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Abstract

The advent of the digital era provided a fertile ground for the development of virtual socie-

ties, complex systems influencing real-world dynamics. Understanding online human

behavior and its relevance beyond the digital boundaries is still an open challenge. Here we

show that online social interactions during a massive voting event can be used to build an

accurate map of real-world political parties and electoral ranks for Italian elections in 2018.

We provide evidence that information flow and collective attention are often driven by a spe-

cial class of highly influential users, that we name “augmented humans”, who exploit thou-

sands of automated agents, also known as bots, for enhancing their online influence. We

show that augmented humans generate deep information cascades, to the same extent of

news media and other broadcasters, while they uniformly infiltrate across the full range of

identified groups. Digital augmentation represents the cyber-physical counterpart of the

human desire to acquire power within social systems.

Introduction

Online social actions drive collective attention and dynamics [1, 2], having a deep impact on

the construction and perception of social reality. Many large-scale studies have reported evi-

dence of online ecosystems altering decision-making of crowds [3] and influencing real-world

voting of millions of people [4]. The last few years have seen a deluge of increasingly more

sophisticated automated online agents, called also “bots”, populating techno-social systems

cleverly disguised as human users [5, 6, 7, 8, 9]. Nowadays, bots can produce credible content

with human-like temporal patterns [10, 11, 12]. By promoting online activity, bots can interact

with humans and influence their standing against specific topics such as political issues [10, 7,

12, 13]. Since manoeuvring social platforms can deeply affect real-world dynamics [14, 15],

understanding if and how computer-generated activities can alter the behavioral responses of

humans to achieve online social manipulation is of utmost importance [16, 5, 17]. Identifying

and quantifying these effects is particularly crucial during voting events, where individuals’

decisions might be driven by external events, such as natural disasters or economic shocks

[18]. While attention is generally paid to how physical interactions among voters and electoral

arrangements influence voting behavior, Bruter and Harrison [19] shifted the focus on the
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psychological influence that electoral arrangements exert on voters by altering human emo-

tions and behavior. The investigation of voting from a cognitive perspective leads to the con-

cept of electoral ergonomics: Understanding the optimal ways in which voters emotionally

cope with voting outcomes can lead to a better prediction of the elections.

Here we quantify to which extent online social activity reflects the real world by consider-

ing a data driven approach using streaming data from social media for analysing microscopic

patterns between users, an increasingly common approach in the computational social sci-

ences [20, 21]. We characterize the peculiar behavior of a class of individuals who make

a massive use of bots to enhance their online visibility and influence. The term cyborg has

been used in this context to identify, indistinctly, bot-assisted human or human-assisted

bot accounts generating spam content over social platforms such as Twitter [5, 22]. Here, we

prefer to use the term augmented human for indicating specifically those human accounts

exploiting bots for artificially increasing, i.e. augmenting, their influence in the digital world,

analogously to physical augmentation improving human performances in the real world

[23]. Like several automated agents identified in our data set, augmented humans played a

special role for information spreading, by triggering deep information cascades with the help

of bots.

Methods

Data collection

Between 24 February 2018 and 7 March 2018, we have collected 966,483 messages (tweets)

posted by 194,273 different users to the microblogging platform Twitter, containing at least

one of the following keywords or hashtags: “elezioni”, “#elezioni”, “#elezioni2018”, “#elezioni4-
marzo”, “#ItalyElection2018”, “#voto”, “#4marzo”, “#M5S”, “#PD”, “#LeU”, “#LiberieUguali”,
“#ForzaItalia”, “#FDI”, “#FI”, “#lega”, “#FratellidItalia”, “#MDP”.

Tweets have been collected using the streaming real-time provided by Twitter API plat-

form, filtered by the above keywords. Twitter by default limits to 1% of the overall number of

Tweets per second the fraction of tweets that can be retrieved from the streaming API. How-

ever, when the fraction of tweets concerning specific keywords is smaller than 1% of the global

volume, Twitter does not apply limitations and the complete flow of information is collected.

When this is not the case, Twitter provides messages of warning, reporting the cumulative

number of missed tweets.

In the case of Italian elections, we received no warnings, therefore we have collected 100%

of tweets containing the specified keywords.

We complied with the Twitter’s terms of service to collect the data.

Classification task

In this work the classification of users in our data set as “humans” or “bots” is based on features

providing the best classification accuracy according to recent studies [11, 12]: 1) Statuses
count; 2) Followers count; 3) Friends count; 4) Favourites count; 5) Listed count; 6) Default pro-
file; 7) Geo enabled; 8) Profile use background image; 9) Protected; 10) Verified. The total num-

ber of features is ten (Nfeats = 10).

Searching for better performance we tested different machine learning techniques on an

independent dataset created ad-hoc (see Supplementary Information) from a collection of

manually annotated datasets (see Table 1). Models are trained on the 80% of the data and vali-

dated over the remaining 20%. The subdivision between the two sets was carried respecting

the balancing between bots and humans present at the level of the single original datasets, in

this way we have all type of different bots both in training and validation. The models based on
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random forest and deep neural network provided us with the highest accuracy (>90%) and

precision in identifying bots (>95%). We chose the deep neural network model because it also

provided a more stable classification of certain users playing the role of broadcasters (see Sup-

plementary Information).

Fiedler partitioning, modularity, segregation and infiltration

Fiedler partitioning is a widely used technique from spectral graph theory for solving the min-

max cut problem, i.e. partitioning a network in two components of similar size but connected

by links whose total weights are the smallest possible [24]. Fiedler partitioning is obtained by

considering the eigenvalue problem:

ðD � WÞq ¼ lq; ð1Þ

for a connected network represented by the weighted adjacency matrixW, with wij equal to

the weight of the link between nodes i and j, and by a matrix D having the strength of nodes on

its main diagonal. The spectral partitioning is obtained by identifying nodes relative to positive

and negative entries in the second eigenvector q2 relative to the second eigenvalue λ2. q2 and

λ2 are also called Fiedler vector and Fiedler value, respectively.

We use modularity [25] for identifying the polarization of users in the social bulk in two

groups, labelled here by c1 and c2:

FF ¼
1

2m

X

ij

Aij �
sisj
2s

h i
dci ;cj : ð2Þ

Here, Aij is 0 is users i and j did not interact, otherwise it is equal to the number of their

interactions; si indicates the total number of interactions involving the i-th user, i.e. its

strength, while s is the total number of interactions in the network. Polarization values FF

close to 0 indicate no antagonism between opposing factions, whileFF close to 1 is relative to

strongly opposing factions.

We use the generalization of modularity to more than two groups for establishing the

fragmentation of users in antagonizing social groups. The mathematical definition is similar

to Eq (2), except for the fact that we consider more possible partitioning into a number com-

munities (c1, c2, . . ., cM) larger than 2. The numberM of existing communities is not known

a priori and an optimization process must be employed to discover best partitioning of the

system.

We measure social segregation by considering the average size of connected components

weighted by the number of their links. Indicating with C the set of connected components and

with Ci the set of ni nodes connected by ei edges in the i-th connected component, we define

Table 1. Proportions of bot and human users in the training data.

data set bot human total

cresci2015 0 5301 5301

cresci2017 7543 3474 11017

cyborgs 2756 0 2756

aboutme 0 2463 2463

omnibots 3530 0 3530

russian-trolls 389 0 389

TOTAL 14218 8775 22993

https://doi.org/10.1371/journal.pone.0214210.t001
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social segregation as:

S ¼ 1 �

XjCj

i¼1

niei

XjCj

i¼1

ni �
XjCj

i¼1

ei

: ð3Þ

S ranges between 0 (a network with a single connected component) and 1 (a network of

isolated nodes with no links).

We define infiltration of a given type of users in a given social group i as the fraction of

users of that type in group i, namely:

I s ¼
XMi

i¼1

si
ui

ð4Þ

where M is the number of groups, si is the number of accounts of class s in the i-th group and

ui is the number of users in that group.

Results

Bot identification

To identify automated agents in the data set, we developed a deep neural network model (see

Methods and SI), which classified 13.4% of users as bots, a value compatible to estimations

during other voting events [10, 11, 12]. We built the network of interactions between human

users and bots, including different types of social actions such as Retweets (i.e. a user sharing

another user’s message), Mentions (i.e. a user mentioning another use in a message) and

Replies (i.e. a user starting a discussion with another user). While Mentions and Replies can

have both negative and positive connotations, Retweets are traditionally considered as a form

of social endorsement [26, 17]: Users tend to retweet and thus endorse content they agree

with.

Human-bot interactions: Homophily and centrality

Fig 1 shows the volumes for messages (i.e., Tweets) and the considered social actions for both

bots and humans. Fig 1(a)–1(d) indicates the overall fraction of messages exchanged between

bots and humans (a), and the fractions stratified by social interactions (b-d). Arrows go from

the source to the recipient of an interaction, for instance user A (source) replying to user B

(recipient) would be indicated with an arrow A! B. Most of the social interactions are from

humans to bots (46%); Humans tend to interact with bots in 56% of mentions, 41% of replies

and 43% of retweets. Bots interact with humans roughly in 4% of the interactions, indepen-

dently on interaction type. This indicates that bots play a passive role in the network but are

rather highly targeted by humans. Fig 1(e) shows the number of social interactions over time.

The circadian rhythm is evident, i.e. at night the volume of messages generated by humans

drops down. Also bots display a similar circadian rhythm, in agreement with previous observa-

tions [10, 12]. In general, bots contribute to 6% of the total number of social interactions

occurred during the voting event (March 4 2018). Fig 1(f) reports the geographic locations

of both human and bot users in the social system. Although most of the users are located in

Italy, there are significant fractions of human users also located in the United States and in

Europe, indicating the worldwide relevance of the Italian voting. Similarly, bots’ locations are

Influence of augmented humans in online interactions during voting events
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Fig 1. Online human-bot interactions during the Italian elections. (a): Volumes of human-bot interactions in Twitter. (b-d): Human-bot

interactions stratified by actions: Mentions, Replies and Retweets. (e): Geographic location of involved users, where the color encodes the

number of tweets per country, in logarithmic scale. As in (a), humans are in red and bots are in blue. Users are mostly located in Italy, with

relevant interactions from other countries worldwide. (e): Evolution across time of the overall social activity of humans and bots (top), also

stratified by actions (bottom).

https://doi.org/10.1371/journal.pone.0214210.g001
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distributed worldwide and they are present in areas where no human users are geo-localized

such as Morocco, Peru, Finland or Indonesia.

The analysis of observed social interactions (links) between users (nodes) before, during

and after the voting day revealed bot homophily, i.e., automated agents tend to interact more

with other bots rather than with humans compared to random expectation (see SI). Since

interactions encode content spread [16], this result indicates that bots share messages mainly

with each other and hence can resonate with the same content, be it news or spam. Further-

more, if we quantify the centrality of a user in terms of the probability of finding it by exploring

the web of interactions at random, then we find that bots are almost twice as central as humans

(see SI). The above findings indicate that bots play the role of sinks for information flow. In

fact, 9 out of 10 hubs—i.e., highly interacting users—are bots and they are mainly news media

and public profiles of politicians, which usually act as broadcasters and drive online informa-

tion flow [17, 15]. The analysis of topic frequency and associations in bot-generated messages

confirms this trend: Bots act as broadcasters by repeating the same political content of human

users, boosting the spread of hashtags related to the electoral process (see SI).

Information cascades identify different classes of influencers

The observed social interactions build a complex network with a heterogeneous connectivity

distribution. Such systems are well known for being susceptible to cascading events [27, 28]

and, in the case of online social networks, the phenomenon might manifest as collective action

and faster diffusion of specific information [29, 1, 2, 30]. In information cascades, a single

piece of information is originated by a seed user, it is endorsed by other users in his/her

neighborhood and consequently re-shared across the network [29]. Cascade size depends on

a variety of factors [31], including—but not limited—to the structure of the network and the

information content, making their prediction rather difficult [30].

Since metadata provided by Twitter does not allow to fully reconstruct an information cas-

cade—because of missing intermediary retweets—we are only able to measure the cascade size

by the overall number of endorsements, i.e. retweets, received by each post. Therefore, cas-

cades are represented by star networks and, for brevity, in the following we will simply refer to

them as “cascades”.

We have tracked 83,593 information cascades during Italian elections and, for each one, we

have analyzed the underlying structure by measuring its size, i.e. the number of times an infor-

mation has been re-shared. As expected for complex networks with highly heterogeneous con-

nectivity [27], the distribution of observed cascade sizes is heavy-tailed and compatible with a

power law characterized by a scaling exponent γ = −2.33±0.04, similarly to size distribution in

percolation theory or avalanches in self-organized criticality [32]. Cascade size ranges between

2 and 4,313.

We show in Fig 2(a) a heat map of cascade size vs. the size of initiators’ social neighborhood

(i.e., the number of followers). As expected, on average, larger the number of followers larger

the cascade size, with very few exceptions. Fig 2(b) shows the same data, with explicit informa-

tion about user classification. This figure shows a good separation between human and bot

behavior. Deeper information cascades are generated mostly by humans with a high number

of followers, with the remarkable exception of one, User01, who produced the largest cascade

among humans and bots despite having less than 100 followers.

Recently, dynamical activity-connectivity maps based on network and temporal activity

patterns—or their variation—have been used to identify influential individuals or broadcasters

during online protest diffusion [15] and contagion dynamics of extremist propaganda [33].

For instance, Bastos and Mercea [34] used hashtag trends for showing the existence of “serial

Influence of augmented humans in online interactions during voting events
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activists”, users with ordinary numbers of followers but very prolific in producing content

about multiple political topics and bridging together disparate communities. Gonzalez et al.

[15] related topological properties, such as the ratio between incoming (friends) and outgoing

(followers) connections, to dynamical properties, such as the ratio of received and posted

messages.

Here, we argue that it is also plausible to relate individuals’ social influence to the size of

information cascades they generates with their content [35]. To this aim, we propose a more

complex map relating a topological feature, i.e. the number of outgoing connections (follow-

ers), and a dynamical feature, i.e. information cascade growth rate, defined by the ratio

between a cascade size and its duration over time. Baseline social behavior during a specific

event, such as the Italian election in our case, is defined by the medians of the two observables,

like shown in Fig 2(c). This map allows to easily identify four categories of individuals in the

Fig 2. Information cascades during Italian elections. a) Heatmap of the number of users initiating information cascades, as a function of the size of their social

neighborhood (Followers) and the size of the generated cascade; b) Scatter plot of the same data, with points encoding users. Color encodes bot/human classification

and size encodes cascade’s diameter; c) As in a) but considering cascade rate (in units of retweets/hour), defined by the ratio between cascade size and its duration, vs.

neighborhood size (left panels) and cascade size (right panels), for humans (top panels) and bots (bottom panels). The heatmap of cascade rate vs. neighborhood size

allows one to identify 4 categories: hidden influentials, influentials, common users and broadcasters (see the text for further detail). Dashed lines indicate medians of

structural and dynamical features in humans. Only cascades with at least 10 adopters are considered and, for heatmaps, the logarithm of the corresponding variables is

considered.

https://doi.org/10.1371/journal.pone.0214210.g002
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social dynamics: i) hidden influentials, generating information cascades rapidly spreading

from a small number of followers; ii) influentials, generating information cascades rapidly

spreading from a large number of followers; iii) broadcasters, generating information cascades

slowly spreading from a large number of followers; iv) common users, generating information

cascades slowly spreading from a small number of followers. Remarkably, the topological and

dynamical behavior of humans and bots is very different: during Italian elections, bots are

mostly broadcasters (mostly media) and influentials (mostly political leaders). Fig 2(c) (right)

highlights a positive correlation between cascade rate and size: Cascades involving more users

tend also to flow over the interactions web at faster rates. This positive trend is stronger for cas-

cades of sizes larger than 102. The stronger correlation for larger cascades suggests that they

differ qualitatively from smaller cascades: Larger cascades contain specific semantic content,

in this case political-related topics, which accelerate spreading.

The social bulk of endorsements mirrors political antagonism

So far, our analysis characterized online human behavior in terms of human-bot interactions

and information spreading. However, to quantify to which extent the observed online social

activity reflects the real world a more sophisticated analysis is required. To this aim, we ana-

lyzed the static representation of the system, where interactions across time have been aggre-

gated to a directed and weighted social network. We then identified the core of the observed

social system by tracking the most relevant interactions among the most important actors. We

identified relevant interactions by assuming that if two users share similar political ideologies,

they can endorse and subsequently share (i.e. retweet) the content of each other. However, if

only re-sharing was considered, the network would contain a lot of spurious connections due,

for instance, to fortuitous endorsement rather than to a systematic intention.

We first filtered the network by considering only pair of users with at least one retweet,

with either direction, because re-sharing content it is often a good proxy of social endorsement

[26]. We then considered a more selective restriction, by requiring that at least another social

action—i.e., either mention or reply—must be present in addition to a retweet. This restrictive

selection allows one to filter out all spurious interactions among users with the advantage of

not requiring any threshold with respect to the frequency of interactions themselves. The

resulting network is what we call the social bulk, i.e. a network core of endorsement and

exchange among users. By construction, information flows among users who share strong

social relationships and are characterized by similar ideologies: In fact, when a retweet goes

from one user to another one, both of them are endorsing the same content, thus making non-

directionality a viable approach for representing the endorsement related to content sharing.

Therefore, in the following, we can safely consider undirected interactions among users. Con-

nections between users are weighted by the aggregated frequency of their social interactions.

An illustration of how the social bulk is built is shown in Fig 3(a).

In the following, we introduce different measures to quantify different features of the social

bulk, i.e. social polarization, fragmentation and segregation.

The concept of social polarization assumes the existence of two competing stances or oppos-

ing groups characterizing the mesoscale organization of the system [36]. In presence of two

groups, they can be identified by calculating, for instance, the Fiedler partitioning [24, 12],

which is related to the min-max cut problem for finding optimal flows in networks [24]. Fied-

ler partitioning (see Methods) separates the users of a connected graph into two classes such

that the total number of inter-class connections is close to the optimal minimum. If interac-

tions encode strong social relationships, as in the social bulk, then the Fiedler partitioning

identifies two factions antagonizing each other by sharing the least endorsements possible.

Influence of augmented humans in online interactions during voting events
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We measure social polarization by computing the modularity [25] of the social bulk with

respect to its Fiedler partitioning (see Methods). The larger the modularity F of the Fiedler

partitioning, i.e. system polarization, the more antagonized are users into two opposing

groups. For the largest connected component of the social bulk we calculate the polarization

FF = 0.452. The expected polarization of a null model—where social relationships are uni-

formly randomized while preserving the individual degrees and the distribution of strengths—

is hFrandF i ¼ 0:301, significantly different from the observed network (p-value< 10−5).

This result indicates that the heterogeneity of social interactions can not explain, alone, the

observed level of polarization, which has rather to be attributed to other causes such as political

parties or opposing political trends. Notice that the social bulk analyzed here displays a higher

modularity than other well studied social networks such as the Zachary Karate Club (FF =

0.371) and the dolphin’s social network (FF = 0.401)(cf. [37]). Considering that especially the

Zachary Karate Club considers social interactions among two different groups, led by two dif-

ferent leaders and hence already highly polarized, then the above comparison further high-

lights the polarization of social interactions on the social media platform.

Fig 3. Social bulk of Italian elections. a) Twitter users can retweet or mention or reply with each other. Each action

encode a specific social meaning and, by considering the co-existence of endorsement (i.e. retweet) and discussion (i.e.

mention or reply), between the same pairs of users, we filter out spurious interactions to identify the social bulk of the

system. b) Visualization of the social bulk emerged during Italian elections, with users (i.e., the nodes) colored by the

community they belong to (see the text for further detail). c) The eight communities with at least 2% of users are

represented separately, while preserving their relative position in the social bulk shown in panel b). Note the

remarkable star-like topology C8 characterizing the augmented human identified in the system.

https://doi.org/10.1371/journal.pone.0214210.g003
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However, during the Italian elections considered in this work more than two political par-

ties were present, so that the notion of polarization has to be extended to account for the pres-

ence of several opposing groups. For complex networks, a widely adopted approach is to use

modularity maximization for group identification [25, 38, 39, 40]. Identified communities of

users are characterized by intra-group connectivity denser than inter-group one.

In the case of the social bulk we can interpret modularity as an estimation of system’s

social fragmentation into more than two opposing groups. Here, we use the Louvain multilevel

approach, known to be very efficient on large-scale networks [41]. In the whole social bulk we

measure a fragmentation FL = 0.812, indicating the presence of several factions in the bulk net-

work that are in a stronger opposition when compared to the null model (hFrandL i ¼ 0:692, p-

value < 10−5). The fact that FL> FF indicates that a more accurate description of the meso-

scale organization of the social bulk is given when more than two groups are considered, in

agreement with our hypothesis that results should reflect the real world socio-political sce-

nario. To understand if this finding is robust or just an artefact due to how the social bulk is

built, we have measured the social fragmentation of the original system during all phases of

voting (see Fig 4). Once again, we observe that social fragmentation is stable across time and

significantly larger than random expectation, confirming that results obtained from the social

bulk are consistent.

However, neither polarization nor fragmentation can be used to quantify to which extent

the system consists of isolated groups—the ones with no interactions with the rest of the sys-

tem—which are effectively segregated in the network. Note that we are not referring to users

in the periphery [42, 43] of the system, where information can slowly but flawlessly flow

among all nodes in the network. Instead, we refer to groups unable to exchange information

with the core of the system, i.e., to nodes belonging to disconnected components. We quantify

social segregationS by considering the average number of connected components weighted by

the number of their links (see Methods). If a social network consists of isolated nodes only,

then S = 1, whereas S = 0 for systems with a single connected component. For a network con-

sisting ofM connected components of same size and density of interactions S = 1 − 1/M: The

Fig 4. The online system is characterized by social fragmentation. Top: Fragmentation encodes the tendency of

online users to organize in multiple opposing groups (see the text for further detail). During the four considered

periods, the online social network is fragmented much more than random expectation. Small changes in

fragmentation of the observed system across time are reflected in the null model, indicating that they can be explained

by small changes in the heterogeneity of the underlying connectivity. Error bars indicate standard deviations.

https://doi.org/10.1371/journal.pone.0214210.g004
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larger the number of components, the larger the social segregation. The segregation of the

social bulk is S = 0.476, significantly stronger than random expectation hSrandi = 0.172 (p-

value < 10−5) based on a configuration model preserving the connectivity distribution. This

indicates that strong interactions lead to more segregated components, with fewer bridges

among connected components than expected from the heterogeneity of interactions only.

Hence, the observed segregation represents additional evidence for the presence of antagonism

in the considered social ecosystem.

Polarization, fragmentation and segregation analyses all constitute evidence that the social

bulk displays densely connected groups in opposition with each other.

Groups in the social bulk highlight digital augmentation

Through the multilevel approach, we identified 8 main opposing communities (i.e. having

more than 2% of the total nodes in the network), as reported in Table 2. The analysis of hubs

in each group of the social bulk indicates that i) one group corresponds to a single augmented

human and his/her bots; ii) five groups directly map the ecosystems of the main Italian politi-

cal parties; iii) two groups encode news media universe, either traditional or online news

organisations.

In this context, we provide an operative definition of augmented humans as human users

having at least 50% of bot neighbours in the social bulk. Users with less than 3 bulk interac-

tions are discarded. We systematically identified 1,010 user accounts (12.7% of humans in the

social bulk) corresponding to augmented humans. The most central augmented human in

terms of number of social interactions is User01 which interacts with 2,700 bots and 55

humans in the social bulk. We have anonymized the username for privacy purposes.

It is natural to wonder about how bots, humans and augmented humans are organized into

communities within the social bulk. In fact, given the relevance of the voting event in the real

world, our hypothesis is that communities should reflect real political movements and groups,

to some extent.

Table 2. Largest online social groups. Most populated communities (with more than 250 users) in the social bulk, with top influencers listed per group. Top influencers

are identified as hubs in the bulk network. As evident from the similarities among top influencers, groups reflect specific ecosystems of the Italian voting event: “Movi-

mento 5 Stelle” (M5S), traditional media (Media), media with massive online presence (Web Media), “Partito Democratico” (PD), “Liberi e Uguali” (LEU), “Forza Italia”

(FI), “Lega” and “Fratelli d’Italia” (Lega and FdI), and then the augmented human with all his/her interacting bots (Augmented Human). Bot (augmented) infiltration indi-

cates the percentage of bot users (augmented humans) in each group. Excluding the community corresponding to the augmented human (made for 97.9% of bots), the

mean bot infiltration in the bulk network is 29.2% while the mean augmented infiltration is 15.7%. The media groups are richer in bots as expected, since they include

news media and online accounts of news papers. Note that users not corresponding to public groups, public entities or individuals with a public political profile (e.g.,

elected for a specific political party) have been anonymized. Interestingly, the account of User09 has been later suspended by Twitter for violating its policies.

Bulk

Group

Top Influencers Social Ecosystem Bot

infiltration

Augmented

infiltration

C1 fattoquotidiano, User02, Mov5Stelle, User10, M5S_Europa, Puglia_M5S, User04 M5S 13.4% 13.3%

C2 repubblica, Agenzia_Ansa, sole24ore, TgLa7, RaiNews, Viminale, RTL1025, Corriere,

MediasetTgcom24

Media 24.5% 12.1%

C3 SkyTG24, you_trend, nonleggerlo, ilpost, User05, User03, agorarai, espressoline Web Media 26.6% 15%

C4 matteorenzi, pdnetwork, CarloCalenda, User08, User09, PaoloGentiloni, PdMilano PD 15.5% 15.4%

C5 liberi_uguali, civati, PietroGrasso, lauraboldrini, LiberiEugualiIT, SI_sinistra LEU 16.3% 19.1%

C6 berlusconi, forza_italia, Elezioni2018_FI, renatobrunetta, User07, GruppoFICamera FI 28.2% 22.1%

C7 User06, mattosalvinimi, borghi_claudio, AlbertoBagnai, GiorgiaMeloni, FratellidItalia,

LegaSalvini

Lega and FdI 9.5% 12.9%

C8 User01 Augmented

Human

97.9% 3 � 10−4 %

https://doi.org/10.1371/journal.pone.0214210.t002
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First, we focused our attention on the augmented human’s group, consisting of more than

2,500 automated agents artificially interacting with the augmented human user. This peculiar

activity leads to a star-like structure for the corresponding community, as shown in Fig 3c, net-

work C8. This finding has triggered our attention, driving our efforts towards quantifying the

infiltration I s of a specific class s of accounts in each group, by considering the corresponding

fraction of users in a given group (see Methods). Table 2 reports the infiltration of augmented

humans in the groups of the social bulk. Unsurprisingly, infiltration of bots is higher in the

group representing the augmented human and his/her automatic entourage of interacting

social bots. Furthermore, we find that groups relative to news media are richer in bots com-

pared to groups representing political parties, which is compatible with our previous finding

of bots being preferentially news media broadcaster in the observed data.

The infiltration of augmented humans is approximately uniformly distributed across all

identified groups, with the remarkable exception of C8, the augmented human’s community.

One would expect for the groups richer in bots to have also more augmented humans. Instead,

bot and augmented human infiltration do not correlate with each other (Kendall Tau 0.07, p-

value 0.8), indicating that augmented humans tend to interact selectively with the bots avail-

able in their groups rather than creating more. This trend is not valid for the group C8, where

one human (User01) interacts almost exclusively with bots.

Testing the role of news media

In the analysis of the social bulk we identified two communities corresponding to news media

accounts. In order to test for the influence of these information hubs on human-bot interac-

tions, we performed a test in which we checked the robustness of our results when all users

in the above two communities identifying news media accounts were not considered. The

removal of news media accounts led to negligible fluctuations (around 0.02) in the fractions

of human-bot interactions (cfr. Fig 1(a)) and in the total volume of tweets produced by bots

(around 0.4%). These results indicate that a prominent amount of human-bot interactions

does not involve news media accounts and it is not influenced by the presence of information

hubs.

Augmented humans are hidden influencers

All the augmented humans identified in this study have, on average, less than 9,000 followers

and 1,500 friends, indicating that a considerable amount of social influence was obtained by

users that preferentially interacted with bots during the considered event. The analysis of

information cascades revealed that almost 2 out 3 augmented humans played an important

role in the flow of online content: 67% of this class of users were either influentials or hidden

influentials or broadcasters. Hidden influentials, known to be efficient spreaders in viral

phenomena [44], are mostly humans but augmented humans also falls in this category (e.g.

User01).

Groups in the social bulk reflect electoral outcomes

In order to investigate the representativeness of online groups in terms of real-world events

beyond the hub analysis, we focused on the structural features of groups, namely the interac-

tion volume of a group (i.e. the number of strong social interactions among users in the

group) and the group size (i.e. the number of users in a given group). In Table 3, we show that

the outcome of Italian elections (i.e. the fraction of votes received by each political group)

strongly correlates with the group volume (Spearman rank correlation coefficient ρ = 0.9, p-

value = 0.039). This correlation is statistically significant within a 5% significance level and
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direct sampling of rankings was used in order to compute the p-value without relying on

any assumption about the large-scale statistical properties of the data. The strong correlation

found indicates that the volume of online interactions closely mirrors the election outcome

for this case study, although further research is needed to generalize this result and confirm its

predictive power.

Discussion

Online social systems and the information they continuously generate provide an invaluable

resource for computational social scientists and their large-scale analysis of human behavior

[45, 36, 46] and the emergence of collective attention [2, 47]. The analysis of information and

behavioral spreading on social media [17] revealed that an individual is much more likely to

adopt a content when his/her neighbors in the social network tend to reinforce it [48]. On the

one hand, this allows online media to facilitate, for instance, the dissemination of emergency

information and help coordinate relief efforts [49]. On the other hand, the same social net-

works can be misused to spread fake content farther, faster and deeper [13].

In this work we have identified and quantified a new phenomenon, i.e. digital augmenta-

tion, to characterize individuals that coordinate from hundreds to thousands of social bots for

achieving a social influence comparable to the one of political parties and news media organi-

sations, with serious repercussions in the real-world.

Our results strongly support the idea that via augmentation even common users can

become social influencers without having a large social neighborhood but rather by recurring

to the aid of either armies of bots or the selection of a few key helping bots. This digital aug-

mentation represents an interesting behavioral response aimed at overcoming the well docu-

mented pressure for achieving influence and recognition in online ecosystems [16, 4, 6, 31]

and during voting events [19]. While in real life such augmentation comes mainly from smart

devices, our work presents compelling evidence that in online social platforms the augmenta-

tion for achieving social influence is represented by an exploitation of social bots by human

accounts.

Furthermore, the strong correlation between the volume of online interactions in the social

bulks and the electoral outcomes highlights the role potentially played by online social systems

during the voting process. This finding is in full agreement with previous works showing how

online ecosystems acted upon society by altering the emotions [19] and beliefs [3, 4] of large

populations of individuals. It is worth underlining that the observed groups are relative to the

network structure of social endorsements: Considering the layout of online endorsement can

provide information beneficial for more accurate predictions of electoral outcomes. Further

investigation of online social systems under the perspective of predicting electoral outcomes

would provide interesting challenges for future work.

Table 3. Network analysis of groups in the social bulk reflect election outcomes. The five political ecosystems from the bulk network are ranked against their topological

features: i) interaction volume, i.e. the number of social actions within the group; ii) size, i.e. the number of individuals in the group. The rank based on online interactions

strongly mirrors the election outcome (Spearman ρ = 0.9, p-value = 0.039), supporting the hypothesis that online social interactions are tightly entwined to outcomes and

events in the real-world.

Group Election Outcome (% votes) Rank Interaction Volume Rank Group Size Rank

M5S 32.68% 1 3,857 (34.82%) 1 1,162 2

Lega and FdI 20.76% 2 3,205 (28.93%) 2 1,491 1

PD 18.72% 3 2,504 (22,60%) 3 1,133 3

FI 14.01% 4 675 (6.09%) 5 330 5

LEU 3.39% 5 837 (7.55%) 4 434 4

https://doi.org/10.1371/journal.pone.0214210.t003
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Our work provides a first step towards a more systematic quantification of the impact of

digital augmentation in opinion formation and the manipulation of online attention by means

of human-bot interactions.
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