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ABSTRACT

Inverse scattering problems deal with the determination
of the constitutive parameters of the unknown objects em-
bedded in a known background medium. In this problem,
the configuration is illuminated by a single frequency
wave-field and the scattered field is measured in an ex-
ternal observation domain. The inversion of this data
is well-known to be non-linear and ill-posed. Further-
more, the retrievable information is limited. In order to
overcome such drawbacks, multi-frequency data can be
used by exploiting the Maxwellian dispersion relation-
ships. However, the use of the set of multi-frequency
data significantly increases the computational burden of
the inversion process. Recently, the so-called Diagonal-
ized Contrast Source Inversion (DCSI) method is intro-
duced to efficiently solve the inverse problem. In this
method, instead of solving the full non-linear problem, a
three-linear-step procedure is carried out to significantly
reduce the overall computational time. In order to fur-
ther enhance the DCSI method, in this paper it has been
extended for dealing with multi-frequency data.

Key words: non-linear inversion; multi-frequency imag-
ing; iterative technique.

1. INTRODUCTION

The problem of determining the electromagnetic propri-
eties of an unknown region by means of illuminating
electromagnetic waves has been a field of intensive stud-
ies. The ways to solve this problem can be divided into
two main categories. The first category concerns with
techniques based on linearization ([1]) of the problem.
The other category regards nonlinear techniques that re-
cast the problem as the minimization of a cost functional
(see, e.g., [2]).

In a recent work, Abubakar et al. [3] proposed two com-
putational effective strategies for the solution of the full
non-linear problem. The methods are called the Diago-
nalized Contrast Source Inversion (DCSI). These meth-

ods are based on: (a) the source-type integral equation
formulation [4], (b) a robust iterative method for Born
inversion [5] and (c) the diagonal approximation of the
scattering operator [6]. The aim of the DCSI methods is
to reduce the overall computational time by transform-
ing the nonlinear inverse problem into a sequence of lin-
ear inversion problems that are far more simple to be
solved. The numerical results both for electromagnetic
and elastic wave inversion reported in [3, 7] highlight
the effectiveness of these approaches as well as the fa-
vorable trade-off between complexity and reconstruction
accuracy. The results obtained are comparable with those
obtainable using a fully nonlinear procedure but requir-
ing only the same or twice the computational burden of
the linear techniques.

In this paper, the method is extended to incorporate
the multi-frequency data. In the scientific literature on
inverse problems, two main strategies have been pro-
posed to successfully exploit the availability of multi-
frequency data. The first is called the frequency-hopping
approach [8]. This technique uses the data from one fre-
quency as the initial guesses for the next (usually at an
higher frequency) frequency inversion process. The al-
ternative technique consists of processing all the available
data at the same time as done, for instance, in [9]. In such
a case, the definition of the cost functional is modified by
introducing the summation over the different frequency
data set. In this paper we employ the simultaneous fre-
quency inversion approach since it is more robust than the
frequency-hopping approach. After presenting the theory
of the DCSI multi-frequency inversion approach, selected
numerical results will be presented in order to analyze the
performances of the proposed technique.

2. SINGLE-FREQUENCY DCSI METHOD

We consider the two-dimensional inverse scattering prob-
lem where the scattering objects of arbitrary cylindrical
cross-section are contained in a homogeneous, possibly
lossy, bounded domain D. We assume that the scattering
objects are radiated successively by a number of incident
fields uinc

k,j originating from sources with different oper-
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ating radial frequencies ωk, k = 1, 2, . . ., and different
source positions j = 1, 2, . . ..

We first consider the single-frequency inversion problem.
Then, for each frequency the inverse problem is formu-
lated through the domain integral equations (see, e.g.,
Colton and Kress [10]) that, using symbolic notation, are
written as the object equation

uinc
k,j = uk,j −GD

k χkuk,j , (1)

and the data equation

fk,j = GS
kχkuk,j , (2)

where

G
D,S
k wk,j =Re(k2

bk
)

∫

D

gk(p,q)wk,j(q)dv(q).

The superscripts D and S refer to the field point posi-
tion p in the domains D and S, respectively. On these
domains the norms and inner products are defined in the
L2−norm sense. Further gk is the known Green function
with wavenumber

kbk
= ωk

√

(εb + i
σb

ωk

)µb, (3)

where εb, σb and µb denote the permittivity, conductivity
and permeability of the background medium. The fre-
quency dependent contrast is denoted by

χk =
ε(p)− εb

εb
+ i

σ(p)− σb

ωkεb
. (4)

Formally, the solution of the problem is obtained by solv-
ing Eq. (2) with uk,j obtained from Eq. (1),

uk,j = L−1
k uinc

k,j , where Lk = I −GD
k χk . (5)

The solution of the problem is greatly simplified if the
operator χkL

−1
k uinc

k,j is approximated by a diagonal oper-
ator ηk,

wk,j = χkL
−1
k uinc

k,j ≈ ηku
inc
k,j . (6)

The aim of the DCSI methods is to solve the nonlinear
inverse problem by solving a sequence of linear inverse
problems that are far more simple and fast to compute.
This can be achieved using the source-type integral equa-
tion approach by inverting for the contrast sources wk,j

from the data equation subject to the constraint that the
full contrast operator is dominated by a diagonal form
given by Eq. (6). This can be affected by introducing a
method based on the contrast source inversion, as imple-
mented in Section IV of [5]. Such a method does not re-
quire a priori knowledge and provides a stable inversion
result through the introduction of the following two-term
cost functional

F I
k;n =

∑

j ‖fk,j −GS
kwk,j;n‖

2
S

∑

j ‖fk,j‖2S

+

∑

j ‖ηk;nu
inc
k,j − wk,j;n‖

2
D

∑

j ‖ηk;n−1u
inc
k,j ‖

2
D

, (7)

where in each iteration, n = 1, 2, . . . , N , the contrast
source wk,j;n and the diagonal operator ηk;n have to be
estimated. It has been shown in [5] that a robust solu-
tion is obtained by an alternating direction minimization
scheme in which wk,j and ηk are alternately updated re-
sulting in a continues reduction of the above cost function
after each update. The contrast sources are updated by a
conjugate gradient algorithm, in which an explicit update
for ηk is obtained after each step. This explicit update is
given by

ηk;n =

∑

j wk,j;nu
inc
k,j

∑

j |u
inc
k,j |

2
, (8)

After solving for wk,j = wk,j,N , the total wave-fields
uk,j in D are simply computed from Eq. (1):

uinv
k,j = uinc

k,j +GD
k χkwk,j;N , (9)

and the contrast function is reconstructed from

χk =

∑

j w
inv
k,j;nu

inv
k,j

∑

j |u
inv
k,j |

2
. (10)

Note that, the diagonal operator ηk in the object equation
plays the role of regularization of the whole cost func-
tional providing remarkable improvement (see [3]) with
respect to the standard Born inversion procedure [5]. The
only additional step is the computation of the final quan-
tities uinv

k,j and χk whose cost is negligible compared to
the total computational burden. The present method is
denoted as the DCSI method I.

The DCSI method II consists of two parts. The first step
is identical to the DCSI method I up to the computation of
field uinv

k,j . Instead of computing the contrast function us-
ing Eq. (10), the following cost functional is defined and
iteratively minimized using the total internal field uinv

k,j ,
computed at the end of DCSI-I,

F II
k;n =

∑

j ‖fk,j −GS
kwk,j;n‖

2
S

∑

j ‖fk,j‖2S

+

∑

j ‖χk;nu
inv
k,j − wk,j;n‖

2
D

∑

j ‖χk;n−1u
inv
k,j ‖

2
D

. (11)

Further, we apply the multiplicative regularization tech-
nique with a weighted L2−norm regularization [11].
Then, the cost functional is given by

Ck;n = F II
k;n(wk,j;n, χk;n)FTV (χk;n), (12)

where FTV is the weighted L2-norm TV factor, viz.

FTV (χk;n) =
1

V

∫

D

|∇χk;n(p)|2 + δ2n
|∇χk;n−1(p)|2 + δ2n

dv(p), (13)

where V is the area of the investigation domain D and
where δn is an appropriately chosen positive parameter
(see [11]). As the initial estimates, the contrast source
w

inv,I
k,j obtained from the first step are used. In each it-

eration, the contrast sources and the contrast are updated
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alternatingly. Results show that, minimizing such a cost
functional, higher order scattering effects are taken into
consideration while the computational cost is only double
the cost of DCSI-I. Since, in the single-frequency case,
the results are superior to DCSI-I, in the following sec-
tions we will only discuss the multi-frequency case for
the DCSI method II.

3. MULTI-FREQUENCY DCSI METHOD

So far, the problem has been treated considering each fre-
quency k as a separate reconstruction process. In the
following, the DCSI method II extension to the multi-
frequency case will be described. From the Maxwell
model of the contrast function, see Eq. (4), it follows that
one unknown is dealt with (say χ1) and the contrast at
another frequency can be easily computed from χ1 using
the following operator relation relation

χk =Mk,1χ1 = Re[χ1] + i
ω1

ωk

Im[χ1]. (14)

In the multi-frequency inverse DCSI method II, we then
invert all the available data simultaneously. To accommo-
date this, the DCSI method I is first used for all the dif-
ferent frequencies, separately. For every value of the con-
trast source, the correspondent total internal field is com-
puted using Eq. (9). Subsequently, the following multi-
frequency cost functional is defined and iteratively mini-
mized

Cn = F II
n (wk,j;n, χ1;n)FTV (χ1;n), (15)

where

F II
n =

∑

k,j ‖fk,j −GS
kwk,j;n‖

2
S

∑

k,j ‖fk,j‖2S

+

∑

k,j ‖Mk,1χ1;nu
inv,I
k,j − wk,j;n‖

2
D

∑

k,j ‖Mk,1χ1;n−1u
inv,I
k,j ‖2D

(16)

and FTV is defined by Eq. (13). Details of the actual min-
imization procedure of this multi-frequency cost func-
tional are given in [5].

4. NUMERICAL RESULTS

In this section the multi-frequency extension of the DCSI
method II will be validated by presenting a selection of
the results of several numerical simulations.

The first geometry considered is the same as in [3] and
consists of two rhomboidal-cross-section cylinders of
contrast functions χ′ = 1.0 and χ′′ = i1.0 (see Figure
1). The investigation domain D of size d = 3λ = 3m
has been discretized using 29 × 29 sub-cells. The mea-
surement domain S is composed of 22 points equally
spaced around the investigation domain on a circle of ra-
dius d = 3λ. The generated data are randomly corrupted
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Figure 1. Actual profile of the two rhomboidal cylinders
configuration plotted at 300 MHz. Real (left) and imagi-
nary (right) part of the contrast function.

by a noise whose maximum value is given as percentage
of the maximum value of the amplitude of all scattered
fields recorded. For all the reported configurations the
noise level is equal to 10%. The positivity constraints on
the contrast functions have been applied during the mini-
mization.

For the sake of comparison, we showed in Figure 2,
the reconstruction results obtained using the single-
frequency version of the DCSI method. The results
are remarkable, especially considering that the compu-
tational time required by the technique is very limited.
However, some inaccuracies can be noticed in the recon-
structed distribution such as the overestimation of the real
part of the contrast function and also the presence of
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Figure 2. Single-frequency reconstruction results using
data at 200MHz (top), 300MHz (middle) and 400MHz
(bottom). Real (left) and imaginary (right) part of the
contrast function.
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Figure 3. Simultaneous multi-frequency reconstructions
of two rhomboidal cylinders after 512 iterations using
200, 300 and 400MHz data sets (top plots) and using 100,
200, 300, 400 and 500MHz data sets (bottom plots). Real
(left) and imaginary (right) part of the contrast function.

small artifacts on the imaginary part of the contrast func-
tion. The reconstruction results obtained considering the
different frequency data sets simultaneously are given in
Figure 3. The figures show that the inversion positively
benefit from the use of multiple frequency data sets. In
particular, the value of the real and imaginary part of the
contrast function are more accurately reconstructed and
the shape of both cylinders are clearly defined. Further-
more the artifacts present on the single-frequency inver-
sions are almost completely removed. The values and
shape of the contrast can be reconstructed very faithfully
using additional frequency data (see the bottom plots of
Figure 3), and although the computational time depends
on the number of frequencies used, the total computa-
tional burden is still less than the one needed by the
single-frequency full non-linear technique. On a desktop
PC, the full non-linear inversion of this configuration re-
quires 94.23 seconds while the DCSI method only needs
12.76, 39.01 or 65.62 seconds using one, three or five
frequencies. Note that, the imaginary part of the profile
depends on the frequency and for the multiple-frequency
reconstructions the actual value (i.e., 1.0) at the frequency
of 300MHz has been used for reference.

    

   
 

Re{χ}

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

    

   
 

Im{χ}

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. The actual profile of the Austria configuration.
Real (left) and imaginary (right) part of the contrast func-
tion.
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Figure 5. The single-frequency reconstruction results of
the Austria configuration using data at (from the top to
the bottom) 200, 300, 400 and 500MHz. Real (left) and
imaginary (right) part of the contrast function.

The next numerical example reported is the so-called
’Austria’ configuration. It is composed by two disks and
a ring placed in a square investigation domain of side 2m,
as showed in Figure 4. The two disks have radius 0.2m
while the ring has an inner and outer radius of 0.3m and
0.6m, respectively. All the objects are characterized by a
real contrast function χ = 0.5. This time the discretiza-
tion of the domain D has been performed using 63 × 63
square subcells while the data have been collected at 48
positions on a circular measurement domain S of radius
3m. We showed in Figure 5 the reconstruction results
obtained using the single-frequency DCSI method.In this
case, it is evident that at the lowest frequency (when lin-
earization might still be valid), the reconstruction esti-
mates correctly the value of the contrast function but fails
to clearly define its boundaries. On the contrary, the
highest frequency reconstruction clearly distinguish the
disks and ring boundaries but overestimates their con-
trast function values. We therefore consider the inver-
sion of multiple-frequency data sets of the ’Austria’ con-
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Figure 6. Simultaneous multi-frequency reconstructions
of the ’Austria’ configuration using 200, 300, 400 and
500MHz. Real (left) and imaginary (right) part of the
contrast function.

figuration by inverting data at all four frequencies (200,
300, 400 and 500MHz) simultaneously. The reconstruc-
tion obtained is given in Figure 6. As can be seen from
the figure, exploiting all the frequencies reduces the over-
estimation effects noticed on the single-frequency inver-
sions. Furthermore, by combining the lower frequencies
estimation of the contrast value and the higher frequen-
cies resolution this approach allows one to effectively ex-
ploit multi-frequency data sets and obtain satisfying re-
construction for complex structure as the latter.

5. CONCLUSIONS

In this paper the multiple-frequency extension of the di-
agonalized contrast source inversion method has been
developed in order to improve the quality of the inver-
sion results of its single-frequency version. In particu-
lar, both hopping and multiple-frequency processing have
been implemented but only the results of the latter have
been reported here. The simultaneous exploitation of the
multi-frequency data sets, pointed out a substantial reduc-
tion of the overestimation effects in the inversion figures
noticed on the single-frequency inversion.
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