R which is of fiber type and
1s supported by Kx + 7L, with L numerically reduced. Then the general fiber
G of ¢ is a smooth Fano variety with index i(G) which is a multiple of T.

Proof. Since ¢ is of fiber type, by adjunction we have that Kg = Kx|g and
from generic smoothness we have that G is smooth.

Thus from Corollary 3.1.3 we have that —Kg = —Kx|¢ = 7L¢, which is
ample and so G is Fano with index i(G) a multiple of 7. O

The following table summarizes the classification of the pairs (G, Lg), ac-
cording to the values of 7.
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Classification of the pairs (G, Lg)

dim G dim W G n
T=n+1 n 0 P any
T=n n 0 Q" any

n—1 1 pr-t
T=n-—1 n 0 del Pezzo any

n—1 1 Q!

n—2 2 pr—2
T=n—2 n 0 Mukai > 6

n—1 1 del Pezzo

n—2 2 Q2

n—3 3 pr—3
T=n—3 n 0 i(G)=n—-3 >8

n—1 1 Mukai

n—2 2 del Pezzo

n—3 3 Q3

n—4 4 pr—4
T=n—4 n 0 i(G)=n—4 >10

n—1 1 i(G)=n—3

n—2 2 Mukai

n—3 3 del Pezzo

n—4 4 Q-

n—> ) Pr—4

In all the cases we have Lg = Og(1)
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We give a sketch of the proof for the first values of 7. For the other values
the proofs go in the same way.

T=n+1
In this case inequality 3.1.16 gives that
dimG+1>n+1, ie dimG=n,

which implies that G = X and dimW = 0. On the other hand i(G) =
i(X) > n+1 and so Theorem 1.5.3 gives that (X, L) = (P", Opn(1)).

T=mn
From inequality 3.2.7 we have that

L-C=1 andso dimG > dimLocus(V,)=n — 1.
Then we have two different cases:

dimG =nandso G =X,dimW =0 and i(G) = i(X) = n; Theorem 1.5.3
gives that (X, L) = (Q",O(1)).

dimG =n—1and sodimW =1 and i(G) = n = dim G+ 1; again Theorem
1.5.3 gives (G, L) = (P"~1,0(1)).
Moreover we have that W is a smooth curve (since it is normal) and
so ¢ : X — W is a flat morphism whose general fiber is isomorphic to
P"~! and has degree one with respect to L. Thus any fiber is isomorphic

to P"! and has degree one with respect to L and so ¢ : X — W is a
P-bundle.

T=n-—1
Inequality 3.2.7 gives the following possibilities:
.- 2 W%thn:3
1 withn>3

moreover the first case is possible only if dim G = dim Locus(V,) = 3: thus
X = G is a del Pezzo threefold of degree at least 8 and this implies that
(X, L) = (P 0O(2)) (see [Fuj90]), and so L is not numerically reduced.

Consider now the case L - C' = 1: inequality 3.2.7 becomes

dim G > dim Locus(V,,) =n — 2,
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and Proposition 3.2.8 implies that G is a Fano manifold of index i(G) = n—1;
thus we have the following possibilities:

dimG =nand so G =X, dimW =0 and i(X) = i(G) =n — 1: thus X is
a del Pezzo manifold.

dimG =n —1 and so dimW = 1. Thus G is a smooth Fano variety with
index i(G) = dim G: Theorem 1.5.3 gives that (G, Lg) = (Q"*, O(1)).
Moreover we have that W is a smooth curve (since it is normal) and
so ¢ : X — W is a flat morphism; this implies that ¢ is a quadric
fibration.

dim G =n — 2 and so W is a surface and i(G) = dim G + 1. Theorem 1.5.3
gives (G, L) = (P"2,0(1)).
Moreover it can be shown that W is smooth and that ¢ : X — W is a
scroll (see [Fuj87]).

The other cases

For the cases 7 =n — 2,n — 3,n — 4 we gave only a rough classification; in
particular the list of the general fibers holds for n big enough. Indeed from
inequality 3.2.7 we have that, in the considered range of 7, if n is big enough
the line bundle L has intersection number 1 with the minimal extremal
curve and so Lg = O(1).

The situation becomes more complicated for variety of smaller dimension: in
particular we will show with an example in dimension four that the general
fiber of these contractions can be out of the list given before.

The techniques used to produce the tables of the fibers and also the “excep-
tional cases” in low dimension are similar to the ones used for the previous
cases.

This example was inspired by [ABW92, Example 2.3].

Example 3.2.9. Let S be a smooth projective surface whose Brauer group is
non-trivial (for example an abelian surface, see [Ele82]): suppose in particular
that there exists a smooth fibration, from a smooth fourfold X,

p: X —S8

whose fibers I are P2, which is not a projective bundle over S.
First of all we have to show that ¢ is a F-M contraction: since we know that
it has connected fibers, it is enough to see that — Kx is relatively ample, i.e.
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it is ample on the fibers F' of .
By adjunction we have

—Kx|p =—Kr = Op(3),

and so ¢ : X — S is a F-M contraction of fiber type, which is also elementary
(the curves in each fiber are numerically proportional since the fibers are
projective spaces and the curves in two different fiber are proportional since
¢ is a flat morphism).

Let L = —Kx + ¢*(A), where A is a ample divisor on S: we can assume
that L is ample on X and so we have that Kx + L = ¢*(A) is a supporting
divisor for ¢ whose fibers are (F, Lr) = (P2, O(3)), which are not contained
in the previous list.

We claim that L is numerically reduced. If not, there should exist a line
bundle L' on X such that L% = O(1): but in this case [Fuj87, Lemma
2.12] gives that ¢ : X — S is a projective bundle and this contradicts the
hypothesis.

3.3 Small contractions

Only a few words about the small contractions. We recall that a F-M con-
traction ¢ : X — W is small if it is birational and the codimension in X of
its exceptional locus is > 2.

From inequality 3.1.16 it is easy to see that, if ¢ is supported by Kx + 7L,
the contraction can be a small contraction only if 7 < n — 3 (with, of course,
n>4).

Small contractions supported by Kx + (n — 3)L where studied by Kawamata
([Kaw89]) for n = 4 and by Andreatta, Ballico and Wisniewski ([ABW93])
for n > 5, while the ones supported by Kx + (n — 4)L where studied by
Occhetta ([Occ]) and Zhang ([Zha95]).

Remark 3.3.1. Unlike the fiber type case, in the study of birational F-M
contraction ¢ : X — W, it is important to study the normal bundle Ng,x
of the exceptional locus E of the contraction in the variety X or, at least, its
restriction to the fibers of (.

Here we will recall briefly the results concerning small contractions supported
by KX + (n — 3)L

Definition 3.3.2. Let ¢ : X — W be a small elementary contraction; the
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flip of ¢ is a commutative diagram

where ot : Xt — W is a birational morphism from a normal projective
variety with only terminal singularities such that the canonical divisor of X+
is p-ample and X is isomorphic to X in codimension 1 via tr,.

Theorem 3.3.3. [ABWY93, Theorem A] Let X be a smooth variety and let
p: X — W be an elementary small contraction whose supporting divisor is
Kx + (n—3)L.

Then the exceptional locus E of ¢ is a disjoint union of its irreducible com-
ponents E; (i =1...s), such that E; = P"* and Ng,/x = Opn—2(—1)%2.
Moreover there exists the flip and the variety X' is non-singular and projec-
tive.

3.3.4 (Description of the flip). (see Figure 3.1) Let § : Z — X be the
blow-up of X with center E: its exceptional locus E’ is a disjoint union of
P"~2 x P'’s with normal bundles O(—1, —1).

A
7
X (@oB)

PN

w

The map (¢ o 3). Clearly this map has connected fibers (each P"~2 x P!
is a fiber of this composition) and moreover —K is (p o 3)-ample and so
this composition is a F-M contraction. To prove this we have to show that
— K is ample on each P"~2 x P!: it suffices to show that — K has positive
intersection number on the generators of Ny(P"~2 x P!) which are a line ¢ in
P72 and T, one of the P'’s.

Since I' is a fiber of the blow-up 3, we have that —K - I' = 1; moreover,
from the projection formula and since —K; = —(*Kx — E’, we have that

—Ky; 4=(—f3Kx—FE)l=—-Kx-l—F -/,
where [ = [3,¢ is a line in one of the irreducible components of E; thus

Ky l=1+1=2.
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Construction of X*. Since ¢ and § are elementary contractions, we have
that N,(Z/W) is two-dimensional, i.e. there exists on Z an extremal ray
different from the one contracted by [ which is contracted by (¢ o 3): by
Nakano contractibility criterion the contraction of this ray is the contraction
of E/ “in the other direction”: E’ is the exceptional locus of a smooth blow-
down whose non trivial fibers are P"~2,

In this way we obtain the blow-down v : Z — X, where X is a smooth
projective variety, with an induced morphism ¢ : X* — W (see Proposition
1.3.11). Moreover ¢)(E’) = C'is a smooth curve in X and Kx+ is ¢ T-ample.
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X

Figure 3.1: The flip of Kawamata
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CHAPTER 4

Fibers of divisorial contractions

In this chapter we will study divisorial Fano Mori contractions; in particular
we will classify the general fibers of elementary divisorial contractions from
a smooth n-fold X supported by Kx +7L withn -4 <7 <n—1.

4.1 First properties
4.1.1 (Setup). Let X be a smooth n-fold and let
p: X =W

be an elementary F-M contraction of an extremal ray R of X, which is sup-
ported by Kx+7L, with L an ample line bundle on X and whose exceptional
locus £ C X is a divisor.

With F' we will denote any non trivial (i.e. non 0-dimensional) fiber of ¢,
while G will be a general non trivial fiber of this map. Moreover we will
consider these fibers as subschemes of X with the reduced structure.

We will always assume that the ample line bundle L is numerically reduced
on X with respect to R (i.e. it does not exist an ample line bundle L’ on
X such that [L] = m[L'], with m > 1 in N'(X/W) = R or, equivalently,
L-C = mlL'-C for a curve C in R). (See also the Remarks that follow
(3.2.1)).

Remark 4.1.2. Since we consider E with the reduced structure, from a
theorem of Bertini (see [Jou83, Theoreme 6.3]), to consider F' and G with
the reduced structure, is equivalent to consider F' and G as any and the
general fiber of p|g : £ — ¢(E).
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Unlike the fiber type case, the geometry of the general non trivial fibers of
¢ is not so simple. In particular it is not true that the fiber GG is smooth: it
can be even not irreducible.

We have the following general result.

Theorem 4.1.3. (see [Deb01, Proposition 6.10 (b)]) Let ¢ : X — W be
an elementary divisorial contraction with exceptional divisor E. Then E 1is
1rreducible.

Proof. Let H be a supporting divisor for ¢; since H = ¢*(A), where A is an
ample Cartier divisor on W and ¢ is birational, we have that H is nef and
big.

Then from Theorems 1.2.7 and 1.1.6 we have

Hn
HYX,Kx +mH) = x(X,Kx + mH) ~ —'m"+--- >0
n!
for m > 0; thus the linear system |Kx + mH| # () for m > 0.
Let
D = ZdiDi € |Kx +mH]|

be an element of this linear system (of course we have d; > 0) and let C' be
a curve of the extremal ray contracted by ¢; we have

H-C =0 since H is a supporting divisor,
Kx-C <0 since Kx is p-ample,

and so D - C < 0.

Then there exists an irreducible component D; of D, which is an effective
divisor on X such that D, - C < 0.

This implies that all the curves in the extremal ray contracted by ¢ have
negative intersection with D;, hence they are contained in D;.

Then we have that £ C D;: thus, since F is a divisor, we have that £ = D,
and so F is irreducible. ]

Corollary 4.1.4. (See [KMMS87, Proposition 5.1.7]) Let ¢ : X — W be an
elementary divisorial contraction. Then the variety W is Q-factorial.

Proof. In the proof of the previous theorem we have shown that £ - C < 0,
where C'is an extremal curve. Then for any Weil divisor A" of W, if we call
A its strict transform by ¢, there exists a rational number ¢ € Q such that
(A4 ¢FE)-C = 0. Thus from Proposition 3.1.2 we have that there exists a
Cartier divisor Ay on W and an integer r such that r(A + ¢E) = ¢*Ay: thus
rA’ = Ay and so A’ is Q-Cartier. O
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Our aim, in this chapter, is to give a list of all the possible terns:

(G? Lg, (NE/X)‘G)

where GG is a general fiber of an elementary divisorial F-M contraction ¢ :
X — W, supported by Kx + 7L and Ng/x is the normal bundle of the
exceptional locus E of ¢ in X.

Lemma 4.1.5. (See [And85]) Let ¢ : X — W be an elementary divisorial
F-M contraction supported by Kx + 1L, let E be the exceptional divisor of ¢
and let F' be any fiber of p|g: E — @(F).

Then the image of the restriction map Pic X — Pic F' is of rank one, gener-
ated by Ly = L|p.

From Corollary 3.1.3 we have that Kx|p = —7Lp; moreover there exists an
integer ¢ > 1 such that

E|F = (NE/X)’F = —qLF.
Proof. Consider the inclusion
Ni(F) — N (X);

since the contraction ¢ is elementary, all the curves in F' are numerically
proportional in X and so Im(N;(F) — N;(X)) is of rank one.

The dual map is the restriction N*(X) — N(F), thus we have that the
subspace Im(N!(X) — NY(F)) is of dimension 1.

Moreover from Proposition 3.1.2 and Corollary 3.1.3 we have that if we have
A € Pic X with A|r =0 then A|r ~ 0: this implies that since Im(N'(X) —
N(F)) is of rank one, then also Im(Pic X — Pic F) is of rank one.

Since L is ample and it is numerically reduced, Lg is the positive generator
of this image.

Notice that, since F/-C' < 0 for each curve C' contracted by ¢, —E' is p-ample
i.e. —F|F is ample of F' and so it is a positive multiple of L. O

4.1.1 Vertical slicing technique

Following Ando [And85], to continue the study of the general fibers of the
contraction ¢ : X — W, we have to use the vertical slicing technique:

4.1.6 (Construction). (see Figure 4.1) Let ¢ : X — W be an elementary
divisorial F-M contraction with exceptional divisor £ and let r = dim ¢(E);
if 7 = 0 then the contraction ¢ maps E to a point and so there is a unique
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Z
W
¢ (E)
Figure 4.1: Vertical slicing
fiber E. If r > 0, we can take r general very ample divisors Zi,...,Z, on

W if we call Y; = ¢*(Z;), we can consider:
Y=Y Z:=()Z%

From Bertini theorem we have that Y is smooth and Z is normal and Q-

factorial. Moreover the general fiber G of ¢ is a connected component of
ENY.

Lemma 4.1.7. The map @y : Y — Z, which is the restriction of ¢ toY, is
a F-M contraction supported by Ky + 7Ly which maps G to a point in Z.

Proof. First of all notice that ¢y has connected fibers: this map contracts
only the fibers of ¢ over the points of Z N p(E).
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We will show that (Ky + 7Ly)|¢ = Og and so we are done.
Since Y is the complete intersection Y = N;p*(Z;), we have

det Ny/X = QO*(Zl + -+ Z,«)|y.

By adjunction
Ky = (KX + det Ny/X)|y

and so we have
Ky +7Ly = (Kx +7L0)ly + ¢ (Z1+ -+ Z,)|v.

The right side term is trivial on G, since G is a fiber of the contraction ¢,
and so also the left side term is trivial and we are done. O

Remark 4.1.8. In general ¢y is not an elementary contraction and so G
can be not irreducible.

Since we have that G is a divisor on Y and Y is a smooth variety, we have
that G is a local complete intersection and so it is well defined its normal
bundle in Y.

Another connection between the starting contraction ¢ and ¢y concerns the
normal bundle of the exceptional locus. Precisely the following holds

Lemma 4.1.9. In the previous notations Ngy = (Ng/x|a)-
Proof. From the sequences of inclusions
G—-Y — X, G—F— X,
we have the exact sequences of normal bundles
0 — Ngyy — Ngyx — (Nyyx)la — 0,
0 — Ng/g — Na/x — (Ng/x)|a — 0.

Taking the determinants of these sequences and observing that Ng/y and
(Ng/x)|c are line bundles and so they coincide with their determinants, we
obtain

det Ng/x = Ng/y X det(Ny/X)|G = det N(;/E X (NE/X)|G

Since Y = N;p*(Z;), as in the proof of the previous Lemma we have that
det(Ny/x)|e¢ = Og; moreover, since G is a fiber of the fibration g : £ —
©(E), we have also that det N/ = Og. Then we have

Ny = det Ngyx = (Ng/x)le-
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Since G is a local complete intersection, using adjunction formula, we can
compute its canonical bundle: from Lemma 4.1.5 we have

Kx|¢ = —7Lg, Gle = Ng/y = (Ng/xla) = —qLe,
and so we obtain the following equality:

Kq = KX|G + G|G = —(T + q)Lg.

4.2 The Hilbert polynomial

The aim of this section is to compute the Hilbert polynomial of (G, Lg), a
general fiber of the contraction ¢ : X — W supported by Kx + 7L, as in
4.1.1; we will follow the ideas in [Nak95].

Before all, we need some vanishing for the higher cohomology groups of the
fibers of g, due to Ando and Andreatta and Wisniewski, which comes from
the Kawamata-Viehveg vanishing theorem.

Lemma 4.2.1. ([And85, Lemma 2.2],[AW9S, Lemma 1.2.1]) Let things be as
i 4.1.1 and let P be a Cartier divisor on X such that —Kx + P is relatively
nef and big; then H' (G, Og(P)) =0 fori > 0.

Moreover if F' is a subscheme of X with F),, C F, then H*(F',Op/(P)) =0,
where s = dim F'.

Corollary 4.2.2. In the previous notations we have that, if t > —1,
H'(G,tLg) =0, i>0.

Proof. We have only to show that —Kx + tL is relatively nef and big for
t > —7. From Proposition 3.1.3 we have that, for each non trivial fiber F' of
the contraction ¢, holds the equality —Kx|r = 7Lp and so

which is ample on F'if £ > —7 and it is Op if t = —7, which is nef and big,
and we are done. O

From this fact we can deduce the following
Proposition 4.2.3. The Hilbert polynomial P(t) = x(G,tL¢) is such that
1 ift =0

P(t)=<¢h%Lg) ift=1 (4.2.4)
0 ift=—1,...,—71
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From Serre duality, if as usual r = dim(E) and q is the integer defined by
the equality E|p = —qLp (see Lemma 4.1.5), we have also that

P(t)=(—1)""""P(-1 —q—1t). (4.2.5)
Moreover it holds that 1 < qg<n—71—r.

Proof. From the previous Corollary we have that, for ¢ > —7, the Hilbert
polynomial of (G, L¢g) is P(t) = h%(G,tLg). Since Lg is ample, it is clear
that h°(G,tLg) = 0 if t < 0, while the other two equalities of 4.2.4 are
straightforward.
Moreover, since Kg = —(7 + q) Lg, the equality 4.2.5 is a direct cosequence
of Serre duality.

The last thing to prove is that ¢ <n —7 —r.

P(t) is the Hilbert polynomial of the general fiber of the morphism pg : £ —
¢(E) from a variety of dimension n — 1 to a variety of dimension r and so
it is a polynomial of degree n — r — 1, which is the dimension of the general
fiber of pg.

Assume now, by contradiction, that ¢ > n — 7 — r + 1. Then the integers

-7 —-q+1, —7—q+2, ..., —T—q+n—T-—1

are smaller than —7:

| | | |
[ [ I [

—T—q+1 —T—q+n—7-—r -7 -1

and thus they are distinct from
-7, —74+1,...,—1.

Hence 4.2.4 gives 7 roots of P(t) and 4.2.5 gives (n —7 —r) other roots which
are distinct from the previous ones: so we get 7+ (n —7 —1) = (n — 1)
distinct roots of P(t), which is a non zero polynomial of degree n —r — 1;
but this is impossible and so we are done. O

So we have an upper bound for ¢:
q<mn-—T=T;

moreover, using these properties and these techniques, we can compute ex-
plicitly the Hilbert polynomial of the pairs (G, Lg) when ¢ is big enough with
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respect to the upper bound n — 7 —r. In particular we will get explicitly this
Hilbert polynomial when
{n —T—r
q =
n—7—r—1

and we can obtain some information also when
n—7—r—2

q =
n—7-—r—3

if these cases are effective, i.e.

under the condition that ¢ > 1. (4.2.6)

Using this description, in the hypothesis that G is irreducible, we will be able
to compute the A-genus of the pair (G, Lg):

A(G,Lg) = dim G + LE™Y — h%(Lg) =n—r — 1+ LE 71 — P(1)

to get the classification of the pairs (G, L), according to the values of q.

a) g=n—T1—r
In this case 4.2.4 and 4.2.5 gives exactly
T+(n—7—r—1)=n—r—1=degP(¢)

distinct roots of P(t) and so

d (1) (=T =),

PO =m=

where d = Ly "1

Since 4.2.4 gives that P(0) = 1, we have that d = 1 and so, recalling Remark
1.6.6, we have that G is irreducible.

Thus we can compute the A-genus of (G, L¢); since in this case P(1) = n—r
we have

AG,Lg)=n—r—14+d—P(1)=0

and so from Theorem 1.6.2

<G7 LG? NE/X|G> = (Pn_r_lv O<1)7 O(_(n - T T)))
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b) g=n—7—7r—-1
In this case 4.2.4 and 4.2.5 gives exactly
T+n—7—r—2)=n—r—2=degP(t)—1

distinct roots of P(t) and so

d
P(t):m(t+1)...(t+(n—r—z))(t—a),

where, as before, d = Lg_r_l and « € C is the other root.
Thanks to 4.2.5, we have two different expressions of the roots of P(t):

{_1’“.7_('”—7’—2)70[}:
={-n—-r-1)+1,...,-1,—(n—r—1) —a}.

Of course the sum of the elements of one set is equal to the sum of the
elements of the other:

n—r—2)(n—r—1)

—r—2 —r—1
:_(n r—2)(n—r )—(n—r—l)—a
2
and so we find
n—r—1
0=

2 Y

from the condition P(0) = 1 we have also
do=—(n—r—1) andso d=2.

Moreover it follows that, if G is irreducible, we can compute the A-genus of
(G, L¢); since in this case P(1) =n —r + 1 we have

AG, Lg)=n—r—1+d—P(1)=0
and so from Theorem 1.6.2, under the hypothesis that G is irreducible, we get

(G, La, Ngyxle) = (@77,0(1), O(=(n — 7 —r — 1))).



52 Fibers of divisorial contractions

c) g=n—T7—1—2

In this case, following the same argument as before, we have

P(t) = !(t+1)...(t+(n—r—3))(t—a)(t—ﬁ),

where d = L7 and «, 3 € C are the other roots.
Again, thanks to 4.2.5, we have two different expressions of the roots of P(t):

{-1,...,—(n—r—3),a,0} =
={-n—-r—-2)+1,...,-1,—-(n—r—-2)—a,—(n—r —2) — G}.
Taking the sum we have
at+f=—(n—r—2)
and from the condition P(0) = 1 we get

_(n=r—=2)n—r—1)
aff = 7

As before, if G is irreducible, we can compute the A-genus of (G, Lg):

AG, Lg)=n—r—1+d—-P(1) =1

andso h%(Lg)=P(1)=d+n—r—2.

In this case we have also that
Ko=—(T+qLg=(n—-r—2)Lg=(dimG — 1)L¢g

and so, since G is locally complete intersection, Proposition 1.6.4 applies to
get that, if G is irreducible, the pair (G, L) is a del Pezzo variety.

d g=n—17—7r-—-3
In this case we have

P(t) = (t4+1)...(t+(n—r—4)t—a)t—0)t—7),

where d = L7 and «, 3, € C are the other roots.
Similar arguments as before show that, if G' is irreducible, we can compute
the A-genus of (G, L¢):
d
A(G, LG) - 5
Moreover we have also that
KG = —(T + q)LG = (n - Tr— S)LG = (dlmG — 2)Lg,

and so, if G is irreducible, the pair (G, L) is a Mukai variety.
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4.3 Classification of the general fibers

Using the results obtained in the previous section, we will give the list of all
the possible general fibers of an elementary divisorial contraction supported
by Kx + 7L, according to the values of 7, with n —4 < 7 < n —1, in the
hypothesis that these fibers are irreducible.

The irreducibility of these fibers is studied in great detail in the next chapter.

Remark 4.3.1. Since ¢ : X — W is divisorial, Proposition 3.1.15 gives
n—1>dim F > dim Locus(V,) > 7L - C, (4.3.2)

where F' is any non trivial fiber of ¢, C' is a rational curve in the extremal
ray R contracted by ¢, whose family of deformations V' C Hom(P!, X) is
generically unsplit and dominates the exceptional divisor F of ¢, and z is a
general point of Locus(V') (see Proposition 3.1.15 and Subsection 3.1.2 for
details).

Moreover we will assume that V' is a minimal dominating family for E, with
respect to Kx (see Definition 2.2.18).

431 7T=n-—-1
From inequality 4.3.2 we have that
L-C=1 and  dimLocus(V,) =dim F =n — 1.

Thus we have that F' = FE, i.e. F is mapped by ¢ to a point in W. Using
condition 4.2.6, we have that only the case a) in Section 4.2 is effective, with
g = 1, and so we have that G is irreducible and

(G, Lg, Ng/xla) = (B",0(1),0(-1)).
Moreover, following [AO], we can apply Castelnuovo theorem ([Har77, Theo-
rem V.5.7]) to our case to see that ¢ : X — W is a smooth blow-down which
maps E to a smooth point of W.
4.3.2 T=1n—2
Inequality (4.3.2) gives the following possibilities:

I.C— 2 withn=3
1 withn>3
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The first case is not possible. From inequality 4.3.2 we have that
dim G = dim Locus(V;) = 2

and so £ = G is a del Pezzo surface and r = dim ¢(E) = 0.

Thus, from condition 4.2.6, we have that only the cases a) and b) in Section
4.2 are effective.

Moreover, since the family V' is a minimal dominating family for F, from
Proposition 2.2.26 we have that PicE = Z and so E can not be a (2-
dimensional) quadric.

Thus we are in case a) of Section 4.2, i.e. (E,Lg) = (P?,0O(1)) and, since
L -C = 2, we have that C is a conic in P?: but the family of conics in P?
is not a minimal dominating family, since the minimal dominating family is
the family of the lines, and so also this case is not possible.

The case L-C' =1. From inequality 4.3.2 we have two distinct cases:

dimG =n —1 and so r = dim p(F) = 0. In this case we have that G = F
and so it is irreducible. Moreover we have that only the cases a) and
b) of Section 4.2 are effective and so we have two possibilities for F,
according to the possible values of g¢:

(P=1 0(1),0(-2)), ifq=2

(EaLEaNE/X) = { _ .
(Q*1,001),0(-1)), ifqg=1

dim G = n—2 and so r = dim ¢(FE) = 1. In this case only case a) of Section
4.2 is effective, with ¢ = 1, and so we have that G is irreducible and

(G, L, Ng/xla) = (P"7%,0(1), O(~1)).

The results are summarized in the following table.

dim ¢(E) G Leg Ng/xle = —qlg
1 P2 O(1) O(-1)
0 pr-t O(1) O(-2)
o o) o(-1)

433 T=n-—3
Inequality 4.3.2 gives the following possibilities:
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dim G =n—3 and so r = dim p(E) = 2. In this case only case a) of Section
4.2 is effective, with ¢ = 1. Thus we have that G is irreducible and

(G, L, Ngyxle) = (P"%,0(1), O(-1)).

dimG =n — 2 and so r = dim p(FE) = 1. We have that only the cases a)
and b) of Section 4.2 are effective, with ¢ = 2,1 respectively.
Notice that if ¢ = 1, i.e. if we are in case b) of Section 4.2, the
wrreducibility of G is not automatic; we will prove it in the next chapter.
Once proved the irreducibility of G for ¢ = 1, we have two possibilities
for GG, according to the possible values of ¢:

(P"2,0(1),0(-2)), ifg=2

(G, LG, Ng/x|a) = {(Qn—2, 0(1),0(-1)), ifg=1

dimG =n —1 and so r = dimp(F) = 0. In this case G = E and so it
is irreducible. Moreover only the cases a), b) and c) of Section 4.2 are
effective, with ¢ = 3,2 and 1 respectively; thus we have

(P, 0(1),0(-3)), ifg=3
(E,Lg,Ng/x) =14 (Q"1,0(1),0(-2)), ifg=2
(del Pezzo, O(1),0(-1)), ifgqg=1.

The results are summarized in the following table.

dim p(E) G Lg Ng/xle = —qLc
2 pr—3 O(1) O(-1)
1 P2 O(1) O(-2)
o o) o(-1)
0 Pt O(1) O(-3)
o o 0(-2)
del Pezzo  O(1) O(-1)

434 T=n-—4

In this case the irreducibility of G is not automatic except the cases dim G =
n—4 and dim G = n — 1 (see below for details). In the next chapter we will
study this problem and we will show that G is irreducible, except in one case
and we will construct an example that shows that this “exceptional case” is
effective.

Inequality 4.3.2 gives the following possibilities:
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dim G = n—4 and so r = dim p(F) = 3. In this case only case a) of Section
4.2 is effective, with ¢ = 1. Thus we have that G is irreducible and

(G, Lg, Ng/xla) = (P, 0(1),0(-1)).

dimG =n — 3 and so r = dim p(FE) = 2. We have that only the cases a)
and b) of Section 4.2 are effective, with ¢ = 2, 1 respectively. Assuming
that G s irreducible, there are two possibilities for G, according to the
possible values of ¢:

(P"=3,0(1),0(=2)), ifg=2

(G, LG,NE/X|G) = {(Qn370(1)’0(_1))’ ifg=1

dimG =n — 2 and so r = dim¢(E) = 1. Moreover only the cases a), b)
and c¢) of Section 4.2 are effective, with ¢ = 3,2 and 1 respectively;
assuming that G is irreducible, we have

(P"=2,0(1),0(-3)), if g =3
(G, L, Ngyxla) = { (Q"2,0(1), 0(-2)), ifg=2
(del Pezzo, O(1),0(-1)), ifq=1.

dimG =n—1 and so r = dimp(E) = 0. In this case G = E and so it
is irreducible. Moreover the cases a), b), ¢) and d) of Section 4.2 are
effective, with ¢ = 4, 3,2 and 1 respectively; thus we have

(P, 0(1),0(—4)), if g =14
(E, L, NE/X) _ (@n_la O<1)7 O(—3)), lf q=3
(del Pezzo, O(1),0(-2)) ifg=2
(Mukai, O(1), O(—1)) if g=1.

The results, in the hypothesis that G is irreducible, are summarized in the
following table.
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dim p(E) G L
3 pr—4 O(1)
2 pr-3 O(1)

o o)

1 P2 O(1)
o on

del Pezzo  O(1)

0 pr-t O(1)
o o)

del Pezzo  O(1)

Mukai O(1)
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CHAPTER b

[rreducibility of the general fiber

In this chapter we will study the irreducibility of the general fiber of an
elementary divisorial F-M contraction ¢ : X — W, from a smooth n-fold X,
supported by Kx + 7L, with 7 =n —3,n — 4.

In particular we will show that the general fiber of the contractions supported
by Kx + (n — 3)L is irreducible, while there is a (unique) case of elementary
divisorial contraction supported by Kx + (n—4)L in which the general fiber
is reducible.

At the end of this chapter we will give an example, suggested to me by
Jaroslaw A. Wisniewski, which shows that such an “exceptional case” exists.

5.1 ThecaseT™T=n—3

Proposition 5.1.1. Let ¢ : X — W be an elementary divisorial F-M con-
traction from a smooth n-fold X, supported by Kx + (n — 3)L (of course
n > 4). Then the general fiber G of this contraction is irreducible.

Proof. From Subsection 4.3.3, if E is the exceptional divisor of ¢ and ¢ is the
integer defined by the equality Ng,x|¢ = —¢Lq, we have that G is irreducible
except the case dim@(E) = 1, ¢ = 1 and so, for b) of Section 4.2 we have
also that d = Lgm¢ =2,

The rest of the proof is by contradiction.

Suppose G reducible. From Remark 1.6.6 we have that G = G; + G4
and that the pair (G;, Lg,) (with ¢ = 1,2) is a polarized variety with

LEme =1.
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On the other hand, from [AW97, Theorem 1.10], we have that every irre-
ducible component S of each fiber of ¢ is normal and A(S, Lg) = 0. Then
A(Gy, Lg,) = 0 and LE™C =1 and so, from Theorem 1.6.2 we have that

(Gi, Lg,) = (P"7%,0(1)).

Vertical slicing. From Subsection 4.1.1 we can construct a F-M contrac-
tion, from a smooth variety Y of dimension n — 1, ¢y : Y — Z, which is
divisorial and maps G to a point. Since G is reducible, we have that ¢y is
not elementary (see Proposition 4.1.3) and so @y is the contraction of a face
o of the Mori cone spanned by at least two different extremal rays: R; and
RQ.

The space N1(Y/Z). From Lemma 3.1.4, since N;(G;) = R, we have that
all the curves which are contained in one (G; are numerically proportional in
Y: then if ('} is a curve of Ry which is contained in (G;, then each curve in
(G1 belongs to R;. Since two extremal rays cannot have a common curve, the
curves of Ry, must be in G5 and so as before each curve in GGy belongs to Rs.

Conclusion.  Since G is connected, from Serre inequality (see [Har77,
Theorem 1.7.2]) we have that

dlm(G1 mGg) Z d1mG1 +d1mG2 —dimY =n-3 Z 1;

then we can find a curve in G; N G5 and this curve belongs to Ry and to R,.
From Lemma 3.1.17 this is impossible, and so we are done. Il

In this way, we have that the general fibers of an elementary divisorial con-
traction from a smooth n-fold supported by Kx + (n—3)L are the ones listed
in the previous chapter.

5.2 Thecase T=n—4

This section is devoted to the proof of the following Theorem.

Theorem 5.2.1. Let X be a smooth n—fold, let px : X — W be a divisorial,
elementary F-M contraction supported by Kx + (n — 4)L and let E be its
exceptional divisor. Then the general fiber G of wx s irreducible, except in
the following case.

wx 1S the contraction of a 5-fold associated to an extremal ray of length 1,
which maps the irreducible divisor E to a curve and its general non trivial
fiber is the union of two P2-bundles of the form Pp (O & O & O(2)), which

meet along a quadric Pt x P,
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Remark 5.2.2. From Inequality 4.3.2, we have that dim px(F) < 3; Sub-
section 4.3.4 gives that if dim px () = 0 or dim px (F) = 3, the general fiber
of px is irreducible. Moreover if dim px(E) = 2 the argument used in the
case T = n — 3 gives that G is irreducible.

Thus in the rest of the Section we will deal with the case dim px(F) = 1.
5.2.3 (Setup). From Subsection 4.1.1 with a vertical slice we can produce
p:Y =27
F-M contraction from a smooth m-fold (with m = n — 1), supported by

Ky +(n—4)L =Ky + (m—3)L
which maps a divisor G to a point. Moreover
Kylg = —(m = 3)Lg,
Gla = Ngjy = —qLg with ¢ = 1,2, 3 (see Subsection 4.3.4),
and so, by adjunction, K¢ = Ky|g + Ng/y = —(m — 3+ q) L.

Strategy. We will study in great detail the contraction ¢ : Y — Z to show
that, apart from the case cited in Theorem 5.2.1, this map is an elementary
contraction and thus, thanks to Theorem 4.1.3, G is irreducible.

5.2.4 (Assumption). Suppose that G is reducible, say
G=G + - +G, withs>1,
and so ¢ is not elementary; let
Ry,...,R; (k>1)
be the extremal rays that generate the face o contracted by ¢ and let
wi Y — Z;

the elementary contraction of the ray R;, for 2 =1,..., k. From Proposition
1.3.11 the following diagram commutes:

%)
N S
Z;

and so the contraction ¢; is birational and it is supported by Ky + (m —3)L’
with L" ample divisor on Y of the form L' = L + ap}(A;), where a > 0 and
A; is a ample divisor on Z;.

Y

Z
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5.2.5 (Notations). Foreach i = 1,..., s, we can consider the decomposition
of G B

G =G+ G,
where CN}’Z is the sum of all the components of G which are different from G;.
Moreover we can consider

Since we have assumed that G is reducible, él is effective and since G is a
general fiber of a F-M contraction we have that it is connected; this implies
that D; is non empty and thus we have that D; is an effective divisor on G
(see Figure 5.1).

In the rest of this section we will show that the divisor D;, apart
from the case cited in Theorem 5.2.1, cannot be effective: thus G
must be irreducible.

5.2.1 Deformation of rational curves

One of the main argument to get to the conclusion is a refined study of the
families of deformation of rational curves.

With the notations 5.2.5, recalling also the Setup 5.2.3, foreach ¢t =1,... s
we can compute the normal bundle of GG; in Y

and so, by adjunction, we have
Kg, = —(m —3+q)La, — Di.

Deformations in Y. Let C be arational curve in G, let V' C Homy, (P!, Y)
be the family of deformations of C' in Y and let x be a general point of
Locus(V).

If V' is generically unsplit, since from Proposition 3.1.3 we have

—Ky|G == (m — 3)[/0,
we can state the Ionescu-Wisniewski inequality (see Corollary 2.2.21):

dim Locus(V) + dim Locus(V,,) + 1 >
>dimY — Ky -C=m+ (m—3)L-C. (5.2.7)

Deformations in G;. Suppose that the curve C is contained in the
irreducible component G; of G; thus we can consider the deformations of
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Y
A/\ )
®
4

Figure 5.1: The divisor D;

C in G; in the following way: every element of Homy; (P!, G;) is an ele-
ment of Homy, (P',Y) and so we can take an irreducible component T; of
Homp,. (P!, G;) which is contained in V; this, under the assumption that V'
is generically unsplit, together with Subsection 2.2.4, implies that

dim Locus(V') 4+ dim Locus(V,) +1 =dim V' > dim 7;.

On the other hand, since G, is a locally complete intersection subvariety of
Y and if moreover we assume that C' meets the smooth locus of G;, we can
apply the results in the Subsection 2.1.1 to have

dim7; > dimG; — Kg, - C
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and so we obtain the following inequality

dim Locus(V') 4+ dim Locus(V,) + 1 >
>m—1+(m—-3+qL-C+D;-C (52.8)

Remark 5.2.9. Since D; is an effective divisor on GG;, we have the following
facts:

1. If C'is a curve in GG; which passes through a point x of D; and D;-C' = 0,
then the curve C' is entirely contained in D;.

2. If moreover the family V' of deformations of C'is unsplit and D;-C = 0,
we have that Locus(V,) C D;.

Lemma 5.2.10. Let C; be a minimal extremal curve of the ray R;; then
L-C;=1.

Proof. Since L is ample, we have that L-C; > 1. Suppose, by contradiction,
that L - C; > 2.

From inequality 5.2.7 and since m > 4, if we call V' the unsplit family of
deformations of C;, we have that

dim Locus(V) =m — 1

Let G; be the irreducible component of G which contains C; and Locus(V),
then we have that Locus(V') = G; (indeed Locus(V) is an irreducible divisor
which is contained in G; and so coincides with it).

Thus if we apply inequality 5.2.8 we get

dim Locus(V,) +1 > 2(m — 2) + D, - C;.

Since D; is an effective divisor on (; and since there exists a curve in V'
which is not entirely contained in D;, we have that D, - C; > 0. Then

m — 1> dimLocus(V,) >2m —5=m — 1+ (m —4);

since m > 4, the right side term is strictly greater then the left side term,
unless m = 4.
Thus, from inequality 5.2.8, the unique possible case is

m =4,
q=1,

Locus(V) = Locus(V,) = G;.
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From the last condition, Proposition 2.2.26 gives that p(G;) = 1; thus D,
which is an effective divisor on G}, is also ample. This contradicts the con-
dition D, - C; = 0 and so we are done. O

Remark 5.2.11. Let W be a minimal dominating family for G; (see Defini-
tion 2.2.18), let = be a general point in G; and let I" be a curve in W which
passes through z. Since W, is unsplit, the same argument used in the proof
of the previous Lemma shows that L -I' =1 and so W is unsplit.

Thus we have the following

Proposition 5.2.12. For each i, the component G; is covered by a family of
rational curves of degree one with respect to L and so this family is unsplit.

We conclude this section with a general fact concerning unsplit families of
rational curves; for the notations we refer to Chapter 2.

Definition 5.2.13. Let X be a projective variety, let V' be an unsplit family
of rational curves and let Y be a subset of X.
Locus(V)y is the set of points x € X such that there exists a curve C of V
such that

CNY #0, and xzeC,

i.e. Locus(V)y is the set of points of X that can be joined to Y by a curve
of V.

Lemma 5.2.14. Let X be a projective variety let Y be a closed subset of X
and let V' be an unsplit family of rational curves. Then Locus(V)y is closed
in X and every curve in Locus(V)y is numerically equivalent to a linear
combination with rational coefficients of curves contained in'Y and curves of

V.

Proof. Let H = V/ Aut(P') be the image of V' in RatCurves”(X) and con-
sider the universal family

U——=X

)

Since V' is unsplit, we have that the scheme H and the morphism ¢ are proper.
Let H(Y) = 7(:7*(Y NLocus(V))) be the subset of H parametrizing curves
of V meeting Y; Locus(V)y is just «(7 ' (H(Y))); since Y and Locus(V) are
closed, we have that Locus(V)y is closed in X.
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Let C' be a curve contained in Locus(V)y; if C C Y or C is a curve
parametrized by V' we have nothing to prove, so we can suppose that this is
not the case.

In particular we have that :='(C) contains an irreducible curve ¢’ which is
not contained in a fiber of 7 and dominates C' via ¢; let S’ be the surface
S" = 771 (n(C")), let B’ be the curve n(C") C H(Y) and let v : B — B’ be
the normalization of B’. By base change we obtain the following diagram:

B——H
Let now p : S — Sp be the normalization of Sg: by standard arguments

(see [Wis89]) it can be shown that S is a ruled surface over the curve B.
Consider now the following diagram, where j = povor and p is the projection:

J

S—X
P

B

Let f be a fiber of p and let Cy be a curve in S which dominates B and
whose image via j is contained in Y’; such a curve exists since the image via
j of every fiber of p meets Y. Since S is a ruled surface, every curve in S is
algebraically equivalent to a linear combination with rational coefficients of
Cy and f.

Therefore every curve in j(S) is algebraically, hence numerically equivalent
in X to a linear combination with rational coefficients of j,.(Cy) and j.(f);
in particular

C = aj.(Cy) + B1.(f),

where j,(Cy) is a curve in Y or is the zero cycle, and j.(f) is a curve of the
family V. O]

Remark 5.2.15. The proof of the above lemma actually yields that a curve
C'in Locus(V)y is numerically equivalent to

aj(Cy) + Bi(f),

with a > 0; in fact, let C's be an irreducible curve in S which dominates C'
via j: in S we have that Cs = aCy + uf and | intersecting with f, we have
a > 0.
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5.2.2 Unsplit dominating families

From Proposition 5.2.12, each component of G is covered by an unsplit family
of rational curves of degree one with respect to L. For i = 1,...,s let W* be
the family which covers G; and let I'; be a rational curve of W¥; we will call
this family unsplit dominating family for G;. Inequality 5.2.8 gives

m — 1> dim Locus(W}) >m — 4+ q+ D; - T (5.2.16)

Remark 5.2.17. Since W' covers G; we can find a curve I'; of W¢ which is
not contained in the effective divisor D; and so D; - I'; > 0.

Lemma 5.2.18. Let Gy and G5 be two irreducible components of G- with non
empty intersection. Then through each point of G1 N Gy passes a curve of
Wt and a curve of W? which are contained in G N Gs.

Proof. If we show that for each i the divisor D; is “ruled” by curves of W
we are done: the common components of Dy and Dy are the components of
G1 N Gy and so they are “ruled” by curves of W' and W?2.

From inequality 5.2.16, we have three cases, according to the dimension of
Locus(W}).

If dim Locus(W}!) = m — 3, inequality 5.2.16 gives that D; - T; = 0 for
any r € G, and so also for x € D;; thanks to Remark 5.2.9 we get
Locus(W?) C D; and so we are done.

If dim Locus(W}?) = m — 2 inequality 5.2.16 gives two possibilities: D;-T; =
0,1.
If D;-T; = 0, Remark 5.2.9 gives that Locus(W!) C D; and so we are
done;
It D;-T'; = 1, pick a point y € D;; from the definition of D;, there
exists G; such that y € G, and so

Locus(W,) N G; C Locus(W,) N D;.

From Serre inequality, this implies that LocuS(W;) N D; contains a
curve; thus there exists a curve I' in W which passes through a point
of Locus(W,) N D; different from y: since we have D; - I' = 1, then T’
must be contained in D, and so we are done.

The case dim Locus(W}?) = m — 1 is not possible; indeed, Proposition 2.2.26
gives that p(G;) = 1 and so each curve in G; is numerically propor-
tional to the curves of W, thus the curves in D; are all multiple up to
numerical equivalence; but in the previous steps we have shown that
in D; are contained curves which belongs to unsplit families different
from W* and so we have a contradiction.
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]

Corollary 5.2.19. If W is an unsplit dominating family for a component of
G, then dim Locus(W,) < m — 2.

Proof. The last part of the proof of the previous Lemma gives the assertion.
O

Corollary 5.2.20. The integer q defined by the equality Ng/y = —qL is
qg=1.

Proof. Suppose, by contradiction, that ¢ > 1. Then, with the notations of
the previous lemma, inequality 5.2.16 gives only one possibility:

dim Locus(W!) =m — 2, and D; -I'; = 0.

Thus Locus(W}) is an irreducible component of D; with Picard number 1;
from the lemma we have that each component of D; contains curves of two

different unsplit families and so its Picard number cannot be 1, contradiction.
O

5.2.3 The small rays

Suppose that there is a small ray among the extremal rays R;’s contracted
by ¢:Y — Z.

In this section we will prove each irreducible component of the locus of a
small ray meets only one component of G (the one in which it is included).

5.2.21 (Assumption). Suppose that there exists a ray R; which is small;
since its contraction ¢y : Y — Z; is supported by Kx + (m — 3)L', Section
3.3 gives the description of this contraction. In particular we have that each
connected component of the exceptional locus is isomorphic to P2 and its
normal bundle is O(—1) & O(—1). Fix one of these components and call it
T: of course T' C G and so there exists a component GGy such that T" C G.

Suppose, by contradiction, that T" meets an irreducible component G5 # G,

of G.
Lemma 5.2.22. The divisor D; C Gy contains a curve £ of T'.

Proof. From the definition of D;, we have that
0£TNGy, CGiNGy C Dy

and, from Serre inequality, dimT NGy > m — 3 > 1. n
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Let D be an irreducible component of Gy N Gy which contiins the curve /.
From Subsection 5.2.2, we have that through each point of D passes a curve
'y of W' and a curve I'y of W? which are contained in D.

Claim. For each curve C in D it holds that C' = al'; 4 b’y (in Y), with
a,be Q and a,b > 0.

Proof of the Claim. Consider first Locus(W?)r, C G (see Definition 5.2.13):
this is a closed subset of X and it holds that
Locus(W?)r, = U Locus(WW?)
el

Thus we have two possibilities, according to the dimension of Locus(W2):

If dim Locus(W2) = m — 2, we have that dim Locus(W?)p, = m — 1, and so
Locus(W?)r, = Ga.

If dim Locus(W2) = m — 3, we have that dim Locus(W?)r, = m — 2 and
moreover we have that Locus(W?)r, is contained in D (since in this
case Locus(W?2) C D for every x € D, see Proof of Lemma 5.2.18) and
so must coincide with it.

In both cases, we have that D C Locus(W?)p,.
Then, thanks to Lemma 5.2.14 and Remark 5.2.15, there exist a;,b; € Q,
with a; > 0, such that

C=aI'y + b:15.

We can repeat this argument with Locus(W')r, € G; to show that there
exist as, by € Q, with by > 0, such that

C = a2F1 + bzrg.

Since [I'1], [['2] € Ni(Y) are linearly independent, the decomposition of [C]
is unique, and so

a=a =ay >0, b=b=0b,>0
O
Hence, since £ is a curve in D, there exist o, f € Q, with a, 8 > 0 such that
(= al'y + (.

Since / is extremal in Y we have that at least one of I'y and I's belongs to
the extremal ray R, and this is not possible.

Thus we have shown that each irreducible component of the locus of a small
ray meets only one component of G (the one in which it is included).
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Corollary 5.2.23. Let C; be a minimal extremal curve whose ray R; is small
and such that Locus(R;) C G;; we have

G,-Ci=0 i#j
G- Ci=—1

Proof. Since L - C; = 1, we have
G-Ci=—-L-C;=-1.
On the other hand we have that
G-Ci=G-Ci+---+G;-Ci + ...

and C; meets only Gj. O

5.2.4 The divisorial rays

Fix one component of GG, say G}.

Remark 5.2.24. Since GG is connected, we can find a curve I' C G which
has positive intersection with G and is not contained in it; since I' belongs
to the face o, it is a positive linear combination of extremal rational curve
and so we can find a minimal extremal curve, say C5, which has positive
intersection with G;.

Lemma 5.2.25. The extremal ray Rs, generated by Cs, is divisorial and if
we call Gy = Locus(Ry), we have that Gy meets G1 and Gy # G1.

Proof. Since Cy has positive intersection with one component of G, from
the previous section we have that R, is divisorial; moreover it is clear that
Locus(Ry) meets G.

Thus we have to show that Locus(Ry) # G;. Since (5 is an extremal curve,
we have that G - Cy = —L - (', = —1 and so there exists one component
of G which has negative intersection number with C5; hence this irreducible
divisor is different from G, and it contains Locus(Rz) and so coincides with
it. [

Summarizing, we have the following

5.2.26 (Setup). G, is a component of G, Ry is an extremal ray, generated
by the minimal rational curve C5, whose locus is G, which has positive
intersection with G;. Thus we have that G; N Gy # 0.
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Remark 5.2.27. If R; is an extremal ray which is divisorial and if we let
G; = Locus(R;), we can apply inequality 5.2.8; moreover, since the divisor
D, is effective on G}, it holds that D; - C; > 0.

Thus, for the extremal curve 5 and the component G5, inequality 5.2.8 gives
m — 1 > dim Locus(V,) > m —3+ Dy - Cy > m — 3. (5.2.28)

Lemma 5.2.29. The contraction @y of the ray Ry does not map its excep-
tional divisor Gy to a point.

Proof. Suppose, by contradiction that

Then the curves in GGy and so also the ones in Dy are all numerically pro-
portional; but this is not possible, since Dy contains curves of the unsplit
dominating family of G;. O]

Proposition 5.2.30. Gy is a P 2-bundle over a curve (i.e. dim py(Gy) =
1) and the divisor Gy meets only G.

Proof. Thanks to Lemma 5.2.29, if V2 is the unsplit family of deformations of
Cy and 7 is a point of Go, we have dim Locus(V?) < m — 2 and so inequality
5.2.28, gives

0 S DQ . Cg S 1:

recalling the definition of D5, we have
0<Dy-Co=G1-Co+Gs5-Cy+--- <1

and all the terms are non negative. This means that the curve C5 has positive
intersection with at most one component of G which does not include it.
Moreover we have chosen the curve Cy such that G- Cy > 0. Thus we have

O<G1'02:G1|G2'CQ§D2'CQ <1 (5231)

and so Dy - Cy = 1.
Hence, from inequality 5.2.28, we have that

dim Locus(V?) = m — 2.
This implies, from Section 4.3.3, that the morphism

QOQ:Y—>ZQ
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makes G into a P-bundle on a smooth curve with (m — 2)-dimensional fibers

fa-

Moreover, since GG - Cy = 1, we have that the fibers f> meet G5 transversally
and so dim(fo N G1) =m — 3.

Thus the first part is done.

Claim: G5 meets only ;. From inequality 5.2.31, we have that if there
is another component G5 of G which meets G5, we have that

Gy Cy = Gslg,  Cy =0

and so, from Remark 5.2.9 and since the fibers f, are m — 2-dimensional, we
have that G3 N G5 is the finite union of the fibers f, which meet it and so
each curve in this intersection belongs to Rs.

But, from Section 5.2.2; through each point of GG3 N G5 passes a curve of the
unsplit dominating family W3 and these curve can not belong to R, and so
(3 can not meet Gs. O

Remark 5.2.32. Since G is connected, there is an extremal curve C in G
which has positive intersection with GG3. Since G5 meets only G, we have
that C is in Gy, its ray is divisorial and so Locus(R;) = Gj.

Repeating the argument used before we can prove the following
Lemma 5.2.33. GGy meets only Gy and it is a P-bundle over a curve.
Claim 5.2.34. This case is possible only when m = dimY = 4.
Proof. Thus G = Gy + G4 and for i = 1,2

i Y — 7Z;

makes G; into a P-bundle on a smooth curve with (m — 2)-dimensional fibers
fi. Of course, there exist fibers f; and f; which meet and so, using Serre
inequality, we have

Thus if m > 5 there exists a curve which belongs to two extremal rays, and
this is impossible. O]

Description of G

Now we can give a precise description of G.
From what we said before, we have that G = G1 4+ G5 with GG; and GG which
are P2-bundles over smooth curves; moreover, for i = 1,2, each G, is the
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locus of a divisorial ray R;, generated by a minimal extremal curve C; such
that, if 7 # 1,

G;j-Ci=1

G, -C;= -2

Moreover, if as usual we denote D = G N Gy, we have
D.-C;=1
either in G or in G (see the proof of Proposition 5.2.30).

Remark 5.2.35. Since the GG; and G5 are interchangeable, we will deal on
with only one component of G, say GG1: everything can be repeated with Gs.

For a brief overview of the general theory of P-bundle as well as for the
notations, we refer to the Appendix.

G, is a P2-bundle over a rational curve. It suffices to prove that this
P%Z-bundle has a (multi)section which is rational. We have already shown
that in G there are curves which are minimal extremal curves of the ray Rs:
these curves cannot be included in the fibers of the P2-bundle structure and
so they are “transverse”; this means that they are rational (multi)sections,
and so we are done.

The vector bundle £.  Since G, is a P%-bundle over a smooth curve,
there exists £ a rank 3 vector bundle over P! such that G; coincides with its
projectivization Ppi1(E).

Moreover £ is decomposable and we can assume that it is of the form:

£E=030(a)®O0)

with b > a > 0.

(), is a section. To show this fact we have to look at the Mori cone of Gy
and at the extremal face o of Y contracted by .

The cone of effective 1-cycles of G, NE(G), is 2-dimensional and generated
by C4, which is a line in the fiber, and Cjy, which is a section with minimal
intersection number with the tautological bundle & among the sections of
G (see Figure 5.2).

The face o is generated by two extremal rational curves that are C'; and Cy
(see Figure 5.3).

Claim 5.2.36. The curve (5 is the section with minimal intersection number
with the tautological bundle & among the sections of Gy, i.e. Uy = Cj in
the notations used in the Appendix.
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Cy Co

Figure 5.2: The cone NE(G,)

C: C.

Figure 5.3: The extremal face o of Y

Proof. Consider the image of NE(G;) in NE(Y): since G is contracted by
¢, this image is contained in o (Figure 5.4).

On the other hand, we have shown that Cy is a (multi)section of Gy; thus we
have that C is included in the image of NE(G,) in NE(Y) and so also o is
included in it (Figure 5.5).

Thus we have that the two subcones NE(G1) and o of NE(Y) must coincide
and so we have that Cy = Cj is a section of (G; with minimal intersection
number with the tautological bundle &¢. O]

Remark 5.2.37. Thanks to the choice of the normalization of £, we have
ée - Cy =01in Gy.

Proposition 5.2.38. The vector bundle € is of the form
E=00080(2).

Proof. First of all, notice that there is a one parameter family of sections of
(G, with minimal intersection number with &¢:

cach fiber f, of the P?-bundle G5 meets G and the intersection is a curve
which is algebraically (and so numerically) equivalent to Cy; since there is
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Co

Cy Cz

Figure 5.4: The image of NE(G)) is in o

C,

Co
Cy

Figure 5.5: ¢ is in the image of NE(G})

a one parameter family of fibers f5, there is also a one parameter family of
sections Cy.
Hence from a result in the Appendix we have that

E=000a0(0).
Each divisor Z on P(€) can be written as

Z =az€s +byf,

where f is a fiber of the P2-bundle structure of G;. Using the intersection
numbers with the curves C; and Cy we can compute the following decompo-
sitions:

Gile, = aile + b1 f

Gala, = azée + baf
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Recalling that Cf is a line in the fiber and Cj is a section of GGy, we have

55'01:17 fOIZO
55'02:()7 fCQZJ-

Thus, using C', we have

-2 =Gilg, Ci=a&-Cr+bif - Ci=a1+0=a
1 = Galg, - Cr=a28s - C1 + bof -Cy =04 by = by

and using Cy we have

1 =Gilg-Co=a1&e-Co+bif-Co=0+b =0
1 =Gshlg, - Co=ale - Co+baf -Co=as+0=ay

and so we have the following expressions:

Gilg, = =2+ f
Golg, =&+ f

Recalling the formula of the canonical bundle of a projective bundle, we have
Kg, + 38 = ¢i(Kpr + det £)
and so, since in our case £ = 0 & O & O(b),
Kg, = =3¢+ (b—2)f.

On the other hand, since —Ky = L, we have that —Ky - C; = 1 and so,
arguing as before, Ky|g, = —&¢ — f; thus using adjunction formula we have

Ko, = Kyle, + Gila, = —§¢ — f — 28 + [ = =3¢,
and so b = 2; hence we get

E=0e0a0(2).

Proposition 5.2.39. D = G| NGy is a quadric.
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Proof. Recall that D can be seen in (G; as the locus of the one parameter
family of sections Cs.
Consider the surjections of vector bundles over P*:

E—-000—0—0,
which corresponds to the injections of projective bundles over P!:
0—PO) =PO®0O)—PE).

This shows that in P(€) there is a quadric (which is P(O@0)) as a subbundle.
Moreover we have that the inclusions of the sections Cy in P(E), factor
through the inclusion of this quadric. In particular we have that the sec-
tions of the quadric are the curves C5 and so this quadric is the locus of the
one parameter family of this section and so it coincides with D. Il

This concludes the description of G and the proof of the Theorem 5.2.1. In
the following section we will construct an example of elementary contraction
with reducible fibers to show that our “exceptional case” is effective.

5.3 Examples
These examples were kindly suggested to me by Jaroslaw A. Widniewski.

We begin with an example in dimension 3 of a crepant elementary contraction
which contracts an irreducible divisor to a curve and such that any positive
dimensional fiber consists of two rational curves. This will give the idea of
the construction of our real example. We will use toric geometry to make it
explicit.

5.3.1 Crepant resolution with a Z,-action and Moebius
strip construction

We construct the example in two steps: first of all we consider a non ele-
mentary birational crepant contraction of surfaces whose exceptional locus
consists of two rational curves and then from this we will construct the de-
sired crepant contraction.

Let ¢ : S5 — Ay be a resolution of an Ay surface singularity z? +y*+ 2% = 0.
The morphism ¢ is crepant (i.e. Kg, is ¢-trivial) and its exceptional locus
consists of two (—2)-curves. Changing x with y gives a Zy-action which
interchanges the (—2)-curves in Ss.
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v2

vl

S Ay

Figure 5.6: Toric representation of the resolution of the A, singularity

Now we give a description of this resolution by means of toric geometry.
Let eq, e5 be the generators of a two dimensional lattice and let v, = 2e; — eg
and vy = 2e5 — €.

The surface singularity A, is given by the cone o = (v, v5) and its resolution
¢ 1 Sy — Ay is obtained subdividing the cone o with the vectors e; and e,
i.e. Sy is given by the fan A containing the two dimensional cones (vq, €2},
(€g,€1), (e1,v1) and their rays (see Figure 5.6). This subdivision corresponds
to the introduction of the two (—2)-curves in the resolution (which are the
orbits of the torus action of the rays e; and e).

Moreover the Zs-action is the interchanging of the generators of the lattice
e1, eo and hence also vy, vs.

The fact that the morphism ¢ is crepant can be seen easily from the pic-
ture: the boundary of the convex hull of the origin O and the four vectors
e1, €2, 01, Uy that generate A is flat in a neighborhood of e; and e, and this
implies that the canonical divisor of Sy is trivial along the two (—2)-curves.

Now we are ready to construct the elementary contraction of threefolds such
that any positive dimensional fiber consists of two rational curves; in fact the
vertical slicing of this contraction is the resolution ¢ constructed before.
Let C’ be a smooth curve with a free Zq-action, so that the action induces an
étale covering €' — C' of degree 2. Take the product actions 7 : Sy xC" — X3
and 7' : Ay x C" — Y3, where of course X3 and Y3 are the quotients; these
product actions are free and so X3 is smooth.

Remark 5.3.1 (Universal property of quotients of a group action).
Let A be a variety with a group action (G,-) and let ¢ : A — B be the
quotient map. Then every morphism p : A — D to another variety D factors
through ¢ iff p(p) = p(g - p), for every p € A and every g € G.



5.3 Examples 79

A—"L=D

|/

B

In our case, if p=7"0 (¢ x 1) : Sy x C" — Y3, then the universal property
gives a morphism ¢ : X3 — Y3 such that the following diagram commutes:

Sy x O —20 4y x O (5.3.2)
X; - Yy

The exceptional locus of ¢ is as follows. Let E’ be the union of the two

(—2)-curves in Sy; the map ¢ is clearly birational and it maps its exceptional
locus, which is £ = 7w(E’' x ("), to the curve C' = 7'({O} x C") C Ys.

B x—2 {0y x ¢
E z C

Claim 5.3.3. The map ¢ : X3 — Y3 is a crepant elementary contraction
contracting the divisor E to the curve C' and any positive dimensional fiber
consists of two rational curves.

Proof. We have already shown that ¢ is a birational morphism from a smooth
threefold which maps E to a curve; since m is finite we have that dim F =
dim(E’ x C") =2, and so F is a divisor on Xj.

To study the positive dimensional fibers we consider a “vertical slicing” of
the diagram 5.3.2.

Let ¢ € C be a point and let {O} x {c|,c4} € {O} x C’ be inverse image
of ¢ under 7n’. Take a very ample divisor A on Y3 which meets C' in ¢; after
possibly shrinking Y3 to an affine open subset we can suppose that ¢ is the
unique point of the intersection. Call S = ¢*A and consider the restriction
of the diagram 5.3.2 to these “hyperplane sections”. The exceptional locus
of g5 is the fiber of ¢ over ¢ € C'; moreover the vertical arrows are trivial
étale covering and so the diagram is as follows:
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m

Figure 5.7: The curve X is algebraically equivalent to the curve A

ro $x1 ro
S x {c}, ch} A x {c],ch}
TIsx{ch ch} Tlax(ef.ch}
®ls
S A

Thus the map ¢|s is the map ¢ and so the contraction ¢ : X3 — Y3 is a
crepant contraction such that any positive dimensional fiber consists of two
rational curves.

The last thing to prove is the fact that the contraction is elementary, i.e.
that all the curves that are contracted are numerically proportional.

Let I be one of the two rational curves contracted by ¢ and let I' = 7(I"” x
') C X3; note that I and I” are isomorphic.

We will show that the flat family of rational curves IV x C’ parametrizes the
curves that are contacted by ¢ (Figure 5.7 gives an intuitive idea of this fact).
The product IV x C" is sent onto F by 7; moreover each curve in E which is
contracted by ¢ is the image of (I, ) for some ¢ € C’: then all the curves

contracted by ¢ are algebraically and so numerically equivalent.
O

5.3.2 Fano Mori contraction with a Z,-action and Moe-
bius strip construction

We will construct an example of an elementary Fano-Mori contraction of a
smooth fivefold contracting a divisor to a curve and such that any positive
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Figure 5.8: Three dimensional model of A

dimensional fiber is reducible (and it is as we have predicted in the previous
section).

Again the construction will be in two steps: first we will construct the general
fiber of the contraction and then we will fit it in a suitable five dimensional
manifold.

To construct the fibers we will use toric geometry.

Let eq,e9,v1,v2 be a basis of a four dimensional lattice and let w; = 2e; —
es — vy and we = —e; + 2e5 — vy. Let A be the fan generated by these six
vectors and containing the following maximal cones:

<€1,'U1,U)1,’U2> <€1,’U17w1,U)2> <€1762,’U1,UJ2> <€17627/U17U2>
<€2,'U2,7.U27U1> <627U27w27w1> <617627U27w1> <61762’w17w2>

Let X, be the variety associated to this fan and let Y; be the affine toric
variety associated to the cone o = (v, vy, wy,we). The fan A is a subdivi-
sion of o, obtained introducing the vectors e; and e,, and let ¢ : Xy — Y}
be the proper birational morphism associated to this subdivision (see Fig-

ures 5.8,5.9).

Claim 5.3.4. The map ¢ : Xy — Y, is a non elementary divisorial F-M
contraction from a smooth fourfold whose exceptional locus consists of two
divisors, which are P2-bundles over P! of the form Pp (O(2) & O @ O), and
which intersect along a quadric P! x P!
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Figure 5.9:

Typical elements of the subdivision of A
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Moreover there is a Zs-action which interchanges e; with es, v; with vy and
these two divisors.

Proof. First, notice that there is a Zs-action in this situation: everything is
symmetric with respect to the interchanging of the indices 1 and 2 and so if
we prove something for e; it is true also for es.

We will divide the proof in several steps.

X, is smooth. To see that the fourfold X, is smooth, we have to show
that each cone in A is generated by a subset of a basis of the lattice and this
is a straightforward computation. Notice that it suffices to prove this for the
maximal cones in A, which are exactly the 8 cones mentioned before.

Exceptional locus of ¢. The morphism ¢ is proper and birational, since
it corresponds to a subdivision of a cone; let E be its exceptional locus.
This consists of two divisors which are the closure of the orbits of the torus
action of the two rays p; and py generated by e; and ey respectively; call
them E; and E,. Moreover these divisors meet along a subvariety which is
the closure of the orbit of the two dimensional subcone which is generated
by e; and es.

Thanks to the Zs-action it suffices to study FEy, the closure of the orbit of p;.
This divisor corresponds to the star of pi; recall that the star of a cone 7 in
a fan A of cones in a lattice IV is the toric variety associated to the fan of
cones of A which contains 7 as a face, seen in the lattice N(7) = N/(tNN).
Let us consider the three dimensional lattice generated by e}, v}, vy. Then E;
is the toric variety associated to the fan A; which is generated by the vectors
eh, vy, vy, wh, wh, where wy = —ey — v} and w) = 2¢}, — v}, and contains these
maximal cones:

(v, wh, v5) (Vi wy,wh) (€5, 07, ws)
(€5, 01, 05) (€5, 05, w1)  (en, wy, ws)

Since these five vectors satisfy the relations
ey + vy +w; =0, v+ wh = 2e,

we have that E; (and so Ej) is a P%-bundle over P! of the form Pp (O(2) @
O @ O) (see [Ful93], Chapter 2, note 12). The intersection D of E; and Es
corresponds to the star of the two dimensional cone generated by e; and es:
in a two dimensional lattice generated by v}, v consider the fan generated
by the vectors v{, v, wy, wy, where w{ = —v; and wj = —vq, which contains
the maximal cones:

(01, 09) (o1, wy) (g, wi) (wf, wy)
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w'l V']l

w2
Figure 5.10: Fan associated to a quadric

and this is the fan associated to the quadric (see Figure 5.10).
Notice that, from this toric description of the map ¢, it is clear that its
exceptional locus is mapped to a point (the orbit of the maximal cone o).

¢ is a F-M contraction. We have shown that the map ¢ is proper, has
connected fibers and maps the reducible divisor described before to a point.
To show that ¢ is a Fano Mori contraction it suffices to prove that —Kx, is
ample on F, i.e. that for every curve C C ', —Kx, - C' > 0.

The cone NE(X,/Y,) C Ni(X4) is generated by the orbits of the three di-
mensional cones w in A which have e; or e; among their one dimensional
faces, and these numerical classes of curves correspond to the linear relations
between the generators of the four dimensional cones in A which are sepa-
rated by w. Moreover the coefficient of each generator in these relations is
the intersection number of the curve and the divisor that corresponds to the
generator.

In our case we have only two relations between these generators:

ey +v1 +wy —2e; =0 which corresponds to [C]
e1 + vg + wy — 2e5 = 0 which corresponds to [Cs]

This implies that, if we call E;, V;, W; the divisors associated to the vectors
€, Us, Wy,
Cr-bBy=C-Vi=C- Wy =1, Ci-E =-2,
Co-E1=Cy - Vo=Cy - Wy =1, Cy-Ey= -2,

while all the other intersection numbers are zero.
The canonical divisor of X is

2
Kx,=—> (B +Vi+ W),

=1
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and so
—KX4 'Cl = —KX4'02: 1.

This implies that —Kx, is ¢-ample and so ¢ is a Fano Mori contraction.
Moreover R; = R [C}] and Ry = R, [C5] are the two extremal rays contracted
by ¢ (since E; - C; < 0, we have that Locus(R;) = E;). O

Remark 5.3.5. N;(F) is generated by two classes of rational curves [C] and
[Cy): in Ey, [C4] is the class of curves in the fibers and [C5] is the class of the
section of this P%-bundle corresponding to the surjection O(2) OO — O,
while in F5 these classes are interchanged; moreover the Zs action sends Fy
to E and so interchanges [C4] and [Cy).

Now exactly the same construction of the crepant contraction of threefold
gives the elementary Fano Mori contraction of a fivefold contracting a divisor
to a curve and such that any positive dimensional fiber is reducible; in fact the
vertical slicing of this contraction is the map ¢ : X; — Y,. Let C’ be a smooth
curve with a free Zs-action and take the product action 7 : Xy x ¢/ — X
and 7' : Yy x " — Y, where X,Y are the quotients; these product actions
are free and so X is smooth.

Thanks to the universal property of the quotients of the group action (5.3.1),
we have the following diagram:

Xy x ' o Y, x ' (5.3.6)
X d Y

Claim 5.3.7. The map ¢ : X — Y is the desired F-M contraction, whose
exceptional locus is G = 7w(E x C") (where F is the exceptional locus of ¢),
which is mapped to C C Y.

Proof. Everything is as in the proof of Claim 5.3.3 except the fact that ¢ is
elementary, and so we will prove only this fact.

Consider the product C; x C': it is a flat family of rational curves and it
is mapped by 7 into the exceptional locus of ¢. From the construction, it
is clear that for each fiber of ¢, whose exceptional locus is E, there are two

curves in this family that corresponds to the two generators of Ny (£); thus
these two generators are numerically equivalent in X and we are done. [
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APPENDIX A

Projectivization of vector bundles

Let £ be a vector bundle of rank » > 2 over a smooth projective variety M:
m:&— M.

Thus we can consider the smooth variety Py, (€), which is the projectivization
of £ over M (in particular it is a fiber bundle over M whose fiber over a point
m € M is the projective space P(E)) = {hyperplanes of &,,}).

There exists a tautological line bundle on P(E), denoted with &g, uniquely
determined by the conditions

gglf :Of(l)v P*fs :5,

where p : P(£) — M is the projection morphism and f is the fiber of p (of
course we have that f =P ! and p: P(§) — M is a P""!-bundle).
Explicitly &¢ is given in the following way. Consider the diagram

pE—E
L)
PE)—M

Let S be the universal subbundle of p*£ (i.e. the subbundle whose fiber over
a point (p,A) in P(€) is Sa) = A), then the tautological bundle is defined
by the following exact sequence of vector bundles

08 —p€—&&—0.
The Picard group of P(€) can be expressed as follows
PicP(E) =Z - & @ p*(Pic M),
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and so a similar expression holds for N;(P(£)).
Moreover we have the following relation between the canonical bundles of
P(€) and of M:

Kp(g) +ré€e = p*(KM + det 8)

If £ is a line bundle on M, replacing £ by £ ® L, its twist with £, does not
affect the projectivization and

Cewr =&+ P L.

Claim. There is a natural 1-1 correspondence between sections of p, i.e.
morphisms

s: M —P(€)
such that pos = 1), and surjections of the vector bundle & of the form

E—L—D0,

where L is a line bundle on M (or dually injections in the dual vector bundle
EY of the form 0 — LY — &Y).

Explicitly, given a section s : M — P(£), we have the following diagram

s*prE=E&E p*E E
M——=PE) L= M
From the definition of the tautological bundle, we have a line bundle £ = s*&¢
on M with the exact sequence

0—sS—sPE=E— 5 —0

and so we have the desired surjection.
Conversely, given a line bundle £ on M and a surjective morphism

v:E— L,
in each fiber &,, of £ over a point m € M we can consider the hyperplane
Ker(vy,) C &En -

thus we can define the section s of P(&):

M = >P(€)
mi—= (m, Ker(v,,))
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These constructions are inverse to each other; in particular the section s :
M — P(€) has the property that s*¢¢ = L.

Suppose now that M = P!. Then &£ is decomposable in the direct sum
of line bundles over P!:

g == Opl (al) D Opl (CLQ) b---P Opl ((IT>,

where a; < ay < --- < a, are integers.
Since there is a surjection of vector bundles over P!

E— Oay) — 0,

there is a section s : P! — P(&) with s(P') = Cy C P(€) with the property
8*65 = O]P)l (&1).
Thus we have

Ee - Co = deg&elc, = degs™(&e) = an

and so the term O(a;), which is the term of £ with minimal degree, corre-
sponds to a section of P(€) with the minimal intersection number with the
tautological bundle.
Since we can twist the vector bundle £ with a line bundle on M without
changing the projective bundle P(£), we can suppose that the vector bundle
€ is of the form

E=0pm ® Opl(ag) D---D OP1(CLT)7

with a, > .-+ > ay > 0, and so we have that the section Cy which has
minimal intersection with the tautological bundle is such that

65‘00:0.

Moreover this section corresponds to the surjection £ — O — 0, or equiva-
lently to the injection 0 — O — £¥ and so these sections are parameterized
by

H(EY) = H(O®O(—ay) ® -+ ® O(—a,)).

Hence, if on P(E) there is a one parameter family of sections with minimal
intersection with &g, we have that ay = 0.
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