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Acoustic projectors make covert 
bioacoustic chirplet signals 
discoverable
Paolo Casari 1*, Jeff Neasham 2, Guy Gubnitsky 3, Davide Eccher 1 & Roee Diamant 3

To disguise man-made communications as natural signals, underwater transceivers have the option 
to pre-record animal vocalizations, and play them back in a way that carries meaningful information 
for a trained receiver. This operation, known as biomimicking, has been used to perform covert 
communications and to emit broadband signals for localization, either by playing pre-recorded 
animal sounds back into the environment, or by designing artificial waveforms whose spectrum is 
close to that of bioacoustic sounds.However, organic sound-emitting body structures in animals have 
very different trans-characteristics with respect to electro-acoustic transducers used in underwater 
acoustic transceivers. In this paper, we observe the distortion induced by transmitting pre-recorded 
animal vocalization through a transducer’s front-end, and argue that such distortion can be detected 
via appropriate entropy metrics. We test ten different metrics for this purpose, both via emulated 
transmission and in two field experiments. Our result indicate which signals and entropy metrics lead 
to the highest probability of detecting transducer-originated distortions, thus exposing ongoing 
covert communications. Our research emphasizes the limitations that man-made equipment incurs 
when reproducing bioacoustic sounds, and prompts for the choice of biomimicking signals that 
are possibly suboptimal for communications or localization, but help avoid exposing disguised 
transmissions.

The advance in underwater acoustic communications for security applications has promoted the development 
of low-probability-of-detection (LPD)  techniques1,2, where the goal is to avoid that an interceptor detects the 
transmitted signal. Common LPD approaches use frequency spreading to hide the signal below the noise floor 
(e.g., see Baek et al.3). However, considering the narrow frequency band of underwater acoustic communications 
and the availability of low-power high performance computing, finding the spreading sequence is feasible, even by 
means of an exhaustive search. To circumvent this issue, recent approaches emerged that employ biomimicking 
communications as an alternative means to achieve LPD.

In biomimicking communications, the signal is disguised as the vocalization of marine mammals, e.g., by 
encoding information into sounds that imitate dolphin and seal whistles and clicks, or whale songs. This solution 
enables high-power transmissions, while an interceptor device can be misled into believing that received sounds 
are not a modulated information carrier, but rather mammal vocalizations. The survey of Qiao et al.4 makes 
a systematic review of biomimicking approaches available until 2018, including performance figures such as 
achieved bit rates and ranges. The authors conclude that biomimicking is a promising technique, but further 
research is needed towards more efficient modulation schemes, camouflage improvement, as well as encryption 
functionalities, possibly based on real animal vocalization recorded in the wild. In the following, we provide a 
brief literature overview exploring how to disguise communications via marine fauna vocalizations and transient 
sounds.

As a first contribution dating back to 2008, Dol et al.5 present the results of a sea trial where information was 
transferred via modulated cetacean sounds, albeit resulting in non-negligible error rates. Liu et al.6 suggest to 
transmit dolphin whistles for synchronization and to encode information in the time separation between dolphin 
clicks. ElMoslimany et al.7 generate non-linear frequency-modulated signals based on the time-frequency content 
of dolphin whistles, and encode information in their amplitude, frequency modulation rate and duration. The 
authors achieve uncoded bit error ratios (BER) lower than 1% using real acoustic channels measured during the 
KAM’11 experiment campaign. Along the same line, Liu et al.8 create artificial copies of real dolphin whistles, and 
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propose to send the original whistle as a synchronization signal, while further copies carry information. Using 
a time-reversal mirror, the system covers a range of 5.5 km with a BER lower than  10−3 in a controlled sea trial.

Ahn et al.9 mimic dolphin whistles using a continuous-frequency antipodal modulation scheme. Tests in 
simulations and sea experiments show good BER with error correction coding, and a good level of mimicry. Jiajia 
et al.10 encode the information to be transmitted into the inter-click intervals of killer whale vocalizations used to 
localize targets. Similarly, Ahn et al.11 propose to encode bit sequences in the transition between different types 
of mimicked dolphin whistles, and resort to machine learning to identify different whistles in the spectrogram 
of a received acoustic signal. Bilal et al.12 consider a set of four humpback whale songs and use them to build 
a Morse code-like sequence of sounds to represent different English alphabet letters. One additional acoustic 
preamble enables synchronization and channel estimation based on the matching pursuit algorithm. A recent 
contribution by Xie et al.13 proposes to smooth the time-frequency contour of bottlenose dolphin vocalizations, 
and to subdivide them into segments. Information is then modulated into each segment via a frequency shift in 
the corresponding spectrogram. In the same vein, it has been proposed to encode information in continuous-
phase signal models of realistic cetacean  whistles14, although recent results suggest that similar schemes may 
actually expose a biomimicking signal to a trained  receiver15. In the same way biomimicking communications 
help covertness, the playback of sperm whale songs can help active sonars remain undetected. While Jiang 
et al. propose to employ sperm whale call pulses as a sonar  signal16, Sun et al.17 re-engineer a sperm whale 
click sequence through time hopping and frequency hopping, in order to disguise sonar-like sequences with 
better detection properties amidst actual (played back) click sequences. The approach of Liu et al.18 combines 
biomimicking communications and low-probability of detection principles by superimposing a whale sound to 
an information-carrying direct-sequence spread spectrum (DSSS) signal. The receiver leverages the whale signal 
for channel estimation and recovers the DSSS signal through virtual time-reversal techniques. Finally, Qiao et al.19 
design a modem that automatically selects dolphin sounds from a local database, and encodes information in 
the time interval between subsequent transmitted sounds.

Considering the above communication system designs, we observe that current interception techniques 
mostly focus on detecting weak signals, and not on telling biomimicking communications apart from real bio-
acoustic signals. Conversely, in this work we propose a scheme to classify detected mammal vocalization-like 
signals into one of two classes: real signals and biomimicking signals. We base our scheme on the fact that these 
two types of signals are emitted from very different emitters: the former through the vocalization system of a 
marine mammal, the latter through a mechanical system, typically an electro-acoustic transducer.

Modern transmitting circuitry can synthesize a very realistic replica of a recorded signal via a high-speed, 
high-precision digital-to-analog converter and a linear amplifier. For instance, the EvoLogics modem working 
in the 18–34 kHz  band20 provides a sampling rate of 250,000 samples per second and a resolution of 16 bits per 
sample, and the 7–17 kHz modem relies on a sampling rate of 62,500 samples per second. Both modems yield a 
very low quantization noise thanks to a much higher-than-Nyquist sampling frequency. However, converting the 
replica into the equivalent acoustic signal in the water is more challenging. Typical piezo-ceramic transducers are 
inherently narrowband devices and, even with substantial damping or the use of piezo-composite technology, 
they cannot match the very broadband response of a marine mammal’s vocalization system. Consequently, an 
anthropogenic signal will generally lose some of its random statistical properties compared to a real mammal’s 
vocalization. Such loss of randomness can be quantified using entropy metrics. In other words, we argue that 
real mammal vocalizations are different from biomimicking signals, especially because of much higher peak-to-
average-ratio and phase irregularities. This diversity can be measured by computing the entropy of the signal. 
Our work informs biomimicking system design based on engineered as well as played-back animal sounds by 
evaluating how the emitted signals really resemble natural sounds. In fact, time-based signal  modulations10,17,19, 
frequency-based  modulations9,13, and even direct  playback12,16 can be put in jeopardy if the last element of the 
transmitter chain (i.e., the transducer) exposes the emitted signal as a non-natural one.

In the next sections, we first present our system model and entropy metrics, then we introduce the model of 
an electro-acoustic transducer front-end and the parameters that drive its response. We proceed by describing 
the results of our emulations and field experiments (one in a lake and one in the Mediterranean sea), before 
discussing conclusions from our study.

Materials and methods
To present our approach, we first introduce our assumptions and entropy metric definitions; then, we proceed 
with a model for underwater acoustic projectors, and with the description of the biomimicking signals we 
consider.

Assumptions. Our working assumption in this paper is that a device is trying to pass communications 
covertly using signals similar to real underwater fauna vocalizations. To achieve this, the transmitter has 
previously recorded real animal sounds, and has prepared them for transmission through appropriate analog 
front-ends (e.g., via resampling, frequency up- or down-shifting, and out-of-band filtering). We also assume that 
the covert transmitter is sufficiently advanced to avoid unnatural sound patterns that would not be compatible 
with typical animal communications. Therefore, in order to detect the ongoing covert communication, we need 
to leverage different signal characteristics. In particular, we argue that analog transducer front-ends distort the 
vocalizations, and that we can detect the change in the signals by comparing the original transmitted signals with 
recordings taken close to the transmitter.

While biomimiking is possible for both chirplet signals (whistles) and click signals, we argue that the latter 
are much harder to mimic. This is because of the broad bandwidth of the click signal, which makes is hardly 
reproducible by any acoustic transducer. The resulting low-pass effect makes the emitted signal easy to detect as 
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non-biological. Therefore, relatively narrowband whistle signals are a much better candidate for biomimicking 
communications. We thus focus our work on these signals.

Entropy metrics. We now introduce the concept of entropy and explain how we choose a suitable entropy 
metric to discriminate between biomimicking and natural vocalizations. The key assumption in our work is that 
we can detect the inherent differences between an acoustic projector and the vocalization system of a marine 
animal specimen through entropy metrics. In particular, we explore the Renyi entropy, the sample entropy, 
the transfer entropy and its normalized version, the mutual entropy, the differential entropy, the approximate 
entropy, two instances of the vector entropy, and the Tsallis entropy. For the definition and an effective summary 
of the characteristics of these metrics, we refer the reader to Namdari and  Li21.

We choose these metrics in our work since they capture and quantify the fluctuations within a given signal. 
In particular, the Renyi  entropy22 generalizes the Shannon entropy through a user-defined parameter, α,

where pαk is the probability distribution of the kth random variable. Thus, the Renyi entropy takes the form of the 
Shannon entropy for discrete variables for α = 1 , of the collision entropy (for testing if two datasets intersect) for 
α = 2 , and of the min-entropy (which measures the information within a time series) for α → +∞.

The sample  entropy23 measures the fluctuations in the data between sequential time windows, and is defined 
by the conditional probability that two windows of observations of the same size are equal up to a tolerance r. 
Thus, sample entropy can be used to detect rapid changes within the signal, which are likely in a real bioacoustic 
signal, but less likely in a biomimicking signal. The transfer  entropy24, detects the information transfer between 
different systems to detect if the variability in one system can explain the variability in the other:

where xi and yi are discrete variables of processes X and Y, and m and l are the number of past observations in 
X and Y, respectively.

Mutual  entropy25 measures the uncertainty reduction in a time series compared to another time series:

Differential  entropy26 is a causality test that determines whether a certain time series helps predict the 
future dynamics of another time series. Approximate  entropy27 measures patterns in time series, by quantifying 
the logarithmic likelihood that sequences of patterns that are close for m observations remain close on next 
comparisons as well. As such, it uncovers their regularities by extracting the noise from the original data. The 
measure does not depend on an estimate of the signal’s probability density function, and can detect when the 
signal’s regularity breaks. The vector  entropy28 quantifies the inequalities between the entropy values for different 
data subsets. Finally, the Tsallis  entropy29 tests if the correlations within these subsets are local or general:

Acoustic projector model. In this subsection, we present an electrical equivalent circuit to model the 
conversion from a voltage waveform (drive) to an acoustic (i.e., pressure) waveform in the water. We will exploit 
this model to investigate the effects of a typical acoustic projector on a transmitted biomimicking signal. The 
circuit in Fig. 1 models a piezoelectric transducer (PZT) with a single mechanical resonance. It is acknowledged 
that this may constitute an oversimplified model of the tubular or spherical transducer elements often used in 
acoustic modems, which typically have more than one mode of resonance in play when a broadband signal is 
being transmitted. However, while more complex equivalent circuit models can be constructed, we observed that 
even this simplistic model yields encouraging agreement with experimental data.

The resonant frequency of the modelled transducer is controlled by the values of L1 and C1 , which form a series 
resonant circuit. Vin is the applied drive voltage, represented here by an ideal voltage source. C0 represents the 
static capacitance of the transducer element, which is commonly tuned out in practical drive circuits by either 
series or parallel inductance, to reduce the reactive power that must be supplied. The bandwidth of the modelled 
transducer is controlled by varying the values of the total series resistance of RL + RA , which control the degree 
of damping of the resonant circuit, and hence the Q-factor. The ratio of RA to RL determines the transmitting 
efficiency of the transducer, where RL determines the dissipated power (loss), and RA the radiated power (sound). 
We remark that, in any event, the efficiency of the transducer does not influence the signal parameters of interest 
in the paper. Figures 2a and 2b show an example response of a modelled transducer, with parameters chosen 
to give a good approximation of the acoustic modem transducers used for the experiments. ( C0 = 11 nF, C1 = 
1500 pF, L1 = 25 mH, RL = RA = 1.1 k� , resulting in a resonant frequency of 26 kHz and bandwidth of 8 kHz.) 
This device is typical of transducers used in modern commercial modem products and it is practically difficult 
to achieve lower Q-factor with current technology. However, the model is also used to simulate transducers 
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with widely varying resonance and bandwidth, as shown Table 1, to explore the limits of the proposed entropy 
technique.

We simulate the reception of biomimicking communication signals by integrating the characteristics of the 
modeled transducer with existing recordings of marine mammal vocalizations. Specifically, we filter a vocalization 
signal segment using a rational transfer  function30 defined by the numerator and denominator coefficients of the 
transducer’s acoustic transfer function derived from the above circuit model.

We consider different settings for the parameters of the transducer model, resulting in seven different transfer 
functions with different resonant frequency, bandwidth, and shape. To represent a practical PZT that is typically 

Figure 1.  Equivalent circuit of an acoustic projector based on a piezoelectric electro-acoustic transducer.

Figure 2.  Typical transmit voltage response and admittance plot for the acoustic projector model presented in 
Fig. 1.

Table 1.  Realistic transducer model parameters considered in this work, and their corresponding transfer 
function parameters used to simulate the transmission of biomimicking signals.

C0 (nF) C1 (pF)  L1 (mH) RL = RA (k�) Bandwidth (kHz) Resonant frequency (kHz)

11

750

37
2.35 20.3

30.2
3.2 27.5

50 3.48 22.2 26

80 4.65 18.5 20.5

1500 25

0.55 7

261.1 14

2.2 28
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designed to operate at 50% efficiency, we set RL = RA . In addition, to provide a realistic predominance of a 
reactive load over most of the frequency range, the choice of the parameter series L1 and C1 ensures that the peak 
susceptance is always higher than the peak conductance. All the model’s parameter combinations determined 
for the simulations and their corresponding transfer function characteristics (i.e., bandwidth and resonant 
frequency) are listed in Table 1.

Vocalizations used as a test case. We now describe the sounds emitted by different common marine 
mammals, which we consider as a test case to quantify how the limitations of the acoustic projectors influence 
a covert communicator’s capability to disguise its own structured communications as marine fauna sounds. 
Specifically, we select a dolphin whistle, and vocalizations by a beaked whale, an orca, a humpback whale, and a 
sea lion. This selection of signals covers a diverse set of spectral characteristics, including different concentrations 
of the acoustic power over the signal band. For example, the dolphin whistle is broadband, and has a clear 
spectral pattern including a down- and up-sweeping section of different duration. The beaked whale sound is 
mostly multi-tonal, except for a short up-down sweep about 150 ms after the start of the signal. The orca also 
emits a multi-tonal sound, with fewer spectral components than the beaked whale, and characterized by a short 
initial up-sweep. The spectrum of the sea lion vocalization is comparatively richer; however, the signal is time-
paced, and includes silence intervals lasting about 120 ms. Finally, the humpback whale vocalization has a broad 
spectral footprint, with several closely-spaced tones covering the whole bandwidth of the transducer, and does 
not exhibit any significant sweeps.

Results
In this section, we discuss the outcomes of our emulation study and of our field experiments. The main purpose 
of our analysis is to exploit entropy measures to tell apart original marine fauna vocalizations from their 
biomimicking version emitted by the transducers. For this purpose, we define the entropy ratio for two entropy 
measures H1 and H2 as

 This normalized ratio quantifies how close the two given entropy measures are.
In the following, we discuss the results of three experiments where we analyze the differences between a 

recording and a playback of marine mammal vocalization. The first experiment is an emulation, where we 
apply a transducer model and simulate its response to above considered signals. The second experiment is a 
lake trial, where we played back the signals in a lake environment. The third is a sea experiment. To explore the 
performance of different types of modems, for the emulation we considered seven different transducers’ models, 
whose resonant frequency is between 20 kHz and 30 kHz. Similarly, in the lake and sea experiments, we used 
different modems, one working in the frequency band of 18 kHz to 34 kHz and one working in the 2 kHz to 
20 kHz bands, respectively. Therefore, for the emulation and lake experiment setups, we shifted the signals in 
the frequency domain to match the operational band of the transducers. Conversely, in the sea experiment, we 
played back a set of original signals. The time-frequency representation of these two versions is given in Figs. 3 
and 8 later on, respectively.

Emulated biomimicking signal transmissions. We start by analyzing our emulation results involving 
actual biomimicking signals transmitted through a modeled acoustic transducer. In Fig. 4, we show entropy ratio 
values using each of the entropy metrics introduced in the previous section, for all five examined signals. Each 
histogram bar conveys the average taken across all of the nine parameter sets of the projector reported in Table 1, 
and different bars refer to different animal sounds. Bars are grouped by the entropy metric employed to compute 
the relative entropy as per Eq. (5).

We observe that the best separation is obtained by using the transfer entropy. To compute this metric, we first 
divide the time series of both the original and the transducer-emitted signal samples into blocks B1,B2, . . . ,BNb

 
of length 0.04 s and feed the entropy calculation with the current block, Bi , the previous block, Bi−1 , and the 

(5)ρ =
|H1 −H2|

|H1| + |H2|
.

Figure 3.  Spectrograms of five bioacoustic signals considered in the emulation analysis and in the lake 
experiment.
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block before it, Bi−2 . Then, we average the entropy ratio over all blocks. The Transfer Entropy measures how 
related blocks Bi and Bi−1 are, by quantifying how predicting Bi to be a combination of Bi−1 and Bi−2 is better 
than predicting Bi based only on Bi−1 . Because of this operation, the transfer entropy measures how correlated 
(or, in other words, how smooth) the time series is. The fact that such a metric leads to a large entropy ratio, 
when applied to the original animal sound and its biomimicking version transmitted by the transducer, supports 
our claim that the transducer-emitted time series is more predictable than the original one. For example, from 
Fig. 4 we observe that the entropy ratio (5) for most considered vocalizations is above 0.2 when using the transfer 
entropy. This high value means that the two entropies of the real and mimicked signals can be well distinguished.

We now examine the sensitivity of the interceptor as a function of the system’s parameters, i.e., the signal’s 
bandwidth as determined by the resistance values RL and RA , and the signal’s frequency band as determined by 
the inductance L1 . Figure 5a shows the relative entropy of the original and transducer-emitted signal, computed 
using the Transfer Entropy metric, and averaged over the five examined signals, as listed in Table 1. The best 
capability to separate the original signal from the biomimicking one are obtained for parameter set index 1, 
which relates to a carrier frequency of 30.2 kHz and a bandwidth of 20.3 kHz. This is also the smallest of the 
three bandwidth values tested here: as a lower transducer bandwidth leads to a heavier smoothing of transmitted 

Figure 4.  Emulation. Relative entropy values obtained using different entropy metrics, for each of the five 
considered bioacoustic signals. The results are averaged over the seven projector parameter sets in Table 1.

Figure 5.  Discrimination performance of the relative transfer entropy as a function (a) of the transducer 
parameters and (b) of the type of vocalization. Different transducer models and vocalizations lead to different 
degrees of separation between a real marine mammal vocalization and a biomimicking signal, but telling the 
two signals apart is possible in all cases.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2591  | https://doi.org/10.1038/s41598-023-29413-2

www.nature.com/scientificreports/

signals, these results further support our claim that a biomimicking signal becomes easier to detect using entropy 
metrics when the transducer’s transfer function makes the emitted sound more predictable.

It is also interesting to investigate which animal vocalization is more suited to biomimicking among those 
considered in this paper, and which leads to emitted signals that are easier to detect as imitations of real marine 
fauna sounds. For this, we compute the relative entropy between each signal and each transducer-emitted version 
of that signal. In doing so, we average out the influence of the projector by computing the mean relative entropy 
value over the nine realistic transducer parameter sets of Table 1. The results in Fig. 5b show that among the 
signals tested in our work the best biomimicking signal is the dolphin whistle, whereas the worst is the orca 
vocalization. Observing the structure of these signals as shown by the spectrogram in Fig. 3, we observe that 
the orca sound we transmitted tends to settle on the same portion of the spectrum for a longer time, whereas 
the chosen dolphin whistle is a broadband, frequency-varying signal. This leads to greater waveform variability, 
which partly compensates the transducer’s smoothing effect, and thus reduces the relative entropy.

Lake experiment with signals shifted into the transducer’s band. To demonstrate the applicability 
of our emulation results in a real environment, we conducted a lake experiment, where we transmitted and 
received the five examined signals using an analog acoustic front-end. The experiment took place in northern 
Italy, in the Caldonazzo lake (Fig. 6a), on October 18, 2021, in mostly sunny weather with negligible wind. Me 
moved a 5-m rubber boat to the deepest point of the lake, at coordinates (46.0108386°N, 11.25174835°E, see 
Fig. 6b). Here, the lake depth is around 43 m. To keep the environment-induced multipath and propagation loss 
as small as possible, we lowered two EvoLogics mini S2CR modem  devices20 to a depth of 20 m, one from the 
front side and another from the aft side of the boat. These devices work in the 18–34 kHz band, and enable the 
transmission of custom waveforms through a ceramic transducer whose sensitivity and directivity pattern can 
be found on the manufacturer’s web  site20. We remark that the receiver side and transmitter side equipment are 
the same. The modems can record acoustic samples at a rate of 250 ksamples/s.

During the experiment, we repeatedly transmitted biomimicking signals from the front device to the aft device 
and vice versa. To minimize the impact of multipath reflections originating from structural components of each 
device, we tuned the transmit power accordingly. To enable the reproducibility of our results, we share the lake 
experiment dataset with the  community31. The shared archive contains original signals as well as multiple pre-cut 
recordings of all vocalizations. We remark that the original signals are the same used also for the emulation-
based evaluation above.

The results in Fig. 7 show how different entropy measures make it possible to separate the original and the 
transducer-emitted signal through the computation of their relative entropy. Similar to the emulation results, 
we observe that the transfer entropy yields the best separation. The results obtained from for the other entropy 
measures also lead to similar conclusions as the emulation results: for example, the Tsallis entropy, sample 
entropy, and Renyi entropy also lead to some separation between the original and biomimicking signals, but 
such separation is much less pronounced than for the transfer entropy. We conclude that our model well reflects 
the transfer function of a realistic transducer.

Finally, we compare the results in Fig. 7 to examine which marine animal sound leads to the lowest relative 
entropy, and is thus more suited to for biomimicking acoustic communications. The results show that, similar to 
the emulation results, the transducer-emitted orca sound is easier to tell apart from its natural version, and cannot 
be considered a good biomimicking signal. However, we note that the dolphin sound also leads to high relative 
entropy, whereas the lowest relative entropy values are obtained for the beaked whale sound. These results are 
in contrast with those of the emulation, because the lake experiment involves a realistic end-to-end transmitter, 
channel, and receiver chain. Conversely, the emulated results assume ideal behavior for all transceiver electronics 
except the transducer. Because natural signals have multiple harmonics (see Fig. 3), the relative entropy is 

Figure 6.  Location of the lake experiment. (a) Aerial view of the Caldonazzo lake from the north-west; (b) 
deployment location at the lake’s deepest point (around 43 m). Map courtesy of OpenStreetMap.
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influenced not just by the properties of the transducer, but also by the properties of the data acquisition and the 
power amplifier modules of the receiver.

Sea experiment with unshifted vocalizations. In this section, we report the outcomes of the analysis 
for a sea environment where, different from the lake experiment, ambient noise may affect the entropy results. 
The sea experiment was performed in Nov. 2022, about 11  km west of Northern Israel, at a water depth of 
125 m. An EvoLogics low-frequency ceramic transducer was deployed from a boat at 20 m depth along with 
a recorder. The receiver’s and transmitter’s hardware are the same, and their sensitivity and directivity pattern 
can be found on the manufacturer’s web  site32. A plastic pole was used to align the transducer and recorder, 
thereby ensuring that the two devices were 1.5 m apart when submerged. Since the transducer can emit signals 
in the band of 2 kHz-20 kHz, we did not apply any frequency shift to the transmitted signals. The spectra of the 
emitted, unshifted signals are shown in Fig. 8. As for the lake experiment, emission was made at low power to 
avoid multipath reflections.

We performed 19 playback repetitions, and computed the average relative entropy for the different entropy 
metrics. The results are shown in Fig. 9. As in the lake experiment, the transfer entropy metric produces the 
best separation between the the playback and original signal. We also observe that, as for the lake experiment, 
the best separation is received for the Orca vocalization. However, the order of separation for the other signals 
is different than the lake trial. For example, in the sea experiment the second best signal is for the Beaked whale 
whereas that for the lake trial is the Dolphin whistle. Since in both cases we emitted very low intensity signals and 
received only the direct propagation path, this result supports our claim that the characteristics of the projector 
affects the potential of a signal to serve for biomimicking communication.

Figure 7.  Relative entropy from the lake experiment computed from different entropy metrics, averaged over 
the 35 transmissions. For all signals, the relative transfer entropy yields a very high discrimination capability.

Figure 8.  Spectrograms of the (unshifted) bioacoustic signals transmitted during the lake experiment.
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Discussion
In this work, we considered biomimicry in underwater acoustic communications, and examined how different 
marine animal vocalizations lend themselves to be used as biomimicking signals. Our results specifically account 
for the trans-characteristics of underwater acoustic transducers for underwater digital communications. We show 
that transducers (whose bandwidth is inherently not as broad as that of a biological vocalization apparatus) tend 
to have a smoothing effect on transmitted signals. This footprint makes such signals stand apart significantly 
from animal-emitted sounds, as the latter tend to include wider and more frequent discontinuities. Specifically, 
we argued that biomimicry can be detected by comparing original animal signals against played-back signals 
emitted by a transducer, via a relative entropy measure. We also concluded that the entropy metric achieving 
the best separation between the original and man-made signal is the transfer entropy, which is related to the 
predictability of a time series.

Our two field experiments emphasize the differences between the properties of a real dolphin’s whistle and 
its playback from a transducer. Through tests involving two transducers working at different frequency ranges 
and in different waters (both in a freshwater lake and at sea) we demonstrate that the same conclusion holds for 
different pieces of hardware. We argue that our results can benefit the research community in two aspects. First, 
it presents a metric how to intercept biomimicking underwater communications. Different from low-probability-
of-detection methods that hide the signal below the ambient noise, biomimicking communications appear plainly 
to an interceptor, but are typically mistaken as animal vocalizations. In this context, our results can be used to 
design an interception method, or to explore the performance of a biomimicking communication approach. The 
second benefit is a new metric for the design of an acoustic transducer. Taking the mammals’ means to vocalize 
as the ideal case, our entropy metric can be used as another measure for the properties of the transducer. By 
converting our metric into a biomimicking, or camouflage rating, the manufacturer of a transducer can evaluate 
to what extend would the transducer risk to jeopardize biomimicry. To the best of the authors’ knowledge, this 
is the first work that examines the above effects. Future work includes the explicit modeling of the full electronic 
front-end chain, including the power amplification and data acquisition stages.

Data availability
The experiment dataset analyzed for the current study is available in the at the link https:// drive. google. com/ 
file/d/ 1fH6U NG- 7aG90 gu7h- 8wEjv AVKQy HxxfD/ view31.
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