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ABSTRACT
This paper presents a new setting for visual question answering
(VQA) called personalized federated VQA (FedVQA) that addresses
the growing need for decentralization and data privacy protection.
FedVQA is both practical and challenging, requiring clients to learn
well-personalized models on scene-specific datasets with severe
feature/label distribution skews. These models then collaborate
to optimize a generic global model on a central server, which is
desired to generalize well on both seen and unseen scenes without
sharing raw data with the server and other clients. The primary
challenge of FedVQA is that, client models tend to forget the global
knowledge initialized from central server during the personalized
training, which impairs their personalized capacity due to the poten-
tial overfitting issue on local data. This further leads to divergence
issues when aggregating distinct personalized knowledge at the
central server, resulting in an inferior generalization ability on un-
seen scenes. To address the challenge, we propose a novel federated
pairwise preference preserving (FedP3) framework to improve per-
sonalized learning via preserving generic knowledge under FedVQA
constraints. Specifically, we first design a differentiable pairwise
preference (DPP) to improve knowledge preserving by formulat-
ing a flexible yet effective global knowledge. Then, we introduce a
forgotten-knowledge filter (FKF) to encourage the client models to
selectively consolidate easily-forgotten knowledge. By aggregating
the DPP and the FKF, FedP3 coordinates the generic and the per-
sonalized knowledge to enhance the personalized ability of clients
and generalizability of the server. Extensive experiments show that
FedP3 consistently surpasses the state-of-the-art in FedVQA task.
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1 INTRODUCTION
In recent years, the field of visual question answering (VQA) has
attracted significant attention due to its ability to comprehend tex-
tual queries based on images and deduce accurate answers [5, 48].
State-of-the-art VQA models [4, 28, 51, 56] have achieved supe-
rior performance across various scenes via large-scale centralized
training [62]. However, the utilization of such training paradigms
poses a significant challenge to privacy constraints in practical
VQA applications [6]. For example, sensitive data obtained from
educational settings cannot be shared with other clients or a central
server, as shown in Fig. 1. Hence, a decentralized training paradigm
is necessary for real-world VQA systems to address this challenge.

Recently, federated learning (FL) [26, 38] has been proposed as
a privacy-aware and distributed framework for training models
without sharing data with a central server or other clients [46].
To the best of our knowledge, however, there have been limited
studies focusing on federated VQA tasks. In addition, compared
with the conventional FL on identically distributed (iid) data, the
VQA samples collected from different local clients typically involves
heterogeneous feature and label distributions, including diverse
visual content captured from various realistic scenes (e.g., Fig. 1), as
well as inconsistent answer distributions caused by different scene-
specific questions. Considering this, we propose a challenging yet
practical VQA task, namely personalized federated VQA (FedVQA).
The goal of FedVQA task is to train personalized VQA client models
for distinct visual scenes, while optimizing a generic model to gen-
eralize well on unseen scenes, through client collaboration under
the privacy constraint. This target leads to two main challenges.
Firstly, local VQAmodels are prone to forget the generic knowledge
aggregated from server during the personalized training, thereby
encountering the potential overfitting issue, and performing worse
on local data. Secondly, since the training data distributed at local
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Figure 1: The federated setting for VQA over heterogeneous
visual scenes. Given a pre-trained VQA model, we require
each participated clients to train personalized model to per-
form well on their local data (e.g., transports, sports, natural
and educational scenes). Meanwhile, the central server is ex-
pected to aggregate a generic global model to generalize on
the testing data in unseen scenes (e.g., shopping and home).

clients includes scene-specific images and label distributions, the
potential conflicts among personalized knowledge are unfavorable
for efficient global knowledge aggregation, resulting in the central
server with a degraded ability to generalize on unseen visual scenes.

To overcome these challenges, we introduce a novel federated
pairwise preference preserving (FedP3) framework that prevents
clients models from forgetting global knowledge when learning
from local data, so as to collaboratively optimize both generic and
personalized models. Based on the commonly-used FedAvg [46]
pipeline (detailed in Sec. 3.2), FedP3 follows a knowledge preserving
(KP) strategy that exploits the soft logits from global model as the
generic knowledge, and transfer it to the local model as the regular-
ization during the personalized training. However, we declare that
the logits-based constraint achieved by Kullback-Leibler (KL) diver-
gence is overly strict in knowledge preserving, and even disturbs
clients’ balance between consolidating generic knowledge and ac-
quiring personalized knowledge. To tackle this issue, we propose a
novel differentiable pairwise preference (DPP) method that formu-
lates the distilled knowledge as the pairwise binary comparisons
among significance of answer prediction, instead of the absolute
value of predictive probabilities, which reveals the reasoning be-
haviour of global model in a relaxed yet effective manner. Besides,
we present a forgotten-knowledge filter (FKF) that seeks to gener-
ate a forgotten-knowledge driven label distribution to capture the
easily-forgotten classes during local training, and then adaptively
filters a significant answer subset involved in pairwise preference.
Benefited from FKF in DPP, FedP3 not only further enhances the
performance of both local and global models, but also remarkably
reduces the computational complexity of knowledge preserving.

After the last round of global-local communication, the aggre-
gated model serves as the generic global model, which iteratively
accumulates abundant knowledge over diverse scenes from local
clients. Meanwhile, we consider the final-round local model before
weighted average as the final personalized VQAmodel in each client.
By integrating the DPP and FKF, our FedP3 framework coordinates

bread
wine

sandwich
bananas

toast

chair
speaker

desk

camera

toilet

screen

dishwasher
bedroom

monitor

cabinet

people

television

phone

bowl

baseball

beach

field
helmet

ball
skateboard

taxi

outdoors

airplane
road

stop sign
sidewalk

bike

forest
wood
ocean
sky
bird

metal
Commercial

Home

Edu
cat

ion
al

Transport

Sports
Na

tura
l

Figure 2: The scene-specific answers (in dark blue) from each
local dataset represented in a specific visual scene, and some
general answers (in red and green) co-exist in several scenes.

the generic and the personalized knowledge, thereby achieving
state-of-the-art performance on our FedVQA setting.

The contributions of this work are summarized as:
• We propose a novel yet practical setting FedVQA for feder-
ated VQA over heterogeneous scenes. It not only concerns
the performances of local models, but also considers the
global model’s generalization ability on unseen scenes.
• We propose a novel federated pairwise preference preserving
FedP3 approach to coordinate the generic and personalized
knowledge, thereby improving the model’s representative
ability on both seen and unseen scenes.
• Extensive experiments show that our FedP3 achieves com-
petitive performance with the state-of-the-art competitors.

2 RELATEDWORKS
2.1 Visual Question Answering
Visual Question Answering (VQA) is a prevalent vision-language
task, which concentrates on answering natural language question
according to the given image, necessitating the comprehensive
understanding and reasoning over both visual and textual modali-
ties [5, 48]. Most of earlier VQA works seek to establish efficient
model architectures to achieve fine-grained vision-language interac-
tions for answer prediction, such as multimodal fusion [13, 33, 57],
attention [4, 11, 21, 51, 56], and large-scale pre-training models [28,
36, 61]. Recently, increasing amount of researches [17, 24, 31, 34, 47]
focus on improving reasoning robustness in VQA task, thereby al-
leviating some undesired model behaviour, such as language bias
[2, 7, 16, 32] and multimodal inputs variations [49, 50]. The re-
markable performance achieved by these methods is attributed to
the centralized training [62] over large-scale and well-collected
datasets [15, 22, 25].

However, such a training paradigm is inefficient for real VQA
application scenes, due to the growth of the privacy awareness. To
investigate this overlooked issue and address additional technical bot-
tleneck, we propose a new FedVQA setting and accordingly introduce
a new FedP3 approach.

2.2 Personalized Federated Learning
Federated Learning (FL) is a learning paradigm that enables the
training of a model across multiple client devices while maintain-
ing local data privacy [26, 38]. The most widely adopted FL algo-
rithm is FedAvg [46], which averages the local model parameters
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across different clients trained on private client datasets to learn
a global model. Recent research efforts have focused on improv-
ing FedAvg from various aspects, including model convergence
[18, 27], robustness [8, 43], communication [29], and non-IID clients
[3, 10, 19, 23, 40, 41, 63].

To further handle the heterogeneity of data and models, person-
alized FL (PFL) has been introduced [30]. In contrast to traditional
FL, PFL aims to learn a customized model for each client, tailored
to their specific objectives. This method acknowledges the diver-
sity of data among clients by constructing a “personalized” model
that fits each client’s needs. One group of techniques [41, 42] has
leveraged multi-task learning (MTL) methods to incorporate clients’
task objectives into the FL framework. The other group contains
post-processing techniques [12, 55]. [55] with meta-learning to
learn an initial model that can be adapted to each client through
local fine-tuning. [55] indicates that fine-tuning can achieve com-
parable results to other personalized methods. In our framework,
we use an MTL-based approach that can optimize generic and per-
sonalized VQA models simultaneously. While the benchmarks for
conventional FL are well-established, few studies have focused
on federated VQA. The most closely related work [44] proposes a
vision-language FL framework with shareable networks, but only
considers the scenario where clients learn different tasks (e.g., VQA
and image captioning) instead of FL VQA across different scenes.

We argue that the proposed FedVQA is a practical and challenging
task for two reasons. Firstly, our FedVQA not only aims to improve
individual personalized models through collaborative training, but
also considers the model’s ability to directly deploy on unseen scenes.
Secondly, since the heterogeneous data collected from different scenes
include scene-specific characteristics (e.g., distinct high-frequency
words in Fig. 2), the model trained on FedVQA setting has a high risk
of failing to converge. To the best of our knowledge, this work is the
first attempt to explore VQA tasks in personalized federated learning.

2.3 Forgetting Issue in Personalized Learning
In the PFL pipeline, models often suffer from a forgetting prob-
lem on global knowledge. To cope this issue, FedProx [39] pro-
poses to punish overlarge parameter changes during local training.
MOON [37] introduces a model-level contrastive learning to reduce
feature discrepancy between the global and local models. Then,
FedDyn [1] adopts the averaging of dual variables under partial par-
ticipation settings to improve convergence. Recently, FedDC [14]
proposes drift correction terms as penalized losses on original lo-
cal objective functions with global gradient estimation. Another
typical way to achieve this goal is via knowledge distillation (KD).
FedMD [35] aggregates local predictions over a public dataset at the
server and transfers the consensus of predictions back to clients for
distilling client models. KT-pFL [58] enables each client to maintain
a personalized prediction at the server to guide other clients. Re-
cently, FedKD [54] proposes a communication-efficient federated
knowledge distillation approach to enhance personalized models by
leveraging the assist of global model. However, this may impair the
generalizability of global model, inconsistent with the objectives of
FedVQA. We experimentally validate this assumption in Tab. 2.

In contrast to these methods that directly adopt entropy-based
distillation loss, we propose a novel pairwise preferece preserving
approach based on relative comparisons, which flexibly reflects a

model’s reasoning behavior and coordinates global-local knowledge
without requiring a public dataset.

3 METHODOLOGY
In this paper, we present a novel Federated Pairwise Preference Pre-
serving (FedP3) tailored to the FedVQA setting over heterogeneous
scenes. In the following, we first elaborate the benchmark setup,
which contains task definition, distribution skews, and training tar-
get, respectively. Then, we describe the basic learning pipeline to
adapt the typical VQA model into the federated learning scenarios.
Finally, we explicitly introduce the FedP3 strategy.

3.1 Benchmark Formulation
Task Definition: VQA algorithm typically refers to a classification
function F𝑣𝑞𝑎 to learn a mapping: I × Q → [0, 1] |A | based on a
centralized dataset D = {𝐼𝑖 , 𝑄𝑖 , 𝑎𝑖 }𝑁𝑖 , where 𝐼𝑖 ∈ I, 𝑄𝑖 ∈ Q and
𝑎𝑖 ∈ A denote image, question and answer respectively. In our
FedVQA, there are n clients𝐶 = {𝐶1,𝐶2, . . . ,𝐶𝑛}, each𝐶𝑖 equipped
with a local training dataset 𝐷𝑖 with personalized image-question
training pairs, as well as a target test split T𝑖 . The local clients are
to minimize the training loss of the personalized VQA models, i.e.,
min L (𝜃𝑖 ;T𝑖 ), where 𝜃𝑖 refers to the model parameters for the i-
th client. As a result, the final learning objective is to acquire the
optimal parameters of local models:{

𝜃1, 𝜃2, . . . , 𝜃𝑛
}
= argmin

𝑛∑︁
𝑖=1
L (𝜃𝑖 ;T𝑖 ) , (1)

where 𝜃𝑖 denotes the optimal setting of personalized VQA model
from the i-th involved client, 𝑖 ∈ {1, 2, . . . , 𝑛}.

Distribution Skews: As depicted in Fig. 2, FedVQA exists severe
feature and label distribution skews among the VQA samples across
different clients. To be specific, on the one hand, the training images
derived from different local datasets are represented in different
visual scenes (e.g., shopping, home, and transports), which leads
to the visual domain shifts among the multiple local datasets. On
the other hand, for a client responsible to tackle the questions over
images in a specific scene (e.g., sports), its label distribution would
be inclined to the scene-related answer candidates (e.g., tennis,
frisbee, and badminton), which potentially forms the heterogeneous
label distribution over participated clients.

Targets:: We summarize two learning targets in FedVQA bench-
mark, among which one for the personalized models in local clients,
and the other for the global model in the central server. 1) The local
clients attempt to acquire knowledge from their own private data,
and we target on training an efficient personalized VQAmodel
to perform well on private data represented a specific visual
scene. 2) The central server seeks to aggregate the local models
to accumulate knowledge from personalized private datasets, and
send the updated global models to each participated client. On the
side of server, we focus on establishing a generic global model
with strong generalizability to the VQA samples in unseen
scenes. To our best knowledge, this work is the first attempt to
explore the personalized federated setting in VQA task.

3.2 Training Pipeline
To fulfill FedVQA, we use the intuitive and commonly-used FL al-
gorithm FedAvg as the baseline strategy for collaborative training
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Figure 3: Conceptual illustration of Fed3 in FedVQA benchmark, which contains three indispensable concepts: (a) knowledge
preserving: the globalmodel aggregated by FedAvg from central server act as a frozen teacher, so as to transfer generic knowledge
to the local model (student) during personalized training. (b) pairwise preference: modelling transferred knowledge via relative
comparisons among the answer significance (answer with higher probability in red wins the pairwise matchup). (c) forgotten-
knowledge filter: selecting the easily-forgotten answer candidates into pairwise preference for knowledge preserving.

between central server and clients. We define the hyper-parameters
𝐶 , 𝑇 and 𝐸 as the number of clients in the federation, the total
communication rounds, and the epochs required for local training,
respectively. At the beginning of the global-local communication,
the global model is initialized by loading the parameters from the
large-scale pre-trained vision-language model. Afterward, accord-
ing to the pre-defined 𝑇 and 𝐸, the server and participated clients
cooperatively accumulate knowledge from distributed data in an
iterative learning manner (multiple communication rounds). Specif-
ically, in each round, the server first sends the global model to
each client as the initial local model for personalized data train-
ing. Then, the client (e.g., the i-th client) locally updates the model
using its own private data D𝑖 =

{
𝐼 𝑗 , 𝑄 𝑗 , 𝑎 𝑗

}𝑁𝑖

𝑗
, where 𝑁𝑖 implies

the total number of training instances. In FedVQA, we adopt the
cross-entropy loss function to train the parameters of local model
𝜃𝑖 in the 𝑖-th client:

L𝑐𝑒 = − 1
𝑁𝑖

𝑁𝑖∑︁
𝑗

log
(
F𝑣𝑞𝑎

(
𝐼 𝑗 , 𝑄 𝑗 ;𝜃𝑖

) )
[𝑎𝑖 ] . (2)

After finishing 𝐸-epoch local training, clients are required to re-
turn their optimized models back to the central server. Sequentially,
the server will integrate a new global model 𝜃𝑔 by conducting a
weighted average of uploaded personalized models as follows:

𝜃𝑔 =
1
𝑁

𝐶∑︁
𝑖

𝑁𝑖 · 𝜃𝑖 , (3)

where 𝑁 is the total amount of image-question pairs across all
private datasets. Particularly, we exploit the aggregatedmodel in the
last communication round as the generic model, which iteratively
accumulates abundant knowledge over diverse scenes from clients.

Besides, we consider the final-round local model before weighted
average as the final personalized VQA model in each client.

Restrictions: Intuitively, the integration of model parameters in
FedAvg could effectively accumulate knowledge from decentralized
training data. Nevertheless, in FedVQA, or other real-world VQA
applications involving federated learning, the statistical hetero-
geneity inevitably exists among the data across local clients, which
significantly impairs the performance of both local and global mod-
els. The main reasons are twofold. 1) After obtaining global model,
clients attempt to acquire knowledge from private datasets with
severe label and feature distribution shifts, which optimizes the
model parameters to the local optima and deviates from the global
target. 2) The global aggregation process achieved by weighted
average often leads to an unwanted drift for the initialization of
local clients, which plays a negative role on the model convergence.

3.3 FedP3: Pairwise Preference Preserving
In this section, built upon the basic FedAvg strategy, we propose a
novel federated pairwise preference preserving (FedP3) for FedVQA
benchmark, which contains three indispensable concepts: knowl-
edge preserving (KP), differentiable pairwise preference (DPP), and
forgotten-knowledge filter (FKF).

3.3.1 Knowledge Preserving. In FedVQAover heterogeneous scenes,
the optimization direction in each local model is typically incon-
sistent with that in the central server, which potentially leads the
clients to forget the aggregated generic knowledge initialized from
global model. Particularly, for several classes whose samples do not
exist in a specific client, the local training tends to gradually elim-
inate the predictive probabilities of such classes for local optima,
thereby forgetting the general knowledge from global model. To
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prevent from the overfitting on local data and alleviate the forget-
ting issue, we introduce an intuitive KP pipeline to preserve the
knowledge learned from other participants. Specifically, we store a
frozen global model to regularize the local training on each client,
and add a distillation term to the local task loss objective (Equ. (2)).

In the beginning of the communication round 𝑡 (𝑡 ≤ 𝑇 ), the
𝑖-th client updates its local model (𝜃𝑡

𝑖
) from the central server as

the trainable student, and meanwhile copies a complete global
model (𝜃𝑡−1𝑔 ) as the frozen teacher to store the aggregated global
knowledge in the last communication round. The anti-forgetting
process is to exploit the output logits (𝑝𝑇 = F𝑣𝑞𝑎

(
𝐼 𝑗 , 𝑄 𝑗 ;𝜃𝑡−1𝑔

)
)

from teacher model to regularize the student’s response (𝑝𝑆 =

F𝑣𝑞𝑎
(
𝐼 𝑗 , 𝑄 𝑗 ;𝜃𝑡𝑖

)
), thereby preventing student from forgetting the

previous-learned global knowledge. Specifically, we achieve the
aforementioned KP via Kullback-Leibler divergence loss LKP:

LKP
(
𝑝𝑆 , 𝑝𝑇

)
= −

|A |∑︁
𝑎=1

𝑝𝑇 (𝑎) log
[
𝑝𝑆 (𝑎)
𝑝𝑇 (𝑎)

]
, (4)

where |A| is the total number of candidates for answer prediction,
and 𝑝𝑆 (𝑎), 𝑝𝑇 (𝑎) refers to the a-th value of 𝑝𝑆 and 𝑝𝑇 , respectively.

3.3.2 Differentiable Pairwise Preference. Although using KL diver-
gence in KP pipeline can constrain knowledge discrepancy, it might
be a “hard” constraint for the probabilities in the label space, espe-
cially for the VQA task with severe robustness issues. To be specific,
the personalized model would encounter the plasticity issue when
acquiring new knowledge from local data, due to the regularization
of absolute value for answer prediction. On the contrary, DPP fo-
cuses on the relative comparisons among the predictions yielded
from different answer candidates (e.g., whether the answer ‘base-
ball’ is more important than ‘swimming’ for the training sample
labeled by ‘tennis’). It reveals the reasoning behavior of the teacher
model in a relaxed yet effective manner. In FedVQA, we seek to
fulfill knowledge preserving by leveraging the DPP, which encour-
ages the local models efficiently to learn from local data with less
forgetting of global knowledge.

Given the teacher’s prediction 𝑝𝑇 = [𝑝𝑇 (0), 𝑝𝑇 (1), ..., 𝑝𝑇 ( |A|)]
as P𝑇 , we define DPP by:

P𝑇 =


𝑀

(
𝑝𝑇 (1), 𝑝𝑇 (1)

)
. . . 𝑀

(
𝑝𝑇 (𝑁 ), 𝑝𝑇 (1)

)
.
.
.

. . .
.
.
.

𝑀

(
𝑝𝑇 (1), 𝑝𝑇 (𝑁 )

)
. . . 𝑀

(
𝑝𝑇 (𝑁 ), 𝑝𝑇 (𝑁 )

)

, (5)

where 𝑀 (·) is the function of pairwise matchup to compare the
significance between two answer candidates. Specifically, given the
predictive probabilities of the i-th and j-th answer, the function is:

𝑀 (𝑝𝑇 (𝑖), 𝑝𝑇 ( 𝑗)) =
{
1 if 𝑝𝑇 (𝑖) ≻ 𝑝𝑇 ( 𝑗),
0 if 𝑝𝑇 ( 𝑗) ≻ 𝑝𝑇 (𝑖).

(6)

Analogously, we can obtain the pairwise preference on the side
of student model as P𝑆 . Then, the loss objective of pairwise prefer-
ence driven knowledge preserving L𝑝𝑝 could be achieved through
punishing the inconsistency between P𝑇 and P𝑆 :

L𝑝𝑝 =
∑︁
𝑖

∑︁
𝑗

���𝑀 (
𝑝𝑇 (𝑖), 𝑝𝑇 ( 𝑗)

)
−𝑀

(
𝑝𝑆 (𝑖), 𝑝𝑆 ( 𝑗)

)��� . (7)

One practical difficulty for pairwise preference is that thematchup
function𝑀 (·) is discontinuous, which is not compatible with the
general deep neural network optimization, such as SGD [9] and
AdamW optimizer [45]. To enable the PP to perform the gradi-
ents back-propagation in neural networks, we propose to adopt a
sigmoid-like function 𝑔(·) to approximate the matchup function:

𝑔(𝑥) = 1
1 + 𝑒−2𝑥

, (8)

Therefore, we reformulate the Equ. (6) as the a differentiable coun-
terpart:

𝑀

(
𝑝𝑇 (𝑖), 𝑝𝑇 ( 𝑗)

)
= 𝑔

(
𝑝𝑇 (𝑖) − 𝑝𝑇 ( 𝑗)

)
=

1
1 + 𝑒−2(𝑝𝑇 (𝑖 )−𝑝𝑇 ( 𝑗 ))

,

(9)
and the derivative of𝑀 (·) can be formulated as:

𝜕𝑀

(
𝑝𝑇 (𝑖), 𝑝𝑇 ( 𝑗)

)
𝜕𝑝𝑇 ( 𝑗)

=
−2𝑒−2(𝑝𝑇 (𝑖 )−𝑝𝑇 ( 𝑗 ))[
1 + 𝑒−2(𝑝𝑇 (𝑖 )−𝑝𝑇 ( 𝑗 ))

]2 , 𝑗 ≠ 𝑖 . (10)

3.3.3 Forgotten-Knowledge Filter. DPP produces a high dimen-
sional binary matrix of quadratic expansion (Equ. (5)), which leads
to a non-negligible 𝑂 (𝑛2) computational complexity. An intuitive
solution to mitigate this issue is to select a subset of answer candi-
dates for DPP, instead of taking all answer pairs into consideration.
To this end, we propose a novel forgotten-knolwedge filter (FKF)
strategy, which concentrates on creating a rectified label distribu-
tion to capture the easily-forgotten knowledge during local training.

In FKF, we assume the selected answers for pairwise preference
should be strongly related to the forgotten global knowledge in
each local client. Specifically, as illustrated in Fig. 3(c), for the client
tailed to sports scenes, its personalized model typically learns from
samples labeled by sports-related answers (e.g., tennis and baseball),
while gradually ignoring the learned knowledge involved in some
general or label-irrelevant classes (e.g., people and field). The an-
swer selection for the latter is capable of improving the efficacy of
knowledge preserving, and meanwhile reducing the computational
complexity caused by pairwise comparisons.

To this end, as shown in Fig. 3(c), we propose to establish a
forgotten-knowledge driven label distribution to describe the for-
gotten knowledge during local training, which is mainly deter-
mined by the comparison between predictions from the student
and teacher. Specifically, the probability of the i-th class (𝑟 (𝑖)) in
the distribution 𝑟 can be represented as:

𝑟 (𝑖) = softmax
(
log

(
𝑝𝑇 (𝑖)

)
− log

(
𝑝𝑆 (𝑖)

))
. (11)

During the local training, the trainable local model unavoidably
forgets the scene-irrelevant knowledge on unrelated classes (e.g.,
the k-th answer) with lower probability (e.g., 𝑝𝑆 (𝑘)). According
to the Equ. (11), the probability of easily-forgotten class 𝑘 in the
forgotten knowledge driven distribution 𝑟 (𝑘) would be higher than
those of scene-relevant classes. Considering the parameters in local
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Algorithm 1: FedP3

Input: Decentralized datasets {𝐷𝑖 }𝑁𝑖=1 from 𝑁 local clients
𝑁 clients’ datasets {𝐷𝑖 }𝑁𝑖=1, Total communication round
𝑇 ,Epochs for each communication rounds 𝐸, learning rate 𝜂,
batch size 𝑏
Output: The global model 𝜃𝑇𝑔 , local models 𝜃𝑇1 , 𝜃

𝑇
2 ,..., 𝜃

𝑇
𝑁

in
the final (T-th) communication round.

ServerExecute:
Initialize the global model 𝜃0𝑔 in the server
for 𝑡 = 0, . . . ,𝑇 − 1 do

for 𝑖 ∈ 𝑁 in parallel do
𝜃𝑡
𝑖
← ClientUpdate

(
𝑖, 𝜃𝑡𝑔, 𝐷𝑖

)
end
𝜃𝑡+1𝑔 ← 1

|𝑁 |
∑ |𝐷𝑖 | 𝜃𝑡𝑖 ⊲ Eq.(3)

end
return 𝜃𝑇𝑔

ClientUpdate: (𝑖, 𝜃𝑡𝑔, 𝐷𝑖 )
𝜃𝑡
𝑖
← 𝜃𝑡𝑔

for epoch 𝑒 = 1, . . . , 𝐸 do
for batch 𝑏 = {𝑣, 𝑞, 𝑎} ∈ 𝐷𝑖 do
L𝑝3,𝑖 ← |P𝑇 − P𝑆 | ⊲ Eq.(14)

L𝑐𝑒,𝑖 ← log
(
F𝑣𝑞𝑎

(
𝑣, 𝑞;𝜃𝑡

𝑖

))
[𝑎] ⊲ Eq.(2)

L𝑖 ← L𝑐𝑒,𝑖 + L𝑝3,𝑖 ⊲ Eq.(15)

𝜃𝑡
𝑖
← 𝜃𝑡

𝑖
− 𝜂∇L

(
𝜃𝑡
𝑖
, 𝑏

)
end

end
return 𝜃𝑡

𝑖
to the server

and global models are the same in the beginning of the communi-
cation round (𝑝𝑇 = 𝑝𝑆 ), we add an information gain based function
into the Equ. (11), and the final distribution 𝑟 is defined as follows:

𝑟 (𝑖) = softmax
(
log

(
𝑝𝑇 (𝑖)

)
− log(𝐻𝑇

𝐻𝑆
) · log

(
𝑝𝑆 (𝑖)

))
, (12)

𝐻𝑇 =

|A |∑︁
𝑖

𝑃𝑇 (𝑖) log 𝑃𝑇 (𝑖), (13)

where𝐻𝑇 and𝐻𝑆 are the information entropies of the teacher’s and
student’s predictions, and 𝐻𝑇 /𝐻𝑆 denotes the information gain for
local model to accumulate knowledge from decentralized data based
on the initialization of global model. For instance, when the client
optimizes the model parameters to the local optima, its predictive
uncertainty for answer candidates would be gradually decreased,
and the influence of student’s prediction could be considered more
to build the forgotten knowledge based distribution 𝑟 (𝑖).

Then, we fulfill the FKF via choosing the Top-N most influenced
answers in the established distribution 𝑟 (𝑖), where we formulate
the selected answer subset as S ⊆ A. Finally, the loss function of
our propose Fed𝑃3 for knowledge preserving L𝑝3 is defined as:

L𝑝3 =

|S |∑︁
𝑖

|S |∑︁
𝑗

���𝑀 (
𝑝𝑇 (𝑖), 𝑝𝑇 ( 𝑗)

)
−𝑀

(
𝑝𝑆 (𝑖), 𝑝𝑆 ( 𝑗)

)��� . (14)

Table 1: The statistics of decentralized datasets over six dif-
ferent visual scenes in FedVQA benchmark.

Scenes Train Test Involved sub-categories of scenes

Commercial 19573 6473 restaurant, market, pharmacy, bakery...
Educational 13472 4225 campus, art gallery , music studio...
Transport 12384 4160 airport, subway , crosswalk, galley...
Natural 14820 4512 forest, mountain, marsh, underwater...
Sports 14784 5120 ballroom, arena, gymnasium, ski slope...
Home 14498 4353 kitchen, bedroom, bathroom, closet...

Algorithmic Pipeline: Based on the aforementioned crucial
concepts in our proposed FedP3, the total loss function in the t-th
communication( 𝑡 ≥ 2 due to the updating process of server) is:

L𝑡𝑜𝑡𝑎𝑙 = Lce + 𝜆L𝑝3 , (15)
where the 𝜆 is a trade-off factor applied to adjust the contributions
of the loss terms between acquiring new knowledge in local data,
and preserving previous knowledge from central server. The de-
tailed descriptions about how our method works are summarized
in Algorithm 1. The testing phase is performed only once by using
aggregated global model and personalized local models obtained in
the final communication round.

4 EXPERIMENTS
4.1 Datasets
To build the decentralized datasets for different participated clients
under heterogeneous visual scenes, we follow the scene-centric
Places365 database [60] and use the pre-trained model to classify
the images in GQA [22], which is a large-scale VQA datasets asking
about images in realistic scenes. Based on the referenced taxonomy
in Place365 [60], we divide the GQA dataset into six personalized
datasets, among which each dataset tailored to answer questions
about a specific visual scenes (e.g. transportation, sport, natural,
home, educational, and commercial scenes). The detailed informa-
tion including the amount of training and test samples, as well as
the involved scene subcategories contained in each decentralized
dataset are described in Tab. 1. It is noteworthy that each VQA
instance selected in a specific category is computed by a high clas-
sification confidence score by pre-trained scene recognition model.

4.2 Implementation Details
For the setting of FL, we define the number of participated clients
𝑁 = 4, and the amount of datasets represented in unseen visual
scenes for generalizability testing is 𝑀 = 2. The total communi-
cation rounds 𝑇 = 5, and the epochs for local training in each
communication round is 𝐸 = 2. To train the personalized model
over local dataset, we optimize model parameters via the AdamW
optimizer [45] with a learning rate of 𝑒−4. The minibatch size is set
to 32 distributed on two GPUs. On the side of model architecture, we
conduct the federated experiments on the widely-used pretrained
ViLT models, where the last 3 layers are trainable. For the struc-
ture of task classifier, it contains two layers of non-linear MLP
with LayerNorm [45] to predict the probabilities over 1642 answer
candidates. Finally, we select the trade-off factor 𝜆 = 1 to adjust
contributions between local training and knowledge preserving.
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Table 2: Comparisons with state-of-the-art methods for federated learning in FedVQA, where the four datasets (transports,
sports, educational, and natural scenes) participate the federated training, and the other two datasets are utilized (home and
commercial scenes) for the generalization of unseen scenes. Best and second best numbers are in bold and underlined.

Scene
method DT FedAvg

[46]
FedProx
[39]

MOON
[37]

FedKD
[54]

FedDC
[14]

ST
[20]

SP
[46]

CRD
[52]

DKD
[59]

FedP3
(Ours) CT

Transport 42.97 45.37 45.21 45.83 45.53 45.45 45.24 45.88 45.37 45.57 46.06 49.27
Sports 43.19 44.87 45.13 45.97 45.35 45.86 44.66 45.76 45.11 44.91 46.39 51.12

Educational 37.56 40.95 41.13 40.85 41.78 41.23 41.41 41.51 41.78 41.83 42.21 46.84
Natural 50.29 51.48 51.27 51.41 51.35 51.66 51.52 51.38 51.75 51.54 52.00 56.11

Generalization over unseen scenes
Home - 35.01 34.89 35.91 34.75 36.18 34.11 35.13 35.49 35.88 36.76 41.85

Commercial - 29.46 30.04 31.13 29.11 31.37 30.60 29.81 30.71 31.17 32.01 34.88

4.3 Comparative Approaches
We divide the to-be-compared 9 state-of-the-art methods in two
groups. Approaches in first group are specially-designed for FL: 1)
FedAvg [46]: the baseline strategy to aggregate trained local models
by averaging their parameters 2) FedProx [39]: restricts the local up-
dates by proposing a regularization of L2-norm distance. 3) MOON
[37]: utilizes the similarity between model representations to cor-
rect the local training of individual clients. 4) FedKD [54]: focuses
on training efficient personalized models via mutual knowledge
distillation without parameter communication between client and
server. 5) FedDC [14]: exploits a learned local drift variable to bridge
the gap between local and global models. The approaches in the
other group follow the idea of the knowledge preserving, and form
the global knowledge from different perspectives: 6) ST [20]: soft
targets. 7) SP [53]: semantic correlations 8) CRD [52]: contrastive
representation, and 9) DKD [59]: target and non-target logits-based
knowledge. We take Decentralized Training (DT) and Centralized
Training (CT) as the references for lower and upper bounds.

4.4 State-of-the-art Comparisons
In this section, we aim to compare our propose method with afore-
mentioned state-of-the-art strategies in FedVQA benchmark over
six heterogeneous scenes. To simultaneously evaluate the perfor-
mance for both personalized and generic models, we exploit four
datasets to participate the federated training, while the other two
datasets only available for generalization over unseen scenes. Be-
sides, to validate the robustness of our method towards scene varia-
tions in federated learning, we build two scenarios where involved
datasets for generalizability testing are entirely different. From the
federated scenarios in Tab. 2 and 3, we have following observations:

1) Even though FedAvg improves the performance over the lower
bound DT, there is still a hugh accuracy gap towards the centralized
learning (CT ) in both scenarios. It verifies that the label and feature
distribution skews are severe in FedVQA benchmark. We can also
notice that, the clients for sports and natural scenes co-existed in
both two federated training perform worse in the second scenario
(Tab. 3). It can explained by the fact that, compared with transports
and educational scenes, federated learning with clients in home and
commercial datasets involves more significant distribution shifts.

2) Among methods specialized for federated learning, FedProx
yields comparative accuracy with FedAvg, and the other three ap-
proaches produce better results in terms of local personalization on

the first four datasets. For generlizability, FedKD slightly impair the
performance due to the negligence of global knowledge preserving,
while FedDC achieves remarkable accuracy boost benefited from
the learned local drift variable. Following the idea of knowledge
preserving, three advanced knowledge distillation (SP, CRD and
DKD) achieve better results than transferring soft logits (ST ) to
local models, mainly because the proposed batch-wise similarity,
contrastive learning, and target-based prediction decomposition es-
tablish better representations of global knowledge in central server.

3) From results in two scenarios, our proposed FedP3 is remark-
ably superior to the baseline FedAvg strategy, whose performance
occupies all the first places for four participated clients in per-
sonalized learning. It powerfully supports that preserving global
knowledge in our method facilitates local models to accumulate
knowledge from their own private datasets, instead of suppressing
their personalization. Besides, the global model trained by FedP3
shows strong generalizability over unseen visual scenes (last two
rows), which reveals that proposed pairwise preference could effec-
tively form the generic knowledge aggregated from central server.

4.5 Ablation Study
We perform extensive ablation studies on the federated scenarios
depicted in Tab. 4, where Avg.(Loc) is the average accuracy obtained
from four local models in transports, sports, educational, and natu-
ral scenes, while Avg.(Glo) denotes the generalization results from
global model over unseen home and commercial scenes.

Effectiveness of Different Concepts: We validate the contribu-
tions for different concepts in FedP3 built upon the baseline FedAvg
approach. From the rows 2-4 in Tab. 4, exploiting soft prediction
(𝑇 = 2) from global model for knowledge preserving would slightly
improve the average accuracy, while the other settings (𝑇 = 1, 3)
degrade the performance of FedAvg. This is because the predic-
tive value based regularization tends to restrict the local models
(student) to obtain personalized knowledge when reviewing global
knowledge. In contrast, pairwise preference alleviates this issue via
modeling the relative comparisons on the sides of answer signif-
icance. The last five rows depict the answer subset selection for
pairwise preference according to different label distributions 𝑟 (𝑖).
We can notice that using the distribution from global model per-
forms better than the random (𝜇 (𝑖)) and local distributions (𝑝𝑆 (𝑖)),
while it fails to reveal the forgotten knowledge during personalized
training. Compared with the Equ. (10), leveraging the information
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Table 3: Comparisons with the state-of-the-art for federated learning in FedVQA, where sports, home, natural, and commercial
scenes participate the federated training, as well as transports and educational scenes for the generalization of unseen scenes.

Scene
method DT FedAvg

[46]
FedProx
[39]

MOON
[37]

FedKD
[54]

FedDC
[14]

ST
[20]

SP
[46]

CRD
[52]

DKD
[59]

FedP3
(Ours) CT

Sports 43.19 43.62 43.89 44.21 43.71 44.41 44.42 44.01 44.67 44.51 44.55 51.10
Home 38.53 39.18 39.01 39.27 39.22 39.07 38.60 39.27 39.28 39.23 39.43 46.73
Natural 50.29 50.51 50.24 50.79 50.67 50.97 50.48 51.23 51.03 51.45 51.65 56.84

Commercial 37.26 38.37 38.41 38.93 38.95 38.92 38.76 39.15 38.87 39.29 39.40 44.74
generalization over unseen scenes

Transport - 35.23 35.28 35.88 34.81 36.42 35.51 35.98 35.95 35.63 37.07 41.21
Educational - 34.74 34.84 35.36 34.69 35.48 34.11 34.43 35.19 35.27 36.03 39.15

Table 4: Ablation studies of three concepts in FedP3.

Component Setting Avg.(Loc) Avg.(Glo)
FedAvg Baseline 45.67 32.24

+Knowledge
Preserving

T=1 45.85 31.52
T=2 45.71 32.36
T=3 44.42 30.62

+Pairwise
Preference

all
answers 46.16 33.58

+Forgotten-
Knowledge

Filter

𝑟 (𝑖) = 𝜇 (𝑖) 45.97 32.85
𝑟 (𝑖) = 𝑝𝑆 (𝑖) 46.31 32.05
𝑟 (𝑖) = 𝑝𝑇 (𝑖) 46.41 33.25
Equ. (10) 46.50 34.18
Equ. (11) 46.67 34.57

gain 𝐻𝑇 /𝐻𝑆 in Equ. (11) consistently enhances the performance on
both personalized and generic models, with accuracy boosts of 1%
and 2.5% over baseline FedAvg.

Accuracy vs Complexity: For the personalized answer selec-
tion, we explore the trade-off between the computational complex-
ity based on the amount of to-be-selected answer candidates, and
the performance of global (Avg.(Glo)) and local (Avg.(Loc)) mod-
els. In Fig. 4, we compared the knowledge preserving with soft
targets (KP), whose the complexity is equal to the total number
of classes (1642), with our FedP3 with different settings. Benefited
from proposed forgotten-knowledge based distribution for answer
subset selection, our method not only yields better performance
than KP, but also remarkably reduce the complexity via discarding
the non-forgotten answer candidates. Furthermore, when consid-
ering 20 most easily-forgotten answers, FedP3 reaches its highest
performance on both generic and personalized learning, with less
than one-third the computational complexity of the standard KP.

4.6 Case Study
Fig. 5 reveals two VQA training samples in the first federated sce-
nario (Tab. 2), accompanied with different forgotten-knowledge
based distributions for answer subset selection. In the first example
labeled by high-frequency answer ‘airport’ in the transports dataset,
the classes with high probabilities are some easily-forgotten general
answers (e.g., field and road), or some answers mainly exiting in
other scenes (e.g., park and ocean). For the second sample answered
by rare label ‘computer mouse’ in the educational scene, the selected

Top30

(a) (b)

Ours

KP

Ours

KP
Top10

Top5

Top20
Top10

Top20 Top30

Top5

Figure 4: The relationship between computational complex-
ity of distillation, and the local(a)/global(b) accuracy.

field

park
road

ocean

Q: where is the plane?

GT: airport

GT: computer mouse

keyboard

laptop

screen
phone

Q: What device is left of the phone? 

Figure 5: Two VQA examples in transports and educational
scenes, respectively. Their forgotten-knowledge based distri-
butions 𝑟 (𝑖) is marked by answers with Top-4 probabilities.

answers turn to be the visual concepts involved in the image (e.g.,
keyboard, screen and laptop), which encourages the global model
to transfer more informative knowledge for personalized learning.

5 CONCLUSION
In this study, we introduce a relatively unexplored personalized
federated visual question answering (FedVQA) task. To tackle this
task, we propose a novel federated pairwise preference preserving
framework that enables joint optimization of generic and person-
alized models, leveraging distributed local data in a collaborative
manner. Additionally, we construct a multi-scene FedVQA bench-
mark to facilitate the investigation of FedVQA. The experimental
results demonstrate that our proposed method achieves competitive
personalized and generalized abilities compared to state-of-the-art
approaches. In the future, we attempt to further improve FedVQA
task by involving more challenging and practical scenarios.
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APPENDIX
A FEDVQA SETTING
Datasets organization: In our proposed FedVQA, we establish six clients’ datasets for personalized training via selectively sampling from the
large-scale GQA datasets, whose images are represented in diverse real-world scenes. Specifically, to introduce the scene-based distribution
skews among different local datasets, we leverage the taxonomy of Place 365 database, as well as the pretrained ResNet152-places365 model
to select the samples in commercial, educational, transport, natural sports and home scenes. The detailed sub-categories in each local
datasets are in Tab. 5. It is noteworthy that, we only sample the instances whose Top-1 predictive probability are higher than 0.6 into the
corresponding local datasets. Besides, to avoid the similarity of local label distributions caused by excessive general binary answers ‘yes’ and
‘no’, we only consider 20% of the selected samples labeled by ‘yes’ and ‘no’ into the final local datasets.

Table 5: The representative sub-categories of scenes in the six clients datasets specialized for answering the questions to
commercial, educational, transport, natural, sports, home scenes.

Dataset Representative sub-categories of scenes

Commercial restaurant, market, pharmacy, bakery, ticket booth, discotheque, beauty salon, restaurant kitchen, repair shop, bank vault, bookstore
Educational campus, art gallery, music studio, church, museum, temple, lecture room, science museum, biology laboratory, computer room, library
Transport airport, subway , crosswalk, galley, bus, train station, airfield, boat deck, bridge, highway, gas station, boathouse, bus station, garage
Natural forest, mountain, marsh, underwater, fishpond, waterfall, ocean, lake, iceberg, desert, rainforest, swamp, marsh, snowfield, river, vineyard
Sports ballroom, arena, gymnasium, ski slope, basketball court, bowlling alley, locker room, athletic field, football field, swimming pool, sandbox
Home kitchen, bedroom, bathroom, closet, utility room, shower, living room, child’s room, dining room, alcove, bedchamber, wet bar

Label distributions in local datasets: The label distributions over training samples in six local datasets are depicted in Fig. 6, and the
scene-specific answer candidates in each dataset are in the Fig. 2. We can see that the mainstream correct answers across different scenes are
inconsistent in our MS-FedVQA benchmark, which poses more challenges for federated solutions to mitigate label distribution skews in
FedVQA task.

Transports Sports Educational

Natural Commercial +RPH

Figure 6: Label distributions of six scene-specific datasets over the first 100 answer candidates (overally high-frequency labels).

B MORE EXPERIMENTAL RESULTS
Ablation study on the second federated scenario: to further demonstrate the effectiveness of our FedP3 approach, we also conduct
ablation study on the second federated scenarios depicted in Tab. 3. In Tab. 6, based on FedAvg, the improvement caused by knowledge
preserving is still limited, which can be explained by the hard constraint of logits-based distillation. On the contrary, through the combination
of DPP and FKF, our method significantly boosts both the performance of local and global models. These results are consistent to those in
the first federated scenarios validated in the Tab. 4.

The settings of factor 𝜆: we conduct experiments for knowledge preserving KP (𝑇 = 2) and our FedP3 with different setting of trade-off
factor 𝜆 in Equ. (15). For KP, using lower value of 𝜆 = 0.1, 0.5 fails to alleviate the strict regularization when reviewing global knowledge,
without achieving any accuracy boost. In contrast, our method consistently perform better from both side of local (Avg. (Loc)) and global
(Avg. (Glo)) performance. Finally, we select the 𝜆 = 1 in our work, which is the optimal setting for both KP and our method.
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Table 6: Ablation studies of three concepts in our proposed FedP3 according to different settings.

Component Setting Avg.(Loc) Avg.(Glo)
FedAvg Baseline 42.92 34.99

+Knowledge
Preserving

T=1 42.81 34.33
T=2 43.07 34.81
T=3 41.98 32.72

+Pairwise
Preference

all
answers 43.41 35.71

+Forgotten-
Knowledge

Filter

𝑟 (𝑖) = 𝜇 (𝑖) 43.35 35.46
𝑟 (𝑖) = 𝑝𝑆 (𝑖) 43.28 35.23
𝑟 (𝑖) = 𝑝𝑇 (𝑖) 43.66 35.98
Equ. (10) 43.73 36.21
Equ. (11) 43.76 36.55

0.1

0.5

1

2

45.0 45.5 46.0 46.5 47.0

Accuracy of Avg. (Loc)

0.1

0.5

1

2

32 33 34 35

Accuracy of Avg. (Glo)

Figure 7: The performance of standard knowledge preserving (KP) and FedP3 (Ours) under different setting of trade-off factor 𝜆.

More Qualitative Results: In Fig. 8, we introduce more training examples with their forgotten-knowledge driven distributions according
to our proposed FKF strategy, which are derived from the local datasets in transports, sports, natural and educational scenes. Overall,
compared with ground-truth (GT), the selected easily-forgotten labels are more likely to be some more general or semantic-related answer
candidates. The generated distribution encourages local models to adaptively reviewing more useful global knowledge during the personalized
learning.

Who do you think is wearing glasses?

GT:Engineer

man
people

woman

What color is the shirt she is wearing?

GT:Blue

orange

Red white

standing

lying
sitting

GT:Sleeping

What is the animal doing?

What is the item of furniture to the right 
of the bag that is to the right of the 
laptop?

GT:Chair

table

bench
desk

Figure 8: Four VQA training examples of case study from transports, sports, natural and educational scenes, which are trained
under the federated scenario in Tab. 2. Their corresponding forgotten-knowledge based distributions 𝑟 (𝑖) is marked by answer
candidates with Top-3 probabilities.
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