「-CONVERGENCE FOR FUNCTIONALS DEPENDING ON VECTOR FIELDS. II. CONVERGENCE OF MINIMIZERS*

ALBERTO MAIONE ${ }^{\dagger}$, ANDREA PINAMONTI ${ }^{\ddagger}$, AND FRANCESCO SERRA CASSANO ${ }^{\ddagger}$

Abstract

Given a family of locally Lipschitz vector fields $X(x)=\left(X_{1}(x), \ldots, X_{m}(x)\right)$ on $\mathbb{R}^{n}, m \leq n$, we study integral functionals depending on X. Using the results in [A. Maione, A. Pinamonti, and F. Serra Cassano, J. Math. Pures Appl. (9), 139 (2020), pp. 109-142], we study the convergence of minima, minimizers, and momenta of those functionals. Moreover, we apply these results to the periodic homogenization in Carnot groups and prove an H-compactness theorem for linear differential operators of the second order depending on X.

Key words. homogenization, Carnot groups, H -convergence, Γ-convergence, vector fields

MSC codes. 35C15, 49J45, 53C17
DOI. $10.1137 / 21 \mathrm{M} 1432466$

1. Introduction. In this paper we deal with the asymptotic behavior of minima, minimizers, and momenta, as $h \rightarrow \infty$, of the following sequence of minimization problems:

$$
\begin{equation*}
\inf \left\{F_{h}(u)+G(u): u \in W_{X}^{1, p}(\Omega), u-\varphi \in W_{X, 0}^{1, p}(\Omega)\right\} \tag{1}
\end{equation*}
$$

Here $F_{h}, G: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{\infty\}$ denote the functionals

$$
F_{h}(u):= \begin{cases}\int_{\Omega} f_{h}(x, X u(x)) d x & \text { if } u \in W_{X}^{1, p}(\Omega) \tag{2}\\ \infty & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
G(u):=\int_{\Omega} g(x, u(x)) d x \tag{3}
\end{equation*}
$$

with $f_{h}: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}, h \in \mathbb{N}$, and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ Carathéodory functions and $X(x):=\left(X_{1}(x), \ldots, X_{m}(x)\right)$ a given family of first order linear differential operators with Lipschitz coefficients on a bounded open set $\Omega \subset \mathbb{R}^{n}$, that is,

$$
X_{j}(x)=\sum_{i=1}^{n} c_{j i}(x) \partial_{i}, \quad j=1, \ldots, m
$$

[^0]with $c_{j i}(x) \in \operatorname{Lip}(\Omega)$ for $j=1, \ldots, m, i=1, \ldots, n$.
In the following, we will refer to X and f_{h} as X-gradient and integrand function, respectively. The environment spaces $W_{X}^{1, p}(\Omega)$ and $W_{X, 0}^{1, p}(\Omega)$ are the Sobolev spaces associated through the X-gradient in a classical way, according to Folland and Stein [FS] (see Definitions 2.3 and 2.6), and $\varphi \in W_{X}^{1, p}(\Omega)$ is a given function that plays the role of boundary datum in (1). As usual, we identify each X_{j} with the vector field
$$
\left(c_{j 1}(x), \ldots, c_{j n}(x)\right) \in \operatorname{Lip}\left(\Omega, \mathbb{R}^{n}\right)
$$
and we call
\[

$$
\begin{equation*}
C(x)=\left[c_{j i}(x)\right]_{\substack{i=1, \ldots, n \\ j=1, \ldots, m}} \tag{4}
\end{equation*}
$$

\]

the coefficient matrix of the X-gradient.
Throughout this paper, we will assume some structural conditions on the class of integrand functions and the X-gradient. An integrand function $f: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ will typically satisfy the following conditions:
$\left(I_{1}\right) f: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is Borel measurable on Ω;
$\left(I_{2}\right)$ for a.e. $x \in \Omega$, the function $f(x, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex;
(I_{3}) there exist two positive constants $c_{0} \leq c_{1}$ and two nonnegative functions $a_{0}, a_{1} \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
c_{0}|\eta|^{p}-a_{0}(x) \leq f(x, \eta) \leq c_{1}|\eta|^{p}+a_{1}(x) \tag{5}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for each $\eta \in \mathbb{R}^{m}$.
We will denote by $I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$ the class of such integrand functions and by $I_{m, p}\left(\Omega, c_{0}, c_{1}\right)$ if $a_{0}=a_{1} \equiv 0$. Similarly, function g in (3) will satisfy a suitable growth condition (see (10) and (11)).

As far as the structural conditions on the X-gradient are concerned, we will need two assumptions: the former is an algebraic condition and the latter is a metric condition.

Definition 1.1. We say that a family of vector fields $X(x)=\left(X_{1}(x), \ldots\right.$, $X_{m}(x)$) satisfies the linear independence condition (LIC) on an open set $\Omega \subset \mathbb{R}^{n}$ if there exists a set $\mathcal{N}_{X} \subset \Omega$, closed in the topology of Ω, such that $\left|\mathcal{N}_{X}\right|=0$ and $X_{1}(x), \ldots, X_{m}(x)$ are linearly independent as vectors of \mathbb{R}^{n} for each $x \in \Omega_{X}:=$ $\Omega \backslash \mathcal{N}_{X}$. Here $|A|$ denotes the n-dimensional Lebesgue measure of a measurable subset $A \subset \mathbb{R}^{n}$.

Notice that, if X satisfies the LIC on Ω, then $m \leq n$. In some results, we will also assume that X is defined and Lipschitz continuous on an open neighborhood Ω_{0} of $\bar{\Omega}$ and that the following conditions hold:
(H1) Let $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty]$ be the so-called Carnot-Carathéodory distance function induced by X (see, for instance, [FSSC2, section 2]). Then, $d(x, y)<$ ∞ for any $x, y \in \Omega_{0}$, so that d is a standard distance in Ω_{0}, and d is continuous with respect to the usual topology of \mathbb{R}^{n}.
(H2) For any compact set $K \subset \Omega_{0}$ there exist a radius r_{K} and a positive constant C_{K}, depending on K, such that

$$
\left|B_{d}(x, 2 r)\right| \leq C_{K}\left|B_{d}(x, r)\right|
$$

for any $x \in K$ and $r<r_{K} . B_{d}(x, r)$ denotes the (open) metric ball with respect to d, that is, $B_{d}(x, r):=\left\{y \in \Omega_{0} \mid d(x, y)<r\right\}$.
(H3) There exist geometric constants $c, C>0$ such that $\forall B=B_{d}(\bar{x}, r)$ with $c B:=$ $B_{d}(\bar{x}, c r) \subseteq \Omega_{0}, \forall u \in \operatorname{Lip}(c \bar{B})$, and $\forall x \in \bar{B}$

$$
\left|u(x)-\frac{1}{|B|} \int_{B} u(y) d y\right| \leq C \int_{c B}|X u(y)| \frac{d(x, y)}{\left|B_{d}(x, d(x, y))\right|} d y
$$

Let us point out that the LIC embraces relevant and wide families of vector fields studied in the literature (see [MPSC1, Example 2.2]), as well as important families of vector fields satisfying conditions (H1), (H2), and (H3) (see Remark 2.8).

Each functional (2) always admits an integral representation with respect to the Euclidean gradient. Indeed, for instance, functional (2) can be represented as follows:

$$
F_{h}(u)=\int_{\Omega} f_{h, e}(x, D u(x)) d x \quad \text { for each } u \in \mathbf{C}^{1}(\Omega)
$$

where $f_{h, e}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ now denotes the Euclidean integrand, defined as

$$
\begin{equation*}
f_{h, e}(x, \xi):=f_{h}(x, C(x) \xi) \quad \text { for a.e. } x \in \Omega \text { for each } \xi \in \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

Notice also that we cannot reverse this representation (see [MPSC1, Counterexample 3.14]) and the representation with respect to the Euclidean gradient could yield a loss of coercivity (see [MPSC1]). Nonetheless, we will show that by replacing the Euclidean gradient with the X-gradient, we can get rid of this drawback.

In this paper, we will exploit as main tools for studying minimization problems (1) some results of Γ-convergence for functionals depending on vector fields. In particular, let us recall a Γ-compactness theorem for the sequence $\left(F_{h}\right)_{h}$ defined in (2) (see Theorem 3.5), obtained in [MPSC1], to which we will refer for all the relevant definitions. More precisely, if the X-gradient satisfies the LIC and the sequence of integrand functions $\left(f_{h}\right)_{h} \subset I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, then, up to a subsequence not relabeled, we can assume the existence of a functional $F: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{\infty\}$ and $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$ such that

$$
\begin{equation*}
F=\Gamma\left(L^{p}(\Omega)\right)-\lim _{h \rightarrow \infty} F_{h} \tag{7}
\end{equation*}
$$

and F admits the following representation:

$$
F(u):= \begin{cases}\int_{\Omega} f(x, X u(x)) d x & \text { if } u \in W_{X}^{1, p}(\Omega) \tag{8}\\ \infty & \text { otherwise }\end{cases}
$$

Let us now describe the main results of the present paper and some of their applications. First, recall the following Poincaré inequality on $W_{X, 0}^{1, p}(\Omega), 1 \leq p<\infty$, which holds provided that Ω is a bounded domain of \mathbb{R}^{n} and X satisfies conditions (H1), (H2), and (H3) (see Proposition 2.16). More precisely, there exists a positive constant $c_{p, \Omega}$, depending only on p and Ω, such that

$$
\begin{equation*}
c_{p, \Omega} \int_{\Omega}|u|^{p} d x \leq \int_{\Omega}|X u|^{p} d x \quad \text { for each } u \in W_{X, 0}^{1, p}(\Omega) \tag{9}
\end{equation*}
$$

We will also assume that $c_{p, \Omega}$ is the best constant in the Poincaré inequality (9), that is, it is the largest constant for which (9) holds.

Let us begin with a result concerning the convergence of minima and minimizers for minimization problems (1). For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, let $\mathbb{1}_{\varphi}: L^{p}(\Omega) \rightarrow\{0 ; \infty\}$ denote the indicator function of the affine subspace of $W_{X}^{1, p}(\Omega)$

$$
W_{X, \varphi}^{1, p}(\Omega):=\varphi+W_{X, 0}^{1, p}(\Omega)
$$

and assume that the Carathéodory function $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ in (3) satisfies the following growth condition: there exist two constants d_{0}, d_{1} and two nonnegative functions $b_{0}, b_{1} \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
d_{0}|s|^{p}-b_{0}(x) \leq g(x, s) \leq d_{1}|s|^{p}+b_{1}(x) \tag{10}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for every $s \in \mathbb{R}$, with

$$
\begin{equation*}
d_{1}>0 \quad \text { and } \quad-c_{0} c_{p, \Omega}<d_{0} \leq d_{1} . \tag{11}
\end{equation*}
$$

Theorem 1.2. Let Ω be a bounded and connected open set, $1<p<\infty$, and let X satisfy the LIC and conditions (H1), (H2), and (H3). Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let g satisfy (10) and (11), and let F_{h}, G, F be the functionals in (2), (3), and (8), respectively. For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, let $\Xi_{h}^{\varphi}, \Xi^{\varphi}: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{\infty\}$ be, respectively, defined as

$$
\begin{equation*}
\Xi_{h}^{\varphi}:=F_{h}+G+\mathbb{1}_{\varphi} \quad \text { and } \quad \Xi^{\varphi}:=F+G+\mathbb{1}_{\varphi} . \tag{12}
\end{equation*}
$$

If $\left(F_{h}\right)_{h} \Gamma$-converges to F in the strong topology of $L^{p}(\Omega)$, then
(i) for each $h \in \mathbb{N}$, both Ξ_{h}^{φ} and Ξ^{φ} attain their minima in $L^{p}(\Omega)$ and

$$
\begin{equation*}
\min _{u \in L^{p}(\Omega)} \Xi^{\varphi}(u)=\lim _{h \rightarrow \infty} \min _{u \in L^{p}(\Omega)} \Xi_{h}^{\varphi}(u) ; \tag{13}
\end{equation*}
$$

(ii) if $\left(u_{h}\right)_{h}$ is a sequence of minimizers of $\left(\Xi_{h}^{\varphi}\right)_{h}$, that is,

$$
\Xi_{h}^{\varphi}\left(u_{h}\right)=\min _{u \in L^{p}(\Omega)} \Xi_{h}^{\varphi}(u) \text { for any } h \in \mathbb{N},
$$

then there exists $\bar{u} \in W_{X, \varphi}^{1, p}(\Omega)$ such that, up to subsequences,

$$
\begin{equation*}
u_{h} \rightarrow \bar{u} \text { weakly in } W_{X}^{1, p}(\Omega) \text { and strongly in } L^{p}(\Omega) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\Xi^{\varphi}(\bar{u})=\min _{u \in L^{p}(\Omega)} \Xi^{\varphi}(u) . \tag{15}
\end{equation*}
$$

The second main result deals with the convergence of the momenta associated with the sequence of functionals $\left(F_{h}\right)_{h}$ satisfying (7). The result is inspired by [ADMZ2] and it is a partial extension of those results to integral functionals depending on vector fields.

Theorem 1.3. Let Ω be a bounded open set, $1<p<\infty$, and let X satisfy the LIC. Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let F_{h}, F be, respectively, the functionals in (2) and (8), satisfying (7), and define $\mathcal{F}_{h}, \mathcal{F}: L^{p}(\Omega)^{m} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\mathcal{F}_{h}(\Phi):=\int_{\Omega} f_{h}(x, \Phi(x)) d x \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}(\Phi):=\int_{\Omega} f(x, \Phi(x)) d x \tag{17}
\end{equation*}
$$

for any $\Phi \in L^{p}(\Omega)^{m}$ and for any $h \in \mathbb{N}$. Assume the following:
(i) fixed $0 \leq \alpha \leq \min \{1, p-1\}$, there exist a positive constant \bar{c} and a nonnegative function $b \in L^{p}(\Omega)$ such that

$$
\left|\nabla_{\eta} f_{h}\left(x, \eta_{1}\right)-\nabla_{\eta} f_{h}\left(x, \eta_{2}\right)\right| \leq \bar{c}\left|\eta_{1}-\eta_{2}\right|^{\alpha}\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|+b(x)\right)^{p-1-\alpha}
$$

for a.e. $x \in \Omega$, for any $\eta_{1}, \eta_{2} \in \mathbb{R}^{m}$, and for any $h \in \mathbb{N}$;
(ii) the map $\mathbb{R}^{m} \ni \eta \mapsto f_{h}(x, \eta)$ belongs to $\mathbf{C}^{1}\left(\mathbb{R}^{m}\right)$ for a.e. $x \in \Omega$ and for any $h \in \mathbb{N}$;
(iii) the map $\mathbb{R}^{m} \ni \eta \mapsto f(x, \eta)$ belongs to $\mathbf{C}^{1}\left(\mathbb{R}^{m}\right)$ for a.e. $x \in \Omega$;
(iv) there exist $u_{h}, u \in W_{X}^{1, p}(\Omega)$ such that

$$
u_{h} \rightarrow u \text { in } L^{p}(\Omega) \quad \text { and } \quad \mathcal{F}_{h}\left(X u_{h}\right) \rightarrow \mathcal{F}(X u) \quad \text { as } h \rightarrow \infty .
$$

Then, the convergence of momenta associated with $\left(F_{h}\right)_{h}$ holds, that is,

$$
\begin{equation*}
\partial_{\Phi} \mathcal{F}_{h}\left(X u_{h}\right)=\nabla_{\eta} f_{h}\left(\cdot, X u_{h}\right) \rightarrow \nabla_{\eta} f(\cdot, X u)=\partial_{\Phi} \mathcal{F}(X u) \tag{18}
\end{equation*}
$$

weakly in $L^{p^{\prime}}(\Omega)^{m}$, where $\partial_{\Phi} \mathcal{F}_{h}$ and $\partial_{\Phi} \mathcal{F}$ denote, respectively, the Gateaux derivatives of functionals \mathcal{F}_{h} and \mathcal{F} (see (83)).

As a consequence of Theorems 1.2 and 1.3, we can infer the convergence of both minimizers and momenta associated with minimization problems (1).

Corollary 1.4. Let Ω be open, bounded, and connected, let $1<p<\infty$, and let X satisfy the LIC and conditions (H1), (H2), and (H3). Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let g satisfy (10) and (11), let G be the functional (3), and let $F_{h}, \mathcal{F}_{h}, F, \mathcal{F}$ satisfy the hypotheses of Theorem 1.3. For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, consider functionals $\Xi_{h}^{\varphi}, \Xi^{\varphi}$ defined in (12). If $\left(u_{h}\right)_{h}$ is a sequence of minimizers of $\left(\Xi_{h}^{\varphi}\right)_{h}$, then, up to subsequences, there exists a minimizer u of Ξ^{φ} such that

$$
u_{h} \rightarrow u \text { weakly in } W_{X}^{1, p}(\Omega) \text { and strongly in } L^{p}(\Omega)
$$

Moreover, (18) holds.
We will also provide two interesting applications of the previous results to the periodic homogenization of functionals in Carnot groups and the H-convergence for linear differential operators of the second order depending on X.

Let us recall that Γ-convergence for functionals in (2) has been studied in the case in which the integrand f depends also on u [EPV, EV], and in the framework of Dirichlet forms $[\mathrm{Fu}, \mathrm{MR}]$, but for special integrand functions f and X-gradient satisfying the Hörmander condition (see, for instance, [BPT2, BT, Mo] and references therein). We also point out that Γ-convergence for functionals defined in Cheeger-Sobolev metric measure spaces has been also studied (see [AHM] and references therein).

Homogenization in Carnot groups has been intensively studied so far (see, for instance, [BMT, BPT1, BPT2, FGVN, FT, MV]). Here we are interested in the recent paper $[\mathrm{DDMM}]$, where a Γ-convergence result for the periodic homogenization of functionals in Heisenberg groups has been proved (see Theorem 5.3). By using this result, we prove the convergence of minimizers for minimization problems (1) for each boundary datum $\varphi \in W_{X}^{1, p}(\Omega)$, as well as the convergence of the associated momenta (see Corollary 5.5).

The H-convergence for subelliptic PDEs has been also studied in the setting of Carnot groups (see [BFT, BFTT, FTT, Ma2, MPV]). In the previous papers, the main tool for showing a compactness result for H-convergence is the nontrivial extension to Carnot groups of the so-called compensated compactness [BFTT], originally
introduced in the classical Euclidean setting by Murat and Tartar [Mu]. Here we get a compactness result for H-convergence in a broader setting than a Carnot group (see Theorem 6.2), by using Theorem 1.3, without applying the compensated compactness, since it is not clear whether it still holds in our framework.

The plan of this paper is as follows: in section 2, we introduce and study the Sobolev spaces associated with the X-gradient. In section 3, we prove a criterion for the Γ-convergence with respect to the weak convergence in spaces $W_{X}^{1, p}(\Omega)$ and $W_{X, 0}^{1, p}(\Omega)$ (see Theorem 3.1). We also recall two key results of Γ-compactness for integral functions depending on X, with respect to $L^{p}(\Omega)$-topology: the former is a light extension of a result already shown in [MPSC1] (see Theorem 3.5) and the latter is a Γ-compactness result including Dirichlet boundary conditions (see Theorem 3.6). In section 4, we prove Theorems 1.2 and 1.3 and Corollary 1.4. Finally, in sections 5 and 6 , we apply Theorems 1.2 and 1.3 and Corollary 1.4 to the case of periodic homogenization in Heisenberg groups (see Corollary 5.5) and to the H-convergence for linear differential operators of the second order depending on X (see Theorem 6.2), respectively.
2. Functional setting. Throughout this paper, $\Omega \subset \mathbb{R}^{n}$ is a fixed open set and $\overline{\mathbb{R}}=[-\infty, \infty]$. If $v, w \in \mathbb{R}^{n}$, we denote by $|v|$ and $\langle v, w\rangle$ the Euclidean norm and the scalar product, respectively. If Ω and Ω^{\prime} are subsets of \mathbb{R}^{n}, then $\Omega^{\prime} \Subset \Omega$ means that Ω^{\prime} is compactly contained in Ω. Moreover, $B(x, r)$ is the open Euclidean ball of radius r centered at x. If $A \subset \mathbb{R}^{n}, \chi_{A}$ and $\mathbb{1}_{A}$ are, respectively, the characteristic and the indicator function of $A,|A|$ is its n-dimensional Lebesgue measure \mathcal{L}^{n}, and, by notation a.e. $x \in A$, we will simply mean \mathcal{L}^{n}-a.e. $x \in A$. In what follows, we denote by $\mathbf{C}^{k}(\Omega)$ the space of \mathbb{R}-valued functions k times continuously differentiable and by $\mathbf{C}_{c}^{k}(\Omega)$ the subspace of $\mathbf{C}^{k}(\Omega)$ whose functions have support compactly contained in Ω.

Definition 2.1. For any $u \in L^{1}(\Omega)$ we define $X u$ as an element of $\mathcal{D}^{\prime}\left(\Omega ; \mathbb{R}^{m}\right)$ as follows:

$$
\begin{aligned}
X u(\psi): & =\left(X_{1} u\left(\psi_{1}\right), \ldots, X_{m} u\left(\psi_{m}\right)\right) \\
& =-\int_{\Omega} u\left(\sum_{i=1}^{n} \partial_{i}\left(c_{1 i} \psi_{1}\right), \ldots, \sum_{i=1}^{n} \partial_{i}\left(c_{m i} \psi_{m}\right)\right) d x
\end{aligned}
$$

for any $\psi=\left(\psi_{1}, \ldots, \psi_{m}\right) \in \mathbf{C}_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$.
If we set $X^{T} \psi:=\left(X_{1}^{T} \psi_{1}, \ldots, X_{m}^{T} \psi_{m}\right)$ with

$$
\begin{equation*}
X_{j}^{T} \varphi:=-\sum_{i=1}^{n} \partial_{i}\left(c_{j i} \varphi\right)=-\left(\operatorname{div}\left(X_{j}\right)+X_{j}\right) \varphi \tag{19}
\end{equation*}
$$

for any $\varphi \in \mathbf{C}_{c}^{\infty}(\Omega)$ and $j=1, \ldots, m$, then the aspect of the previous definition is even more familiar,

$$
X u(\psi)=\int_{\Omega} u X^{T} \psi d x \quad \text { for any } \psi \in \mathbf{C}_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)
$$

REMARK 2.2. By the well-known extension result for Lipschitz functions, without loss of generality, we can assume that vector fields' coefficients $c_{j i} \in \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}^{n}\right)$ for any $j=1, \ldots, m$ and $i=1, \ldots, n$.

Definition 2.3. For $1 \leq p \leq \infty$ we set

$$
\begin{aligned}
W_{X}^{1, p}(\Omega) & :=\left\{u \in L^{p}(\Omega): X_{j} u \in L^{p}(\Omega) \text { for } j=1, \ldots, m\right\}, \\
W_{X ; l o c}^{1, p}(\Omega) & :=\left\{u:\left.u\right|_{\Omega^{\prime}} \in W_{X}^{1, p}\left(\Omega^{\prime}\right) \text { for every open set } \Omega^{\prime} \Subset \Omega\right\} .
\end{aligned}
$$

Remark 2.4. Since vector fields X_{j} have locally Lipschitz continuous coefficients, $\partial_{i} c_{j i} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$ for any $j=1, \ldots, m$ and $i=1, \ldots, n$. Then, by definition,

$$
\begin{equation*}
W^{1, p}(\Omega) \subset W_{X}^{1, p}(\Omega) \quad \forall p \in[1, \infty] \tag{20}
\end{equation*}
$$

for any open bounded set $\Omega \subset \mathbb{R}^{n}$. Moreover, for any $u \in W^{1, p}(\Omega)$

$$
X u(x)=C(x) D u(x) \quad \text { for a.e. } x \in \Omega,
$$

where $W^{1, p}(\Omega)$ denotes the classical Sobolev space, or, equivalently, the space $W_{X}^{1, p}(\Omega)$ associated to

$$
X=D:=\left(\partial_{1}, \ldots, \partial_{n}\right) .
$$

It is easy to see that inclusion (20) can be strict and turns out to be continuous. As well, there is the inclusion

$$
W_{\mathrm{loc}}^{1, p}(\Omega) \subset W_{X ; \mathrm{loc}}^{1, p}(\Omega) \quad \forall p \in[1, \infty] .
$$

The following proposition is proved in [FS] and [Ma, Lemma 2.3.29].
Proposition 2.5. $W_{X}^{1, p}(\Omega)$ endowed with the norm

$$
\|u\|_{W_{X}^{1, p}(\Omega)}:=\left(\int_{\Omega}|u|^{p} d x+\int_{\Omega}|X u|^{p} d x\right)^{\frac{1}{p}}
$$

is a reflexive Banach space if $1<p<\infty$.
Moreover, if $p>1$, then functional $\|\cdot\|_{W_{X}^{1, p}(\Omega)}^{p}: W_{X}^{1, p}(\Omega) \rightarrow[0, \infty)$ is lower semicontinuous and sequentially coercive in the weak topology of $W_{X}^{1, p}(\Omega)$.

Definition 2.6. For $1 \leq p \leq \infty$ we set

$$
\begin{aligned}
& H_{X}^{1, p}(\Omega) \text { the closure of } \mathbf{C}^{1}(\Omega) \cap W_{X}^{1, p}(\Omega) \text { in } W_{X}^{1, p}(\Omega), \\
& W_{X, 0}^{1, p}(\Omega) \text { the closure of } \mathbf{C}_{c}^{1}(\Omega) \cap W_{X}^{1, p}(\Omega) \text { in } W_{X}^{1, p}(\Omega) .
\end{aligned}
$$

It is proved in $[\mathrm{FS}]$ that the normed spaces $\left(H_{X}^{1, p}(\Omega),\|\cdot\|_{W_{X}^{1, p}(\Omega)}\right)$ and $\left(W_{X, 0}^{1, p}(\Omega)\right.$, $\left.\|\cdot\|_{W_{X}^{1, p}(\Omega)}\right)$ are Banach spaces for any $1 \leq p \leq \infty$.

As for the usual Sobolev spaces, it holds that $H_{X}^{1, p}(\Omega) \subset W_{X}^{1, p}(\Omega)$. The classical result $H=W$, of Meyers and Serrin [MS] still holds true for these anisotropic Sobolev spaces as proved, independently, in [FSSC1] and [GN1]. Analogous results, under some additional assumptions, are proved in [FSSC2], for the weighted case, and in [APS], where a generalization to metric measure spaces is given.

Theorem 2.7. Let Ω be an open subset of \mathbb{R}^{n} and $1 \leq p<\infty$. Then,

$$
H_{X}^{1, p}(\Omega)=W_{X}^{1, p}(\Omega) .
$$

We conclude this section recalling that when Ω is bounded and the family X satisfies properties (H1), (H2), and (H3), then $W_{X, 0}^{1, p}(\Omega)$ can be compactly embedded in $L^{p}(\Omega)$ for any $1 \leq p<\infty$. Moreover, we prove that if, in addition, Ω is connected, then

$$
\|u\|_{W_{X, 0}^{1, p}(\Omega)}:=\left(\int_{\Omega}|X u|^{p} d x\right)^{\frac{1}{p}}
$$

defines an equivalent norm on $W_{X, 0}^{1, p}(\Omega)$ for any $1 \leq p<\infty$.
Let us point out some classes of relevant vector fields satisfying properties (H1), (H2), and (H3).

Remark 2.8. (i) (Hörmander vector fields) If the vector fields are smooth and the rank of the Lie algebra generated by X_{1}, \ldots, X_{m} equals n at any point of Ω_{0} (the so-called Hörmander condition), then (H1), (H2), and (H3) hold (see [NSW] for (H1) and (H2) and [FLW] for (H3)).
(ii) (Grushin vector fields) If the vector fields are as in [F2], [F1], and [FL], then conditions (H1), (H2), and (H3) still hold (see [F2, F1, FL] for (H1) and (H2) and [FSSC2, Remark 2.8] for (H3)).

The following results are proved in [FSSC2, Theorems 2.11 and 3.4].
Theorem 2.9. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let $1 \leq p<\infty$, and let X satisfy conditions (H1), (H2), and (H3). Then, for each metric ball $B=B_{d}(x, r) \subset \Omega$ and for every $u \in W_{X}^{1, p}(\Omega)$, there exist a constant c, depending on B and u, and a constant C, not depending on u, such that

$$
\int_{B}|u(x)-c|^{p} d x \leq C r^{p} \int_{B}|X u|^{p} d x
$$

ThEOREM 2.10. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let $1 \leq p<\infty$, and let X satisfy conditions $(\mathrm{H} 1),(\mathrm{H} 2)$, and $(\mathrm{H} 3)$. Then, $W_{X, 0}^{1, p}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$.

An interesting consequence of Theorem 2.10 is the following result, which can be proved exactly as in the Euclidean case. For this reason we omit the proof. For the reader's convenience, we remind that a proof can be found in [Ma, Proposition 1.2.17].

Proposition 2.11. Under the assumptions of Theorem 2.10, $W_{X}^{1, p}(\Omega)$ can be compactly embedded in $L_{l o c}^{p}(\Omega)$.

Let us point out that we can get a global compact embedding in Proposition 2.11, by requiring further regularity on Ω, in the sense of the following definition.

Definition 2.12. Let (M, d) be a metric space. A bounded set $\Omega \subset M$ is said to be a uniform domain if there exists $\varepsilon>0$ such that for each $x, y \in \Omega$ there exists a continuous rectifiable curve $\gamma:[0,1] \rightarrow \Omega$, with

$$
\begin{aligned}
& \gamma(0)=x, \quad \gamma(1)=y \\
& \operatorname{length}(\gamma) \leq \frac{1}{\varepsilon} d(x, y)
\end{aligned}
$$

and, for each $t \in[0,1]$,

$$
\operatorname{dist}(\gamma(t), \partial \Omega) \geq \varepsilon \min \left\{\operatorname{length}\left(\left.\gamma\right|_{[0, t]}\right), \text { length }\left(\left.\gamma\right|_{[t, 1]}\right)\right\}
$$

REMARK 2.13. The characterization of uniform domains in metric spaces is a difficult task. Few examples of such domains are known and also in the framework of the Carnot-Carathéodory distance. A comprehensive account of uniform domains, with respect to the Carnot-Carathéodory distance, can be found in [Mon] (see also [FPS] for an interesting example).

If Ω is a (bounded) uniform domain in the metric space $\left(\Omega_{0}, d\right)$, then, by using an extension result for functions in $W_{X}^{1, p}(\Omega)$ (see [GN2]), by applying Theorem 2.10 and by a localization argument in a neighborhood of Ω, we get the following result.

Theorem 2.14. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let $1 \leq p<\infty$, and let X satisfy conditions (H1), (H2), and (H3). Moreover, assume that Ω is a uniform domain in the metric space $\left(\Omega_{0}, d\right)$. Then, $W_{X}^{1, p}(\Omega)$ can be compactly embedded in $L^{p}(\Omega)$.

Remark 2.15. Actually, Theorem 2.14 still holds for an even more general class of metric regular sets, namely the so-called PS-domains (see [GN1, Theorem 1.28]). In particular, the metric balls with respect to the Carnot-Carathéodory distance are PS domains (see [FGW, GN1]).

As a consequence of Theorems 2.9 and 2.10, a global Poincaré inequality holds in $W_{X, 0}^{1, p}(\Omega)$. For the reader's convenience, we remind that a proof can be found in [Ma, Proposition 1.2.18].

Proposition 2.16. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let $1 \leq p<\infty$, and let X satisfy conditions (H1), (H2), and (H3). Moreover, assume that Ω is connected. Then, there exists a positive constant $c_{p, \Omega}$, depending on p and Ω, such that

$$
c_{p, \Omega} \int_{\Omega}|u|^{p} d x \leq \int_{\Omega}|X u|^{p} d x \quad \text { for any } u \in W_{X, 0}^{1, p}(\Omega)
$$

Corollary 2.17. Let Ω, p, and X be as in Proposition 2.16. Then,

$$
\|u\|_{W_{X, 0}^{1, p}(\Omega)}:=\left(\int_{\Omega}|X u|^{p} d x\right)^{\frac{1}{p}}
$$

is a norm in $W_{X, 0}^{1, p}(\Omega)$ equivalent to $\|\cdot\|_{W_{X}^{1, p}(\Omega)}$.
We conclude this section recalling the following estimate that will be useful to prove the coercivity of functionals Ξ_{h}^{φ}, defined in (12). It can be proved as in [DM, Lemma 2.7].

Lemma 2.18. Let $c_{p, \Omega}$ be the Poincaré constant in (9), let $\varphi \in W_{X}^{1, p}(\Omega)$, and let $c<c_{p, \Omega}$. Then, there exist a positive constant k_{1}, depending only on c and $c_{p, \Omega}$, and a nonnegative constant k_{2}, depending on $c, c_{p, \Omega}$, and $\|\varphi\|_{W_{X}^{1, p}(\Omega)}$, such that

$$
\int_{\Omega}|X u|^{p} d x-c \int_{\Omega}|u|^{p} d x \geq k_{1}\left(\int_{\Omega}|X u|^{p} d x+\int_{\Omega}|u|^{p} d x\right)-k_{2}
$$

for every $u \in W_{X, \varphi}^{1, p}(\Omega)$.
3. Γ-convergence results for integral functionals depending on vector fields. In this section, we study Γ-convergence results for classes of integral functionals depending on vector fields, with respect to the weak topology of $W_{X, 0}^{1, p}(\Omega)$ and $W_{X}^{1, p}(\Omega)$, namely Theorem 3.1, and the strong topology of $L^{p}(\Omega)$; see Theorems 3.5, 3.6, and 3.7.
3.1. Γ-convergence in the weak topology of $W_{X, 0}^{1, p}(\Omega)$ and $W_{X}^{1, p}(\Omega)$. First, we show that, if X satisfies conditions (H1), (H2), and (H3), then the pointwise convergence of the sequence $\left(f_{h}(\cdot, \eta)\right)_{h}$ a.e. in Ω for any $\eta \in \mathbb{R}^{m}$ implies the Γ convergence of the corresponding integral functionals in the weak topology of $W_{X, 0}^{1, p}(\Omega)$ and $W_{X}^{1, p}(\Omega)$.

Theorem 3.1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, $1<p<\infty$, and let X satisfy the LIC and conditions (H1), (H2), and (H3). Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, with $a_{i} \in L^{\infty}(\Omega)(i=0,1)$, and let $F_{h}, F: W_{X, 0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the corresponding integral functionals, defined as

$$
\begin{equation*}
F_{h}(u):=\int_{\Omega} f_{h}(x, X u(x)) d x, \quad F(u):=\int_{\Omega} f(x, X u(x)) d x \tag{21}
\end{equation*}
$$

for any $u \in W_{X, 0}^{1, p}(\Omega)$ and for any $h \in \mathbb{N}$. Assume that

$$
f_{h}(\cdot, \eta) \rightarrow f(\cdot, \eta) \quad \text { a.e. in } \Omega \text { and for any } \eta \in \mathbb{R}^{m} .
$$

Then, $\left(F_{h}\right)_{h} \Gamma$-converges to F in the weak topology of $W_{X, 0}^{1, p}(\Omega)$.
Moreover, if $W_{X}^{1, p}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$, then $\left(F_{h}+G\right)_{h} \Gamma$-converges to $F+G$ in the weak topology of $W_{X}^{1, p}(\Omega)$. In this case, $F_{h}, F: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ are defined as in (21), while $G: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ is the functional in (3) such that g satisfies (10), with $0<d_{0} \leq d_{1}$.

See, e.g., Theorem 2.14 for an example of a set Ω where there exists a compact embedding of $W_{X}^{1, p}(\Omega)$ in $L^{p}(\Omega)$. Before proving Theorem 3.1 we need two technical lemmas.

Lemma 3.2. Let $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, 0, a\right)$, with $a \in L^{\infty}(\Omega)$, and let $r>0$. There exist $R=R(r)>r$ and a Borel measurable function $g_{r}: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $g_{r}(x, \cdot)$ is convex for a.e. $x \in \Omega$ and

$$
\begin{align*}
& 0 \leq g_{r}(x, \eta) \leq f(x, \eta) \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \mathbb{R}^{m} \tag{22}\\
& g_{r}(x, \eta)=f(x, \eta) \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \overline{B_{r}(0)} \tag{23}\\
& g_{r}(x, \eta) \leq c_{0}|\eta|^{p} \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \mathbb{R}^{m} \backslash \overline{B_{R}(0)} . \tag{24}
\end{align*}
$$

Proof. Observe that, without loss of generality, we can assume that

$$
\begin{equation*}
f(x, \cdot): \mathbb{R}^{m} \rightarrow[0, \infty) \text { is convex for each } x \in \Omega \tag{25}
\end{equation*}
$$

Indeed, by $\left(I_{2}\right)$ and since the n-dimensional Lebesgue measure \mathcal{L}^{n} is Borel regular, there exists a negligible Borel set $N \subset \Omega$ such that $f(x, \cdot): \mathbb{R}^{m} \rightarrow[0, \infty)$ is convex for each $x \in \Omega \backslash N$. By redefining $f(x, \eta):=0$ for each $x \in N$ and $\eta \in \mathbb{R}^{m}$, we get the desired conclusion.

By (25) and [Ro, Theorem 10.4], $f(x, \cdot): \mathbb{R}^{m} \rightarrow[0, \infty)$ is locally Lipschitz for any $x \in \Omega$. In particular, in fixed $x \in \Omega, \eta_{0} \in \mathbb{R}^{m}$, and $r>0$, there exists a positive constant L, depending on f, x, η_{0}, and r, such that

$$
\begin{equation*}
\left|f\left(x, \eta_{1}\right)-f\left(x, \eta_{2}\right)\right| \leq L\left|\eta_{1}-\eta_{2}\right| \tag{26}
\end{equation*}
$$

for any $\eta_{1}, \eta_{2} \in \overline{B_{r}\left(\eta_{0}\right)}$, and

$$
L:=\frac{1}{r} \frac{\sup }{B_{2 r}\left(\eta_{0}\right)} f(x, \cdot)
$$

Fix $x \in \Omega$ and $\eta_{0} \in \mathbb{R}^{m}$. By [Cla, Proposition 2.22] and (26), for any $v \in \mathbb{R}^{m}$ there exists the directional derivative

$$
f_{x}^{\prime}\left(\eta_{0}, v\right):=\lim _{t \rightarrow 0} \frac{f\left(x, \eta_{0}+t v\right)-f\left(x, \eta_{0}\right)}{t} \in \mathbb{R} .
$$

It is also clear that

$$
f_{x}^{\prime}\left(\eta_{0}, v\right)=\lim _{h \rightarrow \infty} h\left(f\left(x, \eta_{0}+\frac{1}{h} v\right)-f\left(x, \eta_{0}\right)\right) .
$$

By (26) and [Cla, Corollary 4.26],

$$
\begin{equation*}
f_{x}^{\prime}\left(\eta_{0}, v\right)=\max _{\xi \in \partial f_{x}\left(\eta_{0}\right)}\langle\xi, v\rangle \quad \text { for any } v \in \mathbb{R}^{m}, \tag{27}
\end{equation*}
$$

where $\partial f_{x}\left(\eta_{0}\right)$ denotes the subdifferential of $f(x, \cdot)$ at η_{0}.
By (27), the map $\mathbb{R}^{m} \ni v \mapsto f_{x}^{\prime}(\eta, v)$ is positively homogeneous of degree one, convex, and so subadditive, continuous, and finite. Moreover, since $f: \Omega \times \mathbb{R}^{m} \rightarrow[0, \infty)$ is Borel measurable, then the map $\Omega \times \mathbb{R}^{m} \ni(x, v) \mapsto f_{x}^{\prime}(\eta, v)$ is Borel measurable for any $\eta \in \mathbb{R}^{m}$.

Fix $r>0$ and $\eta_{0}, \eta \in \mathbb{R}^{m}$. We define

$$
G_{\eta_{0}}(x, \eta):=f\left(x, \eta_{0}\right)+f_{x}^{\prime}\left(\eta_{0}, \eta-\eta_{0}\right)
$$

and

$$
g_{r}(x, \eta):=\sup _{\eta_{0} \in \mathbb{Q}^{m} \cap \overline{B_{r}(0)}} G_{\eta_{0}}(x, \eta) .
$$

We first claim that $g_{r}(x, \eta)<\infty$ for a.e. $x \in \Omega$ for every $\eta \in \mathbb{R}^{m}, g_{r}: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is Borel measurable and that $g_{r}(x, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex for a.e. $x \in \Omega$.

Let $x \in \Omega$ and define $\bar{\xi}$ the element of $\partial f_{x}\left(\eta_{0}\right)$ such that

$$
\begin{equation*}
f_{x}^{\prime}\left(\eta_{0}, \eta-\eta_{0}\right)=\left\langle\bar{\xi}, \eta-\eta_{0}\right\rangle . \tag{28}
\end{equation*}
$$

Since $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, 0, a\right)$, then

$$
\begin{equation*}
\left|G_{\eta_{0}}(x, \eta)\right| \leq c_{1}\left|\eta_{0}\right|^{p}+|\bar{\xi}|\left|\eta-\eta_{0}\right|+a(x) \tag{29}
\end{equation*}
$$

a.e. $x \in \Omega$, for any $\eta_{0}, \eta \in \mathbb{R}^{m}$, and

$$
\begin{equation*}
c_{0}|\eta|^{p} \leq f(x, \eta) \leq c_{1}|\eta|^{p}+a(x) \leq c_{1} 2^{p} r^{p}+\|a\|_{L^{\infty}(\Omega)} \tag{30}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for any $\eta \in \overline{B_{2 r}(0)}$. Moreover, by (26) and (30), and, arguing as in [Cla, Proposition 4.14], there exists a positive constant M, depending only on c_{1}, $\|a\|_{L^{\infty}(\Omega)}$, and r, such that

$$
|\bar{\xi}| \leq M \quad \text { for any } \eta_{0} \in \overline{B_{r}(0)}
$$

which, together with (29), gives

$$
\begin{equation*}
g_{r}(x, \eta) \leq c_{1} r^{p}+M(|\eta|+r)+\|a\|_{L^{\infty}(\Omega)}<+\infty \tag{31}
\end{equation*}
$$

for a.e. $x \in \Omega$ and $\forall \eta \in \mathbb{R}^{m}$.

Since g_{r} is a pointwise supremum of the countable family of Borel measurable functions $\Omega \times \mathbb{R}^{m} \ni(x, \eta) \mapsto G_{\eta_{0}}(x, \eta)$, with $\eta_{0} \in \mathbb{Q}^{m} \cap \overline{B_{r}(0)}$, then it is Borel measurable. As well, since $g_{r}(x, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a pointwise supremum of the countable family of convex functions $\mathbb{R}^{m} \ni \eta \mapsto G_{\eta_{0}}(x, \cdot)$ a.e. $x \in \Omega$, with $\eta_{0} \in \mathbb{Q}^{m} \cap \overline{B_{r}(0)}$, then, by [Cla, Proposition 2.20], it is a convex function.

Let us now prove that g_{r} satisfies (22) and (23). Let $x \in \Omega$ be such that $f(x, \cdot)$ is convex. Then, fixed $\eta_{0} \in \mathbb{R}^{m}$,

$$
\begin{equation*}
f(x, \eta) \geq f\left(x, \eta_{0}\right)+\left\langle\xi, \eta-\eta_{0}\right\rangle \tag{32}
\end{equation*}
$$

for any $\eta \in \mathbb{R}^{m}$ and $\xi \in \partial f_{x}\left(\eta_{0}\right)$. Let $\bar{\xi} \in \partial f_{x}\left(\eta_{0}\right)$ satisfy (28). By (32),

$$
f(x, \eta) \geq G_{\eta_{0}}(x, \eta)
$$

and, passing to the supremum, we get

$$
\begin{equation*}
g_{r}(x, \eta) \leq f(x, \eta) \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \mathbb{R}^{m} \tag{33}
\end{equation*}
$$

On the other hand, if $\eta \in \overline{B_{r}(0)}$ and $\left(\eta_{h}\right)_{h \in \mathbb{N}} \subset \mathbb{Q}^{m} \cap \overline{B_{r}(0)}$ are such that $\eta_{h} \rightarrow \eta$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
g_{r}(x, \eta) \geq f\left(x, \eta_{h}\right)+f_{x}^{\prime}\left(\eta_{h}, \eta-\eta_{h}\right) \quad \forall h \in \mathbb{N} . \tag{34}
\end{equation*}
$$

Moreover, since

$$
\left|f_{x}^{\prime}\left(\eta_{n}, \eta-\eta_{h}\right)\right| \leq M\left|\eta-\eta_{h}\right| \quad \forall h \in \mathbb{N}
$$

we conclude that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} f_{x}^{\prime}\left(\eta_{h}, \eta-\eta_{h}\right)=0 \tag{35}
\end{equation*}
$$

Therefore, by (33), (34), (35), and by the continuity of $f(x, \cdot)$ in \mathbb{R}^{m}, we obtain (23).
Now we fix $x \in \Omega$ such that both $f(x, \cdot)$ and $g_{r}(x, \cdot)$ are convex in \mathbb{R}^{m}. By (23) and the Weierstrass theorem, there exists $\eta_{1} \in \overline{B_{r}(0)}$ such that

$$
\begin{equation*}
f\left(x, \eta_{1}\right)=g_{r}\left(x, \eta_{1}\right)=\min _{\eta \in \overline{B_{r}(0)}} g_{r}(x, \eta) \tag{36}
\end{equation*}
$$

and, since $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, 0, a\right)$, then

$$
\begin{equation*}
g_{r}(x, \eta) \geq 0 \quad \text { for any } \eta \in \overline{B_{r}(0)} \tag{37}
\end{equation*}
$$

Assume, by contradiction, the existence of $\eta_{2} \in \mathbb{R}^{m} \backslash \overline{B_{r}(0)}$ such that

$$
\begin{equation*}
g_{r}\left(x, \eta_{2}\right)<0 \tag{38}
\end{equation*}
$$

Then, there exist $\eta_{3} \in \overline{B_{r}(0)}$ and $\bar{t} \in(0,1)$ such that $\eta_{3}=\bar{t} \eta_{1}+(1-\bar{t}) \eta_{2}$ and, since $g_{r}(x, \cdot)$ is convex in $\mathbb{R}^{m},(36)$ and (38) give

$$
g_{r}\left(x, \eta_{1}\right) \leq g_{r}\left(x, \eta_{3}\right) \leq \bar{t} g_{r}\left(x, \eta_{1}\right)+(1-\bar{t}) g_{r}\left(x, \eta_{2}\right)<g_{r}\left(x, \eta_{1}\right)
$$

which yields a contradiction. Then, by (37), we get (22).
Finally, since $p>1$ and $c_{0}, M>0$, we have

$$
\lim _{|\eta| \rightarrow \infty} \frac{c_{0}|\eta|^{p}}{c_{1} r^{p}+M(|\eta|+r)+\|a\|_{L^{\infty}(\Omega)}}=+\infty
$$

and, by (31), (24) also follows.

Lemma 3.3. Let $f_{h} \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, with $a_{0}, a_{1} \in L^{\infty}(\Omega)$, and assume that

$$
f_{h}(\cdot, \eta) \rightarrow f(\cdot, \eta) \quad \text { a.e. in } \Omega \text {, for each } \eta \in \mathbb{R}^{m} .
$$

Then we have the following:
(i) $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$;
(ii) if $\left(\Phi_{h}\right)_{h}$ weakly converges to Φ in $L^{p}(\Omega)^{m}$, then functionals $\mathcal{F}_{h}, \mathcal{F}: L^{p}(\Omega)^{m} \rightarrow$ \mathbb{R}, defined in (16) and (17), satisfy

$$
\begin{aligned}
& \mathcal{F}(\Phi) \leq \liminf _{h \rightarrow \infty} \mathcal{F}_{h}\left(\Phi_{h}\right), \text { i.e., } \\
& \int_{\Omega} f(x, \Phi(x)) d x \leq \liminf _{h \rightarrow \infty} \int_{\Omega} f_{h}\left(x, \Phi_{h}(x)\right) d x .
\end{aligned}
$$

Proof. (i) The proof is immediate.
(ii) Let $\left(\Phi_{h}\right)_{h} \subset L^{p}(\Omega)^{m}$ be weakly convergent to Φ in $L^{p}(\Omega)^{m}$. Then, there exists a positive constant M such that

$$
\int_{\Omega}\left|\Phi_{h}\right|^{p} d x \leq M \quad \text { for any } h \in \mathbb{N}
$$

Moreover, since $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, then $f(\cdot, \Phi(\cdot)) \in L^{1}(\Omega)$. Therefore, by the absolute continuity of the Lebesgue's integral, for any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\int_{A}|f(x, \Phi(x))| d x<\varepsilon \tag{39}
\end{equation*}
$$

for any measurable subset A of Ω such that $|A|<\delta$.
Let us fix $R>0$ and let us consider $\overline{B_{R}(0)} \subset \mathbb{R}^{m}$. Then, for any $\varrho>0$, there exist $\eta_{1}, . ., \eta_{k} \in B_{R}(0)$ such that

$$
\begin{equation*}
\overline{B_{R}(0)} \subset \cup_{i=1}^{k} B_{\varrho}\left(\eta_{i}\right) \tag{40}
\end{equation*}
$$

Since $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, then, by [Ro, Theorem 10.4], there exists a positive constant L_{R} such that

$$
\begin{align*}
& \left|f_{h}(x, \eta)-f_{h}\left(x, \eta_{i}\right)\right| \leq L_{R}\left|\eta-\eta_{i}\right| \leq L_{R} \varrho, \tag{41}\\
& \left|f(x, \eta)-f\left(x, \eta_{i}\right)\right| \leq L_{R}\left|\eta-\eta_{i}\right| \leq L_{R \varrho} \varrho
\end{align*}
$$

for any $h \in \mathbb{N}, i=1, \ldots, k$, and $\eta \in B_{\varrho}\left(\eta_{i}\right) \cap \overline{B_{R}(0)}$.
If $x \in \Omega$ and $\eta \in \overline{B_{R}(0)}$ then, by (40), there exists $i \in\{1, \ldots, k\}$ such that $\eta \in B_{\varrho}\left(\eta_{i}\right)$ and, by (41),

$$
\begin{equation*}
\left|f_{h}(x, \eta)-f(x, \eta)\right| \leq 2 L_{R} \varrho+\left|f_{h}\left(x, \eta_{i}\right)-f\left(x, \eta_{i}\right)\right| . \tag{42}
\end{equation*}
$$

Since $f_{h}\left(x, \eta_{i}\right) \rightarrow f\left(x, \eta_{i}\right)$ for a.e. $x \in \Omega$ and for any $i \in\{1, \ldots, k\}$, then, by the Severini-Egoroff theorem, there exist A_{1}, \ldots, A_{k}, measurable subsets of Ω, such that $\left|A_{i}\right|<\frac{\delta}{2 k}$ and such that

$$
\lim _{h \rightarrow \infty}\left[\sup _{x \in \Omega \backslash A_{i}}\left|f_{h}\left(x, \eta_{i}\right)-f\left(x, \eta_{i}\right)\right|\right]=0
$$

Let $A^{\delta}:=\cup_{i=1}^{k} A_{i}$. Thus, $\left|A^{\delta}\right|<\frac{\delta}{2}$ and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} z_{h}:=\lim _{h \rightarrow \infty}\left[\max _{i \in\{1, \ldots, k\}} \sup _{x \in \Omega \backslash A^{\delta}}\left|f_{h}\left(x, \eta_{i}\right)-f\left(x, \eta_{i}\right)\right|\right]=0 \tag{43}
\end{equation*}
$$

Therefore, for any $x \in \Omega \backslash A^{\delta}$ and for any $\eta \in \overline{B_{R}(0)}$, by (42),

$$
\begin{equation*}
\left|f_{h}(x, \eta)-f(x, \eta)\right| \leq 2 L_{R} \varrho+z_{h} \tag{44}
\end{equation*}
$$

Fix $r>0$ and define $\varphi_{h}:=f_{h}+a_{0}$ for any $h \in \mathbb{N}$ and $\varphi:=f+a_{0}$. Then, trivially, $\varphi_{h}, \varphi \in I_{m, p}\left(\Omega, c_{0}, c_{1}, 0, a_{0}+a_{1}\right)$ and, by Lemma 3.2 , there exist $R(r)>r$ and $g_{r}: \Omega \times \mathbb{R}^{m} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& g_{r}(x, \eta) \leq \varphi(x, \eta) \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \mathbb{R}^{m} \tag{45}\\
& g_{r}(x, \eta)=\varphi(x, \eta) \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \overline{B_{r}(0)} \tag{46}\\
& g_{r}(x, \eta) \leq c_{0}|\eta|^{p} \quad \text { for a.e. } x \in \Omega \text { and every } \eta \in \mathbb{R}^{m} \backslash \overline{B_{R}(0)} \tag{47}
\end{align*}
$$

Notice that if $x \in \Omega$ and $\eta \in \mathbb{R}^{m} \backslash \overline{B_{R}(0)}$, then, by (47)

$$
\begin{equation*}
\varphi_{h}(x, \eta) \geq c_{0}|\eta|^{p} \geq g_{r}(x, \eta) \tag{48}
\end{equation*}
$$

while, if $x \in \Omega \backslash A^{\delta}$ and $\eta \in \overline{B_{R}(0)}$, then by (44) and (45)

$$
\begin{equation*}
\varphi_{h}(x, \eta) \geq \varphi(x, \eta)-2 L_{R \varrho}-z_{h} \geq g_{r}(x, \eta)-2 L_{R \varrho}-z_{h} \tag{49}
\end{equation*}
$$

Moreover, since $\left(\Phi_{h}\right)_{h}$ weakly converges to Φ in $L^{p}(\Omega)^{m}$, then

$$
\begin{equation*}
\liminf _{h \rightarrow \infty} \int_{\Omega \backslash A^{\delta}} g_{r}\left(x, \Phi_{h}\right) d x \geq \int_{\Omega \backslash A^{\delta}} g_{r}(x, \Phi) d x \tag{50}
\end{equation*}
$$

Therefore, by (43), (46), (48), (49), and (50), and by Fatou's lemma

$$
\begin{aligned}
\liminf _{h \rightarrow \infty} \int_{\Omega} \varphi_{h}\left(x, \Phi_{h}\right) d x & \geq \liminf _{h \rightarrow \infty} \int_{\Omega \backslash A^{\delta}} \varphi_{h}\left(x, \Phi_{h}\right) d x \\
& \geq \liminf _{h \rightarrow \infty}\left[\int_{\Omega \backslash A^{\delta}} g_{r}\left(x, \Phi_{h}\right) d x-\left(2 L_{R} \varrho+z_{h}\right)|\Omega|\right] \\
& \geq \int_{\Omega \backslash A^{\delta}} g_{r}(x, \Phi) d x-2 L_{R} \varrho|\Omega| \\
& \geq \int_{\Omega \backslash\left(A^{\delta} \cup\{|\Phi|>r\}\right)} g_{r}(x, \Phi) d x-2 L_{R} \varrho|\Omega| \\
& =\int_{\Omega \backslash\left(A^{\delta} \cup\{|\Phi|>r\}\right)} \varphi(x, \Phi) d x-2 L_{R} \varrho|\Omega|
\end{aligned}
$$

Moreover, by Chebyshev's inequality,

$$
|\{|\Phi|>r\}| \leq \frac{1}{r^{p}} \int_{\Omega}|\Phi(x)|^{p} d x
$$

Let us choose r such that $|\{|\Phi|>r\}|<\frac{\delta}{2}$. Thus, by (39)

$$
\liminf _{h \rightarrow \infty} \int_{\Omega} \varphi_{h}\left(x, \Phi_{h}\right) d x \geq \int_{\Omega} \varphi(x, \Phi) d x-\varepsilon-2 L_{R} \varrho|\Omega|
$$

that is,

$$
\liminf _{h \rightarrow \infty} \int_{\Omega} f_{h}\left(x, \Phi_{h}\right) d x \geq \int_{\Omega} f(x, \Phi) d x-\varepsilon-2 L_{R} \varrho|\Omega|
$$

and, as ε and ϱ go to zero, we get the thesis.
Proof of Theorem 3.1. By (5), there exists $\Psi_{1}: W_{X, 0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ such that $\Psi_{1} \leq F_{h}$ for any $h \in \mathbb{N}$ and

$$
\lim _{\|u\|_{W_{X, 0}^{1, p}(\Omega)}^{1, p}} \Psi_{1}(u)=+\infty .
$$

Since, by Theorem 2.10, $W_{X, 0}^{1, p}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$, then by [DM, Proposition 8.10], we can characterize the Γ-limit of $\left(F_{h}\right)_{h}$ in terms of sequences, that is, fixed $u \in W_{X, 0}^{1, p}(\Omega)$, it suffices to show the following:
(a) for any $\left(u_{h}\right)_{h}$ weakly convergent to u in $W_{X, 0}^{1, p}(\Omega)$, then

$$
F(u) \leq \liminf _{h \rightarrow \infty} F_{h}\left(u_{h}\right)
$$

(b) there exists $\left(v_{h}\right)_{h}$ weakly convergent to u in $W_{X, 0}^{1, p}(\Omega)$ such that

$$
F(u)=\lim _{h \rightarrow \infty} F_{h}\left(v_{h}\right) .
$$

Let $\left(u_{h}\right)_{h}$ be weakly convergent to u in $W_{X .0}^{1, p}(\Omega)$. Then, $\left(X u_{h}\right)_{h}$ weakly converges to $X u$ in $L^{p}(\Omega)^{m}$ and (a) follows, by Lemma 3.3.

Let $v_{h}:=u$ for any $h \in \mathbb{N}$. Since $\left(f_{h}(\cdot, X u)\right)_{h}$ converges to $f(\cdot, X u)$ a.e. in Ω by hypothesis, then, by the dominated convergence theorem, the sequence $\left(F_{h}(u)\right)_{h}$ converges pointwise to $F(u)$ and (b) also follows.

Similarly, by (5) and (10), there exists $\Psi_{2}: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ such that $\Psi_{2} \leq F_{h}+G$ in $W_{X}^{1, p}(\Omega)$ for any $h \in \mathbb{N}$ and

$$
\lim _{\|u\|_{W_{X}^{1, p}(\Omega)} \rightarrow \infty} \Psi_{2}(u)=+\infty
$$

Then, since $W_{X}^{1, p}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$ by hypothesis, we can characterize the Γ-limit of $\left(F_{h}+G\right)_{h}$ in terms of sequences, in virtue of [DM, Proposition 8.10] and, since G is sequentially continuous in the weak topology of $W_{X}^{1, p}(\Omega)$, then $\left(F_{h}+G\right)_{h} \Gamma$-converges to $F+G$ in the weak topology of $W_{X}^{1, p}(\Omega)$ by the first part of the proof, and the thesis follows.

An analogous result in the strong topology of $W_{X}^{1, p}(\Omega)$ still holds true and a proof can be found in [Ma, Proposition 2.3.24].

Theorem 3.4. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, $1<p<\infty$, and let X satisfy the LIC. Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, and let $F_{h}, F: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the corresponding integral functionals, defined as

$$
F_{h}(u):=\int_{\Omega} f_{h}(x, X u(x)) d x, \quad F(u):=\int_{\Omega} f(x, X u(x)) d x
$$

for any $u \in W_{X}^{1, p}(\Omega)$ and for any $h \in \mathbb{N}$. Then, $\left(F_{h}\right)_{h}$ converges pointwise to F in $W_{X}^{1, p}(\Omega)$ if and only if $\left(F_{h}\right)_{h} \Gamma$-converges to F in the strong topology of $W_{X}^{1, p}(\Omega)$.
3.2. Γ-convergence in the strong topology of $L^{p}(\Omega)$. The first result of this section in an extension of [MPSC1, Theorem 4.11] to our class of integrands and a proof can be found in [Ma , Theorem 2.3.12].

Theorem 3.5. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let \mathcal{A} be the class of all open subsets of $\Omega, 1<p<\infty$, and let X satisfy the LIC. Let $f_{h} \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, and let $F_{h}: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ be the local functional defined as

$$
F_{h}(u, A):= \begin{cases}\int_{A} f_{h}(x, X u(x)) d x & \text { if } A \in \mathcal{A}, u \in W_{X}^{1, p}(A) \tag{51}\\ \infty & \text { otherwise }\end{cases}
$$

Then, there exist local functionals $F: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ and $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}\right.$, a_{1}) such that, up to subsequences,

$$
\begin{equation*}
F(\cdot, A)=\Gamma\left(L^{p}(\Omega)\right)-\lim _{h \rightarrow \infty} F_{h}(\cdot, A) \text { for each } A \in \mathcal{A} \tag{52}
\end{equation*}
$$

and F admits the following representation:

$$
F(u, A):= \begin{cases}\int_{A} f(x, X u(x)) d x & \text { if } A \in \mathcal{A}, u \in W_{X}^{1, p}(A) \tag{53}\\ \infty & \text { otherwise }\end{cases}
$$

Following [DM, Theorem 21.1], using [MPSC1, Theorem 4.16] instead of [DM, Theorem 19.6], we get the Γ-convergence for functionals with boundary data. A proof can be found in [Ma, Theorem 2.3.23].

Theorem 3.6. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let \mathcal{A} be the class of all open subsets of $\Omega, 1<p<\infty$, and let X satisfy the LIC. Let $f_{h} \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let $F_{h}: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ be the functional in (51), and, with a little abuse of notation, denote

$$
F_{h}(u):=F_{h}(u, \Omega) \quad \text { for any } u \in L^{p}(\Omega)
$$

Fix $\varphi \in W_{X}^{1, p}(\Omega)$ and assume that $\left(F_{h}\right)_{h} \Gamma$-converges in the strong topology of $L^{p}(\Omega)$ to F satisfying (53), with $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$. Then, $\left(F_{h}+\mathbb{1}_{\varphi}\right)_{h} \Gamma$-converges to $F+\mathbb{1}_{\varphi}$ in the strong topology of $L^{p}(\Omega)$.

We conclude this section by providing a Γ-convergence result of perturbed functionals in the strong topology of $L^{p}(\Omega)$.

Theorem 3.7. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let \mathcal{A} be the class of all open subsets of Ω, let $1<p<\infty$, and let X satisfy the LIC. Let $f_{h}, f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$ and F_{h}, F be the functionals in (51) and (53) satisfying (52). For any fixed $\Phi \in$ $L^{p}(\Omega)^{m}$, let $G_{h}^{\Phi}: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ be the local functional defined as

$$
G_{h}^{\Phi}(u, A):= \begin{cases}\int_{A} f_{h}(x, X u(x)+\Phi(x)) d x & \text { if } A \in \mathcal{A}, u \in W_{X}^{1, p}(A) \\ \infty & \text { otherwise }\end{cases}
$$

Then, there exists $G^{\Phi}: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ such that, up to subsequences,

$$
\begin{equation*}
G^{\Phi}(\cdot, A)=\Gamma\left(L^{p}(\Omega)\right)-\lim _{h \rightarrow \infty} G_{h}^{\Phi}(\cdot, A) \text { for each } A \in \mathcal{A} \tag{54}
\end{equation*}
$$

and G^{Φ} admits the following representation:

$$
G^{\Phi}(u, A):= \begin{cases}\int_{A} f(x, X u(x)+\Phi(x)) d x & \text { if } A \in \mathcal{A}, u \in W_{X}^{1, p}(A) \\ \infty & \text { otherwise }\end{cases}
$$

Before giving the proof of Theorem 3.7, let us recall the following classical result. For the reader's convenience, we remind that a proof can be found in [Ma2, Lemma 2.3.32] and follows the technique of [Da , Proposition 2.32].

Lemma 3.8. Let $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$. Then, there exists a nonnegative constant c_{2}, depending only on p and c_{1}, such that

$$
\begin{equation*}
\left|f\left(x, \eta_{1}\right)-f\left(x, \eta_{2}\right)\right| \leq c_{2}\left|\eta_{1}-\eta_{2}\right|\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|+a(x)^{1 / p}\right)^{p-1} \tag{55}
\end{equation*}
$$

where $a(x):=a_{0}(x)+a_{1}(x)$, for a.e. $x \in \Omega$, for each $\eta_{1}, \eta_{2} \in \mathbb{R}^{m}$.
Proof of Theorem 3.7. Fix $\Phi \in L^{p}(\Omega)^{m}$ and, for each $h \in \mathbb{N}$, define $g_{h}^{\Phi}(x, \eta):=$ $f_{h}(x, \eta+\Phi(x))$ a.e. $x \in \Omega$ and for any $\eta \in \mathbb{R}^{m}$. Then,

$$
\begin{equation*}
g_{h}^{\Phi} \in I_{m, p}\left(\Omega, c_{0}, c_{3}, \tilde{a}_{0}, \tilde{a}_{1}\right) \tag{56}
\end{equation*}
$$

with $\tilde{a}_{0}(x):=a_{0}(x)-c_{0}|\Phi(x)|^{p}$ and $\tilde{a}_{1}(x):=a_{1}(x)+c_{3}|\Phi(x)|^{p}$, for a suitable positive constant c_{3} (depending only on p and c_{1}).

By Theorem 3.5, there exist $G^{\Phi}: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ and

$$
\begin{equation*}
g^{\Phi} \in I_{m, p}\left(\Omega, c_{0}, c_{3}, \tilde{a}_{0}, \tilde{a}_{1}\right) \tag{57}
\end{equation*}
$$

such that, up to subsequences, (54) holds and G^{Φ} can be represented as

$$
G^{\Phi}(u, A):= \begin{cases}\int_{A} g^{\Phi}(x, X u(x)) d x & \text { if } A \in \mathcal{A}, u \in W_{X}^{1, p}(A) \\ \infty & \text { otherwise }\end{cases}
$$

To conclude, we show that

$$
\begin{equation*}
G^{\Phi}(u, A)=\int_{A} f(x, X u(x)+\Phi(x)) d x \tag{58}
\end{equation*}
$$

for each $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$. We divide the proof of (58) into three steps.
Step 1 . Let us first prove the existence of a positive constant c_{4}, depending only on $c_{0}, c_{1}, c_{2}, a_{0}, a_{1}$, and p, such that

$$
\begin{align*}
\mid G^{\Phi_{1}}(u, A) & -G^{\Phi_{2}}(u, A) \mid \\
& \leq c_{4}\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{p}}\left(\|X u\|_{L^{p}}+\left\|\Phi_{1}\right\|_{L^{p}}+\left\|\Phi_{2}\right\|_{L^{p}}+1\right)^{p-1} \tag{59}
\end{align*}
$$

for any $\Phi_{1}, \Phi_{2} \in L^{p}(\Omega)^{m}, A \in \mathcal{A}$, and $u \in W_{X}^{1, p}(A)$, where all norms above refer to A.

Fix $\Phi_{1}, \Phi_{2} \in L^{p}(\Omega)^{m}, A \in \mathcal{A}$, and $u \in W_{X}^{1, p}(A)$. By (54) and [DM, Proposition 8.1], there exists a sequence $\left(u_{h}\right)_{h} \subset L^{p}(\Omega) \cap W_{X}^{1, p}(A)$, strongly convergent to u in $L^{p}(\Omega)$, such that

$$
\begin{equation*}
G^{\Phi_{2}}(u, A)=\lim _{h \rightarrow \infty} G_{h}^{\Phi_{2}}\left(u_{h}, A\right) \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{\Phi_{1}}(u, A) \leq \liminf _{h \rightarrow \infty} G_{h}^{\Phi_{1}}\left(u_{h}, A\right) \tag{61}
\end{equation*}
$$

Then, by (55), (56), and Hölder's inequality, there exist positive constants α_{1}, α_{2}, depending only $c_{0}, c_{1}, c_{2}, a_{0}, a_{1}$, and p, such that

$$
\begin{aligned}
G_{h}^{\Phi_{1}}\left(u_{h}, A\right) & -G_{h}^{\Phi_{2}}\left(u_{h}, A\right) \\
& \leq \int_{A}\left|f_{h}\left(x, X u_{h}+\Phi_{1}\right)-f_{h}\left(x, X u_{h}+\Phi_{2}\right)\right| d x \\
& \leq \alpha_{1}\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{p}}\left(\left\|X u_{h}\right\|_{L^{p}}+\left\|\Phi_{1}\right\|_{L^{p}}+\left\|\Phi_{2}\right\|_{L^{p}}+1\right)^{p-1} \\
& \leq \alpha_{2}\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{p}}\left(G_{h}^{\Phi_{2}}\left(u_{h}, A\right)^{1 / p}+\left\|\Phi_{1}\right\|_{L^{p}}+\left\|\Phi_{2}\right\|_{L^{p}}+1\right)^{p-1}
\end{aligned}
$$

and by (57), (60), and (61), there exists a positive constant c_{4}, depending only on $c_{0}, c_{1}, c_{2}, a_{0}, a_{1}$, and p, such that

$$
\begin{aligned}
G^{\Phi_{1}}(u, A) & -G^{\Phi_{2}}(u, A) \\
& \leq \alpha_{2}\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{p}}\left(G^{\Phi_{2}}(u, A)^{1 / p}+\left\|\Phi_{1}\right\|_{L^{p}}+\left\|\Phi_{2}\right\|_{L^{p}}+1\right)^{p-1} \\
& \leq c_{4}\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{p}}\left(\|X u\|_{L^{p}}+\left\|\Phi_{1}\right\|_{L^{p}}+\left\|\Phi_{2}\right\|_{L^{p}}+1\right)^{p-1}
\end{aligned}
$$

By exchanging the roles of Φ_{1} and Φ_{2}, we obtain (59).
Step 2. Let us prove (58), when Φ has the form

$$
\begin{equation*}
\Phi(x)=C(x) \tilde{\Phi}(x) \quad \text { a.e. } x \in \Omega \tag{63}
\end{equation*}
$$

for some $\tilde{\Phi} \in L^{p}(\Omega)^{n}$, where $C(x)$ denotes the coefficient matrix of the X-gradient (4). Let us divide this step into three cases.

Case 1. Suppose $\tilde{\Phi}(x)=\xi \in \mathbb{R}^{n}$ constant and denote $\Phi_{\xi}(x):=C(x) \xi$. If $u_{\xi}(x):=\langle\xi, x\rangle$ for any $x \in \mathbb{R}^{n}$, then

$$
G_{h}^{\Phi_{\xi}}(u, A)=F_{h}\left(u+u_{\xi}, A\right)
$$

and by (52), (53), and (54), we get

$$
\begin{equation*}
G^{\Phi_{\xi}}(u, A)=F\left(u+u_{\xi}, A\right)=\int_{A} f\left(x, X u(x)+\Phi_{\xi}(x)\right) d x \tag{64}
\end{equation*}
$$

for any $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$.
Case 2. Suppose $\tilde{\Phi}$ piecewise constant, i.e., there exist $\xi^{1}, \ldots, \xi^{N} \in \mathbb{R}^{n}$ and A_{1}, \ldots, A_{N} pairwise disjoint open sets such that $\left|\Omega \backslash \cup_{i=1}^{N} A_{i}\right|=0$ and

$$
\tilde{\Phi}(x):=\sum_{i=1}^{N} \chi_{A_{i}}(x) \xi^{i} .
$$

Fix $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$ and denote $\Phi_{\xi^{i}}(x):=C(x) \xi^{i}$. Since $G^{\Phi}(u, \cdot)$ is a measure, then, by additivity on pairwise disjoint open sets and locality, it holds that

$$
\begin{equation*}
G^{\Phi}(u, A)=\sum_{i=1}^{N} G^{\Phi}\left(u, A \cap A_{i}\right)=\sum_{i=1}^{N} G^{\Phi_{\xi^{i}}}\left(u, A \cap A_{i}\right) \tag{65}
\end{equation*}
$$

Let $\tilde{u}(x):=\langle\tilde{\Phi}(x), x\rangle$ for any $x \in \mathbb{R}^{n}$. Then,

$$
\tilde{u}(x)=u_{\xi^{i}}(x)=\left\langle\xi^{i}, x\right\rangle \quad \text { a.e. } x \in A \cap A_{i}
$$

for any $i=1, \ldots, N$ and, by locality of F,

$$
\begin{equation*}
F\left(u+\tilde{u}, A \cap A_{i}\right)=F\left(u+u_{\xi^{i}}, A \cap A_{i}\right) . \tag{66}
\end{equation*}
$$

Therefore, by (53), (64), (65), (66), and additivity of F on pairwise disjoint open sets, we get

$$
\begin{align*}
G^{\Phi}(u, A) & =\sum_{i=1}^{N} G^{\Phi_{\xi^{i}}}\left(u, A \cap A_{i}\right)=\sum_{i=1}^{N} F\left(u+u_{\xi^{i}}, A \cap A_{i}\right) \\
& =\sum_{i=1}^{N} F\left(u+\tilde{u}, A \cap A_{i}\right)=F(u+\tilde{u}, A) \tag{67}\\
& =\int_{A} f(x, X u(x)+\Phi(x)) d x
\end{align*}
$$

for any $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$.
Case 3. Let Φ have the form (63), let $\left(\tilde{\Phi}_{j}\right)_{j}$ be a sequence of piecewise constant functions converging to $\tilde{\Phi}$ strongly in $L^{p}(\Omega)^{n}$, as $j \rightarrow \infty$, and define $\Phi_{j}(x):=$ $C(x) \tilde{\Phi}_{j}(x)$ a.e. $x \in \Omega$. Since

$$
\begin{equation*}
C \in L^{\infty}(\Omega)^{m n} \tag{68}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\Phi_{j}\right)_{j} \text { strongly converges to } \Phi \text { in } L^{p}(\Omega)^{m} \text {. } \tag{69}
\end{equation*}
$$

If $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$, then by (59),

$$
\begin{equation*}
G^{\Phi_{j}}(u, A) \rightarrow G^{\Phi}(u, A) \quad \text { as } j \rightarrow \infty . \tag{70}
\end{equation*}
$$

and by (67) and Hölder's inequality, it holds that

$$
\begin{align*}
\mid G^{\Phi_{j}}(u, A) & -\int_{A} f(x, X u+\Phi) d x \mid \\
& \leq \int_{A}\left|f\left(x, X u+\Phi_{j}\right)-f(x, X u+\Phi)\right| d x \tag{71}\\
& \leq \alpha_{1}\left\|\Phi_{j}-\Phi\right\|_{L^{p}}\left(\|X u\|_{L^{p}}+\left\|\Phi_{j}\right\|_{L^{p}}+\|\Phi\|_{L^{p}}+1\right)^{p-1}
\end{align*}
$$

where α_{1} is the positive constant given in (62). Therefore, (58) follows from (69), (70), and (71).

Step 3. Let us finally prove (58) in the general case.
Fix $\Phi \in L^{p}(\Omega)^{m}$ and $x \in \Omega_{X}$ (see Definition (1.1)). Then, in virtue of [MPSC1, Lemma 3.3], there exists $\tilde{\Phi}(x) \in \mathbb{R}^{n}$ such that

$$
C(x) \tilde{\Phi}(x)=\Phi(x)
$$

and $\tilde{\Phi}$ can be represented as

$$
\begin{equation*}
\tilde{\Phi}(x)=C(x)^{T} B(x)^{-1} \Phi(x), \tag{72}
\end{equation*}
$$

where $B(x)$ is the $m \times m$ symmetric invertible matrix defined by

$$
B(x):=C(x) C(x)^{T} .
$$

Since $B(x)$ is positive semidefinite for any $x \in \Omega$ and it is positive definite if and only if $x \in \Omega_{X}$, it holds that

$$
\begin{equation*}
\left|\Omega \backslash \Omega_{X}\right|:=\left|\mathcal{N}_{X}\right|=0 \tag{73}
\end{equation*}
$$

and

$$
\Omega_{X}=\{x \in \Omega: \operatorname{det} B(x)>0\}, \quad \mathcal{N}_{X}=\{x \in \Omega: \operatorname{det} B(x)=0\}
$$

For any $\varepsilon>0$, define

$$
\Omega_{\varepsilon}:=\{x \in \Omega: \operatorname{det} B(x)>\varepsilon\}
$$

Since $B \in L^{\infty}(\Omega)^{m^{2}}$, then by Cramer's rule and (68) and (72),

$$
\begin{equation*}
B^{-1} \in L^{\infty}\left(\Omega_{\varepsilon}\right)^{m^{2}} \quad \text { and } \quad \tilde{\Phi} \in L^{p}\left(\Omega_{\varepsilon}\right)^{n} \tag{74}
\end{equation*}
$$

Let $\tilde{\Phi}_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{n}$ and $\Phi_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{m}$ be, respectively, defined by

$$
\tilde{\Phi}_{\varepsilon}(x):= \begin{cases}\tilde{\Phi}(x) & \text { if } x \in \Omega_{\varepsilon} \\ 0 & \text { if } x \in \Omega \backslash \Omega_{\varepsilon}\end{cases}
$$

and

$$
\Phi_{\varepsilon}(x):=C(x) \tilde{\Phi}_{\varepsilon}(x)= \begin{cases}\Phi(x) & \text { if } x \in \Omega_{\varepsilon} \\ 0 & \text { if } x \in \Omega \backslash \Omega_{\varepsilon}\end{cases}
$$

By (74),

$$
\begin{equation*}
\tilde{\Phi}_{\varepsilon} \in L^{p}(\Omega)^{n} \tag{75}
\end{equation*}
$$

and by (73) and Hölder's inequality, it follows that

$$
\begin{equation*}
\Phi_{\varepsilon} \rightarrow \Phi \quad \text { strongly in } L^{p}(\Omega)^{m} \text { as } \varepsilon \rightarrow 0 \tag{76}
\end{equation*}
$$

If $A \in \mathcal{A}$ and $u \in W_{X}^{1, p}(A)$, then, by (55), (59), (75), by Hölder's inequality and the second step of the proof, there exists a positive constant c_{5}, depending only on $c_{0}, c_{1}, c_{2}, a_{0}, a_{1}$, and p, such that

$$
\begin{aligned}
\mid G^{\Phi}(u, A) & -\int_{A} f(x, X u+\Phi) d x \mid \\
& \leq\left|G^{\Phi}(u, A)-G^{\Phi_{\varepsilon}}(u, A)\right|+\left|G^{\Phi_{\varepsilon}}(u, A)-\int_{A} f(x, X u+\Phi) d x\right| \\
& \leq c_{5}\left\|\Phi_{\varepsilon}-\Phi\right\|_{L^{p}(A)^{m}}\left(\|X u\|_{L^{p}(A)^{m}}+\left\|\Phi_{\varepsilon}\right\|_{L^{p}(A)^{m}}+\|\Phi\|_{L^{p}(A)^{m}}+1\right)^{p-1}
\end{aligned}
$$

and (58) follows by (76), as $\varepsilon \rightarrow 0$.
4. Convergence of minima, minimizers, and momenta.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
4.1. Convergence of minima and minimizers. By Theorem 3.5, there exist $F: L^{p}(\Omega) \times \mathcal{A} \rightarrow \mathbb{R} \cup\{\infty\}$ and $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$ such that, up to subsequences,

$$
F(\cdot, A)=\Gamma\left(L^{p}(\Omega)\right)-\lim _{h \rightarrow \infty} F_{h}(\cdot, A) \quad \text { for each } A \in \mathcal{A}
$$

and F admits the representation (53). If, in addition, the sequence $\left(F_{h}(\cdot, A)\right)_{h}$ is equicoercive in $L^{p}(\Omega)$ (see [DM, Definition 7.6]), then by [DM, Theorem 7.8], $F(\cdot, A)$ attains its minimum in $L^{p}(\Omega)$ and

$$
\min _{u \in L^{p}(\Omega)} F(u, A)=\lim _{h \rightarrow \infty} \inf _{u \in L^{p}(\Omega)} F_{h}(u, A) \quad \text { for each } A \in \mathcal{A}
$$

Let us now study the asymptotic behavior of minima and minimizers of problems (1). We first need two preliminary results, namely Theorem 4.1 and Lemma 4.3. The first result can be proved as [DM, Theorem 2.6] and [DM, Theorem 2.8], and a proof can be found in [Ma, Theorem 2.3.27]. The second one can be instead proved following [DM, Proposition 2.10] and [DM, Proposition 2.11].

THEOREM 4.1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, let $1<p<\infty$, and let X satisfy the LIC and conditions (H1), (H2), and (H3). Let $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let g satisfy (10), and let $F, G: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the functionals defined, respectively, by

$$
F(u):=\int_{\Omega} f(x, X u(x)) d x \quad \text { and } \quad G(u):=\int_{\Omega} g(x, u(x)) d x .
$$

For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, let $\Xi, \Xi^{\varphi}: W_{X}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be, respectively, defined by

$$
\Xi:=F+G \quad \text { and } \quad \Xi^{\varphi}:=F+G+\mathbb{1}_{\varphi} .
$$

Then, the minimum problems

$$
\begin{equation*}
\min _{u \in W_{X}^{1, p}(\Omega)} \Xi(u) \tag{77}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{u \in W_{X, \varphi}^{1, p}(\Omega)} \Xi^{\varphi}(u) \tag{78}
\end{equation*}
$$

have at least a solution, provided that

$$
\begin{equation*}
0<d_{0} \leq d_{1} \tag{79}
\end{equation*}
$$

and (11) holds, respectively, where d_{0} and d_{1} are the constants in (10). If, in addition,
(i) $g(x, \cdot)$ is strictly convex on \mathbb{R} for a.e. $x \in \Omega$, then both solutions in (77) and (78) are unique;
(ii) $f(x, \cdot)$ is strictly convex on \mathbb{R}^{m} and $g(x, \cdot)$ is convex on \mathbb{R} for a.e. $x \in \Omega$; then the solution in (78) is unique.
Moreover,

$$
\begin{equation*}
\min _{u \in W_{X}^{1, p}(\Omega)} \Xi(u)=\inf _{u \in \mathbf{C}^{1}(\Omega) \cap W_{X}^{1, p}(\Omega)} \Xi(u) \tag{80}
\end{equation*}
$$

REMARK 4.2. Observe that, arguing as in [DM, Corollary 2.9], also a linear functional $G: L^{p}(\Omega) \rightarrow \mathbb{R}, G(u):=\int_{\Omega} g(x) u(x) d x$, for a given function $g \in L^{p^{\prime}}(\Omega)$, is allowed in minimization problem (78).

Lemma 4.3. Let Ω be a bounded open subset of \mathbb{R}^{n}, let $1<p<\infty$, and let X satisfy the LIC and conditions (H1), (H2), and (H3). For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, let $\Psi^{\varphi}: L^{p}(\Omega) \rightarrow[0, \infty]$ be defined by

$$
\Psi^{\varphi}(u):= \begin{cases}\int_{\Omega}|X u(x)|^{p} d x & \text { if } u \in W_{X, \varphi}^{1, p}(\Omega) \tag{81}\\ \infty & \text { otherwise }\end{cases}
$$

Then, Ψ^{φ} is coercive and lower semicontinuous in the strong topology of $L^{p}(\Omega)$.
We are now in position to prove Theorem 1.2.
Proof of Theorem 1.2. (i) By (78), both functionals Ξ_{h}^{φ} and Ξ^{φ} attain their minima in $L^{p}(\Omega)$ and, by Theorem 3.6,

$$
\left(F_{h}+\mathbb{1}_{\varphi}\right)_{h} \quad \Gamma \text {-converges to } \quad F+\mathbb{1}_{\varphi}
$$

in the strong topology of $L^{p}(\Omega)$. Moreover, since G is continuous in the strong topology of $L^{p}(\Omega)$ (it is readily seen, proceeding exactly as in the proof of Theorem 4.1), then

$$
\left(\Xi_{h}^{\varphi}\right)_{h} \quad \Gamma \text {-converges to } \quad \Xi^{\varphi}
$$

in the strong topology of $L^{p}(\Omega)$, in virtue of [DM, Proposition 6.21].
Let Ψ^{φ} be the functional defined in (81). By (5), (10), and Lemma 2.18, there exist a positive constant k_{3}, depending on c_{0}, d_{0}, k_{1}, and a positive constant k_{4}, depending on a_{0}, b_{0}, k_{2}, such that

$$
\begin{equation*}
\Xi_{h}^{\varphi}(u) \geq k_{3} \Psi^{\varphi}(u)-k_{4} \quad \text { for any } u \in L^{p}(\Omega) \text { for any } h \in \mathbb{N} \tag{82}
\end{equation*}
$$

where k_{1}, k_{2} are the constants in Lemma 2.18. Then, by [DM, Proposition 7.7], $\left(\Xi_{h}^{\varphi}\right)_{h}$ is equicoercive in the strong topology of $L^{p}(\Omega)$, and, by [DM, Theorem 7.8], Ξ^{φ} is also coercive and (13) follows.
(ii) Let $\left(u_{h}\right)_{h}$ be a sequence of minimizers of $\left(\Xi_{h}^{\varphi}\right)_{h}$. Without loss of generality, we may assume $\left(u_{h}\right)_{h} \subset W_{X, \varphi}^{1, p}(\Omega)$. As in (82),

$$
\infty>\Xi_{h}^{\varphi}\left(u_{h}\right) \geq k_{3}\left\|u_{h}\right\|_{W_{X}^{1, p}(\Omega)}^{p}-k_{4} \quad \text { for any } h \in \mathbb{N}
$$

i.e., $\left(u_{h}\right)_{h}$ in bounded in $W_{X, \varphi}^{1, p}(\Omega)$ and, arguing as in the proof of Lemma 4.3, there exists $\bar{u} \in W_{X, \varphi}^{1, p}(\Omega)$ such that, up to subsequences, (14) holds. Finally, by [DM, Corollary 7.20], we get (15).
4.2. Convergence of momenta. We now deal with the convergence of the momenta associated with functionals $\left(F_{h}\right)_{h}$. The results contained in this section are inspired by [ADMZ2] and they partially extend those results to integral functionals depending on vector fields.

Let $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, a_{0}, a_{1}\right)$, let $f(x, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ be of class $\mathbf{C}^{1}\left(\mathbb{R}^{m}\right)$ for a.e. $x \in \Omega$, and denote by $\nabla_{\eta} f(x, \eta)$ its gradient at $\eta \in \mathbb{R}^{m}$.

By Lemma 3.8, there exists a nonnegative constant c_{2}, depending only on p and c_{1}, such that

$$
\left|\nabla_{\eta} f(x, \eta)\right| \leq c_{2}\left(2|\eta|+\left(a_{0}(x)+a_{1}(x)\right)^{1 / p}\right)^{p-1} \quad \text { for a.e. } x \in \Omega \forall \eta \in \mathbb{R}^{m}
$$

Then, functional \mathcal{F} in (17) is of class $\mathbf{C}^{1}\left(L^{p}(\Omega)^{m}\right)$ and its Gateaux derivative $\partial_{\Phi} \mathcal{F}$: $L^{p}(\Omega)^{m} \rightarrow L^{p^{\prime}}(\Omega)^{m}$ is given by

$$
\begin{equation*}
\partial_{\Phi} \mathcal{F}(\Phi)(x)=\nabla_{\eta} f(x, \Phi(x)) \quad \text { for a.e. } x \in \Omega \tag{83}
\end{equation*}
$$

The main results of this section are Theorem 1.3 and Corollary 1.4. Since the proof of Theorem 1.3 is an adaptation of a technique introduced in [DMFT, Lemma 4.11] and [ADMZ2, Theorem 4.5], we omit it. For an explicit proof, see, e.g., [Ma2, Theorem 3.1.6].

REMARK 4.4. We are aware that assumption (iii) in Theorem 1.3, on integrand function $f(x, \cdot)$ to be $\mathbf{C}^{1}\left(\mathbb{R}^{m}\right)$, is quite strong. Since the techniques exploited in the Euclidean setting do not seem to work in our framework, we do not know whether assumption (ii) actually implies it (see [GP, Proposition 3.5] and [ADMZ2, Theorem 2.8]). However, we will be able to prove this result in two relevant cases: the periodic homogenization in Carnot groups and the case of quadratic forms (see sections 5 and 6 below).

Proof of Corollary 1.4. Let $\left(u_{h}\right)_{h}$ be a sequence of minimizers of $\left(\Xi_{h}^{\varphi}\right)_{h}$. By Theorem 1.2, there exists a minimizer u of Ξ^{φ} such that, up to subsequences,

$$
u_{h} \rightarrow u \text { weakly in } W_{X}^{1, p}(\Omega) \text { and strongly in } L^{p}(\Omega)
$$

and

$$
\begin{equation*}
\Xi_{h}^{\varphi}\left(u_{h}\right) \rightarrow \Xi^{\varphi}(u) . \tag{84}
\end{equation*}
$$

Since G is continuous in the strong topology of $L^{p}(\Omega)$, then

$$
G\left(u_{h}\right) \rightarrow G(u)
$$

and, by (84),

$$
\begin{equation*}
\mathcal{F}_{h}\left(X u_{h}\right)=F_{h}\left(u_{h}\right) \rightarrow F(u)=\mathcal{F}(X u) \tag{85}
\end{equation*}
$$

Then, the thesis follows by Theorem 1.3.
5. Convergence of minimizers and momenta in the case of homogenization in Carnot groups. We are going to study the convergence of momenta for a Γ-convergent sequence of functionals in the case of the periodic homogenization in Carnot groups. The asymptotic behavior for the periodic homogenization of sequences of functionals and differential operators in Carnot groups has been the object of an intensive study in the last two decades. Here, for the sake of simplicity, we will restrict to the case of periodic homogenization in the setting of Heisenberg groups, which turn out to be the simplest Carnot groups.

Let us recall that the s-dimensional Heisenberg group $\mathbb{H}^{s}:=\left(\mathbb{R}^{n}, \cdot\right)$, with $n=$ $2 s+1=m+1$ and $s \geq 1$ integer, is a Lie group with respect to the group law

$$
x \cdot y:=\left(x_{1}+y_{1}, \ldots, x_{m}+y_{m}, x_{m+1}+y_{m+1}+\omega(x, y)\right),
$$

where

$$
\omega(x, y):=\frac{1}{2} \sum_{i=1}^{s}\left(x_{i} y_{s+i}-y_{i} x_{s+i}\right)
$$

if $x=\left(x_{1}, \ldots, x_{m+1}\right)$ and $y=\left(y_{1}, \ldots, y_{m+1}\right)$ are in \mathbb{R}^{n}. Moreover, \mathbb{H}^{s} can be equipped with a one-parameter family of intrinsic dilations $\delta_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(\lambda>0)$, defined as

$$
\delta_{\lambda}(x):=\left(\lambda x_{1}, \ldots, \lambda x_{m}, \lambda^{2} x_{m+1}\right) \text { if } x=\left(x_{1}, \ldots, x_{m}, x_{m+1}\right),
$$

which are also automorphisms of the group. A standard basis of the Lie algebra associated to \mathbb{H}^{s} is given by the following family of n left-invariant vector fields:

$$
X_{j}:= \begin{cases}\partial_{j}-\frac{x_{s+j}}{2} \partial_{n} & \text { if } 1 \leq j \leq s \\ \partial_{j}+\frac{x_{j-s}}{2} \partial_{n} & \text { if } s+1 \leq j \leq m=2 s \\ \partial_{n} & \text { if } j=n=m+1\end{cases}
$$

Notice that the only nontrivial commutations among vector fields X_{j} 's are given by

$$
\begin{equation*}
\left[X_{j}, X_{s+j}\right]=X_{n} \text { for each } j=1, \ldots, s \tag{86}
\end{equation*}
$$

The family of vector fields

$$
\begin{equation*}
X:=\left(X_{1}, \ldots, X_{m}\right) \tag{87}
\end{equation*}
$$

is called a horizontal gradient of the Heisenberg group \mathbb{H}^{s}. It is immediate to see that X satisfies the LIC and, by (86), the Hörmander condition. Thus, by Remark 2.8 (i), the horizontal gradient X satisfies assumptions (H1), (H2), and (H3).

Since \mathbb{H}^{s} is a homogeneous Lie group, it is possible to introduce two natural notions of intrinsic periodicity and linearity, with respect to its algebraic structure (see [DDMM, Definition 2.3]).

Definition 5.1. A function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be H-periodic whenever

$$
\begin{equation*}
g(2 k \cdot x)=g(x) \quad \text { for any } x \in \mathbb{R}^{n} \text { for any } k \in \mathbb{Z}^{n} \tag{88}
\end{equation*}
$$

Moreover, a function $l: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be H-linear if

$$
l(x \cdot y)=l(x)+l(y) \quad \text { and } \quad l\left(\delta_{\lambda}(x)\right)=\lambda l(x)
$$

for each $x, y \in \mathbb{R}^{n}$ and $\lambda>0$.
It is well known that each H-linear function $l: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a unique $\eta \in \mathbb{R}^{m}$ in such a way that

$$
\begin{equation*}
l(x)=l_{\eta}(x):=\left\langle\eta, \pi_{m}(x)\right\rangle \tag{89}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ and $\pi_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote, respectively, the scalar product on \mathbb{R}^{m} and the projection map

$$
\pi_{m}(x):=\left(x_{1}, \ldots, x_{m}\right) \quad \text { if } x=\left(x_{1}, \ldots, x_{m+1}\right) \in \mathbb{R}^{n}
$$

Definition 5.2. A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be H-affine if there exist $\eta \in \mathbb{R}^{m}$ and $a \in \mathbb{R}$ such that

$$
u(x)=l_{\eta}(x)+a \quad \text { for each } x \in \mathbb{R}^{n}
$$

Let $X=\left(X_{1}, \ldots, X_{m}\right)$ denote the horizontal gradient (87) and fix $\eta \in \mathbb{R}^{m}$. One can prove that, for any H-affine function u,

$$
\begin{equation*}
X u(x)=\eta \quad \text { if and only if } \quad u(x)=l_{\eta}(x)+a \tag{90}
\end{equation*}
$$

for some $a \in \mathbb{R}$ and for any $x \in \mathbb{R}^{n}$ (see, e.g., [DDMM, Lemma 3.1]).
Let us recall a Γ-convergence result for the periodic homogenization of a sequence of integral functionals in \mathbb{H}^{s}.

Theorem 5.3 (see [DDMM, Theorem 5.2]). Let \mathcal{A}_{0} be the class of all open bounded subsets of $\mathbb{R}^{n}, 1<p<\infty$, and $f \in I_{m, p}\left(\mathbb{R}^{n}, c_{0}, c_{1}, 0,1\right)$, which satisfy

$$
\begin{equation*}
f(\cdot, \eta): \mathbb{R}^{n} \rightarrow[0, \infty) \text { is } H \text {-periodic for every } \eta \in \mathbb{R}^{m} . \tag{91}
\end{equation*}
$$

Let $F_{\varepsilon}: L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right) \times \mathcal{A}_{0} \rightarrow[0, \infty]$ be the local functional defined as

$$
F_{\varepsilon}(u, A):= \begin{cases}\int_{A} f\left(\delta_{1 / \varepsilon}(x), X u(x)\right) d x & \text { if } A \in \mathcal{A}_{0}, u \in W_{X}^{1, p}(A), \tag{92}\\ \infty & \text { otherwise } .\end{cases}
$$

Then, there exist a local functional $F_{0}: L_{\text {loc }}^{p}\left(\mathbb{R}^{n}\right) \times \mathcal{A}_{0} \rightarrow[0, \infty]$ and a convex function $f_{0}: \mathbb{R}^{m} \rightarrow[0, \infty)$, not depending on x and satisfying

$$
c_{0}|\eta|^{p} \leq f_{0}(\eta) \leq c_{1}|\eta|^{p}+1 \quad \text { for any } \eta \in \mathbb{R}^{m},
$$

such that, up to subsequences,

$$
\begin{equation*}
F_{0}(\cdot, A)=\Gamma\left(L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right)\right)-\lim _{h \rightarrow \infty} F_{\varepsilon_{h}}(\cdot, A) \text { for each } A \in \mathcal{A}_{0} \tag{93}
\end{equation*}
$$

for any infinitesimal sequence $\left(\varepsilon_{h}\right)_{h}$, and F_{0} can be represented as

$$
F_{0}(u, A):= \begin{cases}\int_{A} f_{0}(X u(x)) d x & \text { if } A \in \mathcal{A}_{0}, u \in W_{X}^{1, p}(A) \tag{94}\\ \infty & \text { otherwise } .\end{cases}
$$

We are going to prove the following regularity result for the integrand function f_{0} which represents the Γ-limit. It is an extension to functionals depending on vector fields of [GP, Proposition 3.5], when $X=D$, and of [ADMZ2, Theorem 2.8], which applies to a more general setting.

Proposition 5.4. Under the hypotheses of Theorem 5.3, suppose that

$$
\begin{equation*}
\mathbb{R}^{m} \ni \eta \mapsto f(x, \eta) \text { belongs to } \mathbf{C}^{1}\left(\mathbb{R}^{m}\right) \text { for a.e. } x \in \Omega \tag{95}
\end{equation*}
$$

and, fixed $0 \leq \alpha \leq \min \{1, p-1\}$, that there exists a positive constant \bar{c} such that

$$
\begin{equation*}
\left|\nabla_{\eta} f\left(x, \eta_{1}\right)-\nabla_{\eta} f\left(x, \eta_{2}\right)\right| \leq \bar{c}\left|\eta_{1}-\eta_{2}\right|^{\alpha}\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|+1\right)^{p-1-\alpha} \tag{96}
\end{equation*}
$$

a.e. $x \in \Omega$, for any $\eta_{1}, \eta_{2} \in \mathbb{R}^{m}$. Then, $f_{0} \in \mathbf{C}^{1}\left(\mathbb{R}^{m}\right)$.

Proof. We follow the same strategy of [GP, Proposition 3.5].
Let $f_{h}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow[0, \infty)$ be the function

$$
\begin{equation*}
f_{h}(y, \eta):=f\left(\delta_{1 / \varepsilon_{h}}(y), \eta\right) \quad \text { for any } y \in \mathbb{R}^{n}, \eta \in \mathbb{R}^{m}, h \in \mathbb{N} \tag{97}
\end{equation*}
$$

and denote B_{1} the unit ball in \mathbb{R}^{n} centered at 0 . For any fixed $\eta \in \mathbb{R}^{m}$, let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the H-affine function (89), that is,

$$
u(y)=l_{\eta}(y) \quad \text { for any } y \in \mathbb{R}^{n}
$$

If $\left(u_{h}\right)_{h}$ is a recovery sequence for u, then, by (93) and (94),

$$
\begin{equation*}
u_{h} \rightarrow l_{\eta} \text { strongly in } L^{p}\left(B_{1}\right) \tag{98}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0}\left(l_{\eta}, B_{1}\right)=f_{0}(\eta)\left|B_{1}\right|=\lim _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, B_{1}\right) \tag{99}
\end{equation*}
$$

By (99) and $\left(I_{3}\right),\left(X u_{h}\right)_{h}$ is bounded in $L^{p}\left(B_{1}\right)^{m}$ and, by (55),

$$
\left|\nabla_{\eta} f_{h}\left(y, X u_{h}(y)\right)\right| \leq c_{2}\left(2\left|X u_{h}(y)\right|+1\right)^{p-1}
$$

for each $h \in \mathbb{N}$ and for a.e. $y \in B_{1}$. Then, $\left(\nabla_{\eta} f_{h}\left(\cdot, X u_{h}\right)\right)_{h}$ is bounded in $L^{p^{\prime}}\left(B_{1}\right)^{m}$ and there exists $\psi \in \mathbb{R}^{m}$ such that, up to subsequences,

$$
\begin{equation*}
\frac{1}{\left|B_{1}\right|} \int_{B_{1}} \nabla_{\eta} f_{h}\left(y, X u_{h}(y)\right) d y \rightarrow \psi \tag{100}
\end{equation*}
$$

Let $\left(t_{j}\right)_{j}$ be a decreasing infinitesimal sequence. By the convexity of f_{h} in the second variable,

$$
\begin{align*}
\int_{B_{1}} f_{h}\left(y, X u_{h}(y)+t_{j} \zeta\right) & -f_{h}\left(y, X u_{h}(y)\right) d y \\
& \leq t_{j} \int_{B_{1}}\left\langle\nabla_{\eta} f_{h}\left(y, X u_{h}(y)+t_{j} \zeta\right), \zeta\right\rangle d y \tag{101}
\end{align*}
$$

for any $j \in \mathbb{N}$ and $\zeta \in \mathbb{R}^{m}$.
By the Γ - liminf inequality and (99), we can find $h_{j} \in \mathbb{N}$ such that

$$
\frac{f_{0}\left(\eta+t_{j} \zeta\right)-f_{0}(\eta)}{t_{j}}-\frac{1}{j} \leq \frac{1}{\left|B_{1}\right|} \int_{B_{1}}\left\langle\nabla_{\eta} f_{h_{j}}\left(y, X u_{h_{j}}(y)+t_{j} \zeta\right), \zeta\right\rangle d y
$$

and so

$$
\begin{align*}
\limsup _{j \rightarrow \infty} & \frac{f_{0}\left(\eta+t_{j} \zeta\right)-f_{0}(\eta)}{t_{j}} \tag{102}\\
& \leq \frac{1}{\left|B_{1}\right|} \limsup _{j \rightarrow \infty} \int_{B_{1}}\left\langle\nabla_{\eta} f_{h_{j}}\left(y, X u_{h_{j}}(y)+t_{j} \zeta\right), \zeta\right\rangle d y
\end{align*}
$$

By (96), (100), and [ADMZ2, Lemma 4.4], with $H_{j}:=\nabla_{\eta} f_{h_{j}}, \Phi_{j}:=X u_{h_{j}}, \Psi_{j}:=t_{j} \zeta$, and $\Phi \equiv 1$, we can infer that

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \int_{B_{1}} & \left\langle\nabla_{\eta} f_{h_{j}}\left(y, X u_{h_{j}}(y)+t_{j} \zeta\right), \zeta\right\rangle d y \\
& =\lim _{j \rightarrow \infty} \int_{B_{1}}\left\langle\nabla_{\eta} f_{h_{j}}\left(y, X u_{h_{j}}(y)\right), \zeta\right\rangle d y=\langle\psi, \zeta\rangle\left|B_{1}\right|
\end{aligned}
$$

By (102), for every subgradient v of the convex function f_{0} at η,

$$
\langle v, \zeta\rangle \leq \limsup _{j \rightarrow \infty} \frac{f_{0}\left(\eta+t_{j} \zeta\right)-f_{0}(\eta)}{t_{j}} \leq\langle\psi, \zeta\rangle \quad \text { for each } \zeta \in \mathbb{R}^{m}
$$

Then, $v=\psi$ and there is a unique subgradient of f_{0} at η. Therefore, f_{0} is differentiable at η for each $\eta \in \mathbb{R}^{m}$, by [Ro, Theorem 25.1]. On the other hand, by [Ro, Corollary 25.5.1], any finite convex differentiable function on an open convex set must be of class \mathbf{C}^{1}.

Corollary 5.5. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and connected open set, let $1<p<\infty$, and let X be the horizontal gradient defined in (87). Let $f \in I_{m, p}\left(\Omega, c_{0}, c_{1}, 0,1\right)$ satisfy (91), (95), and (96), let f_{h} be as in (97), let g satisfy (10) and (11), let G be the functional in (3), and with a little abuse of notation, denote

$$
F_{\varepsilon_{h}}(u):=F_{\varepsilon_{h}}(u, \Omega) \quad \text { and } \quad F_{0}(u):=F_{0}(u, \Omega) \quad \text { for any } u \in L^{p}(\Omega)
$$

where $F_{\varepsilon_{h}}$ and F_{0} are, respectively, as in (92) and (94) such that (93) holds for each infinitesimal sequence $\left(\varepsilon_{h}\right)_{h}$. For any fixed $\varphi \in W_{X}^{1, p}(\Omega)$, consider functionals $\Xi_{h}^{\varphi}, \Xi_{0}^{\varphi}: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{\infty\}$, defined by

$$
\Xi_{h}^{\varphi}:=F_{\varepsilon_{h}}+G+\mathbb{1}_{\varphi} \quad \text { and } \quad \Xi_{0}^{\varphi}:=F_{0}+G+\mathbb{1}_{\varphi}
$$

If $\left(u_{h}\right)_{h} \subset L^{p}(\Omega)$ is a sequence of minimizers of $\left(\Xi_{h}^{\varphi}\right)_{h}$, then there exists a minimum u of Ξ^{φ} such that, up to subsequences,

$$
u_{h} \rightarrow u \text { weakly in } W_{X}^{1, p}(\Omega) \text { and strongly in } L^{p}(\Omega)
$$

Moreover, the convergence of momenta also holds, that is,

$$
\begin{equation*}
\nabla_{\eta} f_{h}\left(\cdot, X u_{h}(\cdot)\right) \rightarrow \nabla_{\eta} f_{0}(X u(\cdot)) \tag{103}
\end{equation*}
$$

weakly in $L^{p^{\prime}}(\Omega)^{m}$ as $h \rightarrow \infty$.
Proof. In virtue of Remark 2.8 (i), by choosing $\Omega_{0}=\mathbb{R}^{n}$, the horizontal gradient X satisfies (H1), (H2), and (H3) as well as the LIC. By (93), $\left(F_{\varepsilon_{h}}\right)_{h} \Gamma$-converges to F_{0} in the strong topology of $L^{p}(\Omega)$. Therefore, by Proposition 5.4, we can apply Corollary 1.4 and we get the desired conclusions.
6. \boldsymbol{H}-convergence for linear operators in \boldsymbol{X}-divergence form. Throughout this section $X=\left(X_{1}, \ldots, X_{m}\right)$ denotes a family of Lipschitz continuous vector fields on an open neighborhood Ω_{0} of Ω, open subset of \mathbb{R}^{n}. Moreover, we denote by $H_{X, 0}^{1}(\Omega)$ the space $W_{X, 0}^{1,2}(\Omega)$ and by $H_{X}^{-1}(\Omega)$ its dual space. Since $H_{X, 0}^{1}(\Omega)$ turns out to be a Hilbert space, in a standard way, then we can construct the triplet

$$
H_{X, 0}^{1}(\Omega) \subset L^{2}(\Omega) \subset H_{X}^{-1}(\Omega)
$$

with the space $L^{2}(\Omega)$ as the pivot space.
Let $a(x):=\left[a_{i j}(x)\right]$ be an $m \times m$ symmetric matrix, with $a_{i j} \in L^{\infty}(\Omega)$ for every $i, j \in\{1, \ldots, m\}$, and assume the existence of $c_{0} \leq c_{1}$, positive constants, such that

$$
\begin{equation*}
c_{0}|\eta|^{2} \leq\langle a(x) \eta, \eta\rangle \leq c_{1}|\eta|^{2} \quad \text { a.e. } x \in \Omega \text { and for any } \eta \in \mathbb{R}^{m} . \tag{104}
\end{equation*}
$$

As a consequence of Corollary 1.4, we can infer a H-compactness result for the class of linear partial differential operators in X-divergence form,

$$
\begin{equation*}
\mathcal{L}=\operatorname{div}_{X}(a(x) X):=\sum_{j, i=1}^{m} X_{j}^{T}\left(a_{i j}(x) X_{i}\right) \tag{105}
\end{equation*}
$$

whose domain $D(\mathcal{L})$ is the set of functions $u \in W_{X}^{1,2}(\Omega)$ such that the distribution defined by the right-hand side belongs to $L^{2}(\Omega)$. Here, $X_{j}^{T}:=-\left(\operatorname{div}\left(X_{j}\right)+X_{j}\right)$ denotes the (formal) adjoint of X_{j} in $L^{2}(\Omega)$, as in (19). In accordance with [DM, Chapter 13], we denote this class of operators as $\mathcal{E}(\Omega):=\mathcal{E}\left(\Omega, c_{0}, c_{1}\right)$.

REmARK 6.1. For each $\mathcal{L} \in \mathcal{E}(\Omega)$ and for each $\mu \geq 0$, the linear operator

$$
\mu \operatorname{Id}+\mathcal{L}: H_{X, 0}^{1}(\Omega) \rightarrow H_{X}^{-1}(\Omega)
$$

is coercive and then it is an isomorphism. Moreover, it is well known that, fixed $g \in L^{2}(\Omega), u=(\mu \operatorname{Id}+\mathcal{L})^{-1} g$ is the (unique) solution to

$$
\left\{\begin{array}{l}
\mu v+\mathcal{L}(v)=g \text { in } \Omega \\
v \in H_{X, 0}^{1}(\Omega)
\end{array}\right.
$$

and the (unique) minimizer of $F+G: H_{X, 0}^{1}(\Omega) \rightarrow \mathbb{R}$, where

$$
F(v)=\frac{1}{2} \int_{\Omega}\langle a(x) X v(x), X v(x)\rangle d x, \quad G(v):=\int_{\Omega}\left(\frac{\mu}{2} v^{2}-g v\right) d x
$$

if $v \in H_{X, 0}^{1}(\Omega)$.
We are going to prove the following H-compactness result for operators belonging to $\mathcal{E}(\Omega)$.

Theorem 6.2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, and let X satisfy the LIC and conditions $(\mathrm{H} 1),(\mathrm{H} 2)$, and $(\mathrm{H} 3)$. Let $\mathcal{L}_{h} \in \mathcal{E}(\Omega)$, and let $a^{h}(x)=\left[a_{i j}^{h}(x)\right]$ be the associated matrix, in accordance with (105). Then, there exist a symmetric matrix $a=\left[a_{i j}(x)\right]$, satisfying (104), and an operator $\mathcal{L}_{\infty}:=\operatorname{div}_{X}(a(x) X) \in \mathcal{E}(\Omega)$ such that, for any $g \in L^{2}(\Omega), \mu \geq 0$ and $h \in \mathbb{N}$, if u_{h} and u_{∞} denote, respectively, the (unique) solutions to

$$
\left\{\begin{array} { l }
{ \mu u + \mathcal { L } _ { h } (u) = g \text { in } \Omega , } \\
{ u \in H _ { X , 0 } ^ { 1 } (\Omega) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\mu u+\mathcal{L}_{\infty}(u)=g \text { in } \Omega \\
u \in H_{X, 0}^{1}(\Omega)
\end{array}\right.\right.
$$

Then, up to subsequences, the following convergences hold:

$$
\begin{equation*}
u_{h} \rightarrow u_{\infty} \text { strongly in } L^{2}(\Omega) \quad \text { (convergence of solutions) } \tag{106}
\end{equation*}
$$

and

$$
a^{h} X u_{h} \rightarrow a X u_{\infty} \text { weakly in } L^{2}(\Omega)^{m} \quad \text { (convergence of momenta). }
$$

Proof. Step 1. Let us prove that, up to a subsequence, there exists an operator $\mathcal{L}=\operatorname{div}_{X}(a(x) X) \in \mathcal{E}(\Omega)$ for which (106) holds.

Let $\left(a^{h}\right)_{h}$ be the sequence of matrices associated to $\left(\mathcal{L}_{h}\right)_{h}$, and let $F_{h}: L^{2}(\Omega) \rightarrow$ $[0, \infty]$ be the quadratic functional defined by

$$
F_{h}(u):= \begin{cases}\frac{1}{2} \int_{\Omega}\left\langle a^{h}(x) X u(x), X u(x)\right\rangle d x & \text { if } u \in W_{X}^{1,2}(\Omega) \\ \infty & \text { otherwise }\end{cases}
$$

By [MPSC1, Theorem 4.20], there exist $F: L^{2}(\Omega) \rightarrow[0, \infty]$ and a symmetric matrix $a=\left[a_{i j}(x)\right]$, satisfying (104), such that, up to subsequences, $\left(F_{h}\right)_{h} \Gamma$-converges in the strong topology of $L^{2}(\Omega)$ to F and F can be represented as

$$
F(u):= \begin{cases}\frac{1}{2} \int_{\Omega}\langle a(x) X u(x), X u(x)\rangle d x & \text { if } u \in W_{X}^{1,2}(\Omega) \\ \infty & \text { otherwise }\end{cases}
$$

Let \mathcal{L}_{∞} be the elliptic operator associated with a on $L^{2}(\Omega)$, as in (105). It is easy to see that \mathcal{L}_{∞} is the operator associated, in the sense of [DM, Definition 12.8], to functional $F^{0}: L^{2}(\Omega) \rightarrow[0, \infty]$ defined by

$$
F^{0}(u)= \begin{cases}\frac{1}{2} \int_{\Omega}\langle a(x) X u(x), X u(x)\rangle d x & \text { if } u \in H_{X, 0}^{1}(\Omega) \\ \infty & \text { otherwise }\end{cases}
$$

Let us consider $F_{h}^{0}: L^{2}(\Omega) \rightarrow[0, \infty]$ defined by

$$
F_{h}^{0}(u)= \begin{cases}\frac{1}{2} \int_{\Omega}\left\langle a^{h}(x) X u(x), X u(x)\right\rangle d x & \text { if } u \in H_{X, 0}^{1}(\Omega) \\ \infty & \text { otherwise }\end{cases}
$$

whose associated operators are the $\left(\mathcal{L}_{h}\right)_{h}$. By Theorem 3.6 , with $\varphi=0$ and $A=\Omega$, it holds that

$$
\begin{equation*}
\left(F_{h}^{0}\right)_{h} \Gamma \text {-converges to } F^{0} \text { in the strong topology of } L^{2}(\Omega) \tag{107}
\end{equation*}
$$

Fix $\mu \geq 0$ and $g \in L^{2}(\Omega)$, and denote by $G: L^{2}(\Omega) \rightarrow \mathbb{R}$ the functional

$$
G(u):=\int_{\Omega}\left(\frac{\mu}{2} u^{2}-g u\right) d x
$$

Since G is (strongly) continuous in $L^{2}(\Omega)$, then, by (107) and in virtue of [DM, Proposition 6.21],

$$
\begin{equation*}
\left(F_{h}^{0}+G\right)_{h} \Gamma \text {-converges to } F^{0}+G \text { in the strong topology of } L^{2}(\Omega) \tag{108}
\end{equation*}
$$

By Remark 6.1, u_{h} and u turn out to the unique minimizers of $F_{h}+G$ and $F+G$, respectively. Therefore, by Theorem 1.2, we get (106) and

$$
\begin{aligned}
\lim _{h \rightarrow \infty}\left(F_{h}^{0}\left(u_{h}\right)+G\left(u_{h}\right)\right) & =\lim _{h \rightarrow \infty} \min _{u \in H_{X, 0}^{1}(\Omega)}\left(F_{h}^{0}(u)+G(u)\right) \\
& =\min _{u \in H_{X, 0}^{1}(\Omega)}\left(F^{0}(u)+G(u)\right)=F^{0}\left(u_{\infty}\right)+G\left(u_{\infty}\right)
\end{aligned}
$$

Step 2. For a.e. $x \in \Omega$ for any $\eta \in \mathbb{R}^{m}$ and for any $h \in \mathbb{N}$, let

$$
f_{h}(x, \eta):=\left\langle a^{h}(x) \eta, \eta\right\rangle \quad \text { and } \quad f(x, \eta):=\langle a(x) \eta, \eta\rangle
$$

It is easy to see that f_{h} and f satisfy assumptions (i), (ii), and (iii) of Theorem 1.3. Moreover,

$$
\partial_{\Phi} \mathcal{F}_{h}\left(X u_{h}\right)=a_{h} X u_{h} \quad \text { and } \quad \partial_{\Phi} \mathcal{F}(X u)=a X u
$$

Therefore, by the first step of the proof and by Corollary 1.4, we get the convergence of momenta.

Acknowledgments. We thank G. Buttazzo and B. Franchi for useful suggestions and discussions on these topics. We also thank the referees of this paper for all the suggestions that improved it, and M. Caponi for useful suggestions on the proof of Theorem 3.1.

REFERENCES

[APS] L. Ambrosio, A. Pinamonti, and G. Speight, Weighted Sobolev spaces on metric measure spaces, J. Reine Angew. Math., 746 (2019), pp. 39-65.
[ADMZ2] N. Ansini, G. Dal Maso, and C. I. Zeppieri, New results on Γ-limits of integral functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), pp. 185-202.
[AHM] O. Anza Hafsa and J.-P. Mandallena, Γ-convergence of nonconvex integrals in CheegerSobolev spaces and homogenization, Adv. Calc. Var., 10 (2017), pp. 381-405.
[BFT] A. Baldi, B. Franchi, and M. C. Tesi, Compensated compactness, div-curl theorem and H-convergence in general Heisenberg groups, in Subelliptic PDE's and Applications to Geometry and Finance, Lect. Notes Semin. Interdiscip. Mat. 6, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2007, pp. 33-47.
[BFTT] A. Baldi, B. Franchi, N. Tchou, and M. C. Tesi, Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (2010), pp. 1555-1607.
[BMT] M. Biroli, U. Mosco, and N. Tchou, Homogenization for degenerate operators with periodical coefficients with respect to the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), pp. 439-444.
[BPT1] M. Biroli, C. Picard, and N. Tchou, Homogenization of the p-Laplacian associated with the Heisenberg group, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 22 (1998), pp. 2342.
[BPT2] M. Biroli, C. Picard, and N. Tchou, Asymptotic behavior of some nonlinear subelliptic relaxed Dirichlet problems, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 26 (2002), pp. 55-113.
[BT] M. Biroli and N. Tchou, Γ-convergence for strongly local Dirichlet forms in perforated domains with homogeneous Neumann boundary conditions, Adv. Math. Sci. Appl., 17 (2007), pp. 149-179.
[Cla] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Grad. Texts in Math. 264, Springer, London, 2013.
[Da] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Appl. Math. Sci. 78, Springer, New York, 2008.
[DM] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser Boston, Boston, 1993.
[DMFT] G. Dal Maso, G. A. Francfort, and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), pp. 165-225.
[DDMM] N. Dirr, F. Dragoni, P. Mannucci, and C. Marchi, Г-convergence and homogenisation for a class of degenerate functionals, Nonlinear Anal., 190 (2020), 111618.
[EPV] F. Essebei, A. Pinamonti, and S. Verzellesi, Integral representation of local functionals depending on vector fields, Adv. Calc. Var., (2022), https://doi.org/10.1515/ acv-2021-0054.
[EV] F. Essebei and S. Verzellesi, Г-compactness of Some Classes of Integral Functionals Depending on Vector Fields, preprint, https://arxiv.org/abs/2112.05491, 2021.
[FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, Princeton, NJ, University of Tokyo Press, Tokyo, 1982.
[F2] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), pp. 329-332.
[F1] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc., 327 (1991), pp. 125-158.
[FGVN] B. Franchi, C. E. Guitiérrez, and T. van Nguyen, Homogenization and convergence of correctors in Carnot groups, Comm. Partial Differential Equations, 30 (2005), pp. 18171841.
[FGW] B. Franchi, C. E. Guitiérrez, and R. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), pp. 523-604.
[FL] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), pp. 523-541.
[FLW] B. Franchi, G. Lu, and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble), 45 (1995), pp. 577604.
[FPS] B. Franchi, V. Penso, and R. Serapioni, Remarks on Lipschitz domains in Carnot groups, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser. 5, Springer, Cham, 2014, pp. 153-166.
[FSSC1] B. Franchi, R. Serapioni, and F. Serra Cassano, Meyers-Serrin type theorems and
relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), pp. 859-890.
[FSSC2] B. Franchi, R. Serapioni, and F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11 (1997), pp. 83-117.
[FTT] B. Franchi, N. Tchou, and M. C. Tesi, Div-curl type theorem, H-convergence and Stokes formula in the Heisenberg group, Commun. Contemp. Math., 8 (2006), pp. 67-99.
[FT] B. Franchi and M. C. Tesi, Two-scale homogenization in the Heisenberg group, J. Math. Pures Appl. (9), 81 (2002), pp. 495-532.
[Fu] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter Stud. Math. 19, Walter de Gruyter, Berlin, 2011.
[GN1] N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for CarnotCarathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), pp. 1081-1144.
[GN2] N. Garofalo and D.-M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), pp. 67-97.
[GP] A. Giacomini and M. Ponsiglione, A-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications, Arch. Ration. Mech. Anal., 180 (2006), pp. 399-447.
[MR] Z. M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992.
[Ma] A. Maione, Variational Convergences for Functionals and Differential Operators Depending on Vector Fields, Ph.D. thesis, University of Trento, Trento, Italy, 2020.
[Ma2] A. Maione, H-convergence for equations depending on monotone operators in Carnot groups, Electron. J. Differential Equations, 2021 (2021), 13.
[MPV] A. Maione, F. Paronetto, and E. Vecchi, G-convergence of Elliptic and Parabolic Operators Depending on Vector Fields, preprint, https://arxiv.org/abs/2107.13321, 2022.
[MPSC1] A. Maione, A. Pinamonti, and F. Serra Cassano, Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness, J. Math. Pures Appl. (9), 139 (2020), pp. 109-142.
[MV] A. Maione and E. Vecchi, Integral representation of local left-invariant functionals in Carnot groups, Anal. Geom. Metr. Spaces, 8 (2020), pp. 1-14.
[MS] N. G. Meyers and J. Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), pp. 1055-1056.
[Mon] R. Monti, Distances, Boundaries and Surface Measures in Carnot-Caratheódory Spaces, Ph.D. thesis, University of Trento, Trento, Italy, 2001.
[Mo] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1993), pp. 368-421.
[Mu] F. Murat, H-convergence, Séminaire d'analyse fonctionelle et numérique, Université d' Alger, 1978; English translation, F. Murat, L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, Prog. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Boston, 1997, pp. 21-43.
[NSW] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), pp. 103-147.
[Ro] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Ser. 28, Princeton University Press, Princeton, NJ, 1970.

[^0]: *Received by the editors July 9, 2021; accepted for publication (in revised form) May 31, 2022; published electronically November 1, 2022.
 https://doi.org/10.1137/21M1432466
 Funding: The work of the authors was supported by the Indam-GNAMPA project 2020 "Convergenze variazionali per funzionali e operatori dipendenti da campi vettoriali" and by MIUR. The work of the first author was supported by the DFG SPP 2256 project "Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials," by the University of Freiburg, and by INdAM-GNAMPA Project "Equazioni differenziali alle derivate parziali in fenomeni non lineari." The work of the second author was supported by the University of Trento and by INdAMGNAMPA Project "Problemi al bordo e applicazioni geometriche." The work of the third author was supported by the University of Trento and by INdAM-GNAMPA Project "Analisi geometrica in strutture subriemanniane" (INdAM-GNAMPA Projects grant CUP_E55F22000270001).
 ${ }^{\dagger}$ Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-HerderStraße 10, 79104 Freiburg im Breisgau, Germany (alberto.maione@mathematik.uni-freiburg.de).
 ${ }^{\ddagger}$ Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123, Povo (Trento), Italy (andrea.pinamonti@unitn.it, francesco.serracassano@unitn.it).

