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Abstract

An ontology typically provides a vocabulary that describes a domain
of interest and a specification of the meaning of terms used in the vo-
cabulary. Depending on the precision of this specification, the notion of
ontology encompasses several data and conceptual models, for example,
classifications, database schemas, fully axiomatized theories. Ontologies
tend to be put everywhere. They are viewed as the silver bullet for many
applications, such as information integration, peer-to-peer systems, elec-
tronic commerce, semantic web services, social networks, and so on. They,
indeed, are a practical means to conceptualize what is expressed in a com-
puter format. However, in open or evolving systems, such as the semantic
web, different parties would, in general, adopt different ontologies. Thus,
just using ontologies does not reduce heterogeneity: it raises heterogeneity

problems to a higher level.

Ontology matching is a promising solution to the semantic heterogeneity
problem. It finds correspondences between semantically related entities of
the ontologies. These correspondences can be used for various tasks, such
as ontology merging, query answering, data translation, or for navigation
on the semantic web. Thus, matching ontologies enables the knowledge and
data expressed in the matched ontologies to interoperate. This dissertation
focuses only on the task of discovering correspondences between various

forms of ontologies with a particular consideration of classifications.



Many various solutions of matching have been proposed so far. This
work concentrates on a schema-based solution, namely a solution exploiting
only the schema information, and not considering instance information.
To ground the choice of the solution, this thesis provides a comprehensive
coverage of the schema-based approaches used in ontology matching as well
as their applications by reviewing state of the art in the field in a uniform
way. It also points out how the approach developed in the thesis fits in
with existing work.

The thesis proposes the so-called semantic matching approach. This
approach is based on two key ideas. The first is that correspondences
are calculated between entities of ontologies by computing logical relations
(e.g., equivalence, subsumption, disjointness), instead of computing coef-
ficients rating match quality in the [0 1] range, as it is the case in many
other approaches. The second idea is that the relations are determined by
analyzing the meaning which is codified in the elements and the structures
of ontologies. In particular, labels at nodes, written in natural language,
are automatically translated into propositional formulas which explicitly
codify the labels’ intended meaning. This allows the translation of the
matching problem into a propositional validity problem, which can then
be efficiently resolved using sound and complete state of the art proposi-
tional satisfiability deciders.

The basic and iterative semantic matching algorithms as well as explana-
tions of the correspondences produced have been designed and developed.
The approach has been evaluated on various real world test cases with

encouraging results, thus, proving empirically its benefits.

Keywords
Ontology matching, schema matching, ontology alignment, semantic het-

erogeneity, semantic matching, iterative semantic matching
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Introduction

Ontology matching

An ontology typically provides a vocabulary describing a domain of inter-
est and a specification of the meaning of terms used in the vocabulary.
Depending on the precision of this specification, the notion of ontology
encompasses several data and conceptual models, including classifications,
database schemas, fully axiomatized theories. Ontologies tend to be put
everywhere. They are viewed as the silver bullet for many applications,
such as database integration, peer-to-peer systems, e-commerce, semantic
web services, social networks [81]. They, indeed, are a practical means
to conceptualize what is expressed in a computer format [37]. However,
in open or evolving systems, such as the semantic web, different parties
would, in general, adopt different ontologies. Thus, merely using ontolo-
gies, like using XML, does not reduce heterogeneity: it raises heterogeneity

problems to a higher level.

This thesis is devoted to ontology matching as a solution to the seman-
tic heterogeneity problem faced by computer systems. Ontology matching
aims at finding correspondences between semantically related entities of
different ontologies. These correspondences may stand for equivalence as
well as other relations, such as subsumption, or disjointness, between on-
tology entities. Ontology entities, in turn, are usually the named entities

of ontologies, such as classes, properties or individuals. However, these

XixX



entities can also be more complex expressions, such as formulas, concept
definitions or term building expressions. Ontology matching results, called
alignments, can thus express with various degrees of precision the relations
between the ontologies under consideration.

Alignments can be used for various tasks, such as ontology merging, data
translation, or for query answering the web. Matching ontologies enables
the knowledge and data expressed in the matched ontologies to interoper-
ate. It is thus of utmost importance for the above mentioned applications
whose interoperability is jeopardized by heterogeneous ontologies.

Many different matching solutions have been proposed so far from var-
ious viewpoints, including databases, information systems, and artificial
intelligence. They take advantage of various properties of ontologies, e.g.,
labels, structures or data instances, and use techniques from different fields,
e.g., linguistics, automated reasoning, statistics and data analysis, machine
learning. These solutions share some techniques and tackle similar prob-

lems, but differ in the way they combine and exploit their results.

Motivating example

To motivate the matching problem, let us use two simple XML schemas
that are shown in Figure 1 and exemplify one of the possible situations
which arise, for example, when resolving a schema integration task.
Suppose an e-commerce company needs to finalize a corporate acquisi-
tion of another company. To complete the acquisition we have to integrate
databases of the two companies. The documents of both companies are
stored according to XML schemas O1 and O2, respectively. Numbers in
boxes are the unique identifiers of the XML elements. A first step in in-
tegrating the schemas is to identify candidates to be merged or to have

taxonomic relationships under an integrated schema. This step refers to

XX
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Figure 1: Two XML schemas

a process of schema matching. For example, the elements with labels Of-
fice_Products in O1 and in O2 are the candidates to be merged, while the
element with label Digital_Cameras in O2 should be subsumed by the el-
ement with label Photo_and_Cameras in Ol. Once the correspondences
between two schemas have been determined, the next step has to gener-
ate query expressions that automatically translate data instances of these

schemas under an integrated schema.

Solution

Many various solutions of matching have been proposed so far. This work
concentrates on a schema-based solution, namely a matching approach
exploiting only the schema information, thus not considering instances.
It proposes the so-called semantic matching approach. This approach
is based on two key ideas. The first is that correspondences are calcu-
lated between entities of ontologies by computing logical relations (e.g.,
equivalence, subsumption, disjointness), instead of computing coefficients

rating match quality in the [0 1] range, as it is the case of many other

xxi



approaches. The second idea is that the relations are determined by an-
alyzing the meaning which is codified in the entities and the structures
of ontologies. In particular, labels at nodes, written in natural language,
are automatically translated into propositional formulas which explicitly
codify the labels’” intended meaning. This allows the translation of the
matching problem into a propositional validity problem, which can then
be efficiently resolved using sound and complete propositional satisfiability

deciders.

Structure of the thesis

The thesis is organized in five parts.

Part one is dedicated to the motivation and the definition of the on-
tology matching problem. The motivation is given in Chapter 1 through
a number of applications that can take advantage of matching ontologies
and the presentation of how matching contributes to these applications.
In Chapter 2, the ontology matching problem is technically defined in var-
ious instances of ontology matching occurring in different contexts, such
as classifications, databases, XML schemas and finally formal ontologies.
It technically defines the ontology matching process and its result: the
alignment.

Part two provides a comprehensive coverage of the schema-based ap-
proaches used for ontology matching. Chapter 3 defines a classification
of the matching approaches, presents some basic methods and matching
strategies used for designing an ontology matching system. Chapter 4
presents a large number of state of the art schema-based matching sys-
tems, discussed in light of the classifications, methods and strategies of the
previous chapter. It also points out how the approach further developed

in this thesis fits in with existing work.

xxii



Part three is devoted to the semantic matching approach proposed in
this thesis. Chapter 5 introduces basic notions and motivations behind the
approach. It also discusses the main macro steps realizing the semantic
matching algorithm. Chapter 6 discusses how attributes are handled within
the semantic matching settings. Chapter 7 presents an extension of the
semantic matching approach to deal in a fully automated way with the lack
of background knowledge in matching tasks by using semantic matching
iteratively. Chapter 8 describes an extension of the semantic matching
approach that enables explanation of the answers it produces, thus making
the matching result intelligible.

Part four is devoted to the evaluation of ontology matching and semantic
matching in particular. Chapter 9 discusses the evaluation criteria for
ontology matching approaches as well as the settings in which we ran our
experiments. Chapter 10 reports the results of the conducted experiments.

Finally, part five concludes. Chapter 11 summarizes the work done in

the thesis. Chapter 12 outlines future trends in the ontology matching
field.

xxiii
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The matching problem






Chapter 1

Applications

Matching metadata models is an important operation in traditional ap-
plications, such as ontology integration, schema integration, data ware-
houses. Typically, these applications are characterized by heterogeneous
structural models that are analyzed and matched either manually or semi-
automatically at design time. In such applications matching is a prerequi-
site of running the actual system.

A line of applications that can be characterized by their dynamics, e.g.,
agents, peer-to-peer systems, web services, is emerging. Such applications,
contrary to traditional ones, require (ultimately) a run time matching op-
eration and take advantage of more explicit conceptual models.

Material presented in this chapter has been developed in collaboration
with Jérome Euzenat and published in [214, 75]. Also some lines of work on
the topic of this chapter have been supported by the FP6 Knowledge Web!
Network of Excellence and the FP6 Open Knowledge? specific targeted

research project, with some results reported in [133, 216].

1http ://knowledgeweb.semanticweb.org/
2ht:tp ://openk.org/



1.1. ONTOLOGY EVOLUTION CHAPTER 1. APPLICATIONS

In this chapter we first present some well-known applications where
matching has been recognized as a plausible solution for a long time.
These are ontology evolution (§1.1) and information integration, including
schema integration, catalog integration, data warehouses and data inte-
gration (§1.2). Then, we discuss some recently emerged applications, such
as peer-to-peer information sharing (§1.3), web service composition (§1.4),

agent communication (§1.5), and query answering on the web (§1.6).

1.1 Ontology evolution

It is natural that domains of interest, application requirements and the
way in which knowledge engineers conceptualize those by means of ontolo-
gies undergo changes and evolve over time. Also, ontology development,
similar to software code development, is often performed in a distributed
and collaborative manner. Therefore, multiple versions of the same ontol-
ogy often exist. Some applications keep their ontologies up to date, while
others may continue to use old ontology versions and update them on their
own. These situations arise because knowledge engineers and developers
usually do not have a global view of how and where the ontologies have
changed. In fact, change logs may not always be available (which is often
the case in distributed ontology development). Therefore, developers need
to manage and maintain the different versions of their ontologies.

The matching operation is of help here, see Figure 1.1. Its main focus is
on discovering the differences, e.g., what ontology entities have been added,
deleted or renamed, between two ontology versions [202, 178, 182, 183].
In this scenario it is useful to: (7) find the correspondences between the
old version (z) and the new version (x + 1) of the ontology, (ii) generate
a transformation by using these correspondences and (iii) transform the

underlying data instances.



CHAPTER 1. APPLICATIONS 1.2. INFORMATION INTEGRATION

Matcher

Ontology (version xj Ontology (version x+1)

Transformation

Figure 1.1: Ontology evolution scenario

1.2 Information integration

Information integration is one of the oldest classes of applications where
matching is viewed as a plausible solution. Under the information in-
tegration heading, we gather here such problems as schema integration
[11, 212, 219, 192], data warehousing [26], data integration (also known
as enterprise information integration, EII) [44, 233, 65, 114], and catalog
integration [1, 121, 31, 99].

A general information integration scenario is presented in Figure 1.2:
given a set of local information sources ( Local Ontology 1, Local Ontology 2)
potentially storing their data in different formats, e.g., SQL DDL, XML,
or RDF, provide users with a uniform query interface via the mediated (or
global) ontology Common Ontology to all the local information sources.
This allows users to avoid querying the local information sources one by
one, and obtain a result from them just by querying a common ontology.

For example, if a user poses the query find a book about ontology match-
1ng to a common ontology, then, an information integration system commu-

nicates with local information sources, e.g., www.amazon.com, www.bn.com,

bt



1.2. INFORMATION INTEGRATION CHAPTER 1. APPLICATIONS

Q: find a book about
Ontology Matching

______________________________________

A: “Ontology matching™ |
by J. Euzenat and P. Shvaiko, ===
Springer, 2007 L

Matcher ' Commen Ontology

@tology 1

Figure 1.2: A general (centralized) information integration scenario

and returns a reconciled result to the user based on the input provided by
those sources. In general, there are a number of macro steps that the

information integration system has to perform. These include:
e interpret (rewrite) the query in terms of the common ontology;

e identify the correspondences between semantically related entities of

the local information sources and the common ontology;

e translate the relevant data instances of the local information sources
(involved in handling the user’s request) into a knowledge representa-

tion formalism of the information integration system:;

e reconcile the results obtained from multiple local information sources,

namely detecting and eliminating, e.g., redundancies, duplications,

6



CHAPTER 1. APPLICATIONS 1.2. INFORMATION INTEGRATION

before returning the final answer.

Most often a step of identifying the correspondences between seman-
tically related entities of the local information sources and the common
ontology is referred to as matching. Let us limit our vision of matching to
the description above for the moment. We will expand it to some extent
in the next sections.

In some concrete information integration scenarios, the common ontol-
ogy can be either physically existing or virtual. Below, we discuss these

scenarios in some detail.

1.2.1 Schema integration

Schema integration is the oldest scenario [11, 212, 221, 220, 192]. Suppose,
two (or more) enterprises want to perform either a merger or an acqui-
sition among them. Ultimately, these enterprises have to integrate their
databases into a single one. Usually, a first technical step is to identify cor-
respondences between semantically related entities of the schemas. This
step is known as matching. Then, by using the identified correspondences,
merging the databases is performed. The matching step is still required
even if the databases to be integrated are coming from the same domain of
interest, e.g., book selling, car rentals. This is because the schemas have
been designed and developed independently. In fact, humans follow diverse
modeling principles and patterns, even if they have to encode the same real
world object. Finally, the schemas to be integrated might have been de-
veloped according to different business goals. This makes the matching
problem even harder.

Under the schema integration heading we can classify some other scenar-
ios. For example, (tightly-coupled) federated databases [212]. These typ-

ically have one global schema providing a unified access to the federation

7



1.2. INFORMATION INTEGRATION CHAPTER 1. APPLICATIONS

of component databases. Component databases, in turn, are autonomous.
Thus, in this application when, for example, one component schema of the
federated database is changed, the federated (global) schema has conse-
quently to be also reconsidered. Matching can help in identifying those
changes.

Finally, it is worth noting the applications which we are not discussing
here, e.g., distributed database systems [185]. These are usually designed
in a centralized way, e.g., by a database administrator, and therefore, se-

mantic heterogeneity does not exist there by construction [70].

1.2.2 Catalog integration

In Business-to-Business (B2B) applications, trade partners store informa-
tion about their products in electronic catalogs. Typical examples of cat-
alogs are product directories of electronic sales portals, such as Amazon
or eBay. In order for a merchant to participate in the marketplace, e.g.,
eBay, it has to determine correspondences between entries of its catalogs
and those of a single catalog of a marketplace. This process of finding
correspondences among entries of the catalogs is referred to as the cata-
log matching problem [31]. Notice that if we look at this problem from a
merchant viewpoint, matching has to be performed for each marketplace it
would like to participate. Having identified the correspondences between
the entries of the catalogs, they are further analyzed in order to generate
query expressions that automatically translate data instances between the
catalogs. Finally, having matched the catalogs, users of a marketplace have
a unified access to the products which are on sale. The above described
scenario involving interactions between marketplaces and merchants can be
viewed as a typical example of integrating local data sources into a data
warehouse, see also [26].

Another catalog integration scenario deals with (typically large-scale)
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product classifications, such as UNSPSC? (The United Nations Standard
Products and Services Code) and eCl@ss* (Standardized Material and Ser-
vice Classification). In a sense, we can view this scenario as one which en-
ables interoperability among multiple B2B marketplaces, thus, facilitating
product exchange schemas between the enterprises subscribing to different
product classifications [207]. This is to be achieved by establishing the
correspondences between semantically related entities of the standardized

product classifications, which is a matching operation as well.

1.2.3 Data integration

Data integration is an approach where integration of information coming
from multiple local sources is performed without first loading their data
into a central warehouse [114]. This allows interoperation across multiple
local sources having access to the up-to-date data. Notice that in the
above considered catalog integration scenario, merchants are those who
have to perform updates of the central warehouse of the marketplace. In
this scenario the data integration system provides this functionality.

The scenario is as follows. First, local information sources participating
in the application, e.g., bookstore, cultural heritage, are identified. Then,
a virtual common ontology is built. Queries are posed over the virtual
common ontology, and are then reformulated into queries over the local
information sources, e.g., in the cultural heritages application, these might
be catalogs of museums. In order to enable semantics-preserving query
answering, correspondences between semantically related entities of the
local information sources and the virtual ontology are to be established.
Establishing these correspondences is known as a matching step.

Query answering is then performed by using these correspondences (map-

3ht:tp ://www.unspsc.org
4ht:tp://m:w. eclass.de
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pings) within the Local-as-View (LAV), Global-as-View (GAV), or Global-
Local-as-View (GLAV) settings [135]. In the LAV approach, local schemas

are defined in terms of the global schema, i.e., the mapping is specified

by defining each local schema construct as a view over global schema con-
structs. Queries are processed by means of an inference mechanism that
re-expresses the atoms of the global schema in terms of atoms of the local
schemas. In GAV, a global schema is defined in terms of the local schemas,
i.e., the mapping is specified by writing a definition of each global schema
construct as a view over local schema constructs. Queries are processed by
means of unfolding, i.e., by expanding the atoms according to their defini-
tions (so as to come up with local schema relations). GLAV, in turn, is a
mixed approach. We can think of it as a variation of the LAV approach
that allows the head of the view definition to contain any query on the

local schema.

1.3 Peer-to-peer

information sharing

Peer-to-peer (P2P) is a distributed communication model in which parties
(also called peers) have equivalent functional capabilities in providing each
other with data and services [236]. P2P networks became popular through
a file, e.g., pictures, music, videos, books, sharing paradigm. There exist a
number of industry-strength P2P file sharing systems, e.g., Kazaa, Edon-
key, and BitTorrent. These applications describe file contents by a simple
schema (set of attributes, such as title of a song, its author, etc.) to which
all the peers in the network have to subscribe. These schemas cannot be
modified locally by a single peer. Therefore, in the above mentioned sys-
tems the semantic heterogeneity problem (at the schema level) does not

exist by construction.

10
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The use of a single system schema violates the total autonomy of peers.
Although industry-strength P2P systems allow peers to connect to and
disconnect from the network at any time, thereby respecting some forms
of peers autonomy, such as participation autonomy, they still restrict the
design autonomy of peers, in matters such as how to describe the data,

what constraints to use on the data [236].

If peers are meant to be totally autonomous, they may use different
terminologies and metadata models in order to represent their data, even
if they refer to the same domain of interest. Thus, in order to establish
(meaningful) information exchange between peers, one of the steps is to
identify and characterize relationships between their ontologies. This is a
matching operation. Having identified the relationships between ontolo-
gies, these can be used for the purpose of query answering, e.g., using

techniques applied in data integration systems, see §1.2.

Following the argument of total autonomy of peers, more advanced P2P
systems relax the homogeneity requirement of classical P2P systems: they
allow peers to use independent schemas and ontologies [236, 122, 173, 203],
see Figure 1.3. In this scenario, it is useful to: (i) match relevant parts of
the ontologies, (2) generate a mediator for translating queries and some-

times for translating answers.

Such applications pose additional requirements on matching solutions.
In P2P settings which respect total autonomy of peers, an assumption
that all the peers rely on one global schema, as in data integration, cannot
be made because the global schema may need to be updated any time
the system evolves [104]. While in the case of data integration schema
matching can be performed at design time, in P2P applications peers need
to coordinate their databases on-the-fly, therefore ultimately requiring run
time schema matching. Finally, incomplete and approximate answers, as

long as they are good enough for the application, are also acceptable in

11
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Figure 1.3: P2P query answering

such settings. This is the case because some mappings involved in query

answering may become temporarily unavailable or invalid [216].

1.4 Web service composition

Web services are processes that expose their interface to the web so that
users can invoke them. Semantic web services provide a richer and more
precise way to describe the services through the use of knowledge repre-
sentation languages and ontologies. Web service discovery and integration
is the process of finding a web service able to deliver a particular service
and composing several services in order to achieve a particular goal, see
[191, 157, 184, 82]. However, semantic web services descriptions have no
reasons to be expressed by reference to exactly the same ontologies. Hence-

forth, both for finding the adequate service and for interfacing services it
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is necessary to establish the correspondences between the terms of the
descriptions. This can be provided through matching the corresponding
ontologies, see Figure 1.4. For instance, if some service provides its output
description in some ontology and another service uses a second ontology for
describing its input, matching both ontologies will be used for (i) checking
that what is delivered by the first service matches what is expected by
the second one, (ii) verifying preconditions of the second service, and (ii7)
generating a mediator able to transform the output of the first service in

order to be input to the second one.

Matcher

Local Ontology 2 Local Ontology 1

“conforms to™ Generator “conforms to™

Service 2| v Service 1
E: Input Mediator |« el E

o ]

Figure 1.4: Web service composition

1.5 Agent communication

Agents are computer entities characterized by autonomy and capacity of in-
teraction. They communicate through speech-act inspired languages, such
as the FIPA Agent Communication Language [84, 83], which determine the
“envelope” of the messages and enable agents to position them within a

particular interaction context. The actual content of messages is expressed

13
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in knowledge representation languages and often refer to some ontology. As
a consequence, when two autonomous and independently designed agents
meet, they have the possibility of exchanging messages, but little chance
to understand each others if they do not share the same content language
and ontology. Thus, it is necessary to provide the possibility for these
agents to match their ontologies in order to either translate their messages
or integrate bridge axioms in their own models, see [228, 234, 129]. One
solution to this problem is to have an ontology alignment protocol that can
be interleaved with any other agent interaction protocol and which could
be triggered upon receiving a message expressed in a foreign ontology. As a
consequence, agents meeting each other for the first time and using different
ontologies would be able to negotiate the matching of terms in their respec-
tive ontologies and to translate the content of the message they exchange
with the help of the alignment, see Figure 1.5. In this scenario it is useful,
for example, to: (i) match relevant parts of the ontologies used by each of
the agents, (ii) generate a message translator from Local Ontology 1 to

Local Ontology 2 and (iii) apply this translator to the message.

Matcher

Local Ontology 1 Local Ontology 2

- ) —— Translator >

message Agent 2

Figure 1.5: Agent communication
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1.6 Query answering on the web

In some of the above considered scenarios, e.g., schema integration, data
integration, it was assumed that queries were specified by using the termi-
nology of a global schema. In the scenario under consideration, we discard
this assumption, and therefore users are free to pose queries by using their
own terminology. Then, an information integration system has to interpret
(rewrite) the terms used in the query, into the predefined ontology entities
of the system, for instance. This rewriting can be viewed as matching. The
rest of the query answering process usually proceeds in a similar way as
discussed in the previous scenarios. Let us now consider a slight variation
of this scenario in distributed settings with the help of examples of the

AquaLog and PowerAqua systems [140, 139].

As an example, suppose that a query answering system such as AquaL.og
[140] is aware of an ontology about academic life which has been populated
to describe knowledge related to some university [204]. Also, let us suppose
that the following query is posed to the system: Which projects are related
to researchers working with ontologies? To answer this query, Aqualog
needs to interpret it in terms of entities available in the system ontol-
ogy. For this, Aqualog first translates this query into the following triples:
(projects, related to, researchers) and (researchers, working, ontologies).
Then it attempts to match these triples to the concepts of the underlying
ontology. For example, the term projects should be identified to refer to
the ontology concept Project and ontologies is assumed equivalent to the

ontologies instance of the Research-Area concept.

Currently, the scope of Aqual.og is limited by the amount of knowledge
encoded in the ontology of the system. A new version of Aqual.og, called
PowerAqua [139], extends its predecessor, as well as some other systems

with similar goals, such as Observer [162], towards “open” query answer-
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ing. PowerAqua aims to select and aggregate information derived from
multiple heterogeneous ontologies on the web. Matching constitutes the
core of this selection task. Notice that, unlike AquaLog, matching is now
performed between the triples and many on-line ontologies (not just the
single ontology of the system). It is not necessary to match all query triples
within one ontology. When no ontology concept is found for an element of
a triple, the use of more general concepts is also acceptable. Also, it is not
necessary to try to match the whole ontology against the query, but only

the relevant fragments.

1.7 Summary

The above considered scenarios suggest that matching metadata models is a
major issue. Moreover, a need for matching is not limited to one particular
application. In fact, it exists in any application that communicates through
ontologies. Thus, it is natural that in future more examples of applications
requiring matching will appear, e.g., ontology repair [155].

Since semantic heterogeneity is an intrinsic problem of any application
involving more than one party, it is reasonable to consider ontology match-
ing as a unified object of study. However, there are notable differences in
the way these applications use matching. The application related differ-
ences must be clearly identified in order to provide the best suited solution
in each case.

These applications can be ordered according to their dynamics, namely
autonomy of parties participating in an application and rate of changes in
an application (see Figure 1.6).

For example, Figure 1.6 shows that agent communication and query
answering have a more dynamic profile compared to the other applications.

In fact, agents, besides having the ability to enter or leave the network or
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Dynamics

—t+— Agent communication, Query answering

—1— Peer-to-peer systems

—t— Web services

-—t+— Data integration, Catalog matching (merchant)

—t+— Schema integration, B2B large applications

Figure 1.6: Distribution of some applications with regard to their dynamics

to change their ontologies at any moment (as in the peer-to-peer case), are
also able to negotiate the alignments and potential mismatches.

Data integration and merchant catalog matching, due to multiple new
merchants being willing to participate in marketplaces, have a higher dy-
namics than schema integration, where typically only a small and limited
number of parties participate. Finally, the two bottom classes of appli-
cations represent traditional applications, while the three top classes of
applications can be considered as dynamic applications. The uneven step
in the middle of the dynamics axis in Figure 1.6 is used to stress the above
mentioned distinction.

Another dimension along which these applications differ is the purpose

for which they perform matching:

e schema integration requires the ability to merge the schemas under
consideration into a single schema (the transformations apply at the

ontological level and instances translation apply at the data level);

17
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e data integration requires the ability to translate data instances resid-
ing in multiple local schemas according to a global schema definition

in order to enable query answering over the global schema;

e peer-to-peer systems and more generally query answering systems re-
quire bidirectional mediators able to translate queries (ontological

level) and translate back answers (data level).

e agent communication requires translators for messages sent from one
agent to another, which apply at the data level; similarly, semantic

web services require one-way data translations for composing services.

This leads to different requirements for different applications. We sum-
marize what we have found to be the most important requirements to
matching solutions according to the applications considered in this chap-
ter, see Table 1.1.

These general requirements concern:

e the type of available input a matching system can rely on, such as
schema or instance information. There are cases when data instances
are not available, for instance due to security reasons [46] or when
there are no instances given beforehand. Therefore, these applications
require only a matching solution able to work without instances (here

schema-based method).

e some specific behaviour of matching, such as requirements of (i) being
automatic, i.e., not relying on user feed-back; (i7) being correct, i.e.,
not delivering incorrect matches; (iii) being complete, i.e., delivering

all the matches; and (iv) being performed at run time.

e the use of the matching result as described above. In particular, how

the identified alignment is going to be processed, e.g., by merging the
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1.7. SUMMARY

n ) E ) g

& £ £ . % 32

= £ 5 ¢ & 3

2 =2 £ £ g )
Application £ E % 8 8 3
Ontology evolution (§1.1) vV v Vv transformation
Schema integration (§1.2) vV v VY merging
Catalog integration (§1.2) vV v v/ data translation
Data integration (§1.2) vV v, v/ query answering
P2P information sharing (§1.3) v query answering
Web service composition (§1.4) vV VvV data mediation
Multi-agent communication (§1.5) vV v v+  data translation
Query answering (§1.6) vV query reformulation

Table 1.1: Summary of applications requirements

data or conceptual models under consideration or by translating data

instances among them.

Some of these hard requirements can be derived into comparative (or

non-functional) requirements, such as speed, degree of correctness or com-

pleteness. These requirements are useful for comparing solutions on a scale

instead of with absolute requirements such as mentioned before. Moreover,

they allow to trade a requirement, e.g., completeness, for another more im-

portant one, e.g., speed.

As an overview of this chapter indicates, there are many different appli-

cations which can take advantage of matching ontologies. However, in spite

of a common need for matching, the application matching requirements are

quite different.
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Chapter 2

The matching problem

In a distributed and open system, such as the semantic web and in many
other applications presented in the previous chapter, heterogeneity cannot
be avoided. Different actors have different interests and habits, use different
tools and knowledge, and most often, at different levels of detail. These
various reasons for heterogeneity lead to diverse forms of heterogeneity,

and, therefore, should be carefully taken into consideration.

Material presented in this chapter has been developed in collaboration
with Jérome Euzenat and published in [214, 75]. Also some work on the
topic of this chapter has been supported by the FP6 Knowledge Web!

Network of Excellence.

In this chapter we first present various existing ways of expressing knowl-
edge that are found in diverse applications (§2.1). We introduce several
justifications for heterogeneity (§2.2). These should help the design of a
matching strategy as a function of the kind of heterogeneity that has to be
addressed. Finally, we define the ontology matching problem (§2.3).

1http ://knowledgeweb.semanticweb.org/
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2.1 Vocabularies,

schemas and ontologies

So far we have considered ontologies without being precise about their
meaning. An ontology can be viewed as a set of assertions that are meant to
model some particular domain. Usually, the ontology defines a vocabulary
used by a particular application. In various areas of computer science
there are different data and conceptual models that can be thought of as
ontologies. These are, for instance, database schemas, entity-relationship
models, directories, thesauri, XML schemas and formal ontologies (see [235,
110, 111] for an in-depth discussion of what is considered to be a proper
ontology). These and other examples are given in decreasing order of

formality in Figure 2.1.

Ad hoc Entity-relationship Ceanies
hierarchies XML DTDs models g
, Database
Terms Thesauri i — Frames
| | \ "

‘ ‘ ‘ ‘ Expressivity
‘Ordinary’ Structured AML Description
glossaries glossaries schemas logics

Data Principled, Formal
dictionaries informal taxonomies
hierarchies

Glossaries and Thesauri and Metadata and Formal
data dictionaries taxonomies data models ontologies

Figure 2.1: Various forms of ontologies ordered by their expressivity (adapted from [109,
225]).

Thus, a top level ontology is supposed to have an explicit well defined se-
mantics, whereas the interpretation of directories in a file system is mostly

implicit. In fact, it depends only on what its creator had in mind, i.e., the
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meaning of labels, the background knowledge, and the context in which
those labels occur are all implicit, and therefore, these are not a part of a
directory specification.

We provide below a number of examples of various forms of ontologies
of Figure 2.1 and exemplify some heterogeneity problems encountered in

these forms.

2.1.1 Classifications

A taxonomy is a partially ordered set of taxons (classes) in which one
taxon is greater than another one only if what it denotes includes what is
denoted by the other. Classifications or directories are taxonomies that are
used by companies for presenting products on sale, by libraries for storing
books, or by individuals to classify files on a personal computer. Some well-
known examples of classifications include those of DMOZ?, Google? and
Yahoo*. These classifications are hierarchies of folders identified by labels
and containing items, such as bookmarks, or products. The semantics of
these folders is given by the items they ultimately contain [95]. Obviously,
each independent entity tends to develop its own directory based on its
own needs and tastes.

Finally, there exist some consensus classifications. In library science, the
Dewey classification has been used for more than a century for classifying
books by topics [42]. In natural sciences, the principled classification of

species represents another example [206].

2h1:1:p://d.moz.org
3ht:tp ://www.google.com/dirhp
4http://www.yahoo.com
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2.1.2 Relational database schemas

Relational databases require the data to be organized in a predefined way
as tables or relations. A relational schema specifies the names of the tables
as well as their types: the names and types of the columns of each table.
The relational model also includes the notion of a key for each table: a
subset of the columns that uniquely identifies each row. Finally, a column
in a table may be specified as a foreign key pointing to a column in another
table. This is used to keep referential constraints among various entities.
Finally, it is worth mentioning widely used languages for specifying rela-
tional schemas, such as Structured Query Language (SQL) as well as some
of its recent versions, e.g., SQL:1999 and SQL:2003. These support many
modeling capabilities, such as user-defined types, aggregation, generaliza-

tion, etc.

2.1.3 XML schemas

Document Type Definition (DTD) and XML schemas have been introduced
for specifying the structure of XML documents. The main ingredients of
XML schemas include elements, attributes, and types. In turn, elements
can be either complex for specifying nested sub-elements, or simple for
specifying built-in datatypes, such as string, for an element or attribute.
XML schemas are rather complementary to classifications: instead of de-
scribing how things are classified, they describe how things are made from
the inside. Even if element definitions can be extended or restricted as
sub-categories of a classification, the emphasis is on their structure: the
extension of an element is made by providing the elements which are mod-
ified in this structure. The sequential aspect of XML documents is part of
the element specification, though it can be overruled.

In fact, these schemas are a shape according to which future documents
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are to be created, as opposed to an ontology, which is a description of
existing, external objects. The specialization hierarchy in XML schema is
a type hierarchy that defines which kind of elements can occupy the place
of another kind, e.g., if a shelf contains books, then putting a biography on
this shelf is authorized. In principle, this classification structure does not
have to correspond to any natural classification of the objects expressed

themselves.

2.1.4 Conceptual models

Often database researchers do not consider directly the relational schema
but are rather concerned with the underlying entity-relationship model
[145]. Conceptual models cover what was properly described as such in [37],
as well as entity-relationship models [45] that aim at abstracting databases,
and UML [27] models that aim at abstracting object-oriented programs.
A spatio-temporal aspect of conceptual models is addressed in [194].
These models offer a rich way of expressing entities which in this case can
be meant as entities of some modeled domain, like people in a database or
specification of entities to be created like programs. They offer constructors
for organizing classes in a hierarchy as well as constructors for describing
the internal structure of objects. They thus offer the best of both worlds:

classifications and databases.

2.1.5 Ontologies

It is nowadays common to see classifications or conceptual models to be
promoted as ontologies. Ontologies contain most of the features of entity-
relationship models, and thus, most parts of the kind of schemas considered
above.

The distinctive feature of ontologies is the existence of a model theoretic
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semantics: ontologies are logic theories, see for details [108]. Thus, their
interpretation is not left to the users that read the diagrams or to the
database management systems implementing them, it is specified explicitly
by set of equations. The semantics provides the rules for interpreting the
syntax. It does not provide the meaning directly but constrains the possible
interpretations of what is declared.

Ontologies are expressed in an ontology language. There are a large
variety of languages for expressing ontologies [222], for example, OWL
[217, 52], an ontology language recommended by the W3C. Fortunately,
most of these languages share the same kinds of entities, often with different

names but comparable interpretations.

2.2 Types of heterogeneity

The goal of matching ontologies is to reduce heterogeneity between them.
Heterogeneity does not lie solely in the differences of ultimate goals of
the applications according to which they have been designed or in the
expression formalisms in which ontologies have been encoded. There have
been many different classifications to types of heterogeneity [11, 212, 36,
127, 106, 120, 125, 14, 233, 128, 71, 48, 115, 93, 29]. Some of them focus
on mismatches [128], others rather mention interoperability levels [71]. We

consider here the most obvious types of heterogeneity:

Syntactic heterogeneity occurs when two ontologies are not expressed
in the same ontology language. This obviously happens when compar-
ing, for instance, a classification with a conceptual model. This also
happens when two ontologies are modeled by using different knowl-
edge representation formalisms, for instance, OWL and F-logic. This
kind of mismatch is generally tackled at the theoretical level when

one establishes equivalences between constructs of different languages.
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Thus, it is sometimes possible to translate ontologies between different

ontology languages while still preserving the meaning [76].

Terminological heterogeneity occurs due to variations in names when
referring to the same entities in different ontologies. This can be
caused by the use of different natural languages, e.g., Paper vs Artic-
ulo, different technical sublanguages, e.g., Paper vs Memo, the use of

synonyms, e.g., Paper vs Article, etc.

Conceptual heterogeneity, also called semantic heterogeneity in [71]
and logical mismatch in [128], stands for the differences in model-
ing the same domain of interest. This can happen due to the use of
different (and, sometimes, equivalent) axioms for defining concepts or
due to the use of totally different concepts, e.g., geometry axioma-
tized with points as primitive objects or geometry axiomatized with
spheres as primitive objects. Also, as noted in [128] and [231], there is
a difference between the conceptualization mismatch, which relies on
the differences between modeled concepts, and the explicitation mis-
match, which relies on the way these concepts are expressed. Finally,
in the context of conceptual differences, [15] identifies three important
reasons for these to hold, namely difference in coverage, difference in

granularity and difference in perspective.

Semiotic heterogeneity, also called pragmatic heterogeneity in [29], is
concerned with how entities are interpreted by a human. Indeed, en-
tities which have exactly the same interpretation are often interpreted
by humans with regard to the context, for instance, of how they are
ultimately used. This kind of heterogeneity is difficult for the com-
puter to detect and even more difficult to solve, because it is out of
its reach. The intended use of entities has a great impact on their

interpretation, therefore, matching entities which are not meant to be
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used in the same context is often error-prone. Given the limited grasp
that a computer can have on these issues, we do not deal with semiotic

heterogeneity here.

Usually, several types of heterogeneity occur together. This thesis is
only concerned with reducing the terminological and (to a certain extent)
conceptual types of heterogeneity, which are both often referred to as se-

mantic heterogeneity.

2.3 Problem statement

There have been different formalizations of matching and its result, see,
for example, [23, 135, 123, 29, 239]. We provide here a general definition,
following the work in [214].

The matching operation determines the alignment A’ for a pair of on-
tologies O1 and O2. There are some other parameters which can extend
the definition of the matching process, namely: (i) the use of an input
alignment A, which is to be completed by the process; (i) the matching
parameters, p, e.g., weights, thresholds; and (iii) external resources used
by the matching process, r, e.g., common knowledge and domain specific

thesauri. Technically, this process can be defined as follows.

The matching process can be viewed as a function f which, from a pair of
ontologies O1 and O2 to match, an input alignment A, a set of parameters
p and a set of oracles and resources r, returns a new alignment A’ between

these ontologies:
A= f(O1,02,A,p,r)

This can be schematically represented as illustrated in Figure 2.2.
It can be useful to specifically consider the matching of many ontologies

within the same process. We call this multiple matching.
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parameters, p
Ontology O1

Alignment A Matching -@

Ontology 02 X
resources, r

0,0

Figure 2.2: The matching process

The multiple matching process can be viewed as a function f which, from
a set of ontologies to match {O1,...0n}, an input multi-alignment A, a
set of parameters p and a set of oracles and resources r, returns a new

multi-alignment A’ between these ontologies:
A = f(O1,...0n, A, p,r)

The matching process is the main subject of this thesis. However, before
discussing its internals, let us first consider what it provides: the alignment.

Alignments express the correspondences between entities belonging to
different ontologies. We focus here on matching between two ontologies.
In case of multiple matching, the definitions can be straightforwardly ex-
tended by using n-ary correspondences. A correspondence must express
the two corresponding entities and the relation that is supposed to hold
between them. We provide the definition of the alignment following the
work in [73, 29].

Given two ontologies, a correspondence is a S-tuple:
<Zd7 €1,€2, 1, R>7

such that

e id 1s a unique identifier of the given correspondence;
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e ¢1 and ey are the entities (e.g., tables, XML elements, properties,

classes) of the first and the second ontology, respectively;

e 1 is a confidence measure (typically in the [0 1] range) holding for the

correspondence between the entities e; and e,

e R is a relation (e.g., equivalence (=), more general (J), disjointness

(L), overlapping (M) ) holding between the entities e; and es.

The correspondence (id, e, es,n, R) asserts that the relation R holds
between the ontology entities e; and e, with confidence n. The usage of

confidences is that the higher the degree, the most likely the relation holds.

Given two ontologies O1 and O2, an alignment is made up of a set of
correspondences between pairs of entities belonging to O1 and O2, respec-
tively.

For example, in Figure 1 (p.xxi), according to some matching algorithm
based on linguistic and structure analysis, the confidence measure (for
the fact that the equivalence relation holds) between entities with labels
Photo_and_Cameras in O1 and Cameras_and_Photo in O2 could be 0.67.
Suppose that this matching algorithm uses a threshold of 0.55 for deter-
mining the resulting alignment, i.e., the algorithm considers all the pairs of
entities with a confidence measure higher than 0.55 as correct correspon-
dences. Thus, our hypothetical matching algorithm should return to the

user the following correspondence:
(ids 4, Photo_and_Cameras, Cameras_and_Photo, 0.67, =).

However, the relation between the same pair of entities, according to
another matching algorithm which is able to determine that both entities
mean the same thing, could be exactly the equivalence relation (without

computing the confidence measure). Thus, returning to the user
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(ids 4, Photo_and_Cameras, Cameras_and_Photo,n/a,=).

By analogy with mathematical functions, it is useful to define some
properties of the alignments. These apply when the only considered rela-
tion is equality (=). One can ask for a total alignment with regard to one
ontology, i.e., all the entities of one ontology must be successfully mapped
to the other one. This property is purposeful whenever thoroughly tran-
scribing knowledge from one ontology to another is the goal: there is no
entity that cannot be translated.

One can also require the mapping to be injective with regard to one
ontology, i.e., all the entities of the other ontology is part of at most one
correspondence. Injectivity is useful in ensuring that entities that are dis-
tinct in one ontology remain distinct in the other one. In particular, this
contributes to the reversebility of alignments.

Usual mathematical properties apply to these alignments. In particular,
a total alignment from O1 to O2 is a surjective alignment from O2 to O1.
A total alignment from both Ol and O2 which is injective from one of
them is a bijection. In mathematical English, an injective function is said
to be one-to-one and a surjective function to be onto. Due to the wide
use among matching practitioners of the term one-to-one for a bijective,
i.e., both injective and surjective, alignment, we will only use one-to-one
for bijective.

In conceptual models and databases, the terms multiplicity or cardinal-
ity denote the constraints on a relation. Usual notations are 1:1, 1:m, n:1
or n:m. If we consider only total and injective property, denoted as 1 for
injective and total, ? for injective, + for total and * for none, and the two
possible orientations of the alignments, from O1 to O2 and from O2 to O1,
the multiplicities become: ?7:7, 7:1, 1:7, 1:1, 7:4, +:7, 1:4, +:1, +:4, 7:%,
LK R, k) 4 KR (T2
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2.4 Summary

In this chapter, we have first described different kinds of data and con-
ceptual models and observed an expressivity hierarchy of them. Although,
there are differences between these forms of ontologies, we believe that
techniques developed for matching each of them can be of a mutual bene-
fit. In fact, on the one side, for example, schema matching is usually per-
formed with the help of techniques trying to guess the meaning encoded
in the schemas. On the other side, ontology matching systems primarily
try to exploit knowledge explicitly encoded in the ontologies. In real world
applications, schemas and ontologies usually have both well defined and
obscure terms, and contexts in which they occur, therefore, solutions from
both problems would be mutually beneficial.

Then, we focused on identifying what semantic heterogeneity is and why
it requires matching. We have presented various reasons why mismatches
can occur between ontologies. Their variety and the fact that they often
occur together constrains to develop multiple approaches for matching on-
tologies. Finally, we have defined the action of matching ontologies and its

result: the alignment.
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Chapter 3

Ontology matching

techniques

Having defined what the matching problem is, we overview some classifi-
cations of the techniques that can be used for solving this problem. In par-
ticular, surveys on the topic through the recent years have been provided
in [198, 233, 123]; while the major contributions of the previous decades
are presented in [11, 130, 219, 124, 192]. The work presented in [123] fo-
cuses on current state of the art in ontology matching. Authors review
recent approaches, techniques and tools. The survey of [233] concentrates
on approaches to ontology-based information integration and discusses gen-
eral matching approaches that are used in information integration systems.
However, none of the above mentioned works provide a comparative review
of the existing ontology matching techniques and systems. On the contrary,
the survey of [198] is devoted to a classification of database schema match-
ing approaches and a comparative review of matching systems. Notice that
these three works address the matching problem from different perspectives
(artificial intelligence, information systems, databases) and analyze disjoint
sets of systems. [214] have attempted at considering the above mentioned
works together, focusing on schema-based matching methods, and aiming

to provide a common conceptual basis for their analysis.
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Material presented in this chapter has been developed in collaboration

with Jérome Euzenat and published in [214, 75]. Also a part of work on
the topic of this chapter has been supported by the FP6 Knowledge Web!
Network of Excellence.

In this chapter we first consider various dimensions on which a classifi-
cation of matching techniques can be elaborated (§3.1). We then present
our classification based on several of these dimensions (§3.2). We also dis-
cuss some alternative classifications of matching approaches that have been
proposed so far in the literature (§3.3). Finally, we outline a number of

plausible matching strategies used in building a matching system (§3.4).

3.1 Matching dimensions

There are many independent dimensions along which algorithms can be
classified. Following the definition of the matching process in Figure 2.2
(p.29), we may primarily classify algorithms according to (i) the input of
the algorithms, (i7) the characteristics of the matching process, and (i) the
output of the algorithms. The other characteristics, such as parameters,
resources, and input alignments, are considered less important. Let us

discuss these three main aspects in turn.

3.1.1 Input dimensions

These dimensions concern the kind of input on which algorithms operate.
As a first dimension, algorithms can be classified depending on the data
or conceptual models in which ontologies are expressed. For example, the
Artemis system [39] (see §4.1.5) supports the relational, object-oriented,
and entity-relationship models; Cupid [146] (see §4.1.9) supports XML and
relational models; QOM [69] (see §4.2.3) supports RDF and OWL mod-

1http ://knowledgeweb.semanticweb.org/
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els. A second possible dimension depends on the kind of data that the
algorithms exploit: different approaches exploit different information in
the input ontologies. Some of them rely only on schema-level information,
e.g., Cupid [146] (see §4.1.9), COMA [58] (see §4.1.10); others rely only
on instance data, e.g., GLUE [62]; and others exploit both schema- and
instance-level information, e.g., QOM [69] (see §4.2.3). Even with the same
data models, matching systems do not always use all available constructs,
e.g., the approach presented in this thesis (see Chapter 6), when dealing
with attributes discards information about datatypes, e.g., string or inte-
ger, and uses only the attributes names. In general, some algorithms focus
on the labels assigned to the entities, some consider their internal structure
and the types of their attributes, and others consider their relations with

other entities (see next section for details).

3.1.2 Process dimensions

A classification of the matching process could be based on its general prop-
erties, as soon as we restrict ourselves to formal algorithms. In particular,
it depends on the approximate or exact nature of its computation. Exact
algorithms compute the absolute solution to a problem; approximate al-
gorithms sacrifice exactness to performance (e.g., [69]). All the techniques
discussed in the remainder of the thesis can be either approximate or exact.
Another dimension for analyzing the matching algorithms is based on the
way they interpret the input data. We identify three large categories based
on the intrinsic input, external resources, or some semantic theory of the
considered entities. We call these three categories syntactic, external, and

semantic, respectively; and discuss them in detail in the next section.
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3.1.3 Output dimensions

Apart from the information that matching systems exploit and how they
manipulate it, the other important class of dimensions concerns the form of
the result they produce. The form of the alignment might be of importance:
is it a one-to-one alignment between the ontology entities? Has it to be a
final correspondence? Is any relation suitable?

Other significant distinctions in the output results have been indicated
in [97]. One dimension concerns whether systems deliver a graded answer,
e.g., that the correspondence holds with 98% confidence or 4/5 probabil-
ity; or an all-or-nothing answer, e.g., that the correspondence definitely
holds or not. In some approaches correspondences between ontology enti-
ties are determined using distance measures. This is used for providing an
alignment expressing equivalence between these entities. Another dimen-
sion concerns the kind of relations between entities a system can provide.
Most of the systems focus on equivalence (=), while a few other are able
to provide a more expressive result, e.g., equivalence, subsumption (C),
incompatibility (L), see for details [31, 97, 98].

There are many dimensions that can be taken into account when at-
tempting at classifying matching methods. In the next section we present
a classification of elementary techniques that draws simultaneously on sev-

eral such criteria.

3.2 A classification of

matching techniques

In this section we discuss only schema-based elementary matchers. There-

fore, only schema level information is considered, not instance data?. The

2Prominent solutions of instance-based ontology matching can be found in [60, 63].
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exact /approximate opposition has not been used because each of the meth-

ods described below can be implemented as exact or approximate algo-
rithm, depending on the goals of the matching system. To ground and
ensure a comprehensive coverage for our classification we have analyzed
state of the art approaches used for schema-based matching. The bibli-
ography part reports a partial list of works which have been scrutinized
pointing to (some of) the most important contributions. We have used the

following guidelines for building our classification:

Exhaustivity. The extension of categories dividing a particular category
must cover its extension (i.e., their aggregation should give the com-

plete extension of the category);

Disjointness. In order to have a proper tree, the categories dividing one

category should be pairwise disjoint by construction;

Homogeneity. In addition, the criterion used for further dividing one
category should be of the same nature (i.e., should come from the

same dimension). This usually helps guaranteeing disjointness;

Saturation. Classes of concrete matching techniques should be as specific
and discriminative as possible in order to provide a fine grained dis-
tinction between possible alternatives. These classes have been iden-
tified following a saturation principle: they have been added/modified
till the saturation was reached, namely taking into account new tech-

niques did not require introducing new classes or modifying them.

Notice that disjointness and exhaustivity of the categories ensures stability
of the classification, namely new techniques will not occur in between two
categories. Classes of matching techniques represent the state of the art.
Obviously, with appearance of new techniques, they might be extended
and further detailed.
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We build on the previous work of classifying automated schema match-

ing approaches of [198]. The classification of [198] distinguishes between
elementary (individual) matchers and combinations of matchers®. Ele-
mentary matchers comprise instance-based and schema-based, element- and
structure-level, linguistic- and constrained-based matching techniques. Also
cardinality and auziliary information (e.g., thesauri, global schemas) can
be taken into account.

For classifying elementary schema-based matching techniques, we intro-
duce two synthetic classifications (see Figure 3.1), based on what we have
found the most salient properties of the matching dimensions. These two
classifications are presented as two trees sharing their leaves. The leaves
represent classes of elementary matching techniques and their concrete ex-

amples. Two synthetic classifications are:

o Granularity/Input Interpretation classification is based on (i) granu-
larity of match, i.e., element- or structure-level, and then (i7) on how

the techniques generally interpret the input information;

e Kind of Input classification is based on the kind of input which is used

by elementary matching techniques.

The overall classification of Figure 3.1 can be read both in descending
(focusing on how the techniques interpret the input information) and as-
cending (focusing on the kind of manipulated objects) manner in order to
reach the Basic Techniques layer. Let us discuss in turn Granularity/Input
Interpretation, Basic Techniques, Kind of Input layers together with sup-
porting arguments for the categories/classes introduced at each layer.

Elementary matchers are distinguished by the Granularity/Input inter-

pretation layer according to the following classification criteria:

3Combinations of matchers are discussed in §3.4
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e Flement-level vs structure-level. Element-level matching techniques

compute correspondences by analyzing entities in isolation, ignoring
their relations with other entities. Structure-level techniques com-
pute correspondences by analyzing how entities appear together in a

structure. This criterion is the same as first introduced in [198].

e Syntactic vs external vs semantic. The key characteristic of the syn-
tactic techniques is that they interpret the input as a function of its
sole structure following some clearly stated algorithm. External are
the techniques exploiting auxiliary (external) resources of a domain
and common knowledge in order to interpret the input. These re-
sources might be human input or some thesaurus expressing the rela-
tionships between terms. The key characteristic of the semantic tech-
niques is that they use some formal semantics (e.g., model-theoretic
semantics) to interpret the input and justify their results. In case
of a semantic based matching system, exact algorithms are complete
(i.e., they guarantee a discovery of all the possible alignments) while

approximate algorithms tend to be incomplete.

To emphasize the differences with the initial classification of [198], the
new categories/classes are marked in bold face. In particular, in the Gran-
ularity/Input Interpretation layer we detail further (with respect to [198]),
the element- and structure-level of matching by introducing the syntactic vs
semantic vs external criteria. The reasons of having these three categories
are as follows. Our initial criterion was to distinguish between internal
and external techniques. By internal we mean techniques exploiting infor-
mation which comes only with the input ontologies. FExternal techniques
are as defined above. Internal techniques can be further detailed by dis-
tinguishing between syntactic and semantic interpretation of input, also as

defined above. However, only limited, the same distinction can be intro-

42



CHAPTER 3. ONTOLOGY MATCHING 3.2. A CLASSIFICATION OF
TECHNIQUES MATCHING TECHNIQUES

duced for the external techniques. In fact, we can qualify some oracles, e.g.,
WordNet [163], SUMO [174], DOLCE [88], as syntactic or semantic, but

not a user input. Thus, we do not detail external techniques any further

and we omit in Figure 3.1 the theoretical category of internal techniques
(as opposed to ezternal). Notice that we also omit in further discussions
element-level semantic techniques, since semantics is usually given in a
structure, and, hence, there are no element-level semantic techniques.

Distinctions between classes of elementary matching techniques in the
Basic Techniques layer of our classification are motivated by the way a
matching technique interprets the input information in each concrete case.
In particular, a label can be interpreted as a string (a sequence of let-
ters from an alphabet) or as a word or a phrase in some natural lan-
guage, a hierarchy can be considered as a graph (a set of nodes related
by edges) or a taxonomy (a set of concepts having a set-theoretic inter-
pretation organized by a relation which preserves inclusion). Thus, we in-
troduce the following classes of elementary ontology matching techniques
at the element-level: string-based, language-based, based on linguistic re-
sources, constraint-based, alignment reuse, and based on upper level and
domain specific formal ontologies. At the structure-level we distinguish
between: graph-based, taxonomy-based, based on repositories of structures,
and model-based techniques.

The Kind of Input layer classification is concerned with the type of input

considered by a particular technique:

e The first level is categorized depending on which kind of data the
algorithms work on: strings (terminological), structure (structural)
or models (semantics). The two first ones are found in the ontology
descriptions, the last one requires some semantic interpretation of the
ontology and usually uses some semantically compliant reasoner to

deduce the correspondences.
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e The second level of this classification decomposes further these cate-

gories if necessary: terminological methods can be string-based (con-
sidering the terms as sequences of characters) or based on the interpre-
tation of these terms as linguistic objects (linguistic). The structural
methods category is split into two types of methods: those which
consider the internal structure of entities (e.g., attributes and their
types) and those which consider the relation of entities with other

entities (relational).

Notice that following the above mentioned guidelines for building a classi-
fication the terminological category should be divided into linguistic and
non-linguistic techniques. However, since non-linguistic techniques are all
string-based, this category has been discarded.

We discuss below the main classes of the Basic Techniques layer (also
indicating in which matching systems they are exploited) according to the
above classification in more detail. The order follows that of the Granular-
ity/Input Interpretation classification and these techniques are divided in
two sections concerning element-level techniques (§3.2.1) and structure-
level techniques (§3.2.2). Finally, in Figure 3.1, techniques which are
marked in italic (techniques based on upper level ontologies) have not been
implemented in any matching system yet. However, we are arguing why

their appearance seems reasonable in the near future.

3.2.1 Element-level techniques

String-based techniques

These techniques are often used in order to match names and name de-
scriptions of ontology entities. They consider strings as sequences of letters
in an alphabet. They are typically based on the following intuition: the

more similar the strings, the more likely they denote the same concepts.
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A comparison of different string matching techniques, from distance like

functions to token-based distance functions can be found in [47]. Usually,
distance functions map a pair of strings to a real number, where a smaller
value of the real number indicates a greater similarity between the strings.
Some examples of string-based techniques which are extensively used in

matching systems are prefix, suffixz, edit distance, and n-gram:

e Prefix. This test takes as input two strings and checks whether the
first string starts with the second one. Prefiz is efficient in matching
cognate strings and similar acronyms (e.g., int and integer), see, for
example [146, 58, 159, 99]. This test can be transformed in a smoother

distance by measuring the relative size of the prefix and the ratio.

e Suffir. This test takes as input two strings and checks whether the
first string ends with the second one (e.g., phone and telephone), see,
for example [146, 58, 159, 99].

e Fdit distance. This distance takes as input two strings and computes
the edit distance between the strings. That is, the number of inser-
tions, deletions, and substitutions of characters required to transform
one string into another, normalized by the length of the longest string.
For example, the edit distance between NKN and Nikon is 0.4. Some
of matching systems exploiting the given technique are discussed in
[58, 181, 99].

e N-gram. This test takes as input two strings and computes the number
of common n-grams (i.e., sequences of n characters) between them.
For example, trigram(3) for the string nikon are nik, iko, kon. Thus,
the distance between nkon and nikon would be 1/3. Some of matching

systems exploiting the given test are discussed in [58, 99].
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Language-based techniques

These techniques consider names as words in some natural language (e.g.,
English). They are based on Natural Language Processing (NLP) tech-

niques exploiting morphological properties of the input words.

e Tokenization. Names of entities are parsed into sequences of tokens
by a tokenizer which recognizes punctuation, cases, blank charac-

ters, digits, etc. For example, Hands-Free_Kits becomes (hands, free,
kits) [99].

e Lemmatization. The strings underlying tokens are morphologically
analyzed in order to find all their possible basic forms. For example,
Kits becomes Kit [99].

e Flimination. The tokens that are articles, prepositions, conjunctions,

and so on, are marked (by some matching algorithms, e.g., [146]) to
be discarded.

Usually, the above mentioned techniques are applied to names of entities
before running string-based or lexicon-based techniques in order to improve
their results. However, we consider these language-based techniques as a
separate class of matching techniques, since they can be naturally extended,
for example, in a distance computation (by comparing the resulting strings

or sets of strings).

Constraint-based techniques

These are algorithms which deal with the internal constraints being applied
to the definitions of entities, such as types, cardinality of attributes, and
keys. We omit here a discussion of matching keys as these techniques

appear in our classification without changes with respect to the original
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publication [198]. However, we provide a different perspective on matching

datatypes and cardinalities.

e Datatypes comparison involves comparing the various attributes of a
class with regard to the datatypes of their value. Contrary to objects
that require interpretations, the datatypes can be considered objec-
tively and it is possible to determine how a datatype is close to an-
other (ideally this can be based on the interpretation of datatypes as
sets of values and the set-theoretic comparison of these datatypes, see
[226, 227]). For instance, the datatype day can be considered closer to
the datatype workingday than the datatype integer. This technique
is used in [78].

o Multiplicity comparison attribute values can be collected by a partic-
ular construction (set, list, multiset) on which cardinality constraints
are applied. Again, it is possible to compare the so constructed
datatypes by comparing (i) the datatypes on which they are con-
structed and (ii) the cardinality that are applied to them. For in-
stance, a set of between 2 and 3 children is closer to a set of 3 people
than a set of 10-12 flowers (if children are people). This technique is
used in [78].

Linguistic resources

Linguistic resources, such as common knowledge or domain specific the-
sauri are used in order to match words (in this case names of ontology
entities are considered as words of a natural language) based on linguistic

relations between them (e.g., synonyms, hyponyms).

e Common knowledge thesauri. The approach is to use common knowl-

edge thesauri to obtain meaning of terms used in ontologies. For
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example, WordNet [163, 80] is an electronic lexical database for En-

glish (and other languages [4, 232]), where various senses (possible
meanings of a word or expression) of words are put together into sets
of synonyms. Relations between ontology entities can be computed in
terms of bindings between WordNet senses, see, for instance [97, 31].
For example, in Figure 1 (p.xxi), a sense-based matcher may learn
from WordNet (with a prior morphological preprocessing of labels
performed) that Camera in O1 is a hypernym for Digital Camera in
02, and, therefore conclude that entity Digital_Cameras in O2 should
be subsumed by the entity Photo_and_Cameras in O1l. Another type
of matchers exploiting thesauri is based on their structural properties,
e.g., WordNet hierarchies. In particular, hierarchy-based matchers
measure the distance, for example, by counting the number of arcs
traversed, between two concepts in a given hierarchy, see [101]. Sev-
eral other distance measures for thesauri have been proposed in the
literature, e.g., [200, 197].

e Domain specific thesauri. These thesauri usually store some specific
domain knowledge, which is not available in the common knowledge
thesauri, (e.g., proper names) as entries with synonym, hypernym and
other relations. For example, in Figure 1, entities NKN in O1 and
Nikon in O2 are treated by a matcher as synonyms from a domain
thesaurus look up: syn key - “NKN:Nikon = syn” [146].

Alignment reuse

These techniques represent an alternative way of exploiting external re-
sources, which record alignments of previously matched ontologies. For
instance, when we need to match ontology o' and 0", given the alignments

between o and o/, and between o and 0” from the external resource, storing
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previous match operations results. The alignment reuse is motivated by

the intuition that many ontologies to be matched are similar to already
matched ontologies, especially if they are describing the same applica-
tion domain. These techniques are particularly promising when dealing
with large ontologies consisting of hundreds and thousands of entities. In
these cases, first, large match problems are decomposed into smaller sub-
problems, thus generating a set of ontology fragments matching problems.
Then, reuse of previous match results can be more effectively applied at
the level of ontology fragments rather than at the level of entire ontologies.
The approach was first introduced in [198] and later was implemented as
two matchers, i.e., (i) reuse alignments of entire ontologies, or (ii) their
fragments [58, 8, 199].

Upper level and domain specific formal ontologies

These techniques use as external sources of knowledge upper level and
domain specific formal ontologies. Examples of the upper level ontologies
are the Suggested Upper Merged Ontology (SUMO) [174] and Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE) [88]. The
key characteristic of these ontologies is that they are logic-based systems,
and therefore, matching techniques exploiting them can be based on the
analysis of interpretations. Thus, these are semantic techniques. For the
moment, we are not aware of any matching systems which use these kind of
techniques. However, it is quite reasonable to assume that this will happen
in the near future. In fact, for example, the DOLCE ontology aims at
providing a formal specification (axiomatic theory) for the top level part of
WordNet. Therefore, systems exploiting WordNet now in their matching
process (and aware of some of its limitations [89]) might also consider using

DOLCE as a potential extension.
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Domain specific formal ontologies can also be used as external sources

of background knowledge. Such ontologies are focusing on a particular
domain and use terms in a sense that is relevant only to this domain and
which is not related to similar concepts in other domains. For example,
in the anatomy domain, an ontology such as The Foundational Model of
Anatomy (FMA)* can be used as the context for the other medical ontolo-
gies to be matched (as long as it is known that the reference ontology covers
the ontologies to be matched). This can be particularly useful for providing

the missing structure when matching poorly structured resources [2].

3.2.2 Structure-level techniques

Graph-based techniques

These are graph algorithms which consider the input as labeled graphs.
The applications (e.g., database schemas, or ontologies) are viewed as
graph-like structures containing terms and their inter-relationships. Find-
ing the correspondences between elements of such graphs corresponds to
solving a form of the graph homomorphism problem [91]. Usually, the
similarity comparison between a pair of nodes from the two ontologies is
based on the analysis of their positions within the graphs. The intuition
behind is that, if two nodes from two ontologies are similar, their neigh-
bors might also be somehow similar. Below, we present some particular

matchers representing this intuition.

e Graph homomorphism. There have been done a lot of work on graph
(tree) matching in graph theory and also with respect to ontology
matching applications, see, for example, [210, 211]. Graph homo-
morphism is a combinatorial problem that can be computationally

expensive. It is usually solved by approximate methods. In ontology

4http ://sig.biostr.washington.edu/projects/fm/AboutFM.html
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matching, the problem is encoded as an optimization problem (find-

ing the graph matching minimizing some distance like the dissimilar-
ity between matched objects) which is further resolved with the help
of a graph matching algorithm. This optimization problem is solved
through a fix-point algorithm (improving gradually an approximate
solution until no improvement is made). Examples of such algorithms
are given in [159] and [78]. Some other (particular) matchers han-
dling directed acyclic graphs (DAGs) and trees are children, leaves,

and relations.

e Children. The (structural) similarity between inner nodes of the graphs
is computed based on similarity of their children nodes, that is, two
non-leaf schema elements are structurally similar if their immediate
children sets are highly similar. A more complex version of this

matcher is implemented in [58].

e Leaves. The (structural) similarity between inner nodes of the graphs
is computed based on similarity of leaf nodes, that is, two non-leaf
schema elements are structurally similar if their leaf sets are highly

similar, even if their immediate children are not [146, 58].

e Relations. The similarity computation between nodes can also be
based on their relations. For example, in one of the possible ontology
encodings of schemas of Figure 1 (p.xxi), if class Photo_and_Cameras
relates to class NKN by relation hasBrand in one ontology, and if
class Digital_Cameras relates to class Nikon by relation hasMarque
in the other ontology, then knowing that classes Photo_and_Cameras
and Digital_Cameras are similar, and also relations hasBrand and has-
Marque are similar, we can infer that NKN and Nikon may be similar
too [143].
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Taxonomy-based techniques

These are also graph algorithms which consider only the specialization rela-
tion. The intuition behind taxonomic techniques is that is-a links connect
terms that are already similar (being a subset or superset of each other),
therefore their neighbors may be also somehow similar. This intuition can

be exploited in several different ways:

e Bounded path matching. Bounded path matchers take two paths with
links between classes defined by the hierarchical relations, compare
terms and their positions along these paths, and identify similar terms,
see, for instance [181]. For example, in Figure 1 (p.xxi), given that
element Digital_Cameras in O2 should be subsumed by the element
Photo_and_Cameras in O1, a matcher would suggest FJFLM in O1

and FujiFilm in O2 as an appropriate match.

o Super(sub)-concepts rules. These matchers are based on rules captur-
ing the above stated intuition. For example, if super-concepts are the
same, the actual concepts are similar to each other. If sub-concepts

are the same, the compared concepts are also similar [55, 69].

Repository of structures

Repositories of structures store ontologies and their fragments together
with pairwise similarity measure, e.g., coefficients in the [0 1] range be-
tween them. Notice that unlike the alignment reuse, repository of struc-
tures stores only similarities between ontologies, not alignments. In the
following, to simplify the presentation, we call ontologies or their frag-
ments as structures. When new structures are to be matched, they are first
checked for similarity against the structures which are already available in
the repository. The goal is to identify structures which are sufficiently sim-

ilar to be worth matching in more detail, or reusing already existing align-
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ments, thus, avoiding the match operation over the dissimilar structures.
Obviously, the determination of similarity between structures should be
computationally cheaper than matching them in full detail. The approach
of [199], to matching two structures proposes to use some metadata de-
scribing these structures, such as structure name, root name, number of
nodes, maximal path length, etc. These indicators are then analyzed and
are aggregated into a single coefficient, which estimates similarity between
them. For example, two ontologies may be found as an appropriate match

if they both have the same number of nodes.

Model-based

These are algorithms which handle the input based on its semantic inter-
pretation (e.g., model-theoretic semantics). Thus, they are well grounded
deductive methods. Examples are propositional satisfiability (SAT) and

description logics (DL) reasoning techniques.

e Propositional satisfiability (SAT). This method is the core of the ap-
proach presented in this thesis. As from [31, 97, 98, 32|, the approach
is to decompose the graph (tree) matching problem into the set of
node matching problems. Then, each node matching problem, namely
pairs of nodes with possible relations between them is translated into

a propositional formula of form:
Azioms — rel(contexty, contexts),

and checked for validity. The Axioms part encodes background knowl-
edge (e.g., Digital_Cameras — Cameras codifies the fact that Digi-
tal_Cameras is less general than Cameras), which is used as premises
to reason about relations rel (e.g., =, =, J, 1) holding between the

nodes context; and contexts (e.g., node 7 in Ol and node 12 in O2 of
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Figure 1 (p.xxi)). A propositional formula is valid if and only if its

negation is unsatisfiable. The unsatisfiability is checked by using SAT
solvers. Notice that SAT deciders are correct and complete decision
procedures for propositional satisfiability, and therefore, they can be

used for an exhaustive check of all the possible correspondences.

e DL-based techniques. The SAT-based approach computes the satisfi-
ability of theory merging both ontologies along an alignment. Propo-
sitional language used for codifying matching problems into proposi-
tional validity problems is limited in its expressivity, namely it allows
for handling only unary predicates. Thus, it cannot handle, for ex-
ample, binary predicates, such as properties or roles. However, the
same procedure can be carried within description logics (expressing
properties). In description logics, the relations (e.g., =, C, J, 1) can
be expressed as a function of subsumption [33]. In fact, first merging
two ontologies (after renaming) and then testing each pair of concepts
and roles for subsumption is enough for aligning terms with the same
interpretation (or with a subset of the interpretations of the others).
For instance, suppose that we have one ontology introducing classes
company, employee and micro-company as a company with at most
5 employees, and another ontology introducing classes firm, associate
and SMFE as a firm with at most 10 associates. If we know that all
associates are employees and we already have established that firm is

equivalent to company, then we can deduce that a micro-company is
a SME.

There are examples in the literature of DL-based techniques used in rel-
evant to ontology matching applications. For example, in spatio-temporal
database integration scenario, as first motivated in [193] and later devel-

oped in [218; 194] the inter-schema correspondences are initially proposed
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by the integrated schema designer and are encoded together with input
schemas in ALCRP(S,87) language. Then, DL reasoning services are
used to check the satisfiability of the two source schemas and the set of
inter-schema correspondences. If some objects are found unsatisfied, then
the inter-schema correspondences should be reconsidered.

Another example, is when DL-based techniques are used in query pro-
cessing scenario [162]. The approach assumes that correspondences be-
tween pre-existing domain ontologies are already specified in a declarative
manner (e.g., manually). User queries are rewritten in terms of pre-existing
ontologies and are expressed in Classic [28], and further evaluated against
real world repositories, which are also subscribed to the pre-existing ontolo-
gies. An earlier approach for query answering by terminological reasoning
is described in [12].

Finally, a very similar problem to ontology matching is addressed within
the system developed for matchmaking in electronic marketplaces [54].
Demand D and supply S requests are translated from natural language
sentences into Classic [28]. The approach assumes the existence of a pre-
defined domain ontology 7', which is also encoded in Classic. Matchmaking
between a supply S and a demand D is performed with respect to the pre-
defined domain ontology 7. Reasoning is performed with the help of the
NeoClassic reasoner in order to determine the exact match (T = (D C S))
and (T = (S © D)), potential match (if D M S is satisfiable in T'), and
nearly miss (if D M .S is unsatisfiable in 7'). The system also provides a

logically based matching results rank operation.
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3.3 Other classifications

Let us now consider some other available classifications of matching tech-
niques.

[66] introduced a classification based on two orthogonal dimensions.
These can be viewed as horizontal and vertical dimensions. The horizontal

dimension includes three layers that are built one on top of another:

Data layer: This is the first layer. Matching between entities is performed

here by comparing only data values of simple or complex datatypes.

Ontology layer: This is the second layer which, in turn, is further di-
vided, following the cake of [22], into four levels. These are semantic
nets, description logics, restrictions and rules. For example, at the
level of semantic nets, ontologies are viewed as graphs with concepts
and relations, and, therefore, matching is performed by comparing
only these. The description logics level brings a formal semantics ac-
count to ontologies. Matching at this level includes, for example, de-
termining taxonomic similarity based on the number of subsumption
relations separating two concepts. This level also takes into account
instances of entities, therefore, for example, assessing concepts to be
the same, if their instances are similar. Matching at the levels of re-
strictions and rules is typically based on the idea that if, e.g., similar
rules between entities exist, these entities can be regarded as similar.

This typically requires processing of higher order relations.

Context layer: Finally, this layer is concerned with the practical usage of
entities in the context of an application. Matching is performed here
by comparing the usages of entities in ontology-based applications.
One of the intuitions behind such matching methods is that similar

entities are often used in similar contexts.
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The vertical dimension represents specific domain knowledge which can

be situated at any layer of the horizontal dimension. Here, the advantage
of external resources of domain specific knowledge, e.g., Dublin Core® for
the bibliographic domain, is considered for assessing the similarity between
entities of ontologies.

[61] classifies matching techniques into (¢) rule-based and (ii) learning-
based. Typically, rule-based techniques work with schema-level informa-
tion, such as entity names, datatypes and structures. Some examples of
rules are that two entities match if their names are similar or if they have
the same number of neighbor entities. Learning-based approaches often
work with instance-level information, thereby performing matching, for
example, by comparing value formats and distributions of data instances
underlying the entities under consideration. However, learning can also be
done at the schema-level and from the previous matches [59].

[237, 13] classify matching methods into three categories following the

cognitive theory of meaning and communication between agents:

Syntactic: This category represents methods that use purely syntactic
methods to compute alignments. Some examples of such methods
include string-based techniques, e.g., edit distance between strings

and graph-based techniques.

Pragmatic: This category represents methods that rely on comparison
of data instances underlying the entities under consideration in or-
der to compute alignments. Some examples of such methods include
automatic classifiers, e.g., Bayesian classifier [64, 149, 60] and formal

concepts analysis [90, 223].

Conceptual: This category represents methods that work with concepts

and compare their meanings in order to compute alignments. Some

Shttp://dublincore.org/
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examples of such methods include techniques exploiting external the-

sauri, such as WordNet, in order to compare meanings among the

concepts under consideration.

There were also some classifications mixing the process dimension of
matching together with either input dimension or output dimension. For
example, [56] extends the work of [198] by adding a reuse-oriented category
of techniques on top of schema-based vs. instance-based separation, mean-
ing that reuse-oriented techniques can be applied at schema and instance
level. However, these techniques can also include some input information,
such as user input or alignments obtained from previous match operations.

[97] classified matching approaches into syntactic and semantic. At the
matching process dimension these correspond to syntactic and conceptual
categories of [237] respectively. However, these have been also constrained
by a second condition dealing with the output dimension: syntactic tech-
niques return coefficients in the [0 1] range, while semantic techniques
return logical relations, such as equivalence and subsumption.

Finally, we notice that the more the ontology matching field progresses,
the wider the variety of techniques that come into use at different levels of

granularity.

3.4 Matching strategies

The basic techniques presented earlier in §3.2 are the building blocks on
which a matching solution is built. In particular, the following aspects of

building a working matching system have to be taken into account as well:

e How to organize the combination of various basic matching algorithms.
A natural way of composing the basic matchers consists of improving
the matching through the use of sequential composition [146, 39]. An-

other way to combine algorithms consists of running several different
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algorithms independently and aggregating their results: this is called
parallel composition [58, 69].

e How to involve the user in the loop. There are at least three areas in
which users can be involved in a matching solution: (i) obviously, by
providing initial alignments (and parameters) to the matchers, (i7) by
dynamically combining matchers [160, 8, 56], and (iii) by providing
feedback to the matchers in order for them to adapt their results [67,
25].

e How to extract the final alignment. This can be done by using various
thresholds, e.g., hard threshold (retains all the correspondence above
a given threshold) [58, 69], or graph matching algorithms [19, 141],

more precisely weighted bipartite graph matching or covering [87].

Besides the above mentioned aspects, development of a matching strat-
egy also covers the use of learning and probabilistic algorithms for learn-
ing from data the best method and the best parameters for matching
(60, 67, 205], dealing with circularities and developing a strategy for com-
puting these similarities in spite of cycles and non linearity in the con-

straints governing similarities [159, 78].

3.5 Summary

There is a variety of techniques that can be used for ontology matching.
The classification discussed in this chapter provides a common conceptual
basis, and, hence, can be used for comparing (analytically) different exist-
ing ontology matching systems as well as for designing a new one, taking
advantages of state of the art solutions. Also, classifications of match-
ing methods provide some guidelines which help in identifying families of

matching techniques.
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This chapter showed the difficulty of having a clear cut classification of

algorithms. We provided two such classifications based on granularity and
input interpretation on one side and the kind of input on the other side. We
also briefly outlined a number of issues to be addressed when assembling
components of a matching system. This indicated that the craft of ontology
matching systems is a delicate art of combining basic matchers in the most

advantageous way.
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Chapter 4

Overview of

matching systems

This chapter is devoted to an overview of existing matching systems which
have emerged during the last decade. There have already been done some
comparisons of a number of matching systems, in particular in [193, 198,
57, 123, 176, 61, 214]. Our purpose here is not to compare them in full
detail, although we give some comparisons, but rather to show their variety,
in order to demonstrate in how many different ways the methods presented
in the previous chapter have been practically exploited. We present the
matching systems in light of the classifications of Chapter 3. We also point
to concrete basic matchers and matching strategies used in the considered
systems.

In order to facilitate the presentation we follow two rules. First, the
year of the system appearance is considered. Then, if there are some evo-
lutions of the system or very similar systems, these are discussed close to
each other. Since the main focus of this thesis is on schema-based match-
ing, instance-based systems (e.g., LSD [60], GLUE [63], Automatch [21],
sPLMap [175]) as well as meta-matching systems (APFEL [67], eTuner
[205]) were excluded from the consideration, see [75] for an overview. We

have also excluded from consideration the systems which assume that align-
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ments have already been established, and use this assumption as a prereq-
uisite of running the actual system. These approaches include such in-
formation integration systems as: Tsimmis [44], Observer [162], SIMS [3],
Kraft [196], Picsel [105], DWQ [38], AutoMed [35], and InfoMix [136].

Material presented in this chapter has been developed in collaboration
with Jérome Euzenat and published in [214, 75]. Also some work on the
topic of this chapter has been supported by the FP6 Knowledge Web!
Network of Excellence.

The structure of this chapter is as follows. We first describe systems
which focus on schema-level information (§4.1). Then, we present systems

which exploit both schema-level and instance-level information (§4.2).

4.1 Schema-based systems

Schema-based systems, according to the classification of Chapter 3, are
those which rely mostly on schema-level input information for performing

ontology matching.

4.1.1 Hovy (University of Southern California)

[119] describes a number of heuristics used to match large-scale ontologies,
such as Sensus and Mikrokosmos, in order to combine them in a single ref-
erence ontology. In particular, were used three types of matchers based on
(1) concept names, (i) concept definitions, and (7i7) taxonomy structure.
For example, the name matcher splits composite-word names into separate
words and then compares substrings in order to produce a similarity score.
Specifically, the name matcher score is computed as the sum of the square
of the number of letters matched, plus 20 points if words are exactly equal

or 10 points if end of match coincides. For instance, using this strategy,

1http ://knowledgeweb.semanticweb.org/
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the comparison between Free World and World results in 35 points score,
while the comparison between cuisine and vine results in 19 points score.
The definition matcher compares the English definitions of two concepts.
Here, both definitions are first separated into individual words. Then, the
number and the ratio of shared words in two definitions is computed in
order determine the similarity between them. Finally, results of all the
matchers are combined based on experimentally obtained formula. The
combined scores between concepts from two ontologies are sorted in de-
scending order and are presented to the user for establishing a cutoff value
as well as for approving or discarding operations, results of which are saved

for later reuse.

4.1.2 TransScm (Tel Aviv University)

TransScm [166] provides data translation and conversion mechanisms be-
tween input schemas based on schema matching. First, by using rules, the
alignment is produced in a semi-automatic way. Then, this alignment is
used to translate data instances of the source schema to instances of the
target schema. Input schemas are internally encoded as labeled graphs,
where some of the nodes may be ordered. Nodes of the graph represent
schema elements, while edges stand for the relations between schema ele-
ments or their components. Matching is performed between nodes of the
graphs top-down and in one-to-one fashion. Matchers are viewed as rules.
For example, (according to the identical rule) two nodes match if their
labels are found to be synonyms based on the built-in thesaurus; see for
a list of the available rules [240]. The system combines rules sequentially
based on their priorities. It tries to find for the source node a unique best
matching target node, or determine a mismatch. In case (7) there are a
number of matching candidates, among which the system cannot choose

the best one, or (i) if the system cannot match or mismatch a source node
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to a target node with the given set of rules, user involvement is required. In

particular, users with the help of a graphic user interface can add, disable
or modify rules to obtain the desired matching result. Then, instances of
the source schema are translated to instances of the target schema accord-
ing to the match rules. For the example of the identical rule, translation

includes copying the source node components.

4.1.3 DIKE (Universita di Reggio Calabria,

Universita di Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting
the semi-automatic construction of cooperative information systems (CISs)
from heterogeneous databases [189, 187, 188, 186]. It takes as input a set
of databases belonging to the CIS. It builds a kind of mediated schema
(called data repository or global structured dictionary) in order to pro-
vide a user-friendly integrated access to the available data sources. DIKE
focuses on entity-relationship schemas. The matching step is called the
extraction of inter-schema knowledge. It is performed in a semi-automatic
way. Some examples of inter-schema properties that DIKE can find are
terminological properties, such as synonyms, homonyms among objects,
namely entities and relationships, or type conflicts, e.g., similarities be-
tween different types of objects, such as entities, attributes, relationships;
structural properties, such as object inclusion; subschema stmilarities, such
as similarities between schema fragments. With each kind of property is
associated its plausibility coefficient in the [0 1] range. The properties
with a lower plausibility coefficient than a dynamically derived threshold
are discarded, whereas others are accepted. DIKE works by computing
sequentially the above mentioned properties. For example, synonyms and
homonyms are determined based on information from external resources,

such as WordNet, and by analyzing the distances of objects in the neigh-
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borhood of the objects under consideration. Also, some weights are used to

produce a final coefficient. Then, type conflicts are analyzed and resolved

by taking as input the results of synonyms and hyponyms analysis.

4.1.4 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that
semi-automatically discovers mappings between two ontologies [169]. In-
ternally, input ontologies are encoded as graphs. Rules are provided by
domain experts and are encoded in first order logic. In particular, ex-
perts specify initially desired matches and mismatches. For example, a
rule President = Chancellor, indicates that we want President to be an
appropriate match to Chancellor. Apart from declarative rules, experts
can specify matching procedures that can be used to generate the new
matches. Thus, experts have to approve or reject the automatically sug-
gested matches, thereby producing the resulting alignment. Matching pro-
cedures are applied sequentially. Some examples of these procedures are:
string-based matching, e.g., two terms match if they are spelled similarly,
and structure matching, e.g., structural graph slices matching, such as con-
sidering nodes near the root of the first ontology against nodes near the
root of the second ontology.

ONION (ONtology compositlON) is a successor system. It discovers
mappings between multiple ontologies semi-automatically. The ultimate
goal of matching is to enable a unified query answering over the involved
ontologies [170]. Input ontologies (the system handles RDF files) are in-
ternally represented as labeled graphs. The alignment is viewed as a set of
articulation rules. The semi-automated algorithm for resolving the termi-
nological heterogeneity of [168] forms the basis of the articulation genera-
tor, ArtGen, for the ONION system. ArtGen, in turn, can be viewed as an

evolution of the SKAT system with some added matchers. Thus, it exe-
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cutes a set of matchers and suggests articulation rules to the user. A human

expert can either accept, modify or delete the suggestions. The expert can
also indicate the new matches that the articulation generator might have
missed. ArtGen works sequentially, first by performing linguistic matching
and then structure-based matching. During the linguistic matching phase,
concept names are represented as sets of words. The linguistic matcher
compares all possible pairs of words from any two concepts of both ontolo-
gies and assigns a similarity score in [0 1] to each pair. The matcher uses
a word similarity table generated by a thesaurus-based or corpus-based
matcher called the word relator to determine the similarity between pairs
of words. The similarity score between two concepts is the average of the
similarity scores (ignoring scores of zero) of all possible pairs of words in
their names. If this score is higher than a given threshold, ArtGen gener-
ates a match candidate. Structure-based matching is performed based on
the results of the linguistic matching. It looks for structural isomorphism
between subgraphs of the ontologies, taking into account some linguistic
clues (see also §4.1.9 for a similar technique). The structural matcher tries
to match only the unmatched pairs from the linguistic matching, thereby

complementing its results.

4.1.5 Artemis (Universita di Milano,
Universita di Modena e Reggio Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Infor-
mation Systems) [39] was designed as a module of the MOMIS mediator
system [18, 17] for creating global views. It performs affinity-based analysis
and hierarchical clustering of source schema elements. Affinity-based anal-
ysis represents the matching step: in a sequential manner it calculates the
name, structural and global affinity coefficients exploiting a common the-
saurus. The common thesaurus is built with the help of ODB-Tools [16],
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WordNet or manual input. It represents a set of intensional and a set
of extensional relationships which depict intra- and inter-schema knowl-
edge about classes and attributes of the input schemas. Based on global
affinity coefficients, a hierarchical clustering technique categorizes classes
into groups at different levels of affinity. For each cluster it creates a set
of global attributes and the global class. Logical correspondence between
the attributes of a global class and source schema attributes is determined

through a mapping table.

4.1.6 H-Match (Universita degli Studi di Milano)

H-Match [41] is an automated ontology matching system. It was designed
to enable knowledge discovery and sharing in the settings of open net-
worked systems, in particular within the Helios peer-to-peer framework
[40]. The system handles ontologies specified in OWL. Internally, these are
encoded as graphs using the H-model representation [40]. H-Match inputs
two ontologies and outputs (one-to-one or one-to-many) correspondences
between concepts of these ontologies with the same or closest intended
meaning. The approach is based on a similarity analysis through affinity
metrics, e.g., term to term affinity, datatype compatibility, and thresholds.
H-Match computes two types of affinities (in the [0 1] range), namely lin-
guistic and contextual affinity. These are then combined by using weighting
schemas, thus yielding a final measure, called semantic affinity. Linguistic
affinity builds on top of a thesaurus-based approach of the Artemis system
(84.1.5). In particular, it extends the Artemis approach (i) by building
a common thesaurus involving such relations among WordNet synsets as
meronymy or coordinate terms, and (i¢) by providing an automatic handler
of compound terms (i.e., those composed by more than one token) that are
not available from WordNet. Contextual affinity requires consideration of

the neighbor concepts, e.g., linked via taxonomical or mereological rela-
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tions, of the actual concept.

One of the major characteristics of H-Match is that it can be dynami-
cally configured for adaptation to a particular matching task. Notice that
in dynamic settings complexity of a matching task is not known in ad-
vance. This is achieved by means of four matching models. These are:
surface, shallow, deep, and intensive, each of which involves different types
of constructs of the ontology. Computation of a linguistic affinity is a
common part of all the matching models. In case of the surface model,
linguistic affinity is also the final affinity, since this model considers only
names of ontology concepts. All the other three models take into account
various contextual features and therefore contribute to the contextual affin-
ity. For example, the shallow model takes into account concept properties,
whereas the deep and the intensive models extend previous models by in-
cluding relations and property values, respectively. Each concept involved
in a matching task can be processed according to its own model, inde-
pendently from the models applied to the other concepts within the same
task. Finally, by applying thresholds, correspondences with semantic (fi-
nal) affinity higher than the cut-off threshold value are returned in the final

alignment.

4.1.7 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt [181] is an extension of Prompt, also formerly known as
SMART, and is an ontology merging and alignment tool with a sophisti-
cated prompt mechanism for possible matching terms [179]. Prompt han-
dles ontologies expressed in such knowledge representation formalisms as
OWL and RDF Schema. Anchor-Prompt is a sequential matching algo-
rithm that takes as input two ontologies, internally represented as graphs
and a set of anchors-pairs of related terms, which are identified with the

help of string-based techniques, such as edit-distance, or defined by a user
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or another matcher computing linguistic similarity. Then the algorithm
refines them by analyzing the paths of the input ontologies limited by the
anchors in order to determine terms frequently appearing in similar posi-
tions on similar paths. Finally, based on the frequencies and user feedback,

the algorithm determines matching candidates.

4.1.8 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web [171]. A typical
situation the system deals with is, for example, when a user is searching for
a car to be rented. Obviously, the user would like to compare prices from
multiple providers in order to make an informed decision. Thus, the same
input information has to be typed in many times. OntoBuilder operates
in two phases, namely: (i) ontology creation (the so called training phase)
and (ii) ontology adaptation (the so called adaptation phase). During
the training phase an initial ontology (in which a user’s data needs are
encoded) is created by extracting it from a visited web-site of, e.g., AVIS
car rental company. The adaptation phase includes on-the-fly matching
and interactive merging operations of the related ontologies with the actual
(initial) ontology. Ontology creation is out of the scope of this thesis.
Hence, we concentrate only on the ontology adaptation phase. During
the adaptation phase the user suggests the web sites (s)he would like to
further explore, e.g., the Hertz car rental company. Each such a site goes
through the ontology extraction process, thus, resulting in a candidate
ontology, which is then merged into the actual ontology. To support this,
the best match for each existing term in the actual ontology (to terms from
the candidate ontology) is selected. Selection strategy employs thresholds.
The matching algorithm works in a term to term fashion. It sequentially
executes a number of matchers. Some examples of the matchers used here

are removing noisy characters and stop terms and substring matching. If
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all else fails, a thesaurus look-up is performed. Finally, mismatched terms

are presented to the user for manual matching. Some further matchers
such as those for precedence matching were introduced in a later work in
[86]. Also top-k mappings as alternative for single best matching (i.e.,

top-1 category) was proposed in [85].

4.1.9 Cupid (University of Washington, Microsoft Corporation,
University of Leipzig)

Cupid [146] implements a sequential algorithm comprising linguistic and
structural schema matching techniques, and computing similarity coeffi-
cients with the assistance of domain specific thesauri. Input schemas are
encoded as graphs. Nodes represent schema elements and are traversed
in a combined bottom-up and top-down manner. The matching algorithm
consists of three phases and operates only with tree-structures, to which
non-tree cases are reduced. The first phase (linguistic matching) computes
linguistic similarity coefficients between schema element names (labels)
based on morphological normalisation, categorization, string-based tech-
niques, such as common prefix, suffix tests, and thesauri look-up. The
second phase (structural matching) computes structural similarity coeffi-
cients weighted by leaves which measure the similarity between contexts
in which elementary schema elements occur. The third phase (mapping
elements generation) aggregates the results of the linguistic and structural
matching through a weighted sum and generates a final alignment by choos-
ing pairs of schema elements with weighted similarity coefficients which are
higher than a threshold.
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4.1.10 COMA and COMA-++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) [58] is a schema matching
tool based on parallel composition of matchers. It provides an extensi-
ble library of matching algorithms, a framework for combining obtained
results, and a platform for the evaluation of the effectiveness of the dif-
ferent matchers. As in [58], COMA contains six elementary matchers,
five hybrid (i.e., combinations of elementary methods) matchers, and one
reuse-oriented matcher. Most of them implement string-based techniques,
such as affix, n-gram, edit distance; others share techniques with Cupid
(thesauri look-up, etc.). Reuse-oriented is an original matcher, which tries
to reuse previously obtained results for entire new schemas or for its frag-
ments. Schemas are internally encoded as directed acyclic graphs, where
elements are the paths. This aims at capturing contexts in which the ele-
ments occur. Distinct features of the COMA tool in respect to Cupid are a
more flexible architecture and the possibility of performing iterations in the
matching process. It presumes interaction with users who approve obtained
matches and mismatches to gradually refine and improve the accuracy of
match. COMA++ is built on top of COMA by elaborating in more detail
the alignment reuse operation, provides a more efficient implementation of
the COMA algorithms and a graphical user interface [58, 56].

4.1.11 Similarity Flooding (Stanford University,
University of Leipzig)

The Similarity Flooding (SF) [159] approach is based on the ideas of sim-
ilarity propagation. Schemas are presented as directed labeled graphs;
grounding on the OIM specification [156]. The algorithm manipulates them
in an iterative fix-point computation to produce an alignment between the

nodes of the input graphs. The technique starts from string-based compar-
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ison, such as common prefix, suffix tests, of the vertices labels to obtain an
initial alignment which is refined within the fix-point computation. The
basic concept behind the similarity flooding algorithm is the similarity
spreading from similar nodes to the adjacent neighbors through propaga-
tion coefficients. From iteration to iteration the spreading depth and a
similarity measure are increasing till the fix-point is reached. The result
of this step is a refined alignment which is further filtered to finalize the

matching process.

4.1.12 CtxMatch and CtxMatch2 (University of Trento,
ITC-IRST)

CtxMatch [31, 30, 33] represents the first instantiation of the semantic
matching approach [97], namely the approach developed in this thesis. It
translates the ontology matching problem into the logical validity problem
and computes logical relations, such as equivalence, subsumption between
concepts and properties. CtxMatch is a sequential system. At the element
level it uses only WordNet to find initial matches for classes as well as for
properties. At the structure level, it exploits description logic reasoners,
such as Pellet? or FaCT? to compute the final alignment in a way simi-
lar to what is presented in Chapter 3 when discussing methods based on

description logics.

4.1.13 DCM framework (University of Illinois at
Urbana-Champaign)

MetaQuerier [43] is a middleware system that assists users in finding and
quering multiple databases on the web. It exploits the Dual Correlation

Mining (DCM) matching framework to facilitate source selection according

2http ://www.mindswap.org/2003/pellet/
3http ://www.cs.man.ac.uk/~horrocks/FaCT
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to user search keywords [116]. Unlike other works, the given approach takes

as input multiple schemas and returns alignments between all of them. This
setting is called holistic schema matching. DCM automatically discovers
complex mappings, e.g., {author} corresponds to {first name, last name},
between attributes of the web query interfaces in the same domain of inter-
est, e.g., books. As the name (DCM) indicates, schema matching is viewed
as correlation mining. The idea is that co-occurrence patterns often sug-
gest complex matches. That is, grouping attributes, such as first name and
last name, tend to co-occur in query interfaces. Technically, this means
that those attributes are positively correlated. Contrary, attribute names
which are synonyms, e.g., quantity and amount, rarely co-occur, thus rep-
resenting an example of negative correlation between them. Matching is
performed in two phases. During the first phase (matching discovery), a
set of matching candidates is generated by mining first positive and then
negative correlations among attributes and attribute groups. Also, some
thresholds and a specific correlation measure such as the H-measure are
used. During the second phase (matching construction), by applying some
strategies of ranking, e.g., scoring function, rules, and selection, such as

iterative greedy selection, the final alignment is produced.

4.2 Mixed systems

The following systems take advantage of both schema-level and instance-

level input information if they are both available.

4.2.1 SEMINT (Northwestern University, NEC,
The MITRE Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to

assist in identifying attribute correspondences in heterogeneous databases
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[137, 138]. It supports access to a variety of database systems and utilizes

both schema- and instance-level information to produce rules for match-
ing corresponding attributes automatically. The approach works as fol-
lows. First, it extracts from two databases all the necessary information
(features or discriminators) which is potentially available and useful for
matching. This includes normalized schema information, e.g., field speci-
fications, such as datatypes, length, constraints, and statistics about data
values, e.g., character patterns, such as ratio of numerical characters, ratio
of white spaces, and numerical patterns, such as mean, variance, standard
deviation. Second, by using a neural network as a classifier (self-organizing
map algorithm), it groups the attributes based on similarity of the features
for a single (the first) database. Then, it uses a back-propagation neural
network for learning and recognition. Based on the previously obtained
clusters, the learning is performed. Finally, using a trained neural net-
work on the first database features and clusters, the system recognizes and
computes similarities between the categories of attributes from the first
database and the features of attributes from the second database, thus,
generating a list of match candidates, which are to be inspected and con-

firmed or discarded by a human user.

4.2.2 Clio (IBM Almaden, University of Toronto)

Clio is a system for managing and facilitating data transformation and inte-
gration tasks within heterogeneous environments [164, 165, 172, 113]. Clio
handles relational and XML schemas. As a first step, the system trans-
forms the input schemas into an internal representation, which is a nested
relational model. The Clio approach is focused on making the alignment
operational. It is assumed that the matching step (namely, identification of
the so-called value correspondences) is performed with the help of a schema

matching component or manually by the user. The built-in schema match-
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ing algorithm of Clio combines in a sequential manner instance-based at-
tribute classification via a variation of a Naive Bayes classifier [107, 64, 149]
and string matching between elements names, e.g., by using edit distance
measure. Then, taking the n:m value correspondences (the alignment) to-
gether with constraints coming from the input schemas, Clio compiles these
into an internal query graph representation. In particular, an interpreta-
tion of the input correspondences is given. Thus, a set of logical mappings
with formal semantics is produced. To this end, Clio also supports map-
pings composition [79]. Finally, the query graph can be serialized into
different query languages, e.g., SQL, XSLT, XQuery, thus enabling actual
data to be moved from a source to a target, or to answer queries. The
system, besides trivial transformations, aims at discovering complex ones,

such as the generation of keys, references, join conditions.

4.2.3 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) [69] and QOM (Quick Ontology Map-
ping) [68] are components of the FOAM framework [66].

NOM adopts the idea of parallel composition of matchers from COMA
(§4.1.10). Some innovations with respect to COMA are in the set of ele-
mentary matchers based on rules, exploiting explicitly codified knowledge
in ontologies, such as information about super- and sub-concepts, super-
and sub-properties, etc. At present the system supports 17 rules. For
example, a rule states that if super-concepts are the same, the actual con-
cepts are similar to each other. These rules use many terminological and
structural techniques.

QOM (Quick Ontology Mapping) [68] is a variation of the NOM system
dedicated to improve the efficiency of the system. The approach is based
on the idea that the loss of quality in matching algorithms is marginal (to a

standard baseline); however improvement in efficiency can be tremendous.
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This fact allows QOM to produce correspondences fast, even for large-

size ontologies. QOM is grounded on matching rules of NOM. However,
for the purpose of efficiency the use of some rules, e.g., the rules that
traverse the taxonomy, have been restricted. QOM avoids the complete
pairwise comparison of trees in favor of a (n incomplete) top-down strategy,
thereby focusing only on promising matching candidates. The similarity
measures produced by basic matchers (matching rules) are refined by using
a sigmold function, thereby emphasizing high individual similarities and de-
emphasizing low individual similarities. They are then aggregated through
weighted average. Finally, with the help of thresholds, the final alignment

is produced.

4.2.4 OLA (INRIA Rhone-Alpes, Université de Montréal)

OLA (OWL Lite Aligner) [78] is an ontology matching system which is
designed with the idea of balancing the contribution of each of the compo-
nents that compose an ontology, e.g., classes, constraints, data instances.
OLA handles ontologies in OWL. It first compiles the input ontologies into
graph structures, unveiling all relationships between entities. These graph
structures produce the constraints for expressing a similarity between the
elements of the ontologies. The similarity between nodes of the graphs
follows two principles: (7) it depends on the category of node considered,
e.g., class, property, and (ii) it takes into account all the features of this
category, e.g., superclasses, properties.

The distance between nodes in the graph are expressed as a system of
equations based on string-based, language-based and structure-based sim-
ilarities. These distances are almost linearly aggregated (they are linearly
aggregated modulo local matches of entities). For computing these dis-
tances, the algorithm starts with base distance measures computed from

labels and concrete datatypes. Then, it iterates a fix-point algorithm until
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no improvement is produced. From that solution, an alignment is gener-
ated which satisfies some additional criterion on the alignment obtained

and the distance between matched entities.

4.2.5 Corpus-based matching (University of Washington,
Microsoft Research, University of Illinois at

Urbana-Champaign)

[144] proposed an approach to schema matching which, besides input in-
formation available from schemas under consideration, also exploits some
domain specific knowledge via an external corpus of schemas and map-
pings. The intuition behind the approach is based on the use of corpus
in information retrieval, where similarity between queries and concepts is
determined based on analyzing large corpora of text. In schema matching
settings, such a corpus can be initialized with a small number of schemas
obtained, for example, by using available standard schemas in the domain
of interest (see, for instance, XML.org? and OASIS.org”) and should even-
tually evolve in time with new matching tasks.

Since the corpus is intended to have a number of different represen-
tations of each concept in the domain, it should facilitate learning these
variations in the elements and their properties. The corpus is exploited
in two ways. First, to obtain an additional evidence about each element
being matched by including evidence from similar elements in the corpus.
Second, in the corpus, similar elements are clustered and some statistics
for clusters are computed, such as neighborhood and ordering of elements.
These statistics are ultimately used to build constraints that facilitate se-
lection of the correspondences in the resulting alignment.

The approach handles web forms and relational schemas and focuses on

4http://www.xml.org/

5http://www.oasis—open.org/
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one-to-one alignments. It works in two logical phases. Firstly, schemas
under consideration are matched against the corpus, thereby augmenting
these with possible variations of their elements based on knowledge avail-
able from the corpus. Secondly, augmented schemas are matched against
each other. In both cases the same set of matchers is applied. In particu-
lar, basic matchers, called learners, include: (i) a name learner, (ii) a text
learner, (1i1) a data instance learner, and (iv) a context learner. These
matchers mostly follow the ideas of techniques used in LSD [59] and Cupid
(84.1.9). For example, the name learner exploits names of elements. It
applies tokenization and n-grams to the names in order to create training
examples. The matcher itself is a text classifier, such as Naive Bayes. In ad-
dition, the name learner, in order to determine similarity between element
names string, uses edit distance. The data instance learner determines
whether the values of instances share common patterns, same words, etc.
Also, a matcher for an automatic combination of the results produced by
basic matchers, called metalearner, uses logistic regression with the help of
stacking technique [224] in order to learn its parameters. Finally, by using
constraints obtained based on the statistics from the corpus, some filtering
of the candidate correspondences is performed in order to produce the final

alignment.

4.3 Summary

The panorama of systems considered in this chapter has multiplied the di-
versity of basic techniques by the variety of strategies for combining them
introduced in the previous chapter. However, there are a number of con-
stant features that are shared by the majority of systems. Also, usually
each individual system innovates on a particular aspect. Let us summarize

some global observations concerning the presented systems:
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Most of the systems under consideration deal with particular ontol-
ogy types, such as DTDs, relational schemas and OWL ontologies.
Only a small number of systems aim at being generic, i.e., handle
multiple types of ontologies. Some examples include Cupid (§4.1.9),

COMA and COMA-++ (§4.1.10), Similarity Flooding (§4.1.11) and
the approach proposed in this thesis.

Most of the approaches take as input a pair of ontologies, including
the approach proposed in this thesis, while only a small number of

systems take as input multiple ontologies, e.g., DCM (§4.1.13).

Most of the approaches handle only tree-like structures, including the
approach proposed in this thesis, while only a small number of systems
handle graphs. Some examples of the latter include Cupid (§4.1.9),
COMA and COMA++ (§4.1.10), and OLA (§4.2.4).

Most of the systems focus on discovery of one-to-one alignments, while
only a small number of systems have tried to address the problem of
discovering more complex correspondences, such as one-to-many, e.g.,
the approach proposed in this thesis, and many-to-many, e.g., DCM
(8§4.1.13).

Most of the systems focus on computing confidence measures in [0 1]
range, most often standing for the fact that the equivalence relation
holds between ontology entities. Only a small number of systems com-
pute logical relations between ontology entities, such as equivalence,
subsumption. Some examples of the latter include CtxMatch (§4.1.12)
and the approach proposed in this thesis.

Table 4.1 summarizes how some of the matching systems considered

in this chapter cover the solution space in terms of the classification of
Chapter 3.
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Table 4.1: Basic matchers used by different systems

Element-level

Structure-level

Naive Bayes

Syntactic External Syntactic Semantic
Hovy string-based, - taxonomic structure -
84.1.1 language-based
TranScm string-based built-in thesaurus taxonomic structure, -
§4.1.2 matching of
neighbourhood
DIKE string-based, WordNet matching of -
§4.1.3 domain compatibility neighbourhood
SKAT string-based auxiliary thesaurus, taxonomic structure,
84.1.4 corpus-based matching of -
neighbourhood
Artemis domain compatibility, | common thesaurus (CT) matching of neighbours
84.1.5 language-based via CT, -
clustering
H-Match domain compatibility, | common thesaurus (CT) matching of neighbours
84.1.6 language-based, via CT, -
domains and ranges relations
Anchor- string-based, bounded paths matching;:
Prompt domains and ranges - (arbitrary links), -
84.1.7 taxonomic structure
OntoBuilder string-based, thesaurus look up - -
84.1.8 language-based
string-based, auxiliary thesauri tree matching
Cupid language-based, weighted by leaves -
84.1.9 datatypes,
key properties
COMA & string-based, auxiliary thesauri, DAG (tree) matching with
COMA++ language-based, alignment reuse, a bias towards various -
84.1.10 datatypes repository of structures structures (e.g., leaves)
SF string-based, iterative fix-point
84.1.11 datatypes, - computation -
key properties
CtxMatch string-based, WordNet - based on
§84.1.12 language-based description logics
DCM - - correlation mining -
§4.1.13
SEMINT neural network,
84.2.1 datatypes, - - -
value patterns
Clio string-based,
§4.2.2 language-based, - - -

NOM & QOM

string-based,

application-specific

matching of neighbours,

taxonomic structure

§4.2.3 domains and ranges vocabulary taxonomic structure

string-based, iterative fix-point
OLA language-based, WordNet computation, -
84.2.4 datatypes matching of neighbours,
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For example as from Table 4.1, OLA (§4.2.4) exploits string-based element-

level matchers, a matcher based on WordNet, iterative fix-point computa-
tion, etc. Table 4.1 also testifies that ontology matching research so far was
mainly focused on syntactic and external techniques. In fact, many sys-
tems rely on the same string-based techniques. Similar observation can be
also made concerning the use of WordNet as an external resource of com-
mon knowledge. In turn, semantic techniques have rarely been exploited,
this is only done by the approach proposed in this thesis and CtxMatch
(84.1.12).

Having considered some of the recent schema-based matching systems,
it is important to notice that the matching operation typically constitutes
only one of the steps towards the ultimate goal of, e.g., ontology integra-
tion, data integration, and web service composition. To this end, we would
like to mention some existing infrastructures, which use matching as one of
its integral components. Some examples include: Chimaera [150], MAFRA
[49, 142], Rondo and Moda [161, 160, 158], Prompt Suite [180, 177], Align-
ment API [73], GeRoMe [126], Protoplasm [24], COMA++ [58, 56] and
ModelGen [6, 7]. The goal of such infrastructures is to enable a user with
a possibility of performing such high-level tasks, e.g., given a product re-
quest expressed in terms of the catalog C'1, return the products satisfying
the request from the marketplaces M P1 and M P2. Moreover, use match-

ing component M5, and translate instances by using component 7'3.
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Chapter 5

Semantic matching

We think of matching as an operation that takes two graph-like structures
(e.g., classifications, XML schemas or ontologies) and produces an align-
ment between nodes of two graphs that correspond semantically to each
other.

Many various solutions of matching have been proposed so far. This
work concentrates on a schema-based solution, namely a matching ap-
proach exploiting only the schema information, thus not considering in-
stances. The reason behind our choice is that schema information is always
available, while this is not the case with instance information: () in tra-
ditional applications, such as schema integration, instance data may not
be available due to the security concerns [46], (i7) in some of the emerging
applications, such as two agents meeting or looking for the web service
integration, there are no instances given beforehand. Finally in some ap-
plications, for example, dealing with masterpieces [229], instances are the
image data, which will require a specific solution. A schema-based solu-
tion, in principle, can be used in the above mentioned cases. Therefore,
schema-based solutions potentially have a wider applicability rather than

instance-based solutions.
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In this thesis we propose the so-called semantic matching schema-based
approach. This approach is based on two key ideas. The first is that
correspondences are calculated between entities of ontologies by computing
logical relations (e.g., equivalence, subsumption, disjointness), instead of
computing coefficients rating match quality in the [0 1] range, as it is
the case in many other approaches [146, 58, 159, 78]. The second idea
is that the relations are determined by analyzing the meaning which is
codified in the entities and the structures of ontologies. In particular, labels
at nodes, written in natural language, are automatically translated into
propositional formulas which explicitly codify the labels’ intended meaning.
This allows the translation of the matching problem into a propositional
validity problem, which can then be efficiently resolved using sound and
complete propositional satisfiability deciders.

Material presented in this chapter has been developed in collaboration
with Mikalai Yatskevich and published in [96, 97, 98]. Algorithms presented
in this chapter have been implemented by Mikalai Yatskevich within the
S-Match system. Therefore, implementation details are out of scope of this
chapter, see [103] for details.

In this chapter we first present basic motivations behind the proposed
approach (§5.1). Then, we discuss the semantic matching by intuitions
and examples as well as we state the problem technically (§5.2). Finally,
we provide the main macro steps of the algorithm realizing the semantic

matching approach (§5.3).

5.1 Generic and general

matching

We assume that all forms of ontologies, e.g., database schemas, classifica-

tions, and formal ontologies (§2.1), can be represented as graphs. There-
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fore, the matching problem can be decomposed into two steps:

e extract graphs from the input ontologies,
e match the resulting graphs .

This allows for the statement and solution of a generic matching prob-
lem, very much along the lines of what is done in Cupid [146] (§4.1.9)
and COMA [58] (§4.1.10). From a technical perspective, development of a
generic matcher aims at handling different forms of ontologies, e.g., rela-
tional schemas, XML schemas, classifications and OWL ontologies (§2.1),
and being general-purpose means being able to serve for many applications,
e.g., ontology integration (Chapter 1). These are the motivations behind
the unified treatment of matching that we take in our approach and the
position of considering matching being a separate operation, as opposed to
considering merging or mediating being the primitive ones.

Let us define the notion of matching graphs more precisely.

A mapping element is a 4-tuple (ID;;, nl;, n2;, R), i=1,...,N1; j=1,...,N2;
where ID;; is a unique identifier of the given mapping element; nl; is the
1-th node of the first graph, N1 is the number of nodes in the first graph;
n2; is the j-th node of the second graph, N2 is the number of nodes in the
second graph; and R specifies a similarity relation which may hold between

the nodes nl; and n2;.

Note that the definition of mapping element above is a simplified version
of the correspondence (§2.3, p.29).
Matching s the process of discovering mapping elements between two

graphs through the application of a matching algorithm.

There exist two approaches to graph matching, namely ezact matching

and inexact or approrimate matching, see, for instance [211]. Both of

Note that this step is different from what is called graph matching in the graph theory [19, 141],
although may include it as an integral component (§3.4).
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them can be stated as subgraph matching problems: find all occurrences

of a pattern graph P of m nodes as a subgraph of a graph G of n nodes,
m < n. In the case of exact matching we look for subgraphs S of G that
are identical to P. In inexact matching some errors are acceptable. For

obvious reasons we are interested in inexact matching.

5.2 Semantic matching:
the idea

As the name of the approach indicates, in semantic matching the key in-
tuition is to match meanings (concepts). Thus, in order to emphasize this
choice (and, hence, be more specific than in §5.1), mapping elements are
computed as 4-tuples (I D;;, C1;, C2;, R), where C1; is the concept at the
i-th node of the first graph; C2; is the concept at the j-th node of the sec-
ond graph; and R specifies a similarity relation in the form of a semantic
relation between the concepts at the given nodes. Possible R’s between
concepts at nodes are equivalence (=), more specific/general (C, J), and
disjointness (L ).

The other approaches which have been grouped under the heading of
syntactic matching in §3.3 (p.58) often focus on matching labels of nodes
(being more important than other available information, such as datatypes
and cardinalities) and look for the similarity using syntax driven tech-
niques. Thus, in contrast to semantic matching, in the case of syntactic
matching, mapping elements can be viewed as 4-tuples (I D;;, L1;, L2;, R),
where L1; is the label at the i-th node of the first graph; L2; is the label at
the j-th node of the second graph; and R specifies a similarity relation in
the form of a coefficient, which measures the similarity between the [abels
of the given nodes. Typical examples of R are confidence measures, for

instance, similarity coefficients in the [0 1] range [146].
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In semantic matching, when we match two nodes, the concepts we an-

alyze depend not only on the concept attached to the node (the concept
denoted by the label of the node), but also on the position of the node in
the graph. Thus, we analyze the meaning which is codified in the entities
and the structures of ontologies.

Then, the key idea is that labels, which are written in natural language,
should be translated into an internal language, the language used to express
concepts. The internal language should have precisely defined syntax and
semantics, thus avoiding all the problems related to the ambiguities of
natural language. In particular, we have chosen as an internal language a
propositional concept language, whose expressivity turns out to be good
enough, i.e., to have no or little loss in meaning, when encoding natural
language labels used in classifications and schemas [147, 95]. Finally, this
allows the translation of the matching problem into a propositional validity
problem, which can then be efficiently resolved using sound and complete
state of the art propositional satisfiability deciders. The advantage of using
SAT deciders is that they allow for an exhaustive check of all the possible

mapping elements and choosing only the correct ones.

5.2.1 Concept of a label and Concept at a node

In order to introduce two important notions behind the approach, let us
consider two classifications of Figure 5.1.

The trivial but key observation is that labels in classifications are used
to define the set of documents one would like to classify under the node
holding the label. Thus, when we write Images (see the root node of O1 in
Figure 5.1), we do not really mean “images”, but rather “the documents
which are (about) images”. Analogously, when we write Europe (see the
root node of 02 in Figure 5.1), we mean “the documents which are about

Europe”. In other words, a label has an intended meaning, which is what
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Images Europe

01 e ° 02

Computers and - Cyberspace and
Europe ° [nternet Pictures e e Virtual Reality
Greece Italy Italy

Figure 5.1: Simple catalog matching problem

this label means in the world. However, when using labels for classification
purposes, we use them to denote the set of documents which talk about
their intended meaning. This consideration allows us to generalize the

example definitions of Images and Furope and to define the concept of a
label.

Concept of a label denotes the set of documents that are about what the

label means in the world.

Two observations. First, while the semantics of a label are the real
world semantics, the semantics of the concept of a label are in the space
of documents; the relation being that the documents in the extension of
the concept of a label are about what the label means in the real world.
Second, concepts of labels depend only on the labels themselves and are

independent of where in a graph they are positioned.

Graphs (trees) add structure which allows us to perform the classifi-
cation of documents more effectively. Let us consider, for instance, the
node with label Furope in O1. This node stands below the node with label
Images and, therefore, following what is standard practice in classifica-
tion, one would classify under this node the set of documents which are
images and which are about Europe. Thus, generalizing to graphs (trees)

and nodes the idea that the extensions of concepts range in the space of
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documents, we can define the concept at a node.

Concept at a node denotes the set of documents that we would classify
under this node, given it has a certain label and it is positioned in a certain

place in the graph.

More precisely, as the above example has suggested, a document, to be
classified in a node, must be in the extension of the concepts of the labels
that contribute to its meaning, e.g., all the nodes above it, and of the node
itself. Notice that this captures exactly our intuitions about how to classify

and access documents within classifications.

Let us now consider some general examples, which make the conse-
quences of the observations described above clearer. For any example we
also report the results produced by the state of the art matcher, Cupid [146]
(84.1.9), which exploits sophisticated syntactic matching techniques.

Let us introduce some notation (see Figure 5.1). Numbers are the unique
identifiers of nodes. We use “C” for concepts of labels and concepts at
nodes. Also we use “C'1” and “C2” to distinguish between concepts of
labels and concepts at nodes in graph 1 and graph 2, respectively. Thus, in
O1, Cly4qy and C'15 are, respectively, the concept of the label Italy and the
concept at node 5. Also, to simplify the presentation, whenever it is clear
from the context we assume that the concept of a label can be represented
by the label itself. In this case, for example, Cfy, becomes denoted as
Italy. We sometimes use subscripts to distinguish between graphs in which
the given concept of a label occurs. For instance, [taly;, means that the

concept of the label Italy belongs to the graph O1.

Analysis of siblings. Let us consider Figure 5.2. Structurally the graphs
shown in Figure 5.2 differ in the order of siblings. Suppose that we want
to match node 5 in O1 with node 2 in O2.
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A A

o1 © (1) 02
ONNORNOING ONNOMORNO
B D E C C D E B

Figure 5.2: Analysis of siblings

Cupid correctly processes this situation, and as a result, the similarity
coefficient between labels at the given nodes equals to 0.8, thereby indi-
cating for an appropriate match. This is because A; = Ay, C7 = (5 and
we have the same structures on both sides. A semantic matching approach
compares concepts AMC in O1 with AT C in O2 and produces C'1; = (2.

Analysis of ancestors. Let us consider Figure 5.3. Suppose that we

want to match nodes 5 from O1 and 1 from O2.

A C

01 ) (1) 02
O G®O O 6 > @ Oa
B D E C D E

(s)B
Figure 5.3: Analysis of ancestors. Case 1

Cupid does not find a correspondence between the nodes under con-
sideration, due to the differences in structure of the given graphs, namely
matching a leaf node with a root node. In semantic matching, the con-
cept of label of node 5 in O1 is C'l¢, while the concept at node 5 in Ol
is C'ls; = C14 M C1e. The concept at node 1 in 02 is C2; = C2¢. By

comparing the concepts of labels at nodes 5 in Ol and 1 in O2 we have
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that, being identical, they denote the same concept, namely C'ls = C2¢.

Thus, the concept at node 5 in Ol is a subset of the concept at node 1 in
02, namely C'1; C (C'2;.

Let us complicate the example shown in Figure 5.3 by allowing for an
arbitrary number of nodes between ancestors, see Figure 5.4. The asterisk
means that an arbitrary number of nodes are allowed between nodes 1 and

5 in O2. Suppose that we want to match nodes 5 in O1 and 5 in O2.

A A

01 ) () 02
O © O © O © O
B D E C D E

(s)C

Figure 5.4: Analysis of ancestors. Case 2

Cupid finds out that the similarity coefficient between labels C and Cy
is 0.86, thereby indicating for an appropriate match. This is because of the
identity of labels (A; = Ay, C1 = (C5), and due to the fact that nodes 5 in
O1 and 5 in O2 are leaves. Notice how Cupid treats very differently the two
situations represented here (Figure 5.4) and in the previous example (Fig-
ure 5.3), even if, from a semantic point of view, they are similar. Following
semantic matching, the concept at node 5 in Ol is C'l5 = C'14MC1¢, while
the concept at node 5 in 02 is C25 = C2,4 M * 1 C2¢. Since we have that
Cly=0C24 and Clg = C2¢, then C25 C C1s.
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5.2.2 Semantic matching: problem statement

Having introduced the basic notions and motivations we proceed with the

definition of the semantic matching problem.

A mapping element is a 4-tuple (ID;j, nl;, n2;, R), i=1,...,N1; j=1,...,N2;
where 1D;; is a unique tdentifier of the given mapping element; nl; is the
1-th node of the first graph, N1 is the number of nodes in the first graph;
n2; s the j-th node of the second graph, N2 is the number of nodes in the
second graph; and R specifies a semantic relation which may hold between
the concepts at nodes nl; and n2;. Possible semantic relations include:

equivalence (=), more general (3), less general (C), and disjointness (L).

Thus, for instance, the concepts at two nodes are equivalent if they have
the same extension, they mismatch if their extensions are disjoint, and so
on for the other relations.

We order these relations as they have been listed, according to their
binding strength, from the strongest to the weakest, with less general and
more general having the same binding power. Thus, equivalence is the
strongest binding relation since the mapping element tells us that the
concept at the second node has exactly the same extension as the first,
more general and less general relations give us a containment information
with respect to the extension of the concept at the first node, disjointness
provides a containment information with respect to the extension of the
complement of the concept at the first node.

When none of the relations holds, the special “idk” (I do not know) rela-
tion should be returned. This is an explicit statement that we are unable to
compute any of the declared (four) relations. This should be interpreted as
either there is not enough background knowledge, and therefore, we cannot

explicitly compute any of the declared relations or, indeed, none of those
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relations hold according to an application.

Semantic matching can then be defined as the following problem.

Given two graphs G1 and G2 compute the N1 x N2 mapping elements
(ID;j, nl;, n2;, R"), withnl; € G1, i=1,...,.N1, n2; € G2, j=1,...,N2 and
R’ the strongest semantic relation holding between the concepts at nodes

nl; and n2;.

Since we look for the N1 x N2 correspondences, the cardinality of map-
ping elements we are able to determine is 1 : m. Also, these, if necessary,
can be decomposed straightforwardly into mapping elements with the 1:1

cardinality:.

Thus, for example, considering the concepts at the two root nodes of

O1 and O2 in Figure 5.1 we have the following mapping element:
<ID1’1, 7111, n21, Zdl{}>

This is an obvious consequence of the fact that the set of images has a non
empty intersection with the set of documents which are about Europe and
no stronger relation exists. Building a similar argument for node 2 in O1
and node 2 in O2 of Figure 5.1, and supposing that the concepts of the

labels Images and Pictures are synonyms, we compute instead
<ID2,27 n127 n227 :>

Finally, considering also the node 2 in O1 and the nodes with labels Furope
and Italy in O2 of Figure 5.1, we have the following mapping elements:

<]D2,17 n127 n217 ;>7
<[D2,47 n127 n247 g>

95



5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

5.3 Semantic matching:

the algorithm

We focus on tree-like structures, e.g., classifications, and XML schemas.
real world schemas are seldom trees, however, there are (optimized) tech-
niques, transforming a graph representation of a schema into a tree repre-
sentation, e.g., the graph-to-tree operator of Protoplasm [24]. From now
on we assume that a graph-to-tree transformation can be done by using

existing systems, and therefore, we focus on other issues instead.

5.3.1 An overview of the algorithm

We consider two simple XML schemas shown in Figure 5.5. Notation
follows the one introduced in §5.2.1 (p.91).

= - __.___—'—'_'—‘_——\_____ - =
1=-{8 Electronics Electronics EJ) = 1

2 =& Personal_Computers PC E &
4 =& Microprocessors—————————PC_board & =

10 PID :string ID:int il - 11
11 [l Name:string Brand:sting @l 12 2
12 [l Quantity:positivelnteger Amount:int @ - 13
13 [l Price:double Price:float (il - 14
5 Accessories Cameras_and_Photo 13
3 =& Photo_and_Cameras Accessories & 5
6 [l PID:string Digital_Cameras & 6
7 [ Name: strm ID:intfM - 7
8 -l Quantity ms;twelnte r Brand:string il - 8
il s 9

9 [l Price :double ﬁﬁmuunt.lnt il
Price:float (il

Figure 5.5: Two XML schemas and some of the mapping elements

-
=
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The algorithm takes as input two tree-like structures and computes as

output a set of mapping elements in four macro steps:

Step 1: for all labels L in two trees, compute concepts of labels, C7.
Step 2: for all nodes N in two trees, compute concepts at nodes, Cly.
Step 3: for all pairs of labels in two trees, compute relations among C7’s.

Step 4: for all pairs of nodes in two trees, compute relations among Cy’s.

The first two steps represent the pre-processing phase, while the third
and the fourth steps are the element level and structure level matching,
respectively (Chapter 3). It is important to notice that Step 1 and Step 2
can be done once, independently of the specific matching problem. Step 3
and Step 4 can only be done at run time, once two trees which must be
matched have been chosen.

During Step 1 we compute the meaning of a label at a node (in iso-
lation) by taking as input a label, by analyzing its real world seman-
tics (e.g., using WordNet [163]), and by returning as output a concept
of the label. Thus, for example, by writing Ccumeras and_Photo W€ move from
the natural language ambiguous label Cameras_and_Photo to the concept
Ccameras.and_Photo, Which codifies explicitly its intended meaning, namely
the data which is about cameras and photo.

During Step 2 we analyze the meaning of the positions that the labels
of nodes have in a tree. By doing this we extend concepts of labels to
concepts at nodes. This is required to capture the knowledge residing in
the structure of a tree, namely the context in which the given concept of
label occurs [94]. For example, in 02, when we write Cg we mean the
concept describing all the data instances of the electronic photography

products which are digital cameras.
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Step 3 is concerned with acquisition of “world” knowledge. Relations

between concepts of labels are computed with the help of element level
semantic matchers. These matchers take as input two concepts of labels
and produce as output a semantic relation (e.g., equivalence, more/less
general) between them. For example, from WordNet [163] we can de-
rive that PC and personal computer are synonyms, and therefore, Per-
sonal_Computer; = PCs.

Step 4 is concerned with the computation of the relations between con-
cepts at nodes. This problem cannot be resolved by exploiting static knowl-
edge sources only. We have (from Step 3) background knowledge, codified
as a set of relations between concepts of labels occurring in two trees. This
knowledge constitutes the background theory (axioms) within which we
reason. We need to find a semantic relation (e.g., equivalence, more/less
general) between the concepts at any two nodes in two trees. However,
these are usually complex concepts obtained by suitably combining the
corresponding concepts of labels. For example, suppose we want to find
a relation between C'ly (which, intuitively, stands for the concept of elec-
tronic products which are personal computers) and C'25 (which, intuitively,
stands for the concept of electronic products which are PCs). In this case,
we should realize that they have the same extension, and therefore, that

they are equivalent.

The rest of this section concentrates on technical details of each of four

macro steps of the algorithm we have outlined above.

5.3.2 Step 1. Compute concepts of labels

During this step we compute concepts of labels for all labels in two trees.
A natural choice is to take the label itself as a placeholder for its concept.

For instance, the label camera is the best string which can be used with the
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purpose of characterizing “all documents which are about cameras”. This

is also what we have done in the previous examples: we have taken labels
to stand for their concepts. Collapsing the notions of label and of concept
of label is in fact a reasonable assumption, which has been implicitly made
in many previous works on syntactic matching (see, e.g., [146, 58]).

However, it has a major drawback since labels are most often written in
some not well defined subset of natural language and, as a result, natural
language presents many ambiguities. For instance, there are many possible
different ways to state the same concept (as we have with Quantity and
Amount); dually, the same sentence may mean many different things (e.g.,
think of the label camera again, being a photographic camera or televi-
sion camera); Quantity and Amount, though being different words, for our
purposes have the same classification role.

Among the key ideas underlying semantic matching is the one that la-
bels, which are written in natural language, are translated into a proposi-
tional concept language, such as propositional description logic language [10].
Specifically, atomic formulas are atomic concepts, written as single words
or multi-words. Complex formulas are obtained by combining atomic con-
cepts using the logical operators, such as conjunction (1), disjunction (LJ),
and negation (—). Note that negation can only be applied to atomic con-
cepts. There are also comparison operators, such as less general (C), more
general (J), and equivalence (=). The interpretation of these operators is
the standard set-theoretic interpretation?®.

The reasons for choosing a simple propositional description logics lan-
guage are as follows. First, given its set-theoretic interpretation, it “maps”

naturally to the real world semantics. Second, natural language labels

2Note that we do not introduce any new knowledge representation formalism here. We rely on the
existing one, which is a propositional description logic. Therefore, we limit its presentation to an informal
discussion, which we believe is appropriate according to the whole contribution of the approach. Also
note that in practice we straightforwardly translate the natural language labels into propositional logic
formulas [103].
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used in classifications and XML schemas are usually short expressions or
phrases having simple structure. These phrases can be converted into a
formula in our knowledge representation formalism with no or little loss in
the meaning [95]. Finally, these formulas can be converted into equivalent
formulas in a propositional logic language with boolean semantics. Thus,
technically, concept of a label is the propositional formula which stands for
the set of data instances (documents) that one would classify under a label
it encodes.

We compute atomic concepts, as they are denoted by atomic labels
(namely, labels of single words or multi-words), as the senses provided
by WordNet [163]. In the simplest case, an atomic label generates an
atomic concept. However, atomic labels with multiple senses or labels
with multiple words generate complex concepts. The translation process
from labels to concepts follows the ideas of [31] where the main steps are
as follows (note that the first two steps are common to many matching

approaches):

Tokenization. Labels at nodes are parsed into tokens by a tokenizer
which recognises punctuation, cases, digits, etc. Thus, for instance,

Photo_and_Cameras becomes (photo, and, cameras).

Lemmatization. Tokens at labels are further lemmatized, namely they
are morphologically analyzed in order to find all their possible basic
forms. Thus, for instance, cameras is associated with its singular

form, camera.

Building atomic concepts. WordNet is queried to extract the senses of
lemmas of tokens identified during the previous step. For example,
the label C'ameras has the only one token cameras, and one lemma

camera, and from WordNet we find out that camera has two senses.
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Atomic formulas are WordNet [163] senses of lemmas obtained from

single words (e.g., cameras) or multi-words (e.g., digital cameras).

Building complex concepts. When existing, all tokens that are prepo-
sitions, punctuation marks, conjunctions (or strings with similar roles)
are translated into logical connectives and used to build complex con-
cepts out of the atomic concepts built previously. Thus, for instance,
commas and conjunctions are translated into disjunctions, preposi-
tions like of and un are translated into conjunctions, and so on. For ex-
ample, the concept of label cameras and photo is computed as follows:
Clameras.and_Photo = (Cameras, sensesy nu2) LI (Photo, sensesy 1),
where sensesy yuo is taken to be disjunction of the two senses that
WordNet attaches to Cameras, and similarly for Photo. Notice that
the natural language conjunction “and” has been translated into the

logical disjunction “LJ” [147].

5.3.3 Step 2. Compute concepts at nodes

During this step we compute concepts at nodes for all nodes in two trees.
We analyze the meaning of the positions of labels at nodes in a tree. By
doing this concepts of labels are extended to concepts at nodes. This
is required to capture the knowledge residing in the structure of a tree,
namely the context in which the given concept at label occurs [94, 92].
Technically, concepts of nodes are written in the same propositional log-
ical language as concepts of labels. Thus, concept at a node is the proposi-
tional formula which represents the set of data instances (documents) which
one would classify under a node, given that it has a certain label and that
it is in a certain position in a tree. XML schemas and classifications are
hierarchical structures where the path from the root to a node uniquely

identifies that node (and also its meaning). Thus, following an access crite-
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rion semantics [109], the logical formula for a concept at node is defined as
a conjunction of concepts of labels located in the path from the given node
to the root. For example, C2¢ = FElectronicss 'l Cameras_and_Photos I
Digital_Camerass, which encodes the concept at node 6 in O2, describing
all the data instances of the electronic photography products which are

digital cameras.

5.3.4 Step 3. Compute relations among concepts of labels

During this step we compute relations among atomic concepts of labels for
all pairs of labels in two trees. By doing this we build a theory or domain
knowledge for the given input two ontologies codified as a set of semantic
relations between atomic concepts of labels occurring in two trees. This is
the background theory within which we reason.

Relations between atomic concepts of labels could be computed by using
any element level matchers discussed in Chapter 3. However, most of
those techniques, e.g., string-based, have to be modified in order to return
(instead of a similarity measure) a semantic relation R, as defined in §5.2.2.

For example, Beverages; can be found less general than Foods. In fact,
according to WordNet, beverages is hyponym (subordinate word) of food.
Notice, in WordNet beverages has 1 sense, while food has 3 senses. Some
sense filtering techniques have to be used to discard the irrelevant senses
for the given context, see [103] for details. Similarly, by using string-based
matchers (common suffix) we can find that PID; is equivalent to IDs.

The result of step 3 is a matrix of the relations holding between atomic
concepts of labels. A part of this matrix for the example of Figure 5.5 is
shown in Table 5.1.
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Table 5.1: The matrix of semantic relations holding between atomic concepts of labels

Camerasy | Photoy | Digital_Camerass
Photo, 1dk = idk
Cameras; = idk |

5.3.5 Step 4. Compute relations among concepts at nodes

During this step we compute relations among concepts at nodes for all pairs
of nodes in two trees. This problem cannot be solved simply by asking an
oracle, such as WordNet, containing static knowledge. The situation is far

more complex, being as follows:

e We have background knowledge or theory computed after Step 3 for
the given input two ontologies, namely a set of semantic relations

between atomic concepts of labels occurring in two trees.

e Concepts of labels and concepts at nodes are codified as complex
propositional formulas. In particular, concepts at nodes are conjunc-
tions of concepts of labels, while concepts of labels, in turn, could be
full propositional formulas. We have them computed from Step 1 and
Step 2.

e We need to find a semantic relation, namely equivalence, more/less
general, disjointness, between the concepts at any two nodes in two
trees. We translate all the semantic relations into propositional con-
nectives in the obvious way, namely: equivalence (=) into equivalence
(<), more general (J) and less general (C) into implication (+ and

—, respectively), disjointness (L) into negation (=) of the conjunction
(N)-
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e Build a matching formula for each pair of concepts from two ontolo-

gies. The criterion for determining whether a relation holds between
two concepts is the fact that it is entailed by the premises (theory).
Therefore, a matching query is created as a formula of the following

form:

Azioms — rel(contexty, contexts) (5.1)

for each pair of concepts for which we want to test the relation.
context; is the concept at node under consideration in tree 1, while
context, is the concept at node under consideration in tree 2. rel
(within =, C, 3, 1) is the semantic relation (suitably translated into
a propositional connective) that we want to prove holding between
context; and contexts. The Axioms part is the conjunction of all the
relations (suitably translated) between atomic concepts of labels men-
tioned in context; and contexts. For example, the task of matching

C'l3 and C24, requires the following axioms:

(Electronicsy < Electronicsy) A (Cameras; < Camerass)

(Photoy <> Photos) A (Cameras, < Digital_Camerass).

e Check for validity of formula (5.1), namely that it is true for all the
truth assignments of all the propositional variables occurring in it. A
propositional formula is valid if and only if its negation is unsatisfiable.

The unsatisfiability is checked by using a SAT solver.

Technically, we initially reformulate the tree matching problem into a
set of node matching problems (one problem for each pair of nodes). Fi-
nally, we translate each node matching problem into a propositional va-

lidity problem. Let us discuss in detail the tree matching algorithm, see
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Algorithm 1 for the pseudo-code.

Lines 1-12 define variables and datatypes. clLabel and cNode are used
to memorize concepts of labels and concepts at nodes, respectively. The
other names of the variables either follow in an obvious way the notions
which have already been introduced, or will be explained at time of their
use. In line 30, the treeMatch function inputs two trees of Nodes (source
and target). It starts from the element level matching. Thus, in line 35, the
matrix of relations holding between atomic concepts of labels (cLabsMatrix)
is populated by the fillCLabsMatrix function. Two loops are run over all
the nodes of source and target trees in lines 50-111 and 53-110 in order to
formulate all the node matching problems. Then, for each node matching
problem, a pair of propositional formulas encoding concepts at nodes and
relevant relations holding between concepts of labels are taken by using the
getCnodeFormula and extractRelMatrix functions, respectively. The former
are memorized as context; and contexts; in lines 52 and 55. The latter
are memorized in relMatrix in line 80. In order to reason about relations
between concepts at nodes, the premises (axioms) are built in line 81. These
are a conjunction of atomic concepts of labels which are related in relMatrix.
Finally, in line 82, the relations holding between the concepts at nodes are
calculated by nodeMatch and are reported in line 150 (cNodesMatrix).

A part of the cNodesMatrix matrix for the example of Figure 5.5 is shown
in Table 5.2.

Table 5.2: The matrix of semantic relations holding between concepts at nodes (the
matching result)

021 022 023 024 025 026
Cls | C |idk | = |idk | 3 J

nodeMatch translates each node matching problem into a propositional

validity problem. It checks for sentence validity by proving that its nega-
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Algorithm 1 The tree matching algorithm
1: Node: struct of
2: int nodeld;

3: String label;

4: String cLabel;

D: String cNode;

6: Node parent;

7 AtomicConceptOfLabel[ | ACOL;

8: AtomicConceptOfLabel: struct of

9: it id;

10: String token;

11: String| | wnSenses;

12: String| |[ | cLabsMatrix, cNodesMatrix;

30: String[ ][ ] treeMatch(Tree of Nodes source, target)
31: Node sourceNode, targetNode;

32: ant i, j;

33: String[ ][ ] relMatrix;

34: String axioms, contexty, contexto;

35: cLabsMatrix = fillCLabMatrix(source, target);

50: for each sourceNode € source do

51: i = getNodeld(sourceNode);

52:  context; = getCnodeFormula(sourceNode);
53: for each targetNode € target do

54: j = getNodeld(targetNode);

95: contexty = getCnodeFormula(targetNode);

80: relMatrix = extractRelMatrix(cLabsMatrix, sourceNode, targetNode);
81: axioms = mkAxioms(relMatrix);

82: cNodesMatrix|i][j] = nodeMatch(axioms, context;, contexts);

110:  end for

111: end for

150: return cNodesMatrix;
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tion is unsatisfiable. The algorithm uses, depending on a matching task,
either ad hoc reasoning techniques [102], or standard DPLL-based SAT
solvers [131, 51, 50]. From the example in Figure 5.5, trying to prove
that C2¢, which is defined as (FElectronicss A (Camerass N Photoy) N
Digital_Camerass), is less general than C'lj3, which, in turn, is defined
as (Electronicsy N\ (Photoy V Camerasi)), requires constructing formula
(5.2), negation of which turns out to be unsatisfiable, and therefore, we

can conclude that the less general relation holds.

(Electronics, < Electronicsy) A (Photoy < Photos) A

(
(Camerasy < Camerass) A (Digital_Camerasy — Cameras;)) —
((Electronicse A (Camerass V Photoy) A Digital_ Camerass) —

(

FElectronics; N\ (Photoy V Camerasy)))
(5.2)

5.4 Summary

In this chapter we have identified semantic matching as the new approach
for performing generic matching. We discussed the main motivations be-
hind the approach as well as its key notions. Then, the main four macro
steps of the semantic matching algorithm has been presented and described

with the help of examples and pseudo-code.

107



5.4. SUMMARY CHAPTER 5. SEMANTIC MATCHING

108



Chapter 6

Semantic matching
with attributes

So far we have focused only on simple concept hierarchies. However, if
we deal with, e.g., XML schemas, their elements may have attributes,
which, in turn, may require an additional treatment. This chapter discusses
an extension of the semantic matching approach for handling attributes.
Material presented in this chapter has been published in [99, 103].

We first describe the idea of how to handle attributes in the settings
of the semantic matching approach (§6.1). Then, we substantiate it by
considering two possible alternatives when dealing with attributes, namely

exploiting datatypes (§6.2) and ignoring datatypes (§6.3).

6.1 The idea of the approach

We discuss our approach for handling attributes with the help of example
of Figure 5.5 (p.96). Attributes are (attribute — name, type) pairs associ-
ated with elements. Names for the attributes are usually chosen such that
they describe the roles played by the domains in order to ease distinguish-
ing between their different uses. For example, in O1 of Figure 5.5, the

attributes PID and Name are defined on the same domain string, but
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their intended uses are the internal (unique) product identification and
representation of the official product’s names, respectively. There are no
strict rules telling us when data should be represented as elements, or as
attributes, and obviously there is always more than one way to encode the
same data. For example, in Ol, PIDs are encoded as strings, while in
02, IDs are encoded as ints. However, both attributes serve for the same
purpose of the unique product’s identification. These observations suggest
two possible ways to perform semantic matching with attributes: (i) taking
into account datatypes, and (i7) ignoring datatypes.

The semantic matching approach is based on the idea of matching con-
cepts, not their direct physical implementations, such as elements or at-
tributes. If names of attributes and elements are abstract entities, there-
fore, they allow for building arbitrary concepts out of them. Instead,
datatypes, being concrete entities, are limited in this sense. Thus, a plau-
sible way to match attributes using the semantic matching approach is to
discard the information about datatypes. In order to support this claim,

let us consider both cases in turn.

6.2 Exploiting datatypes

In order to reason with datatypes we have created a datatype ontology,
Op, specified in OWL [217, 52]. It describes the most often used XML
schema built-in datatypes and relations between them. The backbone tax-
onomy of Op is based on the following rule: the specialization relation
holds between two datatypes if and only if their value spaces are related
by set inclusion. Some examples of axioms of Op are: float © double,
int L string, anyURI T string, and so on. Let us discuss how datatypes

are plugged within four macro steps of the semantic matching algorithm

(55.3).
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Steps 1,2. Compute concepts of labels and concepts at nodes. In order to
handle attributes, we extend our knowledge representation formalism with
the quantification construct and datatypes. Thus, we compute concepts of
labels and concepts at nodes as formulas in description logics, in particu-
lar, using ALC(D) [10]. For example, C'l7, namely, the concept at node
describing all the string data instances which are the names of electronic

photography products is encoded as follows:
C'1;7 = Electronicsy M (Photo; U Camerasy) M 3N amey.string.

Step 3. Compute relations among concepts of labels. During this step we
add a Datatype element level matcher. It takes as input two datatypes, it
queries Op and retrieves a semantic relation between them. For example,
from axioms of Op, the Datatype matcher can learn that float T double,
and so on.

Step 4. Compute relations among concepts at nodes. In the case of
attributes, the node matching problem is translated into a DL formula,
which is further checked for its validity using sound and complete proce-
dures. The system we use is Racer [112]. From the example in Figure 5.5,
trying to prove that (2, is less general than Clg, requires constructing

the following formula:

((Electronicsy = Electronicss) M (Photoy = Photoy)lN
(Cameras; = Camerass) M (Price; = Prices) M (float C double))M
(Electronicss M (Camerasy LI Photog) M 3Prices. float)r

—(Electronics; M (Photoy U Camerasy) M 3Price;.double)
(6.1)

It turns out that formula (6.1) is unsatisfiable. Therefore, C'2g is less

general than C'lg. However, this result is not what the user expects. In
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fact, both C'lg and (21 describe prices of electronic products, which are
photo cameras. The storage format of prices in O1 and O2 (i.e., double
and float, respectively) is not an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would
be to build abstractions out of the datatypes, e.g., float, double, decimal
should be abstracted to type numeric, while token, name, normalizedString
should be abstracted to type string, and so on. However, even such ab-
stractions do not improve the situation, since we may have, for example,
an ID of type numeric in the first schema, and a conceptually equivalent
ID, but of type string, in the second schema. If we continue building such
abstractions, we result in having that numeric is equivalent to string in
the sense that they are both datatypes.

The last observation suggests that for the semantic matching approach
to be correct, we should assume, that all the datatypes are equivalent.
Technically, in order to implement this assumption, we should add corre-
sponding axioms (e.g., float = double) to the premises of formula (5.1),
see p.104. On the one hand, with respect to the case of not considering
datatypes (see §6.3), such axioms do not affect the matching result from
the quality viewpoint. On the other hand, datatypes make the match-
ing problem computationally more expensive by requiring to handle the

quantification construct.

6.3 Ignoring datatypes

In this case, information about datatypes is discarded. For example,
(Name, string) becomes Name. Then, the semantic matching algorithm
builds concepts of labels out of attribute’s names in the same way as it does
in the case of element’s names, and so on (§5.3). A part of the cNodesMa-

trix with relations holding between attributes for the example of Figure 5.5
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is presented in Table 6.1. Notice that this solution allows the computation

of mapping elements not only between the attributes, but also between

attributes and elements.

Table 6.1: Attributes: the matrix of semantic relations holding between concepts at nodes
(the matching result)

027 028 029 0210

Clg | = | udk | idk | idk
Cl; | idk | 3 | idk | idk
Clg | idk | idk | = | udk

Clg | wdk | tdk | wdk | =

6.4 Summary

In this chapter we have presented how attributes are handled within the
semantic matching settings. We have argued that a plausible way to match
attributes using the semantic matching approach is to discard the infor-
mation about datatypes.

The task of determining mapping elements typically represents a first
step towards the ultimate goal of, for example, schema integration, data
integration, agent communication, query answering, and so on (Chapter 1).
Although information about datatypes will be necessary for accomplishing
an ultimate goal, we do not discuss this issue any further since in this thesis

we concentrate only on the alignment discovery task.
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Chapter 7

Iterative

semantic matching

In this chapter we present an extension of the semantic matching approach
to deal in a fully automated way with the lack of background knowledge
in matching tasks. The key idea is to use semantic matching iteratively.
The benefits of this extension include: saving some of the pre-match efforts,
improving the quality of match via iterations, and enabling the future reuse
of the newly discovered knowledge.

Material of this chapter has been developed in collaboration with Mikalai
Yatskevich. In particular, some algorithms presented here exploit a library
of element level semantic matchers first introduced in [101]. Note that
the library of [101] does not constitute a contribution of this thesis. The
algorithms presented in this chapter provide the settings that allow for a
practical use for some of those highly contextual element level semantic
matchers. More precisely, in terms of [101], these are the element level
matchers that have the third approximation level. We also note that those
element level semantic matchers technically existed before in the S-Match
system, however (being highly approximate) without a practical applica-
tion [103]. Material of this chapter has been published in [100].
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In this chapter we first provide some motivations behind the iterative
semantic matching. This is done by examples of the problem of the lack of
background knowledge in matching tasks and some of its possible solutions
(§7.1). Then, we present the main building blocks of the iterative semantic
matching algorithm (§7.2), while its details, namely, algorithms for critical
points discovery (§7.3) and critical points resolution (§7.4) are discussed in

sequel.

7.1 Motivation:
lack of knowledge

Recent industrial-strength evaluations of matching systems, see, e.g., [9,
77], show that lack of background knowledge, most often domain specific
knowledge, is one of the key problems of matching systems these days.
In fact, for example, should PO match Post Office, Purchase Order, or
Project Officer? At present, most state of the art systems, for the tasks of
matching thousands of nodes, perform not with such high values of recall®,
namely ~30%, as in cases of toy examples, where the recall was most often
around 90%. Also, contributing to this problem, [148] shows that complex
matching solutions requiring months of algorithms design and development
on big tasks may perform as badly as a baseline matcher requiring one hour
burden.

In order to understand better the above observations, let us consider
a preliminary analytical comparative evaluation of some state of the art
matching systems together with a baseline solution? on three large (hun-
dreds and thousands of entities in each ontology) real world test cases.

Some indicators of the test cases complexity are given in Table 9.1 (p.148)

'Recall is a completeness measure of matching results, see §9.1, p.145 for a definition.
2This matcher does simple string comparison among sets of labels on the paths from nodes under
consideration to the roots of the input trees, see [9].
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and correspond to the matching tasks #6, 7, and 8 of the table.
These test cases were first introduced in [9] and used in the OAEI-2005

ontology matching evaluation campaign®. As match quality measures we

focus here on recall which is a completeness measure. It varies in the [0 1]
range; the higher the value, the smaller the set of correct correspondences
which have not been found (§9.1). The summarized evaluation results
for all the three matching tasks are shown in Figure 7.1. Notice that
the results for such matching systems as OMAP, CMS, Dublin20, Falcon,
FOAM, OLA, and ctzMatch?2, were taken from OAEI-2005, see [77], while
evaluation results for the baseline matcher and S-Match were taken from
[9]. As Figure 7.1 shows, none of the considered matching systems performs

with a value of recall which is higher than 32%.

Recall, %
35 -
30 4 ] [ ] —
25 - |
30,64 3117 31,96 39 54
20 -
15 - = 26,53
10 - [1] —
14,08 539
5 - ' 1188 936 T
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o 7] o = = . o~ @ =
o i o | = c Q
= 5 = 2 S o g = E
O 3 o = = © h
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[=]

I OAEI-2005 contest resulis

Figure 7.1: Analytical comparative evaluation

There are multiple strategies to attack the problem of the lack of back-
ground knowledge. One of the most often used methods so far is to declare
the missing axioms manually as a pre-match effort. Some other plausible

strategies include: (i) extending stop word lists, (i7) expanding acronyms,

3See for details, http://oaei.ontologymatching.org/2005/
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(#i7) reusing the previous match results, (iv) querying the web, (v) using,

if available, domain specific sources of knowledge, and so on.

7.2 The iterative tree

matching algorithm

We first discuss the idea behind the approach and how the tree matching al-
gorithm (§5.3.5) should be modified in order to suitably enable iterations.
Then, we present the main building blocks of the iterative tree match-
ing algorithm, namely, algorithms for critical points discovery and critical
points resolution. The algorithms are discussed via a running example. We
consider lightweight ontologies O1 and O2 shown in Figure 7.2, which are
small parts of Google and Looksmart. Notation follows the one introduced
in §5.2.1 (p.91).

1= 8 TOP TOP () =1
2= & Sports Sports &= 2
6 Basketball Basketball 6
O1 7 B Equestrian Olympics 7 02
8 Football Entertainment & = 3
3= B Games Music 8
9 Board Games Television 9
10 - & Roleplaying Games 10
1 B Video_Games Hobbies_ AND _Interests & -4
4--E Home Food AND_Wine 11
12=-B Cooking Fashion 12
16 & Beverages Books 13
13 B Gardening Gardening £ 14
5B Shopping Shopping & =5
14 B Auctions Auctions 15
15 B Vehicles Automotive 16

Figure 7.2: Fragments of Google and Looksmart
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7.2.1 The idea in a nutshell

We propose a fully automated solution to address the problem of the lack
of knowledge by using semantic matching iteratively. The idea is to repeat
Step 3 (§5.3.4) and Step 4 (§5.3.5) of the matching algorithm for some crit-
ical (hard) matching tasks. In particular, the result of SAT is analyzed.
We identify critical points in the matching process, namely mapping ele-
ments with the idk relation where a stronger relation (e.g., more general,
equivalence) should have taken place. We attack critical points by exploit-
ing sophisticated element level matchers of [101] (see also §3.2.1) which
use the deep information encoded in WordNet, e.g., its internal structure.
Then, taking into account the newly discovered knowledge as additional
axioms, we re-run SAT solver on a critical task. Finally, if SAT returns
false, we save the newly discovered knowledge, thereby enabling its future

reuse.

7.2.2 The iterative tree match algorithm

The iterative tree matching algorithm is shown as Algorithm 2. The num-

bers on the left indicate where the new code must be positioned in Algo-
rithm 1 (§5.3.5, p.106).

Algorithm 2 The iterative tree matching algorithm
13: Boolean|[ |[ ] cPointsMatrix;

100: if (cPointsDiscovery(sourceNode, targetNode) == true) then

101: cPointsMatrix[i][j] = true;
102: ResolveCpoint(sourceNode, targetNode, context;, contexts);
103: end if

In line 13, we introduce cPointsMatrix which memorizes critical points.
Semantic matching algorithm works in a top-down manner, and hence, mis-

matches among the top level classes of ontologies imply further mismatches
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between their descendants. Thus, the descendants should be processed only
after the critical point at those top level nodes has been resolved. This is
ensured by suitably positioning the new functions (enabling iterations) in
a double loop of Algorithm 1. Hence, in line 100, we check with the help
of cPointsDiscovery function if the nodes under consideration are the criti-
cal point. If they indeed represent the critical point, they are (memorized
and) resolved by using the ResolveCpoint function (line 102). In the exam-
ple of Figure 7.2, critical points which are determined include, for instance,
(C1y,C23), (C13,C23), and (C'ly, C24).

An updated cNodesMatrix, after running the iterative tree matching
algorithm, is presented in Table 7.1. Comparing it with the non-iterative
matching algorithm result, which is further reported in Table 7.3, we can
see that having identified and resolved the (C'l3, C'23) critical point, we
also managed to discover the new correspondences, namely between C'23
and C'ly, Clyg, Cly;.

Table 7.1: Recomputed cNodesMatrix: relations among concepts at nodes

011 012 013 014 015 019 0110 0111
3|33 3| 3
idk | idk | 3 | 3 | 3

2
C2;

I
I

Iminl

Having computed all the mapping elements for a given pair of ontolo-
gies, the identified critical relations are validated by a human user. In
particular, user decides if the type of relation determined automatically
is appropriate for the given pair of ontologies. For example, is it ap-
propriate that Games; < Entertainment, or a weaker relation, namely
Games; — Entertainmenty, should have taken place ? User decides either
to use this relation once (only for this pair of ontologies) or to save it in a
domain specific oracle in order to enable its future reuse.

Finally, it is worth noting that iterative semantic matching algorithm
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amounts to robustness of the semantic matching. In fact, even if non-

iterative semantic matching determines a (false) top level mismatch, this
can be discovered and resolved by applying Algorithm 2. Thus, avoiding
further propagation of possible mismatches between the descendants of the

initially mismatched top level nodes.

7.3 The critical points

discovery algorithm

The algorithm for discovering critical points is based on the following in-

tuitions:

e ecach idk relation in cNodesMatrix is potentially a critical point, but it

is not always the case;

e since critical points arise due to lack of background knowledge, the
clue is to check whether some other nodes located below the critical
nodes (those representing a critical point) are related somehow. In
case of a positive result the actual nodes are indeed the critical point;

they represent a false alarm otherwise.

Algorithm 3 formalizes these intuitions. In particular, the first condition
mentioned above is checked in line 4. Verifying the second condition is more
complicated. We call a relation holding between descendants of the poten-
tially critical nodes a support relation. The support relation holds if there
exists atomic concept of label (sSACOL) in the descendants of sourceNode
which is related in cLabsMatrix (by any semantic relation, except idk) to
any atomic concept of label (tACOL) in the descendants of targetNode.
This condition is checked in a double loop in lines 7-13. Finally, if both
conditions are satisfied, the cPointsDiscovery function concludes that the

nodes under consideration are the critical point (line 10). Under the given
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Algorithm 3 The critical points discovery algorithm

1: Boolean cPointsDiscovery(Node sourceNode, targetNode)

2: Node| | sDescendant, tDescendant;

3: ACOL sACOL, tACOL;

4: if (cNodesMatrix[sourceNode.nodelD][targetNode.nodeID]==“idk”)

then

5. sDescendant = getSubTree(sourceNode);

6:  tDescendant = getSubTree(targetNode);
7. for each sACOL & sDescendant. ACOL do
3
9

for each tACOL € tDescendant. ACOL do
if cLabsMatrix[sACOL.id|[tACOL.id] != “idk” then

10: return true;
11: end if

12: end for

13:  end for

14: else

15:  return false;

16: end if

critical points discovery strategy, performing such a look up over the cLab-
sMatrix makes sense, obviously, only when sourceNode and targetNode are
non-leaf nodes.

For example, suppose we want to match C'l3 and C25. Parts of cLabs-
Matrix and cNodesMatrix with respect to the given matching task are shown
in Table 7.2 and Table 7.3. Notice that the relations in Table 7.2 were com-
puted by applying element level matchers of [101], namely WordNet, prefiz,
suffiz, edit distance, and n-gram (see also §3.2.1) in the order as they were
stated [103].

Table 7.2: cLabsMatrix: relations holding among atomic concepts of labels

TOP, | Gamesy | Board_Games;
TOP, = idk idk
Entertainment, idk idk idk
Gamess 1dk = 3
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Table 7.3: cNodesMatrix: relations holding among concepts at nodes

011 012 013 014 015 019 0110 0111
s EENER = =
wdk | idk | idk | idk | idk | idk idk

2,
C2;

1) 1

In cNodesMatrix (Table 7.3) the relation between C'13 and C23 is idk?. In
cLabsMatrix (Table 7.2) there is a support relation for the given matching
problem, e.g., Board_Games; C Gamesy. Therefore, relation between C'l3
and C'23 represents the critical point and we should reconsider the relation
holding between Games; and Entertainment, in cLabsMatrix.

Finally, it is worth noting that this algorithm also properly handles
nodes, which are indeed dissimilar, e.g., C'l5; and C25 are determined not

to be the critical point.

7.4 The critical points

resolution algorithm

Let us discuss how the critical points are resolved, see Algorithm 4.

The ResolveCpoint function determines relations (cRel) for the critical
points. Also, by exploiting the cNodesMatrixUpdate procedure, it updates
accordingly cNodesMatrix. In particular, ResolveCpoint executes element
level semantic matchers of [101], which have the third approximation level,
over the atomic concepts of labels by using the GetMLibRel function (line
7). These matchers include: Hierarchy Distance (HD), WordNet Gloss
(WNG), Extended WordNet Gloss (EWNG), Gloss Comparison (GC), and
Eztended Gloss Comparison (EGC). By default, they are applied following

the order (ExecutionList) as stated above. These matchers produce the re-

4Notice that the relation is idk since we deal with the classifications, while if the classifications of
Figure 7.2 were encoded as taxonomies (by modifying in obvious way the construction of the Azioms)
we could immediately deduce the less general relation between the nodes under consideration.
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Algorithm 4 The critical points resolution algorithm

1: ResolveCpoint(Node sourceNode, targetNode, String contexty, contexts)

2: String cRel;

3: String| | ExecutionList;

4: ACOL sACOL, tACOL;

5: for each sACOL € sourceNode.ACOL do

6: for each tACOL € targetNode. ACOL do

7: cRel = GetMLibRel(ExecutionList, sACOL.wnSenses, tACOL.wnSenses);
8: cLabsMatrix[sACOL.id|[tACOL.id] = cRel;

9: end for

10: end for

—_
—_

: cNodesMatrixUpdate(sourceNode, targetNode, context;, contexts);

lations which depend heavily on the context of the matching task. Thus,
they cannot be applied in all the cases. For example, these matchers can
find that cat is equivalent to dog since they are both pets, which can be
appropriate for the context of some matching tasks (the example follows
next), and obviously not appropriate for the context of some other match-
ing tasks, for instance, requiring fine-grained distinctions in the domain of
animals.

For example, a Hierarchy Distance matcher computes the equivalence
relation if the distance between two input senses in the WordNet hierarchy
is less than a given threshold value (e.g., 3) and returns idk otherwise.
According to WordNet, games and entertainment have a common ancestor,
which is diversion. The distance between these concepts is 2 (1 more
general link and 1 less general). Therefore, the HD matcher concludes that
Games; is equivalent to Entertainment,. If the HD matcher fails, which is
not the case in our example, we apply the other remaining matchers in the
order as stated above. We do not discuss those matchers here, since they
do not constitute the contribution of this thesis, see [101] for details. The
example above was given to provide a complete account of the iterative
semantic matching approach.

In line 8, we update cLabsMatrix with the critical relation, cRel, such that
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in all the further computations and for the current pair of nodes this rela-

tion is available. Finally, given the new axiom (Games; < Entertainment,)
we recompute (line 11)°, by re-running SAT, the relation holding between

the pair of critical nodes, thus determining that C'13 = (C'23.

The iterative semantic matching algorithms have been implemented
within the S-Match system. We do not discuss implementation details,
since the pseudo-code was given with low level details, and therefore, its

implementation is straightforward.

7.5 Summary

We have presented an automated approach to attack the problem of the
lack of background knowledge by applying semantic matching iteratively.
The key idea is to repeat Step 3, namely computing the relations between
atomic concepts of labels, and Step 4, namely computing the relations
between concepts at nodes, of the semantic matching algorithm for some
critical (hard) matching tasks. The algorithms realizing the approach have

been discussed with the help of examples and pseudo-code.

5cNodesMatrixUpdate performs functionalities identical to those of lines 80-82 in Algorithm 1, see
p-106.
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Chapter 8

Explaining

semantic matching

Matching systems may produce effective alignments that may not be intu-
itively obvious to human users. In order for users to trust the alignments,
and thus use them, they need information about them, e.g., they need ac-
cess to the sources that were used to determine semantic correspondences
between ontology entities. Explanations are also useful when matching
large applications with thousands of entities, e.g., business product classi-
fications, such as UNSPSC' and eCl@ss. In such cases, automatic matching
solutions will find a number of plausible correspondences, and hence user
input is required for performing cleaning-up of the alignment. Finally, ex-
planations can also be viewed and applied as argumentation schemas for
negotiating alignments between agents [129]. This chapter is devoted to
an extension of the semantic matching approach that enables explanation

of the answers it produces, thus making the matching result intelligible.

Material presented in this chapter has been developed in collaboration

with Deborah McGuinness, Paulo Pinheiro da Silva and Jérome Euzenat
and published in [154, 215, 75].
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In this chapter we first present the information required for providing
explanations of matching (§8.1). Then, we discuss our approach to ex-
plaining semantic matching (§8.2). In turn, details of the approach are
provided in sequel, including default explanations (§8.2.1), explaining the
basic matchers (§8.2.2), and explaining the matching process (§8.2.3). Fi-

nally, we discuss some implementation details (§8.3).

8.1 Justifications

We have presented the matching process as the use of basic matchers com-
bined by strategies (Chapter 3). In order to provide explanations to users it
is necessary to have information on both matters. In particular, this infor-
mation involves justifications on the reason why a correspondence should
hold or not.

8.1.1 Information about basic matchers

When matching systems return alignments, users may not know which
external sources of background knowledge were used, when these sources
were updated, or whether the resulting correspondences was looked up
or derived. However, ultimately, human users or agents have to make
decisions about the alignments in a principled way. So, even when basic
matchers simply rely on some external source of knowledge, users may need
to understand where the information comes from, with different levels of
detail.

Following [153], we call information about the origins of asserted facts
the provenance information. Some examples of this kind of information

include:

e external knowledge source name, e.g., WordNet;

128



CHAPTER 8. EXPLAINING
SEMANTIC MATCHING 8.1. JUSTIFICATIONS

e date and authors of original information;

e authoritativeness of the source, that is whether it is certified as reliable

by a third party;

e name of a basic matcher, version, authors, etc. If the basic matcher
relies on a logical reasoner, such as a SAT solver, e.g., SAT4J [131],
some more meta-information about the reasoner may be made avail-
able:

— the reasoning method, e.g., the Davis-Putnam-Longemann-Loveland
(DPLL) procedure [51, 50];

— properties, e.g., soundness and completeness characteristics of the

result returned by the reasoner;

— reasoner assumptions, e.g., closed world vs open world.

Additional types of information may also be provided, such as a degree
of belief for an external source of knowledge from a particular community,

computed by using some social network analysis techniques.

8.1.2 Process traces

Matching systems typically combine multiple matchers and the final align-
ment is usually a result of synthesis, abstraction, deduction, and some
other manipulations of their results. Thus, users may want to see a trace
of the performed manipulations. We refer to them as process traces. Some

examples of this kind of information include:

e a trace of rules or strategies applied,
e support for alternative paths leading to a single conclusion,

e support for accessing the implicit information that can be made ex-

plicit from any particular reasoning path.
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Users also may want to understand why a particular correspondence was
not discovered, or why a discovered correspondence was ranked in a partic-

ular place, thereby being included in or excluded from the final alignment.

8.2 Explaining semantic

matching: the approach

The goal of explanation is to take advantage of the previously mentioned
types of information for rendering the matching process intelligible to the
users. Among the key issues is to represent explanations in a simple and
clear way [133].

In fact, while knowledge provenance and process traces may be enough
for experts when they attempt to understand why a correspondence was
returned, usually they are inadequate for ordinary users. Thus, raw jus-
tifications have to be transformed into an understandable explanation for
each of the correspondences. Techniques are required for transforming raw
justifications and rewriting them into abstractions that produce the foun-
dation for what is presented to users.

Presentation support also needs to be provided for users to better under-
stand explanations. Human users will need help in asking questions and
obtaining answers of a manageable size. Additionally, agents may even
need some control over requests, such as the ability to break large process
traces into appropriate size portions, etc. Based on [153], requirements for

process presentation may include:

e methods for breaking up process traces into manageable pieces,

e methods for pruning process traces and explanations to help the user

find relevant information,
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e methods for explanation navigation, including the ability to ask follow-

up questions,
e methods for obtaining alternative justifications for answers,

e different presentation formats, e.g., natural language, graphs, and as-

sociated translation techniques,
e methods for obtaining justifications for conflicting answers,

e abstraction techniques.

In order to meet the above mentioned requirements the semantic match-
ing approach [215] has been extended to use a third-party infrastructure
for provenance and justification, namely the Inference Web (IW) infras-
tructure as well as the Proof Markup Language (PML) [151, 195]. Thus,
meaningful fragments of semantic matching proofs can be loaded on de-
mand. Users can browse an entire proof or they can restrict their view and
refer only to specific, relevant parts of proofs. They can ask for provenance
information related to proof elements (e.g., the origin of the terms in the

proofs, the authors of the ontologies), and so on.

8.2.1 A default explanation

A default explanation of alignments should be a short, natural language,
high-level explanation without any technical details. It is designed to be
intuitive and understandable by ordinary users.

We concentrate on class matching and describe the approach with the
help of example of a simple classification matching problem shown in Fig-
ure 5.1 (p.90). Notation follows the one introduced in §5.2.1 (p.91). Sup-
pose an agent wants to exchange or to search for documents with another

agent. The documents of both agents are stored in classifications O1 and
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02, respectively. Recall that semantic matching takes as input these classi-

fications, decomposes the tree matching problem into a set of node match-
ing problems, each of which, in turn, is translated into a propositional

validity problem, which is then resolved using a SAT solver.

From the example in Figure 5.1, trying to prove that the node with label
Furope in O1 is equivalent to the node with label Pictures in O2, requires

constructing the following formula:

((Images; < Picturess) A (FEurope; < Europey)) —
Aac?gms

((Images; N\ Europe;) < (Europes N\ Picturessy))

Vo Vv
Contexty Contexts

In this example, the negated formula is unsatisfiable, thus the equivalence

relation holds between the nodes under consideration.

Suppose that agent 02 is interested in knowing why semantic matching
suggested a set of documents stored under the node with label Europe
in O1 as the result to the query — “find european pictures”. A default

explanation is presented in Figure 8.1.

¥+ Inference Web Browser - Netscape = (o] x|
» » »

I*]

Proof Lens (Explanation mode)

Because

e Images is equivalent to Pictures
e Europe is equivalent to Europe —

Therefore, Images of Europe means the same thing as Furopean Pictures

|
(3 A A &) | cocurent: Donz (0,121 s203) -I-i
|

Figure 8.1: Default explanation in English
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From the explanation in Figure 8.1, users may learn that Images in O1

and Pictures in O2 can be interchanged in the context of the query. Users
may also learn that Furope in Ol denotes the same concept as Furope
(European) in O2. Therefore, they can conclude that Images of Europe

means the same thing as European Pictures.

8.2.2 Explaining basic matchers

Explaining basic matchers requires only to formulate the justification in-

formation.

Suppose that agents want to see the sources of background knowledge
used in order to determine the correspondence. For example, which ap-
plications, publications, other sources, have been used to determine that
Images is equivalent to Pictures. Figure 8.2 presents the source metadata

for the default explanation of Figure 8.1.

i~ [nference Web Browser - Netscape

L]

K’néwledge Provenance Elicitation

Current sentence

+ Images of Europe mean the same thing as European Pictures

Ground axioms

i « Images is equivalent to Pictures’
+ Europe is equivalent to Europe'

Sources of the ground axioms
1. WordNet

< URL: http://www.cogsci.princeton.edu/~wn/
= Description: A lexical database for the English language
< Ontology Source(s):
» Name: George A. Miller, Dr. Christiane Fellbaum, Randee Tengi. Susanne Wolff,
Pamela Wakefield, Helen Langone, Benjamin Haskell
* Organization(s):
= Name: Cognitive science laboratory, Princeton University
= URL: http://www.cogsci.princeton.edu

Q B & BFE)  Document: Done (0,158 seoa) J—:&"

Figure 8.2: Source metadata information
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In this case, both (all) the ground sentences used in the semantic match-

ing proof came from WordNet. Using WorldNet, we learned that the first
sense of the word Pictures is a synonym to the second sense of the word
Images. Therefore, the semantic matching algorithm can conclude that
these two words are equivalent words in the context of the answer. The
meta-information about WordNet is also presented in Figure 8.2 as sources
of the ground azxioms. Further examples of explanations include provid-
ing meta-information about the other element level matchers used, i.e.,
those which are based not only on WordNet [101], the order in which the

matchers are used, and so on.

8.2.3 Explaining logical reasoning

A complex explanation may be required if users are not familiar with or do
not trust the inference engine(s) embedded in a matching system. As the
web starts to rely more on information manipulations, instead of simply
information retrieval, explanations of embedded manipulation or inference
engines become more important. Semantic matching uses a propositional
satisfiability engine, more precisely, this is the Davis-Putnam-Longemann-
Loveland procedure [51, 50] as implemented in JSAT/SAT4J [131].

The task of a SAT solver is to find an assignment p € {T, L} for atoms
of a propositional formula ¢ such that ¢ evaluates to true. ¢ is satisfiable
if and only if p |= ¢ for some u. If p does not exist, ¢ is unsatisfiable. A
literal is a propositional atom or its negation. A clause is a disjunction of
one or more literals. ¢ is said to be in conjunctive normal form if and only
if it is a conjunction of disjunctions of literals. The basic DPLL procedure
recursively implements three rules: unit resolution, pure literal and split.
We only consider the unit resolution rule to facilitate the presentation.

Let [ be a literal and ¢ a propositional formula in conjunctive normal

form. A clause is called a unit clause if and only if it has exactly one
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unassigned literal. Unit resolution is an application of resolution to a unit

clause.

unit resolution :

Unit resolution rule

Let us consider the propositional formula standing for the problem of test-
ing if the concept at node with label Furope in O1 is less general than the
concept at node with label Pictures in O2 of Figure 5.1. The propositional

formula encoding the above stated matching problem is as follows:

((Images; < Picturess) A (FEurope; < Europey)) —

((Images; N\ Europe;) — (Europes N\ Pictures,))

Its intuitive reading, in turn, is as follows: “assuming that Images and Pic-
tures denote the same concept, is there any situation such that the concept
Images of Furope is less general than the concept Furopean Pictures?”.
The proof of the fact that this is not the case is shown in Figure 8.3.
Since the DPLL procedure of JSAT/SAT4J only handles conjunctive nor-
mal form formulas, in Figure 8.3, we show the conjunctive normal form of
the above formula.

From the explanation in Figure 8.3, users may learn that the proof of
the fact that the concept at node with label Furope in O1 is less general
than the concept at node with label Pictures in O2 requires 4 steps and at
each proof step (excepting the first one, which is a problem statement) the
unit resolution rule is applied. Also, users may learn the assumptions that
are made by JSAT/SAT4J. For example, at the second step, the DPLL

procedure assigns the truth value to all instances of the atom Furope,
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Proof Lens (Proof mode)

|DPLL unit clause elimination]
[JSAT - The Java SATishability Library]
((~Images \/ Pictures) /\ (Images \V ~Pictures) /\ Images /\ Europe /\ (~Europe \/ ~Pictures))

Hide| Path

|

(DPLL unit clause elimination)
[JSAT - The Java SATisfiability Library]
((~Images \/ Pictures) /\ (Images V ~Pictures) /\ Images /\ (~Pictures))

| ,

|[DPLL unit clause elimination]
[JSAT - The Java SATishability Library]

((~Images) /\ (Images))

|

[DPLL unit clause elimination]
|JSAT - The Java SATisfiability Library
n

B @ GTD) G o 20 ) =

T

Figure 8.3: A graphical explanation of the unit clause rule

therefore making an assumption that there is a model where what an agent
says about Europe is always true. According to the unit resolution rule,
the atom Furope should then be deleted from the input sentence, and,

hence it does not appear in the sentence of the step 2.

The explanation of Figure 8.3 represents some technical details (only
the less generality test) of the default explanation in Figure 8.1. This type
of explanations is the most verbose. It assumes that, even if the graphical
representation of a decision tree is quite intuitive, the users have some
background knowledge in logics and SAT. However, if they do not, they
have a possibility to learn it by following the publications mentioned in
the source metadata information of the DPLL wunit resolution rule (DPLL
unit clause elimination) and JSAT /SAT4J (JSAT-The Java SATisfiability
Library).
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Some further observations are to be made with respect to the other two

rules. In the current version, the pure literal and split rules are explained
in the same manner as the unit resolution rule. Two notes are to be made
with respect to the split rule. The first is that, it is applied when we need
to reason by case distinction, for example, when matching the node with
label Computers and Internet in O1 and and the node with label Cyberspace
and Virtual Reality in O2 of Figure 5.1. The second note is that, in the
case of a satisfiable result, only a path of a decision tree standing for a
successful assignment is represented. In the case of an unsatisfiable result

a full decision tree is reported.

8.3 Implementation details

In order to provide these explanations, we have extended semantic match-
ing and its implementation within the S-Match system to use the Infer-
ence Web infrastructure. Inference Web enables applications to generate
portable and distributed explanations for any of their answers [151].

Figure 8.4 presents an abstract and partial view of the Inference Web
infrastructure as used by S-Match. In order to use Inference Web to provide
explanations, question answering systems need to produce proofs of their
answers in PML, publish those proofs on the web, and provide a pointer
to the last step in the proof. Inference Web also has a registry [152] of
meta-information about proof elements, such as sources, e.g., publications,
ontologies, inference engines and their rules. In the case of S-Match, the
Inference Web repository contains meta-information about WordNet and
JSAT /SAT4J.

In Inference Web, proof and explanation documents are formatted in
PML and are composed of PML node sets [195]. Each node set represents

a step in a proof whose conclusion is justified by any of a set of inference
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4 (Engines are registered

proofs and explanations on the W)

Figure 8.4: Inference Web infrastructure overview

steps associated with a node set. Node sets are OWL classes [217] and
they are the building blocks of OWL documents describing proofs and
explanations for application answers published on the web.

The explainer hides low-level information, e.g., the core reasoner rules,
and exposes abstractions of the higher-level derived rules. Thus, many
intermediate results can be dropped.

The Inference Web browser is used to present proofs and explanations.
Exploiting PML properties, meaningful fragments of S-Match proofs can
be loaded on demand. Users can browse an entire proof or they can limit
their view and refer only to specific, relevant parts of proofs since each
node set has its own URI that can be used as an entry point for proofs and

proof fragments.
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8.4 Summary

By extending S-Match to use the Inference Web infrastructure, we have
demonstrated our approach for explaining answers from matching systems
exploiting background ontological information and reasoning engines. The
explanations can be presented in different styles allowing users to under-
stand the correspondences and consequently to make informed decisions
about them. The chapter also demonstrates that S-Match users can lever-
age the Inference Web tools, for example, for sharing, combining, brows-
ing proofs, and supporting proof meta-information including background
knowledge.

Delivering alignments to users, for inspection and revision, is an impor-
tant topic not deeply developed so far in the ontology matching community.
However, by using explanations, a matching system can provide users with
meaningful prompts and suggestions on further steps towards the produc-

tion of a desired result.
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Chapter 9

Evaluation setup

The increasing number of methods available for ontology matching suggests
the need for evaluation of these methods. However, very few extensive
experimental comparisons of algorithms are available. Matching systems
are difficult to compare, but we believe that the ontology matching field can
only evolve if evaluation criteria are provided. These should help system
designers to assess the strengths and weaknesses of their systems as well

as help application developers to choose the most appropriate algorithm.

Material presented in this chapter has been developed in collaboration
with Jérome Euzenat and Mikalai Yatskevich. Also the work on data
set construction (for the evaluation of quality of the results produced by
matching systems) from the cultural heritage domain has been done in
collaboration with Marjolein van Gendt and Thomas Forrer along the line
of the STITCH! project. Parts of the material of this chapter have been
published in [98, 103, 75].

In this chapter we first discuss evaluation measures (9.1). Then, we
present the test cases used for evaluation (9.2). Finally, we overview the

matching systems used for evaluation (9.3).

ISTITCH is funded by CATCH, a programme of the Netherlands Organization for Scientific Research
NWO. See for details, http://www.cs.vu.nl/STITCH/
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9.1 Evaluation measures

In order to evaluate the results of matching algorithms it is necessary to
confront them with ontologies to be matched and to compare the alignment
produced with a reference alignment based on some criteria.

This section is concerned with the question of how to measure the results
returned by ontology matchers. It considers different possible measures for
evaluating matching algorithms and systems. These include both effective-

ness and efficiency measures.

9.1.1 Quality measures

The most prominent criteria are precision and recall originating from in-
formation retrieval [230] and adapted to ontology matching [57]. Precision
and recall are based on the comparison of the resulting alignment A with
a reference alignment R. These criteria are well understood and widely
accepted.

Precision measures the ratio of correctly found correspondences (true
positives) over the total number of returned correspondences (true positives
and false positives), see Figure 9.1. In logical terms, precision is meant to

measure the degree of correctness of the method.

Given a reference alignment R, the precision of some alignment A is a
function P : A x A — [0 1], such that:

RNA
P(AR) = A |

Precision can also be determined without explicitly having a complete
reference alignment. In this case only the correct alignments among the

retrieved alignments have to be determined, namely RN A.
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Reference
alignment (R)
e.g., produced by a
human

Alignment (A)
e.g., produced by a
matching system

False

True- False
negatives positives positives

True
negatives

Complete set of correspondences
i.e., cross product of two input ontologies

Figure 9.1: Two alignments as sets of correspondences and relations between them

Recall measures the ratio of correctly found correspondences (true pos-
itives) over the total number of expected correspondences (true positives
and false negatives). In logical terms, recall is meant to measure the degree

of completeness of the alignment.

Given a reference alignment R, the recall of some alignment A is a
function R : A x A — [0 1], such that:

_ RN A

R(A,R) = TR

Although precision and recall are the most widely and commonly used
measures, when comparing systems one may prefer to have only a single
measure. Moreover, systems are often not comparable based solely on
precision and recall. The one which has higher recall may have a lower

precision and vice versa. For this purpose, two measures are introduced
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which aggregate precision and recall.
The F-measure is used in order to aggregate the results of precision and

recall.

Given a reference alignment R and a number a between 0 and 1, the
F-measure of some alignment A is a function F, : A x A — [0 1], such

that:

FolA R) = (1—a)-P(A, R +a- -R(AR)

If « = 1, then the F-measure is equal to precision and if a = 0, the
F-measure is equal to recall. In between, the higher the value of «, the
more importance is given to precision with regard to recall. Very often,

the value o = 0.5 is used, i.e.,

2.P(A,R)-R(A,R)
P(A,R)+R(A R)

Fos(A R) =

which is the harmonic mean of precision and recall. It will be also used
this way when computing the results of our experiments. This measure
helps comparing systems by their precision and recall at the point where
their F-measure is maximal.

The overall measure, also defined in [159] as matching accuracy, is the
ratio of the number of errors on the size of the expected alignment. It
is considered as an edit distance between an alignment and a reference
alignment in which the only operation is “error correction”. In this respect,
it is considered as a measure of the effort required to fix the alignment. The
overall is always lower than the F-measure and it ranges between [—1 1]. In
fact, if precision is lower than 0.5, overall reaches a negative value, which

can be interpreted that repairing the alignment is not worth the effort.
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Given a reference alignment R, the overall measure of some alignment
A is a function O : A x A — [—1 1], such that:

OUR) —1— ](AUR)U;’(AHRM L ]R—A|’£|]A—R|'

9.1.2 Performance measures

Performance measures assess the resource consumption when matching on-
tologies. We mention some of these criteria below.

Unlike previously considered measures, performance measures depend
on the processing environment and the underlying ontology management
system. Thus, it is difficult to obtain objective evaluations, because they
are based on the usual measures, namely processing time in seconds and
memory in bytes. The important point here is that algorithms that are
being compared should be run under the same conditions. We consider
here two such measures.

Speed is measured by the amount of time taken by the algorithms for
performing their matching tasks. It should be measured in the same condi-
tions, i.e., same processor, same memory consumption, for all the systems.
If user interaction is required, one has to ensure that only the processing
time of the matching algorithm is measured.

The amount of memory used for performing the matching task marks
another performance measure. Due to the dependency with underlying
systems, it could also make sense to measure only the extra memory re-
quired in addition to that of the ontology management system, but it still

remains highly dependent.
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9.2 Test cases

The evaluation was performed on nine matching tasks from different appli-
cation domains: a pair of catalogs (#1) and product schemas (#2), namely
our running examples of Figure 5.1 (p.90) and Figure 5.5 (p.96), respec-
tively. There are two matching tasks from a business domain (#3, 5).
The first business example (#3) describes two company profiles: a Stan-
dard one and Yahoo Finance. The second business example (#5) deals
with BizTalk purchase order schemas. There is one matching task from an
academy domain (#4). It describes courses taught at Cornell University
and at the University of Washington. There are three matching tasks on
general topics (#6, 7, 8) as represented by the well-known web directories,
such as Google, Yahoo, and Looksmart. Finally, the last matching task
(#9) is from the cultural heritage domain. It deals with two standard the-
sauri used for storing masterpieces. Table 9.1 provides some indicators of

the complexity of the test cases®.

Table 9.1: Some indicators of the complexity of the test cases

# Matching task #nodes | max | #labels
depth | per tree
1 | Images vs Europe (Figure 5.1, p.90) 4/5 2/2 6/5
2 | Product schemas (Figure 5.5, p.96) 13/14 4/4 14/15
3 Yahoo Finance vs Standard 10/16 2/2 22/45
4 Cornell vs Washington 34/39 3/3 62/64
5 CIDX vs Excel 34/39 | 3/3 56/58
6 Google vs Looksmart 706/1081 | 11/16 | 1048/1715
7 Google vs Yahoo 561/665 | 11/11 | 722/945
8 Yahoo vs Looksmart 74/140 | 8/10 101/222
9 Iconclass vs Aria 999/553 | 9/3 | 2688/835

2Source files, description of the test cases, and reference alignments can be found at
http://www.dit.unitn.it/~accord/, experiments section.
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As match quality measures we have used the following indicators: pre-
cision, recall, F-measure and overall (§9.1.1). In order to calculate the
above mentioned quality indicators we had to obtain reference alignments.
In particular, reference alignments have been manually produced with the
help of BizTalk Mapper [209] used to visualize ontologies and correspon-
dences created for the test cases #1, 2, 3, 4, 5 and 9. The size of the
first five test cases is not big (dozens of nodes at most), therefore reference
alignments can be produced relatively easily for them. The last test case
(#9) is large, therefore producing manually reference alignment for it is
time consuming and error-prone. We report our experience with build-
ing it next in §9.2.1. Finally, the test cases #6, 7, and 8 constitute the
data set constructed in [9], where reference alignments have been acquired
semi-automatically. This test case was used in the OAEI-2005 [77] ontology

matching evaluation campaign.

9.2.1 Data set construction (#9)

We discuss our experience with building test case #9. It involves two
large thesauri from the cultural heritage domain. These are Iconclass®

4. The underlying documents of these thesauri are illuminated

and Aria
manuscripts and masterpieces. Note that this, from the matching algo-
rithm perspective, forces to use only schema-based solutions, since in-
stances are image data, and to the best of our knowledge at the moment
there are no instance-based matching solutions working with image data.
Alignment between these thesauri is ultimately used in the data integration
scenario (§1.2.3), see for details [229].

The Iconclass thesaurus contains around 25.000 entities. One of its

main purposes is an iconographical analysis. Therefore, the labels used

3http://www.iconclass.nl/libertas/ic?style=index.xsl

4http://www.rijksmuseum.nl/aria/aria_catalogs/index?lang=en
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for classification purposes aim at providing precise descriptions of the un-
derlying data. Note that these labels are gloss-like. They are much more
complex than those we have considered in all the previous examples, since
they have to describe what is depicted on a masterpiece. An example of a
label from Iconclass is as follows: city-view, and landscape with man-made

constructions.

The Rijksmuseum collection contains around 600 terms used to classify
paintings and sculptures by means of the Aria thesaurus. Contrary to the

case of Iconclass, labels used in Aria are short phrases and not gloss-like.

When building this data set we have focused only on a small part of
Iconclass devoted to the subject of nature which considers earth, and world
as celestial body. More precisely this part corresponds to the Iconclass
fragment with index 25. We have considered the whole Aria thesaurus.
Finally, we have cleaned the thesauri under consideration from non-English
phrases, e.g., Geen realtie met index and Fuoco, Carro del fuoco (Ripa).
Table 9.1 (last row) summarizes the information about these thesauri which

was ultimately used.

Our goal is to create a reference alignment between the fragment of
Iconclass and Aria thesauri in order to enable evaluation of the quality of
the results produced by matching systems. According to the application
scenario [229], we are interested only in the equivalence (=), more general
(J) and less general (C) relations. For example, correspondences with the

intersection (M) relation have to be excluded.

The reference alignment has been produced manually. Whenever neces-
sary, we have consulted actual data instances of the underlying information
resources, namely illuminated manuscripts and masterpieces. Similar to
the previously discussed test cases (#1-5) we used BizTalk Mapper [209]
to visualize both thesauri and have an overview of the main themes they

cover. Also, an initial set (several hundreds) of correspondences have been
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manually created and visualized by using BizTalk Mapper. This approach
helped us to obtain a first view over the scope of the task. For example,
we have identified that in both thesauri there are parts devoted to the
subject of landscapes. However, we could not complete this task by using
BizTalk Mapper, since having created several hundreds of correspondences
the visualization has become clumsy, see Figure 9.2. Similar observations

have been also reported in [201].
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Figure 9.2: Manual matching with BizTalk Mapper

We proceeded with a plain text file to handle the correspondences. In
order to ensure good enough quality of reference alignment (5% errors at
most) we have split the set of all the correspondences into three parts. Let

us discuss them in turn.
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Part 1: Certainly correct correspondences. Some examples of the corre-

spondences from this part include:

Aria: Top/Animal pieces/Birds

Iconclass: Top/Nature/earth, world as celestial body/animals
and

Aria: Top/Animal pieces/Birds

Iconclass: Top/Nature/earth, world as celestial body/animals/birds

In the first example above, the concept of Birds in Aria is more spe-
cific than animals in Iconclass, while in the second example there is

the equivalence relation between the concepts under consideration.

Part 2: Certainly incorrect correspondences. An obvious example of the

correspondence from this part is as follows:

Aria: Top/Holloware

Iconclass: Top/Nature/earth, world as celestial body/animals

Part 3: Correspondences in the correctness of which we were uncertain.
Correspondences of this category have been analyzed one by one in
order to reduce their number as much as possible and re-classify them
in one of the other two categories, namely Part 1 or Part 2.

For example, the following correspondence has been initially put in
Part 3 and having learned some more knowledge about jewelry, it was

ultimately moved to Part 1:
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Aria: Top/Accessories/Jewelry

Iconclass: Top/Nature/earth, world as celestial body/rock types; min-
erals and metals; soil types/rock types/precious and semiprecious stones/
precious and semiprecious stones (with NAME)/ precious and semiprecious

stones: emerald

Another example, when the following correspondence has been ini-
tially put in Part 3 and having learned some more knowledge about

jewelry, it was ultimately moved to Part 2:

Aria: Top/Accessories/Jewelry

Iconclass: Top/Nature/earth, world as celestial body/rock types; min-
erals and metals; soil types/rock types/precious and semiprecious stones/
precious and semiprecious stones (with NAME)/ precious and semiprecious

stones: jasper

Note that the thesauri under consideration contain a lot of domain spe-
cific concepts that often only a domain expert can know their exact mean-
ing. In the examples above, our initial knowledge about jewelry was not
enough to assess whether emerald and jasper are actually jewelry or not.
Finally, it is worth noting that sometimes we could not find any source
of domain knowledge being precise enough to resolve our uncertainty. For

example, should

Aria: Top/animal pieces/wild animals
or

Aria: Top/animal pieces/livestock
(or none 7) be matched to

Iconclass: Top/Nature/earth, world as celestial body/animals/ mammals/
hoofed animals/hoofed animals (with NAME) /hoofed animals: dromedary
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Can we consider a dromedary to be fully domesticated? According to
Wikipedia®, dromedaries were domesticated between 4000 BC and 1400

BC and used for labour and dairy. Following this argument we can con-

sider a dromedary to be a livestock. However, one can imagine an illumi-
nated manuscript about dromedaries in wild life, thus being wild animals.
Whether this question is valid or not, in our opinion, depends on the appli-
cation, and, therefore, requires involvement of a domain expert to justify
a correct decision. These kinds of correspondences remained in Part 3.
Table 9.2 provides a final size (number of correspondences) of each of the
three parts. For the evaluation we have used only Part 1, namely the set of
certainly (according to our knowledge) correct correspondences. Table 9.2
also shows that the reference alignment set is quite dense with respect to

the size of the input thesauri.

Part 1 | Part 2 | Part 3
#correspondences | 1409 | 550918 120

Table 9.2: Final sizes of three parts of correspondences used for the data set construction

9.3 Systems used

for evaluation

The system under a prime consideration is S-Match, which implements the
ideas and algorithms presented in the previous chapters (as well as many
other ideas and algorithms, for instance, a library of element level seman-
tic matchers [101], the optimizations of the node matching algorithm [102],
which will be the topic of another thesis). This system has been imple-
mented by Mikalai Yatskevich, except parts for explanations (Chapter 8)

Shttp ://en.wikipedia.org/wiki/Livestock
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and iterative tree match algorithms (Chapter 7). Note that the implemen-

tation of the S-Match system is not claimed as a contribution of this thesis.
The evaluation results obtained are intended to demonstrate that the ideas
and algorithms developed in the thesis have been actually implemented and

give proof of the concept that they are practically useful.

9.3.1 Setup for the comparative evaluation

We evaluate S-Match against three state of the art systems, namely Cu-
pid [146] (§4.1.9), COMA [58]% (§4.1.10), and Similarity Flooding [159]
(§4.1.11) as implemented in Rondo [160]. All the systems under consider-
ation are fairly comparable because they are all schema-based. They differ
in the specific matching techniques they use and in how they compute
alignments.

There are three further observations. The first observation is that Cu-
pid, COMA, and Rondo can discover only the correspondences which
express similarity between schema elements. Instead, S-Match, among
the others, discovers the disjointness relation which can be interpreted
as strong dissimilarity in terms of the other systems under considera-
tion. Therefore, we did not take into account the disjointness relations
(e.g., (IDy4,C1y,C24, 1) in Figure 5.5, p.96) when specifying the refer-
ence alignments. The second observation is that, since S-Match returns
a matrix of relations, while all the other systems return a list of the best
correspondences, we used some filtering rules. More precisely we have the
following two rules: (i) discard all the correspondences where the relation
is idk; (i1) return always the core relations, and discard relations whose
existence is implied by the core relations. For the example of Figure 5.5
(p.96), (IDs3,C13,C23, =) should be returned, while (I D35, C13, C25, J)

6We thank Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with Cupid and COMA.
In the evaluation we use the version of COMA described in [58]. A newer version of the system COMA++
exists but we do not have it.
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should be discarded. Finally, whether S-Match returns the equivalence or

subsumption relations does not affect the quality indicators. What only
matters is the presence of the correspondence standing for those relations.

In our experiments each test has two degrees of freedom: directionality
and use of oracles. By directionality we mean here the direction in which
correspondences have been computed: from the first ontology to the sec-
ond one (forward direction), or vice versa (backward direction). We report
the best results obtained with respect to directionality, and use of oracles
allowed. We were not able to plug a thesaurus in Rondo, since the version
we have is standalone, and it does not support the use of external thesauri.
Thesauri of S-Match, Cupid, and COMA were expanded with terms nec-
essary for a fair competition (e.g., expanding uwom into unitOfMeasure, a
complete list is available at the URL in footnote 2, p.148).

For the comparative evaluation all the tests have been performed on a
P4-1700, 512 MB of RAM, Windows XP, with no applications running but
a single matching system. Also, all the tuning parameters (e.g., thresholds,
strategies) of the systems were taken by default (e.g., for COMA we used
NamePath and Leaves matchers combined in the Average strategy) for all
the tests.

S-Match (non-iterative version) was run with five element level match-
ers, namely WordNet, prefix, suffiz, edit distance, and n-gram [98, 101, 99|
(see also §3.2.1) and SAT deciders of [131, 102] as structure level matchers
which implement the semantic matching approach. String-based matchers
were used with a threshold of 0.6 [101, 103].

Iterative S-Match used besides the five element level matchers men-
tioned above, also highly contextual element level matchers, namely: Hi-
erarchy Distance, WordNet Gloss, Extended WordNet Gloss, Gloss Com-
parison, and Extended Gloss Comparison [101, 100] (see also §7.4).
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9.3.2 Setup for the evaluation of explanations

The main goal of the experiments being conducted here is to obtain a
vision of how explanations of semantic matching (Chapter 8) potentially
scale to the requirements of the semantic web, providing meaningful and
adjustable answers in real time.

The semantic (node) matching problem is a CO-NP hard problem, since
it is reduced to the validity problem for the propositional calculus. Resolv-
ing this class of problems requires exponential time and exponentially long
proof logs. However, in all the examples we have done so far proofs are not
too long and seem of length polynomial in the length of the input clause.
As a matter of fact, [102] shows, that when we have conjunctive concepts
at nodes (e.g., Images N Europe), these matching tasks can be resolved
by the basic DPLL procedure in polynomial time; while when we have full
proposition concepts at nodes (e.g., Images N (Computers V Internet)),
the length of the original formula can be exponentially reduced by structure
preserving transformations.

In our experiments we have used three test cases, namely #1, 2, 3
of Table 9.1 (p.148). We focus on indicators characterizing explanations
of mapping elements. The analysis of the quality of correspondences is
beyond scope of this experiment. In the experimental study we have used

the following indicators:

e Number of mapping elements determined for a pair of ontologies. As
follows from the definition of semantic matching, this number should
be N1 x N2, where N1 is the number of nodes in the first ontology,

N2 is the number of nodes in the second ontology.

e Number of steps in a proof of a single mapping element. This indicator

represents the number of PML node sets are to be created in the proof.
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e Time needed to produce a proof of a single mapping element. This
indicator estimates how fast the modified JSAT/SAT4J in producing
IW proofs for a particular task.

e Time needed to produce a proof of all mapping elements determined

by S-Match for a pair of ontologies.

In order to conduct tests in a real environment, we used the Inference
Web web service of KSL at Stanford University (on a P4-2.8GHz, 1.5Gb
of RAM, Linux, Tomcat web server) to generate proofs in PML, while the
modified JSAT/SAT4J version was run at the University of Trento (on a
P4-1.7GHz, 256 MB of RAM, Windows XP). All the tests were performed
without any optimizations: for each single task submitted to JSAT /SAT4J,
the IW web service was invoked, no compression methods were used while

transferring files, etc.

9.4 Summary

In this chapter we have discussed some of the ontology matching evaluation
criteria. In particular, we have presented quality and performance mea-
sures, test cases as well as the systems which were used for the evaluation.

We also described our experience with building manually a large data set
from the cultural heritage domain for the quality evaluation of the results
produced by matching systems. This data set is of high importance for
the ontology matching evaluation due to the general lack of large data sets
(containing hundreds and thousands of entities) allowing the measurement

of the quality indicators of matching systems.
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Chapter 10

Evaluation results

This chapter provides evaluation results for the test cases and systems
introduced previously in §9.2 and §9.3, respectively. The results have been
obtained and compared based on the measures outlined in §9.1.

Material presented in this chapter has been developed in collaboration
with Mikalai Yatskevich and Paulo Pinheiro da Silva and published in
98, 215, 99, 100, 103].

In this chapter we first discuss evaluation results for the semantic match-
ing (§10.1) and iterative semantic matching approaches (§10.2). Then, we
provide evaluation results for the explanations of the semantic matching

(8§10.3). Finally, we briefly overview some lessons learned out of the exper-
iments (§10.4).

10.1 Evaluation of

semantic matching

We present the quality results for the tasks of Table 9.1 (p.148). For the
matching tasks #2, 3, 4, 5 these are shown in Figures 10.1, 10.2, 10.3, and
10.4, respectively.

For example, in Figures 10.1 and 10.3, since all the labels at nodes

159



10.1. EVALUATION OF
SEMANTIC MATCHING CHAPTER 10. EVALUATION RESULTS
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Figure 10.1: Evaluation results: Product schemas (Figure 5.5), test case #2
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Figure 10.2: Evaluation results: Yahoo Finance vs Standard, test case #3
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10.1. EVALUATION OF
SEMANTIC MATCHING
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Figure 10.3: Evaluation results: Cornell vs Washington, test case #4
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in the given test case were correctly encoded into propositional formulas,
all the quality measures of S-Match reach their highest values. In fact,
as discussed before, the propositional SAT solver is correct and complete.
This means that once the element level matchers have found all and only
the mapping elements, S-Match will return all of them and only the correct
ones.

For pairs of business schemas, namely Yahoo Finance vs Standard and
CIDX vs Excel (Figures 10.2 and Figures 10.4, respectively), S-Match per-
forms as good as COMA and outperforms other systems in terms of quality

indicators.

10.2 Evaluation of

iterative semantic matching

Iterative semantic matching algorithm has been evaluated on the tasks #6,
7,8, and 9 of Table 9.1 (p.148).

10.2.1 Evaluation results for the web directories task (#6,7,8)

As reference alignments for the tasks #6, 7, 8 we used 2265 mapping
elements acquired in [9]. By construction those reference alignments rep-
resent only true positives, thereby allowing us to estimate only the recall
with them. To the best of our knowledge, at the moment, there are no
large data sets (besides #9) where available reference alignment allows
measuring both precision and recall. Thus, in the following for the tasks
#6, 7, 8 we focus mostly on analyzing the recall.

Two further observations. First, as it was already mentioned in §9.1,
higher values of recall can be obtained at the expense (lower values) of
precision. Thus, in order to ensure a fair recall evaluation, before running

tests on the matching tasks #6, 7, 8, we have analyzed behavior of the
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Figure 10.5: Evaluation results (absolute values), test cases #6,7,8

iterative semantic matching on the other test cases of Table 9.1 where ref-
erence alignments allowed measuring both precision and recall. Matchers
decreasing precision substantially in these tests were discarded from the
further evaluation. In fact, for this reason we exclude from the further
considerations the Frtended Gloss Comparison matcher. The second ob-
servation is that using matchers mentioned in §9.3 exhaustively for all the
tasks, hence, omitting the critical points discovery algorithm, also leads to
a significant precision decrease, thus justifying usefulness of the cPoints-
Discovery algorithm (p.122).

The summarized evaluation results for the matching tasks #6, 7, 8 of
Table 9.1 are shown in Figure 10.5. In particular, it demonstrates contribu-
tions to the recall of matchers mentioned in §9.3 as well as of their combina-
tions. The Extended WordNet Gloss matcher performed very poorly, i.e.,
contributing less than 1% to the recall, hence, we do not report its results
in Figure 10.5. By using a combination of the Hierarchy Distance, Word-
Net Gloss, and Gloss Comparison matchers we have improved S-Match
recall results (29,5%) up to 46,1% within the iterative S-Match?.

!Note that this result should be considered as a complimentary one to the results of S-Match-++
reported in [9], since they address separate problem spaces.
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Table 10.1: Some element level matchers used in the iterative semantic matching and
their evaluation results

HD | GC | HD + GC | HD + WNG + GC
Recall increase (relative), % | 20 | 34 54 56
Threshold value 4 2 4\ 2 4\1\2

Let us now consider relative characteristics of the iterative S-Match with
respect to the non-iterative version, see the first row of Table 10.1 for a
summary. The highest recall increase by using only a single matcher out of
those mentioned in §9.3 within the iterative S-Match was achieved by the
Gloss Comparison matcher, namely 34% over the non-iterative S-Match.
The best, in this sense, combination of two matchers is being that of the
Hierarchy Distance and Gloss Comparison matchers: recall increased by
54%. Finally, a combination of the Hierarchy Distance, WordNet Gloss
and Gloss Comparison matchers resulted in the 56% recall increase with
respect to the non-iterative S-Match.

Table 10.1 also reports values of thresholds used within the evaluation.
These values were obtained based on the rationale behind designing match-
ers mentioned in §9.3 and their evaluation results.

The evaluation we have conducted shows that the problem of the lack
of background knowledge is a hard one. In fact, as it turns out, not all
the designed element level matchers can perform always well in real world
applications, as it might (mistakenly) seem from the toy evaluations. Also,
new matchers are still needed, since, for example, we could discover that
(C1y,C24) in Figure 7.2 (p.118) is the critical point, however, we were
unable to resolve it with the matchers mentioned in §9.3, namely to match
Home; and Hobbies . AND_Interests, in Figure 7.2.
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10.2.2 Evaluation results for the cultural heritage task (#9)

To study the behavior of semantic matching and iterative semantic match-
ing on the data set from the cultural heritage domain (§9.2.1), we have
made only a preliminary evaluation. We ran S-Match and Iterative S-
Match in default configurations (§9.3). The summary of the evaluation

results is presented in Table 10.2.

Precision, % | Recall, % | F-measure, %
S-Match 44.82 6.45 11.29
Iterative S-Match 47.69 6.60 11.59

Table 10.2: Preliminary evaluation results: Iconclass vs Aria, test case #9

The results of Table 10.2 show that the task is indeed hard and chal-
lenging. Very low recall results can be explained by the fact that labels of
Iconclass are gloss-like, while the algorithms were instead expecting labels

built by only short phrases, like in all the previous test cases.

10.3 Evaluation of

explanations

Figure 10.6 reports on the results of the experimental study. In particular,
for each mapping element of the three test cases, it represents the number
of proof steps required and the time needed to generate proofs in PML.
Notice, that the proof time indicator in Figure 10.6 takes into account
the time needed by the modified version of JSAT/SAT4J to produce proof
information, connection time to the IW web service, time for producing
and posting PML documents.

An observation of the spikes starting from the mapping element #700 in
the time line of the Cornell vs Washington test case is an example of how

Internet connection increases the proof time. The average proof length and
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proof time for a single mapping element in the test cases of Figure 10.6
constitute 16 steps and 14 seconds. Time needed to produce proofs of
all mapping elements in each test case is 2.7min. - 20 mapping elements;
27.7Tmin. - 160 mapping elements; and 546.2men. - 1326 mapping elements,
respectively. Notice that the modified JSAT /SAT4J version produces proof
information on a single mapping element requiring, in the average, less
than 1 millisecond, therefore producing proof information for all mapping
elements, for instance, in the case of 1326 mappings, would require less
than 1 minute. Moreover, it is hard to imagine that ordinary users will be
willing to browse explanations of thousands and even hundreds of mapping
elements. However, one dozen seems to be a reasonable number of mapping

elements to be looked through for a short period of time.

10.4 Lessons learned

10.4.1 Evaluation of quality of the results of matching systems

Our evaluation has shown that even if matching systems can achieve good
quality results on small ontologies, the situation is far from being that
promising in the case of large ontologies. Also when labels are gloss-like,
special techniques have to be developed to handle them. For example, we
have analyzed why the recall on the data set from the cultural heritage
domain was so low. After some study on the mapping elements we have
find out the following general classes of mistakes done by S-Match. We

illustrate them below with the help of examples.

Recognizing “noisy” labels. When working with gloss-like labels, the
system tries to interpret all the labels defining an entity. However,
some labels can represent “noise” for the matching algorithm. For

example, given the entity main subject: animals, the system tries
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to interpret all the labels and build a concept of it, however it is
not really necessary. The labels main and subject do not technically
contribute much to the meaning of the entity under consideration
(which defines animals). As a consequence, the system cannot match,
for example, main subject: animals with animals, because, main and
subject are not related (in WordNet) to animals. Thus, such labels
that give no or little contribution to the meaning of an entity can
be considered as “noise” from the matching algorithm perspective. A
proper recognition and treatment (e.g., elimination) of the “noisy”

labels is thus needed.

Negation. When working with negations in gloss-like labels, the algo-
rithm even if it interprets correctly, e.g., other than to be a negation,
it applies it only to the next atomic concept. For example, given the
label seasons of the year represented by concepts other than personi-
fications, human activities, landscapes or still lifes of flowers and or
fruits e.q., biblical scenes, the algorithm negates only the first atomic
concept after the negation phrase, namely personifications. However,
the intended meaning of the sentence is to negate also human activi-
ties, landscapes, etc. Thus, the system has to be improved in order to
understand where to put the parentheses and negate all the necessary
atomic concepts of labels. This problem appears only when dealing
with gloss-like labels, since when labels are short phrases, negation

usually appears to negate only one concept, e.g., except landscapes.

10.4.2 Evaluation of the explanations of semantic matching

Results of the experimental study of §10.3 look promising, however there
are proof time issues to be addressed. For example, if a user needs explana-

tions aimed at proof generation and manipulation need to be added. How-
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ever, the experimental study we have conducted gives a preliminary vision
that the explanation techniques proposed potentially scale to requirements
of the semantic web, providing meaningful and adjustable answers in real

time.

10.5 Summary

In this chapter we have presented comparative evaluation of semantic
matching and iterative semantic matching against the other state of the
art systems. We also discussed evaluation of explanations for semantic
matching. The results are encouraging and empirically prove the strength
of our approach.

However, as our evaluation results show, it is very difficult to know a
priori the quality to expect from a matching system. Matching tasks are
so different that a system can perform very well on some data and not
that well on some other. This means that in order to justify the claim
of a matching system to be generic, a lot of work has to be done yet,
especially to address all the issues that arise when dealing with large-scale
matching tasks. However, still it is necessary that evaluation data sets be
as different as possible and that results be kept separate so that someone
with a particular task can choose a system that performs adequately on
this task.
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Chapter 11

Summary

In this thesis we have provided a detailed account of the state of the art in
ontology matching. We proposed a novel approach to ontology matching,
called semantic matching, discussed its technical details and some eval-
uation. Specifically, the main findings of each chapter of the thesis are
summarized one by one in sequel. Finally, future trends in the matching
field are outlined in (the next and last) Chapter 12.

We showed that there are many applications that may need ontology
matching (Chapter 1). This was the reason to consider ontology matching
as a unified object of study. However, there are notable variations in
the way these applications use matching. Therefore, we identified some
application related differences which have to be taken into account in order

to provide the best suited solution in each case.

We showed that there are various existing ways of expressing knowledge
that are found in diverse applications. These ways of expressing knowledge
can be viewed as different forms of ontologies that may need to be matched
(Chapter 2). Unlike many other works, we aimed to treat the matching
problem in a unified way and provide a common roof under the heading of
ontology matching for many existing instantiations of this problem, such

as schema matching, catalog matching, etc. The reason is to facilitate the
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cross-fertilization. In fact, on the one side, for example, schema match-
ing is usually performed with the help of techniques trying to guess the
meaning encoded in the schemas. On the other side, ontology matching
systems primarily try to exploit knowledge explicitly encoded in the on-
tologies. In real world applications, schemas and ontologies usually have
both well defined and obscure terms, and the contexts in which they occur,
therefore, solutions from both problems would be mutually beneficial. We
introduced several justifications for heterogeneity in order to help the de-
sign of a matching strategy as a function of the kind of heterogeneity that
has to be addressed. Finally, we technically defined the ontology matching

problem.

We showed that ontology matching can take advantage of innumerable
basic techniques composed and supervised in diverse ways (Chapter 3).
We provided a systematic view over the available techniques by classifying
them and providing some guidelines which help in identifying families of

matching methods.

We reviewed existing schema-based matching systems which emerged
during the last decade (Chapter 4). These were presented in light of the
classifications developed in Chapter 3. We also pointed to concrete basic
matcher and matching strategies used in the considered systems. We sum-
marized some global observations concerning the presented systems and
outlined a number of constant features that are shared by the majority of
them.

Having analyzed in detail the state of the art we proposed an approach
to ontology matching called semantic matching (Chapter 5). This has
been done based on what we have found good practices in the previous
approaches and what we have found missing in them, thereby mastering
that gap. We discussed with the help of examples and pseudo-code the

main macro steps of the algorithm that implements the semantic matching
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approach.

We showed how attributes are handled within the semantic matching
settings (Chapter 6). We argued that a plausible way to match attributes
using the semantic matching approach is to discard the information about
datatypes.

We demonstrated how to deal in a fully automated way with the lack
of background knowledge in matching tasks by using semantic matching
iteratively (Chapter 7). This helps saving some of the pre-match efforts,
improving the quality of match via iterations, and enabling the future reuse
of the newly discovered knowledge.

By extending semantic matching to use the Inference Web infrastruc-
ture, we demonstrated our approach for explaining answers from match-
ing systems exploiting background ontological information and reasoning
engines (Chapter 8). Delivering alignments to users, for inspection and
revision, is an important topic not deeply developed so far in the ontology
matching community.

We discussed some evaluation criteria for comparison of the results
of matching algorithms (Chapter 9). We described our experience with
building a large test case for the evaluation of quality results produced by
matching systems. It is worth noting that this is a time-consuming and
error-prone effort, however, large real world data sets for evaluation of the
quality of matching results is among important and not well developed
themes of ontology matching.

We performed an evaluation of the semantic matching approach, which
gives proof of the concept, that it is practically useful (Chapter 10). As
our comparative evaluation shows it is very difficult to know a priori the
quality to expect from a matching system. Matching tasks are so different
that a system can perform very well on some, usually small test cases,

while not that well on some other, usually large-scale test cases. Analysis
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of the mistakes done by a system opens a number of ways for further

improvements.

We would like to make two final remarks. The first remark concerns
some assumptions and limitations of the proposed solution. In particular,
the proposed solution naturally assumes that the ontologies to be matched
have a meaningful overlap, thus these are worth been matched. The pro-
posed approach reduces the conceptual heterogeneity (see p.27) only to a
certain extent, though, for example, cases such as geometry axiomatized
with points as primitive objects and geometry axiomatized with spheres
as primitive objects are not handled. At last, although we have aimed at
producing a generic matching solution, a lot of work still needs to be done.
For example, as §10.2.2 (p.165) shows, additional techniques have to be
developed in order to handle properly gloss-like labels. Also we have only
investigated matching of tree-like structures produced out of classifications
and catalogs, while it has still to be analyzed whether the presented solu-
tion will properly handle the trees generated, e.g., out of relational schemas
and the other forms of ontologies.

The second remark is to point out that although the semantic het-
erogeneity problem has been known and faced for decades, the ontology
matching, which is a plausible solution to it, by the time the work on this
thesis started, i.e., in 2002, had still been in its infancy. Therefore, besides
the development of the semantic matching approach, many efforts have
been invested in understanding the related to ontology matching problems
and areas as well as in the rationalization of the state of the art. As a
result, an extended and updated version of the general part of this thesis

will appear in the first book on the topic of ontology matching [75].
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Future trends
in the field

Anticipating the technical details of future trends in ontology matching, let
us first focus on two general observations. The first observation is that most
of the work on matching has been carried out among (i) database schemas
in the world of information integration, (i7) XML-schemas and catalogs
on the web, (iii) formal ontologies in artificial intelligence, semantic web,
knowledge representation, and (iv) objects and entities in data mining.
In the past, these communities were, in a sense isolated, and rarely ad-
dressed technical issues they had encountered from the multidisciplinary
and cross-community viewpoints. Also, it is worth noting that during
the last decade these areas have done a substantial progress in matching.
However, they require other technologies to continue their growth. Thus,
there has emerged such an initiative as Ontology Matching!, which aims
at increasing awareness of the existing matching efforts across the relevant
communities and facilitating the cross-fertilization between them.

The second observation is that the number and variety of solutions to
the matching problem keep growing at a fast pace. In particular, Fig-

ure 12.1 shows (approximately) how many works devoted to diverse aspects

1http ://wuw.OntologyMatching.org
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of matching have been published at various conferences all over the world

in the recent years?.
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Figure 12.1: Dynamics of publications devoted to matching

In the future, we expect a continuing growth of works on matching due
to the constantly increasing interest in intelligent solutions for semantic

heterogeneity problem from both academia and industry.

Material presented in this chapter has been developed in collaboration
with Jérome Euzenat and Roberta Cuel and published in [75]. The work
on the topic of this chapter has been supported by the FP6 Knowledge
Web? Network of Excellence.

The rest of the chapter is organized as follows. Future trends are dis-
cussed along the lines of (i) trends in theories and methods (§12.1), (i)
trends in tools (§12.2), and (éi7) trends in applications (§12.3). In turn,
each of the three parts is detailed according to the trends of short (0-3

years), medium (3-6 years), and long (6-12 years) terms.

2Source: www.OntologyMatching.org, Publications section. Estimation for 2006 is based on interpo-
lation from the three first quarters of this year.
3http ://knowledgeweb.semanticweb.org/
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12.1 Trends in theories

and methods

Heterogeneity is typically reduced in two steps: (i) match two ontologies,
thereby determining the alignment and (i7) process the alignment according
to an application needs (e.g., query answering, web service composition).
In this thesis we have focused only on the first step, and, therefore, here
we consider the future trends only from this perspective. In particular,
we discuss the future trends in matching approaches following the dimen-
sions identified in Chapter 3, namely: (7) the input of the algorithms, (i7)
the characteristics of the matching process, and (7ii) the output of the
algorithms. Finally, we discuss possible trends in the evaluation of the
matching approaches.

Disregarding the timelines, there are some general trends to be men-
tioned, namely: gradual and incremental improvement of the existing ap-
proaches, emergence of the new approaches by modifying exiting ones (usu-
ally performed by different group(s) of people with respect to the original
approaches), and emergence of the completely new approaches.

Also, notice that trends which are discussed in the short (medium) term,
in general, remain valid for the forthcoming periods, though, their perfec-

tion is expected.

12.1.1 Short term

Matching approaches

Input dimensions. These dimensions concern the kind of input on which

algorithms operate. We expect the following short term trends here:

e Most of the approaches tend to be more and more generic, i.e., handle

multiple forms of ontologies;
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e New types of input, such as plain text and query interfaces from the

deep web [20, 117] should enter intensively into practice;

e Approaches will try to suitably handle more and more constructs avail-

able from the input (e.g., constraints).

Process dimensions. We discuss the expected trends first in basic match-
ers, then in matching strategies, and finally, generally, in matching ap-

proaches. Thus, the expected short term trends are:

e New types of basic automatic matchers addressing a larger variety
and more sophisticated situations with respect to the current state of

affairs. Some possibly emerging examples include:

— Methods for matching glosses (comments) against labels of enti-
ties;

— Methods for matching processes;

— Methods for alignment reuse (e.g., by reasoning with the given

correspondences to deduce the new correspondences, verify if the

correspondences are still correct, and repair them if necessary);

— Methods exploiting various (new) external resources, e.g., up-
per level ontologies, such as DOLCE [88], domain specific cor-
puses [144];

— Approximate (e.g., semantic-based) methods.
e New libraries of matchers (or extensions of the existing libraries),

which group together the basic automatic matchers based on their

common characteristics, e.g., name-based matchers.

e New approaches to automate the combination of individual matchers
and libraries of matchers. Some existing solutions here can be found

in [59, 67]. Some possibly emerging examples are:

180



CHAPTER 12. FUTURE TRENDS 12.1. TRENDS IN THEORIES
IN THE FIELD AND METHODS

— Methods for learning the optimal weight assignments, given a set

of basic matchers;

— Combining different techniques (e.g., collaborative filtering, ge-
netic algorithms, statistics) for the optimal/near optimal weight

assignments.

e New general matching solutions or default combinations of basic match-

ers which prove themselves equally good for most of the tasks.

e New approaches to tune automatically matching solutions in general
(e.g., thresholds, weights, coefficients, which basic matchers to use).

Existing examples are given in [205, 67].

e Various application specific approaches, which are particularly tai-

lored to the input/output characteristics.

e New matching approaches investigating the quality vs. efficiency trade
off.

e New ways of viewing/resolving the matching problem by reducing
it to the other, already known problem. Some existing examples of
these translations are graph matching [159, 78], propositional validity
[30, 97], and probabilistic inference [167, 190].

Output dimensions. We expect the following short term trends: transla-
tions between alignments specified with the help of coefficients in [0 1]
range and logical relations, expressiveness of alignment (atomic vs com-
plex), language(s) for alignment (some existing examples include C-OWL
[34], SWRL [118], Alignment format [73], see [208, 75] for an overview),
formal semantics of alignment, scalability of alignment, framework(s) for

characterizing the alignment, and application specific alignment.
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Evaluation of matching approaches

We expect the following trends in evaluation of matching approaches in
the short term: continues (at least annual) ontology matching contests?,
improvements of the ontology matching evaluation methodology, new data
set construction methodologies, including new large real world data sets,
new systematic (artificial) test (e.g., robustness to data noises), new quality
measures, including combinations of precision and recall, and application

specific measures.

12.1.2 Medium term

We discuss some challenges, which we believe, in the medium term (not

earlier) will find appropriate solutions.

Matching approaches

Input dimensions. We expect emergence of standard(s) for the internal
representations of different forms of ontologies taken as input by matching

approaches.

Process dimensions. The key challenges include:

o Knowledge incompleteness. Recent industrial-strength evaluations of
matching systems, see, e.g., [77, 9, 74], show that lack of background
knowledge, most often domain specific knowledge, is one of the key
problems of matching systems. In fact, most state of the art systems,
for the tasks of matching thousands of entities, perform not with such

high values of recall (~30%) as in cases of toy examples, where the

4Matching contests of years 2004, 2005 and 2006 can be found following the links below:
2004: http://www.atl.external.lmco.com/projects/ontology/i3con.html,
2004: http://oaei.ontologymatching.org/2004/Contest/,
2005: http://oaei.ontologymatching.org/2005/,
2006: http://oaei.ontologymatching.org/2006/.
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recall was most often around 80-90% [100]. Thus, we expect emergence
of the frameworks leveraging the knowledge incompleteness problem,
ultimately in a fully automated way. One possible solution has been

proposed in this thesis.

e Performance. Following the above mentioned examples of the large
scale evaluations, besides the effectiveness of the results, there is an
issue of performance. In fact, there are applications which require
at least some weak form of real time performance (to avoid having a
user waiting too long for the system respond). FEzecution time indica-
tor shows scalability properties of the matchers and their potential to
become an industrial-strength systems. Also, referring to the above
mentioned evaluations, the fact that some systems went out of mem-
ory on some test cases, although being fast on small and medium test
cases, suggests that their performance time was achieved by using a
large amount of main memory. Therefore, usage of main memory
should also be taken into account. We expect significant improve-
ments of the matching approaches with respect to their performance

characteristics.

e Interactive approaches (semi-automatic matching). As from above,
automatic ontology matching usually cannot be performed with a
due quality, especially on the huge data sets. We believe that semi-
automatic matching is a plausible way to improve the effectiveness of
the results. There are tasks at which machines are good. Obviously,
there are tasks at which human users are good. An important point

here is to involve user only when his/her input is maximally useful.

e Fxplanations and transparency. Correspondences produced by match-
ing systems may not be intuitively obvious to human users, and there-

fore, they need to be explained, see [215, 53, 129]. One possible so-
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lution of how a matching system can explain its answers has been

proposed in this thesis.

e Social aspects. The impact of social networks, web communities and
direct involvement of humans (in a distributed fashion) on ontology
matching has to be analyzed and distilled. Let us consider one ex-
ample. Eventually, once an alignment has been determined, it can be
saved, and further reused as any other data on the web [238]. Thus,
on the one hand, a (large) repository of alignments has a potential
to increase the effectiveness of matching systems by providing yet an-
other source of domain specific knowledge. On the other hand, users
can publish different and even contradicting alignments. Hence, one
of the open problems here is how to manage the contradictory corre-

spondences in the repositories.

Output dimensions. We expect emergence of annotations (codifying social
aspects) of the alignment and standard(s) for expressing the alignment.
Evaluation of matching approaches

We expect the following trends in evaluation of matching approaches in

the medium term:

e Extensive experiments across different domains with multiple test
cases from each domain as well as new hard, and large real world

data sets.
e More accurate evaluation measures, including user-related measures.

e Automating acquisition of reference alignments, especially for large

applications.
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12.1.3 Long term

Matching approaches

In the long term we expect appearance of multilingual matching approaches,
i.e., those matching across multiple languages, such as English, Italian, and
French. Also we expect appearance of matching approaches dealing with
spatio-temporal applications [5, 194]. Finally, a substantial progress in the
field should have been done by that time in general, which in turn, should
cause some paradigm shifts. Thus, new visions and requirements of what

is matching should appear.

Evaluation of matching approaches

Addressing the first two points mentioned above, we expect the following
trends in evaluation of matching approaches in the long term: evaluation
methodology for multilingual and spatio-temporal matching approaches,
multilingual and spatio-temporal data sets, quality measures for multilin-

gual and spatio-temporal matching approaches.

12.2 Trends in tools

12.2.1 Short term

We discuss the future trends in tools, distinguishing between (relevant)
commercially available ones and research prototypes. Most of the commer-
cially available matching tools focus on visualization of the input ontologies
expressed in, e.g., XML, database, flat files formats, and the correspon-
dences between them. It is also possible to specify (over the correspon-
dences) some data transformation operations (e.g., by means of functoids)
such as adding, multiplying, and dividing the values of fields in the source

document and storing the result in a field in the target document. How-
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ever, the matching operation itself is not automated at all, namely all the

correspondences have to be specified manually. Some examples of these
tools are Altova MapForce®, BizTalk Schema Mapper®, Cape Clear XSLT
Mapper’, Stylus Studio XSLT Mapper®. In the short term we expect an
increase of the number of such tools.

Obviously, contrary to the commercial tools, research matching proto-
types focus on automating the correspondences discovery operation and
related themes. In general, majority of the research tools focus only on
one of the steps of reducing the heterogeneity, namely on matching ontolo-
gies, fewer on processing the alignments, and only some of them can be
called infrastructures, since they consider matching as one (among others)
operations. It is early to speak about software quality in research tools.
However, some positive trends are worth mentioning, such as modularity
and extensibility of the architectures in most of the research prototypes.
We expect gradual and incremental improvements along the lines men-

tioned above in the short term.

12.2.2 Medium term

We expect the following challenges of ontology matching to be addressed
in the medium term: scalability of visualization of the alignment be-
tween input ontologies, user interfaces, configuration/customizing technol-
ogy, industrial-strength research prototypes, including tools for matching

ontologies, processing the alignment, and infrastructures.

5http://www.altova.com/features_xm12xm1_mapforce.html
6http://msdn.microsoft.com/library/en—us/introduction/htm/ebiz_intro_story_jgtg.asp
7http://www.capescience.com/education/tutorials/index.shtml

8http://www.stylusstudio.com/xslt_mapper.html
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12.2.3 Long term

In the long term, we expect emergence of good quality matching tools: in
the sense of system characteristics, e.g., complexity, design features, per-
formance, quality, and process characteristics, e.g., maintenance. Finally,
it is worth noting that, for example, engineers of information integration
systems would rather use existing matching systems than build their own.
However, it is quite difficult to connect state of the art matching systems
to other systems or embed them into the new environments. They are usu-
ally packaged as stand alone systems, designed for communication with a
human user. In addition, they are not provided with an interface described
in terms of abstract data types and logical functionality. We expect some
substantial progress on the frameworks for integration of different matching

systems into the new environments in the long term.

12.3 Trends in applications

12.3.1 Short term

Matching is an important operation in traditional applications, such as
schema integration, data warehousing, enterprise information integration
(see Chapter 1). Some examples of commercially available, e.g., EII tools,
are IBM Information Integrator, Liquid Data for WebLogic from BEA
systems, SAP NetWeaver, and EII platform from Denodo Technologies.
However, it is worth mentioning that, even in these tools, a support for

handling the semantic heterogeneity problem is still in its early stages.

We expect the above mentioned applications to play a crucial role as in
the short term as in the medium and long term. For example, according to

Aberdeen Group, the EII market will grow by 60% annually with around
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$250M in revenue in 2005°. Notice that next we discuss only the new

applications as an addition to those already mentioned.

12.3.2 Medium term

There is an emerging line of applications which can be characterized by
their dynamics, e.g., agents, peer-to-peer systems, web services (see Chap-
ter 1). Such applications, on the contrary to traditional ones, require a run
time matching operation and take advantage of more explicit conceptual
models.

We expect these applications to play an important role starting from the
medium term, since the necessary technologies (e.g., run time matching)
will not mature or converge earlier to support scalable solutions in, e.g.,

B2B and supply chains.

12.3.3 Long term

It is hard to foresee what is going to happen in a long term, since the web
in particular and computer science in general are very dynamic and con-
tinuously evolving fields. Of course, in the long term, we expect different
variations (e.g., P2P trading grid) of the applications mentioned so far.
However, as one of the new possible scenarios, we could see embedding of

the semantic matching services inside operation systems.

9http ://www.denodo.com/english/news/2005/08_06_05.html
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