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Abstract

One of the most important barriers towards a widespread use of mobile robots in unstructured, human populated and possibly
a-priori unknown work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a
human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of
this approach requires a high degree of robustness in locating the specific person to be followed (the path-finder). We propose
a three phases approach to fulfil this goal: 1. Identification and tracking of the person in the image space, 2. Sensor fusion
between camera data and laser sensors, 3. Point interpolation with continuous curvature paths. The approach is described in

the paper and extensively validated with experimental results.

Keywords Person-following robot - Human-robot interaction - Human detection and tracking - Service robotics

1 Introduction

When an autonomous mobile robot of remarkable size and
mass navigates the treacherous waters of unstructured and
human-populated environments, safety concerns and regula-
tion constraints take centre stage and become a barrier for the
adoption of this technology. Safety appears as a major chal-
lenge in a large class of robotic applications. In industrial
settings, mobile robots are required to move within desig-
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nated areas (Markis et al. 2019). Similarly, in personal and
service robotics applications (ISO13482 2014) (e.g., hospi-
tals, museums, hospitals, art galleries), preventing accidents
to the humans and to precious assets alike (expensive equip-
ments, precious art-works, etc.) is a precondition for any
certified use of robots. To address this challenging problem,
we advocate a mixed approach. When the mobile robot trav-
els across a known safe or segregated area, it can move in
full autonomy, whilst whenever it enters a shared or danger-
ous area where, in case, environmental reliable information
lacks (e.g., absence of an a-priori map or in a highly dynamic
environment), the responsibility of the most critical decisions
(i.e., motion planning) is shifted to a human operator.

Our reference scenario can be described as follows. The
mobile robot starts its mission with a person standing in
front. The robot looks at the person with its visual devices,
extracts a number of important features and elects her/him
as a path-finder. Then starts the second phase: the person
walks to the destination, with the robot tracking and fol-
lowing her/him moving along the path marked by her/his
footsteps (see Fig. 1a). After the path-finder reaches the des-
tination, the path is memorised and can be used for future
missions. Observe that this is not a standard leader-follower
application in which the robot is allowed to sway sideways as
far as it keeps a specified distance from its leader (Lam et al.
2010). In our case, the human is a path-finder and the robot
follows exactly her/his virtual footprints. The advantages are
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manyfold. From the robot’s perspective, the human acts as
an external module for the motion planning task, simplifying
the complexity of the software components and of the sens-
ing systems, while enabling the motion in a-priori unknown
environments. From the perspective of the operator, s/he is
in condition to drive a complex and heavy robot without any
skill other than being able to walk and to have an elemen-
tary understanding of the robot’s motion constraints (e.g., the
robot cannot fly or using stairs). The robot operates semi-
autonomously, i.e. it does not interfere with the pathfinder
choices nor does it modify the path. However, it is allowed to
stop when an obstacle materialises below a safety distance.

Therefore, our system is required to comply with two
requirements:
Q1: The robot shall follow the path-finder even if s/he falls
outside of the visual cone of the camera: the path has to be
reconstructed and exactly followed even after sharp turns.
This marks a remarkable departure from standard visual ser-
voing approaches, which require the human to constantly
remain within the robot’s field of view.
Q2: The robot shall not collide with humans and obstacles.
Although the path-finder is assumed to follow a safe path,
the robot has to react to the unpredicted changes typical of a
dynamic environment.

Our processing and execution pipeline has three phases:
1. Identification of the path-finder within the front cam-
era image frames, 2. Fusion of the visual information with
the one coming from other sensors, 3. Reconstruction of a
smooth and feasible path from the time series of the path-
finder’s positions to be followed by a controlled motion along
the path. The first phase is troublesome because the path-
finder position is extracted from a noisy source, in which
an ambiguous classification of the different subjects is quite
frequent. Our solution is to split the first phase in three sub-
phases. The first one detects the objects of interest within
the image using a state-of-the art Convolutional Neural Net-
works (CNN) detector. The second sub-phase recognises the
path-finder between the objects detected in the image. The
feature identification is kick-started during the starting phase
and is continuously refined during the system operation. The
recognition properly said is performed by a K-Nearest Neigh-
bour (KNN) classifier. The third sub-phase consists of a
tracking module, which ensures continuity in the estimated
positions of the target across different frames. In the second
phase, the image information is fused with the measurements
of a LIDAR sensor to reconstruct the correct location of the
target and its headway distance from the robot. The third
phase processes the time series of the estimated position of
the path-finder, refining the path and guiding the navigation.
This step uses clothoid curves to interpolate the points, which
produces a path with continuous curvature and easy to follow
for a robot. Finally, the control module follows the estimated
path and enforces the necessary safety policies.
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1.1 Summary of the paper contribution

The idea outlined above can be seen as an original and mod-
ern application of the teach-by-showing approach to mobile
robots moving in a complex scenario. This is classified in
the recent literature (Islam et al. 2019) as a very relevant and
largely open problem and is the key methodological contribu-
tion made in this paper. As a result, planning in environments
that are a-priori unknown to the robot becomes feasible,
which is a remarkable novelty for the field. Other two contri-
butions have a more technical nature and descend from the
complexity of our safety and reliability requirements. The
first of them is the combination of tracking filter and neu-
ral network to estimate and follow the path-finder’s position,
which allows us to follow the path-finder even when s/he falls
outside of the camera’s visual cone. The second one is the
idea to feedback the fused estimate into the recognition mod-
ule and to exploit a trained neural network using its last layer
to classify the person’s feature set. This solution significantly
improves the system’s ability to distinguish between persons
with similar features and resolve misclassifications due to
illumination changes and partial occlusions (see Fig. 1-b).

1.2 Paper organisation

The paper is organised as follows. In Sect.2, we summarise
the most important existing results that we used as reference
for this work. In Sect. 3, we present our general architecture
and provide details on the perception components. In Sect. 4,
we show our solution for path reconstruction and the control
strategy for following the path. The experiments supporting
the validity of the approach are described in Sect. 5. Finally,
in Sect. 6 we give our conclusions and announce future work
directions.

2 Related work

People following is a complex activity requiring a com-
bination of perception, planning, control, and interaction
strategies. Following a specific person rather than any per-
son adds more to the complexity of the problem and is
largely classified as an open problem. The main issue is
that in a complex scenario many people can look similar
if they do not wear specific markers. Most of the meth-
ods developed in the last decade and surveyed by Islam
et al. (2019) claim a good performance in detection and
tracking of humans but none of the papers cited in the sur-
vey covers the requirements of the application presented in
this paper. Target re-identification and recovery has been
obtained in the literature by using probabilistic models (e.g.,
Kalman filters) (Zhou et al. 2008), feature-based techniques
(Layne et al. 2012) and, more recently, appearance-based
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Fig. 1 a Different snapshots representing different time instants of the
robot following the human operator across an environment with various
static obstacles. b Flow diagram of our framework. The system starts
with the initialisation procedure, collecting visual features of the path-
finder. Then, in the path-finder following phase, the recognition module
retrieves the new path-finder’s position (see Sect. 3.2). The sensor fusion

deep networks (Quispe and Pedrini 2019). However, the com-
bination of these methods within a robotic application have
not been investigated. Specifically, human-following appli-
cations require the combination of sophisticated learning
approaches, model based filtering and path interpolation, as
shown in this paper. The large majority of the solutions pre-
sented in Islam et al. (2019) does not perform re-identification
and thus are not suitable to be applied in populated environ-
ments as ours. Only a small minori ty of the surveyed papers
(Eisenbach et al. 2015; Koide and Miura 2016; Chen et al.
2017) propose target re-identification, but none of them con-
siders explicitly robot planning and control. Even when the
authors propose a human following approach (Gupta et al.
2017; Germa et al. 2010), they implement a visual servoing
controller using a camera with a limited field-of-view. On
the contrary, the point of this paper is using a human path-
finder to identify the correct path, which requires accurate
path reconstruction and path planning. In the entire survey,
the only paper proposing an idea somewhat similar to our
own is Doisy et al. (2012): here the authors use an RGB-D
camera mounted on a turning platform for continuous person
tracking. However the authors make the assumption that the
only human in the scene is the target and that obstacles have
a low height compared to the mounting point of the cam-
era. On the contrary, the solution proposed in this paper does
not make assumptions on the obstacles, and, as clearly vis-

|
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module fuses the camera tracking with the data from the LIDAR sen-
sor, and redirects back the information to the recognition module (see
Sect. 3.3). Finally, the set of the path-finder’s positions over time are for-
warded to the path reconstruction module (see Sect. 4.1) and the control
module (see Sect.4.2)

ible from our experiments, it can be safely used in crowded
environments.

2.1 People following

The combination of detection, tracking, and recognition was
proposed by Jiang et al. (2018) using Speeded Up Robust
Features (SURF). Chen et al. (2017) employed an adaptive
boosting (AdaBoost) together with a stereo camera to real-
time track a person, where the depth information is used to
reinforce the classifier. Their approach can deal with appear-
ance changes, people with similar clothes, and complete
occlusions, but follows a classic visual-servoing approach:
the robot control module is programmed to keep the tar-
get always within the camera frame, that is a remarkable
difference with respect to our approach. Similarly, Wang et
al. (2018) combined a monocular camera with an ultrasonic
sensor to fuse range information with Kernelised Correla-
tion Filters (KCF) based visual tracking. Their system has
been tested in the case of visual interferences such as occlu-
sions and illumination changes, however, due to the nature of
the sensors employed, the human must remain in the camera
view, and there is no specific strategy if the human’s appear-
ance changes. An implementation of RGB-D camera, laser
scanner, and EKF is used by Nikdel et al. (2018) for their
following-ahead mobile platform. Their framework likewise
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assumes that the human will often be outside the camera
view, so the laser data and a non-holonomic human motion
model are used to recover missing image data. Nevertheless,
the presence of multiple humans undermines the tracking
performance, which is instead one of the positive features of
our solutions.

2.2 Background material on vision-based
techniques

2.2.1 Object detection

Object detection is in our framework the first element of the
processing pipeline. For this component, we sought a good
compromise between classification accuracy and achiev-
able frame rate. The available methods range from object
detection and segmentation methods (Liu et al. 2016; Red-
mon et al. 2016; Girshick et al. 2014), to specific solutions
for human pose detection such as OpenPose (Cao et al.
2019). YOLO (Redmon et al. 2016) is a very effective solu-
tion based on a single CNN; its main known disadvantage
materialises when two classes have similar probabilities or
the shape of the element is not perfect and the algorithm
could produce different bounding boxes for the same object.
Alternative solutions such as SSD (Liu et al. 2016) apply cor-
rection techniques to overcome the limitation of the approach
(Neubeck and Van Gool 2006). SSD is also based on a sin-
gle CNN to produce bounding boxes, but internally performs
Non-Maximum Suppression (NMS) to remove unnecessary
detection. Moreover, while the architecture of YOLO is
designed as acompactblock, SSD is instead modular, divided
into convolution layers of different scales combined at the
end.

2.2.2 People recognition

People recognition in computer vision is difficult in its own
right. An additional level of complexity for robotics appli-
cations is introduced by the fact that the camera used for
image acquisition is mobile. Traditional offline algorithms
like Support Vector Machines (SVM) (Hearst et al. 1998)
are known to react quickly to classification queries, but are
not a good fit for our scenario, because we lack a prior
knowledge on who is going to be the path-finder and we
need to be robust against possible changes in her/his appear-
ance. Methods based on key feature point matching (Pun
et al. 2015) are known to be robust and are widely used
to find small patterns in complex images, but in our tests
the PRID450 (Person Re-IDentification) dataset (Roth et al.
2014) showed a high number of errors for low-res images and
for deformable shapes such as humans clothes (see Sect. 5.1).
Our final solution was based on the use of a K-Nearest Neigh-
bours (KNN) classifier, which is an efficient training-free

@ Springer

classification method albeit it requires the knowledge of rep-
resentative points for the classification. For this information
we used the last layer of a CNN, which gets trained with
the different views of the path-finder. The idea of using a
CNN classifier to extract the feature set was presented by
Ristani and Tomasi (2018), who proposed a solution to match
detections from multiple cameras. The classifiers evaluated
for comparison in this work are the Deep Neural Networks
(DNNG5) based GoogLeNet (Szegedy et al. 2015) and ResNet
(He et al. 2016). ResNet architecture is made of convolution
blocks stacked one after the other, with an additional iden-
tity connection that preserve the input image through several
layers of the network. GoogLeNet introduced the so-called
inception module, which parallelises three different convo-
lution filters and a max-pooling filter.

2.2.3 Person tracking

For person tracking, we could select from a large variety of
approaches for the tracking of general objects (the fact that
our object of interest is a person does not make a big differ-
ence in this case). Specifically, we considered: the Multiple
Instance Learning (MIL) tracker (Babenko et al. 2010), the
Kernelised Correlation Filters (KCF) tracker (Henriques et
al. 2012), the Median Flow tracker (Kalal et al. 2010), the
Channel and Spatial Reliability Tracker (CSRT) (Lukezic
et al. 2017), the Minimum Output Sum of Squared Error
(MOSSE) tracker (Bolme et al. 2010), the Generic Object
Tracking Using Regression Networks (GOTURN) tracker
(Held et al. 2016), and the Tracking-Learning-Detection
(TLD) (Kalal et al. 2011). The MIL tracker (Babenko et al.
2010) is trained online during the execution of the tracking
by generating negative samples from bounding boxes that do
not overlap the correct one and by creating multiple instances
around the correct sample for classification improvement.
The KCF tracker (Henriques et al. 2012) is an extension of
the MIL tracker which relies on Fast Fourier Transformations
to increase accuracy and speed, but its weakness stands in
full occlusions. The Median Flow tracker (Kalal et al. 2010)
is a reliable method that locates the subject according to its
trajectory, thus using an estimation of its motion model, how-
ever, despite its being robust, it suffers with high deformable
subjects such as animals or humans. The CSRT (Lukezic
et al. 2017) uses an high number of cross correlation fil-
ters in order to reach a very high accuracy, compensated by a
low frame-per-second (FPS) rate. The authors of the MOSSE
tracker (Bolme et al. 2010), based on the MOSSE correla-
tion filter, state robustness against variations in lighting, scale
and non-rigid deformations, moreover, in our experiments it
showed extremely fast computations, i.e. high FPS rate (see
Sect.5.1). The GOTURN tracker (Held et al. 2016) is based
on an offline trained CNN, hence can perform at very high
FPS rate. However, since it takes one frame at a time and
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always compares it to the previous one, this algorithm suf-
fers total occlusions. Differently from all the other methods,
the TLD (Kalal et al. 2011) is able to overcome long-time
total occlusion and to offer a long-term tracking, which are
paid by a low FPS rate and a huge quantity of false-positive
predictions.

2.3 Sensor fusion

Our application requires 3D reconstruction of the human
pose. The combination of stereo and RGB-D sensor with
skeleton-based approaches proves very useful to this pur-
pose and it is significantly simplified by the availability of
public domain software components (Antonucci et al. 2019).
However, the simple use of visual information has known
limitations, such as the sensitivity to lighting conditions and
the high computation times. Laser-based sensors, on the other
hand, are relatively reliable on a long range and are less
computation hungry than vision based approaches. How-
ever, recognising a specific person from a slice of a 2D point
cloud is hopeless. For this reason, moving along a direction
frequently taken in robotics (Zhen et al. 2019; Wolcott and
Eustice 2014; Nguyen et al. 2021), we apply a combination
of cameras and LIDARs. The use of separate systems for
depth estimation and classification improves the robustness
of the tracking system when one of the sensors fails: if the
human falls outside the camera field of view, we keep using
the LIDAR sensor for tracking, whose reliability changes
according to the adopted human motion model.

3 Tracking the human path-finder

Before going into the details of the algorithm we use to
track the human, we succinctly describe the available sensing
system and the model of the platform. The reference model
for the robot is in this paper the unicycle, whose kinematics
can be described in discrete-time by the following Zero-
Order-Hold model:

X (1) + cos(@r (1)) (tk+1 — B vr (T)
Yr(tr) + sin(@r (1)) (tk1 — t)vr (T) (D
@r (1) + (g1 — tr)wp (1)

S(fk+1) =

where s(tx) = [x,(t), yr (%), ¢r (1)1 is the state of the
robot, the Cartesian coordinates (x,(tx), y,(#x)) refer to the
mid-point of the rear wheels axle in the X, x Y, plane
expressed in the (W) = {X,, Yy, Z,} world reference
frame, ¢, (#;) the longitudinal direction of the vehicle with
respect to the X,, axis, v,(fx) and w,(f;) the longitudinal
and angular velocities, respectively, and #; the reference time
instant, which is usually chosen as an integer multiple of a
fixed sampling time. Importantly, the proposed framework

would be applicable to different robot dynamics; however,
as explained next, the unicycle structure is particularly con-
venient for the class of applications we address.

Without loss of generality, we assume here that the choice
of the sampling time 8; = fx+1 — fx is imposed by the
sensor with the lowest sampling frequency. The assumed
sensing configuration is based on the presence of rotation
encoders on each of the rear wheels or any other sensing sys-
tem able to provide ego-motion informations (e.g., IMUs,
visual odometry). For the perception of the surroundings,
the sensing system comprises a LIDAR and an RGB-D cam-
era. The LIDAR data are used to both track humans around
the vehicle and to localise the vehicle inside the environ-
ment, using a standard approach presented in the literature
(Hess et al. 2016). The RGB-D camera is primarily used
for the human detection and tracking. The laser scanner (an
RPLIDAR A3') employed has a view of 360°, a maximum
measuring distance up to 40 ms, and is typically operated at
20 revolutions per second. The RGB-D camera adopted is an
Intel® RealSense™ D435,2 working in an ideal range span-
ning from 0.5 to 3 m, whose produced data are used in the
vision-based detection and recognition system described in
Sect.3.2. The LIDAR and the camera are rigidly mounted on
the top of the robot chassis (see Fig.3a) and return the mea-
surements at time #; in the LIDAR (L) and camera (Cy)
reference frames, respectively, which are bot rigidly linked
to the robot (i.e., they operate with a local coordinates ref-
erence system). The transformation matrix © T¢ between the
two frames is estimated during an initial calibration phase.

3.1 Solution overview

The proposed scheme is sketched in Fig.2. A first group
of processing activities operates in the local frame, where
it seeks to detect and track the path-finder. Such activities
are based on two distinct and converging flows of informa-
tion. The first flow (Vision-based detection and recognition)
comes from the RGB-D camera and allows us to identify
and track the path-finder position within the image space.
The second comes from the LIDAR sensor and looks for the
same information from a different source with three different
purposes. The first purpose is to increase the robustness of
the vision based tracking by injecting the LIDAR data into
the recognition activity. The second is to improve the accu-
racy of the estimation by fusing depth and visual information.
The third is to allow the system to track the path-finder even
when s/he falls out of the RGB-D sensor visual cone. A sec-
ond group of processing activities takes place in the global
reference frame. The main objective is to transform the time
sequence of the path-finder’s positions into a set of smooth

! https://www.slamtec.com/en/Lidar/A3.

2 https://www.intelrealsense.com/depth-camera-d435/.
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geometric motion primitives in order to have them followed
by the robot.

3.2 Vision-based detection and recognition

The vision based algorithm takes the lion share in our track-
ing solution, but, as we mentioned above and as explained in
Sect. 3.3, the tracking performance and robustness is signifi-
cantly improved by the integration of the LIDAR data. In the
next paragraphs we will first describe the different compo-
nents and then discuss how they interoperate in an integrated
pipeline.

3.2.1 Human detection

The first activity of the detection and recognition algorithm
is to localise D people inside an image frame. To this end, we
have chosen the latest version of YOLO available, YOLOv3
(Redmon and Farhadi 2018), and a lighter implementation of
SDD, namely MobileNet (Howard et al. 2017) (designed to

@ Springer

(b)

execute on low power devices). The detection module iden-
tifies the objects in view through the smallest bounding box
that contains the required element. In the starting phase, the
person associated with the largest bounding box is recognised
as the path-finder.

3.2.2 Path-finder recognition

This module is used to understand which of the humans found
in the frame corresponds to the path-finder, thus also enabling
a coherent connection between the detector (based on a KNN
classifier) and the tracker. The KNN classifier uses the vector
points generated by two DNN image classifiers: ResNet50
(He et al. 2016), which produces a representation point in
2048 dimensions, and GoogLeNet (Szegedy et al. 2015),
which produces a representation point in 1024 dimensions.
If the path-finder is contained in the list of the D people
detected, the information is passed to the image tracker, oth-
erwise the procedure loops back to the detection phase. As
previously mentioned, this phase also exploits the data com-
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ing from the sensor fusion phase in order to improve the
tracking performance. This important feature is described in
detail below. If the estimation error of the global human track-
ing (introduced in Sect.3.4) exceeds the desired path-finder
tracking uncertainty due to repetitive sensor or detection fail-
ures, the system reaches a faulty condition, the robot stops
and the process restarts from scratch.

3.2.3 Path-finder tracking

This module is periodically executed to track the path-finder
location. The pathfinder is sought with a number of frames
chosen as a fixed parameter m in order to avoid the problems
associated with long-term sequences. We implemented for
the tracker the method that best fitted our requirements, i.e.
KCF, CSRT and MOSSE, and we finally adopted the KCF in
our experiments, since it offers a good compromise between
robustness and speed. We emphasise that if a single detection
fails or the path-finder is not found, the tracker cannot return a
reliable measurement; however, the sensor fusion module can
recover the correct path-finder location thanks to the position
evaluated at the previous iteration.

3.2.4 The vision pipeline as a whole

The system operates in two phases: initialisation and human
following. The initialisation phase is needed because our
vision processing pipeline leverages a learning-based clas-
sification of the human pathfinder, which in turn requires the
knowledge of her/his features. During this phase, which lasts
for A; seconds, the robot collects a series of bounding boxes
used to create the set of positive representative points into the
N-dimensional space of the KNN. Simultaneously, a nega-
tive sample is randomly picked up from a database and it
is also given to the KNN to balance the number of positive
and negative samples. The negative samples come from our
customised version of the Market1501 dataset (Zheng et al.
2015). An example of the initialisation phase is shown in
Fig.4a.

When the system switches to the human following phase,
it carries out a first detection step. Then, it uses a KNN clas-
sifier in order to distinguish between positive detections and
negative ones. In order to make the classification robust,
the system uses the information from the path-finder posi-
tion estimated at the previous time step (see Sect.3.3). If
the Euclidean distance between the last estimated position
and the 3D position measured by the camera is lower than a
threshold df, the detected position is considered as valid and
the new set of visual features is added to the positive dataset.
Detections without the described distance correspondence
can be added to the negative dataset. This simple feedback
mechanism significantly improves the system reliability and
its resilience to wrong classifications or changes in the path-

finder’s appearance. Finally, the path-finder tracking module
is executed, and the resulting information is passed to the
fusion module. After the successive m frames, the detection
and recognition stages are re-executed in order to strengthen
the tracking performance.

This processing workflow and the different feedback
cycles it is based on delivers a highly performant image
processing and an improved robot localisation accuracy, as
shown by the experimental data in Sect. 5.

3.3 Local LIDAR-camera sensor fusion

The information coming from the vision-based algorithm are
combined with the LIDAR in the local reference frame (L)
in order to make the procedure more robust, as aforemen-
tioned. Moreover, the path-finder can be tracked for some
time also when s/he evades the vision cone of the RGB-D
camera just relying on the LIDAR information.

3.3.1 LIDAR clustering

The sensor reading delivered by the laser scanner at time
tr provides a sequence of N; measurement points in the
form of Py = {pi1,...,Pn,), represented in polar coor-
dinates as p; = (1, «;), i.e. the range r; and the angle
«; expressed in the planar LIDAR reference frame (L)
(see Fig.3b for an example of an actual scan). At time #,
the measured points are filtered and grouped into My, clus-
ters based on the mutual Euclidean distances and on the
richness, i.e. on a minimum number of sensed points for
each cluster, each identified by the object centroid 0; () =
[x;(t), yj (), 017, j = 1, ..., My (see the ID numbers in
Fig.3b and the Algorithm 1). Given two sets of objects Oy =
{o1(t), ..., 0p, ()} and Og1, taken in two consecutive
time instants #; and fx4+1 and possibly having My # M1,
we adopt the Munkres assignment algorithm (Munkres 1957)
to decide either if the two objects are actually the same or if
a new object has been detected. To this end, since between
tr and #;41 the robot moves for §; seconds according to the
model (1), we can update its position S(#x41) in (Lj41) either
by using ego-motion data or, if available, the global locali-
sation module. After the motion, Oy previously expressed in
(L), is projected in new local frame (Ly1). The presence
of LIDAR measurement noise imposes the use of a forgetting
factor, hence the algorithm removes the object whose cen-
troid does not find correspondences for T¢g time instants. This
way we can disambiguate the different entities in the robot’s
surroundings, increase robustness to partial occlusions and
exploit indeed a prior-based tracking (since each cluster has
its own unique ID, as depicted in Fig. 3-b).
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Fig.4 a Initialisation phase: the
detected path-finder is depicted
with a blue rectangle. b
Following phase: the path-finder
ISO correctly recognised (green
rectangle), while another person
is a negative sample (red
rectangle) (Color figure online)

(a)

Algorithm 1 Laser scanner points clustering algorithm
Input: p; = (x;, y;),i =1, ..., N // Get measurement points

1: j =1,¢; < Append(p;) // Initialisation first object

2: fori =2to N do

3: if ||p; — pi-1ll2 < dc then

4: ¢; < Append(p;) // Add p; to the set ¢;
5:  else
6

7

8

if dim(c;) > m. then

0 = 21:1(cj e j(k)/dim(c;) // Object centroid
end if
9: J < j+1,¢; < Append(p;) / Start new object
10:  endif
11: end for

Output: O = {01(t), ..., 0;(t)}

3.3.2 Camera 3D position

The tracking module described in Sect. 3.2 returns a bound-
ing box [x, y, w, h] in the image frame, containing the (x, y)
pixel coordinates of the top-left corner of the box, its width
w and height A, which is then converted in the (C) =
{Xc, Ye, Z.} pin-hole camera reference system. Notice that
the depth information along the Z. axis is retrieved via the
RealSense™API. As a consequence, the centroid of the i-
th bounding box ¢;(tx) = [xc(t), ye(t), z(tx)]! can be
expressed in the camera reference system (Cy) at time #.

3.3.3 Sensor fusion

Given the set of objects Oy and the centroid(s) of the bound-
ing box(es) ¢; (), taken at the same time instant , we adopt
a spatio-temporal correspondence algorithm with the two
sets of measurements to decide if the tracked object is the
same or a new one has entered into the scene. Our algo-
rithm is implemented as a finite state machine, comprising
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the Init and Track states (see Algorithm 2). The rationale is
the following: in the Init state, we look for a correct match
between the j-th clustered object 0/ (#) and the i-th bound-
ing box centroid ¢; (f;), which occurs when their Euclidean
distance in the local LIDAR frame (L) is below a threshold
dp (this is obtained in (Lo) at the end of the initialisation
phase, where the path-finder stands in front of the robot
for the initial bootstrap). When the correct match is found
with the same j-th object o; for m, time instants, the j-
th object is “promoted” as PATH- FINDER 0’]'. (tx), while all
the other objects are labelled as OBSTACLE, whereupon the
state changes to Track. Notice that this procedure reduces
at the same time the computation times and the probability
of mismatch, while making the algorithm robust to sensor
failures (either the bounding box or the LIDAR cluster are
sufficient for recognition). In the Track state, at time #; 1,
the match is evaluated for the o} (#x+1) only, as all the pos-
sible new objects in Ok 1, by default labelled as UNKNOWN,
become OBSTACLE objects. When a mismatch between the
0; (tx+1) and c; (tx+1) occurs for m, time instants, the track
is rejected, i.e. all objects become UNKNOWN again, and the
algorithm switches back to the Init state. Possible mismatch
events happen if the Euclidean distance in (L) is higher
than dj, or the object 0; (tx+1) itself is removed during the
clustering association. Finally, the Cartesian coordinates of
the path-finder (x(x+1), y(#x+1)) in the local frame (Lj41)
are propagated back to the people recognition module (see
Sect. 3.2) to strengthen the human tracking, since such infor-
mation form a prior for the next path-finder detection.

3.4 Global human tracking

Since the human is used as a path-finder for future executions
of the path, her/his position should be estimated in the global
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Algorithm 2 Sensor fusion algorithm

Input: O(fx—1) in (Lx—1), O'(1) in (Lg), ¢; (1), s(tx)
1: O(ty—1) in (L) < RotoTranslate (O(tx—1), s(x))
2: O(tx) < Munkres (O(tk,l), O/(zk))

3. if State == Init then

4 dj=llojt) — ¢, Vj=1,..., M
5:  j* = argmin(d)

6: if dj* < dp then

7 pmg: <= pmg: + 1 // Number of matches
8: endif

9: if3o0; € O| pmy; > my then

10: 0j < 0;

11: 0k<—03b,‘v’k;&j

12: State <— Track

13:  endif

14: end if

15: if State == T'rack then
16:  d =10} (%) — ¢ (@)ll2
17:  if d > dp then

18: f‘moj <~ _fmo»; + 1 // Number of mismatches
19:  endif

20: if fmo; > m, then

21: 0j<—0‘j¥“,\7’j:1,...,Mk

22: State < Init

23:  endif

24: end if

Output: (x(f), y(t)) in (L)

reference frame (W). To this end, we first need to estimate
the robot position s(#x) in (W). This is accomplished fusing
together the encoder readings, the visual odometry and the
LIDAR points p; (tx) with an a-priori map of the environment
(if available) or solving a SLAM problem. The s(#;) robot
position and the path-finder local measurements in (L) are
used to obtain the Cartesian coordinates (x (7x), y(#x)) of the
path-finder in (W).

To track the human in (W), an estimation algorithm is
needed, whose main role is to further improve the accu-
racy of the reconstructed path and to further increase the
robustness to occasional sensor failures. In order to limit
the computational cost, we make the assumption that the
path-finder moves with a velocity following a Gaussian
probability density function. This random walk hypothe-
sis is quite standard in the literature and derives from the
lack of knowledge about the actual human motion inten-
tions. What is more, following the observation that humans
actually move with a smooth dynamic (Arechavaleta et al.
2008), the motion model can be approximated by a uni-
cycle dynamic (Farina et al. 2017). Hence, we explicitly
express the angular and linear velocities as states, and by
denoting with h(r) = [x(5), y(t). 0(t), v(1), 0 (t)]”
the state at time #; (where v(#;) and w(#;) are the forward
and angular velocities, respectively), we have the following
model

Fig.5 Example of path fitting and reconstruction. The red stars repre-
sent the input data. The green squares are the fitted waypoints, sampled
at a uniform distance along the path. The blue solid line is the recon-
structed, smoothed path, to be followed by the robot (Color figure
online)

x(tr) + 8;v(ty) cos(A(tr)) 00
B y(t) + 8rv(ty) sin(0 (1)) 00 )
B =| 60 +80@)  |+]0 0 [’7“ k}:
() 5 0 [ LMo @
o) 05

= f(h(t)) + Bn(t),

where 7(#;) is the acceleration noise affecting the linear and
the angular velocities that is assumed to be n () ~ N (0, E),
with E being its covariance matrix, and white (as customary).
This model is easily used to generate the predictions in an
Extended Kalman Filter (EKF) scheme.

4 Navigation

The aims of the navigation module are twofold: reconstruct-
ing the path followed by the path-finder in a form that can
be followed by the robot, controlling the motion in order
for the robot to follow the path with a good accuracy (small
deviations are inevitable but they should be kept in check).

4.1 Path reconstruction

As shown in the scheme in Fig.2, the path reconstruction
module continuously receives new information on the cur-
rent position of the path-finder from the perception module.
This way, it creates a dataset composed of a time series of
2D path-finder positions, which are updated in real-time.
The module executes a local path fitting of the estimated
path-finder trajectory. An example execution of the process
is shown in Fig.5. The path is reconstructed using the fol-
lowing steps.
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1. Once a new path-finder position is received, it is com-
pared with the previous one, and, if the Euclidean distance
is greater than a small threshold value, it is recorded into
the dataset. This action is necessary to handle the scenario
where the path-finder stops for a long time, in order to
avoid an unnecessary growth of the dataset.

2. When the new position qualifies for its inclusion into the
dataset, the x and y components of the data points are fit-
ted using a classical smoothing algorithm, i.e. the LOESS
(Locally Estimated Scatterplot Smoothing) (Cleveland
1979).

3. The fitted data points are then connected by a poly line,
and a number of waypoints are sampled at a uniform
curvilinear distance (corresponding to the green squares
of Fig.5).

4. The waypoints are connected by a G2 clothoid spline
(corresponding to the solid blue line of Fig.5), using
the algorithms and techniques discussed in Bertolazzi
and Frego (2018a), Bertolazzi and Frego (2018b), and
for which an efficient C++ implementation is available
(Bertolazzi et al. 2018).

The choice of the clothoid comes from the observation that
humans tend to follow the unicycle-like dynamics (Farina et
al. 2017) given in (2), which naturally generates clothoid
curves. What is more, due to the continuity of the curves and
of their curvature, clothoids have been proved to be effective
to mimic a human path by a robotic agent (Bevilacqua et al.
2018).

4.2 Robot control

When a path is reconstructed, following the steps described
above, the controller module takes the responsibility to exe-
cute a safe navigation of the robot following as closely as
possible the prescribed path. For this work, we employed the
path following algorithm described in Andreetto et al. (2017),
which is velocity-independent and avoids the singularities
presented by other common algorithms when the vehicle has
to stop and the velocity is set to zero. The velocity of the
robot is chosen by our controller based both on the distance
from the end of the path (corresponding to the path-finder
position), with the aim of following the path-finder at a con-
stant (curvilinear) distance, on the current path curvature (the
vehicle is slowed down when traveling a sharp curve), and
on the past robot velocities (to limit the maximum allowed
accelerations). Furthermore, the control module implements
a safety policy whereby, when an obstacle is encountered
along the path, the robot first slows down and then stops if
the path remains occluded (notice that, since the path-finder
have already travelled that area, the obstacle is necessarily
dynamic, e.g. a human being, hence it is expected to pass by
in a short time).
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5 Experimental results

In this section, we first present our experimental evaluation to
decide the most effective combination of solutions for vision-
based detection and recognition. Then, we will report and
discuss the performance of our system as a whole using a
real robotic platform.

5.1 Vision module

We have organised the analysis of the vision module along
three directions of prominent relevance for the application at
hand: detection, recognition and tracking.

5.1.1 Detection

The comparison among the different possibilities aims to
rate the computational efficiency (measured in FPS) and the
algorithm precision (measured as mean Average Precision—
mAP) from the data reported in the previously cited (Liu et
al. 2016; Redmon et al. 2016; He et al. 2017; Redmon and
Farhadi 2018; Cao et al. 2019). By observing the data, it
appears that the single-stage algorithms (SSD and YOLO) are
much faster with respect to the two-stage methods (R-CNN):
they execute around 5-10 times faster than R-CNN. Instead,
the precision of the three detectors is almost the same. Also
from our experimental evaluation, SSD and YOLO perform
better than R-CNN and OpenPose both in computational effi-
ciency and algorithm precision. Our final choice fell on SSD,
since it implements the CNN with a relatively small number
of parameters: this ensures low execution time at the price of
a slight detection inaccuracy (which is however compensated
by the LIDAR data fusion, as discussed in Sect. 3).

5.1.2 Recognition

The first tests for the recognition module considered the fea-
ture point matching on the PRID450 (Person Re-IDentification)
dataset (Roth et al. 2014), that contains thousands of cropped
images of people walking outdoors. The dataset is con-
structed with multiple shots of the same person in different
moments and perspectives. The results reported in Fig.6
show the main problems of this techniques with human
shapes. Humans present a highly deformable-body, with a
surface (clothes) that continuously changes its aspect. How-
ever, the key points matching is designed for a pattern that is
repeated often and clearly, as a consequence, the matching
performance is not reliable at all. For example, even with the
same subject with almost the same position (bottom-left cou-
ple of images in Fig.6), the key points matching fails with
most of the points. The exception is the bottom-right image
that has a perfect matching, but the two pictures examined
are exactly the same.
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Fig.6 Some example of
matching samples with the key
points matching on the
PRID450 dataset. There are
multiple failures: people who
present no key points, objects
such as bags that have plenty of
features, matches that connect
completely different parts of the
body, like shoulders with legs

Fig. 7 KNN applied to images elaborated with 11 real people and
ResNet50 (a) and with 2 real people and GoogLeNet (b), with 9 images
of each person. The query (images with the blue contour) is used to

Instead, the proposed recognition module based on KNN
has been also tested on the Market1501 dataset (Zheng et al.
2015) in conjunction with either ResNet50 or GoogLeNet.
Similarly to the PRID450 dataset, the Market1501 contains
sets of images of hundreds of people captured from differ-
ent perspectives and in different moments. As an example,
we selected two small datasets with 11 and 2 people respec-
tively, with and 9 images per person, then we “trained” the
KNN (i.e., we stored the data) with the representative points
extracted from the images, and retrieved the most similar
people. In Fig.7, we report an example of the queries com-
puted on the KNN classifier for the two chosen detectors. In
the test elaborated with the first dataset, the classifier pro-
duced approximatively 50% of correct responses for each
person (Fig.7a). Instead, with 2 real human beings and 9
images per person, the KNN obtained only one false pos-
itive over 14 pictures. This result shows that the proposed
KNN solution is appropriate for the application at hand (we

extract from the database the most similar pre-analysed images. The
green contour depicts the correct extracted person, whereas the red
contour highlights wrongly extracted persons (Color figure online)

are interested in only 2 classes, i.e., the path-finder and the
other people). Similar results were obtained with ResNet50
and GoogLeNet, and we selected the second to work with
the KNN since it achieved moderately faster computation
times.

5.1.3 Tracking

For the image tracker, our aim is usually to process long real-
time sequence with occasional total occlusions and changes
of shape. Instead, since the complete camera pipeline is
solved with a combination of detection, recognition, and
tracking, the internal tracking task is simpler, and deals with
changes of shape and partial occlusions. The requirement
is to solve the task, and to deal with changes of shape and
partial occlusions. The methods presented in Sect.2.2 were
evaluated in terms of execution time (for real-time imple-
mentation) and tracking performance.
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Table 1 Overview of the
frame-per-second (FPS) rate of

the image tracking algorithms. FPS 9 38
The performance was measured

on an Nvidia Jetson TX2 GPU

30 T T T T

2

®

IStart robot

1
Start leader

y (m)

Fig. 8 Experimental trajectories in a hallway. The path-finder and a
pedestrian walk in the same corridor with a partially occluding trajec-
tories (EXP- 01) and b missing and recovering of the path-finder with
the camera tracking (EXP- 02). Solid blue lines depict the trajectories

Based on our results (shown in Table 1), the best trade-
off choices from the application at hand were obtained with
the KCF, CSRT, MOSSE, GOTURN trackers, and based on
empirical evidence, we selected CSRT as the most suitable
solution for our purposes.

5.2 Experiments with the mobile robot

The algorithms presented in Sect. 3 and Sect. 4 were executed
on a Jetson TX2? for the acquisition of the RGB-D data and
the classification, while the LIDAR scans, the sensing data
fusion, and the navigation control were executed on a NUC,
both on board of the wheeled robot entirely assembled at the
University of Trento (see Fig.3a). All the reported experi-
ments were carried out in our department at the University

3 https://www.nvidia.com/en-us/autonomous- machines/embedded-
systems/jetson-tx2/
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followed by the robot, while the red stars mark the measured path-finder
positions. The green and red circles correspond to the positions of the
path-finder and the other pedestrian, respectively, when the inlet camera
snapshots are grabbed (Color figure online)

of Trento. The source code for the described framework has
been released and is publicly available.*

5.2.1 Reliability and robustness

In a first set of experiments, we aimed at testing the perfor-
mance and robustness of the path-finder tracking algorithm.
To this end, we recorded the real-time execution data in two
different areas of an hallway with multiple exits and in dif-
ferent conditions. In Fig. 8a, the robot follows the path-finder
while another pedestrian is walking nearby (EXP- 01). The
algorithm successfully rejected the disturbing effect of the
second pedestrian and it correctly followed the path-finder.
Similar results (EXP- 02) were obtained for crossing trajec-
tories or when the path-finder exits from the camera field
of view for the right turn. Even in those cases, the other

4 https://github.com/AlexRookie/robotdog.
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Fig. 9 An example of the actual path-finder path (red line) and robot
trajectory (blue line) for the maze-like environment of EXP- 03 (Color
figure online)

pedestrian is not wrongly classified as the path-finder, who
is instead correctly tracked back after the turn (see Fig. 8b).

5.2.2 Accuracy

For a qualitative analysis of the tracking and navigation per-
formance, we present in Fig.9 the comparison between the
robot trajectory (blue line) with the actual position of the
path-finder (red line). Both trajectories were captured with
a network of eight OptiTrack cameras for ground truth ref-
erence in a maze-like environment (EXP- 03). Notice the
path-finder starting position standing in front of the robot
during the bootstrap phase. The swinging path-finder trajec-
tory is dictated by the OptiTrack tracked markers placed on
the head of the human to avoid occlusions, hence oscillating
with the footsteps. From this picture it is evident that, in sharp
turns, the robot looses the image tracking of the path-finder,
but it is nonetheless able to exactly follow the path by means
of the fusion with the LIDAR data. Finally, we would like
to point out that the error in the trajectory followed by the
robot with respect to the human footsteps is in the range of
+25 cm, i.e. the typical encumbrance of the human body.

5.2.3 Robustness and accuracy for extreme manoeuvres
hindered by an intruder

InFig. 10 we report the experimental results in an hallway test
(EXP- 04), where another human (i.e., a dynamic obstacle)
moves in the scene. The path-finder was instructed to follow
a winding path, which is a challenging scenario since the
human necessarily and continuously exits from the field of
view of the camera along the sharp turns. An additional ele-

26

ath-finder

23
>y 22 7

21

20

Stop intruder
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Fig. 10 Trajectory travelled by the robot in EXP- 04 (blue line) and the
measured path-finder path (red line), with an additional person acting
as dynamic obstacle (black dashed line) (Color figure online)

ment of complexity was given by the intruder (black dashed
line) repeated interference with the robot operations. As vis-
ible in the plot, the path travelled by the robot (blue line)
remained consistently aligned with the measured path-finder
positions (red line). This experiments also shows the effec-
tiveness of the LIDAR clustering and association algorithm
presented in Sect.3.3, which tracks the intruder and then
rejects it for the evident inconsistencies with the visual data.

5.2.4 Crowded conditions

In a crowded scenario, the robot follows its path-finder along
awinding path, meeting several other people in the same hall-
way. In the first case (EXP- 05), the intruders made limited
movements (quasi static condition), while the robot navigates
between them. As reported in Fig. 11a the resulting robot tra-
jectory is consistent with that of the path-finder.

In a more challenging case (EXP- 06), also the intrud-
ers performed random trajectories, repeatedly obstructing the
robot and occluding the path-finder but without compromis-
ing the correct robot path following (see Fig. 11-b).

5.2.5 Discerning the similarity between the path-finder and
the intruder

Moreover, we tested the system safety (EXP- 07, included
in the multimedia complementary material) and the tracking
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Fig. 11 (a) Tracking experiments with the path-finder (red line) and
other persons in a crowded environment. In EXP- 05 a multiple intrud-
ers (black dashed lines) are predominantly acting as bystanders, while

performance of our system with two people sharing highly
similar visual features, and reported the results expressed in
the robot local reference frame (L) (EXP- 08 of Fig. 12a).

The screenshots of the camera tracking (Fig. 12b) show
moments in which the path-finder is correctly identified and
the second person is classified as negative (top snapshot)
and moments in which the intruder is misclassified as the
path-finder (bottom). Nonetheless, even in presence of mis-
classification the sensor fusion with the LIDAR comes to
rescue and the tracker correctly follows the path-finder (see
the trajectories in Fig. 12a). Further experimental evidences
of the effectiveness of the approach can be found in the video
accompanying this paper.

5.2.6 Navigation without the map

Finally, we tested the behaviour of the system in an a-priori
unknown environment, thus renouncing to the availability of
a global localisation system. Hence, in EXP- 09, the path-
finder and the robot positions are not expressed in the global
frame (W) but in an arbitrary reference frame (O). Figure 13
reports the navigation task performed using only the odome-
try, along with the actual global localisation for comparison
purposes and to overlay the odometry information on the
environment map.

The obtained trajectories (blue dashed line) show that
odometry localisation trivially drifts; nonetheless, the actual
path travelled by the robot (depicted with the blue solid
line) accurately follows the path shown by the human (solid
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in EXP- 06 b they follow random paths (coloured dashed lines). The
green line depicts the fitted path which will be followed by the robot
(Color figure online)

red line). This remarkable result shows how planning in an
unknown environment can be effectively executed by the
robot with the path-finder. Moreover, as can be observed in
the left side of Fig. 13, the navigation in the relative frame
(O) turns to be more robust than in (W), which is useless
when the robot is outside the a-priori known map (unless a
SLAM solution is adopted).

5.2.7 Quantitative evaluation

In order to give quantitative evidence of the satisfaction of
requirements Q1 and Q2 introduced in Sect. 1, we defined
two metrics. Requirement Q1 was measured by the per-
centage ratio r1% between the camera frames where the
path-finder is visible in the field of view of the camera over
the total number of frames. We also report the ratio 1%
between the number of frames where the path-finder is cor-
rectly tracked over the number of frame where s/he is visible,
as an additional validating metric of the reliability of the
vision module. The safety constraint Q2 was evaluated by
means of the curvilinear distance s between the path-finder
and the robot along the clothoid curve. From the values of
r1% reported in Table 2 we can immediately notice that, as a
major difference with respect to other visual servoing works
presented in the literature, in our experiments the path-finder
was not always detected by the camera. For instance, in EXP-
01 and EXP- 02, which took place in a long corridor, about
30% of the camera frames had no path-finder in sight, and
yet the average recognition accuracy % was fairly good.
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Fig. 12 a Tracking experiment 3 T T T
with the path-finder (red line)
and an intruder (black dashed
line) with highly similar visual
features for EXP- 08, expressed
in (L). b Screenshot of a
positive match of the path-finder
(top) and a wrong classification
of the intruder (bottom), which
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Fig. 13 Trajectory travelled by

the robot in (blue lines) and the
measured path-finder path (red
lines), in the global localisation
frame (W) (solid lines) and in
the relative localisation frame
(dashed line) (Color figure
online)

In EXP- 04, the ratio r1% drops to 10% due to the tortu-
ous path taken by the path-finder. Despite this, the tracking
was performed correctly (see Fig. 10), and the recognition
accuracy remained very good. In EXP- 08, due to similarity
between the two persons in the scene, a higher number of
wrong detections occurred. For that reason, we also reported
the ratio between the number of correct matches and the total
number of detections. As could be expected, the ratio was
lower than the one reported with the other experiments; how-
ever, we recall that with the feedback strategy of our pipeline
the recognition module can overcome wrong matches of the
path-finder (see Fig. 12a).

The results reported in Table 2 show that also the Q2
requirement is satisfied in all the different scenario evalu-
ated. In EXP- 01 and EXP- 02 the minimum distances are

20 40 60 80 100

x (m)

appropriately about 2 meters, and the path-finder is correctly
followed even with distances above 5 m. The average curvi-
linear distance is maintained between 1 and 3 m, which
ensures safety in addition to being widely recognised as
the preferred spatial distance for social interactions (Rios-
Martinez et al. 2015; Antonucci et al. 2019). More dangerous
values can be found for the EXP- 07, since the experiment
was specifically designed to trigger the robot emergency stop;
nevertheless, the minimum distance reached is above 50 cm.
The very high values reached by the maximum s distance in
EXP- 04, EXP- 05 and EXP- 06, i.e., experiments with tor-
tuous trajectories, are due to the obstruction of the intruder
persons on the robot path.
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Table2 Summary of the two

. . Exp In-frame ratio r% (Q1) Curvilinear distance s (Q2)
metrics for requlrem.ents Q1 and visible/total 1 % correct/visible > % avg s min s max s
Q2 among the experiments
reported in this paper EXP-01 67.6% 83.7% 3.970 2.632 5.150

EXP-02 78.2% 92.6% 3.328 2.015 4.486
EXP-03 - - 1.913 1.249 2.348
EXP-04 10.9% 68.6% 3.209 1.302 4914
EXP-05 39.8% 79.9% 2.071 0.722 3.188
EXP-06 - - 2.466 0.860 4.271
EXP-07 - - 1.005 0.568 1.642
EXP-08 57.5% 86.0%, (62.8%)* - - -

* 1% = correct/tracking

6 Conclusions and future work

In this paper, we have presented an approach for guid-
ing a robot across a natural environment populated with a
number of intruders. A human operator takes the role of a
path-finder and the robot follows, moving in a close neigh-
bourhood of the path physically marked by the human with
her/his footsteps. This application required a combination
of state-of-the-art techniques for robust perception and path
reconstruction. The experimental scenarios were chosen to
challenge the system’s robustness and reliability (e.g., with
frequent obstructions) guaranteeing at the same time the
continuous tracking of all the actors in the scene and the
repeatability of the experiments.

Different points remain open and are reserved for future
work. A first important direction is a theoretical study of
how the interaction between model based approaches and
neural networks can produce results with a guaranteed accu-
racy for people tracking. Another interesting issue is the use
of wearable haptic bracelets (Che et al. 2020) and the imple-
mentation of a protocol that the robot can use to notify to its
path-finder the occurrence of exceptional conditions (e.g.,
when the path is too close to an obstacle and the robot can-
not follow it within appropriate safety margins). Finally, we
are planning to investigate how the path information can be
shared among multiple vehicles for transfer learning even
without any a-priori map knowledge.
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