

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

A Goal-based Framework for Contextual Requirements
Modeling and Analysis

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

February 2010

Technical Report # DISI-10-019

.

Noname manuscript No.
(will be inserted by the editor)

A Goal-based Framework for Contextual Requirements
Modeling and Analysis

Raian Ali · Fabiano Dalpiaz · Paolo Giorgini
DISI, University of Trento, Italy.

Received: date / Accepted: date

Abstract Requirements Engineering (RE) research of-
ten ignores, or presumes a uniform nature of the context
in which the system operates. This assumption is no
longer valid in emerging computing paradigms, such as
ambient, pervasive and ubiquitous computing, where it
is essential to monitor and adapt to an inherently vary-
ing context. Besides influencing the software, context
may influence stakeholders’ goals and their choices to
meet them. In this paper, we propose a goal-oriented
RE modeling and reasoning framework for systems op-
erating in varying contexts. We introduce contextual
goal models to relate goals and contexts; context analy-
sis to refine contexts and identify ways to verify them;
reasoning techniques to derive requirements reflecting
the context and users priorities at runtime; and finally,
design time reasoning techniques to derive requirements
for a system to be developed at minimum cost and valid
in all considered contexts. We illustrate and evaluate
our approach through a case study about a museum-
guide mobile information system.

Keywords Contextual Requirements · Context
Analysis · Goal Modeling · Requirements Analysis

1 Introduction

The advances of computing, sensors, and communica-
tion technology helped the realization of new comput-
ing paradigms such as ambient, ubiquitous and per-
vasive computing. These paradigms weave computing
systems with humans’ living environments to transpar-
ently meet their needs [1]. Context, a core element of
these settings, can be defined as the reification of the
environment, that is whatever provides a surrounding
in which a system operates [2]. Context can influence

the requirements of a system and the variants a system
can adopt to meet its requirements. Moreover, context
is by nature variable in these paradigms and it calls
for new approaches to create system that can adapt to
context changes.

Goal-oriented analysis has been proposed in the RE
literature to capture the intentionality behind software
requirements [3]. Goals are a useful abstraction to rep-
resents stakeholders’ needs and expectations and they
offer a very intuitive way to elicit and analyze require-
ments. Context is strongly related to goals, for it changes
the current goals of a stakeholder and the possible ways
to satisfy them. For example, let us consider a tour
guide that has the goal of providing assistance to tourists
during an organized tour. The context “tourist has not
had lunch today and now it is lunchtime” activates the
guide’s goal “find a restaurant” and, supposing that
a context like “tourist is vegetarian” applies, the guide
has to find a restaurant serving vegetarian food. A soft-
ware system developed to support tour guides has to re-
flect guides’ goals, their rationale and their capability
to adapt to the context. This reflection is preliminary
for the system to execute useful functionalities such as
showing on the map a set of close restaurants that serve
vegetarian food.

Goal models (i* [4], Tropos [5], and KAOS [6]) rep-
resent an intentional ontology used at the early require-
ments analysis phase to explain the why of a software
system. They have been used to represent the rationale
of both humans and software systems [7] and they pro-
vide useful constructs to analyze high level goals and
ways to satisfy them. Such features are essential for
the analysis and the design of a software system sup-
posed to reflect stakeholders’ rationale and adaptation
to varying contexts [8,9].

2

In this paper, we propose a RE modeling and rea-
soning framework for systems operating in and reflect-
ing varying contexts. We propose the contextual goal
model that extends Tropos goal model introducing vari-
ation points where the context may influence the choice
among the available variants of goals satisfaction [10,
11]. We also propose a set of modeling constructs to
analyze and discover relevant information the system
needs to capture, at runtime, in order to verify if a con-
text applies [12,13]. Two reasoning techniques are then
proposed. The former concerns the automatic deriva-
tion at runtime of goal model variants that reflect con-
text and user priorities. The latter is about the deriva-
tion, at design time, of the requirements to be imple-
mented that lead for a system developed with minimum
costs and valid in all considered contexts. We illustrate
and evaluate our framework through a mobile informa-
tion system case study.

The paper is structured as follows. Section 2 de-
scribes the museum-guide case study; Section 3 intro-
duces the contextual goal model to capture require-
ments for varying contexts; Section 4 illustrates the
reasoning technique to derive requirements for different
contexts and users’ priorities, while Section 5 shows an
approach to derive the core requirements of a system.
Section 6 presents our developed automated support
tool and the results obtained by applying our frame-
work on the case study. Related work and conclusion
are given in Section 7 and Section 8, respectively.

2 Case Study: Museum-guide

In this paper, we use a case study of a museum-guide
mobile information system developed within the Labo-
ratory of Mobile Application (LaMA1) at the Univer-
sity of Trento. The system is expected to enforce the
museum rules by notifying visitors to what they should
do in the right moment. Moreover, the system has to
figure out if the visitor is interested in a certain piece
of art and convey suitable information related to that
piece of art. Visitors and museum staff are provided
with PDAs as communication and explanation devices.
The system consists basically of two components: the
monitoring component that captures context, and the
functional component that carries out actions reflecting
each monitored context.

To initiate the process of conveying information about
a piece of art to a visitor, the system has to monitor if
the visitor is interested in it. This information can be
inferred, for instance, if the visitor has been standing
in front of the piece of art for long time. If so, the sys-
tem has to look for the best way to convey information

1 http://lama.disi.unitn.it/

to the visitor. The delivery of information can be done
via information terminals, the PDA the visitor has, or
a staff member. For each of the possible ways to con-
vey information, the system is supposed to do certain
tasks. For example, to use terminals the visitor must be
informed about the existence of such a service, guided
to it, and informed about the way to use it. To get in-
formation through a staff member, the system has to
notify the staff member and establish a call with the
visitor, or guide the staff to the visitor’s place to give
information in person.

Concerning the relationship between context and re-
quirements, context can influence decisions about:

– Requirements to meet: if the context “visitor is
not interested in a piece of art” applies, the mobile
information system does not need to activate the
information delivery process. Moreover, if the con-
text “visitor is familiar with the use of terminals and
knows one of the languages the terminals support”
applies, then informing the visitor about the way of
using such terminals is not required and the system
has only to inform the visitor about the existence of
the service and guide him to a free terminal.

– Ways to meet requirements: the system could
have two variants to convey information about a
piece of art via PDAs: video-based and interactive.
Each variant could require a valid context. For ex-
ample, conveying information via an interactive pre-
sentation requires that a context like “visitor has
good experience in using PDAs” applies.

– Quality of each way: considering staff comfort as
a quality measure; conveying information to visitors
on person is less comfortable for a staff when a con-
text like “visitor is far away from the staff” applies.

3 Goal-based Contextual Requirements

Goal-oriented approaches have gained popularity in RE
community for their simplicity in capturing stakehold-
ers’ needs and expectations. Goal models are intentional
representations of users goals and the ways users may
adopts to satisfy them. Goal models can capture also
the quality of each way through the notion of soft-
goal [3]. Context may have a strong influence on users
goals, the way to reach them, and the quality of each
way. Consequently, we need to enrich goal models with
context to capture such influence. In this section, we
propose the contextual goal model that accommodates
the relation between goals and context.

3

3.1 Tropos goal modeling: overview

Goal analysis represents a paradigmatic shift with re-
spect to object-oriented analysis. While object-oriented
analysis fits well to the late stages of requirement anal-
ysis, goal-oriented analysis is more natural for the ear-
lier stages where organizational goals are analyzed to
identify and justify software requirements and position
them within the organizational system [7]. Tropos goal
analysis projects the system as a set of interdependent
actors, each having its own strategic interests (goals).
Goals are analyzed iteratively in a top-down manner,
to identify more specific sub-goals needed to reach the
upper-level goals. Goals can be ultimately satisfied by
means of specific executable processes (tasks).

In Fig.1, we show a partial Tropos goal model for the
museum-guide case study. Actors (“Visitor assistance
system” and “Staff assistance system”) have a set of
top-level goals (“visitor gets informed about a piece of
art”), which are iteratively decomposed into subgoals
by and-decomposition (all subgoals should be achieved
to fulfil the top goal) and or-decomposition (at least
one subgoal should be achieved to fulfil the top goal –
e.g., “visitor gets information via his PDA” or “visi-
tor gets information through museum staff”. Goals are
finally satisfied by means of executable tasks; the goal
“piece of art information is presented to visitor” can be
reached by one of the tasks “information is presented
to visitor via video” and “information is presented to
visitor interactively”.

A dependency indicates that an actor (depender)
depends on another actor (dependee) to attain a goal
or to execute a task: the actor “Visitor assistance sys-
tem” depends on the actor “Staff assistance system” for
achieving the goal “visitor gets info through museum
staff”. Softgoals are qualitative objectives for whose
satisfaction there is no clear-cut criteria (“staff is more
comfortable” is a rather vague objective), and they can
be contributed either positively or negatively by goals
and tasks: “staff gives info to visitor in person” usually
contributes negatively to “staff is more comfortable”,
while “staff gives info to visitor remotely” usually con-
tributes positively to it.

Goal analysis allows for different variants to satisfy
a goal, but does not specify explicitly when each vari-
ant can be adopted. Supporting variants without spec-
ifying when to follow each of them raises the question
“why does the system support several variants and not
just one?”. The system may support different variants
to goal satisfaction in order to be able of operating in
varying contexts. In the next section we specify the re-
lationships between such variants and context through
the contextual goal model.

3.2 Context in requirements

Context has been defined in multiple computer science
disciplines especially in artificial intelligence (for a sur-
vey see [14]). It has been also defined in the literature
of emerging computing paradigms, such as ubiquitous,
adaptive, and mobile systems [15,2,16], that our re-
quirements engineering framework is developed for. A
specific definition of context strongly depends on the
domain it is used in. For example, in a context sensitive
search engines, a user may search the term “java” that
could mean a programming language or an island. To
disambiguate the searched term, the engine may look
to the context that can be the query history. If the user
asked recently for the term “cgi programming”, then
most probably he is looking for the Java programming
language [17]. In the rest of this section, we adapt a
definition of context from the perspective of require-
ments engineering, namely goal-oriented requirements
engineering.

As widely accepted, software is a means to meet
user requirements [18,19,7,20]. Software is developed
to solve a problem in the users world and to help them
reach their goals. In line with this view of requirements,
Tropos requirements analysis projects a system, either
organizational or software, as a set of interdependent
actors. Each actor has goals which are partial states of
the world an actor attempts to reach. Tropos goal anal-
ysis represents alternative sets of tasks that an actor
may execute trying to reach its goals. In other words,
tasks are not required per se, but are means to reach
goals. Actors are autonomous in deciding what goals to
reach, how, and how well to reach them. We here give
a definition of actor, adapted from [5], that is going to
be the observer of a context:

Definition 1 (Actor) an actor is an entity that has
goals and can decide autonomously how to achieve them.

An actor can be of different types such as human ac-
tors, software actors, or organizational actors. The main
characteristic of an actor is the autonomy in deciding
the way to reach its goals. This includes the ability to
decide what goals to reach, how, and how well to reach
them. For example, an assistance staff is a human actor
that may have the goal of conveying appropriately in-
formation about pieces of art to visitors. The assistance
staff has the ability to decide when to activate this goal
and what to do to reach it. The staff may reach such
goal by making a phone call with the visitor or by de-
livering information to him in person and the decision
between these two options is left to the assistance staff
himself. The decision taken by an actor depends on the
state of a portion of the world such actor lives in. We
call such a state context :

4

visitor gets informed about a
piece of art in museum

prepare
detailed

information
prepare brief

simple
information

visitor gets info via
his/her PDA

Visitor
Assista

nce
System

piece of art info is
prepared piece of art info is

presented to visitor

info is presented
to visitor via video

info is presented to
visitor interactively

or
visitor gets info through

museum staff
and

staff is more
comfortable

visitor well
informed

staff gives info
to visitor

remotely by
call

in person
or

--

+

--

+

Staff
Assista

nce
System

Goal Task

Actor

Actor boundary
Softgoal Means-ends link Decomposition link Dependency link

+/-
Contribution link

Fig. 1 Tropos goal model example

Definition 2 (Context) a context is a partial state of
the world that is relevant to an actor’s goals.

The decision about the parts of the world that are
relevant to an actor decisions is of subjective nature.
An actor does not observe the world for the purpose of
observation per se. An actor does that to decide what
goals to reach and what actions to do to reach them.
Therefore, such decision is influenced by properties over
the world that an actor needs to observe. For example,
“visitor is in a room where taking pictures is forbidden”
is relevant for a visitor assistance system actor when
deciding whether to block his PDA camera. The same
context is irrelevant when this actor needs to decide if
to convey information about a piece of art. Moreover,
there could be always viewpoints about what parts of
the world are relevant to a decision. For example, to
decide the adoptability of conveying information to a
visitor via an information terminal, one staff assistance
attempts to verify the context “visitor is very close to a
free terminal” and another one may attempts to verify
“visitor is close to a terminal or to a map showing the
locations of terminals in the museum”.

Context is inherently partial and volatile. Actors
may have partial view of the state of the world. They
may not be interested or able to capture all the in-
formation that fully captures such a state. A state of
the world may be partitioned into dimensions such as
spatio-temporal, personal, tasks, social as proposed in
[16]. This partitioning is a way of facilitating the way
a state of the world can be described and captured.
The world is volatile and could be in different states.
A partial state of the world that is uniform does not
influence the decisions of an actor. For example, if all
the museums do not allow taking pictures to the pieces
of art then the museum-guide system does not need to
observe if a room contains non-pictured piece of art.

The decision is made once while developing the system
and applied in all museums the system will operate in.

3.3 Contextual goal model

Goal models allow for variants of goal satisfaction. The
applicability of each of these variants can be context de-
pendent. The explicit specification of the context where
each variant is applicable allows, amongst other things,
for a systematic derivation of variants for various con-
texts. The enumeration of goal model variants and the
specification of contexts for each of them separately is
obviously a hard and time consuming task because of
the potentially huge number of variants and the com-
plexity of each variant when treated as one block. To
avoid enumerating the variants, we propose to define
context on a set of variation points at the goal model.

Fig. 2 represents a Tropos goal model for the Museum-
guide mobile information system which we have already
described. To make the model contextual, we need to
explicitly represent the relation between its space of
variants and the context. To this end, contexts, that
are labeled as C1..C15 on Fig. 2, can be associated with
the following variation points of Tropos goal model:

1. Or-decomposition. The adoptability of a subgoal or
a subtask in an Or-decomposition may require a
valid context. For example, to provide information
about a piece of art, a visitor can be directed to a
dedicated terminal. The terminal, however, has to
be available and close to the visitor, while the vis-
itor has to be able to use and interact with such a
terminal (C4). Alternatively, the visitor’s PDA can
be used to convey information when the piece of the
art information is not complicated, and the visitor
has the ability and knowledge to use PDAs (C5).
Getting information through an assistance staff re-
quires that the visitor is not able to use PDA and

5

visitor [v] gets informed
about a piece of art [p] in

museum [m]

[v] gets info
through [m] staff

[s]

prepare [p]
detailed

information

prepare [p]
brief simple
information

or

[v] gets info via his/
her PDA

Visitor
Assista

nce
System

C1

[v] gets info. via
terminal [t]

Staff
Assista

nce
System

[p] info suitable to
[v] is prepared [p] info is

presented to
[v]

and

[p] info is
presented to
[v] via video

[v] info is
presented to [v]

interactively

staff is more
comfortable

visitor well
informed

[v] gets info through
[m] staff [s]

[s] is alerted
[s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] by call

[s] gives [p] info to
[v] in person

make video
call between

[s] and [v]

make voice
call between

[s] and [v]
direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

send [s] a
voice

command

or[s] is alerted through
public call

[s] is alerted through
[s]

or

make a call
through speakers
in [s] current room

[s] is alerted
via ringing

tone and SMS

and
[v] know how to

use [t]

[v] arrives to
[t]

show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

direct [v] to [t]
place

send [v] a
voice

command alert [v] via PDA
vibration and

SMS

+ +

--

+

C2

C4 C6C5

¬C9

C7

visitor is assisted

visitor [v] follows museum
[m] process and rules

and

[v] accomplishes
registration

[v] is out of museum
by closing time

[v] is notified
before closing

time

and

C0

C10

C9[v] is
notified to
not enter

[v] is notified
to get out

C12

and

C3

calm museum

--
+--

C13

C8

C14

C11
C15

Fig. 2 The goal model of the museum-guide system with context annotation.

not familiar with terminals or that he is classified
as an important visitor (C6). Notifying a museum
staff by issuing a special voice message through his
room speakers can be adopted if the room does not
include audio art contents (C11). The museum staff
can give information through a call to visitors when
the staff’s PDA and the visitor’s PDA are not busy
(C15).

2. Root goals . Depending on the context, an actor may
decide to reach a root goal. For example, to reach
the root goal “visitor is assisted”, the visitor has
to be inside the museum area (including parking
places and public square in front of museum) and
the visitor should have accepted the assistance by
the mobile information system (C0).

3. Means-end. Goals can be ultimately satisfied via
specific executable processes (tasks). The adoptabil-
ity of each task in means-end analysis might depend
on the context. For example, the visitor can be no-
tified about the availability of information termi-
nals through a PDA voice message when he puts the

headphones on and is not using his PDA for a call
(C9); while, notifying him by SMS can be adopted
in the opposite context (¬C9). Notifying a museum
staff by ringing tone and SMS is adoptable when he
is not calling (C12), while notifying him by a PDA
voice command is adoptable when he is not calling
and is putting the headphone on (C13).

4. Actors dependency. An actor can attain a goal or
get a task executed by delegating it to another ac-
tor only in a specific context. For example, the de-
pendency in Fig. 2 requires an available staff mem-
ber that talks the language of the visitor and knows
enough about the piece of art (C10).

5. And-decomposition. A subgoal/subtask in an And-
decomposition might (not) be needed only in a cer-
tain context, i.e., some subgoals/subtasks are not
always mandatory to fulfil the top-level goal/task
in an And-decomposition. For example, the subgoal
“visitor gets informed about a piece of art” has to be
reached if the visitor is still inside the gallery build-
ing and he is interested in the piece of art (C1).

6

The subgoal “visitor is out of museum by closing
time” needs to be reached when closing time is ap-
proaching (C2), and the goal “visitor accomplishes
registration” has to be reached when visitor has en-
tered the museum building (C3). The task “visitor
is notified to not enter” is needed when the visitor
is on the way to enter the museum building (C7),
and the task “visitor is notified to get out” is needed
when the visitor is still inside the museum building
and is not walking towards the exit (C8).

6. Contribution to softgoals. Softgoals are qualitative
objectives for which there is no clear cut criteria
for their satisfaction. They can be contributed ei-
ther positively or negatively by goals and tasks. The
contributions to softgoals can vary from one context
to another. For example, giving the information in
person is comfortable to the assistance staff if the
visitor is close to him (C14), while it is not comfort-
able when they are far away from each other.

In the rest of the paper, we use the term “context
of a goal model variant” to refer to the conjunc-
tion of contexts at the variation points of the first five
kinds. If the context of a goal model variant applies, this
means that the variant is applicable. The contexts asso-
ciated with contributions to softgoals are used the eval-
uate the quality of each goal model variant. In Fig. 3,
we show a variant of the museum-guide goal model and
its corresponding context.

3.4 Context analysis

Similar to goals, context may need to be analyzed. On
the one hand, goal analysis allows for a systematic way
to discover alternative set of tasks an actor may exe-
cute to reach a goal. On the other hand, context anal-
ysis should allow for a systematic way in discovering
alternative sets of facts an actor may verify to judge if
a context applies.

We specify context as a formula of world predicates.
The syntax for this formula is shown in Code 1 using
the EBNF notation:

Code 1 EBNF grammar for world predicates formulae
Formula :- World Predicate | (Formula) | Formula AND Formula
| Formula OR Formula

We classify world predicates, based on their verifia-
bility by an actor, into two kinds, facts and statements :

Definition 3 (Fact) a world predicate F is a fact for
an actor A iff F can be verified by A.

Definition 4 (Statement) a world predicate S is a
statement for an actor A iff S can not be verified by A.

An actor has a clear way to verify a fact. It has the
ability to capture the necessary data and compute the
truth value of a fact. A fact is not a subject of view-
points. In other words, when a fact is true for an actor
it will be also true for others. For example, world pred-
icates such as “visitor is in the same room as a piece
of art”, “visitor is in the corridor of the same floor as
the piece of art” are facts that the museum guide in-
formation system can compute their truth values based
on the visitor’s location, which can be obtained by a
positioning system, and the topology of museum.

Some world predicates are not verifiable by an actor.
We call such predicates statements. A world predicate
can not be verified by an actor for reasons such as:

– lack of information: an actor may be unable to verify
a world predicate because of the inability to capture
the information necessary to verify it. For exam-
ple, “visitor does not know about a piece of art” is
a statement from the perspective of an actor such
as the assistance staff in a museum. The staff can
not obtain all the information needed to verify this
statement. The staff can not monitor if a visitor has
read about the piece of art somewhere on the web
or has been told about it by a friend.

– abstract nature: some world predicates are abstract
by nature and do not have clear criteria to be eval-
uated against. For example “visitor is interested in
a piece of art” is a world predicate that an actor,
such as an assistance staff, has no precise way to
judge if it holds and be certain of the judgement.
It is a concept that refers to a visitor’s mood that
there is no way to verify it by an actor rather than
the visitor himself.

Some decisions that an actor takes may depend on
contexts specifiable by means of only facts, while some
other decisions may depend on contexts that include
also statements. For example, to decide if to convey in-
formation about a piece of art to a visitor via an assis-
tance staff, the system (visitor assistance system) has
to judge if the context C6 applies. This includes de-
ciding the truth of the world predicate wp=“visitor is
not familiar with information terminals”. Such world
predicate is a statement that the system can not verify.
However, this statement can be refined into a formula of
facts and other statements. For example, the refinement
could consider the behavior of the visitor while using a
terminal. A slow or an unsuccessful interaction between
the visitor and a terminal may indicate little familiarity
in using such terminals, i.e. indicate the truth of wp. We

7

visitor [v] gets informed
about a piece of art [p] in

museum [m]

[v] gets info
through [m] staff

[s]

Visitor
Assista

nce
System C1 Staff

Assista
nce

System

staff is more
comfortable

visitor well
informed

[v] gets info through
[m] staff [s]

[s] is alerted [s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] in person

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

[s] is alerted through
public call

make a call
through speakers
in [s] current room

+ +

¬C2 ^ ¬C3

C6

visitor is assisted

Null

and

C0

The context of this variant is: C0 ^ ¬C2 ^ ¬C3 ^ C1 ^ C6 ^ C10 ^ C11

The context C14 decides the quality of this variant with repsect to

calm museum --

C14

C11
C10

Fig. 3 A variant of the museum-guide goal model and its context.

call the relation between such a formula of word predi-
cates and a refined statement Support, and we define it
as following:

Definition 5 (Support) a statement S is supported
by a formula of world predicates ϕ iff ϕ provides evi-
dence in support of S.

In an iterative way, a statement could be ultimately
refined to a formula of facts that supports it. That is
to say, the relation support is transitive. If a formula
ϕ1 supports a statement S1 and S1 ∧ ϕ2 supports S2,
then ϕ1 ∧ ϕ2 supports S2. However, refining a state-
ment to a formula of facts is not always possible. We
may have statements that could be unrefinable to facts.
For example, “visitor never visited other similar muse-
ums” is a world predicate that can not be verified by
an assistance staff due to lack of information. Moreover,
the staff would not be able to find a formula of facts
that he can verify to support such a statement. In our
contextual goal model, we allow only for contexts that
are specified by means of facts and/or statements that
are supported by facts. We call the kind of statements
and contexts that we deal with as monitorable state-
ments and monitorable contexts and we define them as
follows:

Definition 6 (Monitorable Statements) a statement
S is monitorable iff there exists a formula of facts ϕ that
supports S.

Definition 7 (Monitorable context) a context C is
monitorable iff C can be specified by a formula of facts
and monitorable statements

A monitorable context, specified by a world predi-
cate formula ϕ, applies if all the facts in ϕ and all the
formulae of facts that support the statements in ϕ are
true.

Context analysis aims to discover if a context is
monitorable and to find the formula of facts that spec-
ifies it. Context analysis starts with specifying a world
predicate formula that represents a context. This for-
mula may contain both facts and statements. For ex-
ample, taking the context C1 of the contextual goal
model shown in Fig 2, this context can be specified as
a formula of world predicates C1 = wp1 ∧ wp2 where
wp1=“visitor is inside the gallery building” and wp2=
“visitor is interested in getting explanation about a
piece of art”. Obviously, the world predicate wp1 is a
fact that the system can verify based on obtainable data
(position of the visitor can be obtained through a posi-
tioning system) while wp2 is a statement and we need
to find if it is refinable into a formula of facts.

To see if a context is monitorable, the statements
in the formula specifying that context need to be re-
fined into formulae of facts that support them. A state-
ment can be analyzed iteratively to ultimately discover
a formula of facts that an actor can visualize in the
world and that gives evidence in support of the analyzed
statement. In Fig. 4, we analyze the context C1. In this
figure, statements are represented as shadowed rectan-
gles and facts as parallelograms. The relation support is
represented as curved filled-in arrow, and the and, or,
implication logical operators are represented as black
triangles, white triangles, filled-in arrows, respectively.

As we mentioned earlier, we consider the relation
support as a transitive relation. For example, as shown
in Fig. 4, the formula w1 ∧ w2 ∧ w3 ∧ w4 supports the
statement wp2, the formula (f1 ∧ f2) ∨ f3 supports the
statement w1, then the formula ((f1 ∧ f2) ∨ f3) ∧ w2 ∧
w3 ∧ w4 supports the statement wp2. Consequently, a
statement may be refined iteratively to reach the level
of facts. In the same figure, we show the formula of facts
that supports the statement wp2. The visitor assistance
system can verify this formula to judge if wp2 applies.

8

w2=there is still time to accomplish
explanation about [p] to [v]

w8= [v] historically
interested in [p]

w3= [p] is
interesting to [v]

w9= [v] behaviorally
Interested in [p]

w4= [v] does not
already know about [p]

wp2= visitor [v] is interested in getting
explanation of piece of art [p] in museum [m]

w5= [v] is not in a
hurry

f14= [v] never
got info of [p]
by [m] means

w6= [v] does not
have to work

w7= [v] behaves
in calm way

f5= [v] is
retired

f4= It is a
holiday in [m]

region

f7=[v]
walks
slowly

f8= > 30
minutes until
[m] closes

f11= [v]
attended [p]

gallery opening
f9= [v] often asks
about pieces of
the same artist

as [p]
f10 = [v] often asks about

pieces belong to the
same art genre as [p]

f15= [p] was
created after
[v] last visit

f6= still early
to [v] visit
slot end

f12= [v] looks
at [p] for long

time

f13= [v] had a
look so often

on [p]

w1= [v] is in a place where
[p] can be still of interest

f1= [v] place
is close [p]

room
f2= [v] is in
the corridor
of [p] floor

FactStatment Support
Legend

f3= [v] is in the
same room of

[p]

- = ((f1 & f2) v f3) & ((f4 v f5) & f6) v f7) & f8 & (f9 v f10 v f11 v f12 v f13) & (f14 v f15) supports wp2
- C1 applies if wp1 &

And Or Imply

C1

wp1= visitor is
inside the

gallery building

Fig. 4 The context analysis for C1

Analyzing context allows us to discover what data
an actor has to collect of the world. The analysis al-
lows us to identify the facts that an actor has to verify.
These facts are verifiable on the basis of data an actor
can collect of the world. For example, taking the facts
f9..f13 that support the statement w3=“piece of art [p]
is interesting to visitor [v]” of Fig. 4 , we could de-
velop a data conceptual model, shown in Fig. 5, that the
museum-guide system has to implement and maintain
in order to verify facts, judge if the analyzed contexts
apply, and take decisions at the corresponding variation
points of the goal model.

4 Deriving Requirements in Varying Contexts

Goal models allow for a systematic analysis of variants
for goal satisfaction and an implemented system may
support all or a subset of them. This is a design decision
that can be taken on the basis of different criteria. For
example, the designer can decide to minimize the over-
all development costs and therefore to reduce the num-
ber of implemented variants. Alternatively, the designer
may decide to make the system flexible and highly vari-
able, that will require a much higher number of variants
to be implemented [21]. In any case, each variant can
be applicable in certain contexts and the system has to

implement runtime mechanisms to decide which variant
to adopt when more than one variant is applicable in
the actual context. For this decision, users’ prioritiza-
tion over goal model variants can be an effective criteria
to be used at runtime. However, specifying such prior-
itization introduces two main problems at the analysis
phase:

– the potentially huge number of goal model variants,
i.e., specifying prioritization over the enumerated
variants could be extremely time consuming.

– when the variants contain a large number of nodes,
it could be hard for users to comprehend the vari-
ants and the differences between them.

Instead of asking users to specify their prioritization
over variants, prioritization can be expressed over the
quality measures, i.e., softgoals. Users can express pri-
oritization on softgoals and bypass the large number of
goal model variants. Besides this advantage, softgoals
allow users to express their prioritization using their
own terms. For example, users can easily specify that
“more comfort” has high priority while “less distur-
bance” is not such important. The quality contexts of
a variant are those on the contribution links between
the goals/tasks of that variant and softgoals. The truth
value of quality contexts determines the quality of each
variant.

9

Visitor Piece_of_Art

Artist Art_Genre

Asks

+when

made_by

Gallery

Opening_event

attended

part_of

hadLooks_at

+starts_time
+stop_time

belong_to

Fig. 5 The conceptual model of data needed to verify W3 leaf facts

We adopt an approach similar to the one proposed
in [22] to specify prioritization over softgoals. We con-
sider binary contributions to softgoals (positive or nega-
tive). Stakeholders can specify the priority of each soft-
goal by selecting an integer in the range [0,n]. Priority
0 corresponds to “the user does not care about the soft-
goal”, priority n means “the user considers the soft-goal
very important”. The average contribution value for a
variant v to a softgoal sgi is computed as the difference
between the number of positive and negative contribu-
tions from tasks/goals of v to sg divided by the total
number of contributions in v:

avg(sg, v) =
|contr(sg, pos)| − |contr(sg, neg)|
|contr(sg, pos)|+ |contr(sg, neg)|

The priority of a variant v is computed as the weighted
sum of the average contributions divided by the sum of
the priorities of that variant’s softgoals:

priority(v) =

∑
sgi∈v avg(sgi, v)× priority(sgi)

∑
sgi∈v priority(sgi)

The formulae that define avg and priority are ex-
pressed as ratios, in order to normalize possible val-
ues within the [-1,+1] range, where -1 and +1 are the
worst and the best values, respectively. Consequently,
the derivation of goal model variants for a given context
and user prioritization is a two steps process that the
system follows at runtime:

1. Deriving the variants applicable in the current con-
text : the truth values of contexts at the variation
points decide the set of goal model variants that are
applicable. As we have shown earlier, context anal-
ysis allows us to discover a formula of facts that
specifies a context (see Fig. 4). The system, at run-
time, has to monitor the environment and collect
data (Fig. 5) and compute the truth value of the
formulae of facts at each variation point of the goal
model. This, in turn, filters the space of goal model
variants leaving those that are applicable in the cur-
rent context.

2. Ranking the applicable variants based on user’s pri-
oritization: at certain contexts, there could be more
than one applicable goal model variant. In other
words, there could be more than one variant to meet
the same requirements. To select between them, user
prioritization could be considered by the system at
runtime. To this end, users are asked, at design time,
to prioritize the set of softgoals. The system com-
putes the value of contextual contributions and the
priority of each applicable variant according to the
formulae above. The adopted variant is the one with
the highest priority, i.e., the one that better con-
tributes to the highly prioritized softgoals.

Example 1 Suppose that the current context allows for
the two variants partially shown in Fig. 6. The system
has the possibility to guide a staff to meet a visitor
in person (variant V ′) or the possibility to establish a
call between them so as to communicate remotely (vari-
ant V ′′). Delivering information in person to a visitor
contributes negatively to the softgoal “staff feels more
comfortable”, as the staff is not close to the visitor (pre-
suming that C14 is false), and positively to the softgoal
“visitor is well-informed”. The second variant, deliver-
ing the information by a remote call, contributes con-
versely to the two mentioned softgoals. If a stakeholder,
such as the administration of the museum, gives staff
comfort a priority higher than the quality of informa-
tion delivered to visitors, then the variant V ′ would be
adopted, and vice versa.

5 Deriving Requirements for Minimum
Development Costs

In the previous section, we have studied the derivation
of goal model variants for a given context and user pri-
orities. Such reasoning is of high importance for systems
that support multiple goal model variants and where
more than one variant is adoptable in certain contexts.
On the other side, and for reasons such as budget and

10

[v] gets info through
[m] staff [s]

[s] is alerted
and

send [s] a
voice

command

[s] is alerted through
[s]

staff is more
comfortable

visitor well
informed

[s] gives [p]
info to [v]

[s] gives [p] info to
[v] in person

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

--

+
staff is more
comfortable

visitor well
informed

[s] gives [p]
info to [v]

[s] gives [p] info to
[v] by call

make video
call between

[s] and [v]

-- +

[v] gets info through
[m] staff [s]

[s] is alerted
and

send [s] a
voice

command

[s] is alerted through
[s]

Staff
Assista

nce
System

Staff
Assista

nce
System

..Variant: Variant:

Fig. 6 Two instantiated goal model variants with different qualities

timing constraints, we may want a system developed
with minimum costs sacrificing the quality and flexibil-
ity gained by supporting the whole set of goal model
variants. In other words, the system has to support a
set of variants that is enough to meet users’ goals in
all considered contexts and developed with minimum
costs. To this end, we have developed a reasoning in
three steps to be used at design time: (i) we exclude
the variants that are unadoptable because of unsatis-
fiability in their contexts; (ii) we exclude the variants
that can be always replaced by others; (iii) and finally,
we reason about the remaining variants to extract those
leading to a system developed with minimum costs and
that is able to meet user goals in all analyzed contexts.

5.1 Deriving the unadoptable variants

A goal model variant is unadoptable when its context
specification formula is unsatisfiable. We need to check
such unsatisfiability early to save costs and fix errors
given that unadoptable variants may lead to software
functionalities that are never used or incorrectly spec-
ified. In this section, we develop SAT-based [23] rea-
soning techniques to detect unsatisfiability of contexts
associated with goal model variants.

As we mentioned earlier, the context of a goal model
variant is accumulative. It is the conjunction of the con-
texts at the variation points in that variant (see Fig. 3).
We have also specified context as a world predicate for-
mula. In order to check the satisfiability of a formula
expressing a context, we need also to take into con-
sideration all possible contradictions among its vari-
ables (world predicates). For example, in Fig. 2 we have
C8 = wp8.1 ∧ wp8.2 where wp8.1 =“visitor is inside the
museum” and wp8.2=“he is not walking towards the
exit”, and C7 = wp7.1 where wp7.1=“visitor is on the

way to enter the museum”. In this example, C7 → ¬C8

because wp8.1 → ¬wp7.1, so any goal model variant that
whose context includes C7∧C8 will never be applicable.

The logical relations between formulae of world pred-
icates (contexts) can be absolute or dependent on the
characteristics of the operational environment of the
system:

1. Absolute relations apply wherever the system oper-
ates. For example, suppose we have the three world
predicates wp1= “staff [s] of museum branch [m]
has never worked in another museum branch”, wp2=
“visitor [v] is for the first day in [m]” and wp3= “
[s] assisted [v] some date before today”, then wp1 →
¬(wp2 ∧ wp3) applies in whatever museum the sys-
tem could operate in.

2. Operational environment dependent relations hold
in a particular environment where the system oper-
ates without any guarantee that such relations ap-
ply in all operational environments. For example,
suppose we have the two world predicates wp1 =
“there is enough light at the visitor location” and
wp2 =“visitor is inside a museum gallery room”. If
the museum keeps the light level inside the gallery
rooms low, for decorating reasons or to conserve the
pieces of art, then wp1 → ¬wp2 applies always in
this particular museum. Moreover, the operational
environment itself assures that some contexts are
always true or always false, so we have to consider
a special kind of environment dependent relations
of the form Env → world predicates formula. For
example, if the system is going to operate in a mu-
seum where elevators are available for public use,
then the relation Env → ¬wp3 where wp3 =“visitor
can not use a museum elevator” will always hold at
that museum.

11

We apply SAT-based techniques to check if a boolean
formula is satisfiable under a set of assumptions. Given
a boolean formula expressing a context and a set of
logical relations between its variables2, a SAT-solver is
exploited to check if there exists a truth assignment for
all variables that makes the conjunction of the context
formula and the logical relations formula satisfiable. If
such assignment exists, then the formula is satisfiable,
otherwise it is unsatisfiable under the assumed logical
relations. The pseudo-code of the algorithm (Check-
SAT) is reported in Fig. 7.

Input: context ϕ
Output: ⊥ (�) if ϕ is unsatisfiable/satisfiable
1: ξ := get logical relations(ξ)

2: if Is Satisfiable(ϕ ∧ ξ) then
3: return �
4: else
5: return ⊥
6: end if

Fig. 7 Checking context satisfiability under assumptions
(CheckSAT).

Example 2 The variant shown in Fig. 8 has an unsat-
isfiable context due to the contradiction between C7

(“the visitor is on the way to enter the museum shortly
before the closing time”), and C1 (“the visitor is in
the gallery building and interested in getting explana-
tion about a piece of art”). A design decision has to
be taken to accept this kind of unsatisfiability, i.e. to
confirm that the model variant is indeed not needed, or
to modify the model and fix it. In fact, and in this par-
ticular example, the unsatisfiability is not a modeling
error but it is a side-effect of the goal model hierarchy.
This hierarchy compactly represents a large number of
variants in one model and it, at the same time, may
include variants that are never applicable. The tasks of
the unadoptable variants, such as the variant of our ex-
ample, could appear in other variants with satisfiable
contexts and, therefore, these tasks are not necessar-
ily unusable if implemented in the final system. A task
could be implemented in the system-to-be if it appears
in, at least, one goal model variant with a satisfiable
context.

5.2 Deriving the (non-)core variants

Core requirements are system requisites that can not be
bargained on. There could be different perspectives to
categorize requirements into core and non-core. Con-
cerning a system supported by variants to operate in

2 In this paper, we assume that the relations between contexts
are provided by the analyst.

and reflect varying contexts, the variants having no al-
ternative variants at certain contexts are core. Discov-
ering core variants is useful for several reasons. It helps
to know the parts of the system that are critical and
whose failure can not be remedied by adopting other
variants at certain contexts. Also, it helps to know the
part of the system that needs to be developed first and
can not be delayed to get a system operable in all con-
sidered contexts. The latter reason is the focus of this
paper.

We develop a reasoning mechanism to derive the
(non-)core goal model variants as a basic step to de-
cide the variants to include in the system to be. The
goal model variants that are preconditioned by unsat-
isfiable contexts will be never adopted. The developed
software has to only consider the variants with satis-
fiable contexts. The goal model variants with unsat-
isfiable contexts are obviously non-core as such vari-
ants are never adoptable. Moreover, the implications
between the contexts of goal model variants could make
some variants core and others non-core. Similar to the
contradictions between contexts, the implications can
be absolute or dependent on the operational environ-
ment of the system. We first give some basic definitions
and then develop an algorithm for processing a contex-
tual goal model and deriving the core variants.

Definition 8 (Core variant) a variant Vi with a con-
text specified by a formula ϕi is core iff ϕi is satisfiable
and � variant Vj with a context specified by a satisfiable
formula ϕj : (ϕi → ϕj) ∧ ¬(ϕj → ϕi).

From this definition, any variant that is non-core has
a set of core variants applicable in all contexts where it
is itself applicable, but not vice versa. A reason for keep-
ing such non-core variants is that at certain contexts
they might assure better quality3. The core variants
are grouped on the basis of their contexts equivalence
(direct equivalence or equivalence under assumptions)
to construct core groups of variants.

Definition 9 (Core groups set) is the set of core vari-
ants partitioned on the basis of context equivalence.

Definition 10 (Core group of variants) is an ele-
ment of the core groups set.

In Fig. 9, we propose an algorithm that, given a con-
textual goal model, returns the set of all core groups of
variants. The algorithm excludes the non-core variants
and organizes the rest of variants in groups based on
context equivalence. The algorithm excludes unadopt-
able variants, i.e., variants with unsatisfiable contexts,

3 The selection of non-core variants to support in the system-
to-be is out of the scope of this paper.

12

visitor [v] gets informed
about a piece of art [p] in

museum [m]

Visitor
Assista

nce
System

C1

[v] gets info. via
terminal [t]

and
[v] know how to

use [t]
[v] arrives to

[t]

show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

direct [v] to [t]
place

send [v] a
voice

command

C2

C7 & ¬C8

visitor is assisted

visitor [v] follows museum
[m] process and rules

and

[v] accomplishes
registration

[v] is out of museum
by closing time

[v] is notified
before closing

time

and

C0

C9[v] is
notified to
not enter

C3

C4

Fig. 8 A partial model variant with an unsatisfiable context

as they are obviously not core (Line 1). The algorithm
then extracts the core groups of variants (Line 3–10).
To this end, the algorithm partitions the set of variants
based on context equivalence (Line 5). The algorithm
shown in Fig.7 can be also used to check the equivalence
between formulae expressing contexts. Given the logi-
cal relations (implications) (ξ) between the variables of
two formulae ϕ1 and ϕ2 then ϕ1 → ϕ2 iff ¬(ϕ1 → ϕ2)
is unsatisfiable under the assumptions ξ. Then the al-
gorithm checks if each group is core (Line 7) and adds
it in the output set if it is like that (Line 8).

Input: S: the set of all goal model variants
Output: S′′: the set of all core gruops of variants
1: S′ := {V ∈ S : CheckSAT (V.context) = �}
2: S′′ := ∅
3: while |S′| > 0 do
4: V := pop element(S′)
5: temp := {V } ∪ {V ′ ∈

S′ : CheckSAT (¬(V.context ↔ V ′.context)) = ⊥}
{i.e. Check if V.context ↔ V’.context}

6: S′ := S′ \ temp
7: if � V ′ ∈ S′ : V.context → V ′.context then
8: S′′ := S′′ ∪ {temp}
9: end if

10: end while
11: return S′′

Fig. 9 Extracting core groups of variants.

Example 3 In Fig 10, we show two partial contextual
goal model variants {V1, V2} each including a different
set of tasks to implement. Both contexts of the two
variants are satisfiable and V2.context → V1.context ∧
¬(V1.context → V2.context). This means that V2 is
non-core since there is always the variant V1 that can
replace it in all considered contexts. In the space of
these two partial variants, the task “send [s] a voice

command” and “make voice call between [s] and [v]”
are non-core, while the tasks “[s] is alerted via ringing
tone and SMS”, “show [v] picture”, and “direct [v] to
[s] place” are core and essential to implement in order
to achieve the goal “[v] gets info through [m] staff [s]”
in all considered contexts.

5.3 Deriving the variants for minimal costs system

Developing a system that supports multiple variants
to reach its requirements is desirable for several rea-
sons such as flexibility and fault tolerance. In the pre-
vious section (Section 4), we have shown how such
approach can accommodate the priorities of different
users. For different reasons, such as timing and bud-
get constraints, we may be required to develop just an
operable system, i.e. a system that operates in all con-
sidered contexts. In this section, we develop the final
step of the reasoning about a contextual goal model to
derive a subset of its leaf tasks that leads to a system
able to operate in all considered contexts and developed
with minimum costs. These tasks may not implement
the whole set of goal model variants, but those that are
implemented will allow the system to reach its goals in
all considered contexts.

Costs are not related to goals but to tasks as tasks
represent executable processes while goals are just de-
sires of an actor. Each task needs certain development
resources (equipments, programmers, software packages,
and so on). Each of these resources has a cost. We need
to specify the resources needed for each task develop-
ment and the costs of each resource to enable our tar-
get reasoning. A resource may be a part of the devel-
opment of multiple tasks which means that the devel-

13

Staff
Assista

nce
System

[v] gets info through
[m] staff [s]

[s] is alerted [s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] in person

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

[s] is alerted through
[s]

[s] is alerted
via ringing

tone and SMS

C12

[v] gets info through
[m] staff [s]

[s] is alerted [s] gives [p]
info to [v]

[s] gives [p] info to
[v] by call

make voice
call between

[s] and [v]

send [s] a
voice

command

[s] is alerted through
[s]

C13

C15

Variant: V1
V1.context = C12

Variant: V2
V2.context = C13 & C15

Staff
Assista

nce
System

..

and

Fig. 10 V2 is non-core because V2.context → V1.context ∧ ¬(V1.context → V2.context)

opment costs of tasks may overlap. For example, both
of the tasks “direct visitor to terminal location” and
“direct staff to visitor location” need almost the same
resources. They both need a positioning system, com-
munication system, and preparing a digital map of the
museum. The development of the two tasks “piece of
art information is presented to visitor via video” and
“piece of art information is presented to visitor inter-
actively” share the resources of gathering data about
the pieces of art and preparing pictures, videos, and
audio explanation to be presented, and programming
the presentation.

Defining the resources needed for each task and the
costs of these resources is the basic step to decide which
tasks to develop. The second step is getting the core
groups of variants of the contextual goal model (we
have already explained this reasoning). Then we need
to elicit a subset of tasks that implements, at least, one
variant of each core group of variants targeting for a
minimal total cost. A naive approach to do that can
be based on the cartesian product of the core groups of
variants and then selecting the combination of variants
of minimum cost. Such approach is obviously time con-
suming and suffers exponential blow-up. Moreover, our
experiments evidenced that it can not deal even with
small-medium size goal models. Thus, we need to re-
place the naive approach with an optimized algorithm.

We can significantly reduce the complexity of our
reasoning by exploiting the nature of the problem as
shown in the algorithm reported in Fig. 11. First, the
algorithm calculates the set of tasks that are mandatory
for all possible combinations of variants (Lines 1–4).
A task is mandatory if it is included in all the vari-
ants of, at least, one core group of variants. To reduce
the number of core groups of variants to be involved in
the cartesian product, the algorithm makes two checks
(Lines 5–12) and produces a reduced core groups of

variants set V ′. A core group that includes, at least, a
variant implementable using a subset of the mandatory
tasks will not be added to V ′ (Line 7). Various core
groups of variants, after excluding the mandatory tasks
of them, may become equivalent and we only add one
of them to V ′ (Line 8). The rest of the algorithm deal
with the cartesian product of the sets in V ′ and returns
the combination of variants with minimum costs (Lines
13–25).

Input: S: the set of all core groups of variants
Output: MinCostTasks: a set of tasks that implement,

at least, one variant of each core group with total min-
imum cost

1: MTasks := ∅ {MTasks stands for Mandatory Tasks}
2: for all CG ∈ S do
3: MTasks := MTasks ∪ {T{V.tasks : V ∈ CG}}
4: end for
5: S′ := ∅
6: for all CG ∈ S do
7: if ∃V ∈ CG : V.tasks \ MTasks <> φ then
8: if �CG′ ∈ S′ : CG′.Excluding(MTasks) =

CG.Excluding(MTasks) then
9: S′ := S′ ∪ CG

10: end if
11: end if
12: end for
13: P := S′[1].variants × . . . × S′[n].variants
14: MinCost := +∞
15: MinCostTasks := MTasks
16: for all Option ∈ P do
17: Tasks := Option.tasks ∪ MTasks
18: Res :=

S{Task.resources : Task ∈ Tasks}
19: Cost :=

P{R.cost : R ∈ Res}
20: if Cost < MinCost then
21: MinCost := Cost
22: MinCostTasks := Tasks
23: end if
24: end for
25: return MinCostOption.tasks

Fig. 11 Extracting variants for minimum development costs.

14

Example 4 In Fig. 12, we show a part of the goal model
shown in Fig. 2. We provide estimations for the costs
of each task development aside. We show the set of
variants after excluding the non-core variants as we ex-
plained in the last section. The remaining variants are
grouped based on context equivalence to create core
groups of variants. The relation between tasks based on
the shared resources are reported. Include(T1, T2): the
work done to gather simple information of the pieces
of art is included in that needed for gathering more
detailed information. Intersect(T3, T4, A): the interac-
tive presentation (T4) includes videos (the resource A)
that are also needed for video-based presentation (T3).
Intersect(T3, T5, B), Intersect(T4, T5, B): all these tasks
need a server and PDA for communication (the resource
B). Intersect (T4, T8, C): we presume that T8 is interac-
tive which means that both of T8 and T4 require PDA
with touch screen and the corresponding programming
packages for getting user input in this way (the resource
C). After this specification, we show the set of tasks to
develop and the variant that are implemented on them
and the final minimized costs.

6 Automated Support Tool: RE-Context

In order to support the analyst in the reasoning
techniques we described in the previous two sections,
we have developed a prototype automated reasoning
tool called RE-Context. It takes as input a contextual
goal model expressed as an input file for DLV4, a dis-
junctive Datalog [24] implementation. At the moment,
we do not provide a graphical goal modeling editor nei-
ther automated translation to the DLV input format.

Code 2 shows how part of the goal model of Fig. 12
is translated to the input format for RE-Context. Goal
and context labels begin with a lowercase letter because
leading uppercase letters represent variables in DLV.
The top-level goal G1 is Or-decomposed to sub-goals G2

and G3 (line 1). Line 1 shows the syntax that allows for
DLV to select either G2 or G3 if G1 is chosen. If G2 is
selected, then C5 should apply (line 2); if G3 is selected,
then C6 should be valid. Goal G2 is and-decomposed to
G4 and G5 (lines 4-5). There are two tasks that are
means-end linked to G4: T1 and T2; DLV should choose
among them, as expressed in line 6. Similarly (line 7),
in order to achieve G5 DLV should select either T3 or
T4. Line 8 is the input for DLV to start planning: it
states that G1 should be achieved.

The preliminary step of RE-Context is to derive all
variants, and this consists of running the DLV reasoner

4 http://www.dbai.tuwien.ac.at/research/project/dlv/

Code 2 Part of the goal model of Fig. 12 expressed in
DLV as input for RE-Context.
1 ach(g2) v ach(g3) :- ach(g1).
2 c5 :- ach(g2).
3 c6 :- ach(g3).
4 ach(g4) :- ach(g2).
5 ach(g5) :- ach(g2).
6 todo(t1) v todo(t2) :- ach(g4).
7 todo(t3) v todo(t4) :- ach(g5).
8 ach(g5).

using it as a planner on the goal model: the output
consists of all the valid models that satisfy the rules in
the input file. Each variant consists of a set of tasks
to execute and the set of contexts required for each
variant.

The next mandatory step is to check context satis-
fiability for each variant. This corresponds to run the
CheckSAT algorithm described in Fig. 7. To verify the
satisfiability of a context, RE-Context uses the state-
of-the-art SMT solver MathSAT5. RE-Context loads
the definition of the contexts from separate files: for
instance, context C1 is represented in the code as c1)
and is defined in the file c1.txt as a boolean formula
expressed over a set of variables. The variables of this
formula are the leaf facts of C1 context hierarchy. Vari-
ants with unsatisfiable contexts are not considered in
the later reasoning steps, since they can not be adopted
in any context.

After these two steps are completed, RE-Context
can be run in two usage modes, each corresponding to
one of the reasoning techniques we described in this
paper: (i) deriving the variants for a given context and
user prioritization and (ii) deriving the variants leading
to minimum development costs.

Deriving variants for varying contexts. The
input for this activity includes the contexts that apply
and the user prioritization of softgoals. The latter input
is provided by representing (contextual) contributions
to soft-goals and the importance given by the user to
the various soft-goals (0 = “I don’t care”, 5 = “I care
very much”). Code 3 shows how to express user prior-
itization or softgoals for the example in Fig. 12. Line
1 says that context C14 is true; lines 2-3 express the
interest of the user in both soft-goals SG1 (visitor well
informed) and SG2 (staff is more comfortable). Lines
4-7 show the contributions from goals G10 and G11 to
the soft-goals; in particular, line 5 shows a contextual
contribution from G10 to SG2: the contribution is posi-
tive only if context C14 is true. RE-Context returns the
best variant, namely the one that better contributes to
the soft-goals the user cares about.

5 http://mathsat4.disi.unitn.it

15

G1: visitor [v] gets informed
about a piece of art [p] in

museum [m]

G3: [v] gets info
through [m] staff

[s]

T2: prepare
[p] detailed
informationT1: prepare

[p] brief simple
information

or
G2: [v] gets info
via his/her PDA

Visitor
Assista

nce
System

Staff
Assista

nce
System

G4: [p] info suitable to
[v] is prepared G5: [p] info

is presented
to [v]

and

T3: [p] info is
presented to
[v] via video

T4: [v] info is
presented to [v]

interactively

G3: [v] gets info
through [m] staff [s]

G6: [s] is alerted
and

T6: send [s] a
voice command

G9: [s] is alerted
through public call

G8: [s] is alerted
through [s]

or

T7: make a call
through speakers

in [s] room

T5: [s] is alerted
via ringing tone

and SMS

C6C5
C10

C12
C13

C11

SG2: staff is more
comfortable

SG1: visitor
well informed

G7: [s] gives
[p] info to [v]

G11: [s] gives [p]
info to [v] by call

G10: [s] gives [p]
info to [v] in person

T10: make video
call between [s] and

[v]

T11: make voice
call between [s]

and [v]

direct [s] to
[v] place

T8: show
[v] picture

T9: direct
[s] to [v]
place

and

or

+ +

--

+C14

C15

The non-core
variant

The variants
excluding the

non-core variants
The core groups of

variants The cost relations The min-cost core requirements

NV1= {T6, T10}
NV2= {T6, T11}
Both can be
replaced by V2
due to the
implications:
C13 C12 and
the trivial C15
true.

V1= {T1, T3}
V2= {T1, T4}
V3= {T2, T3}
V4= {T2, T4}
V5= {T5, T8, T9}
V6= {T7, T8, T9}

Core1= {V1, V2, V3, V4}
Core2= {V5}
Core3= {V6}

Cost(T1,30), Cost(T2,40), Cost(T3,60),
Cost (T4,80), Cost(T5,25),
Cost(T6,35), Cost(T7,50), Cost
(T8,30), Cost (T9,50),
Cost (T10,50), Cost (T11, 30).

The tasks to develop=
{T1, T4, T5, T7, T8, T9}

Costs= 215

The variants implemented:
 { V2, V5, V6}

Include(T2, T1), Intersect(T3, T4, 40),
Intersect (T3, T5, 20), Intersect(T4, T5,
20), Intersect (T4, T9, 30)
Cost of developing all tasks= 340

Fig. 12 Illustration of the minimum-cost core requirements extraction.

Code 3 User preferences in Fig. 12 expressed in the
RE-Context input format.
1 phi(c14).
2 softgoal(sg1,3).
3 softgoal(sg2,1).
4 contrib(g10,sg1,pos).
5 contrib(g10,sg2,pos) :- phi(c14).
6 contrib(g11,sg1,neg).
7 contrib(g11,sg2,pos).

Deriving variants for minimum development
costs. The first step to reason about minimum de-
velopment cost is to get rid of non-core variants; this
task is carried out by running the SAT-solver based
tool to check whether there are replaceable variants (see
Def. 8). Subsequently, RE-Context groups the variants
in core groups, where each core group contains variants
whose contexts are equivalent; RE-Context runs the
SAT-solver based tool to identify equivalent contexts.
Once core groups are identified, the minimum develop-
ment cost should be computed, by choosing one variant
from each core set that lead to a total minimum costs.
Costs are expressed for each task on the basis of the
resources they need. Lines 1-5 in Code 4 shows the de-
velopment cost for tasks T1 and T2 (taken from Fig. 12).
Task and resources labels are represented with a leading

lowercase letter due to DLV syntactic rules. Lines 1-2
define the cost for resources R1 and R2, respectively.
Lines 3-5 define the relation between tasks and devel-
opment resources: task T1 requires only resource R1,
whereas T2 requires both R1 and R2. Therefore, there
is an intersection between T1 and T2 for R1; more pre-
cisely, there is an inclusion relation (T2 includes T1),
given that all resources needed by T1 are also needed
by T2.

Code 4 Development cost for tasks t1 and t2 in Fig. 12.
1 cost(r1,30) :- needed(r1).
2 cost(r2,10) :- needed(r2).
3 needed(r1) :- todo(t1).
4 needed(r1) :- todo(t2).
5 needed(r2) :- todo(t2).

6.1 Evaluation

We have organized a seminar to present our framework,
invited four requirements engineers with good expertise
in goal modeling, and explained our framework to them.
We have then invited an expert in mobile applications
from the Laboratory of Mobile Application (LaMA) to

16

describe the museum-guide scenario. Then we asked the
requirements engineers to use our framework to model
the museum guide requirements. Together with the do-
main expert, we have answered the questions the engi-
neers have raised during the session. We have then for-
malized the contextual goal model the engineers have
drawn, then we ran our tool and obtained the results
summarized in Fig. 13. RE-Context has been installed
on a computer equipped with a AMD Athlon(tm) 64
X2 Dual Core Processor 5000+, 4 GB RAM, Sun Java
JRE 1.6.0 07-b06, Linux Debian 2.6.18.dfsg.1-12.

Fig. 13 shows the results obtained by running the
automated reasoning techniques on the case study. The
first two columns show the time required to develop
(TD) and formalize (TF) the goal model; clearly, the
time taken by these activities can be reduced with the
aid of a CASE tool. Then, the table presents data con-
cerning the goal model size in terms of the number of
actors (NA), goals (NG), tasks (NT), soft-goals (NSG),
variation points (NVP), and variants (V).

Then, the figure contains data collected by running
the tool. First, we report the number of iterations where
the tool asked us to fix or accept unsatisfiability. When-
ever an unsatisfiable context is accepted, i.e. the variant
is indeed unadoptable, the tool also excludes the other
variants that contain it. After unsatisfiability check-
ing, the tool processes the variants with satisfiable con-
texts: the number of non-core variants (NCV), the to-
tal cost to develop all tasks aside (TC), the shared cost
among all tasks (SC), the cost of developing all tasks
(CAS=TC-SC), the number of core groups of variants
(CGV) and the minimum cost for a system working in
all considered contexts (MC).

After running RE-Context on the original goal model,
we tested its scalability on goal models of different sizes,
as shown in Fig. 14. The original goal model is that of
the case study. To get models of smaller and larger sizes,
we have taken sub-trees and cloned them, in similarly
to the approach in [25]. The first two columns in Fig. 14
show the number of nodes (NN) and variants (NV) in
the goal model, whereas the next four columns show the
time of executing our reasoning. T Der is the time to
derive all variants of goal model, T Inc is the time re-
quired to get variants with unsatisfiable contexts, while
T CGV is the time the tool required to get the core
groups of variants.

The graph on the right-hand side depicts the re-
sults shown in the table: the x -axis represents logarith-
mically the number of variants, the y-axis represents
logarithmically the computation time needed. The col-
lected data show that the time needed for computation
is growing exponentially with the increase of the prob-
lem size. Anyhow, given that the reasoning is performed

at design-time, the tool scales quite well in the test cases
(it takes less than 16 minutes with 648.000 variants).
We don’t present here results for for deriving variants
under given context and user prioritization over soft-
goals, as the computational cost is negligible. Moreover,
the algorithm we have shown in Fig. 11 led to negligible
time for computing the tasks to develop with minimum
costs. We remark that the exponential growth is due to
the nature of the goal model that allows for a huge num-
ber of variants to be modeled compactly. Future work
will involve the processing of goal model iteratively
during the construction to reduce the final complex-
ity. Moreover, applying divide-and-conquer techniques
could potentially reduce the complexity of reasoning
about very large contextual goal models.

7 Related Work

The research in context modeling, (e.g., [26]), concerns
finding modeling constructs to represent software and
user context, but there is still a gap between the con-
text model and software behavior model, i.e. between
context and its use. We tried to reduce such a gap at the
goal level and allow for answering questions like: “how
do we decide the relevant context?”, “why do we need
context?” and “how does context influence software and
user behavior adaptation?”. Salifu et al. [27] investigate
the use of problem descriptions to represent and ana-
lyze variability in context-aware software. Their work
recognizes the link between requirements and context
as a basic step in designing context-aware systems.

Software variability modeling, mainly feature mod-
els [28,29], concerns modeling a variety of possible con-
figurations of the software functionalities to allow for a
systematic way of tailoring a product upon stakeholder
choices, but there is still a gap between each functional-
ity and the context where this functionality can or has
to be adopted, the problem we tried to solve at the goal
level. Furthermore, our work is in line, and has the po-
tential to be integrated, with the work in [30] and the
FARE method proposed in [31] that show possible ways
to integrate features with domain goals and knowledge
to help for eliciting and justifying features.

Requirements monitoring is about insertion of a code
into a running system to gather information, mainly
about the computational performance, and reason if
the running system is always meeting its design ob-
jectives, and reconcile the system behavior to them if a
deviation occurs [8]. The objective is to have more ro-
bust, maintainable, and self-evolving systems. In [32],
a GORE (goal-oriented requirements engineer) frame-
work KAOS [6] was integrated with an event-monitoring
system (FLEA [33]) to provide an architecture that

17

Tim e G oal M odel Size Iterations NCV TC SC CAS CGV M C

TD TF NA NG NT NSG NVP V

16 Hours 7.5 Hours 3 41 51 7 26 324000 40 192 2845 2045 800 84 525

Legend

TD: time to develop the graphical model
TF: time to formalize the model & fix inconsistencies
NA: number of actors.
NG : number of goals.
NT: number of tasks.
NSG : number of softgoals.
NVP: number of variation points.
V: number of variants.

Iterations: number of iterations to fix/accept all unsatisfiabilities.
NCV: number of non-core variants.
TC: the total cost of developing the tasks each aside.
SC: the shared cost between all tasks.
CAS: the cost of developing all tasks, i.e, all variants
CGV: the number of core groups of variants.
M C: the minimum cost set of tasks that implements, at least, one
 variant of each core group of variants.

Fig. 13 The results obtained by applying the developed tool on the museum-guide system

Size of goal
m odel

T_Der T_Inc T_CGV

NN NV
10 15 108 18 153
20 60 238 43 1968
33 90 337 64 4200
47 2250 1081 272 7182
58 20250 4781 716 6912
91 324000 147388 91098 10662
100 648000 551543 381142 25151

Legend

NN: number of nodes
NV: number of variants in the model.
T_Der: time to derive all variants
T_Inc: time to get variants with inconsistent contexts.
T_CGV: time to get the core groups of variants

Fig. 14 Tabular and Graphical representation of the performance of the developed tool. Time is in milliseconds.

enables the runtime automated reconciliation between
system goals and system behavior with respect to a
priori anticipated or evolving changes of the system en-
vironment. Differently, we propose model-driven frame-
work that concerns an earlier stage, i.e. requirements,
with the focus on identifying requirements together with
context, and eliciting the monitoring data.

Customizing goal models to fit to user skills and
preferences was studied in [34,35]. The selection be-
tween goal model variants is based on one dimension
of context, i.e. user skills, related to the atomic goals
(executable tasks) of the goal hierarchy, and on user
preferences which are expressed over softgoals. In [36]
Lapouchnian et al. propose techniques to design au-
tonomic software based on an extended goal modeling
framework, but the relation with the context is not fo-
cused on. Liaskos et al [37], study the variability mod-
eling under the requirements engineering perspective
and propose a classification of the intentional variabil-
ity when Or-decomposing a goal. We focused on con-

text variability, i.e. the unintentional variability, which
influences the applicability and appropriateness of each
goal model variant. Reasoning with Tropos goal model
has been already studied in [38]; adding context to goal
models creates the need to integrate between reasoning
with context and that with the goal model.

8 Conclusions and Future Work

In this paper, we have developed a goal-oriented frame-
work for modeling and analyzing requirements for vary-
ing contexts. We extended Tropos goal model to cap-
ture the relationship between each variant to goal satis-
faction and context. In turn, context is defined through
a hierarchial analysis. The context analysis represent
a systematic way to identify facts the system needs to
verify in order to confirm an analyzed context.

We have formalized the extended goal model and de-
veloped two reasoning techniques. The first technique

18

is for deriving the requirements variants with respect to
context and user priorities. This reasoning technique is
used at runtime to determine the variant to adopt from
the pool of goal model variants supported by the sys-
tem. The second technique is for deriving a minimum-
cost set of tasks that has to be implemented to enable
the system of meeting users’ goals in all considered con-
texts. We have applied our framework on a a scenario
of a mobile information system to assist visitors in mu-
seums and we have reported and discussed the results
obtained.

Concerning future work directions, we aim to im-
prove our automated support towards an automatic
generation of the contextual goal models formalization,
an optimization of the performance to deal efficiently
with very large contextual goal models, besides reduc-
ing the manual input that the analyst has to provide
(especially when specifying the relations between con-
texts). Besides improving the automated support, we
will focus our research along two lines:

– Managing viewpoints of context: besides the
potential inconsistency between different stakehold-
ers’ specifications of requirements, that is well stud-
ied in the literature (e.g., [39]), context specification
itself might be debatable. We need to manage multi-
ple perspectives (viewpoints) of context since differ-
ent stakeholder might specify context differently or
even in contradictory ways. Categorizing, detecting,
and managing, such differences in context specifica-
tions are necessary to have well specified require-
ments. For example, in a museum-guide system, the
context A=“visitor is interested in watching a doc-
umentary film” is a high level context that can be
differently specified by different stakeholders. One
stakeholder can say (A← B∨C) where B=“the film
is related to the visitor’s local culture” and B=“the
film concerns a city where the visitor has been once
at least”. Another stakeholder might say: A=“a vis-
itor is interested in the film if it conveys very new
information to him”. To some extent, these two de-
scriptions are inconsistent.

– Context and security requirements: most of se-
curity requirements approaches (such as Secure Tro-
pos [40]) deal with security requirements that are
context-independent. In some cases, context can in-
fluence security requirements and we would need to
do research in context-dependent security require-
ments. For example, in an emergency situation (such
as fire), a visitor will accept rescue team to know
his location and other data needed to guide him to
a safe area, while in a normal situation a visitor
would have more restricted security concerns.

Acknowledgements This work has been partially funded by
EU Commission, through the SERENITY, and COMPAS projects,
and by the PRIN program of MIUR under the MEnSA project.

We also thank Jaelson Brelaz de Castro, Bashar Nuseibeh, Yi-
jun Yu, Alberto Griggio, Anders Franzen, John Mylopoulos, and
Amit Chopra for the helpful discussions that enriched the ideas
in this paper.

References

1. Mark Weiser. The computer for the twenty-first century.
Scientific American, 265(3):94–104, 1991.

2. A. Finkelstein and A. Savigni. A framework for require-
ments engineering for context-aware services. In Proceedings
of STRAW 01, 2001.

3. E. Yu and J. Mylopoulos. Why goal-oriented requirements
engineering. In Proceedings of REFSQ’98, pages 15–22, 1998.

4. E.S.K. Yu. Modelling strategic relationships for process
reengineering. Ph.D. Thesis, University of Toronto, 1995.

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos. Tropos: An agent-oriented software devel-
opment methodology. Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, 2004.

6. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition. Sci. Comput. Pro-
gram., 20(1-2):3–50, 1993.

7. John Mylopoulos, Lawrence Chung, and Eric Yu. From
object-oriented to goal-oriented requirements analysis. Com-
mun. ACM, 42(1):31–37, 1999.

8. S. Fickas and M.S. Feather. Requirements monitoring in
dynamic environments. In Proceedings of RE 1995, page
140. IEEE Computer Society Washington, DC, USA, 1995.

9. D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals
to components: a combined approach to self-management. In
Proceedings of SEAMS’08, pages 1–8. ACM New York, NY,
USA, 2008.

10. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-

based variability for mobile information systems. In Zohra
Bellahsene and Michel Léonard, editors, Proceedings of
CAiSE’08, volume 5074 of LNCS, pages 575–578. Springer,
2008.

11. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-
based software modeling and analysis: Tropos-based ap-
proach. In Qing Li, Stefano Spaccapietra, Eric S. K. Yu,

and Antoni Olivé, editors, Proceedings of ER 2008, volume
5231 of LNCS, pages 169–182. Springer, 2008.

12. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal
modeling framework for self-contextualizable software. In
Proceedings of EMMSAD 2009, volume 29 of LNBIP, pages
326–338. Springer, 2009.

13. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Goal-based
self-contextualization. In CAiSE’09 - Forum, volume 453,
pages 37–42. CEUR-WS, 2009.

14. P. Brezillon. Context in artificial intelligence: I. a survey of
the literature. Computers and artificial intelligence, 18:321–
340, 1999.

15. A.K. Dey. Understanding and using context. Personal and
ubiquitous computing, 5(1):4–7, 2001.

16. J. Krogstie, K. Lyytinen, A.L. Opdahl, B. Pernici, K. Siau,
and K. Smolander. Research areas and challenges for mo-
bile information systems. International Journal of Mobile
Communications, 2(3):220–234, 2004.

17. X. Shen, B. Tan, and C.X. Zhai. Context-sensitive infor-
mation retrieval using implicit feedback. In Proceedings of
SIGIR 2005, pages 43–50. ACM, 2005.

19

18. M. Jackson. Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2000.

19. Axel van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In RE 2001, pages 249–262. IEEE Com-
puter Society, 2001.

20. I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the
core ontology and problem in requirements engineering. In
RE 2008, pages 71–80. IEEE Computer Society, 2008.

21. Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and
J.C.S.P. Leite. From goals to high-variability software de-
sign. In Proceedings of ISMIS’08, volume 4994 of LNCS,
pages 1–16. Springer, 2008.

22. F. Dalpiaz, P. Giorgini, and J. Mylopoulos. An architec-
ture for requirements-driven self-reconfiguration. In Proceed-
ings of CAiSE’09, volume 5565 of LNCS, pages 246–260.
Springer, 2009.

23. A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook
of Satisfiability. IOS Press, 2009.

24. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive data-
log. ACM Transactions on Database Systems, 22(3):364–418,
1997.

25. Y. Wang, S.A. McIlraith, Y. Yu, and J. Mylopoulos. An
automated approach to monitoring and diagnosing require-
ments. In Proceedings of ASE 2007, pages 293–302. ACM
New York, NY, USA, 2007.

26. Karen Henricksen and Jadwiga Indulska. A software engi-
neering framework for context-aware pervasive computing.
In Proceedings of PerCom’04, pages 77–86. IEEE Computer
Society, 2004.

27. M. Salifu, Y. Yu, and B. Nuseibeh. Specifying monitoring
and switching problems in context. In Proceedings of RE
2007, pages 211–220. IEEE Computer Society, 2007.

28. K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.

Springer, 2005.

29. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob
Shin, and Moonhang Huh. Form: A feature-oriented reuse
method with domain-specific reference architectures. Ann.
Softw. Eng., 5:143–168, 1998.

30. Y. Yu, J.C.S. do Prado Leite, A. Lapouchnian, and J. My-
lopoulos. Configuring features with stakeholder goals. In
Proceedings of SAC 2008, pages 645–649. ACM New York,
NY, USA, 2008.

31. M. Ramachandran and P. Allen. Commonality and variabil-
ity analysis in industrial practice for product line improve-
ment. Software Process: Improvement and Practice, 10(1),
2005.

32. MS Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
IWSSD’98. Association for Computing Machinery, Inc, One
Astor Plaza, 1515 Broadway, New York, NY, 10036-5701,
USA,, 1998.

33. D. Cohen, M.S. Feather, K. Narayanaswamy, and S.S. Fickas.
Automatic monitoring of software requirements. In Proceed-
ings of ICSE 1997, pages 602–603. ACM New York, NY,
USA, 1997.

34. B. Hui, S. Liaskos, and J. Mylopoulos. Requirements analysis
for customizable software: A goals-skills-preferences frame-
work. In Proceedings of RE 2003, pages 117–126. IEEE Com-
puter Society, 2003.

35. S. Liaskos, S. McIlraith, and J. Mylopoulos. Rep-
resenting and reasoning with preference require-
ments using goals. Technical report, Dept. of
Computer Science, University of Toronto, 2006.
ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

36. Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John
Mylopoulos. Requirements-driven design of autonomic ap-
plication software. In Proceedings of CASCON ’06. ACM,

2006.
37. Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and

John Mylopoulos. On goal-based variability acquisition and
analysis. In Proceedings of RE 2006, pages 76–85. IEEE
Computer Society, 2006.

38. Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and
Roberto Sebastiani. Reasoning with goal models. In Pro-
ceedings of ER 2002, volume 2503 of LNCS, pages 167–181.
Springer, 2002.

39. B. Nuseibeh, J. Kramer, and A. Finkelstein. Expressing the
relationships between multiple views in requirements speci-
fication. In Proceedings of ICSE 1993, pages 187–196. IEEE
Computer Society, 1993.

40. H. Mouratidis and P. Giorgini. Secure tropos: A security-
oriented extension of the tropos methodology. International
Journal of Software Engineering and Knowledge Engineer-
ing, 17(2):285–309, 2007.

	int008.pdf
	Ali Dalpiaz Giorgini TR 2010.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

