
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
DEPARTMENT OF INDUSTRIAL ENGINEERING

FONDAZIONE BRUNO KESSLER
Doctorate Program in Industrial Innovation

Evolutionary Optimization of
Neural Architectures for

Remaining Useful Life Prediction

Hyunho Mo

Advisor

Prof. Giovanni Iacca

Università degli Studi di Trento

Co-Advisor

Federico Lucca

BlueTensor S.r.l.

February 2023

2

Abstract

Remaining useful life (RUL) predictions are a key enabler to achieving ef-
ficient maintenance in the context of Industry 4.0. Data-driven approaches,
in particular employing deep neural networks (DNNs), have shown success in
the RUL prediction task. However, although their architecture considerably
affects performance, DNNs are usually handcrafted by human experts via a
labor-intensive design process. To overcome this issue, we propose evolution-
ary neural architecture search (NAS) techniques that explore a search space
using a genetic algorithm (GA). NAS automatically discovers the optimal
architectures of neural networks for RUL predictions. Our GA allows an
efficient search, finding high-quality solutions based on performance predic-
tions which reduce the needed computational efforts for network training. In
particular, first, we apply evolutionary computation to find the best archi-
tectures of deep and complex neural networks in terms of prediction accu-
racy. On the other side, we consider multi-objective optimization (MOO) of
rather simple and fast neural networks to search for the best network architec-
tures in terms of the trade-off between RUL prediction error and the number
of trainable parameters, the latter being correlated with computational ef-
fort. In our experiments, we evaluate the performance of the found solutions
on widely-used benchmark datasets, CMAPSS and N-CMAPSS. In compar-
ison with the state-of-the-art, the obtained networks by our single objective
NAS approach outperform other handcrafted recent DNNs in terms of pre-
diction error, and the automatically designed networks by the multi-objective

NAS approach provide comparable results with manually designed traditional
DNNs in terms of the test RMSE, but the number of trainable parameters is
considerably smaller and the training time is significantly shorter. Our re-
sults demonstrate that the neural networks whose architecture is optimized by
evolutionary NAS techniques can be a useful tool to solve the RUL prediction
task.

Keywords
[Evolutionary algorithm, Neural architecture search, Deep learning, Predic-
tive maintenance]

4

Contents

1 Introduction 1
1.1 Maintenance Policies . 1
1.2 RUL predictions . 3
1.3 Evolutionary NAS . 5
1.4 Structure of the Thesis . 8

2 Related work 9

3 Evolutionary neural architecture search on deep learning
models 13
3.1 Individual encoding . 13

3.1.1 Multi-head CNN-LSTM 13
3.1.2 Transformers . 18

3.2 Fitness evaluation . 24
3.3 Fitness prediction . 25

3.3.1 Early-stopping . 26
3.3.2 Learning curve extrapolation 27
3.3.3 Zero-cost proxy . 30
3.3.4 Model-based performance predictor 32

3.4 Predictor-assisted evolutionary NAS algorithms 34

4 Multi-objective optimization of neural architectures 43
4.1 Individual encoding . 44

i

4.1.1 Extreme learning machine 44
4.1.2 Convolutional extreme learning machine 48
4.1.3 Convolutional neural network 51

4.2 MOO algorithm . 53

5 Experiments 57
5.1 Benchmark dataset . 57

5.1.1 CMAPSS . 58
5.1.2 N-CMAPSS . 60

5.2 Evaluation metrics . 62
5.3 Computational setup and training details 64

5.3.1 Training details for the multi-head CNN-LSTM 64
5.3.2 Training details for the Transformers 65
5.3.3 Training details for the 1-D CNN 66

5.4 Experimental results . 67
5.4.1 Evolutionary NAS on DL models 67
5.4.2 MOO of neural architectures 78

6 Conclusion 97

Bibliography 105

ii

List of Tables

3.1 Architecture parameters of the multi-head CNN-LSTM and
their bounds. 17

3.2 Architecture parameters of the Transformer and their bounds. 22

3.3 Functions f(x) used for extrapolation of learning curves. . . . 28

4.1 Parameters of the ELM to be optimized and their bounds. . . 47

4.2 Parameters of the CELM to be optimized and their bounds. . 50

4.3 Architecture parameters of the 1-D CNN and their bounds. . 52

5.1 CMAPSS dataset overview. 60

5.2 Overview of each unit in the DS02 of N-CMAPSS dataset. . . 62

5.3 Results of the best architectures found by ENAS-PdM in
terms of test RMSE and s-score performance on the CMAPSS
dataset. The mean and standard deviation (SD) of the per-
formance values in each column is selected for comparison to
the state-of-the-art methods in Tables 5.7 and 5.8. 69

5.4 Specifications of the multi-head CNN-LSTM architectures dis-
covered by ENAS-PdM and their performance in terms of the
sum of test RMSE and s-score. 69

5.5 Average number of evaluations across 3 independent ENAS-
PdM runs. 70

iii

5.6 Specification of the best architectures found in each of the 5

EA runs, in conjunction with their test RMSE and s-score
performance. For each sub-dataset, the mean and SD of the
performance reported in the table are selected for comparison
to the state-of-the-art methods in Tables 5.7 and 5.8. 71

5.7 Comparison of RUL prediction performance of the networks
found by the evolutionary NAS with state-of-the-art methods
(sorted by year), in terms of test RMSE. 72

5.8 Comparison of RUL prediction performance of the networks
found by the evolutionary NAS with state-of-the-art methods
(sorted by year), in terms of s-score. 72

5.9 Summary of the comparative results analysis of the ELM op-
timized by the GA with handcrafted BPNNs. 83

5.10 Summary of results analysis of MOO-ELM and MOO-CELM
on CMAPSS, compared with handcrafted BPNNs in terms of
test RMSE and number of trainable parameters. 86

5.11 Summary of results analysis of MOO-ELM and MOO-CELM
on CMAPSS, compared with handcrafted BPNNs in terms of
s-score and number of trainable parameters. 86

5.12 Summary of the comparative results analysis of the 1-D CNNs
optimized by the MOO for 5 different NAS configurations
w.r.t. fitnessRMSE. 92

iv

List of Figures

1.1 Flow of a data-driven RUL prediction task. 4

3.1 Multi-head CNN-LSTM architecture. 14
3.2 Visualization of how one head of the multi-head CNN extracts

convolutional features from the given time series. 16
3.3 Model architecture of the Transformer. 20
3.4 Multi-Head Attention based on parallel layers of Scaled Dot-

Product Attention. 21
3.5 The loss on the training data and RMSE on the validation

data: (a) the optimizer without learning-rate decay; (b) the
optimizer with learning-rate decay. 27

3.6 An example of how the learning curve is derived from the
k = 5 functions and the observations for nt = 15 epochs. . . . 29

3.7 Overview of NGBoost which comprises three modular compo-
nents: Base Learners (l), Parametric Probability Distribution
(Pθ), and Scoring Rule (S). 33

3.8 Overview of the surrogate-assisted evolutionary algorithm for
NAS. 39

4.1 Illustration of ELM with the structure of a SLFN. 45
4.2 Illustration of the CELM network consisting of three convolu-

tional layers followed by a fully-connected layer. 49
4.3 Illustration of 1-D convolution layer with nf filters of length lf . 52

v

5.1 Simplified diagram of the turbofan engine simulated in
CMAPSS [1]. 59

5.2 Box plots of the quality of solutions found by LHS and by the
surrogate-assisted ENAS for Transformers on FD001. 75

5.3 Box plots of the quality of solutions given by LHS and by the
surrogate-assisted ENAS for Transformers, on FD002. 76

5.4 Box plots of the quality of solutions given by LHS and by the
surrogate-assisted ENAS for Transformers, on FD003. 76

5.5 Box plots of the quality of solutions given by LHS and by the
surrogate-assisted ENAS for Transformers, on FD004. 77

5.6 Trade-off between validation RMSE and number of trainable
parameters at the last generation for the 10 independent runs
of the proposed MOO-ELM approach (aggregate results across
runs by discretizing fitness space). 81

5.7 Trade-off between test RMSE and number of trainable pa-
rameters for the methods considered in the experimentation.
For the results of ELM we report the result of each of the 10

available runs, and their average. 81

5.8 Trade-off between test RMSE and number of trainable pa-
rameters for the methods considered in the experimentation.
ELM(avg) and Conv. ELM(avg) correspond to the results by
MOO-ELM and MOO-CELM, respectively, reported in Ta-
ble 5.10: (a) FD001 dataset; (b) FD002 dataset; (c) FD003
dataset; (d) FD004 dataset. 88

5.9 Architecture score vs. number of trainable parameters on 100

randomly generated networks (20 for each seed). The dash-
dotted line indicates the decision threshold. 91

vi

5.10 Normalized validation HV across generations (mean ± stan-
dard deviation across 5 independent runs) for the evolutionary
runs of the proposed NAS for MOO. 91

5.11 Pareto front for 5 different 1-D CNN NAS configurations w.r.t.
fitnessRMSE. 95

vii

Chapter 1

Introduction

Complex systems are at risk of eventual failure, and system failures can
cause serious consequences in terms of safety issues as well as lead to high
costs. It is crucial to prevent them through proper maintenance. Optimal
maintenance enables the management of complex systems efficiently with low
cost and effectively without failures.

The airline industry is a representative example considering that aircraft
engines are very complex systems and their maintenance is closely related
to not only cost, but also safety. To be specific, about 40% of the total
maintenance cost is paid out as engine maintenance costs to comply with
stringent safety requirements. This amount reaches roughly 20% of the total
operating cost of flights [2]. As such, maintenance policies considerably affect
cost and reliability.

1.1 Maintenance Policies

Maintenance policies can be categorized into three branches: reactive, ag-
gressive, and proactive maintenance policies. The first branch is also called
run-to-failure (R2F) maintenance and takes maintenance actions only after
a failure has occurred. This primitive policy can only be applied to some
systems in which failures never cause big consequences. On the contrary,

1

1.1. MAINTENANCE POLICIES CHAPTER 1

the second branch is needed for critical applications that do not allow any
system failure. It is a very costly maintenance policy, but only safety issues
are considered regardless of cost. The proactive maintenance policy is in
the middle of the previous two, and it can be subdivided into scheduled and
condition-based policies.

A scheduled maintenance policy refers to scheduling maintenance inter-
vals in advance based on either operating time or usage so that the scheduled
maintenance prevents failures. On the other hand, a condition-based main-
tenance policy indicates that we do not follow a prefixed schedule of main-
tenance but perform maintenance actions depending on the actual condition
of the systems. It achieves just-in-time maintenance that takes actions not
too early as well as not too late, while scheduled maintenance policy has
the risk of failure occurring between maintenance intervals or the inefficiency
of prematurely replacing parts that still have a large remaining useful life
(RUL).

Condition-based maintenance policies are able to leverage either measured
or calculated conditions. Measured conditions make it possible to track the
measurable degradation of systems subject to maintenance. If it is not fea-
sible to measure the conditions but these can be calculated, then condition-
based maintenance policies require the development of physics-based mod-
els that represent physical failure mechanisms. The major disadvantages of
utilizing them are that each model can always be representative only in a
specific profile and the implementation of such a model takes large efforts of
domain experts who have profound knowledge about the physics of failure.
Physics-based approaches are still used especially when collecting monitoring
or simulated data is difficult [3]. On the other hand, data-driven approaches
are considered more useful when monitoring and/or simulated data are easier
to acquire [4].

The availability of direct condition monitoring has increased today since it

2

CHAPTER 1 1.2. RUL PREDICTIONS

becomes easier to collect condition-monitoring data via different sensors and
store them. To utilize condition monitoring data and address the limitation
of implementing physics-based models, data-driven approaches have received
increased attention for developing optimal maintenance policies.

1.2 RUL predictions

Prognostics is an engineering subject that pays particular attention to the
prediction of the time at which systems fall into a failure state. Prognostics
and health management (PHM) is a computation-based paradigm that de-
rives optimal maintenance policies by determining moments for maintenance
based on the prediction of the RUL [5]. It aims to attain better planning
of maintenance achieving low risk and minimal costs [6], and this goal can
be realized by predicting the RUL accurately. In other words, solving RUL
prediction tasks is a mainstream element of PHM. The prediction of RUL
is usually referred to as prognostics. Prognostics is an engineering subject
that pays particular attention to the prediction of the time at which systems
fall into a failure state [7]. Namely, within the PHM framework, prognostics
refers to predicting RUL of systems [5].

As discussed in Section 1.1, a variety of different sensors have been used
to monitor the condition of complex systems these days, and each of them
captures different physical properties representing different aspects of a sys-
tem such as e.g., pressure, temperature, and vibration [6]. The collection of
the sensor readings, big data for condition monitoring, can then be used to
develop data-driven prognostic approaches.

Figure 1.1 outlines a data-driven RUL prediction1 approach that employs
a machine learning (ML) model, e.g. based on an artificial neural network

1In the literature, “RUL prediction” and “prognostics” are generically used to refer to the same disci-
pline. Those are in general interchangeable, but we only use “RUL prediction” in the rest of this paper
for consistency.

3

1.2. RUL PREDICTIONS CHAPTER 1

(ANN). The model is responsible for making the RUL prediction as its output
from the condition measured by sensor readings. The training of the model
exploits the historical data that comprise run-to-failure trajectories from dif-
ferent condition monitoring sensors. It aims to minimize the training loss
where we derive the loss function from the difference between the predicted
and the actual RUL (i.e., the ground truth that is assumed to be known
for a set of training samples). During inference after training, the trained
network outputs the predicted RUL for the given input. Eventually, precise
RUL predictions given by the ML model can contribute to deriving optimal
maintenance policies in the context of PHM. In fact, providing reliable RUL

Figure 1.1: Flow of a data-driven RUL prediction task.

predictions allow users (e.g., plant owners or managers) to save expensive
maintenance procedures, which often include costly inspection and imposed
stops to the operation of the system. On the other hand, being able to antic-
ipate, within a reasonable time window (i.e., neither too early nor too late)
any potential system fault can not only enhance the quality of manufacturing
processes and their output products but also cut losses caused by any unex-
pected downtime, even without regular and excessive maintenance to prevent
failures. Providing accurate RUL predictions by means of the collected data
(i.e., developing a data-driven RUL prediction model) is, however, a difficult
task. In fact, data about faults are usually scarce (because these events typi-

4

CHAPTER 1 1.3. EVOLUTIONARY NAS

cally occur less frequently than in normal operational conditions). Moreover,
even when monitoring data about the system are available, these may not
contain enough information to make the predictions (e.g., some states of the
system that would be needed to predict faults may not be observable due to
technical limitations or other kinds of practical constraints, such as lack of
sensors).

1.3 Evolutionary NAS

Data-driven RUL prediction approaches can take advantage of supervised
ML algorithms, which have grown rapidly in recent years. For instance, an
end-to-end deep learning (DL) model can be used as a purely data-driven
RUL prediction tool. This requires historical data on condition monitoring
during run-to-failure operations. However, the data are very scarce because
failures are usually prevented by the existing maintenance policies and we
can merely get a limited number of cases where systems reach the end of
life. Thus, from the given amount of run-to-failure data, finding an optimal
ML model is a key challenge for developing a successful data-driven RUL
prediction approach which is able to fully exploit the data.

In this context, ANNs, particularly deep neural networks (DNNs), have
been widely used to recognize patterns in such limited data, and they have
shown a large success in providing accurate predictions. Despite their promis-
ing performance in RUL predictions, a considerable amount of human effort
is needed to develop them. The architecture of the networks can largely
affect their performance, but it is hard to design even for experts who are
specialized in both DL and RUL predictions. Such a design process corre-
sponds to searching for suitable values of the parameters determining the
architecture, and these values are often determined by empirical evidence or
a trial-and-error process. This may not be an efficient way to build a RUL

5

1.3. EVOLUTIONARY NAS CHAPTER 1

prediction tool that fully exploits the capability of DL models.

To this end, different optimization techniques can be used to automate the
design process. Instead of manually designing ANNs, we utilize optimization
techniques to explore the search space and find optimal architectures. This
is referred to as neural architecture search (NAS). Particularly, evolutionary
computation has recently gained attention as a way to realize NAS, and it has
been actually applied to develop different NAS techniques more recently [8].
It should be noted that we define the search space based on the pre-existing
neural architecture types such as CNN-LSTM and Transformers. This is be-
cause DNNs having those certain types of neural architecture have already
achieved success in various fields including the RUL prediction while varia-
tions of a specific type of architecture have been made by manually setting
the value of design parameters. In other words, we take full advantage of the
achievements made by the DL community w.r.t developing novel architec-
ture types, while driving further advances in architecture search for the RUL
prediction task. As such, the major motivation for our works is to present
strategies to automatically determine architectures that provide promising
performance compared to the architectures manually designed by human ex-
perts, when a particular type of network architecture is going to be used for
the RUL prediction task.

Driven by the above motivation, we apply evolutionary computation to
explore the combinatorial parameter space of different ANNs that are used
as data-driven RUL prediction models. More specifically, we present genetic
algorithm (GA) based neural architecture search (NAS) techniques that per-
form evolutionary optimization of neural architectures for RUL predictions
and use them to find the optimal architectures of various data-driven net-
work models such as a multi-head convolutional neural network with long
short term memory (CNN-LSTM), the Transformer [9], an extreme learning
machine (ELM) [10] network, a convolutional ELM (CELM) [11] and a one-

6

CHAPTER 1 1.3. EVOLUTIONARY NAS

dimensional (1-D) CNN.
When we develop RUL prediction models based on NAS techniques, the

following two different scenarios can be considered:

• finding the best architectures of deep and complex neural networks in
terms of prediction accuracy;

• achieving a multi-objective optimization (MOO) of rather simple and
fast neural networks where the two competing objectives are prediction
accuracy and computational cost (which correlates to the number of
trainable parameters).

Chapters 3 and 5 elaborate our contributions in the first scenario, and the
descriptions in the chapter are based on the papers by Mo et al. [12,13]. We
propose a custom evolutionary algorithm (EA) designed to find the best-
performing deep network architectures in terms of prediction error. First, we
use this evolutionary search to explore the combinatorial parameter space of
a multi-head CNN-LSTM [12]. This algorithm is improved by incorporating a
surrogate model into the evolutionary process, and it is used to optimize the
architecture of Transformers used for RUL prediction [13].

Our research in the second scenario is detailed in Chapters 4 and 5 which
explain our works presented in the papers by Mo et al. [14–16]. Since the
above DNNs in the first scenario need an extensive computational effort to
be trained, they may not fit industrial applications that allow using very lim-
ited computational resources. To provide proper solutions in this scenario,
we consider a MOO technique that aims to find the best solutions achieving a
trade-off between RUL prediction error and the number of trainable param-
eters. In detail, the well-known non-dominated sorting genetic algorithm II
(NSGA-II) [17] is employed to discover the best solutions in the search space
that comprises the hyper-parameters of an ELM network [14]. In addition to
the vanilla ELMs, we also consider the architecture optimization of a CELM

7

1.4. STRUCTURE OF THE THESIS CHAPTER 1

network [15] which is the combination of a set of convolutional layers with ran-
dom filters with a fully-connected layer trained by an ELM. Furthermore, we
present the speed-up techniques that shorten the evaluation time of the evo-
lutionary search process. It is then used for seeking non-dominated solutions
from the combinatorial parameter space of a 1-D CNN [16].

When we focus only on minimizing prediction errors, we use the com-
mercial modular aero-propulsion system simulation (CMAPSS) [18] dataset
provided by NASA as a test case. The performance of the networks is evalu-
ated via two different metrics: root-mean-square error (RMSE) and s-score.
For the second scenario, we perform the experiments on the new CMAPSS
(N-CMAPSS) [19] dataset which consists of a much larger amount of realistic
data compared to the CMAPSS dataset (but one of the works [15] is evaluated
on the CMAPSS). In the experiments, each run of our MOO algorithm gives
a set of trade-off solutions (Pareto-front), and we evaluate the quality of the
solutions by calculating either the performance for each of the two objectives
or the hypervolume (HV).

1.4 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 introduces related
works in data-driven RUL prediction. In Chapter 3, we present evolution-
ary computation-based NAS on DL models used for RUL predictions, so as
to derive the best-performing DL-based RUL prediction method in terms of
prediction error. The next chapter, Chapter 4, describes our work for the
second scenario which requires optimizing ANNs w.r.t the two conflicting ob-
jectives of reducing the RUL prediction error while minimizing the number of
trainable parameters. Chapter 5 details our experimentation of each method
introduced in the previous two chapters and their results. Finally, Chapter 6
discusses the conclusions of our research.

8

Chapter 2

Related work

ANNs are computing systems composed of connected artificial neurons. They
are inspired by the neurons in a biological brain. An artificial neuron trans-
mits information by means of a signal which is a real number. For building an
ANN, artificial neurons are aggregated into layers. The networks that have
multiple layers are referred to as DNNs, and many ways of training them
have been gradually developed aligning with the improvement of computing
hardware performance [20]. DL indicates learning in DNNs, and it enables to
extract from low to high-level features by leveraging its multi-layer architec-
ture. It can be a subset of ML, and it has achieved remarkable success in
various tasks such as object recognition [21].

Over the past decades, DL has developed more and more, and it has been
used to address complex problems in various fields. In the field of computer
vision (CV), deep CNNs have shown remarkable performances on various
datasets [21,22]. Residual connections [23] involve skip connections on top of
those CNNs, and they have contributed to advancing state-of-the-art per-
formance. On the other side, a research question from another mainstream
topic is how to improve computational efficiency without compromising per-
formance. Variants of the traditional CNNs have been proposed as the solu-
tion, e.g., Inception architectured networks [24,25] which provide comparable

9

CHAPTER 2

performance at a relatively low computational cost compared to the previous
networks.

EA is a stochastic population-based metaheuristic. Based on the fact
that biological systems result from an evolutionary process, EA attempts
to copy the process of natural evolution, and it uses several bio-inspired
mechanisms such as mutation and selection. One type of EA, GA, is used in
optimization problems when any problem domain can have a suitable genetic
representation and fitness function.

Developing the CNNs described above includes many parameters deter-
mining their architecture. Instead of relying on humans’ choices regarding
the layout design, evolutionary NAS techniques can be used to automate the
design process. In particular, genetic algorithms (GAs)-based evolutionary
search has been used to optimize the architecture of the CNNs and has shown
promising results [26–29].

DL models are at the core of most state-of-the-art natural language pro-
cessing (NLP) solutions for a wide variety of tasks. Different from traditional
CV tasks such as image classification, NLP tasks commonly require dealing
with long-term dependencies in sequential data. Long short-term memory
(LSTM) [30] is able to handle them by keeping such dependencies between
inputs in memory, and it is one of the most popular recurrent neural net-
works (RNNs) used for NLP tasks. A RNN model utilizing a gated recur-
rent unit (GRU) [31] instead of an LSTM unit has worked well and shown
comparable results on sequence-based tasks. Particularly, encoder-decoder
approaches have driven the recent trend in pure NNs-based machine transla-
tion [32]. More recently, a novel NNs handling long-term dependencies solely
based on an attention mechanism, Transformers [9], have shown great success
in various ML applications such as natural language understanding [33,34] and
speech recognition [35,36].

Also for this research field employing DL models, significant effort is re-

10

CHAPTER 2

quired to search for proper network architectures, and EAs have been used to
automate the development process. In fact, EAs have been used to optimize
neural networks for more than the past decades, by searching for both the
optimal neural architectures and the weights of networks in the evolutionary
process. Evolving NNs by means of EAs in this way is called neuroevolu-
tion [37], and there are various works that propose to use EAs to evolve DNNs,
so-called deep neuroevolution [38,39]. The major difference between evolution-
ary NAS and neuroevolution is that EAs are used solely for finding optimal
architectures in evolutionary NAS while they work for discovering both the
neural architectures and the optimal weight values in neuroevolution. Both
evolutionary NAS and neuroevolution have shown promising results in vari-
ous tasks [8,40], but note that the strategies discussed in our works are based
on evolutionary NAS.

For instance, evolutionary NAS techniques have been applied to intel-
ligently choosing hyper-parameters of LSTM models [41,42] and a directed
acyclic graph (DAG) network [43] for speech processing applications, aiming
at improving their performance.

As discussed above, DL models hold state-of-the-art performance in CV
and NLP. Those significant successes achieved so far in other fields have
spurred various kinds of DL models to be actively used for data-driven RUL
prediction tasks in PHM applications. One of the earliest works employs a
1-D CNN [44]. In particular, 1-D CNNs can benefit from recent progress in
2-D CNNs generally used for image data, since they can be developed by
replacing 2-D kernels of 2-D CNNs with 1-D kernels. Thus, a number of
papers have proposed to use 1-D CNNs as an RUL prediction tool [45–47].

RNNs can be applicable for processing sensor data which comprises multi-
variate time series. Therefore, existing works have introduced different RNNs
used for RUL predictions [48–51]. Furthermore, they have been used in con-
junction with CNNs; In combining of CNNs and RNNs, CNNs work for

11

CHAPTER 2

extracting local features from sensor data, and RNNs contribute to recogniz-
ing temporal dependencies between the extracted features. This CNN-RNN
structure has been widely adopted in PHM applications such as anomaly
detection [52], fault diagnosis [53–55], and RUL prediction [56,57].

Very recently, autoencoder (AE) based models have been utilized to ana-
lyze temporal patterns on time series data [58,59], and encoder-decoder frame-
works with attention mechanism have gained attention as a solution for RUL
prediction tasks [60,61].

The RUL prediction problem can be addressed as a time series forecasting
problem; each condition monitoring signal is first extended by using time se-
ries forecasting techniques [62], and the outcome can be used to estimate RUL
prediction. DL has been used to address time series forecasting problems and
various DL architectures [63] have been introduced; several works [64,65] employ
neuroevolution to evolve NNs used for time series forecasting.

The DL models have indeed provided state-of-the-art results for various
tasks given in PHM applications, while the DL moodels are human-designed
networks that require a significant amount of human effort to choose the
values of parameters determining their architecture design. Also, to our
knowledge, evolutionary NAS techniques have been rarely used to develop
DL-based RUL prediction models [8,66].

In this context, we hypothesize that evolutionary NAS can offer better-
performing architectures of different DL models for the RUL prediction task,
and the aim of our work is to validate the hypothesis based on evolutionary
optimized neural architectures introduced in Chapters 3 and 4 and their
experimental results described in Chapter 5.

12

Chapter 3

Evolutionary neural architecture search
on deep learning models

In this chapter, we introduce two different works developing DL-based RUL
prediction models based on evolutionary NAS. The first work applies a GA
to optimizing the architecture of a multi-head CNN-LSTM. In the other
work, we introduce a surrogate-assisted GA by incorporating a performance
predictor in an evolutionary search process and apply it to finding optimal
architectures of the Transformer [9]. The former was published in journal
paper [12], and the latter has been published as journal paper [13].

3.1 Individual encoding

In this section, we describe the baseline structure of the multi-head CNN-
LSTM and the Transformer, with details on the architecture parameters we
optimize.

3.1.1 Multi-head CNN-LSTM

As discussed in Chapter 2, the CNN-RNN architecture can be a solution for
various tasks in PHM applications [52–57]. Inspired by previous works, Canizo
et al. [67] proposed to employ a multi-head CNN-RNN for anomaly detection

13

3.1. INDIVIDUAL ENCODING CHAPTER 3

on the operating status of a service elevator made up of the following three
parts: multiple parallel convolutional heads, a stack of recurrent layers, and
a fully connected layer. While a typical 1-D CNN comprises a single path
of stacked convolutional layers, a multi-head CNN consists of independent
parallel paths in which each path comprises a CNN extracting local features
from univariate time series.

Figure 3.1: Multi-head CNN-LSTM architecture.

As described in Figure 3.1, the monitoring data of each sensor are seg-
mented by a sliding window to generate fixed-size sequential data. Those
are then respectively fed into each independent branch which is the so-called
“head”. The CNN in each head is responsible for extracting local features
that appear in the univariate time series assigned to it. Different from a
typical 1-D CNN, the convolutional layer in each head has its own kernel for
individual convolution, without sharing parameters with other branches. At
the end of the multi-head CNN, the extracted features from each head are
concatenated. Thereafter, the following LSTM layers work for recognizing

14

CHAPTER 3 3.1. INDIVIDUAL ENCODING

the temporal dependencies from the concatenated features. Finally, the fully
connected layer is fed by the output of the LSTM and produces a real value
that corresponds to the predicted RUL.

The major advantage of such a parallel-branched architecture is that the
learning of the convolutional filters in each head is specialized to handle a
specific sensor. Considering this advantage, we employ a multi-head CNN-
LSTM to predict RUL. The performance of the network largely relies on the
architecture of the multi-head CNNs and LSTM. To fully exploit it, the CNNs
in different heads may need to have different architectures so that each of
them extracts proper features adapting to the particular sensor. Moreover, in
a serial combination of multi-heads and LSTM, the architecture design of the
independent CNNs and their extracted features largely affects the training
of the following LSTM layers, which in turn has an impact on performance.
To develop the sequential model properly, the design of the preceding and
following parts cannot be independent, and it is obviously hard to analyze
the relationship between them based on manual engineering such as trial-
and-error approaches.

As shown in Figure 3.2, each head takes the input sequences extracted
by applying a sliding window, and at the end of the CNN, it provides the
extracted features. This convolutional feature extraction process from the
sequential data includes many hyper-parameters. The length of a sequence is
denoted by ls. We slice each sequence into fixed-length segments and denote
the length of a segment as lw. The number of segments from a sequence is
detnoed as k, and it is determined as follows: k = ls−lw

stride + 1.

The convolutional layer applies m filters of length lf to each input, and
it is followed by batch normalization and activation layers. The CNN in one
head consists of C stacks of those layers, and it contains k · m · C filters.
Figure 3.2 shows that we can get k convolutional features as the output of
the CNN for each head. The outputs of the n heads are then concatenated

15

3.1. INDIVIDUAL ENCODING CHAPTER 3

Figure 3.2: Visualization of how one head of the multi-head CNN extracts convolutional
features from the given time series.

as shown in Figure 3.1, i.e., the length of each concatenated feature, lc, is
calculated as lc = lw ·m · n.

Then, the concatenated features, fw1
, fw2

, . . . fwk
, are fed into the stacked

LSTM layers, so that they generate an output based on the past information
by considering long term dependencies between the features. The ability to

16

CHAPTER 3 3.1. INDIVIDUAL ENCODING

capture long-term dependencies of LSTM in general largely depends on the
number of hidden units in it. Thus, we consider the number of hidden units
in each of the two LSTM layers as hyper-parameters, L1 ·nlstm and L2 ·nlstm

hidden units respectively, where nlstm is a constant used as a multiplicand.
Under the parameterization introduced above, the parameters of the CNN

and LSTM affect the performance of the network in a complex way. The
length of segments lw that we can choose controls the number of segments
k. The span of the input data for the following LSTM is then determined by
k. Furthermore, lw can affect the decision on the other hyper-parameters in
the CNN as well, since the required number of filters m and filter length lf

are different for proper feature extraction depending on the input size.

Table 3.1: Architecture parameters of the multi-head CNN-LSTM and their bounds.

Parameter Description Min Max

lw length of segments 1 5

lf length of convolutional filters 1 5

m number of convolutional filters 1 10

C number of convolutional layers 1 2

L1 multiplier of hidden units number (1st LSTM layer) 4 20

L2 multiplier of hidden units number (2nd LSTM layer) 4 15

As such, the optimal value for one parameter depends on the values of the
other parameters. This makes it difficult to choose a set of values based on
empirical evidence; it is time-consuming and nearly unfeasible to manually
examine the parameters effect on the network performance by a trial-and-
error process. To this end, we use evolutionary computation to exploring
such a combinatorial parameter space to find the optimal architecture of the
multi-head CNN-LSTM network used for RUL predictions.

The search space is defined by the architecture parameters listed in Ta-
ble 3.1. The upper bound of segment length lw is set based on the sequence
length and our previous knowledge [68]. It is the same as the upper bound of

17

3.1. INDIVIDUAL ENCODING CHAPTER 3

lf , because the filter size does not need to exceed the input size. Regarding
L1 and L2, we estimate the proper range based on our previous work [68]; when
considering less than 80 LSTM hidden units, the networks are prone to un-
derfitting, while they can suffer from overfitting if the number of hidden units
is larger than 400. Because this range is too large to be explored, we divide it
by a constant value of 20 when we derive our genotype representation which
is a list of integers within the bounds. Considering that the second LSTM
layer is used to get high-level abstraction from the output of the preceding
layer, we set the upper bound of L2 to 15 which is smaller than that of L1.
The upper bound of the remaining parameters is determined by considering
the memory size of the computational resource used in our experiments.

Based on the individual encoding described above, an individual of the
EA is an integer vector containing the parameters described in Table 3.1,
i.e., our genotype representation is [lw, lf ,m,C, L1, L2]. When we introduce
an example of an individual that comes out as [2, 2, 5, 1, 10, 5], its phenotype
is then a CNN-LSTM network that has the following architecture: segment
length 2 and 1 convolutional layer comprising 5 convolutional filters of length
2 followed by stacked LSTM with 200 and 100 hidden units respectively. For
all the individual encoding introduced in Chapters 3 and 4, the corresponding
phenotype of an individual is a constructed network in this manner.

3.1.2 Transformers

The Transformer is a novel straightforward end-to-end model that can han-
dle long-term dependencies in sequential data solely relying on an attention
mechanism. Even dismissing either RNNs or CNNs, it has shown large suc-
cess in various ML applications, such as CV [69,70], speech recognition [35,36],
and NLP [33,34].

Considering that the Transformer has originally been established as a se-
quence transduction model, it has also been used for several tasks dealing

18

CHAPTER 3 3.1. INDIVIDUAL ENCODING

with time series data: anomaly detection [71], time series forecasting [72], time
series regression and classification [73]. Another advantage of the Transformer
is that it does not involve RNN modules which have been widely used to
capture temporal patterns present in sequences [48,68], but several limitations;
RNNs from gradient vanishing problems, and even networks with these prob-
lems solved such as LSTM or gated recurrent unit (GRU) [31] are computa-
tionally expensive to be trained.

In spite of many successful applications based on the advantages, the
Transformer has not been fully exploited since it is usually handcrafted for
each application; its architecture is determined by means of experience or
manual observation regarding the relationship between architecture varia-
tion and change in performance. To this end, we propose to automatically
design the Transformer using GA to have better architectures for a given
task. Specifically, we consider the architecture of the Transformer compris-
ing a parallel encoder structure [74] as a backbone to be optimized by our
GA.

In the following, we formulate the RUL prediction task and describe the
background concepts of the Transformer network.

Our base model described above involves many parameters that can vary
the architecture of the Transformer network. Variations on the Transformer
architecture can cause changes in performance [9], and their effect is typically
investigated empirically, by changing one parameter at a time [9,75]. However,
this is a labor-intensive design process, and the empirical evidence obtained in
this way does not reflect the complex dependencies between the architecture
parameters.

Different from the naïve approach, here we consider the Transformer ar-
chitecture parameter choice as an optimization problem, aiming to obtain
the maximum possible performance by systematically diversifying all the ar-
chitecture design parameters. To this end, we use evolutionary optimization.

19

3.1. INDIVIDUAL ENCODING CHAPTER 3

In this case, each “individual” in the population handled by the evolutionary
algorithm (EA) encodes a candidate solution for the Transformer network
design problem, i.e., a vector representation of all the parameters that can
vary the Transformer architecture.

Figure 3.3: Model architecture of the Transformer.

The Transformer follows the encoder-decoder architecture drawn in Fig-
ure 3.3. Both the encoder and the decoder are made up of a multi-head
attention layer followed by a feed-forward layer. In the Transformer, an
input embedding layer converts the input sensor measurements to vectors
of dimension dmodel. The attention layer contains one of the most widely
adopted attention modules, i.e., the Scaled Dot-Product Attention module,
shown in Figure 3.4 (right). This module performs a matrix multiplication
first. The outcome of the dot-product is then scaled by a constant factor
1/dmodel

[9]. The attention modules output a weighted sum of the values that
are denoted by V in Figure 3.4. Its weights are calculated as the softmax
output w.r.t the dot-product which measures the similarity of each query (Q)

20

CHAPTER 3 3.1. INDIVIDUAL ENCODING

Figure 3.4: Multi-Head Attention based on parallel layers of Scaled Dot-Product Atten-
tion.

to the keys (K).
Similar to the use of multiple feature maps in CNNs, Transformers take

advantage of multi-head attention, by making use of h independent heads.
To realize this, h pairs of different linear projections transform dmodel-
dimensional queries, keys, and values to dk, dk, and dv dimensions, respec-
tively. Each of those projected vectors proceeds to the designated head, as
shown in Figure 3.4. The heads apply the attention function in parallel.
The following concatenation layer concatenates the outputs of the h heads,
and those are projected to dmodel dimensions with the last linear projection
layer. The output of the attention proceeds to a FFN that comprises two
linear transformations. The first layer linearly transforms from dmodel to dff

dimensions, and this inner layer uses the rectified linear unit (ReLU) as the
activation function. Then, the following transformation produces the output

21

3.1. INDIVIDUAL ENCODING CHAPTER 3

of the FFN. The sub-layers explained above, i.e., the multi-head attention
and the FFN, are the building blocks for both the encoder and the decoder.

Different from vanilla Transformers [9], the Transformer network consid-
ered in this work contains two types of encoder: a sensor encoder, and
a timestep encoder. The former is deployed to weigh different sensors by
self-attention, while the latter serves to extract the feature from different
timesteps. Each type of encoder is structured by stacking Nenc identical lay-
ers, and the two encoders work in parallel. The following feature fusion layer
concatenates the two representations generated by the parallel encoders. The
decoder is constructed by piling up Ndec layers, each one composed of two
attention blocks followed by one FNN. Similar to the encoder, the attention
block at the beginning takes the embeddings w.r.t. the decoder input and
computes their values. The next attention block receives the output of the
previous multi-head attention block, as well as the output of the feature fu-
sion layer, to look back at what the encoder input sequences were. Finally,
the output layer at the very end of the Transformer converts the decoder
output to the predicted RUL.

Table 3.2: Architecture parameters of the Transformer and their bounds.

Parameter Description Min Max

dmodel dim. of embedding and each sub-layer input/output 6 25

dk dim. of attention key 6 25

dv dim. of attention value 6 25

dffs dim. of FFN in sensor encoder layer 6 25

dfft dim. of FFN in time encoder layer 6 25

dffd dim. of FFN in decoder layer 6 25

hs number of attention heads in sensor encoder layer 1 16

ht number of attention heads in time encoder layer 1 16

hd number of attention heads in decoder layer 1 16

Nenc number of encoder layers stacked 1 3

Ndec number of decoder layers stacked 1 3

22

CHAPTER 3 3.1. INDIVIDUAL ENCODING

Table 3.2 presents the 11 parameters that configure the Transformer ar-
chitecture. The first six parameters are related to the dimensions of the rep-
resentations; among these, the first three parameters determine the vector
dimensions in one sub-layer, i.e., the multi-head attention, while the remain-
ing three parameters determine the inner dimensions in another sub-layer,
the FFN. To reduce the obtainable number of combinations within the span
of possible dimensions, each dimension parameter is divided by a fixed value
of 4 when we define the range of that parameter. The lower bound of the
range is mainly based on dmodel, since the smallest possible dmodel should be
larger than the upper bound of h, 16. The specific range of dimensions is
determined empirically. In particular, based on preliminary observations, we
have found that a dmodel of 16 cannot decrease the training loss and for this
reason, dmodel should be larger than 24. From this lower bound 6 = 24/4,
the upper bound is set to 25 = 100/4, so that we can avoid combinatorial
explosion by limiting the range of the parameter to 20 integer values. We
consider the same range for all six parameters regarding the dimension.

The next three parameters indicate the number of attention heads. Its
upper bound, 16, is inspired by the existing work [76], which examines the
correlation between the number of heads and performance.

Finally, the last two parameters indicate the number of identical layers
stacked when we generate the encoder and decoder. The maximum allowed
number of stacks is set to 3. With these upper bounds, the largest network
fits the available memory used in our work.

Overall, the search space defined by the above 11 parameters includes
2.36× 1012 ≈ 206 · 163 · 32 Transformer configurations.

23

3.2. FITNESS EVALUATION CHAPTER 3

3.2 Fitness evaluation

Our NAS algorithm involves the validation loss evaluation of the networks
following their full training. When the given data are made up of a training
set Dtrain and a test set Dtest, Dtrain is split into Dw and Dv, where the
former is a set of training purpose data and the latter is used for validation
purpose: specifically, randomly chosen 80% of the engines in each sub-dataset
are assigned to Dw which is used to produce training samples for solving
Equation (3.4). The remaining 20% are designated as Dv that is used to
evaluate the validation loss when we solve Equation (3.3). This proportion
has been determined according to the investigation conducted in our recent
study [12].

NNs trained by means of iterative gradient-based computations are gen-
erally referred to as back propagation-neural networks (BPNNs). In the case
of BPNNs’ architecture optimization, we can formulate the task described
above as follows. Let T and S indicate the length of a time window and the
number of sensors respectively. We consider an input sequence data X deter-
mined by the window sliding over the multi-sensor measurements. In other
words, the input sequence comprises the measurements of the S sensors over
T timesteps, and each position in the sequence corresponds to each timestep.
This sequence can be written as X = [x1, . . . , xT]

⊤ with xt ∈ IRS.

Considering a mini-batch of bs training samples, the loss function l(·)
of the network corresponds to the Mean Squared Error (MSE) between the
output of the network, Y = [y1, . . . , ybs] and its ground truth labels, Z =

[z1, . . . , zbs]:

l (Y, Z) =
1

bs

bs∑
j=1

(yj − zj)
2 (3.1)

where yj denotes the predicted RUL w.r.t. Xj while zj represents the ground
truth RUL for the j-th sample Xj. Note that in this work we always take the

24

CHAPTER 3 3.3. FITNESS PREDICTION

RUL value at the last timestep T of the sequence X.
An exception is a MOO task focused on optimizing the ELM (Sec-

tion 4.1.1) which receives a single timestep input rather than the sequen-
tial input by time window. We use the same setup for defining Dw and Dv,
while the training does not rely on the BP algorithm but its own algorithm
explained in Section 4.1.1.

3.3 Fitness prediction

NAS consists in solving an optimization problem that is formally written in:

a∗ = argmin
a

f(a) (3.2)

where a denotes a given architecture from the search space, and a∗ indicates
the optimal architecture regarding the objective function f .

The following equations define f :

f(a) = Lval(w
∗(a), a) (3.3)

w∗(a) = argmin
w

Ltrain(w, a) (3.4)

For a given architecture a, the function value, f(a), is an observation of the
network performance with the trained weights w∗(a), where the performance
corresponds to the validation loss Lval. The training phase, described by
Equation (3.4), indicates that w∗(a) can be obtained by fully training the
network for a given architecture a. Training by back-propagation requires
iterative gradient computation, which is computationally expensive. Thus,
it is necessary to adapt performance prediction strategies for avoiding this
high computational cost.

In the following, the first two strategies introduced in Sections 3.3.1
and 3.3.2 offer to save the number of epochs when we train each network by
Equation (3.4); while zero-cost proxy shown in Section 3.3.3 make it possible

25

3.3. FITNESS PREDICTION CHAPTER 3

to eschew the computationally intensive network training; lastly, we present
a model-based performance predictor which employs a regression model as
a surrogate for Equation (3.3) denoting the performance observation of the
trained network.

3.3.1 Early-stopping

If all the networks to be evaluated during the evolutionary search are trained
with the same fixed number of epochs, the training may include unnecessary
training efforts which do not improve the validation loss. In order to reduce
computing time by discarding the redundant training epochs, we present an
early-stopping strategy in conjunction with learning-rate decay. It reduces
the learning-rate by a constant multiplicative factor called gamma when the
training epoch arrives at one of the predefined epochs reserved for decay.
Early-stopping monitors the validation loss every epoch and stops the train-
ing when no improvement is observed within a number of epochs. This
early-stopping strategy is advantageous for reducing training epochs as well
as avoiding overfitting.

For instance, Figure 3.5 presents the learning curve of a multi-head CNN-
LSTM with and without applying learning-rate decay. In detail, the learning-
rate for Figure 3.5 (a) remains at its initial value of 10-3 across all epochs,
whereas the curve shown in Figure 3.5 (b) highlights the effect of learning-
rate decay with a gamma value of 0.1. In the former, the training lasts
until the maximum number of epochs of 20 even if early-stopping is applied;
the learning-rate remains high in all epochs, and the validation curve keeps
fluctuating. Because of this, the training keeps undesirably finding lower
validation loss within 5 epochs of patience. In contrast, we multiply the
learning-rate by 0.1 at epochs 10 and 15. With this learning-rate decay, the
validation curve in Figure 3.5 (b) reaches the lowest value at epoch 14, and
the training is stopped at epoch 19.

26

CHAPTER 3 3.3. FITNESS PREDICTION

1 3 5 7 9 11 13 15 17 19

Epochs

102

103

Training
loss
Validation
RMSE

2×101

3×101

4×101

(a)

1 3 5 7 9 11 13 15 17 19

Epochs

102

103

Training
loss
Validation
RMSE

2×101

3×101

4×101

(b)

Figure 3.5: The loss on the training data and RMSE on the validation data: (a) the
optimizer without learning-rate decay; (b) the optimizer with learning-rate decay.

Thanks to the early-stopping strategy in conjunction with the decay, we
are able to set an initial learning-rate value to a relatively large value without
being concerned about the fluctuation which disturbs the proper evaluation
of each individual for comparison with others. Thus, in essence, this strategy
is needed and taken into account when we use Equation (3.4) for a reliable
fitness evaluation by Equation (3.3).

3.3.2 Learning curve extrapolation

Extrapolation of learning curves is a fitness prediction strategy that allows
save a predefined number of training epochs by fitting and extrapolating the
validation loss curve. Although the early-stopping discussed in Section 3.3.1
helps save a few training epochs , the benefit varies depending on how we
define no improvement on the validation loss and the degree of patience.
The validation curve extrapolation strategy described below can alleviate
this problem and always endow the same benefits.

27

3.3. FITNESS PREDICTION CHAPTER 3

As shown in Figure 3.5 (b), proper scheduling of the learning-rate changes
of the optimizer leads to the trend of the validation loss change being similar
for all the networks in our search space when they are trained. Taking this
into account, we formulate the learning curves (e.g., the validation RMSE
curves in our work) based on a set of functions f(x) where the shape of each
of them coincides with the trend of the validation RMSE. In particular, we
chose the k functions (k = 5 in this work) specified in Table 3.3 from the
literature [77] and set the values of the parameters (that are denoted by α, β,
γ, and δ) in the following way: we train the network for nt epochs observing
the validation RMSE, using those observations is fitting each function based
on non-linear least squares minimization, which is defined by Section 3.3.2:

minimize
nt∑
j=1

(yoj − f(xj))
2

where yoj indicates the observed validation RMSE at xj, while f(xj) denotes
the function value at xj. The Levenberg-Marquardt algorithm [78] is used to
solve the above least squares problem, and the function derived by curve
fitting is denoted as f ∗.

Table 3.3: Functions f(x) used for extrapolation of learning curves.

Name Formula

MMF α− α−β
1+γxδ

Janoschek α− (α− β)e−γx
δ

Weibull α− (α− β)e−(γx)
δ

Gompertz α + (β − α)(1− e−e
−γ(x−δ)

)

Hill custom α + β−α
1+10(x−γ)δ

Figure 3.6 visualizes the shape of the obtained function f ∗, and we can
observe that no single function can fully delineate the validation RMSE curve.
To obtain a function closer to our learning curve, we combine all the obtained

28

CHAPTER 3 3.3. FITNESS PREDICTION

Figure 3.6: An example of how the learning curve is derived from the k = 5 functions and
the observations for nt = 15 epochs.

functions by solving a linear regression:

minimize ∥F ∗a− yo∥22

where F ∗ ∈ IRnt×k contains all the function values from k different f ∗ for
nt epochs, and yo ∈ IRnt is a vector of observations also for nt epochs. The
optimal a ∈ IRk, obtained by solving the linear problem, can be written as
a∗ = [a∗1, · · · , a∗k].

For instance, Figure 3.6 describes how the learning curve extrapolation
works when we train a network for nt = 15 epochs and take the pre-
dicted value from the red-colored curve at nm = 30 epoch. Specifically,
we collect the function value of each f ∗ at xnm

denoted as f ∗(xnm
) =

[f ∗
1 (xnm

), · · · , f ∗
k (xnm

)]. The target value ypnm
is then calculated by the linear

combination of those values where the weights are a∗. Hence, this is written
as follows:

ypnm
= f ∗(xnm

) · a∗. (3.5)

If the validation RMSE has not fully converged at nt epochs, then our defined

29

3.3. FITNESS PREDICTION CHAPTER 3

curve can keep decreasing with x. This indicates that the minimum observed
value within nt epochs, min(yo), is greater than the value calculated at nt

epoch, ypnm
; the difference between them is defined as d = min(yo) − ypnm

so that we assign different fitness value based on the sign of d (positive or
negative). In particular, the predicted fitness is defined as follows:

fitnessRMSE =

ypnm
, d > 0

min(yo)− |d|, d ≤ 0.
(3.6)

If d is positive, then ypnm
is directly used as the fitness value. Otherwise, the

fitness value is determined as min(yo)− |d|.
The learning curve of each network considered during the search process

starts converging at a different epoch. In particular, the learning curve of
some networks reaches a plateau in the first few epochs and does not decrease
with x, i.e., d can be less than or equal to 0. However, the actual validation
loss may decrease with x even a little, since the network continues to be
trained every epoch. In this scenario, we subtract the absolute value of d
from the minimum observed value min(yo) and use min(yo) − |d| as the
predicted fitness value instead of directly taking ypnm

. As such, we allocate
a lower fitness value to the network even if its learning curve converges to a
high value in the first few epochs and does not decrease with x.

3.3.3 Zero-cost proxy

One of the zero-cost proxies [79], a metric called architecture score without
training [80], can be considered as a fitness prediction strategy in our NAS
process.

Each DL model is trained by tuning its parameters according to Equa-
tion (3.4), and this is still computationally demanding even if we cut several
redundant training epochs. On the contrary, the architecture score without
training is a proxy that represents the final performance at initialization (i.e.,

30

CHAPTER 3 3.3. FITNESS PREDICTION

right after initializing a network but before its training), where the final per-
formance here corresponds to the evaluated fitness (i.e., validation loss in
our work) after the training. This training-free proxy quantifies how well the
network at initialization discriminates the different inputs.

Given that rectified linear unit (ReLU) is commonly used as the activa-
tion function in the networks, the output activation of each unit can be an
indicator the unit is active or not; if the activation output has a non-zero
positive value, then the unit is active; otherwise, it is inactive. In the former
case, we set the activation output value to 1 for the former, while it is set to
0 for the latter. I.e., the output is encoded as a bit.

In detail, when a network containing NReLU activation units is fed by an
input sample xi, we obtain a binary code ci ∈ {0, 1}NReLU by gathering all
the bits from each unit. In this way, a mini-batch X = {xi}Mi=1 yields M

binary codes. Here, the similarity of two binary codes from two different
inputs reveals how difficult it is for the network to separate them. For in-
stance, suppose there are two different inputs that are particularly difficult
to distinguish. If one network produces the same binary code while the other
network gives us different codes, then we consider the latter to be a better
network than the former in terms of performance which is related to the
ability to discriminate between similar inputs.

Let xi and xj be two different inputs within a mini-batch X, and the two
binary codes for these inputs be written as ci and cj respectively. The sim-
ilarity between them is then measured by the Hamming distance dH(ci, cj).
A proxy for the fitness evaluation is calculated by the following equations:

KH =

NReLU − dH(c1, c1) · · · NReLU − dH(c1, cM)
...

NReLU − dH(cM , c1) · · · NReLU − dH(cM , cM)

 , (3.7)

s =
c

ln |KH |
(3.8)

31

3.3. FITNESS PREDICTION CHAPTER 3

where KH denotes the kernel matrix that computes the correspondence be-
tween binary codes for X, and s represents the proxy metric. Following
Equation (3.8), the determinant of the kernel matrix |KH | is higher as the
kernel approximates a diagonal matrix, and large distances between two dif-
ferent codes mean that those can be separated well by the network. Thus,
a lower value of the proxy for the same input batch at initialization implies
lower validation RMSE after training.

3.3.4 Model-based performance predictor

One possible performance estimation strategy is to consider the optimization
problem shown in Equation (3.2) as a supervised ML problem and solve it
by employing a regression model. More specifically, we prepare a regression
model before solving the optimization. Here, the preparation is also referred
to as the initialization step [81], and requires: 1) collecting a fixed number m
of pairs (a, f(a)); and 2) fitting a regression model based upon this collection.
The trained regression model f̂ can provide an approximation of f . Thus,
the regression model serves as a surrogate for the validation loss observation,
i.e., we apply a surrogate model f̂ which can approximate f .

When it comes to supervised learning, it is necessary to collect labeled
training samples. Since such a process requires the performance evaluation
of fully trained networks, the amount of labels is typically very restricted.
Nevertheless, the model trained with limited data should be able to predict
the performance of individual networks all over the parameter space.

To this end, we choose NGBoost [82] as the surrogate model f̂ . Differ-
ent from typical regression models that return a single best guess prediction
(namely, a point estimation), NGBoost allows for predictive uncertainty es-
timation and outputs a full probability distribution. To be more specific,
NGBoost is a modular algorithm that is composed of three components, as
shown Figure 3.7. The algorithm generalizes gradient boosting [83] and makes

32

CHAPTER 3 3.3. FITNESS PREDICTION

use of natural gradients and boosting to integrate three modular components:
Base Learners, Parametric Probability Distribution, and Scoring Rules. In
each iteration of the learning algorithm, a vector representation of the base
learner’s parameters (θ) for the current model input X is fed into the Dis-
tribution component, which determines the probability distribution Pθ. In
the following Scoring Rules component, the scoring function S is defined
based on the distribution Pθ and the prediction target y. Finally, the natural
gradient of S w.r.t. θ is used to fit the Base Learners.

We select the decision tree as Base Learners l, while the conditional prob-
ability in the second component follows the Normal distribution. The log-
arithmic scoring rule [82] is considered as S. Our choice of the NGBoost
components and hyper-parameter tuning on the model follow the settings
used for all experiments reported in [82].

Figure 3.7: Overview of NGBoost which comprises three modular components: Base
Learners (l), Parametric Probability Distribution (Pθ), and Scoring Rule (S).

In addition, the following two crucial aspects should be considered in use
the NGBoost as a surrogate model in our NAS process. Because the full
training of the network is computationally very expensive, we can prepare
very few samples to train the predictor described above. On the other hand,
the parameter space defined in Section 3.1 is extremely large compared to the
feasible number of the prepared samples. Therefore, we need to acquire the
maximum information with the minimum number of samples, by spreading
them out with the aim of encouraging a diversity of data. In other words, it

33

3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS CHAPTER 3

is necessary to handle the matter of choosing sample points in the parameter
space to train the surrogate, so that it has a good space-filling property. To
achieve this, we apply Latin hypercube sampling (LHS) [84] when we prepare
the training samples for our performance prediction model. In this sampling
strategy, each sample “remembers” in which part of the search space it was
taken, so that each space dimension is evenly sampled.

As another effort to improve the surrogate model, two additional param-
eters regarding the network are added to the vector described in Section 3.1
when we prepare the input for the surrogate model. More specifically, we
concatenate the integer values for the architecture parameters of the given
network with the following two values: the number of trainable parameters
in the network, and the single-shot network pruning (SNIP) value [85]. The
SNIP value is a pruning at initialization metric that computes a saliency
metric at initialization, and it can approximate the change in the loss at ini-
tialization w.r.t. removing a specific connection. This metric was originally
proposed to find sparse networks, but it has been used also for estimating the
performance of lightweight networks, considering the correlation between the
SNIP value and the performance at initialization [81]. In order to let the model
consider additional information about the performance of a given network,
we feed the SNIP value to the regression model as an additional input.

3.4 Predictor-assisted evolutionary NAS algorithms

In this section, we introduce two evolutionary NAS algorithms for developing
RUL prediction models. The first one is dubbed as the “evolutionary NAS for
predictive maintenance (ENAS-PdM) [12]”. It uses a GA to explore the com-
binatorial parameter space of the multi-head CNN-LSTM (Section 3.1.1) so
as to find the best architectures for predictive maintenance which is achieved
by solving the RUL prediction task. The early-stopping described in Sec-

34

CHAPTER 3 3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS

tion 3.3.1 is used as a fitness prediction strategy. To reduce the computa-
tional cost of the evolutionary search, we also implement a history mechanism
that helps avoid the redundant fitness evaluation of individuals previously
evaluated. In the second algorithm, referred to as the “surrogate-assisted
ENAS algorithm [13]”, we further improve the ENAS-PdM algorithm by in-
corporating a surrogate into the GA; a model-based performance predictor
described in Section 3.3.4 is considered as a surrogate model. We use this
algorithm to discover the optimal architectures of the Transformer detailed
in Section 3.1.2.

The pseudo-code of the proposed ENAS-PdM algorithm is shown in Al-
gorithm 1. It starts by initializing the population; where npop indicates the
population size, we generate npop − 1 individuals at random and take the
parameters of a well-performing human-designed architecture [68] as the re-
maining individual. This super-fit mechanism [86] enables our GA to start
with a good individual by including it in the initial population.

The fitness evaluation follows the procedure specified in Section 3.2; for
each individual, we construct a multi-head CNN-LSTM network based on a
vector containing the architecture’s parameters, and the fitness of the network
(the validation RMSE in our work) is evaluated after training it. In the
procedure, when an individual first appears in the search process, then its
fitness is evaluated and recorded in a history table. Otherwise, we get the
fitness value from the table instead of evaluating it again.

As for genetic operators in our GA, mutation and crossover are used to
ensure a good trade-off between exploration and extrapolation. We apply
each of them independently with a probability of 0.5, i.e., pmut = pcx = 0.5

where pmut and pcx denote mutation probability and crossover probability
respectively. In this way, individuals are produced by either mutation or
crossover (exclusively), and this allows the algorithm to avoid generating
disruptive combinations of mutation and crossover that could lead to bad

35

3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS CHAPTER 3

Algorithm 1 Pseudo-code of the ENAS-PdM algorithm.
1: function Evolution(a, b)
2: pop← initialize_pop()

3: evaluated← Set() ▷ Evaluated individuals
4: for (gen = 0; gen < generations; gen+ = 1) do
5: evaluate_fitness(evaluated, pop)

6: new_pop← select(pop)

7: new_pop← crossover(new_pop)

8: new_pop← mutation(new_pop)

9: pop← check_parents(pop, new_pop)

10: end for
11: return best(pop)

12: end function
13:
14: procedure evaluate_fitness(evaluated, pop)
15: for ind ∈ pop do
16: if ind ̸∈ evaluated then
17: ind.fitness← fitness(ind)

18: evaluated.add(ind)

19: else
20: ind.fitness← evaluated.get(ind).fitness

21: end if
22: end for
23: end procedure

individuals. Regarding crossover, we use a specialized one-point crossover
that first ranks the individuals by their fitness, and then mates, according to
the crossover probability, the individual in the (2i)-th position with the one in
the (2i+1)-th position, with i ∈ [0,

npop

2 −1]. This operator allows us to exploit
the best individuals, trying to combine them with even better individuals,
and to explore, by combining bad solutions which can lead to regions of the
state space that are far from the region in which the current best individuals
lie. The common opinion about EAs is that exploration should be the task
of mutation, while we do not limit exploration to the of mutation. Based
on discussions on evolutionary exploration and exploitation [87,88] questioning
the common belief, we consider exploration in the above strategy.

We then apply uniform mutation to the population (containing the
offspring generated by crossover and individuals that did not undergo
crossover), in which, according to a probability pgene, each gene (i.e., one
of the architecture parameters) can be mutated to another value uniformly

36

CHAPTER 3 3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS

drawn from its bounds described in Table 3.1. The pgene is set to 0.3 so
that the expected number of mutations is set between 1 and 2; we set pgene

such that, on average, we have 1.5 mutated genes (out of 5) per individual

(E[
5∑

i=1

rand() < pgene] = 1.5). This allows us to have a relatively faster search

process while avoiding disruptive mutations in the individuals.
When creating the population for the next generation, we check the fitness

of the parents of each offspring. If the offspring has better fitness than one
of its parents, we replace the worst parent with it. This way, we ensure that
the mean fitness of the population is monotonically decreasing (i.e., we use
implicit elitism).

In the following, we present the surrogate-assisted ENAS algorithm that is
developed for finding the optimal architectures of the Transformer described
in Section 3.1.2. It uses the surrogate model explained in Section 3.3.4 to fur-
ther reduce the computational burden associated with the fitness evaluation
of the evolutionary search algorithm.

As shown in Algorithm 2, it starts with npop randomly generated individ-
uals. Each run of the algorithm terminates when it reaches a predetermined
maximum number of generations ngen, similar to Algorithm 1. As we can see
in Figure 3.8, the phenotype representation of each individual is the Trans-
former architecture, a, associated with its genotype which is an integer vector
containing the parameters described in Table 3.2.

The model-based performance predictor defined in Section 3.3.4 is used as
the surrogate model f̂ , which should be initialized before the algorithm starts
its main loop. Here, the predictor is the probabilistic regression model, and
we train it according to the following procedures. First, we sample a fixed
number m of architectures from the search space, by means of LHS. We then
prepare the labeled training samples that consist of m pairs (a, f(a)) where
f(a) indicates the validation RMSE of the selected a after its full training.
Lastly, the collected pairs are stored in memory to avoid fully training the

37

3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS CHAPTER 3

same architecture a again. Besides, every collected pair during the main loop
of the search algorithm is stored as well for the same reason.

Algorithm 2 Pseudocode of the surrogate-assisted ENAS algorithm.
1: function Evolution(npop, ngen)
2: pop← initialize_pop(npop) ▷ npop: population size
3: f̂(·)← initialize_predictor() ▷ probabilistic regression model (NGBoost)
4: history ← Set() ▷ evaluated individuals by full training
5: for (gen = 0; gen < ngen; gen++) do ▷ ngen: max. number of generations
6: evaluate_fitness(pop, f̂(ind), history)

7: new_pop← select(pop)

8: new_pop← crossover(new_pop)

9: new_pop← mutation(new_pop)

10: pop← check_parents(pop, new_pop)

11: end for
12: return history

13: end function
14:
15: procedure evaluate_fitness(pop, f̂(·), history)
16: for ind ∈ pop do
17: ind.fitness← f̂(ind)

18: end for
19: topk ← reordering(pop) ▷ reorder individuals w.r.t. predicted fitness and select top k individuals
20: for ind ∈ topk do
21: if ind ̸∈ history then
22: a← phenotype_decoding(ind)

23: ind.fitness← f(a) ▷ full training to evaluate the fitness
24: history.add(ind)

25: else
26: ind.fitness← history.get(ind).fitness

27: end if
28: end for
29: retraining(f̂(·), topk) ▷ update the predictor with the new observations
30: end procedure

The main difference between Algorithm 1 [12] and Algorithm 2 [13] is the
fitness evaluation procedure. As depicted in Figure 3.8, the fitness evaluation
leveraging the surrogate model is done in three steps: fitness prediction,
reordering, and fitness observation. In the first step, the surrogate model f̂
produces the fitness of the individuals. We can see the main advantage of the
proposed algorithm here; making a prediction by the surrogate has almost
no cost compared to the full training for the actual fitness evaluation. We
need to spend a computational budget to initialize the predictor, but this
enables us to avoid full training on many networks whose fitness needs to be

38

CHAPTER 3 3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS

Figure 3.8: Overview of the surrogate-assisted evolutionary algorithm for NAS.

evaluated during the evolutionary process.

After marking each individual with the predicted fitness, we sort them
according to their predicted fitness. The ranking by the predictions can be
used as it is in the evolutionary process because the predictions given by
the regression model broadly correlate with the actual fitness observations.
However, the correlation may not be very high, since the predictor is trained
on a limited number of samples evenly spread over a large search space. For
this reason, we propose to perform fitness observation (which indicates fitness
evaluation by means of full training) on the elites, i.e., the top k individuals
based on the predicted fitness, that are expected to have also better actual
fitness values. For the current elites that are made up of individuals that have
good fitness, we replace the predictions with the observations. By doing so,
we can improve the correlation between the fitness predictions and the fitness

39

3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS CHAPTER 3

observations, at least for the individuals that have good fitness.

Furthermore, in each generation, the predictor is updated according to
the new observations; the obtained (a, f(a)) pairs are appended to the train-
ing data for the predictor, and the predictor is retrained. In this way, the
knowledge obtained by the new observations improves to fitness predictions.
At the same time, those pairs are recorded in the history, which is a look-up
table used to avoid redundant computation (as mentioned above). In fact,
before carrying out a fitness observation on a, first we check if a exists in the
history. Then, we take its fitness f(a) from the history if it has already been
evaluated, otherwise, we perform the fitness observation for a and add the
observation to the history.

After evaluating fitness, every individual in the current population is con-
sidered to induce offspring. Specifically, the genetic operators considered in
our work are crossover and mutation. Each of them is applied independently,
to avoid disruptive combinations of their effects. First of all, reproduction
starts with a custom one-point crossover that, with a probability of 0.5, mates
two adjacent individuals, i.e., given that the individuals are sorted according
to fitness, the (2i − 1)-th best individual is combined with the (2i)-th best
individual, where i ∈ [1,

npop

2]. The offspring population is then obtained by
applying, again with a probability of 0.5, uniform mutation to the population
that includes both the individuals obtained through crossover and the indi-
viduals that have not undergone crossover. During mutation, according to a
probability pgene, we replace the value of each gene with a uniform random
value drawn between its upper and lower bounds. The value of pgene is set
to 0.3, so that it can lead to mutating an average of 3.3 genes (out of 11) per
individual. This way, we can achieve a good compromise between excessively
small or excessively disruptive mutations.

Finally, the population for the next generation is formed by the following
replacement: 1) we predict the fitness of each offspring; 2) the fitness of its

40

CHAPTER 3 3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS

parents is checked; 3) if the offspring’s fitness is superior compared to the
fitness of one (or both) of its parents, that parent (or the one with the worst
fitness, if both parents are worse than the offspring) is replaced with the
offspring.

41

3.4. PREDICTOR-ASSISTED EVOLUTIONARY NAS ALGORITHMS CHAPTER 3

42

Chapter 4

Multi-objective optimization of neural
architectures

Whereas Chapter 3 pursues the development of RUL prediction networks
seeking lower prediction error, our works discussed in this chapter use the evo-
lutionary NAS to achieve a trade-off between prediction error and the number
of trainable parameters. Since the motivation of those works is to develop a
proper RUL prediction tool to cope with constrained HW resources, we con-
sider the MOO of relatively simple networks that have primitive structures
such as ELM, CELM, and 1-D CNN, compared to the very deep networks
discussed in the previous chapter.

For the works discussed in this chapter, we apply NSGA-II to search
for the best solutions. The first work is based on Mo et al. [14] that pro-
poses to optimize the ELM architecture which allows extremely fast training
without iterative gradient computation and this, in turn, does not require
performance prediction. We then describe an extension of the first work;
the extension is based on Mo et al. [15] that applies the MOO algorithm to
optimize the architecture of the CELM. The next work that is based on the
paper by Mo et al. [16] proposes to optimize the architecture of the 1-D CNN
and to accelerate the search by leveraging the two performance prediction
techniques: zero-cost proxy (Section 3.3.3) and learning curve extrapolation

43

4.1. INDIVIDUAL ENCODING CHAPTER 4

(Section 3.3.2).

4.1 Individual encoding

In this section, we describe the baseline structure of the ELM, CELM, and
1-D CNN, with details on the architecture parameters we optimize.

4.1.1 Extreme learning machine

An ELM is a novel and fast training algorithm for single-hidden layer feed-
forward neural networks (SLFNs). In essence, the training of NNs corre-
sponds to finding the optimal weights as defined by Equation (3.4), and the
gradient-based optimization method (in particular, the back-propagation al-
gorithm) is widely used to tune weights of the networks; the training of
BPNNs is usually time-consuming and computationally burdensome. In con-
trast, an ELM is able to tune the weights of SLFNs in a very fast and efficient
way; it randomly initializes the input weights and merely considers an ana-
lytically determined non-iterative solution as the output weights.

The seminal paper on ELMs [10] claims that they are not only very fast
in training but also competitive in performance compared to BPNNs1. On
various regression tasks, ELMs have shown comparable performance in terms
of prediction accuracy [89,90] and generalization [91,92]. Particularly, the exist-
ing work [89] reports the performance of the handcrafted ELMs on the RUL
prediction task and highlights that employing the ELMs is advantageous for
saving training time, while their performance is comparable to BPNNs in
terms of RUL prediction error. Considering the advantages of ELMs and
their promising results in the previous works, here we optimize an ELM to
use it as an RUL prediction tool providing both good prediction accuracy

1We should note that, strictly speaking, “ELM” refers to the training algorithm only. However in this
work “ELM” is generically used to refer to both the training algorithm and the neural network itself.

44

CHAPTER 4 4.1. INDIVIDUAL ENCODING

and short learning time given by their lower number of trainable parameters,
compared to BPNNs.

As for training a SLFN comprising L hidden neurons by N labeled train-
ing samples, an ELM can be formally described as follows. Each training
sample is made up of a d-dimensional input vector with a corresponding
c-dimensional label, and an input and its label are denoted by xi and ti re-
spectively. A given set of N training samples can then be written as (xi, ti),
i ∈ [1, N] with xi ∈ IRd and ti ∈ IRc. When it comes to a data-driven RUL
prediction model, d is the number of monitoring signals, and c = 1 (i.e., the
label is a scalar real number representing a RUL value).

Figure 4.1: Illustration of ELM with the structure of a SLFN.

Figure 4.1 details the structure of a SLFN and the notation used for the
mathematical expression of the ELM. The network depicted in the figure
consists of three parts: d input nodes, a single hidden layer of L neurons
with activation function g(·), and a single output node. For a given input
sample xi, the output of the network oi with L hidden neurons and activation

45

4.1. INDIVIDUAL ENCODING CHAPTER 4

function g(·) is defined by:

oi =
L∑

j=1

βjg(wj · xi + bj). (4.1)

where wj = [w1j, . . . , wdj] is a vector of weights on the connections between
the d input neurons (which are assumed to be linear) and each j-th hidden
neuron, βj is the weight on the connection between the j-th hidden neuron
and the output neuron, and bj denotes the bias for the j-th hidden neuron.
The computation for all the N equations (one for each of the N samples)
can be written compactly as:

H · β =

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)
...

g(w1 · xN + b1) · · · g(wL · xN + bL)


β1...
βL

 (4.2)

where H is the hidden layer output matrix (of size N × L), and β (of size
L) consists of the weights of all the connections between the hidden neurons
and the output neuron.

To train the SLFN defined above (i.e., the ELM) is equivalent to find-
ing a least square solution β̂ to the linear system H · β = T where
T = [t1, · · · , tN]⊤. Therefore, the mathematical formulation of the train-
ing procedure can be expressed as:

∥Hβ̂ − T ∥ = min
β

∥Hβ − T ∥ (4.3)

As discussed in [93], the smallest norm least squares solution of the above
equation is determined by:

β̂ = (H⊤H + αI)−1H⊤T . (4.4)

where (H⊤H)−1H⊤ is the Moore-Penrose generalized inverse of the matrix
H , and we add an L2 regularization term αI (with α ∈ IR being an arbi-
trarily small value) to the inverse term H⊤H so that it does not become

46

CHAPTER 4 4.1. INDIVIDUAL ENCODING

singular. While the ELM merely requires solving Equation (4.4) once to de-
termine the output weights, BPNNs need to tune all the weights in them
iteratively over several epochs.

Equation (4.4) informs us that the computational complexity of the ELM
is O(NL2 + L3), and it is determined by the size of the matrix H . The
complexity is cubic w.r.t. the number of hidden neurons L, but a large value
for L does not always contribute to improving prediction performance and
may lead to overfitting.

As such, finding the optimal value of L, as well as of the constant value for
proper L2 regularization, is a crucial element for ELM performance in terms
of both the RUL prediction error and the number of trainable parameters.
However, this task is not easily achievable by manual design or empiric con-
siderations. Driven by this motivation, we use a GA to discover optimized
ELMs automatically from the search space defined by the integer parameters
described in Table 4.1.

Table 4.1: Parameters of the ELM to be optimized and their bounds.

Parameter Description Min Max

ntanh

number of hidden neurons with
hyperbolic tangent activation

1 200

nsigm

number of hidden neurons with
sigmoid activation

1 200

r L2 regularization parameter 2 6

We encode the number of hidden neurons having two different activation
functions as ntanh and nsigm, respectively, since it was found that using differ-
ent activation functions for g(·) in preliminary experiments produces different
results. The remaining parameter, r, refers to the order of magnitude of the
L2 regularization parameter α explained above, i.e., α = 10−r.

The lower and upper bounds (chosen empirically) for each parameter in
the ELMs are also presented in Table 4.1. For the first two parameters

47

4.1. INDIVIDUAL ENCODING CHAPTER 4

regarding the number of hidden neurons, it should be noted that their bounds
are multiplied by a fixed value of 10 when we generate an ELM instance (i.e.,
the phenotype) so that we use a discretization on the number of hidden nodes
to reduce the search space yet allowing ELMs of up to 2, 000 tanh hidden
neurons and 2, 000 sigmoid hidden neurons. In other words, both ntanh and
nsigm range in the interval [1, 200], while the corresponding number of hidden
neurons can range between 10 and 2, 000 with a step size of 10. These values
have been chosen empirically. In particular, the maximum value for L (given
by the sum of the two kinds of neurons) is 4, 000, and this upper bound is
determined to limit the size of the hidden layer output matrix H , which
is N × L, while keeping its calculation affordable during the evolutionary
search. Because the whole range of integers between 1 and 2, 000 would be
too large to explore, we divide it by 10, to decrease the number of possible
combinations for those two parameters: by doing so, we reduce the number of
possible combinations from 4×106 to 4×104. For the remaining parameter,
r, it defines α of Equation (4.4), and the value of α should be relatively small
to avoid affecting the ELM performance, while being enough to prevent the
inverse term in Equation (4.4) from becoming singular; in this work, we find
that such an upper and a lower bound for α are 10−2 and 10−6 respectively,
and this, in turn, decides the bounds for r.

4.1.2 Convolutional extreme learning machine

Figure 4.2 depicts a CNN structure for a regression task, such as the RUL
prediction, on multivariate time series. The network mainly comprises the
feature extraction stage and the regression stage. The feature extraction
stage consists of a set of 1-D convolutional layers aiming to extract high-
level feature representations, while the following regression stage is a fully-
connected layer computing an output RUL value from the extracted features.

BP algorithms are extensively used to train CNNs, but gradient-based

48

CHAPTER 4 4.1. INDIVIDUAL ENCODING

learning algorithms are in general slower than required because they tune all
the parameters of the network iteratively. Considering that the slow speed of
BP algorithms can be a major bottleneck in the applications of CNNs, here
we apply CELMs, which are fast training as they do not require an iterative
gradient computation. Similar to the ELM, described in Section 4.1.1, the
training of CELMs consists in analytically determining the output weights
on the connections between the hidden neurons of the fully-connected layer
and the output neuron, in conjunction with a random initialization of all the
remaining weights. In other words, the convolutional filters are randomly
generated, and we randomly choose the input weights to the fully-connected
layer as well.

Figure 4.2: Illustration of the CELM network consisting of three convolutional layers
followed by a fully-connected layer.

Thus, a major difference between the ELM and the CELM models is the
presence of the feature extraction step using random filters. The CELM
model involves many more hyperparameters that can largely affect both the
prediction error and the total number of trainable parameters in the network;
in fact, the performance of the ELMs relies on the configuration of the fully-
connected layer, whereas the performance of the CELMs is determined not
only by the fully-connected layer but also by the architecture of the preceding

49

4.1. INDIVIDUAL ENCODING CHAPTER 4

convolutional layers.
Regarding the optimization of the CELM model shown in Figure 4.2, we

consider the integer parameters described in Table 4.2.

Table 4.2: Parameters of the CELM to be optimized and their bounds.

Parameter Description Min Max

ch1 number of filters in the first convolution layer 1 20

k1 length of each filter of ch1 1 20

ch2 number of filters in the second convolution layer 1 20

k2 length of each filter of ch2 1 20

ch3 number of filters in the third convolution layer 1 20

k3 length of each filter of ch3 1 20

L
number of hidden neurons in the fully-connected

layer
1 80

Considering that the architecture parameters in the CELM are all inte-
gers, the genotype consists in this case of seven integer values. The first six
are reserved for constructing the three convolutional layers, while the number
of hidden neurons in the following fully-connected layer is determined by the
remaining integer value L. Because CELMs with stacked convolutional layers
(in particular three) have been shown to perform well in previous works [94,95],
we fix the number of the convolutional layers to three. Instead, the param-
eters regarding the filters in each convolutional layer are encoded, such that
each individual generated during the evolutionary search extracts different
convolutional features. It should be noted that the parameters regarding the
number of filters are multiplied by a fixed value of 10 when we generate the
phenotype, while the parameters regarding the filter lengths are used as they
are. The bounds (chosen empirically) for the seven parameters of the CELMs
are shown in Table 4.2. Since we set the maximum value of L to 4, 000 for the
ELMs in our previous work [14] (also summarized in Section 4.1.1), the same
upper bound is considered also for the CELMs. As specified in Table 4.2, the

50

CHAPTER 4 4.1. INDIVIDUAL ENCODING

bounds of the parameter regarding the number of hidden neurons L are set
to [1, 80], however, this integer is multiplied by a fixed value of 50 when each
genotype is translated into to corresponding phenotype. As explained in the
case of the ELM optimization, the multiplicand is used to decrease the pos-
sible number of combinations determined by the bounds of the parameters:
thanks to this discretization, we reduce the number of possible combinations
in the search space from 2.56× 1014 to 5× 109.

Concerning the activation function, we use the sigmoid function for all
the nodes in the fully-connected layer of the CELMs. This choice follows the
existing works on CELMs [94,96,97], which all make use of the sigmoid func-
tion in the fully-connected layer, and the recent study [97] where the authors
tested different widely-used activation functions, including the sigmoid and
the hyperbolic tangent, and verified that the sigmoid can achieve the best
prediction accuracy.

4.1.3 Convolutional neural network

CNNs have provided excellent performances on data-driven RUL prediction
tasks [98,99] as well as time series processing tasks [100]. To distinguish from
the CELM described above, it should be noted that the CNNs discussed in
this subsection are BPNNs which are NNs trained by BP algorithms. In par-
ticular, a 1-D CNN has shown promising results comparable to RNNs [98,101]

on the prognostics benchmark problem, despite its relatively simple back-
bone structure which includes 1-D convolutional layers and no pooling layers.
Driven by the good results, we adopt a 1-D CNN as our backbone network,
whose architecture should be optimized.

In detail, this network consists of stacked convolutional layers followed
by a fully connected layer. Each convolutional layer involves a filter (i.e., a
convolution matrix) to get the filter response of the local receptive field, a
so-called feature map. Namely, the local receptive field refers to the part of

51

4.1. INDIVIDUAL ENCODING CHAPTER 4

the input on which the filter slides across the horizontal axis indicating the
temporal direction. A set of convolutional layers is responsible for extract-
ing high-level feature representations, and the following fully-connected layer
produces the output of the network (which corresponds to a RUL value in
this work) from the extracted features.

Figure 4.3: Illustration of 1-D convolution layer with nf filters of length lf .

Table 4.3: Architecture parameters of the 1-D CNN and their bounds.

Parameter Description Min Max

nl number of convolution layers 3 8

nf number of filters in each convolution layer 5 25

lf length of convolution filters 5 25

nf.c. number of neurons in the fully connected layer 5 15

The architectural design of the 1-D CNN described above needs to choose
the values of several hyper-parameters that mainly affect the prediction error
and determine the network’s total number of trainable parameters. More
specifically, the number of convolutional layers is denoted as nl, and a larger
number of nl offers a higher level of feature representation by the stacked
convolutional layers, but this increases the number of parameters of the CNN.

52

CHAPTER 4 4.2. MOO ALGORITHM

Each convolutional layer has two hyper-parameters regarding the convolution
filter, nf and lf ; each of nf filters of length lf slides over its input features
to apply convolution in the temporal direction as shown in Figure 4.3. The
number of neurons in the fully connected layer, nf.c., works on the regression
task based on the extracted feature. Thus, we consider the optimization of
the four architecture parameters summarized in Table 4.3.

The search space to be explored by our optimization algorithm is defined
by the parameters and their bounds specified in the table. The lower and
upper bounds for each parameter have been determined empirically; we do
not include the smaller networks containing too few trainable parameters in
our search space since their learning capability is not enough to decrease the
training loss; the larger networks comprising too many parameters are not
considered as well because they may overfit the training data (i.e., they can
decrease the training loss but not the validation loss). Note that the number
of neurons in the fully connected layer is divided by 10 when we encode the
solutions so that the number of neurons can be up to 150, but there is a
much smaller number of integers within the bounds for nf.c.. On top of those
considerations, we chose specific values such that approximately 30, 000 1-D
CNN configurations exist in the search space.

4.2 MOO algorithm

When it comes to the optimization of the networks described in Section 4.1,
we consider a MOO approach to identify their optimal architectures achieving
the best trade-off between RUL prediction error and the number of trainable
parameters. In our work, NSGA-II is used to get a Pareto-optimal front.

Each run of the evolutionary search starts with randomly initializing a
population of npop individuals. Every individual in the population should
contain each objective value that can be obtained by means of the evaluation

53

4.2. MOO ALGORITHM CHAPTER 4

specified in Section 3.2; we do not employ performance prediction methods
for the ELMs and CELMs since their training is extremely fast in essence,
while the two methods introduced in Sections 3.3.2 and 3.3.3 are used when
we evaluate the RUL prediction error (the validation RMSE) of the CNNs.

In the main loop of the algorithm, an offspring population of the same
size is created by using tournament selection, crossover, and mutation. The
tournament selection primarily sorts a population according to the level of
non-domination. Once all the non-dominated individuals have been consid-
ered, the density estimation of solutions by the so-called crowding distance [17]

is then taken as the secondary criteria which promote individuals that lie in
less crowded areas of the Pareto front.

Regarding genetic operators, we use 1-point crossover and uniform mu-
tation. The probability of crossover and mutation is set to 0.5 (i.e., pcx =

pmut = 0.5) for the same value and reason as stated in Section 3.4. The ex-
pected number of mutations per individual is determined by the probability
pgene that indicates the probability of applying the mutation operator to a
single gene. pgene is set to 0.4, which can induce, on average, a reasonable
number of mutated genes so that we can suppress too small or too destruc-
tive mutations; on average of 1.2 mutated genes are expected out of 3 for
the ELM discussed in Section 4.1.1; 2.8 mutated genes are expected out of 7
for the CELM discussed in Section 4.1.2; 1.6 mutated genes are expected out
of 4 for the CNN shown in Section 4.1.3. In turn, this allows us to have a
relatively faster architecture search process and avoid disruptive mutations.

Returning to the elucidation of the main loop, the new individuals are
pooled with the parents. The combined population is then sorted according
to non-domination. The best non-dominated sets are inserted into the new
population until it is as close as possible to the preset population size npop but
does not exceed it. For the next non-dominated set, which would make the
size of the new population larger than the fixed population size npop, only the

54

CHAPTER 4 4.2. MOO ALGORITHM

individuals that have the largest crowding distance values are inserted into
the remaining slots in the new population. Subsequently, the next generation
starts with the new population by creating its offspring population. This
loop is terminated after a fixed number of generations ngen; the evolutionary
algorithm returns a Pareto front, which is defined as the set of trade-off
solutions at the top dominance level.

55

4.2. MOO ALGORITHM CHAPTER 4

56

Chapter 5

Experiments

In this research work, we hypothesize that applying NAS can result in better
neural architectures for the data-driven RUL prediction task. We validate
this a set of numerical experiments described in this chapter. The experi-
ments are carried out on the two benchmarks. we use the CMAPSS to test
our evolutionary NAS on the DL models presented in Chapter 3,i.e., the ar-
chitecture optimization of the multi-head CNN-LSTM and Transformers is
tested on the CMAPSS. While, we use the N-CMAPSS to test the MOO of
the ELM and CNN architecture introduced in Chapter 4. Finally, the MOO
of the CELM architecture is tested on the CMAPSS. The used datasets are
described in Section 5.1. In Sections 5.2 and 5.3, we detail the evaluation
metrics considered in our work and the computational setup along with the
training details of our experimentation, respectively. Finally, Section 5.4
presents the experimental results and their comparative analysis; the perfor-
mance of the optimized networks is compared with the currently used RUL
prediction models.

5.1 Benchmark dataset

In this section, we first introduce the CMAPSS dataset which has been used
in our previous works introducing the single-objective optimization (SOO) of

57

5.1. BENCHMARK DATASET CHAPTER 5

DL-based RUL prediction models [12,13]. This is followed by the description
of the N-CMAPSS dataset, in which we develop the multi-objective RUL
prediction models as presented in papers [14,16]. The work based on paper [15],
which is an extension of a previous paper [14], uses the CMAPSS dataset for
its evaluation.

5.1.1 CMAPSS

Accurate RUL predictions for complex systems make it possible to develop a
smart maintenance policy, which in turn, reduces any unplanned downtime
and cuts dispensable losses. The airline industry is a typical instance of this
problem since timely maintenance of aircraft engines can largely affect the
overall operation cost. By predicting the engines’ RUL accurately, we can
minimize maintenance costs.

Considering the above, NASA has introduced the CMAPSS dataset, com-
prising some run-to-failure trajectories simulated with the CMAPSS sim-
ulator [102]. It simulates the degradation of a commercial turbofan engine,
depicted in Figure 5.1 and provides the recorded sensor measurements under
different settings of health-related parameters [1].

According to the seminal paper [18] introducing the dataset, the data have
been collected by the CMAPSS operation in closed-loop configurations. The
CMAPSS produces various sensor response surfaces as its outputs from a set
of health-parameter inputs that enable users to simulate the effects of faults
in the following give rotating components which are crucial components as-
sociated with the engine’s failure: fan, low-pressure compressor (LPC), high-
pressure compressor (HPC), high-pressure turbine (HPT), and low-pressure
turbine (LPT). The outputs produced by the CMAPSS simulation corre-
sponding to the inputs are used as the data for our experiments.

The dataset consists of four sub-datasets: FD001, FD002, FD003, and
FD004. Each of them considers different operating states and fault modes

58

CHAPTER 5 5.1. BENCHMARK DATASET

Figure 5.1: Simplified diagram of the turbofan engine simulated in CMAPSS [1].

when it generates 21 output variables that represent the degradation trajec-
tories of recordings from different sensors. It should be noted that the update
for the RUL prediction and the sensor measurement occurs at every cycle,
which is the time unit considered in this dataset.

As summarized in Table 5.1, each sub-dataset comprises of a training set
Dtrain and a test set Dtest; the former provides a running history of each
engine until its failure, while a history of each test engine on Dtest ends at
a certain cycle before failure. Thus, the CMAPSS dataset enables the task
of accurately predicting the RUL of each test engine at the end of its given
history, for which it is allowed to exploit the data in Dtrain.

It is more challenging to make accurate predictions on FD002 and FD004
than on FD001 and FD003 because the former two are simulated under six
different operating conditions, while the latter two are simulated under only
one condition. The RUL prediction error on FD003 (FD004) tends to be
generally higher than the error on FD001 (FD002) in general. This heppens
because it is more difficult to develop a pure data-driven model when a
dataset contains multiple failure modes compared to a single failure mode.

In this dataset, we discard the 7 time series whose data points never vary
over time out of the 21 trajectories and take into account the remaining 14

time series.

59

5.1. BENCHMARK DATASET CHAPTER 5

Table 5.1: CMAPSS dataset overview.
Sub-dataset FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in test set 100 259 100 248
Max/min cycles in training set 362/128 378/128 525/145 543/128

Max/min cycles in test set 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6

Fault modes 1 1 2 2

5.1.2 N-CMAPSS

In 2021, NASA’s data repository released the N-CMAPSS dataset, which con-
tains data acquired under real flight conditions. This large realistic dataset
is used to test the MOO of different neural architectures suggested in Sec-
tion 4.1.

The previous dataset, the CMAPSS dataset explained in Section 5.1.1, has
been widely used to develop and evaluate the RUL prediction models after
it became publicly available on NASA’s data repository in 2008. It is solely
based on MATLAB simulations, without considering real flight conditions,
so that each time series is rather short (just a few hundred samples). On
the other hand, in the new realistic dataset, each time series consists of
millions of samples by reflecting real flight conditions, thus the total size
of the dataset is significantly larger. Therefore, the N-CMAPSS dataset
provides a chance to develop reliable algorithms for RUL prediction in a
real-world context. Moreover, while the previous dataset was small enough
to allow researchers to focus only on the minimization of the RUL prediction
error, without considering the training time, the new dataset, due to its much
larger amount of data, requires algorithms that are faster to train, without
compromising the RUL prediction error.

The experimentations of the MOO algorithm specified in Section 4.2 for

60

CHAPTER 5 5.1. BENCHMARK DATASET

the ELM (Section 4.1.1) and 1-D CNN (Section 4.1.3) are based on the
N-CMAPSS dataset. Specifically, we only use its sub-dataset DS02, which
has been developed for data-driven methods [19]. It consists of the run-to-
failure degradation trajectories of nine turbofan engines with unknown and
different initial conditions. The synthetic trajectories were generated with
the CMAPSS dynamic model implemented in MATLAB, but a fidelity gap
between simulation and reality is mitigated by reflecting real flight conditions
recorded on board a commercial jet. Furthermore, the relation between the
degradation and its operation history is considered, to extend the degradation
modeling [19]. Among the nine engines, we use 6 units (u2, u5, u10, u16, u18
and u20) for the training set Dtrain, and the remaining 3 units (u11, u14 and
u15) for the test set Dtest. In particular, the u14 and u15 relate to shorter
and lower altitude flights compared to those of the training units, so that
the evaluation results on the Dtest can implicitly reflect the generalization
capability of the RUL prediction model.

Table 5.2 describes each unit in the dataset w.r.t the number of samples
mi, the end-of-life time tEOL and the failure modes. The total number of
samples (i.e., timestamps) is 5.26M in Dtrain and 1.25M in Dtest, with a
sampling rate of 1Hz. The end-of-life time tEOL points out the counted flight
cycles at the end of the engine’s lifespan. There are two distinctive failure
modes in the dataset: abnormal HPT and LPT. The combination of the two
failure modes for a unit means that the unit is subject to a more complex
failure mode than a single-failure mode.

The dataset provides condition monitoring signals that are related to the
useful life of the flight engine. Following the setup used in [98], we select the
same 20 signals. The multivariate time series from the 20 signals is used as
an input for the networks, therefore the dimension of the input sample d is
20.

61

5.2. EVALUATION METRICS CHAPTER 5

Table 5.2: Overview of each unit in the DS02 of N-CMAPSS dataset.
Training set (Dtrain) Test set (Dtest)

Unit mi(M) tEOL Failure Mode Unit mi(M) tEOL Failure Mode

u2 0.85 75 HPT u11 0.66 59 HPT+LPT
u5 1.03 89 HPT u14 0.16 76 HPT+LPT
u10 0.95 82 HPT u15 0.43 67 HPT+LPT
u16 0.77 63 HPT+LPT
u18 0.89 71 HPT+LPT
u20 0.77 66 HPT+LPT

5.2 Evaluation metrics

In the SOO tasks [12,13], the objective is to reduce the RUL prediction error,
where it is defined as the discrepancy between the predicted and target RUL.
Particularly, the prediction error is quantified w.r.t. two metrics: the RMSE
and the s-score [18].

Let the error between the predicted and target RUL be di = RULpredicted
i −

RULtarget
i , where di denotes the error on the i-th sample. The RMSE on Dtest

is then defined as follows:

RMSE =

√√√√1

n

n∑
i=1

d2i (5.1)

where n represents the number of samples in Dtest. The RMSE is considered
as one of the metrics considering that it has the benefit of weighting large er-
rors more; penalizing large errors should be considered since the errors in the
context of the RUL prediction are related to cost and safety. Although mean
absolute error (MAE) has not been considered as a metric in the following
experiments, it can be very useful to calculate the simple MAE when the
proposed strategies are applied to industrial applications, so that obtained
results can be interpreted easily and intuitively.

Furthermore, we consider an additional metric, called s-score, which pe-
nalizes optimistic RUL predictions. More specifically, it separates the predic-

62

CHAPTER 5 5.2. EVALUATION METRICS

tions according to whether they are “optimistic” or “pessimistic” via an asym-
metric function which is formulated to grant smaller values to pessimistic
predictions compared to optimistic predictions. This is formulated in this
way:

s-score =
n∑

i=1

si, si =

e−
di
13 − 1, di < 0

e
di
10 − 1, di ≥ 0

. (5.2)

Hence, different from the RMSE, the s-score evaluates the risk that the
output of the network is larger than the actual RUL value. It should be
noted that we use the s-score solely for evaluating the methods on the test
set; on the other hand, we perform the evolutionary optimization on the
RMSE, since it provides more information from an optimization point of
view w.r.t. the s-score. In fact, based on our work [12], networks optimized
using the RMSE as fitness function provide better results in terms of both
metrics, compared to networks optimized based on the s-score.

Regarding the MOO tasks, our goal is to find solutions to achieve the
trade-off between the number of trainable parameters and prediction error.
Specifically, in the experiments on the ELM and CELM optimization [14,15], we
evaluate the performance of the solutions in terms of the two objective values
in the test set by comparing them with the results obtained by the different
methods under study. For each solution, the test RMSE (Equation (5.1))
and the number of trainable parameters are calculated. We then consider
the averages of each of the two calculated values of the solutions as the final
results used for the comparative analysis.

In the paper that introduce a novel way to accelerate the NAS [16], our
experimentation aims to assess how the speed-up techniques affect the GA
in terms of two metrics: 1) the quality of the solutions, represented by the
hypervolume (HV) where the HV is calculated on the space defined by the
test RMSE and the number of trainable parameters, and 2) the GA runtime,
in GPU hours.

63

5.3. COMPUTATIONAL SETUP AND TRAINING DETAILS CHAPTER 5

5.3 Computational setup and training details

The multi-head CNN-LSTM (Section 3.1.1) and 1-D CNN networks (Sec-
tion 4.1.3) are implemented using TensorFlow 2.4, while we use the high-
performance toolbox1 for ELM to implement the ELM (Section 4.1.1). The
CELMs (Section 4.1.2) and Transformer networks (Section 3.1.2) are im-
plemented in PyTorch. The baseline GAs (Sections 3.4 and 4.2) are im-
plemented using the evolutionary computation framework DEAP [103]. Our
codes are available online2. All the experiments have been carried out on a
single NVIDIA Titan Xp GPU.

Both datasets used in our work consist of multivariate time series, and
the value of each time series is rescaled into the range [−1, 1] by using min-
max normalization so that we prepare the input samples for the networks.
The data preparation and training details for the different BPNN models are
specified in the following subsections.

5.3.1 Training details for the multi-head CNN-LSTM

The information summarized in this subsection is reported in detail in our
paper [12]. To create the input samples for the DL network, we apply time
window having fixed length T (i.e., it determines the sequence length ls

explained in Section 3.1.1). Following the window size suggested in [56], the
value of T is set to 31, 21, 38, and 19 respectively for FD001, FD002, FD003,
and FD004.

By leveraging the prepared input sequences labeled with RUL, we conduct
supervised learning. The loss function of the network is the MSE as defined
by Equation (3.1). The weights of the model are then optimized to minimize
the loss using the RMSprop algorithm. Based on the empirical evidence from

1https://github.com/akusok/hpelm
2https://github.com/mohyunho

64

https://github.com/akusok/hpelm
https://github.com/mohyunho

CHAPTER 5 5.3. COMPUTATIONAL SETUP AND TRAINING DETAILS

our previous work [68], we set the batch size of gradient descent to 400, and
we limit the maximum number of training epochs to 20.

As described in Section 3.3.1, we introduce an early-stopping mechanism
in the optimizer along with the learning-rate decay. In particular, the toler-
able amount of epochs with no improvement in the validation loss, so-called
patience, is 5. The learning-rate starts with a value of 10-4 and drops to 10-5

after 10 epochs, then we divide it again by 10 after 5 epochs.
An additional aspect to highlight is that, in general, reproducible results

might be needed in some industrial contexts. Nevertheless, some opera-
tions of the DNNs implemented by the TensorFlow framework result in non-
deterministic outputs when executed on a GPU. This issue is caused by the
non-deterministic order of the operations running in parallel on the GPU, in
addition to the limited-precision floating point representation. To get repro-
ducible results, we considered using the determinism library3 that provides
deterministic outputs by addressing the issues above. However, we noted
that the determinism library dramatically slows down the GPU computa-
tion. Considering the too long GA runtime with determinism, we decided
not to use it. Instead, we repeat the ENAS-PdM process without determin-
ism three times for each sub-dataset; each evolutionary run gave the best
architecture yielded from the search, and the performance average of the
collected solutions was taken as the final result.

5.3.2 Training details for the Transformers

The details discussed in this section cover our journal paper [13]. We pre-
pare the input sequence for the Transformer by applying a fixed-length time
window with stride 1 to the normalized time series data. The size of the
windows for FD001, FD002, FD003 and FD004 is set to 40, 60, 40 and 60,
respectively, following the values suggested in [74].

3https://github.com/NVIDIA/framework-determinism

65

https://github.com/NVIDIA/framework-determinism

5.3. COMPUTATIONAL SETUP AND TRAINING DETAILS CHAPTER 5

The loss function we employed is the MSE (see Equation (3.1)). The train-
ing of the network then corresponds to finding the network weights which
minimize the loss by using the Adam optimizer [104]. The batch size is set to
256, and this size is also used for calculating the SNIP value when we prepare
the predictor inputs. Similar to Section 5.3.1, we apply early-stopping to the
training of the Transformer as well; network training stops early if the opti-
mizer fails to improve the validation loss within a given patience; otherwise,
the training continues until the pre-defined maximum number of epochs is
reached. The value of patience is 10. We train each network for at most
100 epochs on the FD001 and FD003, and 200 epochs on the FD002 and
FD004. The reason for setting a larger value for the latter two sub-datasets
is that they have a greater number of training samples than the former two.
Thus, on FD002 and FD004, relatively more training epochs are required for
allowing the learning curve to reach a plateau.

We apply a learning-rate decay in conjunction with the early-stopping
mechanism; the learning-rate starts with a value of 10-5, and it is then multi-
plied by the constant 0.9 for every 10 epoch. This contributes to suppressing
the fluctuation of the validation loss curve, so that we can avoid misleading
observations given by those fluctuations.

5.3.3 Training details for the 1-D CNN

As shown in Figure 4.3, the 1D-CNN requires time-windowed data as an
input to apply 1-D convolution in the temporal direction; we apply a time
window of length 50 and stride 50 so that the given multivariate time series
consisting of the 20 signals in the N-CMAPSS dataset is divided into input
samples, with each sample of size 50× 20.

For training, we use stochastic gradient descent (SGD). In particular,
AMSgrad [104] is used as an optimizer after initializing weights with the
Xavier initializer. We set the initial learning-rate to 10-4 and divide it

66

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

by 10 after 20 epochs, following our previous observations on the effect of
learning-rate decay [12]. The size of the mini-batch for the SGD is set to 512.
This size is also used for defining a mini-batch for the zero-cost proxy, also
called architecture score, introduced in Section 3.3.3. We randomly choose
512 samples from Dv, and use it as the mini-batch X. In this regard, the ab-
lation study in [80] verified that the choice of the mini-batch has little impact
on the architecture score trend over different network architectures.

5.4 Experimental results

5.4.1 Evolutionary NAS on DL models

Multi-head CNN-LSTM

One of the evolutionary NAS approaches introduced in Section 3.4, the
ENAS-PdM, aims to optimize the architecture of the multi-head CNN-LSTM
that has been manually designed in our previous work [68], so that we can
improve the RUL prediction accuracy when we deploy the multi-head CNN-
LSTM as a RUL prediction tool.

We organize the experiments in the following way to verify if the model
found by ENAS-PdM on a certain sub-dataset also provides promising results
on the others; we choose one sub-dataset and run the evolutionary search
using the sub-dataset to obtain an architecture optimized on it, then the
found architecture is tested on the other three sub-datasets as well as the
sub-dataset used for the search.

The fitness function used in the experiments discussed in this section is
validation RMSE. In the full experiments reported in the paper [12], we have
used not only the validation RMSE but the s-score as our fitness function to
verify if choosing one of the two different metrics as the fitness function affects
the test results; the experimental results have shown that the optimized

67

5.4. EXPERIMENTAL RESULTS CHAPTER 5

networks based on the validation RMSE yield better test results. Therefore,
in the rest of this section, we present the experimental results taking the
RMSE as the fitness function.

Due to the non-deterministic GPU operations discussed in Section 5.3.1,
we run ENAS-PdM three times on each sub-dataset under exactly the same
settings to show the reliability of the optimization process. Eventually, we
collect the best architectures discovered by ENAS-PdM on the four sub-
datasets at the end of the 12 total runs. As shown in Table 5.3, the per-
formance of the network having the best architecture given by ENAS-PdM
is evaluated on all the sub-datasets in terms of the test RMSE and s-score,
regardless of which sub-dataset was used for the optimization conducted by
our EA.

Regarding the parametrization of the EA, as discussed earlier for all the
experiments we set both the population size and the number of generations
to 50 (i.e., npop = ngen = 50), which allows enough evaluations to ensure the
convergence of fitness across generations. Using the same fixed values for all
the experiments also allows us to compare the results fairly by running each
ENAS-PdM under the same evolutionary process. We also count the number
of evaluations across the EA runs to measure the saved computational costs of
ENAS-PdM. As can be seen in Table 5.5, while a total of 2500 individuals (50
individuals × 50 generations) should be evaluated during the evolutionary
search, we only compute less than 900 individuals on average, by saving
and reusing the fitness based on the so-called history mechanism explained
in Section 3.4. Therefore, the number of fitness evaluations is less than
40% of the total number of individuals appeared in the evolutionary process.
Moreover, we can observe that our approaches find good solutions while
evaluating less than 4.3% of the 20400 possible combinations described in
Table 3.1.

Table 5.3 provides the test results of the best architecture found by every

68

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

Table 5.3: Results of the best architectures found by ENAS-PdM in terms of test RMSE
and s-score performance on the CMAPSS dataset. The mean and standard deviation
(SD) of the performance values in each column is selected for comparison to the state-of-
the-art methods in Tables 5.7 and 5.8.

Used sub-
dataset for EA

EA runs
RMSE s-score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

FD001
1st run 11.48 17.47 12.48 20.59 240 2074 412 3592
2nd run 11.54 17.79 12.10 20.93 250 2260 234 3908
3rd run 11.71 17.55 12.88 20.38 254 1695 564 3395

FD002
1st run 12.01 17.76 13.24 19.73 263 5158 926 3004
2nd run 12.55 18.20 12.81 20.46 292 5740 425 4027
3rd run 12.57 18.48 11.68 21.40 302 7124 241 5163

FD003
1st run 12.16 17.83 12.82 20.53 280 1766 498 4062
2nd run 13.06 18.85 14.11 20.78 295 6610 1053 4085
3rd run 11.76 17.84 12.64 20.58 271 2641 408 3613

FD004
1st run 11.39 17.69 13.74 20.02 224 5170 1028 2897
2nd run 12.49 17.70 13.76 18.97 246 4052 834 2712
3rd run 11.39 17.69 13.74 20.02 224 5170 1028 2897

Table 5.4: Specifications of the multi-head CNN-LSTM architectures discovered by ENAS-
PdM and their performance in terms of the sum of test RMSE and s-score.

Used sub-
dataset for EA

EA runs
Phenotype
(lw, m, lf , C, L1 · 20, L2 · 20)

RMSE
(sum)

s-score
(sum)

FD001
1st run (2, 3, 2, 1, 400, 260) 62.02 6318
2nd run (2, 3, 2, 1, 400, 240) 62.36 6652
3rd run (2, 5, 2, 1, 300, 240) 62.52 5908

FD002
1st run (1, 9, 1, 1, 160, 140) 62.74 9351
2nd run (1, 8, 1, 1, 260, 260) 64.02 10484
3rd run (1, 7, 1, 1, 320, 260) 64.13 12830

FD003
1st run (2, 4, 2, 1, 260, 240) 63.34 6606
2nd run (2, 3, 2, 2, 280, 240) 66.80 12043
3rd run (2, 3, 2, 1, 360, 300) 62.82 6933

FD004
1st run (2, 10, 2, 2, 100, 100) 62.84 9319
2nd run (1, 9, 1, 2, 80, 80) 62.92 7844
3rd run (2, 10, 2, 2, 100, 100) 62.84 9319

independent run of ENAS-PdM using the validation RMSE as the fitness
function. The specification of the multi-head CNN-LSTM architectures (i.e.,
Phenotype) is clarified in Table 5.4. For the three independent runs on each

69

5.4. EXPERIMENTAL RESULTS CHAPTER 5

Table 5.5: Average number of evaluations across 3 independent ENAS-PdM runs.
Sub-datasets FD001 FD002 FD003 FD004

Number of evaluations
(avg. across 3 independent GA runs)

869/2500 830/2500 837/2500 656/2500

sub-dataset, we indeed get three different architectures. Although the archi-
tectures are different, their performance is similar. Moreover, an architecture
optimized for one sub-dataset also provides promising results on the others.
This reveals that the solutions based on a certain sub-dataset can be gener-
alized to other sub-datasets.

Thus, the proposed method predicting RUL involves all 12 networks hav-
ing the best architectures found by the 12 independent GA runs. The per-
formance of the proposed method is then calculated as mean ± standard
deviation (SD) across 12 independent runs of the evolutionary search, re-
gardless of the sub-dataset used for the EA. Namely, for each sub-dataset,
the mean and SD of the 12 performance values shown in Table 5.3 are eventu-
ally considered as the results of our proposed method and compared against
the state-of-the-art.

Tables 5.7 and 5.8 display the compared methods and their results in
terms of the test RMSE and s-score respectively. The methods in the tables
are reported in chronological order of publication. In the tables, the second
last row shows the final results of the proposed method; the mean and SD of
the values in each column of Table 5.3

The first method (CNN) [44] is a conventional Feed-Forward NN with two
convolutional layers. The following two rows prove that standard LSTM [48]

and Bi-directional LSTM (BiLSTM) [48] outperform the CNN. The next
method, DCNN [99], provides lower RMSE w.r.t. the methods using LSTM.
The next six methods have been proposed more recently. In [105], a RNN-
based deep architecture is used for RUL prediction under a semi-supervised

70

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

Table 5.6: Specification of the best architectures found in each of the 5 EA runs, in
conjunction with their test RMSE and s-score performance. For each sub-dataset, the
mean and SD of the performance reported in the table are selected for comparison to the
state-of-the-art methods in Tables 5.7 and 5.8.

Used sub-
dataset for
EA & test

EA runs

Phenotype (Transformer architecture) Performance
dmodel dk dv dffs dfft dffd hs ht hd Nenc Ndec RMSE s-score
[24, 100] [24, 100] [24, 100] [24, 100] [24, 100] [24, 100] [1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

FD001

1st run 92 24 84 84 24 80 16 4 14 3 3 11.50 202

2nd run 100 92 88 88 52 80 15 2 6 3 3 11.89 230

3rd run 100 92 88 24 36 72 10 15 16 3 3 11.41 193

4th run 100 48 72 40 32 60 14 10 16 3 3 11.76 236

5th run 88 28 92 40 44 68 14 5 9 3 3 11.60 217

FD002

1st run 96 64 52 96 92 68 6 16 11 2 2 16.14 1131

2nd run 100 84 28 76 100 88 3 11 8 3 3 15.42 997

3rd run 92 100 28 24 80 44 8 11 12 2 3 16.26 1233

4th run 92 96 28 32 92 24 1 16 3 3 1 16.35 1163

5th run 100 92 56 68 48 72 12 4 13 2 3 15.80 1145

FD003

1st run 92 84 92 32 45 40 8 2 15 3 1 11.35 227

2nd run 100 100 52 64 32 68 16 13 16 2 1 11.31 226

3rd run 88 84 68 80 44 56 14 2 15 2 2 11.15 230

4th run 96 96 92 52 48 60 16 4 11 3 3 11.39 218

5th run 88 52 92 60 88 72 12 12 12 3 3 11.57 241

FD004

1st run 84 76 92 92 96 40 2 10 15 3 1 20.00 2298

2nd run 96 68 60 100 76 96 2 8 16 3 1 19.85 3038

3rd run 100 76 100 40 32 60 1 16 14 3 3 20.18 2602

4th run 100 80 24 56 84 56 3 16 5 3 2 20.70 3109

5th run 92 100 28 76 68 40 5 11 16 3 3 20.03 2315

setup, and a GA approach is used to tune its training hyper-parameters,
rather than its architecture. The directed acyclic graph (DAG) network [56]

is a variant of the CNN-LSTM architecture which employs a parallel path
of CNN and LSTM to extract features. The following method is our pre-
vious work [68], which uses a handcrafted multi-head CNN-LSTM. Then, the
DCNN with adaptive batch normalization (AdaBN) [106] achieves the lowest
values in both metrics compared to the previous methods. The method based
on an RNN autoencoder scheme [58] constructs health index curves showing
degradation to predict RUL, using a bidirectional RNN-based autoencoder

71

5.4. EXPERIMENTAL RESULTS CHAPTER 5

Table 5.7: Comparison of RUL prediction performance of the networks found by the
evolutionary NAS with state-of-the-art methods (sorted by year), in terms of test RMSE.

Method
RMSE

FD001 FD002 FD003 FD004 Sum

CNN, 2016 [44] 18.45 30.29 19.82 29.16 97.72
LSTM, 2017 [48] 16.14 24.49 16.18 28.17 84.98
BiLSTM, 2018 [48] 13.65 23.18 13.74 24.86 75.43
DCNN, 2018 [99] 12.61 22.36 12.64 23.31 70.92
Semi-supervised DL, 2019 [105] 12.56 22.73 12.10 22.66 70.05
DAG network, 2019 [56] 11.96 20.34 12.46 22.43 67.09
Multi-head CNN-LSTM, 2020 [68] 13.27 19.49 13.21 23.89 69.86
AdaBN-DCNN, 2020 [106] 11.94 19.29 12.31 22.14 65.68
RNN+AE, 2020 [58] 13.58 19.59 19.16 22.15 74.48
AGCNN, 2020 [59] 12.42 19.43 13.39 21.50 66.74
ENAS-PdM on Multi-head CNN-LSTM, 2021 [12] 11.96±0.59 17.94±0.40 13.01±0.73 20.36±0.62 63.27
CNN+attention, 2021 [107] 11.48 17.25 12.31 20.58 61.62
Surrogate-assisted EA on Transformer, 2023 [13] 11.63±0.19 15.99±0.38 11.35±0.15 20.15±0.32 59.12

Table 5.8: Comparison of RUL prediction performance of the networks found by the
evolutionary NAS with state-of-the-art methods (sorted by year), in terms of s-score.

Methods
s-score

FD001 FD002 FD003 FD004 Sum

CNN, 2016 [44] 1290 13600 1600 7890 24380
LSTM, 2017 [48] 338 4450 852 5550 11190
BiLSTM, 2018 [48] 295 4130 317 5430 10172
DCNN, 2018 [99] 274 10400 284 12500 23458
Semi-supervised DL, 2019 [105] 231 3370 251 2840 6692
DAG network, 2019 [56] 229 2730 553 3370 6882
Multi-head CNN-LSTM, 2020 [68] 330 2880 401 6520 10131
AdaBN-DCNN, 2020 [106] 220 2250 260 3630 6360
RNN+AE, 2020 [58] 228 2650 1727 2901 7506
AGCNN, 2020 [59] 225 1492 227 3392 5336
ENAS-PdM on Multi-head CNN-LSTM, 2021 [12] 262±27 4120±1143 637±280 3612±696 8613
CNN+attention, 2021 [107] 198 1144 251 2072 3665
Surrogate-assisted EA on Transformer, 2023 [13] 215±18 1133±85 228±8 2672±386 4248

scheme as a feature extractor. The AGCNN [59] is a custom encoder-decoder
architecture in which the encoder is made up of a bidirectional RNN and a
CNN.

The row directly below them presents the experimental results obtained
with our proposed method. Of note, by using ENAS-PdM the automatically

72

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

discovered architectures give significantly better results w.r.t. those that we
handcrafted in [68]. Regarding the s-score performance, the proposed method
does not offer outstanding results compared with the recent methods, but
we can verify that the architecture optimization with ENAS-PdM improves
RUL prediction performance in terms of the sum of s-score, compared to
manually designing the network [68]. Most importantly, the proposed method
outperforms any other DL-based method developed manually by human ex-
perts in terms of the test RMSE, except for the methods employing attention
mechanisms that have been proposed after our proposal. Hence, our results
considerably advance the state-of-the-art RUL predictions in terms of the
test RMSE.

Transformers

Our experiments aim to find the optimal Transformer architectures from the
search space specified in Section 3.1.2 using the surrogate-assisted evolution-
ary search proposed in Section 3.4 and to numerically evaluate the quality of
the discovered solutions by calculating the two metrics defined in Section 5.2
on the test set Dtest after training. Furthermore, we perform a comparative
analysis contrasting the results from the proposed GA with the state of the
art. Note that the experimental results presented below are reported in our
journal paper [13].

The experiments begin by initializing the model-based performance pre-
dictor described in Section 3.3.4. The budget used to initialize the predictor,
m, is determined as 100, i.e., we sample 100 different architectures by LHS,
and those networks are fully trained on Dw (see Section 3.2) to observe the
validation RMSE on Dv. After the observations, we train the predictor to
minimize the error of the regression model output. We set m to a small value
compared with the search space size, considering the following reasons: 1)
as our predictor, we employ NGBoost, a probabilistic regression that per-

73

5.4. EXPERIMENTAL RESULTS CHAPTER 5

forms well with relatively small datasets [82]; and 2) for each generation, the
predictor is updated with few samples which are expected to have better
fitness.

After the initialization, we execute the proposed algorithm for a maximum
number of generations ngen of 10 with a population size npop of 1000. In the
fitness evaluation step for each generation, we retrain at most only 1% of the
population, i.e., the number of elites, k, is set to 10. Therefore, in each evolu-
tionary run, the maximum possible number of network training processes is
100 over 10 generations, but we observed that the actual number of training
processes conducted in our experiments were 61, 81, 77 and 73, respectively
for each sub-dataset, thanks to the history that enables to reuse the fitness
values observed in the previous generations. Thus, for each evolutionary run,
we merely need to train at most 200 networks (100 for the initialization and
100 for the updates) out of approximately 2.36 × 1012 possible networks in
the search space. When it comes to the definition of the observation history,
as discussed before, this is an archive of all the solutions found during the
search.

Before comparing our results to the state of the art, we compare the qual-
ity of the solutions obtained from a single run of the algorithm with LHS
solutions to demonstrate the advantage of our algorithm; we define the solu-
tions obtained by the proposed algorithm as the 10 best networks (in terms
of fitness) from the history in a single run of evolutionary search. Those are
then compared against the LHS solutions that are the 10 best LHS sam-
ples out of 100 in terms of the validation RMSE, so that we make a fair
comparison with our approach by considering the same number of solutions.
These comparisons are depicted in the box plots shown in Figures 5.2 to 5.5,
respectively for each of the four CMAPSS sub-datasets. The statistical dif-
ference between the two solution sets is assessed based on the Mann-Whitney
U (MWU) test [108]. For each pairwise comparison, we compute the statistical

74

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

significance and add a statistical annotation w.r.t. the MWU test p-value
obtained on the two corresponding box plots.

Regarding the validation RMSE, which is the objective of our optimiza-
tion algorithm, the proposed method has statistically better performances
compared to LHS, except for FD002 where the difference is not significant
(“ns”). In particular, the p-values obtained on FD001 and FD003 are lower
than 0.01, showing that the results we obtained are significantly better than
LHS. On FD002, even though the difference is not significant, Figure 5.3
graphically demonstrates that the improvement is non-trivial; instead, the
difference for FD004 is significant, but as Figure 5.5 reveals, it has a higher
p-value than the one obtained for FD001 and FD003.

LHS EA + predictor
Methods

11.2

11.4

11.6

11.8

12.0

Va
lid

at
io

n
R

M
SE

LHS EA + predictor
Methods

11.6

11.8

12.0

12.2

12.4

12.6

12.8

13.0

Te
st

 R
M

SE

ns

Validation RMSE Test RMSE

Figure 5.2: Box plots of the quality of solutions found by LHS and by the surrogate-
assisted ENAS for Transformers on FD001.

The proposed GA and the LHS are also evaluated on the test set Dtest.
This performance comparison appears on the right side of Figures 5.2 to 5.5.
We can observe that our method is better compared to LHS, in terms of
test RMSE, i.e., the best solution obtained by the proposed algorithm can
always provide at least one solution with lower test RMSE than any of the
LHS solutions. Nevertheless, the performance differences between the 10

75

5.4. EXPERIMENTAL RESULTS CHAPTER 5

LHS EA + predictor
Methods

16.25

16.50

16.75

17.00

17.25

17.50

17.75

18.00

Va
lid

at
io

n
R

M
SE

ns

LHS EA + predictor
Methods

16

17

18

19

20

Te
st

 R
M

SE

ns

Validation RMSE Test RMSE

Figure 5.3: Box plots of the quality of solutions given by LHS and by the surrogate-
assisted ENAS for Transformers, on FD002.

LHS EA + predictor
Methods

9.7

9.8

9.9

10.0

10.1

10.2

10.3

10.4

Va
lid

at
io

n
R

M
SE

**

LHS EA + predictor
Methods

10.75

11.00

11.25

11.50

11.75

12.00

12.25

12.50

Te
st

 R
M

SE

ns

Validation RMSE Test RMSE

Figure 5.4: Box plots of the quality of solutions given by LHS and by the surrogate-
assisted ENAS for Transformers, on FD003.

solutions found by the two methods are not statistically significant.
After the demonstration based on a single run of the EA, we perform 4 ad-

ditional runs and take one best solution for each run (5 independent runs and
5 solutions in total). By considering multiple runs, we can enhance the relia-
bility of the experimental results in terms of performance when our numerical
results are compared to the results of other existing works. Specifically, for

76

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

LHS EA + predictor
Methods

17.25
17.50
17.75
18.00
18.25
18.50
18.75
19.00
19.25

Va
lid

at
io

n
R

M
SE

*

LHS EA + predictor
Methods

19

20

21

22

23

Te
st

 R
M

SE

ns

Validation RMSE Test RMSE

Figure 5.5: Box plots of the quality of solutions given by LHS and by the surrogate-
assisted ENAS for Transformers, on FD004.

each sub-dataset, we execute 5 independent runs of the GA initialized with
different random seeds and take the best (in terms of fitness) architecture
along with its performance for each run. Table 5.6 describes all the obtained
solutions and their performance on the four sub-datasets respectively. For
each sub-dataset, The performance of the proposed method is then calculated
as the mean and SD of the 5 performance values in terms of the test RMSE
and s-score. Those final results of the comparative analysis are reported in
Tables 5.7 and 5.8; for each method, the results on each sub-dataset are inde-
pendent. The last column of each table contains the sum of the results across
the four sub-datasets, to obtain an aggregate measure of the robustness of
the compared methods.

The first 11 methods in the tables, from the CNN [44] to our ENAS-PdM [12],
are already described in the above, the first half of Section 5.4.1. The latest
compared method [107] applies an attention mechanism on top of the features
extracted by four convolutional layers.

Compared to the other works described above, developing our method
requires less knowledge and effort from human experts, because our method

77

5.4. EXPERIMENTAL RESULTS CHAPTER 5

automatically discovers optimal architectures for RUL prediction. In the
resulting tables, each last row reports the experimental results obtained by
the best solutions found with our method. With regards to the sum of test
RMSE values, the proposed method outperforms the compared methods,
which have all been manually developed by human experts. Even compared
to ENAS-PdM [12] which is proposed in our previous work that also uses
evolutionary NAS, the proposed method [13] gives better results. Moreover,
on FD002 and FD003, the RMSE results given by our proposal noticeably
advance the state-of-the-art. In terms of s-score, while the proposed method
does not clearly outperform state-of-the-art algorithms, its test values are
comparable to the best scores in the table. The outstanding performance
of our model can be highlighted when we consider the RMSE results rather
than the s-score results. Overall, although our RUL prediction model tends
to provide somewhat “optimistic” predictions (see Section 5.2), it is a reliable
RUL prediction tool considering its outstanding prediction accuracy.

5.4.2 MOO of neural architectures

ELM

Our experiments aim to achieve the MOO of the ELM on the N-CMAPSS
dataset by applying the MOO algorithm introduced in Section 4.2 where the
multiple objectives are the RUL prediction error and the number of train-
able parameters, and we numerically evaluate the quality of the discovered
solutions by comparing them with the different methods explained below,
in terms of the test RMSE on Dtest of the N-CMAPSS and the number of
trainable parameters.

To demonstrate the advantage of the MOO of the ELM, we consider two
different scenarios in terms of SOO, which we refer to respectively as SOO-
ELM(1) and SOO-ELM(2). The ELMs obtained by the SOO approaches are

78

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

then compared with the proposed method. In the first case, SOO-ELM(1),
we find the solutions by solving an SOO optimization problem where the
objective function is validation RMSE, i.e., it aims at minimizing simply the
RUL prediction error. The limitation of this approach is that the size of the
discovered ELM tends to be very large in order to decrease the validation
RMSE. In other words, ntanh and nsigm specified in Table 4.1 tend to converge
to their upper bounds throughout the evolutionary process.

To overcome this limitation, we consider a second SOO approach, SOO-
ELM(2), in which the fitness formulation includes the number of trainable
parameters of the ELM. This conventional approach aims to solve the multi-
objective problem as a single-objective problem by considering scalarization
which combines the two different objectives, the validation RMSE and the
number of trainable parameters (denoted by RMSEval and L respectively)
in our case, into one linear function; here, the scalarization function is a
weighted sum of the objectives: RMSEval+τL, where τ is a constant weight.
This way, we can prevent the survival of unnecessarily large ELMs, which
are the solutions of the first approach, by penalizing their fitness with τL.

Minimizing RMSEval and L are conflicting objectives in the architec-
ture search of the ELMs. While the SOO-ELM(2) approach discussed above
somehow goes in the direction of compromising those two objectives, the best
model still largely depends on a human decision, since it depends on how the
value of τ is parametrized. To tackle this limitation, as discussed in Sec-
tion 4.2, we propose to use a MOO algorithm, NSGA-II, to search explicitly
for a set of trade-off ELMs. We refer to this method as MOO-ELM.

In all three approaches, the fitness of each individual is calculated by gen-
erating an ELM (the phenotype) associated to the corresponding genotype,
i.e., a vector containing the three parameters introduced in Section 4.1.1. In
particular, the validation RMSE of its phenotype is evaluated on Dv, after
training it on Dw.

79

5.4. EXPERIMENTAL RESULTS CHAPTER 5

Regarding the experiments of MOO-ELM, we execute 10 independent runs
with different random seeds to improve the reliability of the results from the
GA-based methods by considering different initial population. npop and ngen

are set to 28 and 30 respectively. Note that, as discussed in the paper [14],
we observed a gradual improvement across the generations of MOO-ELM
and verified that the algorithm explores the search space enough within 30

generations. For each MOO-ELM run, the evolutionary search returns a
subset of the trade-off solutions that have the top dominance level (i.e., the
method returns a Pareto front) after the fixed number of generations.

To compare the results obtained by the different methods under study,
we aggregate the 10 independent runs in the following way: in the case of
the two SOO-ELM approaches, each run returns a single solution that has
the best fitness during evolution. The aggregation is then simply the mean
of the test RMSE of the 10 best individuals. On the other hand, each run
of NSGA-II returns a number of solutions on the final Pareto front. In our
case, we collected 417 non-dominated solutions across the 10 runs. For the
sake of comparison, instead of using all of them, we select a fraction of the
solutions based on their density in the fitness space, as described in Figure 5.6.
Specifically, for further analysis, the fitness space is discretized in 20 × 20

bins. The bin highlighted in yellow is the one with the highest density of
solutions. When we do not have any preference for a certain objective, this
strategy can be used to derive a subset of the solutions which are implicitly
“preferred” by the MOO algorithm. As shown in Figure 5.6, we first place
all the solutions from the 10 runs in the fitness space, which is discretized in
equally-spaced bins. The density of the solutions can then be measured by
counting the number of solutions lying in each bin. As a result, we choose
the 28 solutions from the bin with the highest density and use the average
of their test RMSE as the final result for MOO-ELM, shown in Table 5.9.

In addition, we compare the solutions obtained by the above three GA-

80

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

based approaches with BPNNs: a MLP and a CNN whose architectures
were manually designed in [98]. The architecture of the considered MLP has
four hidden layers, and the CNN is made up of three convolutional layers
followed by a fully connected layer. Further details about the architectures
of the BPNNs and their training are specified in our paper [14]. Of note, a
simple feed-forward neural network (the MLP) and a 1-D CNN are still used
as state-of-the-art neural networks on the N-CMAPSS dataset, considering
the great amount of data (in the order of millions of samples) obtained from
real flight conditions.

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0
.0

1
0
.5

Validation RMSE

0

400

800

1200

1600

2000

2400

2800

3200

3600

Tr
a
in

a
b
le

 p
a
ra

m
e
te

rs

Figure 5.6: Trade-off between validation
RMSE and number of trainable parame-
ters at the last generation for the 10 inde-
pendent runs of the proposed MOO-ELM
approach (aggregate results across runs by
discretizing fitness space).

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0
.0

Test RMSE

0

1000

2000

3000

4000

5000

6000

Tr
a
in

a
b
le

 p
a
ra

m
e
te

rs
104

105

Figure 5.7: Trade-off between test RMSE
and number of trainable parameters for
the methods considered in the experimen-
tation. For the results of ELM we report
the result of each of the 10 available runs,
and their average.

The comparative results of all the considered methods are presented in Ta-
ble 5.9 and visualized in Figure 5.7. It can be seen that MOO-ELM achieves
comparable results to state-of-the-art MLP and CNN models designed by

81

5.4. EXPERIMENTAL RESULTS CHAPTER 5

human experts [98]. For MLP and CNN, we report only one value related to
one single run (since their computations are deterministic). Note that the
impact of the random initialization of the weights in NNs is not examined in
our experiments (i.e., we assume that each architecture yields deterministic
performance after its training), while we take into account 10 different ran-
dom seeds for our evolutionary search. Each run of the GA with a different
random seed produces indeed a different set of solutions. Therefore, having
multiple runs of the proposed evolutionary algorithm allows us to verify its
robustness over different random seeds.

For the proposed methods, SOO-ELM(1), SOO-ELM(2), and MOO-ELM,
we report mean ± SD obtained across 10 independent runs. The boldface
indicates the best result in each column. As mentioned earlier, within the
scope of data-driven methods, those deep networks offer indeed state-of-the-
art RUL predictions (in terms of test RMSE) on the N-CMAPSS dataset.
However, the MLP contains a huge amount of trainable parameters through-
out four stacked layers, and training those parameters with an iterative ap-
proach requires more than 18 minutes. The CNN shows better prediction
accuracy with a lower number of parameters by leveraging parameter shar-
ing, but the training time of this DL architecture is almost twice as big as
that of the MLP. Note that the test RMSE values of the BPNNs in Table 5.9
are different from those reported in [98], which are based on an early version
of DS02 that has a lower noise level on the sensor readings and a sampling
rate of 0.1Hz (instead of 1Hz).

On the contrary, all the optimized ELMs have a considerably smaller num-
ber of trainable parameters, which reflects a much shorter (up to 2 orders
of magnitude) training time. The architecture discovered by SOO-ELM(1)
tends to have almost the maximum available number of hidden neurons be-
cause it simply uses the validation RMSE as the fitness for its evolutionary
search. Yet, in this case, the ELM does not suffer from overfitting and its per-

82

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

Table 5.9: Summary of the comparative results analysis of the ELM optimized by the GA
with handcrafted BPNNs.

Methods Architecture
Test

RMSE
(on Dtest)

Trainable
parameters

Training
time (s)

MLP [98] 4 hidden layers 6.79 94,701 1,081

CNN [98] 3 convolutional layers 6.29 5,722 1,969

SOO-ELM(1) [14] - 7.27±0.05 3,405±202 337±49

SOO-ELM(2) [14] - 7.21±0.04 1,859±207 110±22

MOO-ELM [14] - 7.29±0.07 898±60 55±10

formance does not get worse even if we increase the number of hidden neurons
excessively. In other words, the oversized ELM network can merely achieve a
negligible improvement but requires unnecessarily large computational costs
for training the redundant parameters. The SOO-ELM(2) approach, on the
other hand, penalizes those oversized ELMs by introducing the penalty fac-
tor. We set the constant weight τ to 10−4, small enough for the penalty not
to dominate the overall fitness. We can see that SOO-ELM(2) successfully
prevents the use of the redundant neurons, so that it can preserve the RUL
prediction accuracy using only almost half the neurons, w.r.t. the previous
method.

Although SOO-ELM(2) uses almost half the neurons and requires less
than two minutes of training time, a proper value of τ must be determined by
empirical considerations. In contrast, MOO-ELM can overcome this prob-
lem using NSGA-II for automatically searching a set of trade-off network
architectures without considering a tunable parameter such as the τ used
before. Compared to SOO-ELM(2), this method achieves almost the same
test RMSE but can further halve the number of trainable parameters. More-
over, it only needs, on average, less than one minute to train the best trade-off
networks.

Finally, the comparative results are visualized in Fig. 5.7, which easily

83

5.4. EXPERIMENTAL RESULTS CHAPTER 5

allows us to compare the performance of the different methods in terms of
the trade-off between the two conflicting objectives. We can observe that the
CNN dominates the MLP. Among the compared algorithms, MOO-ELM ob-
tains the best solutions in terms of the number of trainable parameters (on
average, about 900, i.e., less than 16% compared to the CNN). Moreover,
compared to the CNN, the models discovered by MOO-ELM have an ap-
proximately 97% shorter training time, while their test RMSE is on average
only 16% larger.

CELM

The description in this subsection is based on the paper by Mo et al. [15]

that extends the previous work [14] in which we tackled the data-driven RUL
prediction task by means of the ELM optimization and tested on the N-
CMAPSS. In the extended paper, we test the optimized ELMs by our MOO
algorithm, namely MOO-ELM, on the CMAPSS (i.e., as one of the new con-
tents, we test the idea presented in the previous work [14] on another dataset,
the CMAPSS); in addition, we apply the MOO algorithm to the CELM search
space defined in Section 4.1.2, and the found solutions, the optimized CELMs,
are evaluated on the CMAPSS by comparing their experimental results to
the numerical results reported in the literature using different methods.

As such, the aim of our experiments is to evaluate the optimized ELMs and
CELMs discovered by the proposed methods, where MOO-ELM and MOO-
CELM denote the optimized ELMs and CELMs respectively. To perform a
thorough evaluation, we compare them with traditional BPNNs widely used
in the field of RUL prediction not only in terms of the number of trainable
parameters but also in terms of RUL prediction performance, the latter being
based on the two metrics: RMSE and s-score.

Particularly, for a comparative analysis, we consider three handcrafted
networks that have been tested on the CMAPSS dataset: a MLP [44], CNN [44],

84

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

and LSTM [48]. The architecture of the MLP comprises one hidden layer of
50 neurons. Regarding CNN, the model consists of two pairs of convolutional
layers and pooling layers, followed by a fully-connected layer. The first con-
volutional layer has 8 filters of size 12, while the following convolutional layer
contains 14 filters of size 4. Each pooling layer performs average pooling with
size 1 × 2 to halve the feature length. The feature map is flattened at the
end of the last pooling layer and passed to the fully-connected layer of 50
neurons. Both the MLP and the CNN use a sigmoid as an activation func-
tion. The LSTM has four hidden layers: two stacked LSTM layers and two
fully-connected layers. The number of hidden units in each LSTM is 32, and
the following two fully-connected layers contain 8 neurons in each layer.

Regarding the proposed evolutionary search, npop and ngen are set both
to 20; as discussed in the paper [15], we have empirically found that these
values allow enough evaluations to observe an improvement of the solution
quality across the generations. For each parameter space (i.e., for the ELMs
and CELMs) and each of the four CMAPSS sub-datasets, we execute 10

independent runs of the MOO algorithm with different random seeds. The
multiple runs are considered to enhance the reliability of the results obtained
by the proposed methods based on NSGA-II, and each run of the evolutionary
search returns multiple solutions on the final Pareto front. Here, to perform a
comparative analysis with the other methods we take a subset of the solutions
from the 10 independent runs by using the aggregation method described
in Section 5.4.2. After the aggregation, our MOO-ELM comprises 15, 31,
20 and 30 solutions in the four sub-datasets respectively. In the case of
MOO-CELM, the numbers of selected solutions are 6, 4, 6 and 4. In each
experiment, we calculate the test RMSE, the s-score, and the number of
trainable parameters, for each of the available solutions. Their averages
are then computed as the final results which are compared with the other
methods employing the BPNNs.

85

5.4. EXPERIMENTAL RESULTS CHAPTER 5

Table 5.10: Summary of results analysis of MOO-ELM and MOO-CELM on CMAPSS,
compared with handcrafted BPNNs in terms of test RMSE and number of trainable
parameters.

Method
RMSE Trainable

parameters
FD001 FD002 FD003 FD004

MLP [44] 37.36±0.00 80.03±0.00 37.39±0.00 77.37±0.00 801

CNN [44] 18.45±0.00 30.29±0.00 19.82±0.00 29.16±0.00 6,815

LSTM [48] 16.14±0.00 24.49±0.00 16.18±0.00 28.17±0.00 14,681

MOO-ELM [14] 18.93±0.19 30.46±0.12 20.56±0.15 31.70±0.19 326

MOO-CELM [15] 16.54±0.57 39.98±0.35 17.97±0.80 42.62±0.78 751

Table 5.11: Summary of results analysis of MOO-ELM and MOO-CELM on CMAPSS,
compared with handcrafted BPNNs in terms of s-score and number of trainable parame-
ters.

Method
s-score × (103) Trainable

parameters
FD001 FD002 FD003 FD004

MLP [44] 18.00±0.00 7800.00±0.00 17.40±0.00 5620.00±0.00 801

CNN [44] 1.29±0.00 13.60±0.00 1.60±0.00 7.89±0.00 6,815

LSTM [48] 0.34±0.00 4.45±0.00 0.85±0.00 5.55±0.00 14,681

MOO-ELM [14] 1.12±0.08 14.31±0.41 2.12±0.16 10.63±0.19 326

MOO-CELM [15] 0.46±0.07 64.62±1.90 0.64±0.15 47.12±0.98 751

The comparative results of all the considered methods are presented in
Table 5.10 and Table 5.11. We report the values in terms of mean ± SD
over 10 independent runs for our methods, namely, MOO-ELM and MOO-
CELM, Note that the SD of the trainable parameters is neglected because it
is relatively small. For the remaining methods, we report only one solution
related to one single run since their computations are deterministic.

In terms of test RMSE, our methods are much better than the MLP, since
we can obtain lower RMSE values with a smaller number of trainable param-
eters. Although both the proposed methods and the MLP use hundreds of
parameters, our methods are considerably better in terms of computational

86

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

cost and training time because we apply an extremely fast ELM learning
algorithm while the MLP is trained by BP, which is relatively slow and ex-
pensive. The CNN achieves a much better test RMSE but has an even larger
number of trainable parameters, compared to the MLP. Nevertheless, the
test results of the proposed methods are still fairly comparable to those ob-
tained by the CNN in terms of test RMSE, while our methods achieve these
results by using a much smaller number of trainable parameters as well as
a much faster learning algorithm. In particular, in terms of test RMSE, the
results of MOO-ELM are slightly worse but very close to the results of the
CNN for all four sub-datasets. MOO-CELM outperforms the CNN in terms
of test RMSE on FD001 and FD003, but it does not provide as good results
on the remaining sub-datasets. This implies that MOO-ELM can achieve
a sufficient and stable performance on all the datasets including FD002 and
FD004 that contain the data of six working conditions, while MOO-CELM is
only advantageous for the RUL prediction task on less complicated datasets
such as FD001 and FD003 collected under only one condition.

Additionally, we compare our results to the LSTM; as shown in Table 5.10,
it is the best method in terms of test RMSE, but the number of trainable
parameters in the LSTM is more than two orders of magnitude larger. In
fact, the solutions given by MOO-CELM not only have a clear advantage in
terms of number of trainable parameters but also can produce low prediction
errors, which are comparable to those achieved by the LSTM on the two less
challenging datasets.

Most of this analysis on the test RMSE is also valid for the s-score re-
sults summarized in Table 5.11. When we look at the score values in this
table, those given by MOO-ELM are close to the results of the CNN. More-
over, MOO-CELM achieves the best score among the compared methods on
FD003, as well as a good score (close to the score of the LSTM) on FD001.

Finally, the comparative results are visualized in Figure 5.8, which easily

87

5.4. EXPERIMENTAL RESULTS CHAPTER 5

(a) (b)

(c) (d)

Figure 5.8: Trade-off between test RMSE and number of trainable parameters for the
methods considered in the experimentation. ELM(avg) and Conv. ELM(avg) correspond
to the results by MOO-ELM and MOO-CELM, respectively, reported in Table 5.10: (a)
FD001 dataset; (b) FD002 dataset; (c) FD003 dataset; (d) FD004 dataset.

allows comparing the performance of the different methods in terms of trade-
off between the two conflicting objectives; since the analysis of the score

88

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

results is not much different from that carried out on the RMSE results, in
the figure we only illustrate the results w.r.t. the test RMSE, previously
reported in Table 5.10.

We can observe that none of the BPNNs dominates the others. Among
the BPNNs, the MLP uses a lower number of trainable parameters, while
the LSTM offers the best performance in terms of test RMSE. The CNN is
placed between the MLP and the LSTM for both objectives.

When we compare the two proposed methods with each other, using MOO-
CELM instead of MOO-ELM improves the RUL prediction for less compli-
cated data, as shown in Figure 5.8 (a) and (c), although the number of
trainable parameters slightly increases. In contrast, we find that introduc-
ing randomly generated convolutional filters can disturb the RUL prediction
made by the ELMs on FD002 and FD004.

The proposed methods, MOO-ELM and MOO-CELM, dominate the MLP
for all the datasets except for FD004. In Figure 5.8 (d), the number of
trainable parameters of MOO-CELM is slightly larger than that of the MLP,
but our method is still better in terms of computational cost because it
uses ELM, which is a much more efficient training algorithm compared to
BP. In the two less challenging datasets, FD001 and FD003, the solutions
discovered by MOO-CELM dominate the CNN. The results given by MOO-
ELM show a comparable prediction performance while using a significantly
lower number of trainable parameters, compared to the CNN. Although our
proposed methods cannot outperform the LSTM in terms of test RMSE, they
still can be good RUL prediction tools considering this much smaller number
of trainable parameters and the advantages of ELM training.

1-D CNN

In the rest of this section, driven by the motivation clarified in Section 4.1.3,
we consider a 1-D CNN as our backbone network. More specifically, the

89

5.4. EXPERIMENTAL RESULTS CHAPTER 5

MOO approach proposed in Chapter 4 is proposed to develop RUL prediction
tools used for some industrial contexts that only allow access to resource-
constrained HW devices. As such, it is reasonable to apply our MOO to
the 1-D CNN which shows good performance despite its simple structure
that does not rely on recurrence in the data-driven RUL prediction tasks.
Whereas the speed-up techniques are not necessary for the optimization of
the ELM as discussed above (because of its extremely fast training explained
in Section 4.1.1), those are needed for accelerating the evolutionary NAS that
explores the combinatorial parameter space of the 1-D CNN described in Ta-
ble 4.3. The evolutionary NAS is computationally expensive because each
individual (i.e., candidate 1-D CNN architecture) should tune its parame-
ters iteratively with gradient-based computations until convergence, before
being evaluated on the validation data. The goal is to shorten the lengthy
training process (and, as a consequence, the total time of the evolutionary
search). Particularly, two of the fitness prediction strategies explained in
Section 3.3, learning curve extrapolation (Section 3.3.2) and zero-cost proxy
(Section 3.3.3), are selected as the speed-up techniques for accelerating our
multi-objective GA; the former facilitates the evaluation of each network
with training for a reduced number of epochs, and the latter improves the
efficiency of evaluations by not training at all.

Our experiments aim to verify that applying the speed-up techniques can
meaningfully reduce the runtime of our multi-objective evolutionary search
without compromising the quality of the solutions. In detail, first, we gen-
erate 20 individuals (i.e., 1-D CNNs) randomly. Then, the multi-objective
evolutionary process starts from the initial population. In our experiments,
we set the maximum number of epochs nm to 30, based on our previous
works [12,14,68]. If we terminate the training too early (i.e., after less than half
nm), then the predicted value may be too small because the learning curve
shows no sign of convergence. On the other hand, using too many training

90

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

epochs (close to nm) would reduce any benefit of this speed-up technique.
For these reasons, nt is set to half nm, i.e., 15. To perform a comparative
analysis, we consider 5 different configurations differentiated by the way they
define the fitness, denoted by fitnessRMSE: 1) using the architecture score,
without training any networks; 2) using the validation RMSE, after training
for 30 epochs; 3) using the validation RMSE, but training only for 15 epochs;
4) using the predicted validation RMSE at 30 epochs based on learning curve
extrapolation, after training for 15 epochs; 5) using the architecture score if
the network contains less than 5×104 trainable parameters, and the predicted
validation RMSE with learning curve extrapolation otherwise.

The last configuration corresponds to our proposed method. We determine
the decision threshold value to be 5×104 by analyzing the correlation between
the number of trainable parameters and the architecture score. In Figure 5.9,

2 3 4 5 6 7
Trainable parameters × (104)

4

6

8

10

Ar
ch

ite
ct

ur
e

sc
or

e

seed 0
seed 1
seed 2
seed 3
seed 4

Figure 5.9: Architecture score vs. num-
ber of trainable parameters on 100 ran-
domly generated networks (20 for each
seed). The dash-dotted line indicates
the decision threshold.

1 2 3 4 5 6 7 8 9 10
Generations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
hy

pe
rv

ol
um

e

seed 0
seed 1
seed 2
seed 3
seed 4
Mean
Std

Figure 5.10: Normalized validation HV
across generations (mean ± standard de-
viation across 5 independent runs) for
the evolutionary runs of the proposed
NAS for MOO.

91

5.4. EXPERIMENTAL RESULTS CHAPTER 5

Table 5.12: Summary of the comparative results analysis of the 1-D CNNs optimized by
the MOO for 5 different NAS configurations w.r.t. fitnessRMSE.

Methods (w.r.t. fitnessRMSE)
Test HV GA runtime

(avg.±std.) (GPU hours)

Initial population (without GA) 71.28± 0.95 -
Architecture score 70.26± 0.70 0.03± 0.01

Training 30 epochs 75.40± 0.55 4.96± 0.51

Training 15 epochs 72.94± 1.20 2.59± 0.30

Training 15 epochs + Extrapolation 73.81± 0.89 2.53± 0.15

Architecture score + Extrapolation 73.11± 0.58 1.23± 0.09

we can observe a negative correlation below the decision threshold. The
difference in the architecture score for the range between 4 and 5 (×104) on
the horizontal axis is negligible, but we take a large threshold value so that
we can apply the architecture score based evaluation to as many networks as
possible, because our major concern is to speed up the evolutionary search.

Here, we should note that the two different proposed surrogate mech-
anisms, i.e., the architecture score and the validation RMSE predicted by
means of learning curve extrapolation, provide evaluation metrics that are
obviously in different ranges. In order to use the score as a fitness value
(from the GA perspective), we proceed as follows. For all the individuals
in the initial population, we calculate both the architecture score and the
actual validation RMSE value. Then, we fit a cubic function to these values,
by means of least squares minimization, as explained in Section 3.3.2. This
fitted curve is then used to convert, for any new network, the architecture
score to the corresponding best-fit validation RMSE value. This mechanism
is meant to prevent any potential bias in the relative comparison of architec-
tures evaluated by means of different metrics.

We execute 5 independent runs with different random seeds to improve the

92

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

reliability of the results. While searching for the solutions, we consider the
validation HV, which is calculated on the fitness space defined by the valida-
tion RMSE and the number of trainable parameters; we collect the validation
HV across 10 generations, and normalize it to [0, 1] by min-max normaliza-
tion. The monotonic increase of the mean of the normalized validation HV in
Figure 5.10 indicates that the GA keeps finding new non-dominated solutions
across the generations.

After finding the solutions, our result analysis is based on the test RMSE,
which is evaluated as a posteriori. Therefore, the HV in the rest of this paper
is calculated on the space defined by the test RMSE and the number of train-
able parameters. Figure 5.11 shows the results of our experiments. In the
figure, we present the HV values w.r.t. 5 different configurations: 30 training
epochs (“Tr.30ep”); the combination of the architecture score and the learning
curve extrapolation for (“A.score+extpl.”); the learning curve extrapolation
after 15 training epochs (“Tr.15ep+extpl.”); 15 training epochs without ex-
trapolation (“Tr.15ep”); merely using the architecture score (“A.score”). Each
HV is calculated on the space shown in the figure which is defined by the test
RMSE and the number of trainable parameters, and its value indicates the
size of the space covered by the solutions of the corresponding configuration,
with the reference point (13, 13) which is a reference point in HV calculation.
Each figure shows the solutions found in 5 independent runs. The results of
the handcrafted CNN, used as a baseline, are taken from [98].

Table 5.12 describes the summary of the comparative analysis; the HV is
an avg.±std. of the values in Figure 5.11 that are based on the test RMSE
and the number of trainable parameters. The boldface indicates the proposed
method, which includes both architecture score and learning curve extrap-
olation. It gives the shortest GA runtime of all the methods that achieve
better results than randomly generated solutions. In the result analysis, we
assess how the speed-up techniques affect the GA in terms of two metrics: 1)

93

5.4. EXPERIMENTAL RESULTS CHAPTER 5

the quality of the solutions, represented by the HV, and 2) the GA runtime,
in GPU hours.

It is obvious that the solutions based on the full training NAS are always
the best in terms of HV, but it takes a rather long time (about 5 hours) to
obtain them. When we merely use the architecture score without training,
the NAS fails to find better solutions w.r.t. the initial population, because, as
said, this approach alone cannot distinguish complex networks with a larger
number of trainable parameters. If we terminate the training after 15 epochs,
the obtained solutions are still better than the initial populations, but worse
than the solutions obtained by training for 30 epochs. This implies that the
learning curves of most of the networks that appeared in our search converge
later than 15 epochs. In this case, our extrapolation technique helps find
better solutions for the same 15 epochs training time, i.e., it improves the
HV without significantly increasing the GA runtime. Finally, the proposed
method, which combines the two techniques, further reduces the runtime
while the HV slightly decreases. Its HV is not comparable to the HV obtained
when training for 30 epochs, but this method allows to save a considerable
amount of search time. Compared to the case of training for 15 epochs, the
proposed method not only achieves better HV, but it saves more than 50%

of GPU hours.

94

CHAPTER 5 5.4. EXPERIMENTAL RESULTS

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

Test RMSE

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Tr
ai

na
bl

e
pa

ra
m

et
er

s ×
 (1

04
)

Tr.30ep,HV:75.39
A.score+extpl.,HV:73.53
Tr.15ep+extpl.,HV:74.72
Tr.15ep,HV:72.6
A.score,HV:71.39
Init. pop., HV: 71.89
Handcrafted CNN

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

Test RMSE

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Tr
ai

na
bl

e
pa

ra
m

et
er

s ×
 (1

04
)

Tr.30ep,HV:75.7
A.score+extpl.,HV:73.19
Tr.15ep+extpl.,HV:74.61
Tr.15ep,HV:72.92
A.score,HV:70.44
Init. pop., HV: 71.57
Handcrafted CNN

(a) (b)

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

Test RMSE

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Tr
ai

na
bl

e
pa

ra
m

et
er

s ×
 (1

04
)

Tr.30ep,HV:75.78
A.score+extpl.,HV:73.39
Tr.15ep+extpl.,HV:73.28
Tr.15ep,HV:72.25
A.score,HV:69.67
Init. pop., HV: 69.59
Handcrafted CNN

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

Test RMSE

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Tr
ai

na
bl

e
pa

ra
m

et
er

s ×
 (1

04
)

Tr.30ep,HV:75.69
A.score+extpl.,HV:72.09
Tr.15ep+extpl.,HV:72.61
Tr.15ep,HV:74.99
A.score,HV:70.06
Init. pop., HV: 71.72
Handcrafted CNN

(c) (d)

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

Test RMSE

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Tr
ai

na
bl

e
pa

ra
m

et
er

s ×
 (1

04
)

Tr.30ep,HV:74.46
A.score+extpl.,HV:73.35
Tr.15ep+extpl.,HV:73.84
Tr.15ep,HV:71.95
A.score,HV:69.75
Init. pop., HV: 71.63
Handcrafted CNN

(e)

Figure 5.11: Pareto front for 5 different 1-D CNN NAS configurations w.r.t. fitnessRMSE.

95

5.4. EXPERIMENTAL RESULTS CHAPTER 5

96

Chapter 6

Conclusion

Our works introduce NAS algorithms that employ evolutionary computation
to explore the combinatorial parameter space for different neural architec-
tures to be used for RUL predictions. In Chapter 3, they are developed
to solve the SOO problem of finding the best architectures of multi-head
CNN-LSTM and Transformers in terms of RUL prediction accuracy; the
works presented in this chapter are based on the papers [12,13]. Considering
industrial contexts that normally seek to save cost by minimizing access to
expensive computing infrastructures, in Chapter 4, we applied the NAS to
solve the MOO problem of finding the optimal architectures of ELM and
CELM and 1-D CNN for achieving a trade-off between two competing ob-
jectives: the RUL prediction error and the number of trainable parameters;
the works described in this chapter are based on the papers [14–16].

In particular, GAs are used to solve optimization problems and the GA-
based NAS in this work can not only find high-quality solutions but also
provide a fast and efficient search. To speed up the evolutionary search by
the GA, several fitness prediction techniques are considered. Early-stopping
and learning curve extrapolation offer a reduced number of training epochs
for evaluating the fitness of a network. Zero-cost proxy predicts the fitness of
a fully-trained network at initialization. The model-based prediction employs

97

CHAPTER 6

the regression model which works as a surrogate for the fitness observation
after training.

In the experiments described in Chapter 5, the comparative evaluations
are based on the CMAPSS dataset and the N-CMAPSS dataset which serve
as a benchmark enabling a better comparison of different algorithms. In
the experiments on multi-head CNN-LSTM architecture optimization, we
verify that the evolutionary NAS can discover better neural architectures in
terms of the two metrics, RMSE and s-score, compared to the architecture
manually designed by domain experts. From the experimental results of the
evolutionary NAS on the Transformers, we can find that the prediction error
performance of the solutions found by the proposed GA is overall better
than those obtained by a space-filling sampling. Moreover, compared to the
current state of the art, the architecture-optimized Transformers provides
better results in terms of RMSE and fairly comparable results in terms of
s-score. In the case of the MOO of the 1-D CNN, the experimental results on
the benchmark show that the GA with the fitness predictors can achieve much
better solution quality than randomly generated networks as well as save a
considerable amount of the GA runtime. Regarding the optimization of the
ELM and CELM, the solutions given by the MOO of both ELM and CELM
networks provide fairly comparable results with handcrafted BPNNs such as
MLP and CNN models; nevertheless, the number of trainable parameters is
significantly smaller and the training time is much shorter.

Overall, our works demonstrate that using the GA-based NAS with fit-
ness prediction techniques or ELM, the proposed evolutionary search of the
networks having optimized architecture with regards to both single and multi-
objective optimization, can be a useful tool to solve the RUL prediction task.
This can contribute to having an effective RUL prediction tool that offers a
very precise prediction based on a deep and complex neural architecture and
its optimization. The MOO of the relatively simple networks that have prim-

98

CHAPTER 6

itive structures can be used as a way to generate an efficient RUL prediction
tool in an industrial context that requires finding a compromise between the
prediction accuracy and the number of parameters, which in turn correlates
with memory consumption (which is a crucial aspect e.g., in embedded sys-
tems) and computing time.

99

CHAPTER 6

Papers to appear or published during the PhD

Selected for the thesis

published

Hyunho Mo, Leonardo Lucio Custode, and Giovanni Iacca. Evo-
lutionary neural architecture search for remaining useful life pre-
diction. Applied Soft Computing, 108:107474, 2021: in this journal
paper, we propose a GA to optimize the architecture of multi-head CNN
LSTM and use the found solutions to predict the RUL of aircraft engines.
Note that Chapter 3 is based on this paper and its experimental results are
presented in Chapter 5.

Hyunho Mo and Giovanni Iacca. Evolutionary neural architec-
ture search on transformers for remaining useful life prediction.
Materials and Manufacturing Processes, pages 1–18, 2023: in this
journal paper, we introduce a surrogate-assisted evolutionary NAS to op-
timize the architecture of the Transformers and use the found solutions to
predict the RUL of aircraft engines. Note that Chapter 3 is based on this
paper and its experimental results are presented in Chapter 5.

Hyunho Mo and Giovanni Iacca. Multi-objective optimization
of extreme learning machine for remaining useful life prediction.
In International Conference on the Applications of Evolutionary
Computation (Part of EvoStar), pages 191–206. Springer, 2022:
in this conference paper, we apply a MOO algorithm to optimize the ELM
and use the found solutions to predict the RUL of aircraft engines. Note that
Chapter 4 is based on this paper and its experimental results are summarized
in Chapter 5.

101

CHAPTER 6

Hyunho Mo and Giovanni Iacca. Accelerating evolutionary neural
architecture search for remaining useful life prediction. In Inter-
national Conference on Bioinspired Optimization Methods and
Their Applications, pages 15–30. Springer, 2022: in this conference
paper, we present the architecture optimization of 1-D CNN by leveraging
a MOO algorithm in conjunction with speeding up techniques for the evo-
lutionary search and use the found solutions to predict the RUL of aircraft
engines. Note that Chapter 4 is based on this paper and its experimental
results are described in Chapter 5.

to appear

Hyunho Mo and Giovanni Iacca. Evolutionary optimization of
convolutional extreme learning machine for remaining useful life
prediction. SN Computer Science, 2023. to appear: in this journal
paper, we apply a MOO algorithm to optimize the CELM and use the found
solutions to predict the RUL of aircraft engines. Note that Chapter 4 is
based on this paper and its experimental results are presented in Chapter 5.

Not selected for the thesis

published

Hyunho Mo, Federico Lucca, Jonni Malacarne, and Giovanni
Iacca. Multi-head cnn-lstm with prediction error analysis for re-
maining useful life prediction. In 2020 27th Conference of Open
Innovations Association (FRUCT), pages 164–171. IEEE, 2020:
in this conference paper, we manually design a multi-head CNN-LSTM net-
work and use it to predict the RUL of aircraft engines. Note that its exper-
imental results are included in Chapter 5 and used to compare and evaluate
the results from the selected papers.

102

CHAPTER 6

Leonardo Lucio Custode, Hyunho Mo, and Giovanni Iacca. Neu-
roevolution of spiking neural p systems. In Applications of Evo-
lutionary Computation: 25th European Conference, EvoApplica-
tions 2022, Held as Part of EvoStar 2022, Madrid, Spain, April
20–22, 2022, Proceedings, pages 435–451. Springer, 2022: in this
conference paper, we introduce the NEAT neuroevolutionary algorithm to
evolve Spiking Neural P systems.

Leonardo Lucio Custode, Hyunho Mo, Andrea Ferigo, and Gio-
vanni Iacca. Evolutionary optimization of spiking neural p sys-
tems for remaining useful life prediction. Algorithms, 15(3):98,
2022: in this journal paper, we develop Spiking Neural P systems by means
of a neuro-evolutionary algorithm to predict the RUL of aircraft engines.

103

Bibliography

[1] Dean K Frederick, Jonathan A DeCastro, and Jonathan S Litt. User’s
guide for the commercial modular aero-propulsion system simulation
(c-mapss). NASA Technical Manuscript, 2007–215026, 01 2007.

[2] Euclides da Conceição Pereira Batalha. Aircraft Engines Maintenance
Costs and Reliability: An Appraisal of the Decision Process to Remove
an Engine for a Shop Visit Aiming at Minimum Maintenance Unit
Cost. PhD thesis, Estatística e Gestão de Informação, Universidade
Nova de Lisboa, 2012.

[3] Tiedo Tinga. Predicting critical failures using physics of failure: oppor-
tunities and challenges. In AVT-356 Research Symposium on Physics of
Failure for Military Platform Critical Subsystems, pages 1–13. NATO
Science & Technology Organization, 2021.

[4] Olga Fink. Data-driven intelligent predictive maintenance of industrial
assets. Women in Industrial and Systems Engineering: Key Advances
and Perspectives on Emerging Topics, pages 589–605, 2020.

[5] Enrico Zio. Prognostics and health management (phm): Where are
we and where do we (need to) go in theory and practice. Reliability
Engineering & System Safety, 218:108119, 2022.

[6] Olga Fink, Qin Wang, Markus Svensen, Pierre Dersin, Wan-Jui Lee,
and Melanie Ducoffe. Potential, challenges and future directions for

105

BIBLIOGRAPHY CHAPTER 6

deep learning in prognostics and health management applications. En-
gineering Applications of Artificial Intelligence, 92:103678, 2020.

[7] George J Vachtsevanos and George J Vachtsevanos. Intelligent fault
diagnosis and prognosis for engineering systems, volume 456. Wiley
Online Library, 2006.

[8] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and
Kay Chen Tan. A survey on evolutionary neural architecture search.
IEEE transactions on neural networks and learning systems, 2021.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[10] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: a new learning scheme of feedforward neural net-
works. In 2004 IEEE international joint conference on neural networks
(IEEE Cat. No. 04CH37541), volume 2, pages 985–990. Ieee, 2004.

[11] Michel M Dos Santos, Abel G da Silva Filho, and Wellington P dos
Santos. Deep convolutional extreme learning machines: Filters com-
bination and error model validation. Neurocomputing, 329:359–369,
2019.

[12] Hyunho Mo, Leonardo Lucio Custode, and Giovanni Iacca. Evolu-
tionary neural architecture search for remaining useful life prediction.
Applied Soft Computing, 108:107474, 2021.

[13] Hyunho Mo and Giovanni Iacca. Evolutionary neural architecture
search on transformers for rul prediction. Materials and Manufacturing
Processes, pages 1–18, 2023.

106

CHAPTER 6 BIBLIOGRAPHY

[14] Hyunho Mo and Giovanni Iacca. Multi-objective optimization of ex-
treme learning machine for remaining useful life prediction. In Inter-
national Conference on the Applications of Evolutionary Computation
(Part of EvoStar), pages 191–206. Springer, 2022.

[15] Hyunho Mo and Giovanni Iacca. Evolutionary optimization of convo-
lutional extreme learning machine for remaining useful life prediction.
SN Computer Science, 2023. to appear.

[16] Hyunho Mo and Giovanni Iacca. Accelerating evolutionary neural ar-
chitecture search for remaining useful life prediction. In International
Conference on Bioinspired Optimization Methods and Their Applica-
tions, pages 15–30. Springer, 2022.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[18] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Dam-
age propagation modeling for aircraft engine run-to-failure simulation.
In International Conference on Prognostics and Health Management
(ICPHM), pages 1–9. IEEE, 2008.

[19] Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink.
Aircraft engine run-to-failure dataset under real flight conditions for
prognostics and diagnostics. Data, 6:5, 2021.

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

107

BIBLIOGRAPHY CHAPTER 6

sification with deep convolutional neural networks. Communications of
the ACM, 60(6):84–90, 2017.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[25] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual con-
nections on learning. In Thirty-first AAAI conference on artificial in-
telligence, 2017.

[26] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-
scale evolution of image classifiers. In International Conference on
Machine Learning, pages 2902–2911. PMLR, 2017.

[27] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780–
4789, 2019.

[28] Zefeng Chen, Yuren Zhou, and Zhengxin Huang. Auto-creation of effec-
tive neural network architecture by evolutionary algorithm and resnet

108

CHAPTER 6 BIBLIOGRAPHY

for image classification. In 2019 IEEE international conference on sys-
tems, man and cybernetics (SMC), pages 3895–3900. IEEE, 2019.

[29] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv.
Automatically designing cnn architectures using the genetic algorithm
for image classification. IEEE transactions on cybernetics, 50(9):3840–
3854, 2020.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[31] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. arXiv preprint arXiv:1412.3555, 2014.

[32] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and
Yoshua Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2018. arXiv:1810.04805.

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural
language processing. In Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45. Associa-
tion for Computational Linguistics, 2020.

[35] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-
recurrence sequence-to-sequence model for speech recognition. In Inter-

109

BIBLIOGRAPHY CHAPTER 6

national Conference on Acoustics, Speech and Signal Processing, pages
5884–5888. IEEE, 2018.

[36] Nanxin Chen, Shinji Watanabe, Jesús Villalba, Piotr Żelasko, and
Najim Dehak. Non-autoregressive transformer for speech recognition.
IEEE Signal Process Lett., 28:121–125, 2020.

[37] Thomas Watts, Bing Xue, and Mengjie Zhang. Blocky net: A new
neuroevolution method. In 2019 IEEE Congress on Evolutionary Com-
putation (CEC), pages 586–593. IEEE, 2019.

[38] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete
Ribeiro. Fast denser: Efficient deep neuroevolution. In Genetic Pro-
gramming: 22nd European Conference, EuroGP 2019, Held as Part of
EvoStar 2019, Leipzig, Germany, April 24–26, 2019, Proceedings 22,
pages 197–212. Springer, 2019.

[39] Seyed Mohammad Jafar Jalali, Sajad Ahmadian, Md Kislu Noman, Ab-
bas Khosravi, Syed Mohammed Shamsul Islam, Fei Wang, and João PS
Catalão. Novel uncertainty-aware deep neuroevolution algorithm to
quantify tidal forecasting. IEEE Transactions on Industry Applica-
tions, 58(3):3324–3332, 2022.

[40] Evgenia Papavasileiou, Jan Cornelis, and Bart Jansen. A systematic
literature review of the successors of “neuroevolution of augmenting
topologies”. Evolutionary Computation, 29(1):1–73, 2021.

[41] Tomohiro Tanaka, Takafumi Moriya, Takahiro Shinozaki, Shinji
Watanabe, Takaaki Hori, and Kevin Duh. Automated structure discov-
ery and parameter tuning of neural network language model based on
evolution strategy. In 2016 ieee spoken language technology workshop
(slt), pages 665–671. IEEE, 2016.

110

CHAPTER 6 BIBLIOGRAPHY

[42] Tomohiro Tanaka, Takahiro Shinozaki, Shinji Watanabe, and Takaaki
Hori. Evolution strategy based neural network optimization and lstm
language model for robust speech recognition. In CHiME 2016 work-
shop, pages 32–35, 2016.

[43] Takahiro Shinozaki and Shinji Watanabe. Structure discovery of deep
neural network based on evolutionary algorithms. In 2015 IEEE
international conference on acoustics, speech and signal processing
(ICASSP), pages 4979–4983. IEEE, 2015.

[44] Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li. Deep convolu-
tional neural network based regression approach for estimation of re-
maining useful life. In International Conference on Database Systems
for Advanced Applications, pages 214–228. Springer, 2016.

[45] Luyang Jing, Ming Zhao, Pin Li, and Xiaoqiang Xu. A convolutional
neural network based feature learning and fault diagnosis method for
the condition monitoring of gearbox. Measurement, 111:1–10, 2017.

[46] Xiang Li, Wei Zhang, and Qian Ding. Cross-domain fault diagnosis of
rolling element bearings using deep generative neural networks. IEEE
Transactions on Industrial Electronics, 66(7):5525–5534, 2018.

[47] Qin Wang, Gabriel Michau, and Olga Fink. Domain adaptive transfer
learning for fault diagnosis. In 2019 Prognostics and System Health
Management Conference (PHM-Paris), pages 279–285. IEEE, 2019.

[48] Shuai Zheng, Kosta Ristovski, Ahmed Farahat, and Chetan Gupta.
Long short-term memory network for remaining useful life estimation.
In 2017 IEEE international conference on prognostics and health man-
agement (ICPHM), pages 88–95. IEEE, 2017.

111

BIBLIOGRAPHY CHAPTER 6

[49] Yuting Wu, Mei Yuan, Shaopeng Dong, Li Lin, and Yingqi Liu. Re-
maining useful life estimation of engineered systems using vanilla lstm
neural networks. Neurocomputing, 275:167–179, 2018.

[50] Ahmed Elsheikh, Soumaya Yacout, and Mohamed-Salah Ouali. Bidi-
rectional handshaking lstm for remaining useful life prediction. Neuro-
computing, 323:148–156, 2019.

[51] Kyungnam Park, Yohwan Choi, Won Jae Choi, Hee-Yeon Ryu, and
Hongseok Kim. Lstm-based battery remaining useful life prediction
with multi-channel charging profiles. Ieee Access, 8:20786–20798, 2020.

[52] Kwangsuk Lee, Jae-Kyeong Kim, Jaehyong Kim, Kyeon Hur, and Hag-
bae Kim. Cnn and gru combination scheme for bearing anomaly detec-
tion in rotating machinery health monitoring. In 2018 1st IEEE Inter-
national conference on knowledge innovation and invention (ICKII),
pages 102–105. IEEE, 2018.

[53] Honghu Pan, Xingxi He, Sai Tang, and Fanming Meng. An improved
bearing fault diagnosis method using one-dimensional cnn and lstm.
Strojniski Vestnik/Journal of Mechanical Engineering, 64, 2018.

[54] Ling Zheng, Wenhao Xue, Fei Chen, Pengtian Guo, Jiaqi Chen, Biying
Chen, and Hongbiao Gao. A fault prediction of equipment based on
cnn-lstm network. In 2019 IEEE international conference on energy
internet (ICEI), pages 537–541. IEEE, 2019.

[55] Xiaohan Chen, Beike Zhang, and Dong Gao. Bearing fault diagnosis
base on multi-scale cnn and lstm model. Journal of Intelligent Manu-
facturing, 32(4):971–987, 2021.

[56] Jialin Li, Xueyi Li, and David He. A directed acyclic graph network

112

CHAPTER 6 BIBLIOGRAPHY

combined with cnn and lstm for remaining useful life prediction. IEEE
Access, 7:75464–75475, 2019.

[57] Lei Ren, Jiabao Dong, Xiaokang Wang, Zihao Meng, Li Zhao, and
M Jamal Deen. A data-driven auto-cnn-lstm prediction model for
lithium-ion battery remaining useful life. IEEE Transactions on In-
dustrial Informatics, 17(5):3478–3487, 2020.

[58] Wennian Yu, II Yong Kim, and Chris Mechefske. An improved
similarity-based prognostic algorithm for rul estimation using an rnn
autoencoder scheme. Reliab. Eng. Syst. Safe., 199:106926, 2020.

[59] Hui Liu, Zhenyu Liu, Weiqiang Jia, and Xianke Lin. Remaining use-
ful life prediction using a novel feature-attention-based end-to-end ap-
proach. IEEE Trans. Ind. Inf., 17(2):1197–1207, 2020.

[60] Yuanhang Chen, Gaoliang Peng, Zhiyu Zhu, and Sijue Li. A novel deep
learning method based on attention mechanism for bearing remaining
useful life prediction. Applied Soft Computing, 86:105919, 2020.

[61] Lu Liu, Xiao Song, Kai Chen, Baocun Hou, Xudong Chai, and Huan-
sheng Ning. An enhanced encoder–decoder framework for bearing re-
maining useful life prediction. Measurement, 170:108753, 2021.

[62] Pedro Lara-Benítez, Manuel Carranza-García, and José C Riquelme.
An experimental review on deep learning architectures for time series
forecasting. International Journal of Neural Systems, 31(03):2130001,
2021.

[63] José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-
Álvarez, and Alicia Troncoso. Deep learning for time series forecasting:
a survey. Big Data, 9(1):3–21, 2021.

113

BIBLIOGRAPHY CHAPTER 6

[64] Zimeng Lyu, Shuchita Patwardhan, David Stadem, James Langfeld,
Steve Benson, Seth Thoelke, and Travis Desell. Neuroevolution of re-
current neural networks for time series forecasting of coal-fired power
plant operating parameters. In Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, pages 1735–1743, 2021.

[65] Paulo Cortez, Pedro José Pereira, and Rui Mendes. Multi-step time
series prediction intervals using neuroevolution. Neural Computing and
Applications, 32(13):8939–8953, 2020.

[66] Youdao Wang, Yifan Zhao, and Sri Addepalli. Remaining useful life
prediction using deep learning approaches: A review. Procedia manu-
facturing, 49:81–88, 2020.

[67] Mikel Canizo, Isaac Triguero, Angel Conde, and Enrique Onieva. Multi-
head cnn–rnn for multi-time series anomaly detection: An industrial
case study. Neurocomputing, 363:246–260, 2019.

[68] Hyunho Mo, Federico Lucca, Jonni Malacarne, and Giovanni Iacca.
Multi-head cnn-lstm with prediction error analysis for remaining useful
life prediction. In 2020 27th Conference of Open Innovations Associa-
tion (FRUCT), pages 164–171. IEEE, 2020.

[69] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale, 2020.
arXiv:2010.11929.

[70] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir,
Fahad Shahbaz Khan, and Mubarak Shah. Transformers in vision: A
survey. Comput. Surv., 54(10s):1–41, 2022.

114

CHAPTER 6 BIBLIOGRAPHY

[71] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly
transformer: Time series anomaly detection with association discrep-
ancy, 2021. arXiv:2110.02642.

[72] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-
Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking
the memory bottleneck of transformer on time series forecasting. Adv.
Neural. Inf. Process. Syst., 32, 2019.

[73] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha
Bhamidipaty, and Carsten Eickhoff. A transformer-based framework
for multivariate time series representation learning. In Conference
on Knowledge Discovery & Data Mining, pages 2114–2124. ACM
SIGKDD, 2021.

[74] Zhizheng Zhang, Wen Song, and Qiqiang Li. Dual-aspect self-attention
based on transformer for remaining useful life prediction. IEEE Trans.
Instrum. Meas., 71:1–11, 2022.

[75] Jason Ross Brown, Yiren Zhao, Ilia Shumailov, and Robert D
Mullins. Wide attention is the way forward for transformers, 2022.
arXiv:2210.00640.

[76] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really
better than one? Adv. Neural. Inf. Process. Syst., 32, 2019.

[77] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding
up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In Twenty-fourth international joint
conference on artificial intelligence, 2015.

[78] Jorge J Moré. The Levenberg-Marquardt algorithm: implementation
and theory. In Numerical analysis, pages 105–116. Springer, 1978.

115

BIBLIOGRAPHY CHAPTER 6

[79] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and
Nicholas D Lane. Zero-cost proxies for lightweight nas. arXiv preprint
arXiv:2101.08134, 2021.

[80] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural
architecture search without training. In International Conference on
Machine Learning, pages 7588–7598. PMLR, 2021.

[81] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How
powerful are performance predictors in neural architecture search? Adv.
Neural. Inf. Process. Syst., 34:28454–28469, 2021.

[82] Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu,
Andrew Ng, and Alejandro Schuler. Ngboost: Natural gradient boost-
ing for probabilistic prediction. In International Conference on Ma-
chine Learning, pages 2690–2700. PMLR, 2020.

[83] Jerome H Friedman. Greedy function approximation: a gradient boost-
ing machine. Ann. Stat., pages 1189–1232, 2001.

[84] Michael D McKay, Richard J Beckman, and William J Conover. A
comparison of three methods for selecting values of input variables in
the analysis of output from a computer code. Technometrics, 42(1):55–
61, 2000.

[85] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip:
Single-shot network pruning based on connection sensitivity, 2018.
arXiv:1810.02340.

[86] Giovanni Iacca, Rammohan Mallipeddi, Ernesto Mininno, Ferrante
Neri, and Pannuthurai Nagaratnam Suganthan. Super-fit and popu-
lation size reduction in compact differential evolution. In 2011 IEEE
workshop on memetic computing (MC), pages 1–8. IEEE, 2011.

116

CHAPTER 6 BIBLIOGRAPHY

[87] Agoston E Eiben and Cornelis A Schippers. On evolutionary ex-
ploration and exploitation. Fundamenta Informaticae, 35(1-4):35–50,
1998.

[88] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM computing
surveys (CSUR), 45(3):1–33, 2013.

[89] Zhe Yang, Piero Baraldi, and Enrico Zio. A comparison between ex-
treme learning machine and artificial neural network for remaining use-
ful life prediction. In Prognostics and System Health Management Con-
ference (PHM), pages 1–7, 2016.

[90] Segun Popoola, Sanjay Misra, and Prof. Aderemi Atayero. Outdoor
path loss predictions based on extreme learning machine. Wireless
Personal Communications, 99, 2018.

[91] Guang-Bin Huang, Qin-Yu Zhu, Kudo Mao, Chee Siew, P. Saratchan-
dran, and Narasimhan Sundararajan. Can threshold networks be
trained directly? IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, 53:187 – 191, 2006.

[92] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: theory and applications. Neurocomputing, 70(1-
3):489–501, 2006.

[93] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: a new learning scheme of feedforward neural
networks. In International Joint Conference on Neural Networks
(IJCNN), volume 2, pages 985–990. IEEE, 2004.

[94] Shan Pang and Xinyi Yang. Deep convolutional extreme learning ma-

117

BIBLIOGRAPHY CHAPTER 6

chine and its application in handwritten digit classification. Computa-
tional intelligence and neuroscience, 2016, 2016.

[95] Mingxing Duan, Kenli Li, Canqun Yang, and Keqin Li. A hybrid deep
learning CNN–ELM for age and gender classification. Neurocomputing,
275:448–461, 2018.

[96] Youngmin Park and Hyun S Yang. Convolutional neural network based
on an extreme learning machine for image classification. Neurocomput-
ing, 339:66–76, 2019.

[97] Yaoming Cai, Zijia Zhang, Qin Yan, Dongfang Zhang, and Mst Jainab
Banu. Densely connected convolutional extreme learning machine for
hyperspectral image classification. Neurocomputing, 434:21–32, 2021.

[98] Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink. Fus-
ing physics-based and deep learning models for prognostics. Reliability
Engineering & System Safety, 217:107961, 2022.

[99] Xiang Li, Qian Ding, and Jian-Qiao Sun. Remaining useful life estima-
tion in prognostics using deep convolution neural networks. Reliability
Engineering & System Safety, 172:1 – 11, 2018.

[100] Serkan Kiranyaz, Turker Ince, Osama Abdeljaber, Onur Avci, and Mon-
cef Gabbouj. 1-d convolutional neural networks for signal processing
applications. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 8360–8364.
IEEE, 2019.

[101] Abhinav Saxena and Kai Goebel. Turbofan engine degradation simu-
lation data set. NASA Ames Prognostics Data Repository, 18, 2008.

[102] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Dam-
age propagation modeling for aircraft engine run-to-failure simulation.

118

CHAPTER 6 BIBLIOGRAPHY

In International Conference on Prognostics and Health Management,
pages 1–9. IEEE, 2008.

[103] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. Deap: Evolutionary algo-
rithms made easy. J. Mach. Learn. Res., 13:2171–2175, 2012.

[104] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014. arXiv:1412.6980.

[105] André Listou Ellefsen, Emil Bjørlykhaug, Vilmar Æsøy, Sergey
Ushakov, and Houxiang Zhang. Remaining useful life predictions for
turbofan engine degradation using semi-supervised deep architecture.
Reliab. Eng. Syst. Safe., 183:240–251, 2019.

[106] Jialin Li and David He. A Bayesian optimization AdaBN-DCNN
method with self-optimized structure and hyperparameters for domain
adaptation remaining useful life prediction. IEEE Access, 8:41482–
41501, 2020.

[107] Wei Ming Tan and T Hui Teo. Remaining useful life prediction using
temporal convolution with attention. AI, 2(1):48–70, 2021.

[108] Henry B Mann and Donald R Whitney. On a test of whether one of two
random variables is stochastically larger than the other. Ann. Math.
Stat., pages 50–60, 1947.

119

	Introduction
	Maintenance Policies
	RUL predictions
	Evolutionary NAS
	Structure of the Thesis

	Related work
	Evolutionary neural architecture search on deep learning models
	Individual encoding
	Multi-head CNN-LSTM
	Transformers

	Fitness evaluation
	Fitness prediction
	Early-stopping
	Learning curve extrapolation
	Zero-cost proxy
	Model-based performance predictor

	Predictor-assisted evolutionary NAS algorithms

	Multi-objective optimization of neural architectures
	Individual encoding
	Extreme learning machine
	Convolutional extreme learning machine
	Convolutional neural network

	MOO algorithm

	Experiments
	Benchmark dataset
	CMAPSS
	N-CMAPSS

	Evaluation metrics
	Computational setup and training details
	Training details for the multi-head CNN-LSTM
	Training details for the Transformers
	Training details for the 1-D CNN

	Experimental results
	Evolutionary NAS on DL models
	MOO of neural architectures

	Conclusion
	Bibliography

