
1.  Introduction
Inland waters (streams, rivers, lakes and reservoirs) are net-sources of greenhouse gasses (GHGs) to the atmos-
phere. They receive considerable amounts of reactive organic matter from terrestrial ecosystems, promoting 
the production of GHGs like carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Inland waters are 
usually net-heterotrophic, meaning CO2 production through respiration exceeds CO2 consumption by aquatic 
production (Battin et al., 2023). An additional source of inland water GHG emission comes from terrestrial and 
wetland runoff and drainage that can be oversaturated in dissolved CO2 produced by microbial and root respira-
tion (Abril & Borges, 2019). Once this supersaturated aqueous solution enters surface waters, it can release gas 
into the atmosphere and contribute to inland water CO2 emissions. Similarly, inland waters receive dissolved CH4 
and N2O from oversaturated soils and groundwater (Jurado et al., 2017; Rasilo et al., 2017). In addition, the sharp 
fronts between reducing and oxidizing conditions within the water column or at the interface between surface 
and subsurface environments (e.g., benthic and hyporheic zones) promotes the production and emissions of N2O 
(Marzadri et al., 2017, 2021). Moreover, autochthonous aquatic production may enhance nitrification in the water 
column through increased oxygen levels, while it may stimulate denitrification and methanogenesis in reducing, 
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benthic sediments through delivery of labile organic matter. These processes play an important role in the N2O 
and CH4 budgets of eutrophic lakes and reservoirs (DelSontro et al., 2018; Zhou et al., 2021).

While the processes driving GHG production have been known to limnologists for some time, large-scale 
quantification of inland water GHG emissions is still difficult and estimates are afflicted by large uncer-
tainties. In their 5th Assessment Report (AR5), the IPCC (2013) acknowledged for the first time that inland 
waters are a significant contributor to the global GHG budget. At the same time, however, it was recognized 
that GHG fluxes from these ecosystems remain poorly constrained at the global scale. High uncertainties 
in inland water GHG emission estimates arise due to a poor spatial and temporal coverage of direct obser-
vations (Bastviken et al., 2011; Deemer et al., 2016; Regnier et al., 2013, 2022; Soued et al., 2016) and are 
reflected in the large range of estimated inland water GHG fluxes reported in AR5: 0.8–1.2 Pg C yr −1 for 
CO2, 8–73 Tg CH4 yr −1 for CH4, and 0.1–2.9 Tg N yr −1 for N2O. In their 6th Assessment Report (AR6), the 
IPCC (2021) provides updated ranges for N2O (0.5–1.1 Tg N yr −1) and CH4 (112–217 Tg CH4 yr −1) emissions 
which are narrower, but still reflect significant uncertainties in estimating inland water GHG emissions. Note 
that inland water emissions proportionally remain the largest source of uncertainty in the global land CH4 
budget (Canadell et al., 2011).

The REgional Carbon Cycle Assessment and Processes (RECCAP) initiative aims to establish the GHG 
budgets of large regions covering the entire globe at the scale of continents (or large regions) and large ocean 
basins, which are then synthesized at global scale. While the first phase of this initiative (RECCAP1; Canadell 
et al., 2011) focused on CO2 only, now the second phase (RECCAP2) accounts for the three GHGs CO2, CH4, 
and N2O. As part of RECCAP1, Raymond et al. (2013) re-estimated global inland water CO2 evasion suggest-
ing that the total flux could be as high as 2.1 Pg C yr −1, which is about twice the estimates synthesized in 
AR5. This much higher estimate was due to a re-estimation of stream surface areas including small headwater 
streams which contribute disproportionately to the total water surface area and CO2 emission, but which were 
neglected in earlier assessments that used data sets representing only larger global rivers (e.g., Cole et al., 2007). 
More importantly, Raymond et al. (2013) provided the first global maps of inland water CO2 emissions, which 
allowed for the use of these estimates in regionalized, global C budgets (Bastos et al., 2020; Ciais et al., 2021; 
Zscheischler et al., 2017).

Since RECCAP1, a growing number of global estimates of inland water GHG emissions have been published, 
not only for CO2 emissions (e.g., Holgerson & Raymond, 2016; Horgby et al., 2019; Lauerwald et al., 2015; Liu 
et al., 2022), but also for CH4 (e.g., Holgerson & Raymond, 2016; Rosentreter et al., 2021; Stanley et al., 2016) and 
N2O (e.g., Hu et al., 2016; Lauerwald et al., 2019; Maavara et al., 2019; Marzadri et al., 2021; Soued et al., 2016; 
Yao et al., 2020), or for all three GHGs combined (e.g., Deemer et al., 2016; DelSontro et al., 2018). The limited 
availability and quality (e.g., length and frequency of time-series), and uneven global coverage of observed emis-
sion rates (see e.g., Deemer et al., 2016) still represent a large source of uncertainty. While many studies build 
largely on the same data that was produced over the past decades, the amount and quality of empirical data is 
steadily increasing. In addition, global emission estimates profited from the appearance of new, improved data 
sets of inland water surface areas (Allen & Pavelsky, 2018; Lehner et al., 2011; Messager et al., 2016; Verpoorter 
et al., 2014). Finally, global scale estimation of inland water GHG budgets have been improved through novel 
upscaling techniques based on statistical (e.g., DelSontro et al., 2018; Lauerwald et al., 2015) and process-based 
models of varying complexity (e.g., Maavara et al., 2019; Yao et al., 2020).

In the framework of RECCAP2, we present a review of existing global estimates of inland water GHG emissions. 
We start with a general overview of methods to achieve global scale estimates, starting from methods to measure 
flux rates in the field, followed by methods used to upscale flux rates to the global scale and which comprise a 
large range of approaches including simple upscaling based on average observed flux rates, statistical prediction 
and the use of process-based models (Section 2). Then, in three subsections respectively dedicated to estimates 
of emissions of CO2 (Section 3), CH4 (Section 4) and N2O (Section 5), we discuss the state of the art for each of 
these GHGs in more detail, review all existing global estimates, and explore differences between flux assessments 
and their underlying methods. In addition, we highlight for each GHG persisting shortcomings and challenges 
for future research. The companion paper in the same issue (Lauerwald et al., 2023) then builds on the present 
review to derive a regionalized assessment for the 10 regions used in RECCAP2. In this companion paper, each 
previously published global estimate reported here was rescaled using the same new global assessment of inland 
water surface area, allowing for better consistency and homogeneity across all previously published values.
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2.  Overview of Upscaling Strategies and Surface Area Estimates Used in Global 
Studies of Inland Water GHG Emissions
This subsection gives a brief overview of different methods that are used to obtain global scale estimates of 
inland water GHG emissions. These methods are classified into three main approaches, namely direct upscaling 
based on observations Section 2.1, statistical upscaling based on functional relationships between emissions and 
environmental drivers Section 2.2, and process-based models Section 2.3. We also briefly review progress in the 
global scale assessment of inland water surface areas Section 2.4, which is of vital importance for global upscal-
ing of inland water GHG emissions.

2.1.  Upscaling Based on Observations

Large-scale estimates of inland water GHG emission fluxes FGHG are usually calculated as the product of an 
average flux rate fGHG, which can be expressed in units of mass per area and time, as derived from a set of field 
observations, and an estimate of the inland water surface area AIW for which this flux rate is assumed to be repre-
sentative (Equation 1).

𝐹𝐹GHG = 𝑓𝑓GHG ∗ 𝐴𝐴IW� (1)

Many estimates have applied this simple upscaling technique directly at the global scale using an average fGHG 
multiplied by the total AIW of one specific type of inland waters. For instance, Deemer et al. (2016) calculated 
the average rates of GHG emissions from reservoirs, using observations from empirical studies around the world 
and multiplied those average rates by the estimated total area of reservoirs after Lehner et al.  (2011). Others 
have first broken down the total of inland waters of one type into different subgroups, for example, based on size 
of water body or stream order (Holgerson & Raymond, 2016; Humborg et al., 2010), geographic region (e.g., 
Aufdenkampe et al., 2011; Bastviken et al., 2011; Johnson et al., 2021; Soued et al., 2016) or both (Raymond 
et al., 2013; Rosentreter et al., 2021). An area-integrated flux from each subgroup was then calculated following 
the same Equation 1, before summing those up to a global flux.

Methods and challenges to obtain estimates of AIW are presented in detail in Section 2.4. In what follows, we will 
first focus on uncertainties associated with measuring and calculating fGHG. Flux rates can either be obtained from 
GHG emission rates directly measured in the field (Section 2.1.1), or from measurements or calculation of GHG 
concentration gradients and concomitant measurements or models of gas transfer velocities (Section 2.1.2). Note 
that this study does not aim to provide a detailed review of field methods. These aspects are thus only briefly 
discussed, with a focus on methodological uncertainties.

2.1.1.  Directly Observed Flux Rates

A common method to measure aquatic GHG emission rates is the use of floating chambers, which resemble 
inverted plastic buckets put onto the water surface. The emission rates are then calculated based on the accu-
mulation rate of GHGs within the floating chamber headspace. This method detects the emission rate from the 
small surface area of the floating chamber across the larger area over which the chamber may be moving during 
the deployment. Chambers may drift a few meters if tethered or over longer distances if drifting freely during 
the deployment (Lorke et  al.,  2015). Such a well-defined footprint is advantageous for studies of local flux 
regulation and for distinguishing variability in space versus time. Concurrently, the small size of the footprint 
leads to potentially high uncertainties in the extrapolation of flux chamber measurements to large areas, with-
out numerous representative measurements (Colas et al., 2020). Eddy covariance towers, though less common 
and only applicable in standing water bodies of a certain size have the advantage of generating net fluxes (i.e., 
emission or uptake) from a larger surface area (depending on height, surface roughness and wind speeds, eddy 
covariance towers can have a footprint of up to 3-km radius (Chu et al., 2021)), thus delivering a more represent-
ative emission rate (Podgrajsek et al., 2014). In contrast to the floating chamber method, the eddy covariance 
technique also allows for continuous measurements which provide better temporal resolution in emission rates. 
However, the flux footprint is constantly moving with wind speed and direction, making variability in time and 
space challenging to distinguish (Eugster et al., 2011). Fluxes cannot be measured at all when there is no wind 
(e.g., typical during night time) and complications associated with rainfall and lateral advective gas flux make 
accurate flux measurements challenging (Podgrajsek et al., 2014; Vesala et al., 2006). Eddy covariance also relies 
on the performance of advanced equipment and a high level of operator expertise for adequate data filtering and 
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QA/QC. Above all, limited eddy covariance measurements mean that global upscaling based only on this method 
is not yet possible, and inherent limitations due to its vulnerability toward unfavorable meteorological conditions 
and interactions with other nearby ecosystems make eddy covariance suboptimal for key inland water emission 
measurements such as fluxes from streams and along lake shores.

While the majority of CO2 and N2O emissions occur through diffusive flux across the air-water interface, a 
significant but variable fraction of aquatic CH4 flux occurs as bubbles (i.e., ebullition) (Bastviken et al., 2011). 
Ebullition occurs when CH4 produced in aquatic sediments forms gas bubbles that at a certain size, due to buoy-
ancy, evade the sediment layer and ascend through the water column. Existing emission estimates from floating 
chambers sometimes intentionally exclude ebullition (e.g., Yang et al., 2021). Other floating chamber methods 
include both diffusive and ebullitive emissions (e.g., Barbosa et al., 2021). Also, eddy covariance towers measure 
the sum of both emission pathways (Eugster et al., 2011). There are nonetheless various methods to directly quan-
tify ebullition. However, these methods detect bubbles rather than CH4 and need supplementary measurements 
of CH4 concentration within the bubble gas, usually from manually taken samples, to allow flux estimation (e.g., 
Linkhorst et al., 2020). This point is critical as CH4 concentration in bubbles can vary widely, from less than 1% 
to >80% (Boereboom et al., 2012). The most common methods for directly quantifying ebullition rates is the 
bubble trap, an inverted funnel that collects ascending bubbles (Maeck et al., 2013) and is sometimes connected 
to a hydrostatic pressure sensor (Varadharajan et  al.,  2010) or specialized bubble size sensors (Delwiche & 
Hemond, 2017) to measure the timing and size distribution of ascending bubbles. Ebullition measurements based 
on point measurements in space and time are currently very labor intensive given the high spatiotemporal varia-
bility of ebullitive fluxes (Linkhorst et al., 2020). Echo sounders (Ostrovsky et al., 2008), robotic boats connected 
to optical methane detectors (Grinham et al., 2011) and under-ice surveys (Wik et al., 2011) have also been used 
to quantify ebullition rates. In addition, radar remote sensing approaches are currently being developed that 
could  integrate over space and time for more representative measurements (Engram et al., 2020).

2.1.2.  Estimating Diffusive Fluxes Based on Concentration Gradients

The methods for directly measuring emission rates can easily be applied in deeper, slower-moving waters (float-
ing chambers and funnel traps) or in larger water bodies (eddy covariance). However, these methods are often 
not feasible for smaller streams. Instead, emission flux rates can be calculated from a gradient in concentrations 
of a specific GHG (ΔCGHG) in the water close to the surface and in the overlying atmosphere and a gas exchange 
velocity kGHG (Equation 2). Note that this method can be applied to flowing and standing water bodies of any size, 
but only allows estimation of diffusive emissions, and is not applicable for ebullition. The gradient ΔCGHG can be 
calculated based on direct field measurements using headspace equilibration methods (e.g., Müller et al., 2015), 
or using measured headspace partial pressures and solubility constants that depend on salinity and water temper-
ature (Weiss, 1970).

𝑓𝑓GHG = ∆𝐶𝐶GHG ∗ 𝑘𝑘GHG� (2)

The headspace equilibration method consists of equilibrating a known volume of sampled water and a known 
volume of air or gas, with a known initial partial pressure of the GHG to be analyzed. After full equilibration, 
a sample of the headspace is analyzed by for example, gas chromatography (Natchimuthu, Wallin, et al., 2017), 
optical gas analyzers (Grilli et al., 2020), or other gas analysis methods, to measure the corresponding GHG 
partial pressure from which the CGHG in the sampled surface water can be calculated. This concentration is 
compared with the theoretical concentration in equilibrium with the background air partial pressure of the GHG 
in focus to yield ΔCGHG. In the case of CO2, concentrations can also be calculated from observations of alkalinity 
and pH based on chemical equilibria and the assumption that non-carbonate contributions to alkalinity are negli-
gible, which can be questioned in some common aquatic systems (Abril et al., 2015) (see Section 3.2 for more 
discussion).

Gas exchange velocity can be assessed through direct tracer studies in which a specific tracer gas is injected into 
the stream, and its loss is measured over a defined length. As this method is too cumbersome and costly to be 
applied everywhere, empirical equations have been established that relate kGHG to the rate of energy dissipation 
at the water-air interface. Energy dissipation causes the turbulent mixing of the upper water column and thus 
determines the depth of the water column which interacts with the atmosphere through the process of diffusion. 
In fact, kGHG in units of length per time (e.g., m day −1) represents the depth of the upper water column that 
will equilibrate with the overlying atmosphere over that specific amount of time. For streams and rivers, this 
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energy dissipation rate can be estimated from stream flow velocity and stream channel geometry, in particu-
lar the slope of the stream channel (Natchimuthu, Sundgren, et  al.,  2017; Natchimuthu, Wallin, et  al.,  2017; 
O’Connor & Dobbins, 1958; Raymond et al., 2012). More recent work has however noted a breakpoint in the 
energy dissipation rate at which air entrainment and bubble formation cause kGHG to increase more rapidly with 
energy dissipation (Ulseth et al., 2019). This suggests that assuming only diffusive water-air gas exchange, as it 
is assumed in most studies of inland water CO2 emissions, may lead to underestimated gas transfer velocities in 
systems with very high hydrological energy. For lakes and reservoirs, empirical equations relate kGHG to wind 
speed (Cole & Caraco, 1998), lake surface area (Read et al., 2012), or both (Vachon & Prairie, 2013), as the 
degree to which wind shear versus convective mixing dominate gas transfer dynamics generally changes as a 
function of waterbody size. More sophisticated modeling of kGHG from lake hydrodynamics considering multiple 
turbulence-generating processes have also been developed (e.g., MacIntyre et al., 2021). It has been suggested 
that models of kGHG should be locally validated whenever possible (e.g., Schilder et al., 2013).

2.2.  Upscaling Based on Statistical Prediction

A variety of statistical methods have been used to upscale flux measurements/estimates to the global scale. These 
methods can be categorized into two groups of statistical upscaling approaches: (a) methods that predict emission 
rates directly, and (b) methods that first predict AIW, ΔCGHG, and kGHG separately, and combine them using Equa-
tions 1 and 2 to estimate the emission flux FGHG,IW.

A simple example for the first group of methods is the use of emission factors (EFs), which has been applied to 
estimate N2O emissions from river networks (Beaulieu et al., 2011; Kroeze et al., 2010). Averaged EFs, typically 
defined as the ratio of N2O emissions to riverine N loads, were derived from a number of field studies. These EFs 
were then multiplied by global, spatially explicit estimates of river N loads (e.g., Mayorga et al., 2010) to estimate 
global riverine N2O emissions at the same spatial resolution as the riverine N loads. This method assumes that 
riverine N2O emissions simply scale linearly to riverine N loads, which is problematic from a reaction kinetics 
point of view, as discussed in Maavara et al. (2019). As an alternative empirical approach, Hu et al. (2016) used 
findings from field studies to fit equations predicting riverine N2O emissions as a nonlinear function of dissolved 
inorganic N yield and catchment area, thus overcoming some of the limitations of the EF approach.

Another prominent example for the first group of methods is the study by DelSontro et  al.  (2018), predict-
ing global lake CH4 emissions empirically. DelSontro et al. (2018) fitted multilinear regression equations to a 
database of literature studies of 166 water bodies quantifying lake CH4 emissions, that predict the total (diffu-
sive + ebullitive), annual emission flux from lake size and lake productivity (defined as chlorophyll or phospho-
rus concentration). The fitted regression equations were then applied to different global data sets/estimates of 
lake surface area and an assumed statistical distribution of lake productivity across global lakes to estimate the 
global-scale CH4 emissions from these water bodies.

Examples for the second group of methods are the studies by Raymond et al. (2013), Lauerwald et al. (2015), 
and Horgby et al. (2019) that estimated CO2 emissions from rivers at the global scale or for specific ecoregions 
(Horgby et al., 2019 focused on alpine streams). These studies all used global data sets including digital elevation 
models and their derivatives (stream network and channel slope) and gridded estimates of average annual river 
flow to explicitly estimate stream surface area and kGHG spatially. While Raymond et al. (2013) combined their 
estimates of AIW and kGHG with regionalized averages of calculated ΔCCO2, Lauerwald et al. (2015) and Horgby 
et  al.  (2019) further used multiple linear regression models to estimate riverine ΔCCO2 from different spatial 
drivers (like terrestrial Net Primary Productivity—NPP, climate, terrain steepness in Lauerwald et al. (2015), or 
elevation, soil carbon stocks, and discharge in Horgby et al. (2019)). Note that combining independent estimates 
of kGHG and ΔCGHG introduces an additional source of uncertainty, as ΔCGHG is in turn controlled by kGHG and its 
balance with CO2 resupply rates to the surface water, which is for instance evidenced by low ΔCGHG in turbulent, 
high alpine streams (Horgby et al., 2019).

2.3.  Process-Based Models

Process-based models of varying degrees of complexity have recently been used to assess inland water GHG 
emission at the global scale (Maavara et al., 2019; Marzadri et al., 2021; Yao et al., 2020). Ideally, such models 
represent carbon and nutrient transport and transformation processes that drive production, cycling and emission 
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of GHGs in a water body or along a cascade of water bodies (like a sequence of stream reaches or a cascade of 
reservoirs along a river network). This representation requires boundary condition data at the global scale and in 
sufficient quality and quantity. This data requirement is a major limitation for the applicability of process-based 
models for inland water GHG emissions at the global scale.

A promising strategy to overcome that limitation is the explicit representation of inland waters and associated 
biogeochemical processes in land surface models (LSMs) that simulate the terrestrial cycling of energy, water, 
C, nutrients, and GHGs. Using LSMs, the biogeochemical and transport processes that drive the GHG dynam-
ics can be simulated simultaneously for terrestrial and freshwater ecosystems, reducing the need for complex 
boundary conditions at the land-inland water interface. Developments in that direction have been achieved for 
the LSMs DLEM (Tian, Yang, et al., 2015; Tian, Ren, et al., 2015; Yao et al., 2020) and ORCHIDEE (Lauerwald 
et al., 2017, 2020). At global scale, LSM simulations including inland water GHG emissions have yet only been 
achieved with DLEM (Yao et al., 2020).

When using LSMs, the simulated water fluxes and associated terrestrial C and nutrient inputs to inland waters are 
already afflicted by considerable uncertainties, including those arising from the overparameterization of these 
extremely complex models. Thus, an alternative is to use process-based models of only inland waters forced by 
data driven information. The global river network N2O modeling studies by Maavara et al. (2019) and Marzadri 
et  al.  (2021) follow two different strategies to overcome data limitations to constrain the models. Maavara 
et al.  (2019) followed a metamodeling strategy, for which a box model representing all major processes of N 
and N2O cycling in a water body was first set-up. While this process-based model could not be applied at global 
scale due to data limitations to constrain each biogeochemical process, Maavara and colleagues ran the model 
across a realistic range of model input parameters using a Monte Carlo approach to derive simple response func-
tions. The resulting response functions relating N2O emissions to nutrient loads and water residence times were 
then applied at global scale using loads and residence times derived from available global data sets. Marzadri 
et al. (2021) applied their process-based model of river N2O emissions directly at global scale, which required 
spatially resolved model inputs comprising a detailed set of parameters describing stream hydro-morphology and 
water quality, which in that form did not yet exist at global scale. To overcome that limitation, machine learning 
techniques were applied to derive these input data sets from other, available geodata. These input data were then 
used to feed a process-based model that parametrizes N2O emissions as a function of river size by means of two 
Damköhler numbers representing the ratio between a characteristic time of transport and a characteristic time 
of reaction. The proposed hybrid model (machine learning  +  process based) allows the consideration of the 
contribution of surface (e.g., water column) and subsurface (e.g., benthic and hyporheic zones) processes to N2O 
emissions (Marzadri et al., 2021).

For aquatic CH4 emissions, process-based modeling efforts have been mostly dedicated to lake and reservoir 
systems. For example, an online, open-source predictive model framework “G-res” has recently been developed 
to provide global, spatially explicit estimates of the form and magnitude of reservoir CH4 and CO2 emissions 
(Harrison et  al.,  2021; Prairie et  al.,  2021). G-res uses a series of calibrated empirical models that integrate 
local (reservoir-specific) and regional (watershed attributes) information to predict GHG emissions (Prairie 
et al., 2021). The model has been applied to 4,727 reservoirs to estimate global emissions (Harrison et al., 2021). 
Tan and Zhuang (2015a, 2015b) have developed and applied a process-based model to estimate CH4 emissions 
from lakes at pan-arctic scale. That model produces gridded output, resolves seasonal and interannual variability, 
and permits for projections of long-term trends following global change scenarios.

2.4.  Available Data and Previous Estimates of Global Inland Water Surface Area

The first digital global map of inland water surface areas that was used for inland water GHG emission estimates 
was the Global Lake and Wetland Database (GLWD) by Lehner and Döll (2004). GLWD was derived from a 
compilation of different global and regional inventories. While GLWD is not globally consistent with regard to 
detail and reliability of the data sources, it represented the best available data set for more than a decade and was 
used in numerous studies of inland water GHG emissions (e.g., by Raymond et al. (2013) for lakes and reservoirs, 
by Aufdenkampe et al. (2011) for all water bodies). Since then, our ability to estimate the global surface area of 
rivers, lakes, and reservoirs has progressed significantly. This progress has been driven by advances in satellite 
remote sensing, image processing methods, and geospatial analysis techniques. Several freely available global 
hydrography data sets have recently become available that can be used to estimate surface area and distribution 
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of inland water bodies. Here we discuss a selection of high-resolution, freely available data sets that can be useful 
for global-scale evaluations of greenhouse gas emissions from inland water bodies.

A few global inland water body data sets have been developed using optical remote sensing data. The JRC GSW 
data sets from Pekel et al. (2016) and the GSWD from Pickens et al. (2020) are two global 30-m-resolution data 
sets of open surface water extent, created from the Landsat archive. These data sets are multitemporal and highly 
consistent but they do not distinguish between different water body types (e.g., rivers, lakes, etc.). Classifying 
water body type is necessary in evaluations of GHG exchange because of differing exchange rates and processes 
occurring in different aquatic environments. The Global River Widths from Landsat (GRWL) database (Allen & 
Pavelsky, 2018) contains exclusively river surface areas derived from Landsat imagery.

In addition to these image-based data sets, global topography-based data sets derived from digital elevation 
models (DEMs) have been used for representing the global extent and distribution of streams and rivers. These 
include hydrologically conditioned gridded raster data sets like HydroSHEDS (Lehner et al., 2008) and MERIT 
Hydro (Yamazaki et al., 2019) or vectorized flowline data sets derived from these gridded data sets including 
HydroRIVERS (Lehner & Grill,  2013) or MERIT Hydro–Vector (Lin et  al.,  2021). These DEM-based data 
sets can be used to infer the location and size of narrow rivers and streams too small to be visible from freely 
available satellite data sets. These data sets can also be used to infer other characteristics of river networks 
including stream order, slope, upstream area, and topology, which are of potential value for estimating amount 
and turbulence of river flow, which in turn are important drivers of GHG emissions. Other hydrography data sets 
innovatively combine DEM-based data sets with other sources of data to produce novel information including 
machine learning-based estimates of river surface area (Lin et al., 2021) and the extent of non-perennial rivers 
(Lin et al., 2021; Messager et al., 2021).

For standing open water bodies like lakes and reservoirs, attempts have also been made to identify water bodies 
from satellite imagery using automated algorithms. A prominent example is the Global Water Body (GLOWABO) 
data set (Verpoorter et al., 2014). Due to the unsupervised classification method and the fact that ground truth was 
evaluated only for Sweden, this data set is however uncertified for other parts of the world and likely contaminated 
with wrongly assigned riverine, coastal or temporal water bodies (Pi et al., 2022). In addition, inventory-based 
data sets have further been developed, including the Global Reservoir and Dam database (GRanD) (Lehner 
et al., 2011) and the HydroLAKES database (Messager et al., 2016) which gives water surface areas of standing 
waters distinguishing lakes from reservoirs. Note that HydroLAKES also includes the information from GRanD 
and GLWD, which makes these products partly redundant. The advantage of inventory-based data sets as GRanD 
and HydroLAKES is the avoidance of contamination with other water bodies and additional attributes such as 
names, estimates of water volume and residence time, height and purpose of dam for reservoirs, etc. In particular 
the distinction between lakes and reservoirs is of major importance for the assessment of inland water GHG emis-
sions. Reservoirs as artificial water bodies deserve special attention, as they represent an anthropogenic source of 
GHGs and a potential lever for controlling future emissions (Almeida et al., 2019). However, we have to expect 
an under-classification of reservoirs in inventory data sets such as HydroLAKES, as water bodies for which this 
information was not available have been categorized as natural lakes by default (Messager et al., 2016). Smaller 
hydropower projects which outnumber large hydropower projects by approximately 11:1 (Couto & Olden, 2018) 
may not always be inventoried and accounted for in regional and global data sets. Recently, new data sets of dams 
and reservoirs have been created combining remote sensing-based data sets with other sources of information, for 
example, GOODD (Mulligan et al., 2020) and GeoDAR (Wang et al., 2021), continuously increasing the numbers 
of reservoirs that are taken up into inventories.

Although considerable progress has been made recently in developing global hydrography data sets, much less 
work has been done to apply these data sets to estimate global surface area of inland water bodies. For the surface 
area of rivers, three notable global estimates have been produced by Downing et al. (2012) of between 485,000 
and 682,000 km 2, Raymond et al. (2013) of between 487,000 and 761,000 km 2, and Allen and Pavelsky (2018) 
of 773,000 ± 79,000 km 2. Downing et al. (2012) based their estimate on >400 observations of stream width, 
data on number and length of streams from HydroSHEDS data set, and statistical scaling relating stream number, 
width and length to stream order. While this observational data set covers rivers from all over the world, it is 
clearly dominated by North American rivers and the extent to which the statistical relationships identified in that 
study is applicable to the global-scale is questionable. Raymond et al. (2013) combined the stream network of 
HydroSHEDS with gridded runoff data to obtain a distribution of stream lengths and discharge per stream order 
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of medium to large rivers, to which they then applied empirical, hydraulic equations predicting stream width 
from discharge. Finally, they used stream-order based scaling laws to estimate stream surface areas for smaller 
streams. Allen and Pavelsky (2018) used their remote-sensing based GRWL database for surface areas of medium 
to large rivers, which they complemented with topography- and statistical-based estimates for streams narrower 
than 90 m to headwater streams as defined by Allen et al. (2018). The GRWL data set is to date the most complete 
and reliable data set of its kind.

For the surface area of lakes and reservoirs, three notable global estimates have been made by Downing 
et al. (2006), Verpoorter et al. (2014), and Messager et al. (2016). Downing et al. (2006) used surface areas from 
standing water bodies >10 km 2 from GLWD (Lehner & Döll, 2004) and extrapolated the surface area to smaller 
water bodies down to 0.001 km 2 assuming power-law relationships (Pareto distributions) between water body 
size and frequency. Note, however, that a more recent empirical study disproved the hypothesis that number 
and area of small lakes would follow a power-law distribution (Cael & Seekell, 2016). Verpoorter et al. (2014) 
used their remote-sensing derived GloWaBo database which includes lakes as small as 0.002 km 2. Messager 
et al.  (2016) derived their estimate from their inventory based HydroLAKES database, which contains water 
bodies >0.1 km 2. Due to this restriction with regard to minimum lake size, Messager et al. (2016) obtained the 
lowest of the three global surface area estimates for standing waters with 2.7 × 10 6 km 2. The estimate of Downing 
et al. (2006) is substantially higher with 4.2 × 10 6 km 2, while for water bodies larger than 0.1 km 2, their estimate 
of 2.9 × 10 6 km 2 is quite comparable to HydroLAKES. The estimate by Verpoorter et al. (2014) is even higher 
with 5 × 10 6 km 2, likely due in part to overestimation of lake areas through contamination with other water 
bodies (Pi et al., 2022). A reliable map of smaller bodies of standing water, such as ponds, which are thought to 
contribute substantially to the total water surface area and disproportionally to GHG emissions (Holgerson & 
Raymond, 2016; Rosentreter et al., 2021), is still not achievable.

3.  Inland Water CO2 Budget
3.1.  Overview of Existing Estimates

Global estimates for the aquatic CO2 emission range from 0.84 to 7.33 Pg CO2 yr −1 for streams and rivers, from 
0.40 to 2.14 Pg CO2 yr −1 for lakes, from 0.08 to 0.14 Pg CO2 yr −1 for reservoirs (excluding the estimate by Cole 
et al. (2007), which is discussed at the end of this section), and from 0.89 to 2.35 Pg CO2 yr −1 for estimates that 
lumped lakes and reservoirs together (Table 1, Figure 1). In general, considerable discrepancies exist in particular 
between early estimates that relied mostly on lumped estimates of average CO2 concentrations, kGHG and water 
surface area, and more recent estimates relying on more complete concentration data sets, more sophisticated 
upscaling approaches and spatially resolved water surface area estimates. For streams and rivers, the earliest 
estimates (Cole & Caraco, 2001; Cole et al., 2007, p. 207) were crude and most likely underestimate riverine CO2 
emissions because of their reliance on data from large rivers, which tend to show lower areal CO2 emission rates 
than smaller and more upstream systems, as large rivers tend to be less heterotrophic, receive less important inputs 
of CO2 enriched groundwater, and show less turbulent stream flow which leads to lower gas exchange velocities 
(Raymond et al., 2013). Relying on an extensive database for pCO2, new scaling laws for kGHG and stream hydrau-
lic geometry that allowed for spatially resolved estimates for stream surface areas at the global scale, Raymond 
et al. (2013) presented the first spatially explicit estimate for the aquatic CO2 flux and reports a river CO2 evasion 
rate that is 3–8 times higher than the earlier lumped estimates (Aufdenkampe et al., 2011; Cole et al., 2007; 
Tranvik et al., 2009). Moreover, they demonstrated the importance of small headwaters which contribute dispro-
portionately to the total emission flux. Problematic in that approach was that average pCO2 and kGHG values, 
from which the fluxes were calculated, were estimated independently from each other. pCO2 values were taken 
as average over large regions independent of stream order, while kGHG was estimated per region and stream order 
with values systematically increasing toward the small stream orders. That bears the risk, in particular for low 
order streams, that high estimates of kGHG are combined with high estimates of pCO2, leading to unrealistic high 
flux rates, whereas empirical studies have shown that under higher kGHG values pCO2 normally tends to be close 
to equilibrium with the atmosphere (Rocher-Ros et al., 2019). More recent advancements in stream and river 
CO2 evasion estimates involve the development of data-driven statistical models to resolve temporal and finer 
spatial scale variations of the riverine CO2 flux (Lauerwald et al., 2015; Liu et al., 2022). For instance, relying 
on direct CCO2 measurements and seasonally varying estimates for kGHG and river surface area, Liu et al. (2022) 
demonstrated CO2 emission from global streams and rivers varied between 411 and 766 Tg CO2 yr −1 per month, 
that is, by a factor of ∼2, with the highest global emissions during northern summer in July.
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A process-based model has also been developed (DLEM, Tian, Ren, et al., 2015), which predicts a much lower 
emission rate than recent data-driven approaches (2.24 vs. 6.60–7.33  Pg  CO2  yr −1) (Table  1). The DLEM 
estimate is however close to the estimate by Lauerwald et al.  (2015) (2.38 Pg CO2 yr −1) that only accounted 
for emissions from medium-sized to large rivers (i.e., 3rd order and above). The large discrepancy (i.e., 2.24 

Table 1 
Global Estimates of Inland Water CO2 Emissions

References ΣCO2 em/ΣAwater (g CO2 m −2 yr −1) ΣAwater (10 6 km 2) ΣCO2 em (Pg CO2 yr −1) Method

Rivers

  DLEM Tian, Ren, et al. (2015) 3,531 0.64 2.24 Model

  Liu et al. (2022) a 9,900 0.672 7.33 ± 0.73 b Machine learning

  Lauerwald et al. (2015) a 3,895 0.55–0.67 2.38 (1.77–3.10) c Statistical prediction

  Raymond et al. (2013) a 10,644 0.62 6.6 (5.7–7.5) c Upscaling from 
observations + Statistical 
prediction

  Aufdenkampe et al. (2011) 5,009 0.31–0.51 2.05 Lumped estimate

  Tranvik et al. (2009) 2.02 Literature review

  Cole et al. (2007) 1,492 0.74 0.84 Literature review

Streams and small rivers

  Liu et al. (2022) a 23,962 0.202 4.84 Machine learning

  Marx et al. (2017) 3.41 Literature review

  Lauerwald et al. (2015) a 5,842 0.14–0.26 1.16 (0.78–1.61) c Statistical prediction

Mountain streams

  Horgby et al. (2019) 17,490 0.035 0.61 Statistical prediction

Large rivers

  Liu et al. (2022) a 4,946 0.47 2.31 Machine learning

  Lauerwald et al. (2015) a 2,975 0.41 1.22 (0.96–1.54) c Statistical prediction

Lakes and reservoirs

  DelSontro et al. (2018) 414 3.23–5.36 1.99–3.30 Avg. rates

  -"- 416 4.42 1.84 (1.72–1.98) c Statistical prediction

  -"- 360 5.36 1.93 (1.80–2.06) c Statistical prediction

  -"- 276 3.23 0.89 (0.83–0.96) c Statistical prediction

  Raymond et al. (2013) a 392 3 1.17 (0.22–3.08) c Avg. pCO2 + Statistical 
prediction

  Aufdenkampe et al. (2011) 638 2.80–4.54 2.35 Avg. rates

Lakes (including lakes with dams)

  DLEM Tian, Ren, et al. (2015) 312 2.4 0.77 Model

  Holgerson and Raymond (2016) 348 5.98 2.14 Avg. rates

  Tranvik et al. (2009) 1.94 Literature review

  Cole et al. (2007) 257 2 0.4 Literature review

Reservoirs

  DLEM Tian, Ren, et al. (2015) 312 0.27 0.08 Model

  Deemer et al. (2016) 451 0.3 0.14 (0.12–0.16) c Avg. rates

  Cole et al. (2007) 686 1.5 1.03 Literature review

Note. For each Estimate, the Total Water Surface Area (ΣAwater), the Total CO2 Emission Elux (ΣCO2 em) and the Area Weighted Average Emission Rate (ΣCO2 em/
ΣAwater) are Reported. Mass units refer to CO2. For conversion to units of mass of C, divide by 3.67.
 aEstimate accounts for effects of seasonal ice cover.  bStandard error.  cLower and upper 90% (Deemer et al., 2016; Lauerwald et al., 2015; Raymond et al., 2013) or 95% 
(DelSontro et al., 2018) CI.
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vs. 6.60–7.33  Pg  CO2  yr −1) however argues for the importance of the smallest streams in global CO2 emis-
sion from fluvial networks (Marx et al., 2017). In line with this, Liu et al. (2022) estimated emission from the 
medium-to-large rivers (corresponding roughly to stream order 3 and above as in Lauerwald et al.  (2015)) of 
∼2.31 Pg CO2 yr −1, while roughly two thirds of the total riverine emissions (∼5 Pg CO2 yr −1) are predicted to be 
emitted by smaller streams (extrapolated to a minimum stream width of 0.3 m).

For lakes, there is a much larger variation in estimates of water surface area than in average emission rates 
between different studies (Table  1). In particular, estimates that relied on earlier global lake inventories 
(Raymond et al., 2013) report lower surface area and total emissions than more recent estimates based on newer 
lake inventories and extrapolated surface area to account for the smallest water bodies (DelSontro et al., 2018; 
Hastie et  al.,  2018; Holgerson & Raymond,  2016). Despite employment of scaling laws (e.g., with lake size 
and nutrient status) that account for spatial variability due to system size and autotrophic productivity in more 
recent  estimates (DelSontro et al., 2018; Holgerson & Raymond, 2016; Raymond et al., 2013), there seems to 
be only small difference with regard to global average lake CO2 emission rates per water surface area between 
those newer estimates (348–414 g CO2 m −2 yr −1) and those of the early crude estimates (257 g CO2 m −2 yr −1, 
Cole et al., 2007). Additionally, though earlier estimates relied more on CCO2 calculated from pH and alkalinity 

Figure 1.  Estimates of inland water GHG emissions by year of publication. For rivers (a, c, e) versus Lakes and reservoirs (b, 
d, f), and for CO2 (a, b), CH4 (c, d), and N2O (e, f).
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(Cole et al., 2007; Raymond et al., 2013), more recent estimates used more often direct measurements (Delson-
tro  et al., 2018; Holgerson & Raymond 2016). Differences in lake CO2 evasion estimates are more driven by vari-
ation in estimates of lake area than by areal emission rates. Estimates of global average emission rates per water 
surface area for lakes and reservoirs (392–638 g CO2 m −2 yr −1) are about one order of magnitude lower than those 
for streams and rivers (1,492–10,644 g CO2 m −2 yr −1, Table 1). In comparison to lakes, reported global average 
emission rates per water surface area for reservoirs are slightly higher (312–686 vs. 257–348 g CO2 m −2 yr −1 
for reservoirs and lakes, respectively) (Table 1). This may in part be due to the different geographic distribution 
of both types of standing water bodies; with lakes being particularly abundant in high latitudes where aver-
age emission rates tend to be lower (Aufdenkampe et al., 2011). Nonetheless, the current estimates place total 
CO2 evasion from reservoirs more than one order of magnitude lower than that from lakes (see Table 1, when 
excluding the estimate by Cole et al. (2007)), following its low share in the global surface area of standing water 
bodies. However, the inventory for global reservoirs (which is growing) is far from complete and thus surface 
area might pose the largest uncertainty for CO2 evasion from reservoirs. Note that Cole et al. (2007), based on 
data from St. Louis et al. (2000), estimated a reservoir CO2 emission of 1.03 Pg CO2 yr −1, that is, about one order 
of magnitude higher than the other estimates listed in Table 1. This number is based on a first-order estimate of 
the total surface area of reservoirs including smallest systems such as farm ponds. This estimated total area is 
about 5 times larger than that of reservoirs accounted for in recent inventories. While this first order estimate is 
an eye-opener for the underestimate related to the exclusion of these small systems, it is also highly uncertain and 
represents an expert opinion rather than a reproducible number. Note further that Cole et al. (2007) estimated a 
much lower CO2 evasion rate from lakes, for which they rely on a much more conservative estimate of surface 
area which excludes smaller systems. In that regard, their emission estimate for standing waters is not consistent. 
Note finally that other estimates of CO2 emissions from reservoirs might be underestimated, as in inventories, 
where the required information is missing, reservoirs might wrongly have been classified as lakes (see discussion 
in Section 2.4).

3.2.  Persisting Shortcomings and Future Challenges

3.2.1.  Process Understanding

In the following we discuss our current process understanding of inland water CO2 emissions in the light of global 
scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2 summa-
rizes the known effects of the major environmental drivers. The most prominent gap in the understanding of the 
processes that drive inland water CO2 emissions is the question of where the emitted CO2 is sourced from. A part 
of the emitted CO2 may be produced in situ from the oxidation of allochthonous organic carbon, while another 
part might stem from inflows of water supersaturated in CO2 produced during respiration in upland soils and 
wetlands. Further, this respiration comprises both heterotrophic respiration of plant and soil organic matter  as 
well as autotrophic root respiration. Knowledge about the source of the aquatic CO2 emissions is of paramount 
importance for the integration of these fluxes in the overall C budget of continents, as highlighted in the perspec-
tive article by Abril and Borges (2019). While earlier studies assumed that the net-CO2 emissions are entirely the 
product of heterotrophic respiration and could thus be regarded as a fraction of terrestrial net-primary production 
(Richey et  al.,  2002), the contributions of autotrophic root respiration demand consideration of these fluxes 
as part of total ecosystem respiration that counterbalances gross primary production (Abril & Borges,  2019; 
Lauerwald et al., 2020).

For streams and rivers, it is assumed that most of the emitted CO2 is sourced from CO2 produced by respiration 
in adjacent wetlands, but also in upland soils, from where the CO2 is then transported with percolating soil water 
and groundwater flows (Abril et al., 2014; Liu et al., 2022). The relative importance of groundwater CO2 inputs 
are highest in headwaters and decrease downstream (Finlay, 2003; Horgby et al., 2019; Hotchkiss et al., 2015; 
Liu et al., 2022; Marx et al., 2017), while wetland inputs may be more important in lower reaches as shown for 
the Congo River (Borges et al., 2019). Moreover, it was shown that due to the very high oversaturation of emerg-
ing groundwater, a large part of the emission already takes place over a few hundred meters downstream of the 
freshwater source (Johnson et al., 2008). It would thus be required to monitor smallest headwaters directly to well 
capture those hot spots of aquatic CO2 emission, for which however monitoring data are not available in sufficient 
quantity (Marx et  al.,  2017). Assessment of groundwater CO2 inputs to inland waters would further require 
knowledge about groundwater C content and residence time (to quantify the outflows) for which data are limited 
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as well (Downing & Striegl, 2018). While stable C isotopes have been used to estimate source contribution of 
riverine C loads and CO2 emissions for single aquatic systems (Telmer & Veizer, 1999), observational data are 
not yet sufficient for large-scale assessment. Also, these studies do not often include the uppermost parts of the 
river network where large amounts of external CO2 inputs are evading to the atmosphere.

In addition, only few existing studies of freshwater CO2 emissions (e.g., Bogard & DelGiorgio, 2016; Crawford, 
Lottig, et al., 2014) have attempted to include estimates of aquatic net ecosystem production (NEP), which is 
the difference between aquatic production and respiration. Most studies currently assess inland waters net-CO2 
emissions rather as a black box that is fed by allochthonous C inputs. The recent study by Battin et al. (2023) 
has nevertheless demonstrated that the inclusion of NEP estimates can help to disentangle autochthonous CO2 
production from allochthonous CO2 inputs even at global scale. This study corroborates the assumption that most 
of the aquatic CO2 evasion is derived from external CO2 inputs. However, also availability of aquatic NEP data is 
limited and does not allow yet for spatially explicit estimates at global scale. More importantly, diurnal variations 
in NEP may entail a similar variation in pCO2 and air-water CO2 exchange. Moreover, predominant sampling 
during daytime, when CO2 emissions are lower than at night, may lead to important biases in flux estimations. 
Gómez-Gener et al. (2021) recently argued that global estimates based on daytime measurements are biased as 
night time emissions are on average ∼30% higher.

To better understand temporal variability and potential “hot-moments” of inland water CO2 emissions, more 
process understanding would be required with regard to CO2 cycling during periods of ice-cover, spring ice-melt, 

Figure 2.  Schematic representation of inland water GHG budgets: for reservoirs as an example of standing waters (a, c, e) and streams/rivers (b, d, f), and for the three 
GHGs CO2 (a, b), CH4 (c, d), and N2O (e, f). OM = organic matter; Nut. = nutrients.
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spring freshet, lake-turnover, and extreme events like floods for which observations are generally rare. Only 
one of the studies included in our synthesis actually accounts for seasonality (Liu et al., 2022), while the other 
studies completely ignore seasonality in hydrodynamics, including spring freshet. Further, the estimates of lake 
and reservoir CO2 emissions synthesized in our study do not account for contributions during lake-turnover, 
when emission rates are thought to be highest in boreal to Arctic systems (Sepulveda-Jauregui et  al.,  2015). 
Intense emissions have also been reported for periods of ice melt, during which observations are usually rare 
(Denfeld  et al., 2018).

Raymond et al. (2013) account for intermittent drying of streams and rivers by decreasing the annual emission 
flux relative to the no-flow period. However, existing studies showed that during dry periods, exposed beds might 
show even higher CO2 emission rates than from the water surface when inundated (Keller et al., 2020). Marcé 
et al. (2019) even suggest that taking into account seasonal dry falling and rewetting of bed sediments, estimates 
of global inland water CO2 emissions would need to be corrected upward by at least 10%. For reservoirs specifi-
cally, existing emission estimates might even be ∼50% higher if emissions from dry falling drawdown areas were 
taken into account (Keller et al., 2021). On the other hand, no estimate of CO2 emissions from occasionally or 
seasonally inundated floodplains are available at the global scale. More systematic investigations of flux rates 
from both temporally dry falling inland water beds and temporally inundated floodplains would help to refine 
estimates of inland water CO2 budgets and to better integrate them into continual CO2 budgets while avoiding 
gaps and overlaps with terrestrial and wetland ecosystems.

Though some studies (Deemer et al., 2016; DelSontro et al., 2018; Raymond et al., 2013) have linked CO2 vari-
ability in lakes and reservoirs to predictors such as waterbody size, mean annual precipitation, and ecosystem 
productivity, the controls on within-system CO2 spatial and temporal variations are not well understood and 
effective scaling relationships are still in need to better represent CO2 evasion from lakes and reservoirs. Further, 
characterizations of spatial variability within water bodies are rather scarce, and the representativeness of the 
sampling site within an aquatic system is a large source of uncertainty (Colas et al., 2020). Finally, our estimates 
of reservoir CO2 emissions do not account for fluxes from hydroelectric turbines and dam outlets, where deep, 
hypolimnetic water enriched in CO2 is released (Figure 2a). River reaches directly downstream of dams have been 

Table 2 
Drivers of GHG Emissions From Different Types of Inland Waters a

CO2 CH4 N2O

Streams and rivers ++ GW b inputs ++ GW inputs ++ GW inputs

++ Inputs from wetlands ++ Inputs from wetlands ++ Inputs from wetlands

++ Dam outflows ++ Dam outflows 0/- Dam outflows

+ Allochtonous OM c 0/+ Allochtonous OM + Allochtonous OM

+ Temperature + Temperature + Temperature

+ Discharge ? Discharge + Discharge

+ O2 -- O2 ? O2

+ Seasonal drying + Seasonal drying 0 Seasonal drying

Lakes + Allochtonous OM + Allochthonous OM + Allochthonous OM

- Productivity ++ Productivity + Productivity

- Depth and Surface Area -- Depth and Surface Area ++ Nitrogen load

+ Temperature ++ Temperature ? Depth and Surface Area

+ O2 -- O2 + Temperature

? O2

Reservoirs As lakes, plus ++ OM in flooded soils As lakes, plus ++ OM in flooded soils As lakes, plus ++ OM in flooded soils

+ Turbine degassing ++ Turbine degassing 0 Turbine degassing

+ Drawdown areas ? Drawdown areas 0 Drawdown areas

Note. ++, Strong increasing effect; + Increasing effect; 0, No net-effect; -, Decreasing effect; ? Unknown or ambiguous effect.
 aMeaning of effects.  bGW = groundwater.  cOM, organic matter.
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reported to show increased pCO2 while this excess CO2 is being emitted rapidly over a few tenths of river-km 
(Calamita et al., 2021; Guérin et al., 2006; Teodoru et al., 2015). However, more systematic observations from 
these parts of the inland water network are needed to quantify this source of CO2 flux at global scale, and to 
complete the assessment of reservoir CO2 emissions.

3.2.2.  Spatial and Temporal Resolution

Spatially and temporally resolved estimates of inland water GHG emissions at global scale can help to better 
understand the role of these fluxes in the overall GHG budget, to include these fluxes in regional budgets, and 
to evaluate them directly against observations. The realization of spatially and temporally resolved estimates 
is, however, limited by the availability of observations and using the utilized estimation techniques. For rivers, 
global empirical, spatially explicit estimates have already been achieved at several different resolutions, specif-
ically, 231 regions (Raymond et  al.,  2013), gridded at 0.5° (Lauerwald et  al.,  2015), and for individual river 
reaches (Horgby et al., 2019; Liu et al., 2022). For lakes and reservoirs, the regionalized estimate based on 231 
regions by Raymond et al. (2013) is the only existing spatially explicit estimate of CO2 emissions at the global 
scale. Hastie et al. (2018) achieved a spatially explicit, pan-boreal estimate of lake and reservoir CO2 emissions at 
0.5° resolution. As the only process-based model approach at global scale, spatially explicit simulations with the 
land surface model DLEM have been achieved at 0.5° resolution for rivers and reservoirs (Tian, Ren, et al., 2015). 
ORCHILEAK—the inland water branch of the land surface model ORCHIDEE has so far only been applied at 
the continental scale of Europe (Gommet et al., 2022) and in few large-scale basins across the world (Bowring 
et al., 2020; Hastie et al., 2021; Lauerwald et al., 2020).

With regard to temporal resolution, most of the empirical studies published so far represent climatologies of 
average annual fluxes, often without precise specification of the time frame covered by the observations (Regnier 
et al., 2022). The only exception at global scale is the study by Liu et al. (2022) which presents a climatology of 
average monthly emission fluxes from rivers, thus representing the typical seasonal cycle of riverine emissions. 
The process-based model DLEM simulates time-series of riverine and reservoir CO2 emission which reflect 
both seasonal and interannual variability. In general, a physically based model approach appears to be the most 
promising strategy to obtain seasonal and interannual variations in response to climate variability, for present 
day but also for scenario-dependent future projections (Hastie et al., 2021; Lauerwald et al., 2020; Tian, Ren, 
et al., 2015).

While empirical studies have highlighted the importance of diurnal variation in water-air CO2 exchange, temporal 
variations at this time-scale are not yet possible to include in estimates. Process-based models like DLEM (Tian, 
Ren, et al., 2015) or ORCHILEAK (Lauerwald et al., 2017) represent aquatic CO2 emissions as net-emissions 
driven by allochthonous inputs of CO2 and net-instream respiration. A simulation of the diurnal variations would 
however require the representation of autochthonous aquatic production, which is not yet possible.

3.2.3.  Data Requirements

As for all GHGs, data required to improve inland water CO2 emission estimates include in the first place direct 
observation of emission rates. Many earlier estimates relied heavily on partial pressures of CO2 (pCO2) calcu-
lated from pH and alkalinity (Lauerwald et al., 2015; Raymond et al., 2013), which has been demonstrated to 
be a significant source of error leading to an overestimation of pCO2 particularly in freshwaters with low buffer 
capacity against acidification (Abril et al., 2015; Golub et al., 2017; Hunt et al., 2011; Liu et al., 2020). Liu 
et al. (2022), relied on direct pCO2 observations and suggested that average pCO2 in global streams and rivers 
obtained by Raymond et al. (2013) is 30% too high.

However, as alkalinity and pH are easier to measure, a vast amount of data is available from a large number of 
studies and in data sets from environmental agencies, with greater spatial and temporal coverage (Hartmann 
et al., 2014) than that of direct observation. Nevertheless, as potential biases are hard to correct at large scales, 
a clear preference should be given to directly observed pCO2 values. Liu et al. (2022) synthesized 5,910 direct 
pCO2 observations from 63 studies, which represents about the latest inventory of available data for stream and 
river systems at global scale. Delsontro et al. (2018) synthesized literature data for 7,824 lakes and reservoirs. The 
number of direct pCO2 observations is still limited, but steadily growing.

Likely for logistical reasons, most observations are from developed countries which contribute most to the research 
of inland water GHG budgets. For this reason, systems from temperate climate regions are better represented than 
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tropical or high-latitude systems in remote areas (e.g., compare Deemer et al., 2016; Liu et al., 2022). However, it 
is these remote areas that play a potentially important role, considering the extensive lake areas in Boreal to Arctic 
regions, and the large river systems of the humid tropics. There has been notable progress in sampling tropical 
(Africa (Borges et al., 2015, 2019), Amazon (Abril et al., 2014), and SE Asia (Wit et al., 2015)) and high latitude 
systems (Siberia (Karlsson et al., 2021; Serikova et al., 2019), Alaska: (Sepulveda-Jauregui et al., 2015)). Despite 
these advancements, more observations from these poorly monitored areas would help to improve estimates of 
global inland water CO2 emissions.

Further, small water bodies require more attention in sampling campaigns. Holgerson and Raymond (2016) have 
highlighted the potentially important contribution of small lakes and ponds to global inland water CO2 emissions. 
However, a regionalized estimate was not yet possible as observations of emission rates are still scarce, and more 
importantly, as no spatially explicit data set yet exists that would represent such small water bodies. Datasets that 
present the smallest water bodies (<1 km 2) reliably would help to better integrate these important CO2 sources 
into regionalized, global estimates.

Finally, increasing the number, variety and representativeness of investigated systems is only one step to reduce 
uncertainties in large-scale estimates of inland water CO2 emissions. Temporal and small-scale spatial variations 
with small stream networks (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017) and with 
lakes (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017) and reservoirs (Colas et al., 2020) 
are substantial, and the choice of one or few sampling locations and a limited measurement period lead to large 
uncertainties and may introduce biases in the flux estimate for the whole waterbody. Improved investigation of 
CO2 budgets of single systems requires measurements at various locations within a stream network or water 
body. Further, for reservoirs, observations of turbine emissions and of the release of CO2 rich bottom waters from 
dams are required to better constrain these important emission pathways that are often ignored in large-scale 
assessments. In addition, the observations should be taken over a time period long enough to assess seasonal and 
inter-annual variability, and at a high enough frequency to assess short-term variations, including diurnal varia-
tions. In particular, data sets covering longer time periods such as those assembled for the US (Jones et al., 2003), 
China (Ran et al., 2021) and the boreal biome (Lapierre et al., 2013) are crucially needed to evaluate the extent 
to which trends simulated by LSMs are realistic (Regnier et al., 2022). The development and deployment of auto-
mated data loggers is a promising strategy for achieving this objective (Bastviken et al., 2015).

4.  Inland Water CH4 Budget
4.1.  Overview of Existing Estimates

Global estimates of aquatic CH4 emission range from 1.5 to 30 Tg CH4 yr −1 for streams and rivers, from 8 to 
151 Tg CH4 yr −1 for lakes, from 9.8 to 52 Tg CH4 yr −1 for reservoirs, and from 16 to 331 Tg CH4 yr −1 for estimates 
that lumped lakes and reservoirs together (Table 3, Figure 1). The range in these emission estimates is generally 
more dramatic than for either CO2 or N2O (see Sections 3 and 5, respectively), with the exception of global CO2 
emission estimates from rivers and streams.

Some of the variation in global CH4 emission estimates is due to large differences in the waterbody surface 
areas applied. For example, the earliest estimate of CH4 emissions from reservoirs used a very rough estimate of 
surface area, multiplying the surface area of reservoirs in the World Register of Dams by a factor of four under 
the assumption that this would better represent the total surface area including small reservoirs and farm ponds 
not included in that register (St. Louis et al., 2000). This approach resulted in a surface area that is approximately 
three times larger than any subsequent estimate. Conversely, the earliest estimate from streams and rivers was 
conservative in that it applied a surface area for larger rivers only (quantifiable from global maps as the GLWD; 
Bastviken et al., 2011), resulting in approximately a factor of two reduction compared to subsequent estimates 
that also account for smaller rivers and streams. While most global estimates have ignored ice cover, Johnson 
et al. (2021) produced an estimate of reservoir emissions that accounted for this effect and which resulted in a 
CH4 emission of 10 Tg CH4 yr −1 that is half or less of any previous assessment. Harrison et al. (2021) incor-
porated ice cover correction into their global reservoir emission estimate, resulting in similarly low emissions 
from reservoir surfaces (9.8 Tg CH4 yr −1), but still yielded a higher total flux due to the inclusion of reservoir 
turbine degassing (22 Tg CH4 yr −1). Rosentreter et al. (2021) also incorporated an ice cover correction into their 
assessment of global river (30 Tg CH4 yr −1), lake (151 Tg CH4 yr −1), and reservoir (24 Tg CH4 yr −1) emissions 
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(estimates upscaled from mean emission rates), but in addition also an ice melt overturn correction that reduced 
the impact of ice cover. Moreover, their corrections did not result in a substantial lowering of the global flux due 
to increases in the magnitude of areal emission rates applied. The mean areal emission rates applied to upscaling 
efforts vary by approximately 2, 3, and 10-fold for reservoirs, lakes, and rivers respectively. In general, there is 
a temporal trend wherein older data sets have lower average areal emission rates than newer data sets. Part of 
this trend is due to the treatment of ebullition measurements in older emission estimates. Some global estimates 
summarized diffusive-only estimates of methane emission (Holgerson & Raymond, 2016; Stanley et al., 2016) 
while others combined diffusive only areal fluxes with ebullitive + diffusive estimates without differentiating one 
from the other (St. Louis et al., 2000). More recent estimates (Johnson et al., 2021, 2022; Rosentreter et al., 2021) 
only included studies that estimated both ebullition and diffusion together. Increasing average areal emission esti-
mates may also be due to the increased likelihood of sampling right-skewed data as sample size for water bodies 
increases (see Wik et al., 2016). For example, a recent data set of lake and reservoir CH4 emissions contains 
some of the highest mean areal fluxes, with about 65% of the estimates contained therein published since 2015 
(Rosentreter et al., 2021).

Variation in binned areal emissions (e.g., by latitude, size, and chlorophyll-a) are even larger. For example, Rosen-
treter et al. (2021) reported an average areal CH4 flux from the smallest lakes (<0.001 km 2) that is nearly an order 
of magnitude higher than from lakes in the 0.1–1 km 2 size category, making these smallest systems responsible 
for 38% of the total lake CH4 emissions (Rosenteter et al., 2021; Table 3). In addition, Bastviken et al. (2011) 

Table 3 
Existing Global Estimates of Lake, Reservoir, and River CH4 Flux

References ΣCH4em/ΣAwater (g CH4 m −2 yr −1) ΣAwater (10 6 km 2) ΣCH4 em (Tg CH4 yr −1) Method

Rivers

  Bastviken et al. (2011) 4 0.36 1.5 Avg. rates

  Stanley et al. (2016) 41.4 a 0.65 27 a Avg. rates

  Rosentreter et al. (2021) 66.5 0.77 30 Avg. rates

Lakes and Reservoirs

  DelSontro et al. (2018) 61.7 3.23–5.36 199–331 Avg. rates

  -"- 33.7 4.42 149 (95–236) b Statistical prediction

  -"- 34.5 5.36 185 (119–295) b Statistical prediction

  -"- 32.2 3.23 104 (67–165) b Statistical prediction

  Holgerson and Raymond (2016) 2.7 a 5.98 16 a Avg. rates

  Stavert et al. (2022) 32.4 2.93 95 Statistical prediction

Lakes (including lakes with dams)

  Bastviken et al. (2004) 0.12–122.9 2.8 8–48 Avg. rates

  Bastviken et al. (2011) 19.2 3.7 72 Avg. rates

  Rosentreter et al. (2021) c 54.1 3.71–5.69 151 Avg. rates

  Johnson et al. (2022) c 15 2.8 42 ± 18 d Model

Reservoirs

  St. Louis et al. (2000) 35 1.5 c 52 Avg. rates

  Bastviken et al. (2011) 40.1 0.5 20 Avg. rates

  Deemer et al. (2016) 58.5 0.31 17 (12–30) b Avg. rates

  Rosentreter et al. (2021) c 63.8 0.26–0.58 24 Avg. rates

  Harrison et al. (2021) c 28.3(62.9) e 0.35 9.8 (22) e Model

  Johnson et al. (2021) c 33.3 0.3 10 Model

Note. For each estimate, the total water surface area (ΣAwater), the total CH4 emission flux (ΣCH4 em) and the area weighted average emission rate (ΣCH4 em/ΣAwater) are 
reported.
 aOnly diffusive emissions.  bLower and upper 90% (Deemer et al., 2016) or 95% (DelSontro et al., 2018) CI.  cEstimate accounts for effects of seasonal ice cover.  dStandard 
error.  eIncludes emissions from turbines.
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reported areal reservoir CH4 emissions from tropical regions that are an order of magnitude larger than in boreal 
regions (Bastviken et al., 2011), although follow-up work suggests that this discrepancy may have more to do with 
a lack of boreal ebullition estimates (Deemer et al., 2016) and the fact that latitude is only a weak predictor for 
reservoir CH4 emission (Deemer & Holgerson, 2021; Johnson et al., 2021). Conversely, Rosentreter et al. (2021) 
report average areal CH4 emissions from rivers that varied by a factor of about four by latitudinal bin, with the 
subtropical region (10–25° absolute latitude) producing the highest areal emissions and the temperate region 
(25–40° absolute latitude) producing the lowest areal emissions (Rosentreter et al., 2021).

While a variety of upscaling methods have been used to estimate inland water CH4 emission, there does not 
appear to be any directional bias in the resulting estimates, that is one type of approach does not seem to system-
atically produce higher or lower emissions than other approaches. Many early estimates and some more recent 
estimates have applied the simplest empirical upscaling wherein a single areal flux was applied to a global surface 
area of lakes and/or reservoirs (Deemer et al., 2016; DelSontro et al., 2018; St. Louis et al., 2000), and rivers 
(Stanley et al., 2016). Other estimates have binned lakes and reservoirs CH4 fluxes based on latitude (Bastviken 
et al., 2011), waterbody surface area (Bastviken et al., 2004; Holgerson & Raymond, 2016), primary productivity 
(e.g., chlorophyll a concentration; DelSontro et al., 2018), or has used some combination of these approaches 
(Rosentreter et  al.,  2021). For rivers, binning has so far only been based on latitude (Bastviken et  al.,  2011; 
Rosentreter et al., 2021). Finally, the most recent efforts to model lake and reservoir CH4 flux have used a gridded 
approach that considers a variety of factors likely to influence the spatial variations in CH4 emission including 
temperature, nutrients, and latitudinal variation in emission factors (Harrison et al., 2021; Johnson et al., 2021; 
Stavert et al., 2022).

4.2.  Persisting Shortcomings and Future Challenges

4.2.1.  Process Understanding

In the following we discuss our current process understanding of inland water CH4 emissions in the light of 
global scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2 
summarizes the known effects of the major environmental drivers. Significant progress has been made toward 
describing the drivers of lake and reservoir CH4 flux, which may help improve our understanding of the spatial 
and temporal variability in emissions in the future. Specifically, small, shallow, productive, and low latitude lakes 
and reservoirs have been found to show higher areal methane emissions than larger, deeper, less productive, high 
latitude systems (Deemer & Holgerson, 2021). In northern systems, methane emissions are often further binned 
by lake type, with yedoma, peat, and glacial lakes exhibiting different patterns and magnitudes of emission (Kuhn 
et al., 2021; Matthews et al., 2020; Wik et al., 2016). Ebullition is usually reported to be the major emission path 
with flux rates nearly one order of magnitude higher than that of diffusion on average (Bastviken et al., 2011), 
though being less important in deeper parts of standing water bodies (>12 m depth in the study by Grinham 
et al. (2011)). CH4 emissions from turbines and from anoxic hypolimnic water released from dams have been 
shown to be important emission paths (Delwiche et al., 2022; Harrison et al., 2021; Teodoru et al., 2015), but 
are still ignored in most global scale assessments. Less is known about the key drivers of river CH4 flux. Two of 
the three existing global estimates of river and stream CH4 flux use latitude to bin emissions, but the latitudinal 
trend does not appear to describe much of the spatial variability (Rosentreter et al., 2021). The earlier data set 
compiled by Stanley and others contained many estimates from anthropogenically impacted rivers and streams 
(Stanley et al., 2016), and could be one explanation for the high global emission estimate despite only considering 
diffusive fluxes. While for many stream and river systems, CH4 emissions seem indeed to be dominated by the 
diffusive path (Rovelli et al., 2022), ebullition has been reported to contribute substantially to stream CH4 emis-
sions at least locally (Crawford, Lottig, et al., 2014; Rovelli et al., 2022). Further, the effect of nutrient enrichment 
and productivity on river methane emissions has not been established the way it has been for lake and reservoir 
CH4 emissions (Beaulieu et al., 2019). And even for lakes and reservoirs, empirical evidence for this connection 
between productivity and CH4 emissions is limited (R 2 = 0.38 in Beaulieu et al., 2019).

Temperature is generally considered an important predictor of aquatic CH4 emission and relationships between 
temperature and CH4 flux have been used to scale seasonal emissions from reservoirs (Harrison et al., 2021; Johnson 
et al., 2021; Prairie et al., 2021). Such temperature-corrections address biases in many flux observations where 
measurements are focused during the spring-to-fall period whereas lower emissions during the ice-free winter 
period are typically not recorded. Temperature is considered a main driver of CH4 production (Yvon-Durocher 
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et al., 2014), which limits both ebullitive and diffusive emissions. It was however found that ebullition responds 
much more intensely to temperature, in particular with regard to long-term trends. In a series of mesocosm exper-
iments around the Northern Hemisphere, Aben et al. (2017) found that an increase in temperature by 4°C led 
to 51% higher annual ebullitive emissions, while diffusive emissions did not seem to be affected. While there is 
compelling cross-ecosystem evidence of increasing CH4 emission with increasing temperature (Yvon-Durocher 
et al., 2014) there are also examples of systems where CH4 oxidation is able to keep pace or surpass CH4 produc-
tion at higher temperatures (Duc et al., 2010; Shelley et al., 2015). A recent synthesis of CH4 oxidation in lakes 
and reservoirs showed that CH4 oxidation efficiency declines with ecosystem productivity (e.g., trophic status, 
D’Ambrosio & Harrison, 2021). In contrast, other studies have shown an increase in CH4 oxidation with produc-
tivity (Grasset et al., 2020). Similarly, Sawakuchi et al. (2021) showed experimental evidence that CH4 oxidation 
may be phosphorus-limited in northern lakes, also providing further evidence of more complex interactions 
between lake CH4 dynamics and nutrient levels. The synergetic effects of productivity and temperature as driving 
factors of CH4 emissions, and in particular ebullition as dominant emission path, have been shown in experi-
mental studies (Davidson et al., 2015, 2018). Future work could improve our process understanding of methane 
emission dynamics by disentangling the role of temperature and productivity in driving both total emission and 
the balance between methane production and consumption.

Within a single waterbody, CH4 emissions generally vary substantially in space and time (Wik et  al.,  2016), 
and this variation is likely more substantial than for either CO2 or N2O. This spatial and temporal variability 
has been shown to cause bias in upscaling, where too few measurements in either space or time can lead to 
underestimation of fluxes (Wik et al., 2016). While the regionalization exercise carried out in our companion 
paper (Lauerwald et al., 2023) begins to address seasonality by applying an ice cover and ice melt correction, 
future work should aim to better constrain temporal variability in methane fluxes within single water bodies. 
Temporal variability can arise from seasonal dynamics such as ice melt (Denfeld et  al.,  2018), fall turnover 
(Mayr et al., 2020), seasonal water-level changes (Varadharajan et al., 2010), or in response to phytoplankton 
blooms (Waldo et al., 2021). Diel variation can also be important. Daytime sampling might overestimate CH4 
flux in lakes (Sieczko et al., 2020), but may underestimate it in wetlands (Anthony & MacIntyre, 2016; Godwin 
et al., 2013; Poindexter et al., 2016). Episodic events can also be the source of large temporal variation such as 
water level drops in reservoirs (Harrison et al., 2017), storm-driven drops in hydrostatic pressure (Mattson & 
Likens, 1990) or increases in wind shear stress (Joyce & Jewell, 2003). In connection to seasonal or occasional 
water level drops, it was found that dry falling bed sediments tend to emit CH4 at lower rates than when inundated, 
but are still a stronger source than upland soils (Paranaiba et al., 2022). For rivers, elevated discharge can lead 
to higher methane fluxes, especially in small high-gradient streams where methane is sourced predominantly 
from groundwater (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017). Spatial variability in 
aquatic CH4 fluxes can arise for both biological and physical reasons. In lakes and reservoirs, the main drivers are 
the spatial variability of sedimentation of allochthonous and autochthonous organic matter (Maeck et al., 2013) 
and the reactivity of the sediment organic matter (Sobek et  al.,  2012; Wilkinson et  al.,  2015). Accordingly, 
higher fluxes are observed in inlets (DelSontro et al., 2011), near the shores (Natchimuthu et al., 2016; Peixoto 
et al., 2015) and behind run-of-river dams (Maeck et al., 2013). Further, spatial variability in CH4 fluxes may 
arise from the heterogeneity of the sediment matrix and associated seeps (Walter Anthony & Anthony, 2013). In 
rivers, physical features such as waterfalls can be particularly important sites for CH4 emissions (Natchimuthu, 
Sundgren, et  al.,  2017; Natchimuthu, Wallin, et  al.,  2017). At larger scales, high gradient headwater streams 
comprising <1% of catchment stream surface area can contribute 30% of catchment emissions, emphasizing the 
need to sample throughout a catchment rather than attempting to capture network-wide flux via single measure-
ments at river mouths (Natchimuthu, Wallin, et al., 2017).

4.2.2.  Spatial and Temporal Resolution

At global scale, gridded estimates of inland water CH4 emissions exist for reservoirs (Johnson et  al.,  2021), 
lakes (Johnson et  al.,  2022) and lakes and reservoirs (Stavert et  al.,  2022). For rivers, disaggregating global 
fluxes over broad latitudinal zones (Bastviken et al., 2011; Rosentreter et al., 2021) still seems to be the best 
possible practice. Most existing global estimates for lakes and rivers represent climatologies of annual fluxes 
that do not resolve the seasonal and interannual variability, and longer-term trends. Using a relatively simple, 
process-based model, Johnson et al. (2021, 2022) were able to represent the seasonality in lake and reservoir CH4 
emission forced by temperature and ice-cover as drivers. Long-term trends in lake CH4 emissions due to climate 
change have been predicted for the hol-arctic/boreal region using a more complex process-based model (Tan & 
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Zhuang, 2015a, 2015b). Other complex, process-based models of lake CH4 cycling have been developed (e.g., 
Lake 2.0, Stepanenko et al., 2016), but have not been applied at large-scales. A recent study has hinted at the 
potential of exploiting global lake physical models to estimate changes in lake CH4 cycling (Jansen et al., 2022). 
Combining simulated lake temperature profiles with an empirical equation linking sediment CH4 production rates 
and temperature (Yvon-Durocher et al., 2014), Jansen et al. (2022) predicted relative increases in CH4 production 
rates around the globe. In contrast to CO2 and N2O, no efforts to model river CH4 emissions at regional to global 
scales have been published yet, which may partly be due to the relative small role of rivers in inland water CH4 
emissions as well as to the complexity of processes involved and the scarcity of data for model calibration and 
evaluation.

4.2.3.  Data Requirements

One critical uncertainty for the inland water CH4 budget is the inability to resolve the location and total surface 
area of the smallest lakes and impoundments. Waterbodies <0.001 km 2 have been recently estimated to comprise 
37% of the lentic methane flux (Rosentreter et  al.,  2021). Along the same lines, Grinham et  al.  (2018) have 
estimated for Australia that CH4 emissions from impoundments <0.1 km 2 equal about 10% of the national land 
use, land use change and forestry sector emissions. Given high variability in areal emissions from these smallest 
water bodies it is also important to increase effort in sampling these systems to reduce uncertainty. In addition 
to very small lakes and impoundments, sampling effort should be increased for large lakes (>1 km 2) (Deemer 
& Holgerson, 2021). Given the additional importance of depth and productivity in regulating lentic CH4 flux, 
spatially resolved information about the depth, chlorophyll a, and oxygen concentrations as well as quality and 
quantity of deposited organic matter in lakes and reservoirs will also help improve regional and global budgets 
(and overall upscaling efforts). More generally, systematic, long-term monitoring programs are needed which 
account for the high spatio-temporal variability in areal emission rates, in particular for ebullition, to better 
constrain the emissions even for individual, monitored systems. Long time-series of observations may finally 
help to better constrain the evolution of CH4 production and emission in response to environmental change 
and climate extremes like droughts and heatwaves. This need for more and better observational data can hardly 
be satisfied with conventional methods, but would require the deployment of automatized observation systems 
and the use of remote sensing data, for which more research and development is needed. For reservoirs, finally, 
more observations of CH4 emissions from turbines and of downstream release of CH4 rich waters from dams 
are required to better constrain these important emission pathways, and to better assess the full impact of river 
daming on the CH4 budget.

For rivers, many estimates of CH4 emission rely on pairing concentration data with estimates of gas transfer 
(kGHG) especially in low order streams (see Section 2.1 for further discussion). These low order systems have 
been observed to contribute disproportionately to CH4 emissions at the catchment network scale despite very low 
CH4 concentrations (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017), highlighting the 
need to constrain local values of kGHG and/or perfect a universal physical model. Further, while most observations 
of stream CH4 emissions concentrate on the diffusive pathway, ebullitive emissions can be important locally in 
small streams (Crawford, Stanley, et al., 2014). The development and application of empirical methods to directly 
measure the total GHG flux from low order streams would help constrain emissions from these systems.

5.  Inland Water N2O Budget
5.1.  Overview of Existing Estimates

N2O emissions from inland waters are poorly constrained at the global scale, which is visible in the largely 
divergent global estimates listed in Table 4 and shown in Figure 1: 0.05–3.3 Tg N2O yr −1 for streams and rivers 
and 0.1–0.6 Tg   N2O yr −1 for lakes and reservoirs. Most existing global estimates of riverine N2O emissions 
are based on modeled N loads from watersheds and emission factors (EFs), in stark contrast to CO2 and CH4 
global estimates, which are calculated mainly by empirically upscaling local observations. N2O is produced as 
an intermediate product in denitrification, that is, the reduction of nitrate to N2, but also as a by-product in the 
process of nitrification, that is, the oxidation of ammonium to nitrate (Canfield et al., 2010). The amount of N2O 
produced and emitted due to these processes depends on environmental and hydrological factors including water 
temperature, N availability and speciation, water body depth, oxygen availability, pH, and labile carbon concen-
trations (Clough et al., 2007; Hu et al., 2019; Outram & Hiscock, 2012; Rosamond et al., 2012; Venkiteswaran 
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et al., 2014). EFs can be defined as average ratios of N2O emission to denitrification and nitrification fluxes. 
However, it is difficult to quantify nitrification and denitrification fluxes for entire river systems, and even more 
so at the global scale. Therefore, EFs have traditionally been established by linking N2O emissions directly to 
riverine N loads, implicitly assuming a certain fraction of riverine N loads to be nitrified and denitrified. Mosier 
et al. (1998) assumed that N leached to the river network was denitrified once and nitrified twice along the river 
network. Further assuming that 0.25% of both nitrified and denitrified N is emitted as N2O, they concluded that 
0.75% of the total N leached to the river is emitted as N2O. Applying that percentage as EF directly to riverine 
N loads, they estimated a global riverine N2O emission of 1.1 Tg N2O yr −1. The methodology and EFs estab-
lished by Mosier et al. (1998) also served to assess the river N2O emissions in the 5th Assessment Report of the 
IPCC (2013).

In a similar approach, Seitzinger and Kroeze (1998) and Seitzinger et al. (2000) estimated N2O emissions from 
only the dissolved inorganic fraction (nitrate, nitrite and ammonium) of N (DIN) leached to rivers. Applying 

Table 4 
Global Scale Estimates of Inland Water N2O Emissions

References
ΣN2Oem/ΣAwater 

(mg N2O m −2 yr −1) ΣAwater (10 6 km 2) ΣN2Oem (Gg N2O yr −1) Method

Rivers

  Seitzinger and Kroeze (1998) and Seitzinger et al. (2000) 1,650 (300–2,940) c Emission factors

  Kroeze et al. (2005) 1,975 Emission factors

  Mosier et al. (1998) 1,100 Emission factors

  De Klein et al. (2006) 550 Emission factors

  Kroeze et al. (2010) 470–3,300 Emission factors

  Beaulieu et al. (2011) 1,070 Emission factors

  Hu et al. (2016) 51 (19–105) a Statistical prediction

  Maavara et al. (2019) 72–78 c Model

  Yao et al. (2020) 458 ± 92 b Model

  ", stream orders 1–3 387 ± 93 b Model

  ", stream orders ≥4 71 ± 23 b Model

  Marzadri et al. (2021) 114 Machine learning + Model

  ", stream orders 1–3 76 Machine learning + Model

  ", stream orders ≥4 38 Machine learning + Model

Lakes and reservoirs

  DelSontro et al. (2018) 78 3.23–5.36 252–424 Avg. rates

  DelSontro et al. (2018) 106 4.42 470 (300–710) a Statistical prediction

  DelSontro et al. (2018) 112 5.36 600 (380–860) a Statistical prediction

  DelSontro et al. (2018) 127 3.23 410 (250–600) a Statistical prediction

  Soued et al. (2016) 235 4.20 985 ± 465 b Avg. rates

  Lauerwald et al. (2019) 34 2.93 98 ± 64 c Model

Lakes (including lakes with dams)

  Lauerwald et al. (2019) 17 2.68 46 ± 29 c Model

Reservoirs

  Deemer et al. (2016) 152 0.31 47 (31–110) a Avg. rates

  Maavara et al. (2019) 148–250 c 0.45 67–112 c Model

  Lauerwald et al. (2019) 185 0.25 52 ± 33 c Model

Note. For each estimate, the total water surface area (ΣAwater), the total N2O emission flux (ΣN2Oem) and the area weighted average emission rate (ΣN2Oem/ΣAwater) are 
reported.
 aLower and upper 90% (Deemer et al., 2016; Lauerwald et al., 2015; Raymond et al., 2013) or 95% (DelSontro et al., 2018) CI.  bStandard error.  cMin and max estimate.
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EFs of 0.3% and 3% relative to riverine DIN load they estimated a global riverine N2O emission of 1.7 (range 
0.3–2.9)  Tg  N2O/yr. Over the following decade, these two EF approaches, that is, the one of Seitzinger and 
Kroeze (1998) and the IPCC approach derived from Mosier et al. (1998), were updated, yielding consistently 
large emission fluxes. Kroeze et al. (2005) estimated 2 Tg N2O/yr, and later Kroeze et al. (2010) revised their 
estimate to 0.5–3.3 Tg N2O/yr, both using modeled DIN loads and EFs of 0.3% and 3%. De Klein et al. (2006) 
predicted a global riverine N2O emission of 0.6 Tg N2O/yr, while Beaulieu et al. (2011) calculated an emission 
flux of 1.1 Tg N2O/yr, both using the IPCC approach.

Studies conducted over the last 5–7 years (Hu et  al.,  2016; Maavara et  al.,  2019; Marzadri et  al.,  2021; Yao 
et  al.,  2020) consistently calculate N2O emissions for rivers that are substantially lower than those of the 
decades before (Figure 1). Hu et al. (2016)'s empirical approach estimated global riverine N2O emissions of 51 
(19–105) Gg N2O/yr. Further, the authors report EFs relative to riverine DIN loads of 0.16%–0.19% to be real-
istic, suggesting the EFs used by Seitzinger and Kroeze (1998) to be unrealistically high. Maavara et al. (2019)'s 
spatially resolved stochastic-mechanistic river-continuum model is the first to explicitly represent N transfor-
mation processes, and results agreed well with Hu et al.’s predictions, with a global flux of 72–78 Gg N2O/yr. 
Moreover, Maavara et al.  (2019) estimated that only 7% and 9% of the total N loads are respectively denitri-
fied and nitrified in the global river network. Thus, the assumption behind the IPCC AR5 approach that all N 
leached to rivers is once denitrified and twice nitrified also appears to be unrealistic and responsible for gross 
overestimations.

The studies by Yao et al. (2020) and Marzadri et al. (2021) are complementary as they provide estimates that 
also account for small streams that contribute disproportionately to the overall riverine N2O emissions, but which 
were ignored in earlier estimates. Marzadri et al.  (2021), using a machine learning based approach, reach an 
estimate of about 114 Gg N2O  yr −1, of which about half is contributed by headwater streams. Note that this is 
only a near-global estimate which excludes high latitudes >60° N, which can however be assumed to be small 
contributors to the global emission due to low N loads of the corresponding river systems (Maavara et al., 2019). 
Yao et al. (2020), using the land surface model DLEM, estimate riverine N2O emissions at even higher values 
of 458 ± 92 Gg N2O yr −1, of which 80% stems from small stream emissions up to stream order 3. In their simu-
lations, emissions from these small streams are largely fed by N2O inputs from groundwater and saturated soils, 
which are not accounted for in the other studies. Marzadri et al. (2021), although not representing groundwater 
N2O inputs, still estimate that about ⅔ of total riverine N2O emissions is contributed by small streams of orders 3 
and lower (see Table 4). In these small streams, nitrification-denitrification processes occur mainly within hypor-
heic and benthic zones, whereas in larger rivers, the contribution of water column exceeds that of subsurface 
environments in contributing to N2O production (Marzadri et al., 2021). The estimates for larger rivers only by 
Yao et al. (2020) and Marzadri et al. (2021) agree better with those by Hu et al. (2016) and Maavara et al. (2019).

For lakes and reservoirs, the first global estimates were only published recently. Soued et al. (2016) and DelSontro 
et al. (2018) gave estimates for the entirety of lakes and reservoirs, without distinguishing between both types of 
systems while Deemer et al. (2016) estimated N2O emission from reservoirs only. Maavara et al. (2019), in their 
stochastic-mechanistic model of N2O emissions from river networks, included explicit emission estimates for 
reservoirs. Lauerwald et al. (2019) then adapted that model to estimate N2O emission from both reservoirs and 
lakes. Soued et al. (2016) performed a simple upscaling based on averaged observed N2O emissions rates for three 
latitudinal zones, which yielded with 985 ± 465 Gg N2O yr −1 the highest of the emission fluxes from lakes and 
reservoirs listed in Table 4. A major limitation of this study was the poor global coverage of observations. While 
they used data from 298 systems worldwide, they had observations from only six systems for their low latitude 
estimate, all belonging to the reservoir-class from the study of Guérin et al. (2006). This fact is critical as in their 
upscaling, lakes and reservoirs from that zone contributed about 80% of their global estimate of N2O emissions. 
Moreover, some of these reservoirs showed extremely high emission rates due to the fact that soils and biomass 
had not been removed before dam closure, which contributed massively to GHG production and emission (Guérin 
et al., 2006). It is thus highly probable that these reservoirs are not representative for low latitude lakes and reser-
voirs, as later discussed in detail in Lauerwald et al. (2019).

Similar to their estimates of lake and reservoir CO2 and CH4 emissions (see Sections  3 and  4), DelSontro 
et  al.  (2018) followed two distinct methodological approaches to obtain their global estimates: a direct 
upscaling approach based on a global average of observed N2O emission rates (252–346 Gg N2O yr −1), and a 
statistical approach using lake/reservoir size classes and classes of chlorophyll-a concentrations as predictors 
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(409–597 Gg N2O  yr −1). Note that the second approach did not lead to a spatially explicit estimate, as only global, 
statistical distributions of size classes and chlorophyll-a concentrations were used for upscaling. Further, the 
statistical upscaling equation had a very low predictive power with an R 2 below 0.1.

Deemer et al. (2016) performed a simple upscaling to estimate N2O emissions from reservoirs only, obtaining a 
global flux of about 47 Gg N2O yr −1. Despite the very different approach, Maavara et al. (2019) and Lauerwald 
et al. (2019) estimated global N2O emissions from reservoirs that are comparable to those by Deemer et al. (2016) 
(see Table 4). For the entirety of lakes and reservoirs, Lauerwald et al. (2019) by far the lowest global estimate of 
99 ± 64 Gg N2O yr −1, and which is only about one tenth of what was estimated by Soued et al. (2016). Comparing 
their spatially explicit estimate to regional estimates based on direct upscaling, Lauerwald et al. (2019) found that 
their model results are reasonable. Moreover, they estimated that lakes, although contributing more than 90% 
of  the global surface area of standing water bodies, contribute only about half of the emission flux as a result of 
their much lower average emission rates. This indicates that it is problematic to lump together lakes and reservoirs 
in global upscaling exercises.

5.2.  Persisting Shortcomings and Future Challenges

5.2.1.  Process Understanding

In the following we discuss our current process understanding of inland water N2O emissions in the light of 
global scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2 
summarizes the known effects of the major environmental drivers. While a basic understanding of processes 
involved in aquatic N2O cycling exists from a certain number of field studies, the quantification of these processes 
in large-scale estimates is still difficult due to their complexity and the unavailability of sufficient data sets to 
support their assessment. For this reason, empirical EFs have long been used to estimate riverine N2O emis-
sions directly from N loads, assuming a constant fraction of N loads to be nitrified and denitrified within the 
rivers, independent of the size of the river network and its ecoclimatological setting. While newer, model-based 
studies proved the worth of calculating more precise estimates of nitrification and denitrification fluxes taking 
into account physical constraints such as water residence time and temperature (Maavara et al., 2019; Marzadri 
et al., 2021; Yao et al., 2020), the actual production and/or emission of N2O related to these processes is still 
based on simple, empirical factors. As N2O is formed only as a by-product of nitrification and as an intermediate 
product in the denitrification process, the actual fraction of N2O produced from these processes is highly variable 
and not yet possible to reproduce based on mechanistic formulations.

A better assessment of inland water N2O cycling would require the representation of the vertical profile of oxygen 
concentrations through the water column and benthic sediments. Of particular importance is the position of the 
oxycline, that is, the rather narrow zone of steep decrease in oxygen concentrations, separating an oxic upper 
layer, where nitrification is the dominant process, from an anoxic lower layer, where denitrification dominates. 
The oxycline itself is a hot-spot of N2O production because here, anoxic water rich in ammonium mixes with 
oxygen-rich waters, promoting nitrification, while in turn nitrate produced from nitrification diffuses down and 
fuels denitrification in the anoxic zone (Beaulieu et al., 2015). Depending on water depth, water column mixing 
and sediment oxygen consumption, the oxycline lies either in the water column or sediment column. Following 
the conceptual model by Marzadri et al. (2017, 2021), the position of the oxycline, and thus the relative impor-
tance of water column versus sediment processes in N2O production, changes along the river network. In head-
waters, the oxycline is situated in the bed sediments and nitrification of emergent, ammonium-rich groundwater 
in streambed sediments is the dominant source of N2O. The importance of nitrification decreases downstream 
while the oxycline moves up from the sediment into the water column, until finally denitrification in the lower 
water column is the dominant source of N2O. Further, it was shown that dissolved N2O inputs from groundwater 
and waterlogged soils feed an overproportional contribution of headwaters to riverine N2O emissions (Billen 
et al., 2020; Yao et al., 2020). Note that the global assessments of river N2O emissions by Marzadri et al. (2021) 
and Maavara et al. (2019) do not account for groundwater N2O inputs which represent an important part of inland 
water N2O emissions.

For lakes and reservoirs, the importance of processes in the benthic zone has been implicitly taken into account by 
the use of “hydraulic load” to scale denitrification rates (Harrison et al., 2009). Hydraulic load has been defined 
as the ratio of water inflow to water surface area, which is identical to the ratio of average lake or reservoir 
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depth over water residence time (Harrison et al., 2009). The process of denitrification is assigned an “apparent 
settling velocity” which expresses rates of nitrification or denitrification in the benthic zone relative to water 
column depth. The deeper the average lake or reservoir, the longer it takes until the whole volume is nitrified or 
denitrified. However, this approach does not take into account the actual shape of the lake/reservoir bed and the 
proportions of shallow, littoral zones, where the oxycline and thus main source of emitted N2O lies in the bed 
sediments (Liikanen et al., 2003; Zhu et al., 2015), versus the deeper zones, where processes in the water column 
are the dominant source of N2O (Mengis et al., 1997). While streams and rivers are usually well mixed, deeper 
lakes and reservoirs may be temporally stratified, with a pronounced oxycline within the water column—and 
important consequences for N2O cycling, which have so far not been taken into account in large-scale assess-
ments. During stratification, only the top layer (epilimnion) is exchangeable with the atmosphere and thus well 
oxygenated. Then, nitrification in the epilimnion is the main source of N2O emissions (Beaulieu et al., 2015; 
Mengis et al., 1997). In anoxic parts below the oxycline (hypolimnion), denitrification prevails, which can be 
a source or sink of N2O, depending on the availability of nitrate for reduction (Beaulieu et al., 2015; Mengis 
et al., 1997). As this anoxic water may also be rich in ammonium from the in situ decomposition of organic 
matter, mixing with more oxygenated, epilimnetic waters during lake turn-over may represent a “hot moment” for 
nitrification and N2O emissions (Beaulieu et al., 2015; Roland et al., 2017). However, a quantitative assessment of 
this hot-moment at large scales is not yet possible due to the lack of observational data. Moreover, while a certain 
number of studies report measurements of N2O concentrations in the shallow, easy to reach epilimnion, studies 
investigating the deeper profile of N2O concentrations through the hypolimnion are scarce (Beaulieu et al., 2015; 
Mengis et al., 1997).

Further, also resolving the horizontal zonation would help to better assess the overall N2O budget of a lake. 
Within larger lakes, shallow littoral zones have been shown to contribute disproportionately to lake N2O emis-
sions relative to their areal extent (Zhu et al., 2015). Here, benthic sediments contribute most to N2O produc-
tion, while in the deeper, pelagic zone, N2O is produced in the water column, and more specifically, under 
stratified conditions with a pronounced oxycline, in the epilimnion (Liikanen et al., 2003; Mengis et al., 1997). 
Yet, most observations are constrained to pelagic zones, which dominate lakes and reservoirs with regard to 
surface area, but not necessarily emissions. Further, strong horizontal gradients in N2O emissions rates may 
be formed towards the points of riverine inflows of reactive N (Miao et  al.,  2020). However, few studies 
conduct systematic sampling which could reveal and account for these internal spatial variations. In contrast 
to for instance CH4 or CO2, drawdown areas of reservoirs do not appear to emit more N2O than upland soils 
(Hao et al., 2019). Also, seasonal streambed drying was not found to increase riverine N2O emissions (Tonina 
et al., 2021).

In general, observational studies are skewed towards temperate, eutrophic systems in developed countries, which 
are easily accessible for sampling and which represent potentially important N2O sources related to water quality 
issues caused by agricultural non-point sources and sewage water injections. In boreal regions where N loads are 
usually lower, it was demonstrated that a substantial proportion of aquatic systems is undersaturated with N2O 
and thus rather act as sinks for this GHG (Kortelainen et al., 2020; Soued et al., 2016). Further, as for CO2 and 
CH4, observations of smaller water bodies are generally underrepresented. Interestingly, though small, agricul-
tural ponds could be hypothesized to be strong GHG emitters, a study of 101 such systems across Canada (Webb 
et al., 2019) has shown that about two thirds of these systems are on the contrary N2O sinks. In conclusion, global 
inland water N2O emissions may have been overestimated due to the bias in observed systems outlined above. 
Moreover, most estimation approaches, particularly the use of EFs, do not permit for representing inland waters 
as N2O sinks. Finally, samples from temperate and high latitude systems are skewed towards summer months, 
while the full seasonal cycle is only rarely covered in observational studies. Kortelainen et al. (2020) have demon-
strated in their study on Finnish lakes that there is a strong seasonality in N2O concentrations and emission rates, 
with much higher values in winter when low autotrophic production allows for higher nitrate concentrations. A 
flux estimate based on summer-time observations only would thus have led to an underestimation by a factor of 
four. Assuming that similar seasonal patterns are to be observed in other temperate to high latitude systems, and 
that in particular lake turnover as hot moment of N2O emissions is not well captured in observations, we can 
hypothesize that the non-representativeness of sampling times might have introduced a negative bias in upscaling 
exercises. Note finally that the non-representativeness of observations does not only affect estimates based on 
direct upscaling of average emission rates. With the lack of representative observational data for calibration and 
validation, also model-based studies will remain of limited validity.
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5.2.2.  Spatial and Temporal Resolution

For riverine systems, global, spatially explicit estimates of N2O emissions have been achieved by numerous studies. 
The spatial resolution ranges from large river basins (Hu et al., 2016), over gridded estimates (Yao et al., 2020) to 
estimates per stream segment (Marzadri et al., 2021). For lakes, Soued et al. (2016) have resolved N2O emissions 
for three broad latitudinal bands and the only published spatially explicit, gridded estimate is that of Lauerwald 
et al. (2019). Most of these studies represent a climatology of average annual fluxes. Only the process-based model 
by Yao et al. (2020) allows for spatio-temporally resolved simulation results which cover seasonality, interannual 
variability and long-term temporal trends. So far, this model includes rivers and reservoirs. For lakes, a global 
scale, process-based model that permits for temporally varying N2O emissions is still missing. In line with what 
was discussed in the preceding subsection, such a model would need to couple lake physics and biogeochemistry.

5.2.3.  Data Requirements

To achieve better global estimates of inland water N2O emissions, more observational data is needed, in particu-
lar from high latitude and tropical areas. Also, small lentic water bodies, including natural and farm ponds, and 
ponds used for aquaculture, are so far undersampled. Finally, the bulk of available observation data is biased by 
a tendency to study eutrophic systems that promise high emission rates, while oligotrophic systems that may 
even be sinks are underrepresented (Soued et  al., 2016). In general, more systematic observational programs 
permitting the quantification of seasonality and the impact of seasonal ice cover, lake turn-over and algae blooms 
to annual emissions are needed to avoid biased upscaling of annual flux estimates. Finally, long-time series are 
needed to assess the long-term evolution of inland water N2O emissions and to evaluate process-based models.

To support the application of more advanced upscaling approaches in the estimation of inland water N2O budgets, 
including process-based models, better data on environmental drivers and boundary conditions are required. That 
includes the representation of reactive N species to inland waters. While global estimates of total N and DIN  inputs 
to the river network exist (Mayorga et al., 2010), it would be even better to have information on the more specific 
inputs of nitrate, ammonium, and dissolved N2O to set the boundary conditions for processes involved in N2O 
production, reduction and emissions. Further, similar to what was pointed out for CH4 (Section 4.2.3), the model 
representation of N and N2O cycling in inland water would profit from data sets on bed morphology of the water 
body and properties of bed sediments. Marzadri et al. (2021) have used a machine learning approach to estimate 
all these boundary conditions for the application of their model of stream N2O production. While this seems 
a promising strategy, this approach could be steadily improved with new findings from field observations and 
improved data sets of predictor variables. Also for lakes and reservoirs, only estimates of volume and average lake 
depth are available (Messager et al., 2016), which could be steadily improved using a similar strategy. Finally, 
for the better assessment of lake and reservoir N2O budgets, physical processes such as stratification, mixing 
and ice cover would need to be represented dynamically. For example, process-based models of lake physical 
processes have been developed and even implemented into land surface models for global scale application 
(Subin et al., 2012) and the outputs of such models may be included in future lake and reservoir N2O models.

6.  Conclusions and Outlook
The number of global scale estimates of inland water GHG emissions is constantly increasing, at an accelerated 
step. For CO2 and CH4, we see a tendency for increasing numbers in estimates of global scale fluxes following the 
inclusion of water bodies which contribute significantly to the overall water surface area, and disproportionally to 
overall emissions. For water bodies above a certain size (e.g., stream orders, lake size), estimates of average emis-
sion rates seem to converge in latest estimates. Major discrepancies persist however with regard to the assumed 
water surface area and the statistical distribution of water body size classes, in particular for small lakes and 
impoundments (<10 ha), and ponds. For riverine N2O emissions on the contrary, we find newer estimates to be 
lower than older estimates, following a change in methodologies moving away from the application of emission 
factors toward more process oriented modeling. For lake N2O emissions, discrepancies in assumed water surface 
area and distribution of lake size classes still play a role as well, but not as strongly as for CO2 and CH4 because 
small water bodies do not appear to contribute disproportionately to the total emission flux.

While uncertainties in global scale assessment of inland water GHG emissions persist, developments in monitor-
ing and upscaling techniques are envisageable to overcome these uncertainties, as discussed in this review paper 
and summarized in Table A1. There is ongoing work to improve spatially explicit data sets of inland water surface 
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areas that will help improve global scale estimates. For streams and rivers, global scale estimates have recently 
been largely improved combining high resolution remote sensing of water surface areas and statistical predic-
tion for headwater streams which are too narrow to be detected (GRWL—Allen & Pavelsky, 2018). A similar 
strategy may also be the solution for lakes and reservoirs, combining data from inventories and remote sensing. 
Inventories are more reliable but less comprehensive as they exclude smallest water bodies and are susceptible 
to geographical biases due to differences between national data sources. Remote sensing is able to detect smaller 
water bodies but is prone to contaminations with wrongly attributed water surface areas if unsupervised algo-
rithms are applied and checks for ground truth in sufficient quantity and quality are not possible.

More importantly, improving inland water GHG emissions estimates requires more fieldwork to improve quantity 
and quality of observational data. In particular, we need more data from systems in remote areas of the high lati-
tudes and the tropics, and systematic measurements with time-series of sufficient length and frequency of obser-
vations to better capture seasonal and inter-annual variability in fluxes as well as long-term trends in response to 
environmental change. In addition, more attention has to be paid to hot-spots and hot-moments of inland water 
GHG emissions, which likely contribute a substantial fraction of overall emissions.

For upscaling and predictions to achieve better global scale estimates, recent developments of machine 
learning-based approaches and process-oriented models seem promising. These approaches help to better 
constrain the spatial-temporal variability in global scale estimates, which allows to better include inland water 
GHG emissions in regionalized budget efforts such as RECCAP-2, but also in top-down approaches based on 
atmospheric inversions, further reducing uncertainties in global estimates.

Appendix A
Table A1 summarizes the main take home messages from our review.

Table A1 
General Uncertainties and Knowledge Gaps That Persist With Regard to Regional to Global Scale Estimation of Inland Water GHG Emissions, and 
Recommendations for Monitoring and Upscaling

Uncertainty/knowledge gap Recommendations for monitoring Recommendations for upscaling

Source attribution of emitted GHGs difficult: 
produced in situ or imported from upstream, 
surrounding soils or groundwater?

Watershed scale monitoring with systematic 
observations of GHG sources and sinks in 
interconnected upland, wetland and inland water 
systems, and of lateral GHG transfers along 
terrestrial-aquatic continuum.

Process based models that represent sources and 
sinks of GHGs within the inland waters and their 
catchment, including the reactive transport along 
the terrestrial-aquatic continuum.

Smallest water bodies contribute overproportionally 
to CO2 and CH4 emissions, but are not well 
constrained yet at global scale.

More systematic observations of GHG emissions 
from small lakes, ponds and streams are needed.

Need for reliable spatial data sets of small inland 
waters from remote sensing with extensive 
ground truthing. Categories of climate and land 
use may be useful for upscaling.

Internal variability needs to be better constrained, 
especially in large waterbodies with diffuse 
inputs, and in reservoirs that flood heterogeneous 
landscapes.

Systematic observations along internal spatial 
gradients (along depth gradients, distance to 
shore, position to inflows) are required.

More detailed information on geometry of 
waterbodies, on inflows of water and sediment, 
and on reservoir management required to predict 
internal heterogeneity of GHG fluxes.

Temporal variability (diurnal, event-based, seasonal, 
interannual) and contributions from hot moments 
(e.g. spring freshet, flood events, ice-out, lake 
turn-over, algae blooms, reservoir drawdowns) 
are poorly constrained at global scale.

Time series of observations needed, which:  
- are long enough to capture inter-annual 
variability and the effects of climate extremes 
such as droughts and heat waves;  
- are frequent enough to capture hot moments 
(automatic sensors)  
-also cover night-time fluxes.

Statistic or process based models that use the 
main meteorological (temperature, radiation, 
wind speed, air pressure, precipitation) and 
hydrodynamic (fluctuations of water flows and 
water table, thermal stratification vs. mixing 
over lakes) drivers of the physical and biological 
processes behind inland water GHG dynamics.

Uneven geographic distribution of observations may 
lead to biases in upscaling. Higher uncertainties 
persist for high latitude, high elevation, arid, and 
tropical systems.

More long-term monitoring networks in remote 
tropical, arid, high elevation, and high latitude 
areas are required.

Upscaling techniques are required that bin data per 
climate zone, or use relevant climatic drivers as 
predictors or as input for process based models.

Contributions from ebullition versus diffusion, and 
other paths like emission from turbines not well 
constrained.

More systematic observations of inland water GHG 
budgets are needed that cover all important 
emission paths.

For upscaling, the different emissions paths need to 
be explicitly represented and their specific drivers 
taken into account.
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Data Availability Statement
The data that support the findings of this study are available at figshare (https://doi.org/10.6084/
m9.figshare.22336465.v1).
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