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\Gamma -CONVERGENCE FOR FUNCTIONALS DEPENDING ON VECTOR
FIELDS. II. CONVERGENCE OF MINIMIZERS\ast 
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Abstract. Given a family of locally Lipschitz vector fields X(x) = (X1(x), . . . , Xm(x)) on
\BbbR n, m \leq n, we study integral functionals depending on X. Using the results in [A. Maione, A.
Pinamonti, and F. Serra Cassano, J. Math. Pures Appl. (9), 139 (2020), pp. 109--142], we study the
convergence of minima, minimizers, and momenta of those functionals. Moreover, we apply these
results to the periodic homogenization in Carnot groups and prove an H-compactness theorem for
linear differential operators of the second order depending on X.
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1. Introduction. In this paper we deal with the asymptotic behavior of minima,
minimizers, and momenta, as h \rightarrow \infty , of the following sequence of minimization
problems:

(1) inf
\Bigl\{ 
Fh(u) +G(u) : u \in W 1,p

X (\Omega ), u - \varphi \in W 1,p
X,0(\Omega )

\Bigr\} 
.

Here Fh, G : Lp(\Omega ) \rightarrow \BbbR \cup \{ \infty \} denote the functionals

Fh(u) :=

\Biggl\{ \int 
\Omega 
fh(x,Xu(x))dx if u \in W 1,p

X (\Omega ),

\infty otherwise
(2)

and

(3) G(u) :=

\int 
\Omega 

g(x, u(x)) dx ,

with fh : \Omega \times \BbbR m \rightarrow \BbbR , h \in \BbbN , and g : \Omega \times \BbbR \rightarrow \BbbR Carath\'eodory functions and
X(x) := (X1(x), . . . , Xm(x)) a given family of first order linear differential operators
with Lipschitz coefficients on a bounded open set \Omega \subset \BbbR n, that is,

Xj(x) =

n\sum 
i=1

cji(x)\partial i, j = 1, . . . ,m,
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5762 A. MAIONE, A. PINAMONTI, AND F. SERRA CASSANO

with cji(x) \in Lip(\Omega ) for j = 1, . . . ,m, i = 1, . . . , n.
In the following, we will refer to X and fh as X-gradient and integrand function,

respectively. The environment spaces W 1,p
X (\Omega ) and W 1,p

X,0(\Omega ) are the Sobolev spaces
associated through the X-gradient in a classical way, according to Folland and Stein
[FS] (see Definitions 2.3 and 2.6), and \varphi \in W 1,p

X (\Omega ) is a given function that plays the
role of boundary datum in (1). As usual, we identify each Xj with the vector field

(cj1(x), . . . , cjn(x)) \in Lip(\Omega ,\BbbR n)

and we call

(4) C(x) = [cji(x)] i=1,...,n
j=1,...,m

the coefficient matrix of the X-gradient.
Throughout this paper, we will assume some structural conditions on the class of

integrand functions and the X-gradient. An integrand function f : \Omega \times \BbbR m \rightarrow \BbbR will
typically satisfy the following conditions:

(I1) f : \Omega \times \BbbR m \rightarrow \BbbR is Borel measurable on \Omega ;
(I2) for a.e. x \in \Omega , the function f(x, \cdot ) : \BbbR m \rightarrow \BbbR is convex;
(I3) there exist two positive constants c0 \leq c1 and two nonnegative functions

a0, a1 \in L1(\Omega ) such that

(5) c0 | \eta | p  - a0(x) \leq f(x, \eta ) \leq c1 | \eta | p + a1(x)

for a.e. x \in \Omega and for each \eta \in \BbbR m.
We will denote by Im,p(\Omega , c0, c1, a0, a1) the class of such integrand functions and by
Im,p(\Omega , c0, c1) if a0 = a1 \equiv 0. Similarly, function g in (3) will satisfy a suitable growth
condition (see (10) and (11)).

As far as the structural conditions on the X-gradient are concerned, we will need
two assumptions: the former is an algebraic condition and the latter is a metric
condition.

Definition 1.1. We say that a family of vector fields X(x) = (X1(x), . . . ,
Xm(x)) satisfies the linear independence condition (LIC) on an open set \Omega \subset \BbbR n

if there exists a set \scrN X \subset \Omega , closed in the topology of \Omega , such that | \scrN X | = 0 and
X1(x), . . . , Xm(x) are linearly independent as vectors of \BbbR n for each x \in \Omega X :=
\Omega \setminus \scrN X . Here | A| denotes the n-dimensional Lebesgue measure of a measurable subset
A \subset \BbbR n.

Notice that, if X satisfies the LIC on \Omega , then m \leq n. In some results, we will
also assume that X is defined and Lipschitz continuous on an open neighborhood \Omega 0

of \Omega and that the following conditions hold:
(H1) Let d : \BbbR n \times \BbbR n \rightarrow [0,\infty ] be the so-called Carnot--Carath\'eodory distance

function induced by X (see, for instance, [FSSC2, section 2]). Then, d(x, y) <
\infty for any x, y \in \Omega 0, so that d is a standard distance in \Omega 0, and d is continuous
with respect to the usual topology of \BbbR n.

(H2) For any compact set K \subset \Omega 0 there exist a radius rK and a positive constant
CK , depending on K, such that

| Bd(x, 2r)| \leq CK | Bd(x, r)| 

for any x \in K and r < rK . Bd(x, r) denotes the (open) metric ball with
respect to d, that is, Bd(x, r) := \{ y \in \Omega 0 | d(x, y) < r\} .
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\Gamma -CONVERGENCE VECTOR FIELDS II 5763

(H3) There exist geometric constants c, C > 0 such that \forall B = Bd(x, r) with cB :=
Bd(x, cr) \subseteq \Omega 0, \forall u \in Lip(cB), and \forall x \in B\bigm| \bigm| \bigm| \bigm| u(x) - 1

| B| 

\int 
B

u(y)dy

\bigm| \bigm| \bigm| \bigm| \leq C

\int 
cB

| Xu(y)| d(x, y)

| Bd(x, d(x, y))| 
dy .

Let us point out that the LIC embraces relevant and wide families of vector fields
studied in the literature (see [MPSC1, Example 2.2]), as well as important families of
vector fields satisfying conditions (H1), (H2), and (H3) (see Remark 2.8).

Each functional (2) always admits an integral representation with respect to the
Euclidean gradient. Indeed, for instance, functional (2) can be represented as follows:

Fh(u) =

\int 
\Omega 

fh,e(x,Du(x)) dx for each u \in C1(\Omega ) ,

where fh,e : \Omega \times \BbbR n \rightarrow \BbbR now denotes the Euclidean integrand, defined as

(6) fh,e(x, \xi ) := fh(x,C(x)\xi ) for a.e. x \in \Omega for each \xi \in \BbbR n.

Notice also that we cannot reverse this representation (see [MPSC1, Counterexample
3.14]) and the representation with respect to the Euclidean gradient could yield a
loss of coercivity (see [MPSC1]). Nonetheless, we will show that by replacing the
Euclidean gradient with the X-gradient, we can get rid of this drawback.

In this paper, we will exploit as main tools for studying minimization problems
(1) some results of \Gamma -convergence for functionals depending on vector fields. In par-
ticular, let us recall a \Gamma -compactness theorem for the sequence (Fh)h defined in (2)
(see Theorem 3.5), obtained in [MPSC1], to which we will refer for all the relevant
definitions. More precisely, if the X-gradient satisfies the LIC and the sequence of
integrand functions (fh)h \subset Im,p(\Omega , c0, c1, a0, a1), then, up to a subsequence not re-
labeled, we can assume the existence of a functional F : Lp(\Omega ) \rightarrow \BbbR \cup \{ \infty \} and
f \in Im,p(\Omega , c0, c1, a0, a1) such that

(7) F = \Gamma (Lp(\Omega ))- lim
h\rightarrow \infty 

Fh

and F admits the following representation:

(8) F (u) :=

\Biggl\{ \int 
\Omega 
f(x,Xu(x))dx if u \in W 1,p

X (\Omega ),

\infty otherwise.

Let us now describe the main results of the present paper and some of their
applications. First, recall the following Poincar\'e inequality on W 1,p

X,0(\Omega ), 1 \leq p <\infty ,
which holds provided that \Omega is a bounded domain of \BbbR n and X satisfies conditions
(H1), (H2), and (H3) (see Proposition 2.16). More precisely, there exists a positive
constant cp,\Omega , depending only on p and \Omega , such that

(9) cp,\Omega 

\int 
\Omega 

| u| p dx \leq 
\int 
\Omega 

| Xu| p dx for each u \in W 1,p
X,0(\Omega ) .

We will also assume that cp,\Omega is the best constant in the Poincar\'e inequality (9), that
is, it is the largest constant for which (9) holds.

Let us begin with a result concerning the convergence of minima and minimizers
for minimization problems (1). For any fixed \varphi \in W 1,p

X (\Omega ), let 1\varphi : Lp(\Omega ) \rightarrow \{ 0;\infty \} 
denote the indicator function of the affine subspace of W 1,p

X (\Omega )

W 1,p
X,\varphi (\Omega ) := \varphi + W 1,p

X,0(\Omega )
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5764 A. MAIONE, A. PINAMONTI, AND F. SERRA CASSANO

and assume that the Carath\'eodory function g : \Omega \times \BbbR \rightarrow \BbbR in (3) satisfies the following
growth condition: there exist two constants d0, d1 and two nonnegative functions
b0, b1 \in L1(\Omega ) such that

d0| s| p  - b0(x) \leq g(x, s) \leq d1| s| p + b1(x)(10)

for a.e. x \in \Omega and for every s \in \BbbR , with

(11) d1 > 0 and  - c0 cp,\Omega < d0 \leq d1 .

Theorem 1.2. Let \Omega be a bounded and connected open set, 1 < p <\infty , and let X
satisfy the LIC and conditions (H1), (H2), and (H3). Let fh, f \in Im,p(\Omega , c0, c1, a0, a1),
let g satisfy (10) and (11), and let Fh, G, F be the functionals in (2), (3), and (8), re-
spectively. For any fixed \varphi \in W 1,p

X (\Omega ), let \Xi \varphi 
h ,\Xi 

\varphi : Lp(\Omega ) \rightarrow \BbbR \cup \{ \infty \} be, respectively,
defined as

(12) \Xi \varphi 
h := Fh +G+ 1\varphi and \Xi \varphi := F +G+ 1\varphi .

If (Fh)h \Gamma -converges to F in the strong topology of Lp(\Omega ), then
(i) for each h \in \BbbN , both \Xi \varphi 

h and \Xi \varphi attain their minima in Lp(\Omega ) and

(13) min
u\in Lp(\Omega )

\Xi \varphi (u) = lim
h\rightarrow \infty 

min
u\in Lp(\Omega )

\Xi \varphi 
h(u) ;

(ii) if (uh)h is a sequence of minimizers of (\Xi \varphi 
h)h, that is,

\Xi \varphi 
h(uh) = min

u\in Lp(\Omega )
\Xi \varphi 
h(u) for any h \in \BbbN ,

then there exists \=u \in W 1,p
X,\varphi (\Omega ) such that, up to subsequences,

(14) uh \rightarrow \=u weakly in W 1,p
X (\Omega ) and strongly in Lp(\Omega )

and

(15) \Xi \varphi (\=u) = min
u\in Lp(\Omega )

\Xi \varphi (u) .

The second main result deals with the convergence of the momenta associated with
the sequence of functionals (Fh)h satisfying (7). The result is inspired by [ADMZ2]
and it is a partial extension of those results to integral functionals depending on vector
fields.

Theorem 1.3. Let \Omega be a bounded open set, 1 < p < \infty , and let X satisfy the
LIC. Let fh, f \in Im,p(\Omega , c0, c1, a0, a1), let Fh, F be, respectively, the functionals in (2)
and (8), satisfying (7), and define \scrF h,\scrF : Lp(\Omega )m \rightarrow \BbbR as

\scrF h(\Phi ) :=

\int 
\Omega 

fh(x,\Phi (x)) dx(16)

and

\scrF (\Phi ) :=

\int 
\Omega 

f(x,\Phi (x)) dx(17)

for any \Phi \in Lp(\Omega )m and for any h \in \BbbN . Assume the following:

D
ow

nl
oa

de
d 

11
/2

9/
22

 to
 1

93
.2

05
.2

06
.8

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

\Gamma -CONVERGENCE VECTOR FIELDS II 5765

(i) fixed 0 \leq \alpha \leq min\{ 1, p - 1\} , there exist a positive constant c and a nonnegative
function b \in Lp(\Omega ) such that

| \nabla \eta fh(x, \eta 1) - \nabla \eta fh(x, \eta 2)| \leq c | \eta 1  - \eta 2| \alpha (| \eta 1| + | \eta 2| + b(x))
p - 1 - \alpha 

for a.e. x \in \Omega , for any \eta 1, \eta 2 \in \BbbR m, and for any h \in \BbbN ;
(ii) the map \BbbR m \ni \eta \mapsto \rightarrow fh(x, \eta ) belongs to C1(\BbbR m) for a.e. x \in \Omega and for any

h \in \BbbN ;
(iii) the map \BbbR m \ni \eta \mapsto \rightarrow f(x, \eta ) belongs to C1(\BbbR m) for a.e. x \in \Omega ;
(iv) there exist uh, u \in W 1,p

X (\Omega ) such that

uh \rightarrow u in Lp(\Omega ) and \scrF h(Xuh) \rightarrow \scrF (Xu) as h\rightarrow \infty .

Then, the convergence of momenta associated with (Fh)h holds, that is,

(18) \partial \Phi \scrF h(Xuh) = \nabla \eta fh(\cdot , Xuh) \rightarrow \nabla \eta f(\cdot , Xu) = \partial \Phi \scrF (Xu)

weakly in Lp\prime 
(\Omega )m, where \partial \Phi \scrF h and \partial \Phi \scrF denote, respectively, the Gateaux derivatives

of functionals \scrF h and \scrF (see (83)).

As a consequence of Theorems 1.2 and 1.3, we can infer the convergence of both
minimizers and momenta associated with minimization problems (1).

Corollary 1.4. Let \Omega be open, bounded, and connected, let 1 < p <\infty , and let
X satisfy the LIC and conditions (H1), (H2), and (H3). Let fh, f \in Im,p(\Omega , c0, c1, a0, a1),
let g satisfy (10) and (11), let G be the functional (3), and let Fh,\scrF h, F,\scrF satisfy
the hypotheses of Theorem 1.3. For any fixed \varphi \in W 1,p

X (\Omega ), consider functionals
\Xi \varphi 
h ,\Xi 

\varphi defined in (12). If (uh)h is a sequence of minimizers of (\Xi \varphi 
h)h, then, up to

subsequences, there exists a minimizer u of \Xi \varphi such that

uh \rightarrow u weakly in W 1,p
X (\Omega ) and strongly in Lp(\Omega ) .

Moreover, (18) holds.

We will also provide two interesting applications of the previous results to the
periodic homogenization of functionals in Carnot groups and the H-convergence for
linear differential operators of the second order depending on X.

Let us recall that \Gamma -convergence for functionals in (2) has been studied in the case
in which the integrand f depends also on u [EPV, EV], and in the framework of Dirich-
let forms [Fu, MR], but for special integrand functions f and X-gradient satisfying the
H\"ormander condition (see, for instance, [BPT2, BT, Mo] and references therein). We
also point out that \Gamma -convergence for functionals defined in Cheeger--Sobolev metric
measure spaces has been also studied (see [AHM] and references therein).

Homogenization in Carnot groups has been intensively studied so far (see, for
instance, [BMT, BPT1, BPT2, FGVN, FT, MV]). Here we are interested in the
recent paper [DDMM], where a \Gamma -convergence result for the periodic homogenization
of functionals in Heisenberg groups has been proved (see Theorem 5.3). By using this
result, we prove the convergence of minimizers for minimization problems (1) for each
boundary datum \varphi \in W 1,p

X (\Omega ), as well as the convergence of the associated momenta
(see Corollary 5.5).

The H-convergence for subelliptic PDEs has been also studied in the setting of
Carnot groups (see [BFT, BFTT, FTT, Ma2, MPV]). In the previous papers, the
main tool for showing a compactness result for H-convergence is the nontrivial exten-
sion to Carnot groups of the so-called compensated compactness [BFTT], originally
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introduced in the classical Euclidean setting by Murat and Tartar [Mu]. Here we get
a compactness result for H-convergence in a broader setting than a Carnot group (see
Theorem 6.2), by using Theorem 1.3, without applying the compensated compactness,
since it is not clear whether it still holds in our framework.

The plan of this paper is as follows: in section 2, we introduce and study the
Sobolev spaces associated with the X-gradient. In section 3, we prove a criterion
for the \Gamma -convergence with respect to the weak convergence in spaces W 1,p

X (\Omega ) and

W 1,p
X,0(\Omega ) (see Theorem 3.1). We also recall two key results of \Gamma -compactness for

integral functions depending on X, with respect to Lp(\Omega )-topology: the former is a
light extension of a result already shown in [MPSC1] (see Theorem 3.5) and the latter
is a \Gamma -compactness result including Dirichlet boundary conditions (see Theorem 3.6).
In section 4, we prove Theorems 1.2 and 1.3 and Corollary 1.4. Finally, in sections
5 and 6, we apply Theorems 1.2 and 1.3 and Corollary 1.4 to the case of periodic
homogenization in Heisenberg groups (see Corollary 5.5) and to the H-convergence
for linear differential operators of the second order depending on X (see Theorem
6.2), respectively.

2. Functional setting. Throughout this paper, \Omega \subset \BbbR n is a fixed open set and
\BbbR = [ - \infty ,\infty ]. If v, w \in \BbbR n, we denote by | v| and \langle v, w\rangle the Euclidean norm and
the scalar product, respectively. If \Omega and \Omega \prime are subsets of \BbbR n, then \Omega \prime \Subset \Omega means
that \Omega \prime is compactly contained in \Omega . Moreover, B(x, r) is the open Euclidean ball of
radius r centered at x. If A \subset \BbbR n, \chi A and 1A are, respectively, the characteristic and
the indicator function of A, | A| is its n-dimensional Lebesgue measure \scrL n, and, by
notation a.e. x \in A, we will simply mean \scrL n-a.e. x \in A. In what follows, we denote
by Ck(\Omega ) the space of \BbbR -valued functions k times continuously differentiable and by
Ck

c (\Omega ) the subspace of Ck(\Omega ) whose functions have support compactly contained in
\Omega .

Definition 2.1. For any u \in L1(\Omega ) we define Xu as an element of \scrD \prime (\Omega ;\BbbR m)
as follows:

Xu(\psi ) : = (X1u(\psi 1), . . . , Xmu(\psi m))

=  - 
\int 
\Omega 

u

\Biggl( 
n\sum 

i=1

\partial i(c1i \psi 1), . . . ,

n\sum 
i=1

\partial i(cmi \psi m)

\Biggr) 
dx

for any \psi = (\psi 1, . . . , \psi m) \in C\infty 
c (\Omega ;\BbbR m).

If we set XT\psi := (XT
1 \psi 1, . . . , X

T
m\psi m) with

(19) XT
j \varphi :=  - 

n\sum 
i=1

\partial i(cji \varphi ) =  - (div(Xj) +Xj)\varphi 

for any \varphi \in C\infty 
c (\Omega ) and j = 1, . . . ,m, then the aspect of the previous definition is

even more familiar,

Xu(\psi ) =

\int 
\Omega 

uXT\psi dx for any \psi \in C\infty 
c (\Omega ;\BbbR m) .

Remark 2.2. By the well-known extension result for Lipschitz functions, without
loss of generality, we can assume that vector fields' coefficients cji \in Liploc(\BbbR n) for
any j = 1, . . . ,m and i = 1, . . . , n.
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Definition 2.3. For 1 \leq p \leq \infty we set

W 1,p
X (\Omega ) := \{ u \in Lp(\Omega ) : Xju \in Lp(\Omega ) for j = 1, . . . ,m\} ,

W 1,p
X;loc(\Omega ) :=

\Bigl\{ 
u : u| \Omega \prime \in W 1,p

X (\Omega \prime ) for every open set \Omega \prime \Subset \Omega 
\Bigr\} 
.

Remark 2.4. Since vector fields Xj have locally Lipschitz continuous coefficients,
\partial icji \in L\infty 

loc(\BbbR n) for any j = 1, . . . ,m and i = 1, . . . , n. Then, by definition,

(20) W 1,p(\Omega ) \subset W 1,p
X (\Omega ) \forall p \in [1,\infty ]

for any open bounded set \Omega \subset \BbbR n. Moreover, for any u \in W 1,p(\Omega )

Xu(x) = C(x)Du(x) for a.e. x \in \Omega ,

where W 1,p(\Omega ) denotes the classical Sobolev space, or, equivalently, the space W 1,p
X (\Omega )

associated to

X = D := (\partial 1, . . . , \partial n) .

It is easy to see that inclusion (20) can be strict and turns out to be continuous. As
well, there is the inclusion

W 1,p
loc (\Omega ) \subset W 1,p

X;loc(\Omega ) \forall p \in [1,\infty ] .

The following proposition is proved in [FS] and [Ma, Lemma 2.3.29].

Proposition 2.5. W 1,p
X (\Omega ) endowed with the norm

\| u\| W 1,p
X (\Omega ) :=

\biggl( \int 
\Omega 

| u| p dx+

\int 
\Omega 

| Xu| p dx
\biggr) 1

p

is a reflexive Banach space if 1 < p <\infty .

Moreover, if p > 1, then functional \| \cdot \| p
W 1,p

X (\Omega )
: W 1,p

X (\Omega ) \rightarrow [0,\infty ) is lower

semicontinuous and sequentially coercive in the weak topology of W 1,p
X (\Omega ).

Definition 2.6. For 1 \leq p \leq \infty we set

H1,p
X (\Omega ) the closure of C1(\Omega ) \cap W 1,p

X (\Omega ) in W 1,p
X (\Omega ) ,

W 1,p
X,0(\Omega ) the closure of C1

c(\Omega ) \cap W
1,p
X (\Omega ) in W 1,p

X (\Omega ) .

It is proved in [FS] that the normed spaces (H1,p
X (\Omega ), \| \cdot \| W 1,p

X (\Omega )) and (W 1,p
X,0(\Omega ),

\| \cdot \| W 1,p
X (\Omega )) are Banach spaces for any 1 \leq p \leq \infty .

As for the usual Sobolev spaces, it holds that H1,p
X (\Omega ) \subset W 1,p

X (\Omega ). The classical
result H =W , of Meyers and Serrin [MS] still holds true for these anisotropic Sobolev
spaces as proved, independently, in [FSSC1] and [GN1]. Analogous results, under
some additional assumptions, are proved in [FSSC2], for the weighted case, and in
[APS], where a generalization to metric measure spaces is given.

Theorem 2.7. Let \Omega be an open subset of \BbbR n and 1 \leq p <\infty . Then,

H1,p
X (\Omega ) =W 1,p

X (\Omega ) .
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We conclude this section recalling that when \Omega is bounded and the family X
satisfies properties (H1), (H2), and (H3), then W 1,p

X,0(\Omega ) can be compactly embedded
in Lp(\Omega ) for any 1 \leq p <\infty . Moreover, we prove that if, in addition, \Omega is connected,
then

\| u\| W 1,p
X,0(\Omega ) :=

\biggl( \int 
\Omega 

| Xu| p dx
\biggr) 1

p

defines an equivalent norm on W 1,p
X,0(\Omega ) for any 1 \leq p <\infty .

Let us point out some classes of relevant vector fields satisfying properties (H1),
(H2), and (H3).

Remark 2.8. (i) (H\"ormander vector fields) If the vector fields are smooth and
the rank of the Lie algebra generated by X1, . . . , Xm equals n at any point of \Omega 0 (the
so-called H\"ormander condition), then (H1), (H2), and (H3) hold (see [NSW] for (H1)
and (H2) and [FLW] for (H3)).

(ii) (Grushin vector fields) If the vector fields are as in [F2], [F1], and [FL], then
conditions (H1), (H2), and (H3) still hold (see [F2, F1, FL] for (H1) and (H2) and
[FSSC2, Remark 2.8] for (H3)).

The following results are proved in [FSSC2, Theorems 2.11 and 3.4].

Theorem 2.9. Let \Omega \subset \BbbR n be a bounded open set, let 1 \leq p < \infty , and let X
satisfy conditions (H1), (H2), and (H3). Then, for each metric ball B = Bd(x, r) \subset \Omega 
and for every u \in W 1,p

X (\Omega ), there exist a constant c, depending on B and u, and a
constant C, not depending on u, such that\int 

B

| u(x) - c| p dx \leq C rp
\int 
B

| Xu| p dx .

Theorem 2.10. Let \Omega \subset \BbbR n be a bounded open set, let 1 \leq p < \infty , and let X
satisfy conditions (H1), (H2), and (H3). Then, W 1,p

X,0(\Omega ) is compactly embedded in
Lp(\Omega ).

An interesting consequence of Theorem 2.10 is the following result, which can be
proved exactly as in the Euclidean case. For this reason we omit the proof. For the
reader's convenience, we remind that a proof can be found in [Ma, Proposition 1.2.17].

Proposition 2.11. Under the assumptions of Theorem 2.10, W 1,p
X (\Omega ) can be

compactly embedded in Lp
loc(\Omega ).

Let us point out that we can get a global compact embedding in Proposition 2.11,
by requiring further regularity on \Omega , in the sense of the following definition.

Definition 2.12. Let (M,d) be a metric space. A bounded set \Omega \subset M is said to
be a uniform domain if there exists \varepsilon > 0 such that for each x, y \in \Omega there exists a
continuous rectifiable curve \gamma : [0, 1] \rightarrow \Omega , with

\gamma (0) = x, \gamma (1) = y ,

length(\gamma ) \leq 1

\varepsilon 
d(x, y) ,

and, for each t \in [0, 1],

dist(\gamma (t), \partial \Omega ) \geq \varepsilon min\{ length(\gamma | [0,t]), length(\gamma | [t,1])\} .
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Remark 2.13. The characterization of uniform domains in metric spaces is a
difficult task. Few examples of such domains are known and also in the framework
of the Carnot--Carath\'eodory distance. A comprehensive account of uniform domains,
with respect to the Carnot--Carath\'eodory distance, can be found in [Mon] (see also
[FPS] for an interesting example).

If \Omega is a (bounded) uniform domain in the metric space (\Omega 0, d), then, by using
an extension result for functions in W 1,p

X (\Omega ) (see [GN2]), by applying Theorem 2.10
and by a localization argument in a neighborhood of \Omega , we get the following result.

Theorem 2.14. Let \Omega \subset \BbbR n be a bounded open set, let 1 \leq p < \infty , and let
X satisfy conditions (H1), (H2), and (H3). Moreover, assume that \Omega is a uniform
domain in the metric space (\Omega 0, d). Then, W 1,p

X (\Omega ) can be compactly embedded in
Lp(\Omega ).

Remark 2.15. Actually, Theorem 2.14 still holds for an even more general class
of metric regular sets, namely the so-called PS-domains (see [GN1, Theorem 1.28]).
In particular, the metric balls with respect to the Carnot--Carath\'eodory distance are
PS domains (see [FGW, GN1]).

As a consequence of Theorems 2.9 and 2.10, a global Poincar\'e inequality holds in
W 1,p

X,0(\Omega ). For the reader's convenience, we remind that a proof can be found in [Ma,
Proposition 1.2.18].

Proposition 2.16. Let \Omega \subset \BbbR n be a bounded open set, let 1 \leq p < \infty , and let
X satisfy conditions (H1), (H2), and (H3). Moreover, assume that \Omega is connected.
Then, there exists a positive constant cp,\Omega , depending on p and \Omega , such that

cp,\Omega 

\int 
\Omega 

| u| p dx \leq 
\int 
\Omega 

| Xu| p dx for any u \in W 1,p
X,0(\Omega ) .

Corollary 2.17. Let \Omega , p, and X be as in Proposition 2.16. Then,

\| u\| W 1,p
X,0(\Omega ) :=

\biggl( \int 
\Omega 

| Xu| p dx
\biggr) 1

p

is a norm in W 1,p
X,0(\Omega ) equivalent to \| \cdot \| W 1,p

X (\Omega ).

We conclude this section recalling the following estimate that will be useful to
prove the coercivity of functionals \Xi \varphi 

h , defined in (12). It can be proved as in [DM,
Lemma 2.7].

Lemma 2.18. Let cp,\Omega be the Poincar\'e constant in (9), let \varphi \in W 1,p
X (\Omega ), and let

c < cp,\Omega . Then, there exist a positive constant k1, depending only on c and cp,\Omega , and
a nonnegative constant k2, depending on c, cp,\Omega , and \| \varphi \| W 1,p

X (\Omega ), such that\int 
\Omega 

| Xu| p dx - c

\int 
\Omega 

| u| p dx \geq k1

\biggl( \int 
\Omega 

| Xu| p dx+

\int 
\Omega 

| u| p dx
\biggr) 
 - k2

for every u \in W 1,p
X,\varphi (\Omega ).

3. \Gamma -convergence results for integral functionals depending on vector
fields. In this section, we study \Gamma -convergence results for classes of integral function-
als depending on vector fields, with respect to the weak topology of W 1,p

X,0(\Omega ) and

W 1,p
X (\Omega ), namely Theorem 3.1, and the strong topology of Lp(\Omega ); see Theorems 3.5,

3.6, and 3.7.
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3.1. \Gamma -convergence in the weak topology of \bfitW \bfone ,\bfitp 
\bfitX ,\bfzero (\Omega ) and \bfitW \bfone ,\bfitp 

\bfitX (\Omega ).
First, we show that, if X satisfies conditions (H1), (H2), and (H3), then the point-
wise convergence of the sequence (fh(\cdot , \eta ))h a.e. in \Omega for any \eta \in \BbbR m implies the \Gamma -
convergence of the corresponding integral functionals in the weak topology ofW 1,p

X,0(\Omega )

and W 1,p
X (\Omega ).

Theorem 3.1. Let \Omega \subset \BbbR n be a bounded open set, 1 < p <\infty , and let X satisfy
the LIC and conditions (H1), (H2), and (H3). Let fh, f \in Im,p(\Omega , c0, c1, a0, a1), with

ai \in L\infty (\Omega ) (i = 0, 1), and let Fh, F : W 1,p
X,0(\Omega ) \rightarrow \BbbR be the corresponding integral

functionals, defined as

(21) Fh(u) :=

\int 
\Omega 

fh(x,Xu(x)) dx , F (u) :=

\int 
\Omega 

f(x,Xu(x)) dx

for any u \in W 1,p
X,0(\Omega ) and for any h \in \BbbN . Assume that

fh(\cdot , \eta ) \rightarrow f(\cdot , \eta ) a.e. in \Omega and for any \eta \in \BbbR m.

Then, (Fh)h \Gamma -converges to F in the weak topology of W 1,p
X,0(\Omega ).

Moreover, ifW 1,p
X (\Omega ) is compactly embedded in Lp(\Omega ), then (Fh+G)h \Gamma -converges

to F + G in the weak topology of W 1,p
X (\Omega ). In this case, Fh, F : W 1,p

X (\Omega ) \rightarrow \BbbR are

defined as in (21), while G :W 1,p
X (\Omega ) \rightarrow \BbbR is the functional in (3) such that g satisfies

(10), with 0 < d0 \leq d1.

See, e.g., Theorem 2.14 for an example of a set \Omega where there exists a compact
embedding of W 1,p

X (\Omega ) in Lp(\Omega ). Before proving Theorem 3.1 we need two technical
lemmas.

Lemma 3.2. Let f \in Im,p(\Omega , c0, c1, 0, a), with a \in L\infty (\Omega ), and let r > 0. There
exist R = R(r) > r and a Borel measurable function gr : \Omega \times \BbbR m \rightarrow \BbbR such that
gr(x, \cdot ) is convex for a.e. x \in \Omega and

0 \leq gr(x, \eta ) \leq f(x, \eta ) for a.e. x \in \Omega and every \eta \in \BbbR m ;(22)

gr(x, \eta ) = f(x, \eta ) for a.e. x \in \Omega and every \eta \in Br(0) ;(23)

gr(x, \eta ) \leq c0| \eta | p for a.e. x \in \Omega and every \eta \in \BbbR m \setminus BR(0) .(24)

Proof. Observe that, without loss of generality, we can assume that

(25) f(x, \cdot ) : \BbbR m \rightarrow [0,\infty ) is convex for each x \in \Omega .

Indeed, by (I2) and since the n-dimensional Lebesgue measure \scrL n is Borel regular,
there exists a negligible Borel set N \subset \Omega such that f(x, \cdot ) : \BbbR m \rightarrow [0,\infty ) is convex
for each x \in \Omega \setminus N . By redefining f(x, \eta ) := 0 for each x \in N and \eta \in \BbbR m, we get
the desired conclusion.

By (25) and [Ro, Theorem 10.4], f(x, \cdot ) : \BbbR m \rightarrow [0,\infty ) is locally Lipschitz for
any x \in \Omega . In particular, in fixed x \in \Omega , \eta 0 \in \BbbR m, and r > 0, there exists a positive
constant L, depending on f, x, \eta 0, and r, such that

(26) | f(x, \eta 1) - f(x, \eta 2)| \leq L | \eta 1  - \eta 2| 

for any \eta 1, \eta 2 \in Br(\eta 0), and

L :=
1

r
sup

B2r(\eta 0)

f(x, \cdot ) .
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Fix x \in \Omega and \eta 0 \in \BbbR m. By [Cla, Proposition 2.22] and (26), for any v \in \BbbR m there
exists the directional derivative

f \prime x(\eta 0, v) := lim
t\rightarrow 0

f(x, \eta 0 + tv) - f(x, \eta 0)

t
\in \BbbR .

It is also clear that

f \prime x(\eta 0, v) = lim
h\rightarrow \infty 

h

\biggl( 
f

\biggl( 
x, \eta 0 +

1

h
v

\biggr) 
 - f(x, \eta 0)

\biggr) 
.

By (26) and [Cla, Corollary 4.26],

(27) f \prime x(\eta 0, v) = max
\xi \in \partial fx(\eta 0)

\langle \xi , v\rangle for any v \in \BbbR m,

where \partial fx(\eta 0) denotes the subdifferential of f(x, \cdot ) at \eta 0.
By (27), the map \BbbR m \ni v \mapsto \rightarrow f \prime x(\eta , v) is positively homogeneous of degree one, con-

vex, and so subadditive, continuous, and finite. Moreover, since f : \Omega \times \BbbR m \rightarrow [0,\infty )
is Borel measurable, then the map \Omega \times \BbbR m \ni (x, v) \mapsto \rightarrow f \prime x(\eta , v) is Borel measurable
for any \eta \in \BbbR m.

Fix r > 0 and \eta 0, \eta \in \BbbR m. We define

G\eta 0
(x, \eta ) := f(x, \eta 0) + f \prime x(\eta 0, \eta  - \eta 0)

and

gr(x, \eta ) := sup
\eta 0\in \BbbQ m\cap Br(0)

G\eta 0
(x, \eta ) .

We first claim that gr(x, \eta ) < \infty for a.e. x \in \Omega for every \eta \in \BbbR m, gr : \Omega \times \BbbR m \rightarrow \BbbR 
is Borel measurable and that gr(x, \cdot ) : \BbbR m \rightarrow \BbbR is convex for a.e. x \in \Omega .

Let x \in \Omega and define \xi the element of \partial fx(\eta 0) such that

(28) f \prime x(\eta 0, \eta  - \eta 0) = \langle \xi , \eta  - \eta 0\rangle .

Since f \in Im,p(\Omega , c0, c1, 0, a), then

(29) | G\eta 0(x, \eta )| \leq c1| \eta 0| p + | \xi | | \eta  - \eta 0| + a(x)

a.e. x \in \Omega , for any \eta 0, \eta \in \BbbR m, and

(30) c0 | \eta | p \leq f(x, \eta ) \leq c1 | \eta | p + a(x) \leq c12
p rp + \| a\| L\infty (\Omega )

for a.e. x \in \Omega and for any \eta \in B2r(0). Moreover, by (26) and (30), and, arguing as
in [Cla, Proposition 4.14], there exists a positive constant M , depending only on c1,
\| a\| L\infty (\Omega ), and r, such that

| \xi | \leq M for any \eta 0 \in Br(0)

which, together with (29), gives

(31) gr(x, \eta ) \leq c1r
p +M(| \eta | + r) + \| a\| L\infty (\Omega ) < +\infty 

for a.e. x \in \Omega and \forall \eta \in \BbbR m.
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Since gr is a pointwise supremum of the countable family of Borel measurable
functions \Omega \times \BbbR m \ni (x, \eta ) \mapsto \rightarrow G\eta 0

(x, \eta ), with \eta 0 \in \BbbQ m \cap Br(0), then it is Borel
measurable. As well, since gr(x, \cdot ) : \BbbR m \rightarrow \BbbR is a pointwise supremum of the countable
family of convex functions \BbbR m \ni \eta \mapsto \rightarrow G\eta 0(x, \cdot ) a.e. x \in \Omega , with \eta 0 \in \BbbQ m \cap Br(0),
then, by [Cla, Proposition 2.20], it is a convex function.

Let us now prove that gr satisfies (22) and (23). Let x \in \Omega be such that f(x, \cdot ) is
convex. Then, fixed \eta 0 \in \BbbR m,

f(x, \eta ) \geq f(x, \eta 0) + \langle \xi , \eta  - \eta 0\rangle (32)

for any \eta \in \BbbR m and \xi \in \partial fx(\eta 0). Let \xi \in \partial fx(\eta 0) satisfy (28). By (32),

f(x, \eta ) \geq G\eta 0
(x, \eta )

and, passing to the supremum, we get

(33) gr(x, \eta ) \leq f(x, \eta ) for a.e. x \in \Omega and every \eta \in \BbbR m.

On the other hand, if \eta \in Br(0) and (\eta h)h\in \BbbN \subset \BbbQ m \cap Br(0) are such that \eta h \rightarrow \eta as
n\rightarrow \infty , then

(34) gr(x, \eta ) \geq f(x, \eta h) + f \prime x(\eta h, \eta  - \eta h) \forall h \in \BbbN .

Moreover, since

| f \prime x(\eta n, \eta  - \eta h)| \leq M | \eta  - \eta h| \forall h \in \BbbN ,

we conclude that

(35) lim
h\rightarrow \infty 

f \prime x(\eta h, \eta  - \eta h) = 0 .

Therefore, by (33), (34), (35), and by the continuity of f(x, \cdot ) in \BbbR m, we obtain (23).
Now we fix x \in \Omega such that both f(x, \cdot ) and gr(x, \cdot ) are convex in \BbbR m. By (23)

and the Weierstrass theorem, there exists \eta 1 \in Br(0) such that

f(x, \eta 1) = gr(x, \eta 1) = min
\eta \in Br(0)

gr(x, \eta )(36)

and, since f \in Im,p(\Omega , c0, c1, 0, a), then

gr(x, \eta ) \geq 0 for any \eta \in Br(0) .(37)

Assume, by contradiction, the existence of \eta 2 \in \BbbR m \setminus Br(0) such that

(38) gr(x, \eta 2) < 0 .

Then, there exist \eta 3 \in Br(0) and t \in (0, 1) such that \eta 3 = t\eta 1 + (1  - t)\eta 2 and, since
gr(x, \cdot ) is convex in \BbbR m, (36) and (38) give

gr(x, \eta 1) \leq gr(x, \eta 3) \leq tgr(x, \eta 1) + (1 - t)gr(x, \eta 2) < gr(x, \eta 1) ,

which yields a contradiction. Then, by (37), we get (22).
Finally, since p > 1 and c0,M > 0, we have

lim
| \eta | \rightarrow \infty 

c0| \eta | p

c1rp +M(| \eta | + r) + \| a\| L\infty (\Omega )
= +\infty 

and, by (31), (24) also follows.
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Lemma 3.3. Let fh \in Im,p(\Omega , c0, c1, a0, a1), with a0, a1 \in L\infty (\Omega ), and assume
that

fh(\cdot , \eta ) \rightarrow f(\cdot , \eta ) a.e. in \Omega , for each \eta \in \BbbR m.

Then we have the following:
(i) f \in Im,p(\Omega , c0, c1, a0, a1);
(ii) if (\Phi h)h weakly converges to \Phi in Lp(\Omega )m, then functionals \scrF h,\scrF : Lp(\Omega )m \rightarrow 

\BbbR , defined in (16) and (17), satisfy

\scrF (\Phi ) \leq lim inf
h\rightarrow \infty 

\scrF h(\Phi h) , i.e.,\int 
\Omega 

f(x,\Phi (x)) dx \leq lim inf
h\rightarrow \infty 

\int 
\Omega 

fh(x,\Phi h(x)) dx .

Proof. (i) The proof is immediate.
(ii) Let (\Phi h)h \subset Lp(\Omega )m be weakly convergent to \Phi in Lp(\Omega )m. Then, there

exists a positive constant M such that\int 
\Omega 

| \Phi h| p dx \leq M for any h \in \BbbN .

Moreover, since f \in Im,p(\Omega , c0, c1, a0, a1), then f(\cdot ,\Phi (\cdot )) \in L1(\Omega ). Therefore, by the
absolute continuity of the Lebesgue's integral, for any \varepsilon > 0, there exists \delta = \delta (\varepsilon ) > 0
such that \int 

A

| f(x,\Phi (x))| dx < \varepsilon (39)

for any measurable subset A of \Omega such that | A| < \delta .
Let us fix R > 0 and let us consider BR(0) \subset \BbbR m. Then, for any \varrho > 0, there

exist \eta 1, .., \eta k \in BR(0) such that

(40) BR(0) \subset \cup k
i=1B\varrho (\eta i) .

Since fh, f \in Im,p(\Omega , c0, c1, a0, a1), then, by [Ro, Theorem 10.4], there exists a positive
constant LR such that

| fh(x, \eta ) - fh(x, \eta i)| \leq LR| \eta  - \eta i| \leq LR\varrho ,

| f(x, \eta ) - f(x, \eta i)| \leq LR| \eta  - \eta i| \leq LR\varrho 
(41)

for any h \in \BbbN , i = 1, . . . , k, and \eta \in B\varrho (\eta i) \cap BR(0).

If x \in \Omega and \eta \in BR(0) then, by (40), there exists i \in \{ 1, . . . , k\} such that
\eta \in B\varrho (\eta i) and, by (41),

| fh(x, \eta ) - f(x, \eta )| \leq 2LR\varrho + | fh(x, \eta i) - f(x, \eta i)| .(42)

Since fh(x, \eta i) \rightarrow f(x, \eta i) for a.e. x \in \Omega and for any i \in \{ 1, . . . , k\} , then, by the
Severini--Egoroff theorem, there exist A1, . . . , Ak, measurable subsets of \Omega , such that
| Ai| < \delta 

2k and such that

lim
h\rightarrow \infty 

\Biggl[ 
sup

x\in \Omega \setminus Ai

| fh(x, \eta i) - f(x, \eta i)| 

\Biggr] 
= 0 .
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5774 A. MAIONE, A. PINAMONTI, AND F. SERRA CASSANO

Let A\delta := \cup k
i=1Ai. Thus, | A\delta | < \delta 

2 and

(43) lim
h\rightarrow \infty 

zh := lim
h\rightarrow \infty 

\Biggl[ 
max

i\in \{ 1,...,k\} 
sup

x\in \Omega \setminus A\delta 

| fh(x, \eta i) - f(x, \eta i)| 

\Biggr] 
= 0 .

Therefore, for any x \in \Omega \setminus A\delta and for any \eta \in BR(0), by (42),

(44) | fh(x, \eta ) - f(x, \eta )| \leq 2LR\varrho + zh .

Fix r > 0 and define \varphi h := fh + a0 for any h \in \BbbN and \varphi := f + a0. Then,
trivially, \varphi h, \varphi \in Im,p(\Omega , c0, c1, 0, a0 + a1) and, by Lemma 3.2, there exist R(r) > r
and gr : \Omega \times \BbbR m \rightarrow [0,\infty ) such that

gr(x, \eta ) \leq \varphi (x, \eta ) for a.e. x \in \Omega and every \eta \in \BbbR m,(45)

gr(x, \eta ) = \varphi (x, \eta ) for a.e. x \in \Omega and every \eta \in Br(0),(46)

gr(x, \eta ) \leq c0| \eta | p for a.e. x \in \Omega and every \eta \in \BbbR m \setminus BR(0) .(47)

Notice that if x \in \Omega and \eta \in \BbbR m \setminus BR(0), then, by (47)

(48) \varphi h(x, \eta ) \geq c0| \eta | p \geq gr(x, \eta )

while, if x \in \Omega \setminus A\delta and \eta \in BR(0), then by (44) and (45)

(49) \varphi h(x, \eta ) \geq \varphi (x, \eta ) - 2LR\varrho  - zh \geq gr(x, \eta ) - 2LR\varrho  - zh.

Moreover, since (\Phi h)h weakly converges to \Phi in Lp(\Omega )m, then

(50) lim inf
h\rightarrow \infty 

\int 
\Omega \setminus A\delta 

gr(x,\Phi h) dx \geq 
\int 
\Omega \setminus A\delta 

gr(x,\Phi ) dx .

Therefore, by (43), (46), (48), (49), and (50), and by Fatou's lemma

lim inf
h\rightarrow \infty 

\int 
\Omega 

\varphi h(x,\Phi h) dx \geq lim inf
h\rightarrow \infty 

\int 
\Omega \setminus A\delta 

\varphi h(x,\Phi h) dx

\geq lim inf
h\rightarrow \infty 

\Biggl[ \int 
\Omega \setminus A\delta 

gr(x,\Phi h) dx - (2LR\varrho + zh)| \Omega | 

\Biggr] 

\geq 
\int 
\Omega \setminus A\delta 

gr(x,\Phi ) dx - 2LR\varrho | \Omega | 

\geq 
\int 
\Omega \setminus (A\delta \cup \{ | \Phi | >r\} )

gr(x,\Phi ) dx - 2LR\varrho | \Omega | 

=

\int 
\Omega \setminus (A\delta \cup \{ | \Phi | >r\} )

\varphi (x,\Phi ) dx - 2LR\varrho | \Omega | .

Moreover, by Chebyshev's inequality,

| \{ | \Phi | > r\} | \leq 1

rp

\int 
\Omega 

| \Phi (x)| p dx .

Let us choose r such that | \{ | \Phi | > r\} | < \delta 
2 . Thus, by (39)

lim inf
h\rightarrow \infty 

\int 
\Omega 

\varphi h(x,\Phi h) dx \geq 
\int 
\Omega 

\varphi (x,\Phi ) dx - \varepsilon  - 2LR\varrho | \Omega | ,
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that is,

lim inf
h\rightarrow \infty 

\int 
\Omega 

fh(x,\Phi h) dx \geq 
\int 
\Omega 

f(x,\Phi ) dx - \varepsilon  - 2LR\varrho | \Omega | ,

and, as \varepsilon and \varrho go to zero, we get the thesis.

Proof of Theorem 3.1. By (5), there exists \Psi 1 :W 1,p
X,0(\Omega ) \rightarrow \BbbR such that \Psi 1 \leq Fh

for any h \in \BbbN and

lim
\| u\| 

W
1,p
X,0

(\Omega )
\rightarrow \infty 

\Psi 1(u) = +\infty .

Since, by Theorem 2.10, W 1,p
X,0(\Omega ) is compactly embedded in Lp(\Omega ), then by [DM,

Proposition 8.10], we can characterize the \Gamma -limit of (Fh)h in terms of sequences, that
is, fixed u \in W 1,p

X,0(\Omega ), it suffices to show the following:

(a) for any (uh)h weakly convergent to u in W 1,p
X,0(\Omega ), then

F (u) \leq lim inf
h\rightarrow \infty 

Fh(uh) ;

(b) there exists (vh)h weakly convergent to u in W 1,p
X,0(\Omega ) such that

F (u) = lim
h\rightarrow \infty 

Fh(vh) .

Let (uh)h be weakly convergent to u in W 1,p
X,0(\Omega ). Then, (Xuh)h weakly converges to

Xu in Lp(\Omega )m and (a) follows, by Lemma 3.3.
Let vh := u for any h \in \BbbN . Since (fh(\cdot , Xu))h converges to f(\cdot , Xu) a.e. in \Omega 

by hypothesis, then, by the dominated convergence theorem, the sequence (Fh(u))h
converges pointwise to F (u) and (b) also follows.

Similarly, by (5) and (10), there exists \Psi 2 :W 1,p
X (\Omega ) \rightarrow \BbbR such that \Psi 2 \leq Fh +G

in W 1,p
X (\Omega ) for any h \in \BbbN and

lim
\| u\| 

W
1,p
X

(\Omega )
\rightarrow \infty 

\Psi 2(u) = +\infty .

Then, since W 1,p
X (\Omega ) is compactly embedded in Lp(\Omega ) by hypothesis, we can charac-

terize the \Gamma -limit of (Fh + G)h in terms of sequences, in virtue of [DM, Proposition
8.10] and, since G is sequentially continuous in the weak topology of W 1,p

X (\Omega ), then

(Fh +G)h \Gamma -converges to F +G in the weak topology of W 1,p
X (\Omega ) by the first part of

the proof, and the thesis follows.

An analogous result in the strong topology ofW 1,p
X (\Omega ) still holds true and a proof

can be found in [Ma, Proposition 2.3.24].

Theorem 3.4. Let \Omega \subset \BbbR n be a bounded open set, 1 < p <\infty , and let X satisfy
the LIC. Let fh, f \in Im,p(\Omega , c0, c1, a0, a1), and let Fh, F : W 1,p

X (\Omega ) \rightarrow \BbbR be the
corresponding integral functionals, defined as

Fh(u) :=

\int 
\Omega 

fh(x,Xu(x)) dx , F (u) :=

\int 
\Omega 

f(x,Xu(x)) dx

for any u \in W 1,p
X (\Omega ) and for any h \in \BbbN . Then, (Fh)h converges pointwise to F in

W 1,p
X (\Omega ) if and only if (Fh)h \Gamma -converges to F in the strong topology of W 1,p

X (\Omega ).
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3.2. \Gamma -convergence in the strong topology of \bfitL \bfitp (\Omega ). The first result of
this section in an extension of [MPSC1, Theorem 4.11] to our class of integrands and
a proof can be found in [Ma, Theorem 2.3.12].

Theorem 3.5. Let \Omega \subset \BbbR n be a bounded open set, let \scrA be the class of all open
subsets of \Omega , 1 < p < \infty , and let X satisfy the LIC. Let fh \in Im,p(\Omega , c0, c1, a0, a1),
and let Fh : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} be the local functional defined as

(51) Fh(u,A) :=

\Biggl\{ \int 
A
fh(x,Xu(x))dx if A \in \scrA , u \in W 1,p

X (A),

\infty otherwise.

Then, there exist local functionals F : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} and f \in Im,p(\Omega , c0, c1, a0,
a1) such that, up to subsequences,

(52) F (\cdot , A) = \Gamma (Lp(\Omega ))- lim
h\rightarrow \infty 

Fh(\cdot , A) for each A \in \scrA 

and F admits the following representation:

(53) F (u,A) :=

\Biggl\{ \int 
A
f(x,Xu(x))dx if A \in \scrA , u \in W 1,p

X (A),

\infty otherwise.

Following [DM, Theorem 21.1], using [MPSC1, Theorem 4.16] instead of [DM,
Theorem 19.6], we get the \Gamma -convergence for functionals with boundary data. A
proof can be found in [Ma, Theorem 2.3.23].

Theorem 3.6. Let \Omega \subset \BbbR n be a bounded open set, let \scrA be the class of all open
subsets of \Omega , 1 < p < \infty , and let X satisfy the LIC. Let fh \in Im,p(\Omega , c0, c1, a0, a1),
let Fh : Lp(\Omega ) \times \scrA \rightarrow \BbbR \cup \{ \infty \} be the functional in (51), and, with a little abuse of
notation, denote

Fh(u) := Fh(u,\Omega ) for any u \in Lp(\Omega ) .

Fix \varphi \in W 1,p
X (\Omega ) and assume that (Fh)h \Gamma -converges in the strong topology of Lp(\Omega )

to F satisfying (53), with f \in Im,p(\Omega , c0, c1, a0, a1). Then, (Fh +1\varphi )h \Gamma -converges to
F + 1\varphi in the strong topology of Lp(\Omega ).

We conclude this section by providing a \Gamma -convergence result of perturbed func-
tionals in the strong topology of Lp(\Omega ).

Theorem 3.7. Let \Omega \subset \BbbR n be a bounded open set, let \scrA be the class of all open
subsets of \Omega , let 1 < p <\infty , and let X satisfy the LIC. Let fh, f \in Im,p(\Omega , c0, c1, a0, a1)
and Fh, F be the functionals in (51) and (53) satisfying (52). For any fixed \Phi \in 
Lp(\Omega )m, let G\Phi 

h : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} be the local functional defined as

G\Phi 
h (u,A) :=

\Biggl\{ \int 
A
fh(x,Xu(x) + \Phi (x)) dx if A \in \scrA , u \in W 1,p

X (A),

\infty otherwise.

Then, there exists G\Phi : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} such that, up to subsequences,

(54) G\Phi (\cdot , A) = \Gamma (Lp(\Omega ))- lim
h\rightarrow \infty 

G\Phi 
h (\cdot , A) for each A \in \scrA ,

and G\Phi admits the following representation:

G\Phi (u,A) :=

\Biggl\{ \int 
A
f(x,Xu(x) + \Phi (x)) dx if A \in \scrA , u \in W 1,p

X (A),

\infty otherwise.
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Before giving the proof of Theorem 3.7, let us recall the following classical result.
For the reader's convenience, we remind that a proof can be found in [Ma2, Lemma
2.3.32] and follows the technique of [Da, Proposition 2.32].

Lemma 3.8. Let f \in Im,p(\Omega , c0, c1, a0, a1). Then, there exists a nonnegative con-
stant c2, depending only on p and c1, such that

(55) | f(x, \eta 1) - f(x, \eta 2)| \leq c2 | \eta 1  - \eta 2| 
\Bigl( 
| \eta 1| + | \eta 2| + a(x)1/p

\Bigr) p - 1

,

where a(x) := a0(x) + a1(x), for a.e. x \in \Omega , for each \eta 1, \eta 2 \in \BbbR m.

Proof of Theorem 3.7. Fix \Phi \in Lp(\Omega )m and, for each h \in \BbbN , define g\Phi h (x, \eta ) :=
fh(x, \eta +\Phi (x)) a.e. x \in \Omega and for any \eta \in \BbbR m. Then,

(56) g\Phi h \in Im,p(\Omega , c0, c3, \~a0, \~a1) ,

with \~a0(x) := a0(x) - c0| \Phi (x)| p and \~a1(x) := a1(x)+c3| \Phi (x)| p, for a suitable positive
constant c3 (depending only on p and c1).

By Theorem 3.5, there exist G\Phi : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} and

(57) g\Phi \in Im,p(\Omega , c0, c3, \~a0, \~a1)

such that, up to subsequences, (54) holds and G\Phi can be represented as

G\Phi (u,A) :=

\Biggl\{ \int 
A
g\Phi (x,Xu(x)) dx if A \in \scrA , u \in W 1,p

X (A),

\infty otherwise.

To conclude, we show that

(58) G\Phi (u,A) =

\int 
A

f(x,Xu(x) + \Phi (x)) dx

for each A \in \scrA and u \in W 1,p
X (A). We divide the proof of (58) into three steps.

Step 1. Let us first prove the existence of a positive constant c4, depending only
on c0, c1, c2, a0, a1, and p, such that

| G\Phi 1(u,A) - G\Phi 2(u,A)| 

\leq c4 \| \Phi 1  - \Phi 2\| Lp (\| Xu\| Lp + \| \Phi 1\| Lp + \| \Phi 2\| Lp + 1)
p - 1

(59)

for any \Phi 1, \Phi 2 \in Lp(\Omega )m, A \in \scrA , and u \in W 1,p
X (A), where all norms above refer to

A.

Fix \Phi 1, \Phi 2 \in Lp(\Omega )m, A \in \scrA , and u \in W 1,p
X (A). By (54) and [DM, Proposition

8.1], there exists a sequence (uh)h \subset Lp(\Omega ) \cap W 1,p
X (A), strongly convergent to u in

Lp(\Omega ), such that

(60) G\Phi 2(u,A) = lim
h\rightarrow \infty 

G\Phi 2

h (uh, A)

and

(61) G\Phi 1(u,A) \leq lim inf
h\rightarrow \infty 

G\Phi 1

h (uh, A) .
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Then, by (55), (56), and H\"older's inequality, there exist positive constants \alpha 1, \alpha 2,
depending only c0, c1, c2, a0, a1, and p, such that

G\Phi 1

h (uh, A) - G\Phi 2

h (uh, A)

\leq 
\int 
A

| fh(x,Xuh +\Phi 1) - fh(x,Xuh +\Phi 2)| dx

\leq \alpha 1 \| \Phi 1  - \Phi 2\| Lp (\| Xuh\| Lp + \| \Phi 1\| Lp + \| \Phi 2\| Lp + 1)
p - 1

\leq \alpha 2 \| \Phi 1  - \Phi 2\| Lp

\Bigl( 
G\Phi 2

h (uh, A)
1/p + \| \Phi 1\| Lp + \| \Phi 2\| Lp + 1

\Bigr) p - 1

,

(62)

and by (57), (60), and (61), there exists a positive constant c4, depending only on
c0, c1, c2, a0, a1, and p, such that

G\Phi 1(u,A) - G\Phi 2(u,A)

\leq \alpha 2 \| \Phi 1  - \Phi 2\| Lp

\Bigl( 
G\Phi 2(u,A)1/p + \| \Phi 1\| Lp + \| \Phi 2\| Lp + 1

\Bigr) p - 1

\leq c4 \| \Phi 1  - \Phi 2\| Lp (\| Xu\| Lp + \| \Phi 1\| Lp + \| \Phi 2\| Lp + 1)
p - 1

.

By exchanging the roles of \Phi 1 and \Phi 2, we obtain (59).

Step 2. Let us prove (58), when \Phi has the form

(63) \Phi (x) = C(x) \~\Phi (x) a.e. x \in \Omega 

for some \~\Phi \in Lp(\Omega )n, where C(x) denotes the coefficient matrix of the X-gradient
(4). Let us divide this step into three cases.

Case 1. Suppose \~\Phi (x) = \xi \in \BbbR n constant and denote \Phi \xi (x) := C(x) \xi .
If u\xi (x) := \langle \xi , x\rangle for any x \in \BbbR n, then

G
\Phi \xi 

h (u,A) = Fh(u+ u\xi , A),

and by (52), (53), and (54), we get

(64) G\Phi \xi (u,A) = F (u+ u\xi , A) =

\int 
A

f(x,Xu(x) + \Phi \xi (x)) dx

for any A \in \scrA and u \in W 1,p
X (A).

Case 2. Suppose \~\Phi piecewise constant, i.e., there exist \xi 1, . . . , \xi N \in \BbbR n and
A1, . . . , AN pairwise disjoint open sets such that | \Omega \setminus \cup N

i=1Ai| = 0 and

\~\Phi (x) :=

N\sum 
i=1

\chi Ai
(x) \xi i.

Fix A \in \scrA and u \in W 1,p
X (A) and denote \Phi \xi i(x) := C(x) \xi i. Since G\Phi (u, \cdot ) is a

measure, then, by additivity on pairwise disjoint open sets and locality, it holds that

(65) G\Phi (u,A) =

N\sum 
i=1

G\Phi (u,A \cap Ai) =

N\sum 
i=1

G\Phi \xi i (u,A \cap Ai) .

Let \~u(x) := \langle \~\Phi (x), x\rangle for any x \in \BbbR n. Then,

\~u(x) = u\xi i(x) = \langle \xi i, x\rangle a.e. x \in A \cap Ai
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for any i = 1, . . . , N and, by locality of F ,

(66) F (u+ \~u,A \cap Ai) = F (u+ u\xi i , A \cap Ai) .

Therefore, by (53), (64), (65), (66), and additivity of F on pairwise disjoint open sets,
we get

G\Phi (u,A) =

N\sum 
i=1

G\Phi \xi i (u,A \cap Ai) =

N\sum 
i=1

F (u+ u\xi i , A \cap Ai)

=

N\sum 
i=1

F (u+ \~u,A \cap Ai) = F (u+ \~u,A)

=

\int 
A

f(x,Xu(x) + \Phi (x)) dx

(67)

for any A \in \scrA and u \in W 1,p
X (A).

Case 3. Let \Phi have the form (63), let (\~\Phi j)j be a sequence of piecewise con-

stant functions converging to \~\Phi strongly in Lp(\Omega )n, as j \rightarrow \infty , and define \Phi j(x) :=

C(x) \~\Phi j(x) a.e. x \in \Omega . Since

(68) C \in L\infty (\Omega )mn,

then

(69) (\Phi j)j strongly converges to \Phi in Lp(\Omega )m.

If A \in \scrA and u \in W 1,p
X (A), then by (59),

(70) G\Phi j (u,A) \rightarrow G\Phi (u,A) as j \rightarrow \infty .

and by (67) and H\"older's inequality, it holds that\bigm| \bigm| \bigm| \bigm| G\Phi j (u,A) - 
\int 
A

f(x,Xu+\Phi ) dx

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
A

| f(x,Xu+\Phi j) - f(x,Xu+\Phi )| dx

\leq \alpha 1 \| \Phi j  - \Phi \| Lp (\| Xu\| Lp + \| \Phi j\| Lp + \| \Phi \| Lp + 1)
p - 1

,

(71)

where \alpha 1 is the positive constant given in (62). Therefore, (58) follows from (69),
(70), and (71).

Step 3. Let us finally prove (58) in the general case.

Fix \Phi \in Lp(\Omega )m and x \in \Omega X (see Definition (1.1)). Then, in virtue of [MPSC1,
Lemma 3.3], there exists \~\Phi (x) \in \BbbR n such that

C(x) \~\Phi (x) = \Phi (x)

and \~\Phi can be represented as

(72) \~\Phi (x) = C(x)T B(x) - 1 \Phi (x) ,
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where B(x) is the m\times m symmetric invertible matrix defined by

B(x) := C(x)C(x)T .

Since B(x) is positive semidefinite for any x \in \Omega and it is positive definite if and only
if x \in \Omega X , it holds that

(73) | \Omega \setminus \Omega X | := | \scrN X | = 0

and

\Omega X = \{ x \in \Omega : detB(x) > 0\} , \scrN X = \{ x \in \Omega : detB(x) = 0\} .

For any \varepsilon > 0, define

\Omega \varepsilon := \{ x \in \Omega : detB(x) > \varepsilon \} .

Since B \in L\infty (\Omega )m
2

, then by Cramer's rule and (68) and (72),

(74) B - 1 \in L\infty (\Omega \varepsilon )
m2

and \~\Phi \in Lp(\Omega \varepsilon )
n.

Let \~\Phi \varepsilon : \Omega \rightarrow \BbbR n and \Phi \varepsilon : \Omega \rightarrow \BbbR m be, respectively, defined by

\~\Phi \varepsilon (x) :=

\Biggl\{ 
\~\Phi (x) if x \in \Omega \varepsilon ,

0 if x \in \Omega \setminus \Omega \varepsilon 

and

\Phi \varepsilon (x) := C(x)\~\Phi \varepsilon (x) =

\Biggl\{ 
\Phi (x) if x \in \Omega \varepsilon ,

0 if x \in \Omega \setminus \Omega \varepsilon .

By (74),

(75) \~\Phi \varepsilon \in Lp(\Omega )n,

and by (73) and H\"older's inequality, it follows that

(76) \Phi \varepsilon \rightarrow \Phi strongly in Lp(\Omega )m as \varepsilon \rightarrow 0 .

If A \in \scrA and u \in W 1,p
X (A), then, by (55), (59), (75), by H\"older's inequality and

the second step of the proof, there exists a positive constant c5, depending only on
c0, c1, c2, a0, a1, and p, such that\bigm| \bigm| \bigm| \bigm| G\Phi (u,A) - 

\int 
A

f(x,Xu+\Phi ) dx

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| G\Phi (u,A) - G\Phi \varepsilon (u,A)

\bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| G\Phi \varepsilon (u,A) - 
\int 
A

f(x,Xu+\Phi ) dx

\bigm| \bigm| \bigm| \bigm| 
\leq c5 \| \Phi \varepsilon  - \Phi \| Lp(A)m

\bigl( 
\| Xu\| Lp(A)m + \| \Phi \varepsilon \| Lp(A)m + \| \Phi \| Lp(A)m + 1

\bigr) p - 1

and (58) follows by (76), as \varepsilon \rightarrow 0.

4. Convergence of minima, minimizers, and momenta.
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4.1. Convergence of minima and minimizers. By Theorem 3.5, there exist
F : Lp(\Omega )\times \scrA \rightarrow \BbbR \cup \{ \infty \} and f \in Im,p(\Omega , c0, c1, a0, a1) such that, up to subsequences,

F (\cdot , A) = \Gamma (Lp(\Omega ))- lim
h\rightarrow \infty 

Fh(\cdot , A) for each A \in \scrA 

and F admits the representation (53). If, in addition, the sequence (Fh(\cdot , A))h is
equicoercive in Lp(\Omega ) (see [DM, Definition 7.6]), then by [DM, Theorem 7.8], F (\cdot , A)
attains its minimum in Lp(\Omega ) and

min
u\in Lp(\Omega )

F (u,A) = lim
h\rightarrow \infty 

inf
u\in Lp(\Omega )

Fh(u,A) for each A \in \scrA .

Let us now study the asymptotic behavior of minima and minimizers of problems (1).
We first need two preliminary results, namely Theorem 4.1 and Lemma 4.3. The first
result can be proved as [DM, Theorem 2.6] and [DM, Theorem 2.8], and a proof can
be found in [Ma, Theorem 2.3.27]. The second one can be instead proved following
[DM, Proposition 2.10] and [DM, Proposition 2.11].

Theorem 4.1. Let \Omega \subset \BbbR n be a bounded open set, let 1 < p < \infty , and let X
satisfy the LIC and conditions (H1), (H2), and (H3). Let f \in Im,p(\Omega , c0, c1, a0, a1),

let g satisfy (10), and let F,G :W 1,p
X (\Omega ) \rightarrow \BbbR be the functionals defined, respectively,

by

F (u) :=

\int 
\Omega 

f(x,Xu(x)) dx and G(u) :=

\int 
\Omega 

g(x, u(x)) dx .

For any fixed \varphi \in W 1,p
X (\Omega ), let \Xi ,\Xi \varphi :W 1,p

X (\Omega ) \rightarrow \BbbR be, respectively, defined by

\Xi := F +G and \Xi \varphi := F +G+ 1\varphi .

Then, the minimum problems

min
u\in W 1,p

X (\Omega )
\Xi (u)(77)

and

min
u\in W 1,p

X,\varphi (\Omega )
\Xi \varphi (u)(78)

have at least a solution, provided that

(79) 0 < d0 \leq d1,

and (11) holds, respectively, where d0 and d1 are the constants in (10). If, in addition,
(i) g(x, \cdot ) is strictly convex on \BbbR for a.e. x \in \Omega , then both solutions in (77) and

(78) are unique;
(ii) f(x, \cdot ) is strictly convex on \BbbR m and g(x, \cdot ) is convex on \BbbR for a.e. x \in \Omega ;

then the solution in (78) is unique.
Moreover,

min
u\in W 1,p

X (\Omega )
\Xi (u) = inf

u\in \bfC 1(\Omega )\cap W 1,p
X (\Omega )

\Xi (u) .(80)

Remark 4.2. Observe that, arguing as in [DM, Corollary 2.9], also a linear func-
tional G : Lp(\Omega ) \rightarrow \BbbR , G(u) :=

\int 
\Omega 
g(x)u(x) dx, for a given function g \in Lp\prime 

(\Omega ), is
allowed in minimization problem (78).
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Lemma 4.3. Let \Omega be a bounded open subset of \BbbR n, let 1 < p < \infty , and let X
satisfy the LIC and conditions (H1), (H2), and (H3). For any fixed \varphi \in W 1,p

X (\Omega ), let
\Psi \varphi : Lp(\Omega ) \rightarrow [0,\infty ] be defined by

(81) \Psi \varphi (u) :=

\Biggl\{ \int 
\Omega 
| Xu(x)| p dx if u \in W 1,p

X,\varphi (\Omega ),

\infty otherwise.

Then, \Psi \varphi is coercive and lower semicontinuous in the strong topology of Lp(\Omega ).

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. (i) By (78), both functionals \Xi \varphi 
h and \Xi \varphi attain their min-

ima in Lp(\Omega ) and, by Theorem 3.6,

(Fh + 1\varphi )h \Gamma -converges to F + 1\varphi 

in the strong topology of Lp(\Omega ). Moreover, since G is continuous in the strong topol-
ogy of Lp(\Omega ) (it is readily seen, proceeding exactly as in the proof of Theorem 4.1),
then

(\Xi \varphi 
h)h \Gamma -converges to \Xi \varphi 

in the strong topology of Lp(\Omega ), in virtue of [DM, Proposition 6.21].
Let \Psi \varphi be the functional defined in (81). By (5), (10), and Lemma 2.18, there exist

a positive constant k3, depending on c0, d0, k1, and a positive constant k4, depending
on a0, b0, k2, such that

(82) \Xi \varphi 
h(u) \geq k3\Psi 

\varphi (u) - k4 for any u \in Lp(\Omega ) for any h \in \BbbN ,

where k1, k2 are the constants in Lemma 2.18. Then, by [DM, Proposition 7.7], (\Xi \varphi 
h)h

is equicoercive in the strong topology of Lp(\Omega ), and, by [DM, Theorem 7.8], \Xi \varphi is
also coercive and (13) follows.

(ii) Let (uh)h be a sequence of minimizers of (\Xi \varphi 
h)h. Without loss of generality,

we may assume (uh)h \subset W 1,p
X,\varphi (\Omega ). As in (82),

\infty > \Xi \varphi 
h(uh) \geq k3\| uh\| pW 1,p

X (\Omega )
 - k4 for any h \in \BbbN ,

i.e., (uh)h in bounded in W 1,p
X,\varphi (\Omega ) and, arguing as in the proof of Lemma 4.3, there

exists \=u \in W 1,p
X,\varphi (\Omega ) such that, up to subsequences, (14) holds. Finally, by [DM,

Corollary 7.20], we get (15).

4.2. Convergence of momenta. We now deal with the convergence of the
momenta associated with functionals (Fh)h. The results contained in this section are
inspired by [ADMZ2] and they partially extend those results to integral functionals
depending on vector fields.

Let f \in Im,p(\Omega , c0, c1, a0, a1), let f(x, \cdot ) : \BbbR m \rightarrow \BbbR be of class C1(\BbbR m) for a.e.
x \in \Omega , and denote by \nabla \eta f(x, \eta ) its gradient at \eta \in \BbbR m.

By Lemma 3.8, there exists a nonnegative constant c2, depending only on p and
c1, such that

| \nabla \eta f(x, \eta )| \leq c2 (2 | \eta | + (a0(x) + a1(x))
1/p)p - 1 for a.e. x \in \Omega \forall \eta \in \BbbR m.

Then, functional \scrF in (17) is of class C1(Lp(\Omega )m) and its Gateaux derivative \partial \Phi \scrF :
Lp(\Omega )m \rightarrow Lp\prime 

(\Omega )m is given by

(83) \partial \Phi \scrF (\Phi )(x) = \nabla \eta f(x,\Phi (x)) for a.e. x \in \Omega .
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The main results of this section are Theorem 1.3 and Corollary 1.4. Since the
proof of Theorem 1.3 is an adaptation of a technique introduced in [DMFT, Lemma
4.11] and [ADMZ2, Theorem 4.5], we omit it. For an explicit proof, see, e.g., [Ma2,
Theorem 3.1.6].

Remark 4.4. We are aware that assumption (iii) in Theorem 1.3, on integrand
function f(x, \cdot ) to be C1(\BbbR m), is quite strong. Since the techniques exploited in the
Euclidean setting do not seem to work in our framework, we do not know whether
assumption (ii) actually implies it (see [GP, Proposition 3.5] and [ADMZ2, Theorem
2.8]). However, we will be able to prove this result in two relevant cases: the periodic
homogenization in Carnot groups and the case of quadratic forms (see sections 5 and
6 below).

Proof of Corollary 1.4. Let (uh)h be a sequence of minimizers of (\Xi \varphi 
h)h. By The-

orem 1.2, there exists a minimizer u of \Xi \varphi such that, up to subsequences,

uh \rightarrow u weakly in W 1,p
X (\Omega ) and strongly in Lp(\Omega )

and

(84) \Xi \varphi 
h(uh) \rightarrow \Xi \varphi (u) .

Since G is continuous in the strong topology of Lp(\Omega ), then

G(uh) \rightarrow G(u)

and, by (84),

(85) \scrF h(Xuh) = Fh(uh) \rightarrow F (u) = \scrF (Xu) .

Then, the thesis follows by Theorem 1.3.

5. Convergence of minimizers and momenta in the case of homoge-
nization in Carnot groups. We are going to study the convergence of momenta
for a \Gamma -convergent sequence of functionals in the case of the periodic homogenization
in Carnot groups. The asymptotic behavior for the periodic homogenization of se-
quences of functionals and differential operators in Carnot groups has been the object
of an intensive study in the last two decades. Here, for the sake of simplicity, we will
restrict to the case of periodic homogenization in the setting of Heisenberg groups,
which turn out to be the simplest Carnot groups.

Let us recall that the s-dimensional Heisenberg group \BbbH s := (\BbbR n, \cdot ), with n =
2s+ 1 = m+ 1 and s \geq 1 integer, is a Lie group with respect to the group law

x \cdot y := (x1 + y1, . . . , xm + ym, xm+1 + ym+1 + \omega (x, y)) ,

where

\omega (x, y) :=
1

2

s\sum 
i=1

(xi ys+i  - yi xs+i)

if x = (x1, . . . , xm+1) and y = (y1, . . . , ym+1) are in \BbbR n. Moreover, \BbbH s can be equipped
with a one-parameter family of intrinsic dilations \delta \lambda : \BbbR n \rightarrow \BbbR n (\lambda > 0), defined as

\delta \lambda (x) := (\lambda x1, . . . , \lambda xm, \lambda 
2 xm+1) if x = (x1, . . . , xm, xm+1) ,
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which are also automorphisms of the group. A standard basis of the Lie algebra
associated to \BbbH s is given by the following family of n left-invariant vector fields:

Xj :=

\left\{     
\partial j  - xs+j

2 \partial n if 1 \leq j \leq s,

\partial j +
xj - s

2 \partial n if s+ 1 \leq j \leq m = 2s,

\partial n if j = n = m+ 1.

Notice that the only nontrivial commutations among vector fields Xj 's are given by

(86) [Xj , Xs+j ] = Xn for each j = 1, . . . , s .

The family of vector fields

(87) X := (X1, . . . , Xm)

is called a horizontal gradient of the Heisenberg group \BbbH s. It is immediate to see that
X satisfies the LIC and, by (86), the H\"ormander condition. Thus, by Remark 2.8 (i),
the horizontal gradient X satisfies assumptions (H1), (H2), and (H3).

Since \BbbH s is a homogeneous Lie group, it is possible to introduce two natural
notions of intrinsic periodicity and linearity, with respect to its algebraic structure
(see [DDMM, Definition 2.3]).

Definition 5.1. A function g : \BbbR n \rightarrow \BbbR is said to be H-periodic whenever

(88) g(2k \cdot x) = g(x) for any x \in \BbbR n for any k \in \BbbZ n.

Moreover, a function l : \BbbR n \rightarrow \BbbR is said to be H-linear if

l(x \cdot y) = l(x) + l(y) and l(\delta \lambda (x)) = \lambda l(x)

for each x, y \in \BbbR n and \lambda > 0.

It is well known that each H-linear function l : \BbbR n \rightarrow \BbbR can be represented by a
unique \eta \in \BbbR m in such a way that

(89) l(x) = l\eta (x) := \langle \eta , \pi m(x)\rangle ,

where \langle \cdot , \cdot \rangle and \pi m : \BbbR n \rightarrow \BbbR m denote, respectively, the scalar product on \BbbR m and
the projection map

\pi m(x) := (x1, . . . , xm) if x = (x1, . . . , xm+1) \in \BbbR n.

Definition 5.2. A function u : \BbbR n \rightarrow \BbbR is said to be H-affine if there exist
\eta \in \BbbR m and a \in \BbbR such that

u(x) = l\eta (x) + a for each x \in \BbbR n.

Let X = (X1, . . . , Xm) denote the horizontal gradient (87) and fix \eta \in \BbbR m. One
can prove that, for any H-affine function u,

(90) Xu(x) = \eta if and only if u(x) = l\eta (x) + a

for some a \in \BbbR and for any x \in \BbbR n (see, e.g., [DDMM, Lemma 3.1]).
Let us recall a \Gamma -convergence result for the periodic homogenization of a sequence

of integral functionals in \BbbH s.
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Theorem 5.3 (see [DDMM, Theorem 5.2]). Let \scrA 0 be the class of all open
bounded subsets of \BbbR n, 1 < p <\infty , and f \in Im,p(\BbbR n, c0, c1, 0, 1), which satisfy

(91) f(\cdot , \eta ) : \BbbR n \rightarrow [0,\infty ) is H-periodic for every \eta \in \BbbR m.

Let F\varepsilon : L
p
loc(\BbbR n)\times \scrA 0 \rightarrow [0,\infty ] be the local functional defined as

(92) F\varepsilon (u,A) :=

\Biggl\{ \int 
A
f(\delta 1/\varepsilon (x), Xu(x)) dx if A \in \scrA 0, u \in W 1,p

X (A),

\infty otherwise.

Then, there exist a local functional F0 : Lp
loc(\BbbR n)\times \scrA 0 \rightarrow [0,\infty ] and a convex function

f0 : \BbbR m \rightarrow [0,\infty ), not depending on x and satisfying

c0| \eta | p \leq f0(\eta ) \leq c1| \eta | p + 1 for any \eta \in \BbbR m,

such that, up to subsequences,

(93) F0(\cdot , A) = \Gamma (Lp
loc(\BbbR 

n))- lim
h\rightarrow \infty 

F\varepsilon h(\cdot , A) for each A \in \scrA 0

for any infinitesimal sequence (\varepsilon h)h, and F0 can be represented as

(94) F0(u,A) :=

\Biggl\{ \int 
A
f0(Xu(x)) dx if A \in \scrA 0, u \in W 1,p

X (A),

\infty otherwise.

We are going to prove the following regularity result for the integrand function
f0 which represents the \Gamma -limit. It is an extension to functionals depending on vector
fields of [GP, Proposition 3.5], when X = D, and of [ADMZ2, Theorem 2.8], which
applies to a more general setting.

Proposition 5.4. Under the hypotheses of Theorem 5.3, suppose that

(95) \BbbR m \ni \eta \mapsto \rightarrow f(x, \eta ) belongs to C1(\BbbR m) for a.e. x \in \Omega 

and, fixed 0 \leq \alpha \leq min\{ 1, p - 1\} , that there exists a positive constant c such that

(96) | \nabla \eta f(x, \eta 1) - \nabla \eta f(x, \eta 2)| \leq c | \eta 1  - \eta 2| \alpha (| \eta 1| + | \eta 2| + 1)
p - 1 - \alpha 

a.e. x \in \Omega , for any \eta 1, \eta 2 \in \BbbR m. Then, f0 \in C1(\BbbR m).

Proof. We follow the same strategy of [GP, Proposition 3.5].

Let fh : \BbbR n \times \BbbR m \rightarrow [0,\infty ) be the function

(97) fh(y, \eta ) := f(\delta 1/\varepsilon h(y), \eta ) for any y \in \BbbR n, \eta \in \BbbR m, h \in \BbbN 

and denote B1 the unit ball in \BbbR n centered at 0. For any fixed \eta \in \BbbR m, let u : \BbbR n \rightarrow \BbbR 
be the H-affine function (89), that is,

u(y) = l\eta (y) for any y \in \BbbR n.

If (uh)h is a recovery sequence for u, then, by (93) and (94),

(98) uh \rightarrow l\eta strongly in Lp(B1)
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and

(99) F0(l\eta , B1) = f0(\eta ) | B1| = lim
h\rightarrow \infty 

F\varepsilon h(uh, B1) .

By (99) and (I3), (Xuh)h is bounded in Lp(B1)
m and, by (55),

| \nabla \eta fh(y,Xuh(y))| \leq c2 (2| Xuh(y)| + 1)
p - 1

for each h \in \BbbN and for a.e. y \in B1. Then, (\nabla \eta fh(\cdot , Xuh))h is bounded in Lp\prime 
(B1)

m

and there exists \psi \in \BbbR m such that, up to subsequences,

(100)
1

| B1| 

\int 
B1

\nabla \eta fh(y,Xuh(y)) dy \rightarrow \psi .

Let (tj)j be a decreasing infinitesimal sequence. By the convexity of fh in the second
variable, \int 

B1

fh(y,Xuh(y) + tj\zeta ) - fh(y,Xuh(y)) dy

\leq tj

\int 
B1

\langle \nabla \eta fh (y,Xuh(y) + tj\zeta ) , \zeta \rangle dy
(101)

for any j \in \BbbN and \zeta \in \BbbR m.
By the \Gamma - lim inf inequality and (99), we can find hj \in \BbbN such that

f0 (\eta + tj\zeta ) - f0 (\eta )

tj
 - 1

j
\leq 1

| B1| 

\int 
B1

\langle \nabla \eta fhj

\bigl( 
y,Xuhj (y) + tj\zeta 

\bigr) 
, \zeta \rangle dy

and so

lim sup
j\rightarrow \infty 

f0 (\eta + tj\zeta ) - f0 (\eta )

tj

\leq 1

| B1| 
lim sup
j\rightarrow \infty 

\int 
B1

\langle \nabla \eta fhj

\bigl( 
y,Xuhj

(y) + tj\zeta 
\bigr) 
, \zeta \rangle dy .

(102)

By (96), (100), and [ADMZ2, Lemma 4.4], withHj := \nabla \eta fhj
, \Phi j := Xuhj

, \Psi j := tj \zeta ,
and \Phi \equiv 1, we can infer that

lim
j\rightarrow \infty 

\int 
B1

\langle \nabla \eta fhj

\bigl( 
y,Xuhj

(y) + tj\zeta 
\bigr) 
, \zeta \rangle dy

= lim
j\rightarrow \infty 

\int 
B1

\langle \nabla \eta fhj

\bigl( 
y,Xuhj

(y)
\bigr) 
, \zeta \rangle dy = \langle \psi , \zeta \rangle | B1| .

By (102), for every subgradient v of the convex function f0 at \eta ,

\langle v, \zeta \rangle \leq lim sup
j\rightarrow \infty 

f0 (\eta + tj\zeta ) - f0 (\eta )

tj
\leq \langle \psi , \zeta \rangle for each \zeta \in \BbbR m .

Then, v = \psi and there is a unique subgradient of f0 at \eta . Therefore, f0 is differentiable
at \eta for each \eta \in \BbbR m, by [Ro, Theorem 25.1]. On the other hand, by [Ro, Corollary
25.5.1], any finite convex differentiable function on an open convex set must be of
class C1.
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Corollary 5.5. Let \Omega \subset \BbbR n be a bounded and connected open set, let 1 < p <\infty ,
and let X be the horizontal gradient defined in (87). Let f \in Im,p(\Omega , c0, c1, 0, 1) satisfy
(91), (95), and (96), let fh be as in (97), let g satisfy (10) and (11), let G be the
functional in (3), and with a little abuse of notation, denote

F\varepsilon h(u) := F\varepsilon h(u,\Omega ) and F0(u) := F0(u,\Omega ) for any u \in Lp(\Omega ) ,

where F\varepsilon h and F0 are, respectively, as in (92) and (94) such that (93) holds for
each infinitesimal sequence (\varepsilon h)h. For any fixed \varphi \in W 1,p

X (\Omega ), consider functionals
\Xi \varphi 
h ,\Xi 

\varphi 
0 : Lp(\Omega ) \rightarrow \BbbR \cup \{ \infty \} , defined by

\Xi \varphi 
h := F\varepsilon h +G+ 1\varphi and \Xi \varphi 

0 := F0 +G+ 1\varphi .

If (uh)h \subset Lp(\Omega ) is a sequence of minimizers of (\Xi \varphi 
h)h, then there exists a minimum

u of \Xi \varphi such that, up to subsequences,

uh \rightarrow u weakly in W 1,p
X (\Omega ) and strongly in Lp(\Omega ) .

Moreover, the convergence of momenta also holds, that is,

(103) \nabla \eta fh(\cdot , Xuh(\cdot )) \rightarrow \nabla \eta f0(Xu(\cdot ))

weakly in Lp\prime 
(\Omega )m as h\rightarrow \infty .

Proof. In virtue of Remark 2.8 (i), by choosing \Omega 0 = \BbbR n, the horizontal gradient
X satisfies (H1), (H2), and (H3) as well as the LIC. By (93), (F\varepsilon h)h \Gamma -converges to
F0 in the strong topology of Lp(\Omega ). Therefore, by Proposition 5.4, we can apply
Corollary 1.4 and we get the desired conclusions.

6. \bfitH -convergence for linear operators in \bfitX -divergence form. Through-
out this section X = (X1, . . . , Xm) denotes a family of Lipschitz continuous vector
fields on an open neighborhood \Omega 0 of \Omega , open subset of \BbbR n. Moreover, we denote by
H1

X,0(\Omega ) the space W 1,2
X,0(\Omega ) and by H - 1

X (\Omega ) its dual space. Since H1
X,0(\Omega ) turns out

to be a Hilbert space, in a standard way, then we can construct the triplet

H1
X,0(\Omega ) \subset L2(\Omega ) \subset H - 1

X (\Omega ) ,

with the space L2(\Omega ) as the pivot space.
Let a(x) := [aij(x)] be an m\times m symmetric matrix, with aij \in L\infty (\Omega ) for every

i, j \in \{ 1, . . . ,m\} , and assume the existence of c0 \leq c1, positive constants, such that

(104) c0| \eta | 2 \leq \langle a(x)\eta , \eta \rangle \leq c1| \eta | 2 a.e. x \in \Omega and for any \eta \in \BbbR m.

As a consequence of Corollary 1.4, we can infer a H-compactness result for the class
of linear partial differential operators in X-divergence form,

(105) \scrL = divX(a(x)X) :=

m\sum 
j,i=1

XT
j (aij(x)Xi) ,

whose domain D(\scrL ) is the set of functions u \in W 1,2
X (\Omega ) such that the distribution

defined by the right-hand side belongs to L2(\Omega ). Here, XT
j :=  - (div(Xj) + Xj)

denotes the (formal) adjoint of Xj in L2(\Omega ), as in (19). In accordance with [DM,
Chapter 13], we denote this class of operators as \scrE (\Omega ) := \scrE (\Omega , c0, c1).
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Remark 6.1. For each \scrL \in \scrE (\Omega ) and for each \mu \geq 0, the linear operator

\mu Id + \scrL : H1
X,0(\Omega ) \rightarrow H - 1

X (\Omega )

is coercive and then it is an isomorphism. Moreover, it is well known that, fixed
g \in L2(\Omega ), u = (\mu Id + \scrL ) - 1g is the (unique) solution to\Biggl\{ 

\mu v + \scrL (v) = g in \Omega ,

v \in H1
X,0(\Omega ),

and the (unique) minimizer of F +G : H1
X,0(\Omega ) \rightarrow \BbbR , where

F (v) =
1

2

\int 
\Omega 

\langle a(x)Xv(x), Xv(x)\rangle dx , G(v) :=

\int 
\Omega 

\Bigl( \mu 
2
v2  - gv

\Bigr) 
dx

if v \in H1
X,0(\Omega ).

We are going to prove the following H-compactness result for operators belonging
to \scrE (\Omega ).

Theorem 6.2. Let \Omega \subset \BbbR n be a bounded open set, and let X satisfy the LIC
and conditions (H1), (H2), and (H3). Let \scrL h \in \scrE (\Omega ), and let ah(x) = [ahij(x)] be the
associated matrix, in accordance with (105). Then, there exist a symmetric matrix
a = [aij(x)], satisfying (104), and an operator \scrL \infty := divX(a(x)X) \in \scrE (\Omega ) such
that, for any g \in L2(\Omega ), \mu \geq 0 and h \in \BbbN , if uh and u\infty denote, respectively, the
(unique) solutions to\Biggl\{ 

\mu u+ \scrL h(u) = g in \Omega ,

u \in H1
X,0(\Omega )

and

\Biggl\{ 
\mu u+ \scrL \infty (u) = g in \Omega ,

u \in H1
X,0(\Omega ).

Then, up to subsequences, the following convergences hold:

(106) uh \rightarrow u\infty strongly in L2(\Omega ) (convergence of solutions)

and

ahXuh \rightarrow aXu\infty weakly in L2(\Omega )m (convergence of momenta).

Proof. Step 1. Let us prove that, up to a subsequence, there exists an operator
\scrL = divX(a(x)X) \in \scrE (\Omega ) for which (106) holds.

Let (ah)h be the sequence of matrices associated to (\scrL h)h, and let Fh : L2(\Omega ) \rightarrow 
[0,\infty ] be the quadratic functional defined by

Fh(u) :=

\Biggl\{ 
1
2

\int 
\Omega 
\langle ah(x)Xu(x), Xu(x)\rangle dx if u \in W 1,2

X (\Omega ),

\infty otherwise.

By [MPSC1, Theorem 4.20], there exist F : L2(\Omega ) \rightarrow [0,\infty ] and a symmetric matrix
a = [aij(x)], satisfying (104), such that, up to subsequences, (Fh)h \Gamma -converges in
the strong topology of L2(\Omega ) to F and F can be represented as

F (u) :=

\Biggl\{ 
1
2

\int 
\Omega 
\langle a(x)Xu(x), Xu(x)\rangle dx if u \in W 1,2

X (\Omega ),

\infty otherwise.
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Let \scrL \infty be the elliptic operator associated with a on L2(\Omega ), as in (105). It is easy
to see that \scrL \infty is the operator associated, in the sense of [DM, Definition 12.8], to
functional F 0 : L2(\Omega ) \rightarrow [0,\infty ] defined by

F 0(u) =

\Biggl\{ 
1
2

\int 
\Omega 
\langle a(x)Xu(x), Xu(x)\rangle dx if u \in H1

X,0(\Omega ),

\infty otherwise.

Let us consider F 0
h : L2(\Omega ) \rightarrow [0,\infty ] defined by

F 0
h (u) =

\Biggl\{ 
1
2

\int 
\Omega 
\langle ah(x)Xu(x), Xu(x)\rangle dx if u \in H1

X,0(\Omega ),

\infty otherwise,

whose associated operators are the (\scrL h)h. By Theorem 3.6, with \varphi = 0 and A = \Omega ,
it holds that

(107) (F 0
h )h \Gamma -converges to F 0 in the strong topology of L2(\Omega ) .

Fix \mu \geq 0 and g \in L2(\Omega ), and denote by G : L2(\Omega ) \rightarrow \BbbR the functional

G(u) :=

\int 
\Omega 

\Bigl( \mu 
2
u2  - gu

\Bigr) 
dx .

Since G is (strongly) continuous in L2(\Omega ), then, by (107) and in virtue of [DM,
Proposition 6.21],

(108) (F 0
h +G)h \Gamma -converges to F 0 +G in the strong topology of L2(\Omega ) .

By Remark 6.1, uh and u turn out to the unique minimizers of Fh + G and F + G,
respectively. Therefore, by Theorem 1.2, we get (106) and

lim
h\rightarrow \infty 

\bigl( 
F 0
h (uh) +G(uh)

\bigr) 
= lim

h\rightarrow \infty 
min

u\in H1
X,0(\Omega )

\bigl( 
F 0
h (u) +G(u)

\bigr) 
= min

u\in H1
X,0(\Omega )

\bigl( 
F 0(u) +G(u)

\bigr) 
= F 0(u\infty ) +G(u\infty ) .

Step 2. For a.e. x \in \Omega for any \eta \in \BbbR m and for any h \in \BbbN , let

fh(x, \eta ) := \langle ah(x)\eta , \eta \rangle and f(x, \eta ) := \langle a(x)\eta , \eta \rangle .

It is easy to see that fh and f satisfy assumptions (i), (ii), and (iii) of Theorem 1.3.
Moreover,

\partial \Phi \scrF h(Xuh) = ahXuh and \partial \Phi \scrF (Xu) = aXu .

Therefore, by the first step of the proof and by Corollary 1.4, we get the convergence
of momenta.

Acknowledgments. We thank G. Buttazzo and B. Franchi for useful sugges-
tions and discussions on these topics. We also thank the referees of this paper for all
the suggestions that improved it, and M. Caponi for useful suggestions on the proof
of Theorem 3.1.
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