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Chapter 1

An Introduction to Numerical

Simulations of Molecular Systems

The study and understanding of biomolecules is an interdisciplinary field that encompasses

molecular biology, biochemistry, structural biology, biophysics and many other disciplines. Molec-

ular dynamics simulations have emerged as a powerful tool in this field, providing a mechanistic

view of the behavior of biological molecules. In this chapter, we will explore the principles

and methods of molecular dynamics simulations and their applications in comprehending the

fundamental processes that underlie life and the mechanisms underlying disease. We will also

briefly introduce some of the other sectors of science that are connected to molecular dynamics

simulations and explain why this tool is a valuable asset in answering questions that arise from

these fields.

1.1 A brief introduction to Molecular Biology, Biochemistry

and Structural Biology

Molecular biology, biochemistry, and structural biology are three closely related fields that

have revolutionized our understanding of life processes: they focus on the study of biologi-

cal molecules, their structures, functions, interactions and they play a crucial role in advancing

our knowledge of how living organisms function at the molecular level. In the following, I will

shortly introduce their contents: for an exhaustive treatment, the reader is referred to complete

books, such as [2, 3, 4].
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Figure 1.1: A representation of the Central Dogma in Molecular Biology [1]: the genetic information

can be transferred from nucleic acids to nucleic acids, but once translated into a polymer

chain of amino acids (a protein) it cannot be transferred back nor to other proteins. Credits:

Wikipedia.

Molecular biology [2] is the study of the molecular basis of life. It involves the study of nucleic

acids (DNA, RNA) and proteins – the building blocks of life (exemplar is the enunciation of

the Central Dogma in Molecular Biology, shown in figure 1.1). The field of molecular biology

has made significant contributions to our understanding of genetics, gene expression, and the

regulation of cellular processes. Molecular biology techniques are used to manipulate DNA and

RNA, allowing scientists to study gene expression and genetic mutations that cause disease.

Figure 1.2: Cartoon representation of

myoglobin, the structure of

which is one of the first ever

solved with the technique

of X-ray crystallography [5]

(PDB ID of the structure

shown here: 1MBN).

Moving into the realm of chemistry, biochemistry [3]

is the study of the chemical processes that occur within

living organisms. It involves the study of enzymes,

proteins, carbohydrates, lipids, and nucleic acids: the

molecules that make up living cells (see figure 1.3). Bio-

chemistry provides insights into the metabolic pathways

that drive cellular processes, such as energy production

and nutrient utilization. Biochemistry techniques are

used to isolate and study individual molecules, provid-

ing a detailed understanding of their structure and func-

tion.

Structural biology [4] is the study of the three-

dimensional structures of biological molecules. It in-

volves the use of techniques such as X-ray crystallogra-

phy (see e.g. figure 1.2), NMR spectroscopy, and elec-

tron microscopy to determine the structures of proteins,

nucleic acids, and other biological species. Structural

biology provides insights into how these compounds in-

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology_colorized%2Bspecial_transfer.png
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Proteins Nucleic Acids

Lipids Glycans

Figure 1.3: The four classes of biochemical compounds that are typically treated in biophysical simula-

tions.

teract with each other and with other molecules in the cell: this information is crucial for

understanding how biological systems function at the molecular level.

The fields of molecular biology, biochemistry, and structural biology are closely intertwined.

They share many common techniques and concepts, and their findings often complement each

other. For example, biochemistry techniques can be used to study the function of a protein,

while structural biology techniques can be used to determine its three-dimensional structure.

Molecular biology techniques can then be used to shed more lights on how the protein interacts

with other molecules in the cell. Despite the plethora of experimental techniques that has been

developed in the last century and the successes achieved with their use, which led to the birth

of the field of biotechnology, some limits of these disciplines still remain today. One of the most

peculiar one is related to the time and length scales associated with many relevant biological

processes: in fact, from chemical reactions to large-scales motions of molecular complexes and

proteins, these processes involve the motion of electrons and atoms that happen in the order of

femtoseconds (10−15s) or even smaller; one can easily imagine that it is very hard to be able to

experimentally observe every step of such processes with enough resolution and without disturb-

ing the process itself. It is here that molecular dynamics simulations come into help: mixing

experimental data, ab initio calculations and the laws of dynamics (both from classical and
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quantum mechanics) scientists are able to simulate what happens to every degree of freedom of

a biological system, every femtosecond or more. Among others, we report two examples where

molecular dynamics revealed to be essential to help scientific progress and human technology:

1. Prediction of tertiary structures of proteins [6], also whose native structure has not yet

been resolved, in arbitrary environmental conditions (such as pH [7], ionic concentration

and more): when we will be able to simulate processes on time scales of seconds/minutes,

given the genetic code of a species it will be possible to predict the structures of all proteins

for which the genome encodes information (modulo the intrinsic weaknesses of the model

used, of course). Although many argue that the problem has already been solved with the

advent of AlphaFold [8], many others (including myself) believe that such an extreme static

and data driven approach as AlphaFold risks losing essential information about the rules

and first principles underlying folding, which involves the reconstruction of the dynamical

pathways and, in turn, can be clarified more deeply via the use of molecular dynamics

simulations.

2. Binding free energy calculations: this has potential applications in the pharmaceutical field

(computational drug design, see e.g. [9]) and also in more fundamental science sectors, to

characterize for example chemical reactions involved in charge transport, as happens in

complexes responsible for photosynthesis [10].

1.2 A Short Overview of Molecular Dynamics

After anticipating the potential of molecular dynamics applied to biology, in this section we

briefly review the main theoretical reasons that leads to treat a molecular system with the

engine of classical molecular dynamics (the theoretical framework of my whole thesis), and not

a more fundamental theory. Since it is a well-established topic, I will not seek for completeness

but try to be exhaustively short. A rich and elaborated treatment of the topic can be found in

many textbooks: for example, I took inspiration from [11] and from [12] for the derivation of

Newton’s equations for the nuclei from an ab initio framework.
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1.2.1 From quantum mechanics to classical force fields

(a)

(b)

Figure 1.4: Isosurfaces of the electronic charge densities, obtained at the DFT level, for two different

configurations of the alanine dipeptide, (a) more open and (b) with an hydrogen bond

connecting the oxygen (in red) on the right-hand side to the hydrogen (in white) bonded to

the left-hand sided nitrogen (in light blue).

A reasonable starting point that a theorist would take to model a molecular system would be

non-relativistic quantum mechanics. Although it is known from decades that coupling special

relativity to quantum mechanics leads to the most precise and predictive theory that humans

have built up to now, i.e. the Standard Model of Elementary Particles [13], it would be un-

necessarily laborious and probably practically unfeasible to start from such a fundamental and

deep description to investigate biomolecular phenomena. We will then assume that relativistic

effects can be neglected and that the only fundamental interaction that is necessary to treat

molecular systems at our scales of interest is the electromagnetic interaction, and to be more

precise the electrostatic part of it. We can neglect weak and strong nuclear interactions because

we do not look into spatial or energetic scales where their effects become relevant. Moreover,

we are interested in modelling atoms as classical point-like particles (describing their nuclei):

the electrons will be in fact reduced to hidden degrees of freedom whose contribution will be

indirectly taken into account. As a consequence, we will not take into accounts excited states

and we will not allow for chemical reactions to occur.

After this preface, we can write down the generic quantum Hamiltonian (omitting the oper-

ator symbol ·̂ for convenience) of a molecular system:
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H(r,R,p,P) =

Na∑
I=1

P2
I

2MI
+

Ne∑
i=1

p2
i

2mi
+

e2

4πϵ0

 Na∑
I ̸=J

ZIZJ

|RI −RJ |
+

Ne∑
i ̸=j

1

|ri − rj |
−

Na+Ne∑
i,I

ZI

|ri −RI |


(1.1)

where R = {RI} and I, J = 1, . . . , Na are indices for each atom’s nucleus, r = {ri} and

i, j = 1, . . . , Ne for the electrons and the potential energies V are sums of two-body terms.

Born-Oppenheimer Approximation

The time-evolution of a system would be in principle described by the Schrödinger equation

involving the wave function Φ(r,R; t) that fully describe the system:

iℏ
∂

∂t
Φ(r,R; t) = H[Φ(r,R; t)] (1.2)

but the applicability of this picture is limited if the number of degrees of freedom becomes larger

and larger. In this scenario, the Born-Oppenheimer approximation comes into help by recogniz-

ing that the motion of the electrons and the nuclei can be decoupled because of the substantial

differences among the masses of these two objects. Considering the worst-case situation with

one single nucleon:
me

Mn
≃ 1

1836
≲ 0.00055 (1.3)

With this in mind, one can reasonably assume that the motion of the electrons happen essentially

with fixed positions of the nuclei. In other words, the wave function can be expressed in a

separated way as follow:

Φ(r,R; t) ≃ Φbo(r,R; t) := ψ(r|R; t)χ(R; t) (1.4)

where ψ(r|R; t) is the electronic wave function and its modulus square is a conditional proba-

bility, i.e. the probability of the electrons to be measured in position r at time t provided that

the nuclei wave function has the form χ(R; t).

We can push the approximation even further. In fact, if we assume that there is no external

source of photons, we can consider the electrons to be in their ground state. In fact, even with

a thermal bath, at the typical temperatures that are considered in biochemical systems (those

of interest in this work) the thermal energy corresponds to few kJ/mol:

T ∼ 300K ⇒ kBT ∼ 2.5kJ/mol (1.5)
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while, as a reference, the energy needed for the electron in the ground state of an hydrogen atom

to be excited to the first excited state is ∆E0,1 ∼ 10eV ∼ 965kJ/mol. We can use this argument

to strongly simplify the description of molecular motion by removing the time dependency from

the electronic component of the wave function and to consider the electronic problem as a ground

state problem. Equation (1.4) reduces to:

Φbo(r,R; t) ≃ ψ0(r|R)χ(R; t) (1.6)

and the Schrödinger equation (1.2) can be decoupled into two equations:
[Te(r) + Vee(r) + Vae(r;R)]ψ0(r|R) = Eel(R)ψ0(r|R)

iℏ
∂

∂t
χ(R, t) =

[
− ℏ2

2MI
∇2

R + Vaa(R) + Eel(R)

]
χ(R, t)

(1.7)

Here, the variable R in Vae(r;R) is essentially a fixed set of parameters, because the nuclei’s

positions are fixed, in the sense that every time that the nuclei move, the electrons “instantly”

reaches a new ground state. This is also called adiabatic approximation and it holds as long

as one is interested in timescales of the order of femtoseconds and more, which are the typical

scales of nuclei’s motion. Eel(R) is nothing but an effective potential (or also called potential

energy surface) because it is obtained by integrating over the electronic wave function.
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Molecular Force Fields and classical Molecular Dynamics

(a) (b)

Figure 1.5: Two very different conformations ((a) named open, (b) named closed) of the Adenylate

Kinase (PDB code: 1AKE), shown in two different representations: New Ribbon and CPK.

In this way, one can see that even if the secondary structures are preserved, the configurations

that are obtained with classical molecular dynamics carry a huge amount of information,

provided by the cartesian coordinates of every atom in the molecule at every simulated time

step.

The second equation in (1.7) in principle would give the dynamics of the nuclei’s wave function.

However, quantum delocalization effects are usually neglected for the nuclei (see [12] for a

formal derivation based on the classical formal limit ℏ → 0), and one is satisfied with a classical

description of the nuclei’s motion, via Newton’s equations:

MI
d2

dt2
RI = −∇I [Vaa(R) + Eel(R)] (1.8)

This protocol goes under the name of Born-Oppenheimer Molecular Dynamics and its use for

large systems is often unpractical, because it requires the knowledge of Eel(R) everywhere for

it to be differentiated or, alternatively, to numerically calculate (by discretizing the differential

equations) it for every step of the nuclei. Another significant example of a simulation protocol

that is similar to this picture, but that does not rely on the adiabatic approximation, is the

Car-Parrinello Molecular Dynamics protocol [14]: it couples Newton’s dynamics of the nuclei

to the famous self-consistent approach, named the density functional theory (DFT) [15], for the

electronic problem by considering a time-dependent surrogate of the electronic wave function of

the valence electrons alone, with its own Newton-like equations for the dynamics coupled to those
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of the classical nuclei (see examples of representations of electron densities obtained at the DFT

level in figure 1.4b). All these methods, which are identified as ab initio molecular dynamics

methods, requires a partial quantum description of the system and thus become computationally

expensive, limiting their applications to small systems (around 103 at most).

For bigger systems (up to 109 atoms), like explicitly solvated biochemical molecules and com-

plexes (proteins, nucleic acids, lipids, carbohydrates), the scientific community decided instead

to put a lot of effort into a simplified characterization of Vaa(R) + Eel(R), firstly by making

an ansatz for a suitable functional basis with free parameters and then finding an appropriate,

mainly experimentally based, parametrization. From more than thirty years ago until now it

is become a standard [16] to approximate it with two terms, called bonded and non-bonded

potentials:

Vaa(R) + Eel(R) → V (R) = Vb(R) + Vnb(R) (1.9)

Vb(R) is a sum of two- three- and four-body terms that depend on distances, angles and torsional

angles between nuclei, while Vnb(R) is a two-body term. The set of forces that are obtained by

minus the gradient of V (R) is commonly called a force field. More explicitly, (one of) the typical

functional form(s) of a molecular force field for a system of N nuclei (or atoms, equivalently) is:

Vb(R) =
∑
i,j

Bij

2
(rij − r0,ij)

2 +
∑
i,j,k

Aijk

2
(θijk − θ0,ijk)

2+

+
∑
i,j,k,l

∑
n

Dijkl

2
[1 + cos(n · χijkl + γn)] +

∑
i,j,k,l

Iijkl
2

(ωijkl − ω0,ijkl)
2

(1.10)

Vnb(R) =
∑
i,j

[
1

4πϵ0

qiqj
rij

+ 4ϵij

(
σ

rij

)12

− 4ϵij

(
σ

rij

)6
]

(1.11)

These seven terms are chosen mainly by following two criteria: simplicity and heurism. We can

spend few words for each of them:

1. the first one, called the bond term, approximates the energy of the covalent bond between

two atoms with a quadratic potential; this approximation is reasonable for distances close

the minimum one, r0,ij (it is, after all, the first non-zero, non-constant term of a Taylor

expansion around a minimum reference distance r0,ij).

2. the second one, called the angle term, its another quadratic term that aims at preserving

specific geometries between specific, mutually bonded triads of atomic species; the same

argument on the quadratic form of the bond term also holds here.
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3. the third one is called the torsional term and it involves indeed the torsional angle formed

by four atoms; it has the same geometric purpose of the angle term, i.e. to maintain some

geometrical properties among the atomic species involved in the torsional angle taken into

account, but the functional form is now a truncated Fourier series (the sum over n is a

finite sum, with usually 4/5 terms at most, per each torsional angle).

4. the fourth one is called the improper term and it involves other torsional angles; its purpose

is to impose a given planarity (meaning: keeping the improper ωijkl close to the equilibrium

value ω0,ijkl of the quadratic function) to some specific fragment of a molecule, a thing

that would not be guaranteed by the sole torsional term.

5. the fifth term is clearly a Coulomb potential, with qi and qj partial charges of the atoms

involved in the interaction; it usually act to couples of atoms that are not involved, to-

gether, in a bonded interaction (with some exception for the torsional terms that we will

neglect here). In fact, one could argue that every interaction between atoms is electrostatic

in nature (as we assumed at the beginning of this section for the quantum treatment), but

after all the approximations, in the classical MD picture the concept of bare charge itself

loses its meaning: this term is suggested by fundamental intuitions but its interpretation

is tricky and not always as simple as it looks like.

6. the sixth term is the short-range, hard core repulsion term of the Lennard-Jones potential

and its aim is to avoid overlapping of atoms, as dictated by the Pauli exclusion principle.

7. the seventh and last term introduces the so-called London dispersion forces which are

caused by dipole-dipole interactions of instantaneous dipoles; it is an attractive terms that

nevertheless vanishes pretty fast as the distance between the couple of atoms involved

increases.

I want to spend few words on the meaning of the parameters that appear in all these terms.

By looking at (1.10) and (1.11) one could legitimately think that each of them depends on

the specific atoms that are involved, for example atom i and j for kij and r0,ij . In reality,

one of the power of classical force fields is that the parametrization is based on the nature of

the atom (H,N,O,S,C,. . . ) and its chemical environment. This is a huge difference, because it

makes the parameters no more system specific and ideally transferable to whatever system one

is interested to simulate. Unfortunately, this is an optimal situation because in the end every set

of parameter is affected by a bias that depends on the specific experiments used to make the fit.
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Another weakness of classical force fields is that transferability in thermodynamical variables is

not guaranteed. In some sense, in fact, the huge difference between ab initio and classical MD

to find forces that govern the motion of the nuclei is that the parametrization of classical force

fields are done in certain experimental conditions, which are typically T ∼ 300K, P ∼ 1atm and

I = 150mM of salt concentration in solution. In some sense, for the quantum derived forces one

can either assume that thermodynamics does not affect the dynamics of the electrons or one can

include them explicitly in the electrons’ dynamics (in the same way it can be included in the

dynamics of the nuclei, as we will discuss in the next paragraph). In other words, one should

always keep in mind that V (R) = V (R|T, P, I, . . . ) should be intended more properly as a free

energy.

Nevertheless, in the last decades classical MD proved to be a promising and powerful tool to

access time and spatial scales that are prohibited to experimentalists, trying to help answering

questions that go from more biological and fundamental sectors to more application-oriented

ones, like computer-aided drug design (see e.g. [17]) and material design (see e.g. [18]).

1.2.2 Statistical Mechanics and thermostats

αμ
βm

αω

Figure 1.6: Schematic representation of a system (blue particles) in thermal contact with an external bath

(red particles) via harmonic couplings, as described in the Caldeira-Leggett semi-empirical

model ([19]) to treat e.g. a system in contact with a thermostat.

In the last paragraph we concluded that, under certain conditions, we can treat the molecular

systems as made by the sole classical atomic degrees of freedom (one per each spatial coordinate

of each atom in the molecular system under study). We also derived the potential energy term
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of an Hamiltonian that we have not yet explicitly written. It reads:

H(R,P) =

N∑
i=1

P2
i

2mi
+ V (R) (1.12)

However, the framework provided by Newton’s equations alone is not enough for a proper treat-

ment: in fact, especially when we speak about biomolecules, the experimental conditions and

the natural environments are incompatible with an Hamiltonian, energy conserving description.

Moreover, a typical biomolecule is immersed into a solvent (water molecules and ions) that

strongly affects its dynamics. Consequently, we are led to conclude that the proper framework

is characterized by the two following properties:

1. The possibility to control experimental conditions, such as constant Temperature, constant

Pressure, constant Volume ⇒ we need to be consistent with the framework of Statistical

Mechanics

2. The possibility to include the effect of the environment (solvent or similar) explicitly ⇒
e.g. for solvated biomolecules, we need to treat it preserving bulk properties (as close as

possible to the experimental conditions), so we need a good set of boundary conditions

(discussed in the next paragraph)

3. In case we cannot include the solvent explicitly, we can make use of an implicit solvent

model; this argument will be addressed in Chapter 3 of this thesis

We restrict the treatment to the canonical ensemble (N,V,T fixed), because for large systems

it is considered a reasonable approximation for different experimental conditions, like NPT or

µVT ensembles. In order to be consistent with the framework of Statistical Mechanics, we need

to find a way to calculate the Boltzmann distribution of our system, and the related partition

function:

PNVT(R,P) =
1

Q
e−βH(R,P) Q :=

∫
V N

dR

∫
RN

dP e−βH(R,P) (1.13)

so that, in turn, we can calculate the ensemble averages that are assumed by the theory to be

the theoretical counterpart of experimental measures of the system at equilibrium. For a generic

observable O:

⟨O(R,P)⟩ :=
∫
V N

dR

∫
RN

dPPNVT(R,P)O(R,P) (1.14)

Due to the complexity of the integrals in (1.13),(1.14), even for very simple Hamiltonians, one

is obliged to fall back to numerical sampling: this is one of the main driving forces that lead to
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take advantage of Molecular Dynamics simulations. In fact, assuming that one can perform an

MD simulation by keeping N,V and T under control, after an initial transient, the phase space

points generated by this simulation would be distributed according to PNVT(R,P) and in turn

one would be able to estimate ⟨O(R,P)⟩ as follow:

⟨O(R,P)⟩ ≃ 1

Tsim

T∑
t=1

O({R(t)}, {P(t)}) = ⟨O(R,P)⟩T (1.15)

where Tsim indicates the total number of time steps performed in the simulation.

To conclude, historically scientists developed a lot of ways to couple MD to algorithms that

generates configurations sampled according to PNVT(R,P): these methods go under the name

of thermostats and in this thesis we mainly used the Langevin thermostat (as used in e. g.

[20]) and the stochastic velocity rescaling thermostat [21]. These methods are coupled to the

integration of the equations of motion (1.8) and act so to preserve the distributions of the

momenta of the particles consistent with the equipartition theorem, which relates the average of

the kinetic energy of the system to the temperature:

⟨K⟩T ≡

〈
N∑
i=1

P2
i

2mi

〉
T

=
3

2
NkBT̃ (1.16)

Of course, here T̃ is the target value, while the instantaneous value T (t) =
2K(t)

3NkB
can fluctuate

along the simulation.
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1.2.3 Periodic Boundary Conditions and Particle-Mesh Ewald

Figure 1.7: An example of partial visualization (only 26 out of the infinite copies of the cubic box) of

the effect of using periodic boundary condition for simulating a solvated T4 lysozyme.

The problem of how to treat boundary conditions in a finite-size box simulation arises from the

boundary effects that are typically artifacts of the simulation. In fact, in an realistic experiment

of a system with N,V and T fixed, the size of Nexp is ∼ NA ∼ 1023, while in our simulations

the groups with the highest computational power available in the world are still bound to

Nsim ∼ 109. As a consequence, putting them in a realistic box with reflecting walls translates

into a proportion of solvent molecules (focusing on biomolecular systems) that is subject to

non-bulk behavior much larger than the one in the experiment, whose effect on the sample can

be considered negligible. To overcome this limitation, a it is a good practice to use the so-called

periodic boundary conditions (PBC), which essentially consist in assuming the simulation box

of the system of Nsim to be surrounded by (ideally) an infinite number of identical copies of

the same simulation box, in every direction (see figure 1.7 for the representation of the first

26 = 33 − 1 copies around the box).

Using PBC has the advantage to reproduce the properties of the bulk system without the

need to simulate N ∼ Nexp particles [11], but one has to carefully choose the dimensions of the

box in order to avoid self-interactions of the biomolecule with itself. Moreover, some problems
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strictly related to the use of PBC in NVE simulations [22] and to a finite-size effects to the

diffusion coefficient of the particles also in NVT [23] remain unsolved, although the scientific

community tends to consider them negligible.

One very powerful consequence that the use of PBC in biomolecular simulations have is the

possibility to use them in combination with the Ewald Summation derived methods to calculate

long-range interactions (here Coulomb interactions). In the last years, the most used protocol

is the Particle Mesh Ewald (PME) [24]: for the Coulomb term, it essentially assumes that

every charge interacts with every other charge in the infinite set of copies of the simulation box,

excluding only itself. In formal terms, the total Coulomb potential is assumed to be the sum of

the interactions between the particles within the “principal cell” and the interactions between

each particle i in the principal cell and all the other particles in the copied cells:

Vcoul(R) =
1

2

N∑
i,j ̸=i

qiqj
4πϵ0|Rij |

+
1

2

N∑
i,j

∑
n̸=0

′ qiqj
4πϵ0|Rij + nL|

(1.17)

where the sum over n is over every vector of the lattice generated by the principal axes defining

the box and its is a primed sum because it avoids the self-interactions of the charges; L is a

generic box dimension (the box is only required to have a shape that perfectly tile into a three-

dimensional crystal, whatever the lengths of the sides). This specific shape of the Coulomb

potential is admitted thanks to the periodicity imposed by the PBC, and it turns out that this

sum can be well approximated by the following quantity, called the Ewald summation, which

is a sum of a short-range term in real space Vsr(R), a long-range term in reciprocal (Fourier)

space and a self-interaction correction term:

Vcoul(R) ≃ 1

2

N∑
i,j ̸=i

qiqj
4πϵ0|Rij |

erfc
[√
α|Rij |

]
+

1

2

1

V

∑
k ̸=0

4π

k2

∣∣∣∣∣
N∑
i=1

qie
iRi·k

∣∣∣∣∣ e−k2/4α −
√
α

π

N∑
i=1

q2i

(1.18)

which can be shown [11] to have a computational cost that scales as O(N3/2) in N . In a

nutshell, the PME method is nothing but the use of Ewald summation for the calculation of long

range interactions, making use of fast Fourier transform algorithms to calculate the long-range,

reciprocal space part of the sum: the computational cost in this case scales as O(N · log(N)).
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Chapter 2

The Impact on Structure and

Dynamics of point-wise Missense

Mutations in SBDS Protein

2.1 Introduction

Figure 2.1: Cartoon representation of the SBDS protein (frame V taken from NMR structure [25], N-

terminal on the left, C-terminal on the right). On top of it, the residues undergone mutation

in this work, whose α carbons are labelled in black.
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In this chapter we give an overview of a work that couples atomistic molecular dynamics simula-

tions and small-angle x-rays scattering (SAXS) experiments of a specific protein, called Shwach-

man Bodian Diamond syndrome protein (from now on called only SBDS). SBDS is involved in

a lot of biological processes (summarized in 2.2, image taken from [26]). In particular, multiple

works [27, 28, 26] correlate the presence of mutations in the human gene of SBDS (and, in turn,

also in the protein itself) with a rare disease, called Shwachman-Diamond Syndrome (SDS).

Figure 2.2: Cellular functions involving SBDS. Image taken from [26].

We decided to focus on 12 point-wise mutations of the SBDS gene found in patients with

SDS, namely: R19Q, N34I, K67E, C84R, C119Y, R126T, S143L, K151N, I167T, R175W, I212T,

R218Q (highlighted in 2.1). These are missense mutations, meaning that they cause the substi-

tution of one single amino acid in the polypeptide chain without interfering with the synthesis

process. Mutations in the SBDS protein associated with diseases are typically truncating mu-

tations rather than missense mutations. Missense mutations are often coupled with truncating

mutations, whereas missense mutations in conjunction with the WT form are never identified in

patients with SDS. This observation suggests that the wild-type form and missense mutations

result in a healthy phenotype. Despite the earlier observation, it is noteworthy that the presence

of both a truncating mutation and a missense mutation still leads to the manifestation of the

disease. This finding suggests that missense mutations are not functionally equivalent to the

wild-type (WT) form, indicating their non-functionality in disease pathology. For these reasons,
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a study of the missense mutations involved in the disease could shed lights on the molecular

origins that lead to the disease. More details on the involvement of SBDS in the genesis of

a ribosome, and the relation of this process with the SDS disease are reported in the next

paragraphs.

2.2 SDS and the ribosome maturation protein SBDS

2.2.1 SDS

Figure 2.3: Mechanism of

inheriting of au-

tosomal recessive

diseases, like SDS.

R indicates the

dominant allele,

while r the reces-

sive one. Credits:

Wikipedia.

SDS is a rare genetic disorder that affects multiple organ systems,

including the bone marrow, pancreas, and skeletal system. SDS

was first described in 1964 by two physicians, Harry Shwachman

and Louis Diamond, who observed a cluster of patients with sim-

ilar clinical features, including pancreatic insufficiency, skeletal

abnormalities, and bone marrow disfunction.

The clinical features of SDS can vary widely, but some of the

most common symptoms include failure to thrive, recurrent in-

fections, anemia, neutropenia, and thrombocytopenia. Patients

with SDS may also develop skeletal abnormalities, such as short

stature, scoliosis, and rib cage abnormalities. Another hallmark

of SDS is pancreatic insufficiency, which can lead to malabsorp-

tion of nutrients and chronic diarrhea.

Diagnosis of SDS typically involves a combination of clinical eval-

uation, laboratory tests, and genetic testing. Treatment is largely

supportive and aimed at managing the various complications of

the disorder.

Patients with pancreatic insufficiency may require enzyme re-

placement therapy to aid in digestion, and those with bone mar-

row dysfunction may require transfusions or bone marrow trans-

plantation. Some patients may benefit from growth hormone therapy to improve growth and

development.

2.2.2 SBDS and EFL1 cooperativity for eIF6 release from the 60S subunit
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Figure 2.4: Image adapted from [29].

The ribosome is a complex molecular machine

involved in protein synthesis, and its forma-

tion requires a series of complex steps. One

of the last steps in this process involves the

detachment of eIF6 from the upper subunit of

the ribosome itself, called 60S subunit, allow-

ing it to attach to the 40S subunit and form

the mature ribosome. This detachment pro-

cess is also mediated by the proteins SBDS

and EFL1.

Mutations in the SBDS gene have been shown

to cause dysfunction in this process, leading

to the development of symptoms associated

with ribosomopathies. One example of such

a ribosomopathy is SDS. However, the precise

molecular mechanisms by which these muta-

tions affect the function of SBDS are not yet

fully understood. The most supported version

of this action mechanism can be summarized in the following steps [29, 30]:

1. initially the eIF6 factor is bound to the 60S subunit, around a zone that is named P-site

(part a of 2.4) [29]

2. at some point, the free SBDS binds to the 60S subunit, thanks to its RNA binding affinity

provided by domain I (part a of 2.4) [29]

3. successively, EFL1 binds the 60S subunit, close to SBDS (part b of 2.4) [29]

4. after the binding, SBDS cooperate with EFL1 to perform its GTP-ase function by con-

verting a GTP molecule (which was already bonded to the free EFL1) to a GDP and a Pi

group [30]

5. the Pi group is released from the complex, and this release induces a conformational change

in SBDS which consists in a 180o of domain III and a smaller rotation of domain II around

the hinges connecting I-II and II-III (part b of 2.4) [30]
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6. this conformational change leaves to EFL1 the space to compete with eIF6 in binding the

P-site, eventually leading to the removal of eIF6 (part b and c of 2.4) [29, 30]

7. in the final step, both SBDS and EFL1 unbind from the 60S subunit which is free to merge

with the 40S subunit to form the mature ribosome (part d of 2.4) [29, 30]

To gain insight into this process, we have simulated the behavior of SBDS in solution both

in its wild-type (WT) form and in the presence of 12 of these known mutations, by means of

all-atom explicit solvent molecular dynamics. By doing so, we aimed to determine how the

protein’s conformational changes are influenced by the mutations and whether these changes

affect the protein’s ability to attach to the 60S subunit and perform its function. By comparing

the ensemble of conformations of the WT and mutated SBDS in solution, we were able to gain

high-resolution insights into the mechanisms of action of SBDS mutations in SDS. This approach

may eventually help identify new targets for therapeutic intervention in patients with SDS and

other ribosomopathies.

2.3 In Silico Simulations

In this section we firstly describe the observables we decided to calculate and what is the infor-

mation we aim to extract from them. Then, we show the results obtained and we discuss them,

pinpointing strengths and weaknesses of the claims that can be done by looking at the values

of the computed quantities. We omit to describe the details on the simulations (force fields,

protocols and so on): an exhaustive treatment of this matter is reported in the appendix.

2.3.1 Workflow of the investigation

As for every molecular dynamics study of complex biological systems, and more generally, in

order to solve the differential equations that describes the time-evolution of a dynamical system,

one needs an initial configuration. In our case, we picked 2 structures out of the 20 from the PDB

file with ID 2KDO (Figure 2.5). These are NMR structures of the human SBDS protein solved

in the following conditions: pH = 7.2, T = 293K, ionic salt concentration I = 0.071M (1.0

mM DTT-2, 50 mM sodium phosphate-3, 20 mM sodium chloride-4). It is known from Small

Angle X-rays spectroscopy studies [28] on SBDS from A. fulgidus as well as from human SBDS

that the protein, free in solution, explores three main conformational basins, named stretched,

closed, and relaxed conformations (Figure 2.6).
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Figure 2.5: NewCartoon visualization of the open (blue) and closed (red) conformation (indices II and

V in the PDB ID: 2KDO). These are the starting configurations used for the sets of the

so-called open and closed simulations presented in this work.

Figure 2.6: Adapted from [28].

The three basins are characterized by different an-

gles between Domains I,II and III and an overall differ-

ent size of the protein. These basins can be related to

the conformational variability observed in SBDS when

bonded to the 60S subunit, which is necessary for its in-

teraction with ELF1 during eIF6 release, although the

absence of the whole environment that is instead present

during SBDS functioning makes a direct, quantitative

comparison arguable.

The variability observed in the SAXS structures is at

the origin of the choice for at least two different starting

configurations, among the 20 available from NMR: it is

a compromise between the computational resources we

had access to and the aim to make a configuration space

exploration as vast and complete as possible (for each

starting configuration we wanted to produce a 500ns-

long production run), with the highest number of repli-

cas (i.e. higher chances to explore different conforma-

tions). As already anticipated and as explained in more
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detail in the appendix of this chapter, we then proceeded to mutate each of the two starting con-

figurations according to the 12 mutations listed before, for a total of 26 starting configurations

(considering also the wild type).

In this paragraph I will skip the details on the equilibration and simulation protocols followed.

These are discussed in the appendix. I will instead review the rationale that stands at the basis

of the analyses we performed, in order to probe some physical properties emerging from the

simulations. The aim is twofold: to compare these properties to experimental facts and to see

if there are matches/mismatches; to make insightful observations on the dynamical behaviour

of the protein variants with respect to the WT, interpreting high-resolution information coming

from atomistic molecular dynamics that are inaccessible to experiments, and use them to shed

lights on the mechanisms of action of the mutations on the physiological function of SBDS.

After equilibrating the solvent (pressure 1atm, temperature 310K), during which the protein

was constrained to remain in the starting configuration, we calculated the RMSD with respect

to the first frame of the production run (500ns). The purpose of this analysis is to qualitatively

assess the reach of a stable, equilibrated conformational basin in each simulation, to use as a

reference for the subsequent analyses. In fact, we expect the protein to be far away from a

(local) minimum of its free energy. This is due to two main facts: the presence of a new amino

acid (not in the WT simulations of course) as a consequence of the in silico mutation, a fact that

surely requires a settlement process; the potential discrepancies between the structure resolved

with NMR and the parametrization of the force field used for the run. We are aware that there

exist more sophisticated and quantitative methods that are prone to be precise in this kind of

assessments, but we decided to keep it simpler, for the sake of interpretability. More details on

this point are discussed in the Results and Discussion section.

After discarding the equilibration part of the production run, we proceeded to monitor the

RMSF per residue. In general, we focused on the mobility of the hinges and specifically on

the hinge connecting domain I and domain II. In fact, as pinpointed by the cryoEM structures

reported in [29], after SBDS binds to the 60S ribosomal subunit, it undergoes a conformational

change that requires a certain flexibility in the above-mentioned hinge and this motion is neces-

sary to let EFL1 carry out its function. According to this observation, we wanted to probe this

flexibility in our runs (protein alone, in solution) to check if it is already particularly affected

(lower RMSF on the residues of the hinge with respect to the WT). We speculate that a re-

duced mobility of the hinge in the protein free in solution can be correlated to a similar reduced

mobility of the protein bound to the 60S subunit.
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We then monitored a free energy profile that emerges using the radius of gyration and the

angle between the center of mass of the 3 domains as collective variables (CVs). The goal of

this analysis was to have a low-dimensional representation of the conformations explored in the

equilibrated part of every production run. Thanks to that, we were able to visually inspect the

basin(s) explored and make qualitative and quantitative comparisons between the simulations,

exploiting similarities and discrepancies. Moreover, we expanded the free energy by including

a third CV, the dihedral angle formed by the center of mass of, respectively: domain I, hinge

connecting domain I and II, hinge connecting domain II and III, domain III. We used this analysis

to perform a clustering and to detect the most populated clusters within each simulation. We

then used the configurations belonging to these clusters to calculate another quantity, which we

are about to present.

We defined a quantity alpha, named SASA-based binding affinity estimator (see appendix for

the formal definition) that is based on the van der Waals area of the atoms of each charged residue

that is exposed and accessible to the solvent. This quantity’s definition is in fact based on the

well-known solvent accessible surface area (SASA), an observable typically used in molecular

dynamics simulations also to model the free energy of solvation (the reader will find a more

exhaustive discussion on this topic in the next chapter). The scope of calculating α, averaged

on the frames that belongs to the most populated cluster (as anticipated before), was to have a

semi-quantitative measure of the affinity of non-specific Coulombic binding of domain I to the

ribosomal RNA that is present in the 60S subunit. It is in fact hypothesized by de Oliveira et

al. [25] that domain I (and not domain III as was supposed before by homology considerations)

is responsible for the binding of human SBDS to the 60S subunit, thanks to the diffused positive

charges on this domain and the negatively charged phosphate groups on the backbone of rRNA

(see Figure 2.7).

A last analysis focuses on the dynamics of the mutated and WT proteins and is based on

the principal component analysis (PCA) performed on the equilibrated part of the trajectory.

We built a symmetric matrix of values, each one corresponding to a pair of mutations. These

values the output of the calculations of a quantity, called Ω, is a function of the eigenvalues

and eigenvectors of the covariance matrix (a detailed definition is reported in the appendix).

It was introduced by [32] as a proxy to estimate the similarity of two PC spaces, in order

to get a quantitative measure of the similarity of the dynamical (fast and slow) modes of a

protein, starting from samples of its conformational space. The goal was to further deepen the

comparisons between the simulations to see whether the similarities already pointed out were
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Figure 2.7: Image taken from [25]. These charge maps are generated with the software MOLMOL [31]

and show positive (in blue) and negative (in red) charge distributions on SBDS surface

(two views, front and back) among different species (human (Hs), A. fulgidus (Af), M.

thermautotrophicus (mth)).
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consistent or not with those found here, in order to make the first steps into a mechanistic

categorization of the mutations.

2.3.2 Results and discussion

In this paragraph we present the results of the analyses mentioned before. For the sake of clarity,

we kept each analysis and the relative discussion separated from the others and introduced by

a subtitle.

RMSD analysis

Figure 2.8: RMSD values calculated using the first frame of each trajectory as a reference. As indicated

by the labels, blue curves correspond to closed trajectories, while red curves to the open

ones. The light red and blue coloured lines refer to the values obtained in the WT runs,

for direct comparison. The black vertical line separates the equilibration phase from the the

sampling phase (at 100ns).
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The calculation of the RMSD is performed by aligning all frames to the first one. Essentially, the

first frame is the same for all simulations (between open and closed, of course), since during the

solvent equilibration phases the protein coordinates are constrained. To determine which part

of the trajectories to assume as sufficiently equilibrated for subsequent analyses, we employed

an ad hoc criterion based on visual inspection. We chose to truncate all trajectories at the same

point, considering the trajectory lengths were the same. This point corresponds to the first

100ns, as stated beforehand and shown in the figure 2.8 (black vertical line), which subsequently

corresponds to relatively stable RMSD values, with slight variations observed in some trajectories

and the most evident one in the R175W closed trajectory. This last transition highlighted by

the RMSD with respect to the initial frame indicates that the protein in this simulation may

reach a more stable local minimum after the first 100ns, around 200ns. Nonetheless, to remain

consistent with the criterion, we decided to keep the frames before the transition, taking that

into account for subsequent analyses. To strengthen our choice, we also checked the values of the

cosine content (introduced by Hess [32] in order to identify non-relaxed trajectories by means

of PCA). The values, reported in the Appendix, are below the dangerous range [0.7, 1] and so

we can deduce that at east this test do not identify pathologies in the choice of considering the

[100ns, 500ns] interval as equilibrated. These analyses will reveal a peculiar behavior that can

be attributed to the transition. To support even further the assumption that our trajectories

relaxed to a metastable state, in the Appendix (figures 2.16,2.17) we also reported the RMSD

calculated on the α carbons of domain I (residues 9-95), domain II (residues 107-167) and

domain III (residues 173-236) using the convention reported by de Oliveira et al. [25], after

local alignments.

However, we would like to emphasize that we do not claim to establish that thermody-

namic equilibrium (intended as an absolute minimum of the free energy) has been reached. It

is nowadays generally accepted that, at equilibrium, a protein’s landscape is rugged, and thus

the protein has the possibility to jump from one conformational basin to another, and hence,

the sampling of each of them provides useful information of the protein’s equilibrium properties.

What definitely remains a limit of molecular dynamics simulations is the inability to establish

whether a trajectory can be effectively considered ergodic, so as to leverage the ergodic prin-

ciple to establish that the averages over the trajectory frames (if sufficiently uncorrelated) are

equivalent to the averages over the ensemble. In spite of that, it remains in principle predictive

in characterizing the observables in the explorable metastable basins. Nevertheless, we consider

one of the strengths of molecular dynamics to be the dynamic character of the trajectories gen-
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erated by it. Therefore, we deem it useful to attempt to extract insights from in-depth analyses

of trajectories that cannot be regarded as ergodic but are reasonably long enough to provide

sampling that accesses the dynamic behavior of the system, albeit partially. Based on this con-

sideration, we believe that the scientific contribution that molecular dynamics (in general, and in

particular as the tool employed in this work) provides is to be an high-resolution, cost-effective

“probe” that can guide important choices to be made in future experiments and suggests action

mechanisms that can be further investigated and clarified.

RMSF analysis

In this paragraph, we attempt to rationalize the dense information content presented in the

figures representing the RMSF per residue. Initially, we characterize the curves corresponding to

wild type runs, which we use as a reference. Subsequently, we constructed a table 2.1 where, for

each region of the protein (domain I, hinge I-II, domain II, hinge II-III, domain III), we indicate

the corresponding behaviors that are considered “anomalous”, i.e., those that differ substantially

from the behavior of the corresponding wild type. In the table, we compare open and closed

trajectories, with each mutation listed in rows, thus enabling us to highlight similarities and

differences in the behavior of open and closed runs. Finally, we proceed to advance hypotheses

that are drawn from this analysis through direct comparisons with observations from experiments

and simulations.
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Figure 2.9: RMSF per residue, relative to the open trajectories for each mutation. In the background,

we reported in grey the WT RMSF for direct comparison. We also highlighted the residue

involved in the mutation with a black star and the relative domains/unstructured regions

with red/white background.

concerning the wild type, in the open simulation the main feature that is shown is a domain

III substantially fluctuating more than the other two. This pattern is not observed in the closed

simulation, where the most fluctuating domain is the II (neglecting the N- and C-terminal that

are expected to move a lot with respect to their average position, due to their unstructured

nature). Other than these facts, however, no noteworthy behaviour in the amino acids of the

hinge I-II arises from this analysis. We are therefore induced to think that the flexibility required

for the above-mentioned hinge to perform the conformational change that is functional to SBDS

attached to the 60S subunit (see step 2. in the discussion presented in paragraph 1.2.2) is

modest. On the other hand, by looking at the third and fourth columns of 2.1, one can notice

a common, statistically relevant effect of the mutations on the flexibility of the hinge: for every

mutation, in fact, in at least one of the two runs, the fluctuations of hinge I-II is enhanced with

respect to the wild type. We are led to speculate that one pathological effect of the mutations
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Figure 2.10: RMSF per residue, relative to the closed trajectories for each mutation. In the background,

we reported in grey the WT RMSF for direct comparison. We also highlighted the residue

involved in the mutation with a black star and the relative domains/unstructured regions

with lightblue/white background.

studied here could be to impose an excessive mobility to the hinge I-II that, in turn, leads to a

partial loss of the ability to perform the conformational change mentioned before. In this view,

some sort of long-range communication pathway is expected to exist among these residues and

domain III.

Another feature that can be easily extracted from table 2.1 is that for the open trajectories

hinge II-III and domain III are over-stabilized, with respect to the wild type. This fact was also

observed in the simulations of Spinetti et al. [33]: in fact, they noticed an over-stabilization of

domain III in all the mutations investigated (R19Q, R126T and I212T).

Given this compatibility in spite of the differences in their setup (NPT ensemble and the force

field used) we are led to interpret this over-stabilization as a general dynamical feature of the

mutations, rather than a statistical outlier.
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domain I hinge I-II domain II hinge II-III domain III

O C O C O C O C O C

R19Q ↑ ↑ ↑ ↑ ↑ ↓ ∼ ↓ ↓ ↓

N34I ↓ ↑ ↑ ↑ ∼ ↓ ↓ ∼ ↓ ×

K67E ↑ ↑ ↑ ∼ ↓ × ↑ ↓ ↓ ↑

C84R ∼ ↑ ↑ ↑ ∼ ∼ ∼ ↑ ∼ ∼

C119Y ↓ ∼ ∼ ∼ ↓ ↓ ↓ ∼ ↓ ↓

R126T ∼ ↑ ↑ ↑ ∼ ↑ ↓ ↑ ↓ ↑

S143L ∼ ↑ ↑ ↑ ∼ × ↓ ↑ ↓ ↑

K151N ∼ ↑ ↑ ∼ ↓ ∼ ↓ ∼ ↓ ×

I167T ↓ ∼ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ×

R175W ∼ ↓ ∼ ↑ ∼ ↓ ↓ ↑ ↓ ↓

I212T ↑ ∼ ∼ ↑ × × ∼ ↑ ↓ ∼

R218Q ∼ ∼ ↑ ∼ ∼ × ↓ ↑ ↑ ×

Table 2.1: Summary of the discrepancies highlighted by RMSF between the WT and the mutated tra-

jectories, region-wise along the sequence of the protein. ∼ indicates that the RMSF in the

given region, for the respective run, shows fluctuations comparable to those of the WT, while

×, ↑ or ↓ indicate respectively different, generally higher or generally lower fluctuations in

that region, with respect to the WT. A color code has been used to relate mutated residues

to the belonging domains.
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Figure 2.11: Jensen-Shannon divergence based similarity matrix of the free energy landscape sampled

in the open (lower-left values) and closed (upper-right values) runs. The color map was

compressed in the range [0, 0.5] to highlight the relative differences, although in principle

the divergence can take values in [0, 1].
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In this section we report the free energy landscape for each simulation, which are built by

considering as collective variables (CVs) the radius of gyration and the angle formed by the

centers of mass of domain I,II and III. The plots reported in figures 2.12 and 2.13 give a direct

picture of the low-dimensional conformational variability explored in the simulations and in fact,

based also on these values (see the definition of the V-space in Appendix) we decided to perform

a clustering that is functional to the next analysis of the binding propensity.

In order to make a quantitative comparison of the frequentist probabilities sampled by the

various mutations and the WT, we made use of the Jensen-Shannon (JS) divergence [34] (see

Appendix for the definition). This quantity is interpreted as a distance (that takes only values

in [0, 1]) based on which we built two dendograms (see 2.25 and 2.26) that are preparatory for

a hierarchical clustering based on the average linkage algorithm [35].

The mutual values of the JS distances are reported in a compact way (thanks to the symmetric

nature of the distance matrix) in 2.11, where the lower-left part of the matrix shows the values

from the open trajectories and upper-right from the closed ones. This analysis reveals that the

R19Q simulation, among the open ones, and the R175W simulation, among the closed ones, are

characterized by the most peculiar and different frequentist probability on the space of (Rg, θ).

Curiously, K151N is highlighted as the second most different mutation in both the groups, a

fact that will be discussed in more detail later on. The WT simulations are found to be grouped

with K67E both the times, suggesting that K67E could affect negatively the function of SBDS

not directly from a structural point of view, but in other way: this observation will be explored

more deeply in the next analysis.
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Figure 2.12: Free energy landscapes for each mutations, built from the histograms h[Rg, θ] sampled in

the open runs. Rg and the angle between the domains θ are plotted along the x and y axis,

respectively. The color maps report values in kcal/mol, normalized to be consistent with a

temperature T = 310K (as explained in the documentation of the pyEMMA package).
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Figure 2.13: Free energy landscapes for each mutations, built from the histograms h[Rg, θ] sampled in

the closed runs. Rg and the angle between the domains θ are plotted along the x and y axis,

respectively. The color maps report values in kcal/mol, normalized to be consistent with a

temperature T = 310K (as explained in the documentation of the pyEMMA package).
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Solvent Accessible Surface Area and binding propensity

(a) (b)

Figure 2.14: Values of α related to domain I of the open (a) and closed (b) simulations. The black

horizontal lines correspond to the value of α for the WT runs, while the grey area covers

the standard deviation of them.

In de Oliveira et al. [25], where the structure of human SBDS is resolved via NMR experiment,

they noted that, like other organisms that carry the same gene, the protein is characterized

by three main domains. However, by making a static analysis of the charge distribution and

by performing ad-hoc experiments (chemical shifts analyses) to probe the binding affinities, a

substantial difference is identified: contrary to expectations that the C-terminal domain (domain

III) is the site of RNA binding and therefore putatively responsible for attaching to rRNA to

carry out its function, they observe that the RNA binding affinity of residues on this domain

is very low and discard this hypothesis. Not only that, but they instead measure good binding

affinity between RNA and some residues of the N-terminal domain I, and postulate that it

is responsible for the above-mentioned binding. Starting from this hypothesis, as previously

mentioned, we conducted a study of the SASA exposed by positively and negatively charged

residues in domain I for each of the 26 simulations. The aim was to investigate whether certain

mutations resulted in a greater or lesser exposure to solvent and the environment by charged

residues, and to determine whether any exhibited higher coverage of positive residues and greater

exposure of negative residues. This could indicate a lower binding affinity between this domain

and rRNA, as the starting hypothesis assumed a Coulombic and non-specific binding primarily

mediated by charge distribution.

In the first step of this analysis we performed a DBSCAN clustering [36] of the structures
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sampled in the production run, based on the euclidean distance in the space of 3 CVs: the two

already used in the previous paragraph and the dihedral angle formed by the centers of mass of

domain I, hinge I-II, hinge II-III and domain III (see Appendix). The results of the clustering

are reported in 2.19 and 2.20 and clearly show the presence of multiple conformational basins in

some of the trajectories. Based on this evidence, we decided to perform the SASA-based analysis

only on those frames belonging to the most populated cluster for each trajectory. The reason

behind this choice is to try to avoid mixing (or, in statistical terms, averaging on) structures

that are too dissimilar. We then calculated the average SASA (using the command gmx sasa of

GROMACS v2018) of each charged residue in domain I. The are reported in figures 2.21, 2.23,

2.22, 2.24 with their standard deviation. After that, we introduced a quantity named SASA-

based binding affinity estimator, indicated with α (see Appendix for the formal definition), to

track the total value of the SASA of these residues but weighted by their charge: in this way,

higher values of the SASA for a positively/negatively charged residue contribute to the binding

to the negatively charged phosphate groups on the rRNA backbones by favouring/disfavouring

it. The values of α related to each mutation are reported in 2.14a and 2.14b: the standard

deviation have been propagated by the square root of the single deviations squared.

As mentioned before, we notice that in the open simulations this analysis highlights the

K67E one as a disfavouring mutation and N34I as a favouring one. For the closed one, we notice

again K67E together with R19Q, C84R and R218Q as disfavouring mutations. An interesting

fact is that precisely R19Q and K67E were hypothesized by de Oliveira et al. to be potential

mutations affecting RNA binding. Another interesting fact is that in Gijsberg et al. [28], a study

on the binding affinity between SBDS and EFL1 in solution, they found that R19Q and K67E

are crucial in what they call the second binding event between the two proteins. Moreover, Wies

et al. [29] identify K67 as a binding site of SBDS to the 60S subunit’s P loop. Based on our

simulations, we can corroborate these observations by saying that this loss of affinity can be

caused by a lower exposure of positive charged patches on domain I.

Comparisons of the Principal Components’ space

The last analysis we performed is somewhat orthogonal to the one based on the free energy space

built from p(Rg, θ) and the Jensen-Shannon divergence. It relies on the principal component

analysis (PCA), which is a simple yet very informative method of dimensionality reductions

that finds many applications in molecular simulations, due to its cheap but effective operating

principles. The idea is to make a change of variables from the 3N · T -dimensional space of
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the trajectory (N atoms, T frames used for the sampling, equilibrated part) to a new 3N · T -
dimensional space, called the PC’s space. The power of this change of variable is that it allows

to build a hierarchy of directions in this space that are weighted by the eigenvalues of the

transformation matrix used for the change of variable. It can be shown that this matrix is

nothing but the covariance matrix and the new variables (called PC, principal components)

keep track of the directions that, if the trajectory would be projected onto, show higher (or

lower) variability. The directions with the highest eigenvalues (usually called λk) are those that

retain the highest variability of the trajectory, while those with the lowest are the other way

around. In this way, the PC space is able to extract the signal (directions with highest λk)

from the noise (directions with lowest λk). We decided to used the information extracted by the

PCA to compare the PC spaces (intended as dynamical space because they are directly built

from the trajectories) using a quantity called covariance overlap, introduced by Hess [32]. The

quantity, indicated with the symbol Ω(TA, TB) (and defined also in the Appendix), gives a degree

of similarity and is expressed as a real value in the interval [0, 1], with 0 corresponding to totally

orthogonal spaces and 1 to identical spaces. Based on it, we calculated the pseudo-distances

dΩ(TA, TB) := 1 − Ω(TA, TB) between each couple of the trajectories, within the same set of

open or closed simulations (as done for the Jensen-Shannon divergence based analysis). The

results are reported in 2.15.
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Figure 2.15: Ω based pseudo-distance matrix of the free energy landscape sampled in the open (lower-left

values) and closed (upper-right values) runs. The colormap was compressed in the range

[0, 0.5] to highlight the differences, although in principle the distance can take values in

[0, 1].

As for the Jensen-Shannon divergence, we also built two dendograms (see 2.27 and 2.28)

that are preparatory for a hierarchical clustering and based on the average linkage algorithm.

The dendograms highlight what was already perceivable from 2.15: in both the closed and the

open trajectories K151N is highlighted as an outlier, although for the closed trajectories the

most different one is R175W, in full agreement with the corresponding dendogram based on

the JS divergence. The DBSCAN clustering 2.20 and visual inspection of the FEP 2.13 give

a clear explanation for the diversity of R175W: in the equilibrated part of the production run,

the mutated protein clearly explore two different conformational basins and the PCA embraces

the directions of both the local minima explorations as well as the transition between them.

Regarding K151N, it was observed by Weis et al. [29] that residues K151 and R218 have a key

role in stabilizing the conformation that SBDS assumes after interacting with EFL1 (see figure

2.2 part b) and so we can make the guess, based on the observations from our simulations where

K151N has a dynamical behaviour that differs substantially from the WT, which the mutation

in this residue brutally disrupts the ability of SBDS to stabilize after the above-mentioned

conformational change.
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2.4 Conclusions and perspectives

This work is a massive comparative study of the behavior of 12 pathogenic mutations of SBDS

and WT, through atomistic molecular dynamics simulations in explicit solvent. Simulations of

500ns of production run were performed for two replicas of each mutation, for a total of 13µs

of sampling. The aim of the simulations was to characterize the conformational space of the

mutations, highlight similarities or differences and try to correlate their dynamic behavior in

simulation to experimental facts previously reported in the literature. Below we summarize

the main observations that we were able to do by looking at the analyses performed on the

trajectories produced.

1. The analysis of RMSF highlights a common trend among all mutations to increase residue

fluctuations in the hinge I-II. This fact can negatively interfere with the conformational

change that involves domains II-III reorienting to make room for EFL1 to stretch out and

induce eIF6 to detach from the 60S subunit.

2. We observe that K67E behaves in a structurally similar manner to the WT, as also shown

by free energy analysis, despite the fact that in the analysis of binding affinity, it is high-

lighted in both cases as a mutation with a lower exposed positive charge. Weis et al.

suggested that K67 was essential in RNA binding, and the message derived from my simu-

lations is that the pathological mechanism associated to the mutation of this residue may

be more closely linked to a decrease in the value of α (SASA-based estimator of binding

affinity) rather than to structural deformation.

3. Other mutations (R19Q and C84R), only in the closed trajectories, are identified as having

lower binding affinity: the same mutations were highlighted by de Oliveira et al. as poten-

tially reducing the bond with RNA. Therefore, our simulations corroborate a hypothesis

advanced by these experimental observations.

4. Weis et al. noted that K151 and R218 are essential in stabilizing the conformation assumed

by SBDS after EFL1 binds to the 60S subunit: it is interesting to note that not only

in the clustering of distances in PC space, but also in that of distances in free energy,

K151N is actually highlighted as being different from the others, both in open and closed

simulations; we are led to speculate that the impact of these mutations has repercussions

on the dynamics and that compromised dynamics leads to an inability of the protein to

stabilize a functional conformation for its cooperation with EFL1.
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Among the prospects for expanding studies based on the results of this work, one could

certainly perform docking between conformations sampled from my simulations and the cryoEM

maps [29] of the 60S subunit, to see if the conformations extracted from the dynamics are more

or less similar to what is identified as the binding site in cryoEM. Additionally, one could further

explore the binding affinity with EFL1 by examining the value of α(II) and α(III) on domains II

and III respectively, as they are hypothesized to be the mediators of the first binding event with

EFL1 and interesting data on this affinity for many of the mutations simulated for this work

are reported in Gijsberg et al. [28]. A last, but not least, observation is related to the lack of

replicas per each mutation, among our simulations. It is in fact well documented in literature

(see e.g. [37, 38]) that the statistical relevance of the deductions that arise the phase space

sampling of a system by a single, long run is low, due to its lack of reproducibility. On the other

hands, multiple short runs revealed to produce more reliable results. A way to valorise the work

done here is to select few among the most interesting mutations, based on the results obtained,

and perform short replicas to extract more reliable statistics from them, in order to test the

observations made here.

The numerical experiments presented here can serve as a guide to explore in detail specific

mutations and their mechanism of action in order to shed light on the still obscure points

of the pathogenesis of SDS and, in the future, to support the search for a cure for this rare

disease. Despite ongoing research, the underlying molecular mechanisms of SDS are not yet

fully understood, and there is currently no cure for the disorder. However, continued research

into the biology of SBDS and ribosome biogenesis may ultimately lead to the development of

new therapies for SDS and other disorders that affect ribosome function.
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2.5 Appendix

In this section I report the simulations setup; the plots of RMSDs of the three domains per

mutation and conformation; the plots of the configurations in the (Rg, θ) space, highlighting the

clusters identified by the DBSCAN algorithm; the SASA values (per charged residue, adding

up the contributions of each atom); the dendograms used to perform the hierarchical clustering;

the observables calculated for the analysis.

Simulations Setup

The human SBDS protein structure with PDB ID: 2KDO was selected for MD simulations. We

extracted 2 structures from the 20 conformers from NMR data (II and V frame contained in the

PDB, respectively): we referred to the open and closed conformations and simulations in the

text. We generated 12 missense point mutants [26, 28] of both the open and closed conformations:

R19Q, N34I, K67E, C84R, C119Y, R126T, S143L, K151N, I167T, R175W, I212T, R218Q. These

mutations were performed in VMD (v1.2.3) [39] using the Mutator Plugin (v1.5). At the end

of this process we obtained 26 different conformations (12 mutants and the wild type, each in

both the open and closed conformations) that we used as input to build the topology for the

MD simulation in GROMACS (v2018) [40]. The force field adopted was Amber ff99SB-ILDN

[41] and the water model was TIP3P [42]. The protonation states of the charged residues was

automatically selected by GROMACS consistent with a pH of 7. Each structure was solvated in

a water box having at least 15Å from the closest box side. We ionized the solvent with 0.15 M of

KCl and neutralized the whole box. We used a cutoff distance of 12Å for van der Waals (vdW)

interactions, while long-range electrostatic forces were computed using the particle-mesh Ewald

method [24]. A time step of 2 fs was used for every simulation. Each solvated system underwent

an energy minimization, using the steepest descent algorithm with maximum tolerance force:

500.0 kJ/mol/nm. The last two step before the production run consisted in the equilibration of

the solvent, performed restraining the protein to the minimized configuration. The first was a

500ps-long simulation in the NVT ensemble with the modified velocity rescale thermostat [21],

with 310K reference temperature, while the second was another 500ps-long simulation in the

NPT ensemble with the Parrinello-Rahman barostat [43] (and the same thermostat), with 1

atm reference pressure. We performed 500ns-long production runs for each of the 26 starting

structures, for a total of 13µs, in the NVT ensemble (modified velocity rescale thermostat, 310K

reference temperature).
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RMSD on the domains

Figure 2.16: Open.

Figure 2.17: Closed.



2 SBDS Missense Mutations: an In Silico study 45

Cosine content analysis

As exhaustively discussed in [32], the cosine content quantifies the similarity of the variables,

associated to the dynamics of a system, to those of a random diffusion process. If we consider

the principal components (PCs) p1(t), p2(t), . . . as these dynamical variables, it is as follow:

cc[pi; tf ] :=
2

tf

{∫ tf

0
cos

[
(i+ 1)πt

tf

]
pi(t) dt

}2(∫ tf

0
p2i (t) dt

)−1

(2.1)

where tf is the ending frame of the trajectory: by changing this parameter (tf = 100ns,

200ns, 300ns, 400ns, 500ns), we quantified the cosine content for different, progressively longer

blocks of the trajectory, in order to mainly compare the values with tf = 100ns and tf = 200ns

and to check if there is a trend in the quantity. The results for the R175W trajectories are

reported in figure 2.18.

(a) (b)

Figure 2.18: Cosine content values of the first 3 PCs, for the (a) open and (b) closed trajectory of

R175W-mutated SBDS. The dashed black line highlights the value 0.7 indicated by Hess

[32] as the threshold below which the cosine content has to be considered dangerously high,

and so the dynamics dangerously similar to a random diffusion process.

The first observation that we can make is that all the values reported in the figures are

below 0.7, from which we can state that the two dynamics are not highlighted as too much

similar to random diffusion processes, regardless of the length of the trajectory’s blocks. Another

relevant observation to be made is that the values of the cosine content grow with the length

of the trajectory’s blocks, a trend that is hard to be interpreted but that could indicate that

a trajectory reaching a timescale of microseconds could have values higher than 0.7. A future
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perspective of this work is to check these values on a longer simulation.

DBSCAN clustering

Figure 2.19: Open. ϵ = 0.5. Nmin = 100.
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Figure 2.20: Closed. ϵ = 0.5. Nmin = 100.

SASA Analysis

Figure 2.21: Open, positively charged.
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Figure 2.22: Open, negatively charged.

Figure 2.23: Closed, positively charged.
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Figure 2.24: Closed, negatively charged.

Dendograms based on JS and dΩ
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Figure 2.25
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Observables used in the Analysis

• Root Mean Squared Deviation:

given two atomistic configurations (e.g. two different frames of the same trajectory at

times t, t′) of a molecular system M , the RMSD is defined as a normalized euclidean

distance between the sets {r}M of every atom of the structures:

RMSD
(
{r(t)}M , {r(t′)}M

)
:= min


√√√√ 1

N

N∑
i=1

∥ri(t)− ri(t′)∥2
 (2.2)

where min indicates a minimization of the quantity itself with respect to the rigid rotations

and translations onto one of the two structures.

• Root Mean Squared Fluctuations:

given a residue r (usually traced by the position of its Cα atom), the RMSF is defined as

the standard deviation of its position with respect to te average position, along a trajectory

with T frames:

RMSF[r] =

√√√√ 1

T

T∑
t=1

∥rr(t)− rr,av∥2 (2.3)

ri,av =
1

T

T∑
t=1

rr(t) (2.4)

• Free Energy:

given couples of values of observables, e.g. the two dihedral angles (Φ,Ψ) of an amino acid,
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one can calculate a free energy surface that essentially quantifies the relative stability (in

energetic terms) of the states explored by the system, as follow:

F [Φ,Ψ] = −kbT log [ρ(Φ,Ψ)] + F0 (2.5)

where kb is the Boltzmann constant, T is the temperature of the thermostat used to sample

the values of the collective variables (CV) (Φ,Ψ), ρ is the histogram created from the values

of the CV and F0 is an arbitrary constant used to set the zero of the free energy. In this

work, we used the Python package PyEMMA [44] to perform the calculations of F .

• Jensen-Shannon Divergence: the JS divergence is an estimator of the similarity be-

tween two probability distributions, and it is well defined also for discrete cases (his-

tograms). Given two histograms p = [p1, . . . , pn] and q = [q1, . . . , qn] it is defined as follow:

JS[p, q] :=
1

2

[
n∑

i=1

pi log2

(
pi
mi

)
+

n∑
i=1

qi log2

(
qi
mi

)]
(2.6)

mi :=
1

2
(pi + qi) (2.7)

• Similarity in Free Energy (based on Jensen-Shannon divergence):

JS[p, q] :=
1

2

[∑
i

pi log

(
pi
mi

)
+
∑
i

qi log

(
qi
mi

)]
(2.8)

mi :=
1

2
(pi + qi) (2.9)

η[p, q] := 1− JS[p, q] (2.10)

• Euclidean distance in the V-space, with V :=
(
R̃g, θ̃, χ̃

)
:

d (Vi, Vj) :=

√
(R̃

(i)
g − R̃

(j)
g )2 + (θ̃(i) − θ̃(j))2 + (χ̃(i) − χ̃(j))2 (2.11)

where R̃g is the radius of gyration expressed in nanometers, θ̃ and χ̃ are the angles formed

by the centers of mass of the 3 domains and domain I-III with the 2 hinges, expressed

in radiants. The choice of these units is dictated by the fact that we wanted to have

comparable absolute values among the components of this distance, and in this particular

system this requirement is satisfied by this choice.
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• Solvent Accessible Surface Area (SASA):

The SASA is defined as the surface area of a molecule that is

accessible to a solvent probe, typically represented by a spher-

ical probe with a defined radius (usually 1.4 Å, correspond-

ing to the radius of a water molecule). The probe is rolled

over the molecular surface, and the accessible area it covers is

measured. Several computational algorithms are available to

calculate the SASA of a molecule. One widely used method

is the Shrake-Rupley algorithm (used also here), which ap-

proximates the molecular surface by dividing it into smaller

triangles and then calculating the exposed surface area of each

triangle. The SASA calculation involves the following steps,

starting from the given 3D molecular structure:

van der Waals surface

accessible surface

Figure 2.29: Taken from

Wikipedia.

1. Generating a set of points on the molecular surface to represent the atoms.

2. Placing the solvent probe, usually a spherical probe, at each point on the molecular

surface and determining whether it overlaps with any other atoms. This process

accounts for the effective solvent accessibility of the surface.

3. Summing up the areas covered by the probe at each point to obtain the total SASA

value.

• SASA-based binding affinity estimator based on domain I charged residues, relative

to the simulation of the mutation µ with initial configuration γ (α
(I)
µ,γ):

α(I)
µ,γ :=

NI∑
r=1

qr

〈
SASA(µ,γ)

〉
≡

Nr∑
r=1

qr

(
1

T

T∑
t=1

SASA(µ,γ)(t)

)
(2.12)

• Principal Component Analysis: consider the 3N degrees of freedom of the solute

molecule, made by the cartesian coordinates of each atom. Calling {r(t)}M the row vector

made by those coordinates at time t, with t = 1, . . . , T , one can build the 3N × 3N

covariance matrix C[{r(t)}t], each of whose elements Cµν is defined as:

Cµν :=
1

T

T∑
t=1

(rµ(t)− rµ,av) (rν(t)− rν,av) (2.13)

with µ, ν = 1, . . . , 3N . By diagonalizing C one gets the 3N × 3N diagonal matrix Λ =

PTCP containing the eigenvalues and the 3N × 3N P matrix with the row eigenvectors.

https://en.wikipedia.org/wiki/Accessible_surface_area
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The power of this analysis lies in the fact that the eigenvectors relative to the highest

eigenvalues can be used to project the space of 3N cartesian coordinates of the trajectory

onto a low-dimensional space. This space can be used to represent the principal collective

directions taken by the system, based on the sampling provided by the trajectory itself.

Here we used the PCA class implemented in the Python package MDAnalysis [45].

• Similarity in Dynamics (Ω from PCA):

given two trajectories TA and TB (of two systems with the same number of degrees of

freedom 3N), and given their PCs uA
k ,u

B
k and eigenvalues λAk ,λ

B
k , the similarity quantity

Ω is defined as follow:

Ω(TA, TB) := 1−


∑
k

(λAk + λBk )− 2
∑
k

√
λAk λ

B
k (u

A
k · uB

k )
2

∑
k

(λAk + λBk )


1/2

(2.14)



Chapter 3

From the All-Atom to the

Coarse-Grained Resolution

All-atom molecular dynamics (AA-MD) simulations have become invaluable tools for studying

the behavior and properties of biomolecules at an atomic level. However, these simulations

are not without limitations: in fact, understanding the inherent limits of AA-MD is crucial for

interpreting results and designing appropriate numerical experiments. Firstly, the computa-

tional cost of all-atom MD is a significant challenge since simulating large biomolecular systems

over long timescales requires substantial computational resources. The number of atoms and

the complexity of the potential energy landscape result in extensive calculations, limiting the

length and timescales that can be explored. While advances in hardware and algorithms have

improved the efficiency [24, 46, 47], all-atom MD remains computationally demanding for very

large systems. Another aspect comes from the fact that the limited timescales accessible by

all-atom MD pose a constraint on the study of biologically relevant processes. Many impor-

tant biomolecular events, such as protein folding, ligand binding, or conformational transitions,

occur on timescales ranging from microseconds to even minutes and hours [48, 49, 50]. Captur-

ing these processes within the temporal constraints of all-atom MD simulations is challenging

and sometimes even impossible nowadays, potentially leading to incomplete representations or

missing critical events. Additionally, all-atom MD simulations may suffer from sampling issues:

in fact, the exploration of complex conformational spaces can be hindered by energy barriers,

resulting in limited sampling of rare events or transitions. This sampling problem can lead to

biased results or incomplete descriptions of the system’s behavior. Despite these limitations,
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all-atom MD remains a valuable tool for studying many molecular phenomena.

all atom coarse grained

Figure 3.1: A generic pictorial representation of the process of coarse-graining in biomolecular modelling:

the all-atom description is mapped into a simplified, coarse-grained one by reducing the

number of explicit degrees of freedom included in the model and by introducing the proper

interactions among them, in order to be able to predict the dynamics of the simplified form

as good as possible.

However, to address these challenges, researchers have developed alternative methods such

as enhanced sampling techniques, coarse-grained models, and multiscale modeling approaches.

While the first strategy aims at accelerating the process of exploring the conformational space

of a system, the second and the third strategies aim to overcome the limitations of all-atom

MD by reducing the system’s intricacy and/or incorporating information from higher-resolution

techniques.

In this chapter, we discuss some of the scientific achievements done in the field of coarse-

graining (CG) in molecular dynamics simulations, focusing on the applications to biomolecules

since this is the direction taken by this thesis work.

3.1 A formal introduction to coarse-graining

The concept of CG has its foundations in the theory of Renormalization Group (RG) [51, 52],

which consists in a series of methodologies that allow systematic investigation of the different

scales that are intrinsically present in physical system. By also requiring that the energetic
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spectrum of a given system is characterized by well-identifiable, separable scales, this framework

can be used in e.g. quantum field theories to obtain a description of the system by means of only

the “relevant” degrees of freedom, where “relevant” has to be interpreted from an experimental

point of view: if we want to use the theory to predict observables that will be compared to the

outcome of an experiment whose apparatus is able to capture only a portion of the energetic

spectrum of the system, then the predictions can be done by using the so-called renormalized

theory. In the derivation of the classical equations of atomistic molecular dynamics in chapter

1 we used similar arguments (although classical MD is not a renormalized theory), by saying

that we can assume a trivial quantum dynamics of the electrons and even neglect the explicit

presence of the electrons themselves by using an effective description of the nuclei’s dynamics,

by means of the force field.

The simplification can be pushed even further. We can be interested e.g. in the study of the

large-scale dynamics of macroscopic portions of a system, without requiring the knowledge of the

microscopic dynamics; nevertheless, to do so we want to incorporate somehow the details that

arise from the description of the theory at the microscopic level. In [53], for example, the authors

show how it is possible to obtain a Langevin-like dynamics for the positions of the centers of

mass (CoM) of group of atomistic particles: starting from the Hamiltonian dynamics of these

particles, they use the projection operator method from Mori and Zwanzig [54], assuming that

the time scales (or, equivalently, the energy scales) of the CoM are well separated from those of

the microscopic constituents of the system. By calling (Rα,Pα) the CoM coordinates of groups

of atoms, they get (equation (74) of [53]):

d

dt
Pα =

1

β

∂

∂Rα
log[ω(R)]− γ

Mα
Pα + δFQ

α (3.1)

where δFQ
α is approximated with a random fluctuating force that satisfies the usual properties of

white noise in Langevin dynamics. It is interesting to notice that the first term in the right-hand

side of the equation is defined in terms of the normalized portion of the microscopic configuration

space that is compatible to a given configuration R of the CoM coordinates, in the canonical

ensemble picture:

ω(R) :=

∫
dr̂

(∏
α

δ[R̂α −Rα]

)
e−βU

∫
dr̂ e−βU

(3.2)

In other terms, this quantity is nothing but the probability to observe a given CG configuration

R := {Rα}, by summing up over all the Boltzmann weighted configurations of the microstates
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r̂ compatible with R. Moreover, U is the potential energy in the Hamiltonian H = K + U of

the microscopic description. In the jargon of the field of CG, the term:

W (R) := − 1

β
log[ω(R)] (3.3)

is called the many body potential of mean force (MB-PMF or simply PMF) and can be shown

[55] to lead to the mean (in thermodynamical sense) force acting on the CoM coordinates, due to

the microscopic degrees of freedom. This quantity will be important for the arguments treated

in the next section.

Figure 3.2: Diagram showing 3 different approaches that are followed in the field of coarse-graining.

Taken from [56].

This introduction is aimed at qualitatively justifying the process of coarse graining in the

field of classical molecular dynamics simulations: given a Hamiltonian of the atomistic system

and assuming the separability of energetic scales between atomistic and coarse-grained degrees

of freedom, one is formally allowed to (try to) construct a model based on these CG degrees of

freedom. Then, depending on the interest of studying either the equilibrium properties or the

kinetic one, one can examine this lower-resolution model through e.g. Monte-Carlo techniques,

the Langevin equation (and its generalized version [57, 58, 59]) or other equivalent pictures that
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are compatible with the thermodynamical properties to be reproduced (e.g. constant tempera-

ture T , fixed volume V , et cetera). The overview given here is very generic and in fact one may

still ask some questions: is it always reasonable and possible to build a CG model based on the

CoM coordinates? How to do the best choice of CG degrees of freedom (called CG sites)? How

to construct the PMF or, if not possible, how to best approximate it? Although some of these

questions remain open, in the last decades researchers put a lot of effort to answer them [60, 61,

62]. It is worth to notice that recently Giulini et al. [63] proposed an unsupervised way to find

the best choices of CG sites, based on a finite sampling of the fine-grained representation of the

system. One important prescription of this selection method, which is based on a quantity called

mapping entropy, requires the mapping from fine-grained to coarse-grained representation to be

a decimation one. A mapping is the mathematical relation that links the fine-grained and the

coarse-grained degrees of freedom. Explicitly, its action can be represented as a linear operator

M (a matrix) such that M[r] = R, where r = [r1, . . . , rn] ∈ R3n are the atomistic coordinates

and R = [R1, . . . ,RN ] ∈ R3N are the CG coordinates, with N < n. A decimation mapping is a

linear function (i.e. one with M that is a matrix in R3N × R3n) that consists in selecting some

of the fine-grained degrees of freedom to “survive” as they are in the CG representation, and

discarding the others. Another example of mapping is the already mentioned CoM mapping,

which is another example of linear mappings.

Historically, it was custom to categorize coarse-graining approaches into two main groups:

bottom-up and top-down methods (see 3.2), although nowadays it is also customary to mix

the two approaches. Bottom-up methods [55, 64, 65] involve constructing a simplified represen-

tation based on a higher-resolution “reference” model using systematic, analytical rules based

on the theory of coarse-graining. On the other hand, top-down methods [66, 67, 68] propose

empirical models guided by macroscopic observables, without necessarily requiring a microscopic

foundation. However, these models can be refined by incorporating higher-level knowledge, such

as known structures or thermodynamic properties obtained from experiments. For the sake of

simplicity, we chose to include the knowledge-based type of CG models into the top-down models

(the interested reader is referred to e.g. [69] for a review of the CG’ing methods). In the next

sections we discuss these two classes in more details and we will also treat particular cases of

CG models: the so-called implicit solvent models, where the degrees of freedom of the solvent

surrounding the solute molecule are removed (or “integrated out”) and substituted by special

terms in the PMF.
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Figure 3.3: Schematic representation of the mapping process in bottom-up coarse-graining procedures.

Taken from [56].

3.2 Bottom-up coarse-graining

The bottom-up coarse-graining [55, 64] procedures are all characterized by the underlying as-

sumption that a fine-grained model exists, with its own degrees of freedom (dof)(r,p) and with

its own Hamiltonian h(r,p) = k(p) + u(r). Given a mapping M[r] = R, the bottom-up proce-

dures are based on the consistency criterion, which links the equilibrium thermodynamics of the

fine-grained dof to the CG ones. Calling (R,P) the CG coordinates and assuming that they can

be described by an Hamiltonian of the form H(R,P) = K(P)+W (R), the criterion requires the

sampling of the CG coordinates through the canonical probability density PR(R) to be equal

to the sampling of the fine-grained coordinates through the canonical probability density pr(r)

projected into the low-dimensional space of the CG coordinates, pR(r) = pR(R):

pR(R) ≡ PR(R) with pR(R) :=

∫
dr e−u(r)/kBT δ(M[r]−R) (3.4)

From this criterion and assuming a canonical-like form for PR(R) (see also figure 3.3), one can

derive the ideal choice of the effective potentialW (R), which is the already mentionedmulti-body

potential of mean force (MB-PMF):

W (R) = − 1

β
log [pR(R)] ≡ − 1

β
log

[∫
dr e−u(r)/kBT δ(M[r]−R)

]
(3.5)

From its definition, it is clear that the MB-PMF is not a potential energy but a free energy, due

to the dependence on T and, in principle, also on V and n. As explained in [56], however, the

exact knowledge of W (R) is impossible for almost every realistic system since the integration of
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the degrees of freedom lead to the appearance of up to N-body terms in the PMF, which make

its calculation intractable. As a consequence, one usually introduces an approximating potential

term U(R) that can be generally written as follow:

U(R) :=
∑
ξ

∑
λ

Uξ[Ψλ(R)] (3.6)

where the Uξ are general functions of the collective variables Ψλ, which of course are functions

of the Cartesian coordinates for the CG dof. The Uξ usually depend on some set of parameters

that are optimized so to get as close as possible to W (R).

In the next section we will briefly recap the most commonly used protocols in the context of

bottom-up CG.

3.2.1 Force Matching

The multi-scale coarse-graining (MS-CG) method has been introduced by Izvekov and Voth

[70], inspired by a method used to obtain atomistic force fields from ab initio calculations [71].

The basic idea is to construct the best approximation to the PMF by a variational protocol,

aimed at optimizing (i.e. minimizing) a functional that is a sort of distance between the fine-

grained forces and the (parameter-dependent) coarse-grained forces, acting on the CG sites. By

including the explicit dependence on the parameters to be optimized, {γi}, one can introduce

the CG force obtained by differentiating U(R|γi) with respect to R, which we call F(R|γi), and
express the functional χ2 as follow:

χ2[F(R|γi)] =
1

3N

〈
N∑
I=1

|fI(r)− FI(M(r)|γi))|2
〉

r

(3.7)

where fI(r) is a weighted sum of the forces acting on the atoms mapped in the same CG site I and

the average ⟨.⟩r is in principle an ensemble average, but is in practice calculated as an average

over an atomistic trajectory that sampled fine-grained configurations distributed according to

the microscopic probability. It can be proven that the global minimum of χ2 is the force obtained

from the MB-PMF, called F0, and so minimizing χ2 with respect to γi is equivalent to look for

the best choice of the parameters at fixed mapping and choice of the basis function for U(R|γi).
This approach has found countless applications in the field of soft matter: see e.g. [56] for a

summary of the most relevant.
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3.2.2 Relative Entropy

Another bottom-up CG approach that rests on a variational principle is the one based on the

relative entropy (RE) Srel, introduced by Shell [64]. The RE is a Kullback-Leibler divergence

[72], which quantifies the “distance” of two probability distribution functions (despite not being

symmetric, as required to a proper distance in mathematical terms). In the context of the

RE, the two probability distributions are the already mentioned pR(R) and PR(R|U), which

is the probability density function of the CG configuration space, sampled by the putative CG

potential U(R|γi):

Srel[{γi}] := kB

∫
dR pR(R) log

(
pR(R)

PR(R|U)

)
(3.8)

One can easily show that Srel ≥ 0 and Srel[W ] = 0, so the best choice is the MB-PMF as

expected. In the case, as before, of canonical ensemble distributions for both the fine-grained

and the CG systems in terms of their potentials, minimizing Srel with respect to the parameters

γi can be shown to be equivalent to the following condition:〈
∂U

∂γi

〉
AA

=

〈
∂U

∂γi

〉
CG

∀i (3.9)

which represents the equivalence between the averages of the derivatives of the potential U with

respect to the parameters γi, as sampled by the microscopic and the CG theory.

In [73], Rudzinski and Noid showed that the MS-CG and the RE frameworks are similar but

not identical, in general. In fact, defining Φ(R|U) := log

(
pR(R)

PR(R|U)

)
, they show that, while

the RE approach aims at minimizing the average of Φ, the MS-CG one aims at minimizing

the average of |∇Φ|2: in the end, as said in [56], in the scenario of a complete basis set for U ,

the many-body potential of mean force (PMF) can be determined with both the MS-CG and

relative entropy variational principles. These principles yield identical approximate potentials

(but for an additive constant), assuming the CG potential follows a quadratic form in Cartesian

coordinates [56].

Correlation functions methods

The last class of bottom-up CG approaches were introduced by a seminal work by Tscho and

coworkers [74] and is based on a simple yet effective idea: given the atomistic 2-body, 3-body,

4-body and so on correlation functions, for the CG variables (e.g. R, Θ, X that are euclidean

distances, angles between 3 CG sites and dihedral angles made by 4 consecutive sites), one can
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perform a so-called direct Boltzmann inversion (DBI) [56, 74] to obtain an approximated form

of the 2-body, 3-body, 4-body et cetera terms of the MB-PMF:

U2(R) ≡ − 1

β
log

(
g2(R)

J2(R)

)
U3(Θ) ≡ − 1

β
log

(
g3(Θ)

J3(Θ)

)
U4(X) ≡ − 1

β
log

(
g4(X)

J4(X)

)
. . .

(3.10)

with J2, J3, J4 proper Jacobians. Subsequent works [75] introduced an iterative approach, called

iterative Boltzmann inversion (IBI), to refine the potentials obtained with the DBI. Another

successful iterative approach is the so-called Inverse Montecarlo (IMC) method [76], which is

based on calculations inspired by the theory of RG.

3.3 Top-down coarse-graining

In top-down models, interactions are commonly parameterized in absence of a more detailed,

fine-grained model. These interactions are not intended to precisely approximate the many-body

potential of mean force for a specific system. Instead, they are often quantitatively determined

starting from physicochemical intuition, generic physical principles, or the need to reproduce

observed emergent structural or thermodynamic properties at larger scales. Although not stan-

dard, we include here also the so-called Structure-based (SB-CG) or Native state-based CG

models, of whom we will describe the Gō-Models and the elastic network models, which are

two historically successful classes of SB-CG models in the field of protein folding and protein

dynamics.
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3.3.1 Gō models

Figure 3.4: Pictorial representation of the base concept of the Gō models: given the native contacts

among the residues (as indicated, for example, by a structure from the PDB), specific at-

tractive forces are imposed on the dynamics for example via a Lennard-Jones like potential

(3.12). In this way, one can characterize the transition paths that lead the system from a

starting conformation (e.g. a random coil) to the native conformation, which by construction

is a minimum of the Hamiltonian. Image taken from https://www.blopig.com/blog/tag/go-

model/.

Gō models [77] where introduced to simulate the process of protein folding, with simplified (i.e.

coarse-grained) representations of the proteins. By transposing the idea in the continuum space

(the first models where lattice-based), one can represent the potential energy of a very simple

Gō-like protein as follow (see e.g. [78]):

UGō(R;CIJ) =
∑
I<J

1

2
Kb (RIJ − d)2 · δJ,I+1+ (3.11)

+
∑
I<J

σ[CIJ ] · ϵ ·

[(
R0

RIJ

)12

− (2R0)
6

(RIJ −R0)6 + (2R0)6

]
+
∑
I<J

(1− σ[CIJ ]) · ϵ ·
(
R0

RIJ

)12

(3.12)

The first term is an harmonic spring connecting consecutive beads along the chain (like in a very

simple polymer model); the second term is a LJ-like term acting only on those residues that are

in native contact (in fact, σ[CIJ ]] = 1 if I, J are in contact and σ[CIJ ] = 0 otherwise) and it

depends on the choice of a reference distance R0; the third term is an excluded volume term

https://www.blopig.com/blog/tag/go-model/
https://www.blopig.com/blog/tag/go-model/
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acting on non-native residues. Here the mapping is a one-bead-per-residue mapping, dictated by

chemical intuition, as often happens in the process of building a CG model. Due to their excep-

tional simplicity and outstanding computational efficiency, these models have gained immense

popularity and success in studying the folding, fluctuations, and interactions of proteins, protein

complexes, and, to a lesser degree, nucleic acids with known equilibrium structures [79, 80, 81].

On the other side, since the model does not include non-native interactions, the potential energy

is minimally frustrated, and this fact makes simulations with these models easily subjected to

kinetic traps.

3.3.2 Elastic network models

Figure 3.5: An example of elastic network model (black spheres and lines) built for the open conformation

of the SBDS protein (all-atom structure in CPK style, coloured balls; see chapter 2), by

employing a cut-off for the springs at Rc = 6Å.

The whole idea of the elastic network models (ENM) for biomolecules has its foundations in the

theory of normal mode analysis (NMA). Starting from the Hamiltonian of a classical molecular

system, for example the one shown in chapter 1, one can assume the existence of one or more

minima of it. By diagonalizing the Hessian matrix of the potential, one can in principle construct

a simplified model of the harmonic dynamics of the protein around the selected minimum of

the potential by finding the normal modes of its vibrational dynamics. In a seminal paper [82],

Tirion showed that, by assuming a very simple description of the potential energy of the system,

it is possible to predict accurately enough the temperature factors and cumulative density of
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modes of simple proteins like the G-actin:ADP:Ca++ studied in the paper. It was then become

common to use a free energy, acting on the Cα atoms alone or the CoM of the residues, with the

following form (after a second-order expansion), R referring to the positions of the CG sites:

UENM (R;R0
IJ) =

∑
(IJ)

1

2
C
[(
RIJ −R0

IJ

)
· R̂0

IJ

]2
(3.13)

It depends parametrically on the native distances R0
IJ , on the general spring constant C and on

a cut-off Rc, by selecting only those pairs (IJ) with R0
IJ < Rc. A straightforward generalization

of this potential is the one with pair specific spring constants CIJ . Another version of network

models for biomolecules, closely related to the one based on UENM , is the so-called Gaussian

network model (GNM) [83], with potential energy:

UGNM (R;R0
IJ) =

∑
(IJ)

1

2
CIJ

(
RIJ −R0

IJ

)2 ≡∑
(IJ)

1

2
CIJ (δRJ − δRI)

2 (3.14)

where δRI := RI −R0
I . Assuming one single a-specific spring constant C, it can be shown that

UGNM can be rewritten as UGNM (R;R0
IJ) =

1

2
C
∑
(IJ)

δRJΓIJδRI , where ΓIJ is called connec-

tivity matrix. An interesting property of the UGNM -based models is the analytical integrability

of its canonical configurational partition function:

Z
(NV T )
GNM =

∫
dR e−βUGNM (R;R0

IJ ) = (2π)3N/2

∣∣∣∣kBTC Γ−1

∣∣∣∣3/2 (3.15)

where Γ is the trace of ΓIJ . Another useful property of GNMs is the direct relation between the

diagonal elements ΓII and the temperature factors of the residues I:

BI,GNM ≡ 8π2kBT

C
(Γ−1)II (3.16)

It is worth to mention that in the work presented in chapter 4 we made use of a peculiar version of

a GNM, called β−GNM. Moreover, the AA/CG (All-Atom/Coarse-Grained) multiple resolution

CANVAS model for proteins, which will be introduced in this chapter and used in chapter 6,

makes use of an ENM to model the CG part.

3.3.3 MARTINI force field

The MARTINI coarse-grained model [66, 84] is a widely used approach for simulating biomolecules,

from lipid membranes to proteins. It provides a compromise between computational efficiency
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and accuracy by grouping several atoms into a single “bead” representation. Its level of coarse-

graining reduces the number of particles in the simulation, enabling longer timescales and larger

systems to be studied compared to traditional atomistic models. In the MARTINI model,

biomolecules are represented using four to five interaction sites per bead. Each bead accounts

for several atoms, and its properties, including mass and charge, are determined by averaging

the characteristics of the corresponding atoms. This approach simplifies the system while pre-

serving key chemical and physical properties. The model employs a coarse-grained force field

that describes the interactions between beads. The force field parameters are derived from ab-

initio/atomistic simulations and experimental data, ensuring a good balance between accuracy

and computational efficiency: this fact poses the model in between the bottom-up and top-down

CG approaches.

MARTINI simulations have proven successful in studying a wide range of biomolecular processes,

including membrane anchoring [85] and self-assembly of lipids [86]. Due to the reduced particle

number, MARTINI simulations can cover longer timescales, allowing researchers to investigate

slower biological phenomena. The model has also been applied to study complex biological

systems, such as cell membranes and viruses.

3.3.4 oxDNA and oxRNA for nucleic acids

(a)

(b)

Figure 3.6: Mapping (a) and interactions (b) of the oxDNA and oxRNA CG models for nucleic acids.

Taken from the oxDNA website.

The oxDNA [87] model and its twin oxRNA [88] model are two examples of top-down CG mod-

els for nucleic acids. They are built to match structural, mechanical, and thermodynamical

properties of short and long single-stranded (ss) and double-stranded (ds) nucleic acids (NA).

https://dna.physics.ox.ac.uk/index.php/DNA_model_introduction
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In particular, the oxDNA model aims at reproducing the dynamics of e.g. DNA origami, DNA-

based nanostructures that have gained increasing interest in the last years for their potential

technological applications [89]. On the other hand, the oxRNA model is built to match, among

other properties, extension curves as a function of twist and stretching force, also including the

behaviour of plectoneme structures [88].

The mapping is based on chemical intuition and consists in a two-beads per nucleotide map-

ping. The backbone atoms are all mapped into the same spherical bead, while the nucleobase

atoms are mapped into another bead that is splitted into two, distinguishable interaction sites

(both linearly dependent on the current position of the nucleobase bead); see figure 3.6 for a

pictorial representation. The interaction terms are divided into two classes: the nearest neigh-

bors interactions, which act only on pairs of those nucleotides that are consecutive in the same

chain/molecule; and the non-bonded interactions, which involve all the other pairs. In sum-

mary, all the interactions in the oxDNA and oxRNA models are pairwise. The terms can be

distinguished even further, as follow:

V oxDNA/oxRNA =
∑

ij∈⟨ij⟩

(Vback + Vstack + Vex)+ (3.17)

+
∑

ij /∈⟨ij⟩

(VHB + VDH + Vcr.−stack + Vco.−stack + Vex) (3.18)

where the first sum involves the nearest-neighbors interactions, and the second all other pairs.

Vback describes the bonds among the backbone CG sites; Vstack is a directional term that ac-

counts for the stacking of consecutive nucleobases; Vex is an excluded volume term; VHB is

also directional and aims at stabilizing hydrogen bonds between AU ,CG (canonical) and UG

(wobble) base pairs; VDH is a Debye-Huckel potential (see last section of this chapter) that

takes into account the electrostatics screened by an effective salt concentration (since the mod-

els are implicit solvent-based, see again last section of this chapter); Vcr.−stack accounts for the

cross-stacking effects that stabilize the structure of helices in dsNA; Vco.−stack is the analogous

of Vstack but for nucleotides that are not nearest neighbors. In the last chapter, we show how to

make use of the very fast and efficient GPU-based implementation of the model into the native

software (itself called oxDNA) to simulate the process of folding of a 2774 bases-long ssRNA

viral fragment, in order to get an equilibrated structure to be use to construct a model for a full

virion particle.
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Figure 3.7: A schematic illustration of the relation between a model’s accuracy and its capacity of re-

producing long time-scale phenomena. In principle, an extremely accurate model might

reproduce all phenomena that take place at a characteristic length and time scale that lies

above that of its fundamental constituents; however, practical limitations make its usage

impossible beyond a certain limit. The coarser the model, the longer the time scale that can

be achieved, at the expenses of a shorter and shorter list of processes that it can manage to

produce. Image taken from [90].

3.4 Multi-resolution models

There is a promising class of methods that consists in mixing multiple levels of resolution in

the same setup, called multi-resolution models. The resolutions can be mixed at various levels:

Quantum with classical AA (QM/MM) [91, 92], all-atom and coarse-grained (MM/CG) [93] and

also all-atom or coarse-grained with continuum models of e.g. the solvent, which is treated as

a field variable [94]. These methods incorporate the intrinsic multi-scale nature of real systems

typically found in the realm of Biology (which involves all the scales represented in 3.7) and

for these reasons they can be the best theoretical framework to be adopted in biomolecular

modelling and simulations. However, due to its young age, the field’s maturity is still far from

being comparable to that of the all-atom modelling: from my point of view, it is hard to predict

whether it will spread over the scientific community to become a valid competitor of the AA

models or if the ongoing explosion of increasing computational power accessible all over the world

will make it obsolete, leaving the stage to the AA modelling as unique, out of reach protocol.

Nevertheless, in the following we report some examples of these approaches and later on in

chapter 6 we will show and discuss the application of a specific multi-resolution model for

proteins, namely the the CANVAS model [93], which is briefly introduced in this section.
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Figure 3.8: Schematic representation of the multi-resolution Hamiltonian-AdResS model: the parameter

λ, which is a function of the points in the space of the simulation box, determines the degree

of resolution of the particles located there. Image taken from the H-AdResS website.

3.4.1 Solvent models

The AdResS (adaptive resolution simulation) [95, 96] and H-AdResS (Hamiltonian-adaptive

resolution simulation) [97] models are powerful multi-resolution (or more precisely adaptive

resolution) approaches for simulating liquids. These models are based on a seamless transition

between atomistic and coarse-grained representations, allowing for efficient simulations of liquids

at different levels of detail. The AdResS model divides the simulation setup into three regions:

atomistic, hybrid, and coarse-grained. The atomistic region contains molecules that require

high-resolution representation, such as solute molecules or interfaces. The coarse-grained region

represents bulk solvent or less critical regions. It has been shown [98] that the CG region can be

treated with the very simplistic and computationally light description of an ideal, non-interacting

gas, which makes that region essentially a reservoir of particles for the AA one. The hybrid

region acts as an interface between the atomistic and coarse-grained regions, allowing for the

exchange of particles and information. In mathematical language, the force acting between the

CG site I and J is expressed as a sum of the AA (CoM force, assuming a mapping onto the

CoM) and CG forces [96]:

F
(Ad)
IJ = [λ(RI)λ(RJ)] · F(AA)

IJ + [1− λ(RI)λ(RJ)] · F(CG)
IJ (3.19)

where λ(RI) is a smooth function that takes values in the range [0, 1]: a value of 0 is associated

to the CG region, while 1 to the AA one. By dynamically adapting the resolution of each

https://sites.google.com/view/hadressmethod/home?authuser=0
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region based on the position of the particles, AdResS achieves a balance between accuracy

and computational efficiency, also relying on the addition of compensation terms to keep the

density/pressure constant in the AA region. The H-AdResS model extends the capabilities of

AdResS by introducing Hamiltonian-based coupling between the atomistic and coarse-grained

regions. The Hamiltoninan reads [97]:

H(H−Ad) =
∑
i,I

p2
iI

2miI
+
∑
I

{
λ(RI)V

(AA)
I + [1− λ(RI)]V

(CG)
I

}
+ Vint (3.20)

where V
(AA)
I is the mean potential energy of the CoM-site I and V

(CG)
I is the CG potential.

This approach allows for the accurate representation of thermodynamic properties, such as

energy and temperature, across the different regions. The H-AdResS model provides a more

rigorous treatment of the interfaces and maintains the Hamiltonian formalism throughout the

simulation, allowing for the use of the model in Monte Carlo simulations [99]. Both the AdResS

and H-AdResS models have been successfully applied to study a wide range of liquids and

molecules in solution, including aqueous solutions and organic solvents [100]. These models have

been used to investigate various phenomena, such as solvation dynamics, phase transitions, and

chemical reactions. The AdResS and H-AdResS models offer several advantages, including the

ability to simulate large systems over long timescales while retaining accuracy in critical regions.

By incorporating multi-resolution representations, these models overcome the limitations of

purely atomistic or coarse-grained approaches. In principle, they provide a versatile framework

for studying fluids with varying levels of detail, enabling researchers to gain insights into complex

molecular processes that occur in realistic environments. However, unfortunately, there is still no

unique and consolidated implementation of these models that makes it suitable to couple them

with biomolecular simulations efficiently, although the methods have been already successfully

applied to the study of e.g. proteins [101].
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3.4.2 The CANVAS model for proteins

Figure 3.9: Graphical abstract of [93] that illustrates the logic behind the construction of a CANVAS

model of a protein.

The CANVAS model is a multiple-resolution model for proteins developed in my current research

group, and is extensively presented and described in [93]. The model allows one to describe the

chemical components of a protein with 3 different levels of resolution: atomistic, medium grained

and coarse-grained. The first one keeps every atom as explicit degrees of freedom; the second

level keeps only the heavy atoms of the backbone of the amino acids as explicit beads; the third

level, the lowest, treats an amino acid as a single degree of freedom, centered onto the α Carbon.

While the interaction terms among the atomistic level are those found in typical atomistic force

fields, the low levels make use of harmonic springs with variable stiffness in order to impose

fluctuations about specific relative distances, taking them from the starting structure provided

by the user. Moreover, the medium and lowest resolution beads are modelled so as to preserve

chemical properties of their neighborhoods (partial charges and van der Waals parameters). It

is important to notice that the choice of the resolution distribution among the structure can be

decided a priori by the user, and we are currently working to a new method that couples the

mapping entropy minimization approach [63] with the resolution-relevance theoretical framework

to optimally select the resolution distribution in a totally unsupervised and data driven manner.
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3.5 Implicit solvent models

Reality

Explicit Solvent (discrete)

Implicit Solvent (continuum)

Solvation energy = Electrostatic + Hydrophobic

Numerical PB equation SASA based

GB (anaytical models)

Accuracy

Low 
Computational 

Cost

Figure 3.10: Hierarchy of solvation models for biomolecules, inspired by [102]. The terms named Elec-

trostatics and Hydrophobic are discussed in the text.

In molecular dynamics simulations of biomolecules it is already well-established that the solvent

environment (typically water molecules and ions) plays a crucial role in the accurate prediction

of the dynamics of the solute under study. However, modelling the solvent explicitly (i.e. as

explicit degrees of freedom in the simulation) is computationally very demanding: on average,

the number of atoms in a simulation box with PBC can be more than one order of magnitude

higher than the number of atoms of the solute itself, in order to avoid self-interactions between

the multiple copies of the solute. Alternatives to explicit solvent model are offered by multi-

resolution models (already discussed) or the more common implicit solvent (IS) models. In these

models, the free energy of solvation of the solute is estimated via approximations, the main goal

being to reduce drastically the number of degrees of freedom integrated along the simulation.

These approaches decrease the computational cost of energies and forces calculations for the

solute and enhance the calculation of averages of observables by removing the need for averaging

over the solvent degrees of freedom.

The free energy of solvation can be seen in a bottom-up CG fashion as a PMF: the process

of integrating out the solvent degrees of freedom is nothing but a decimation mapping of the
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solvated system onto the unsolvated system, with the solute alone. In fact, the goal of every

implicit solvent model is to construct an interaction potential that necessitates of information

from solely the solute atoms, which is able to retain average (or mean field) information of the

effect of the solvent “as if” it were explicitly taken into account. We can formalize the idea in

mathematical terms. We can call Utot[{r}S , {r}M ] = USS [{r}S ]+UMS [{r}S , {r}M ]+UMM [{r}M ]

the total potential energy of the system composed by the solute M and the solvent S. In this

framework, the PMF of solvation Veff[{r}M ] can be defined from the consistency criterion:

e−βVeff[{r}M ] ≡
∫

d{r}S e−β(USS [{r}S ]+UMS [{r}S ,{r}M ]) (3.21)

where d{r}S :=
∏N

j=1 drj , if we call N is the number of atoms in the solvent. USS [{r}S ] and
UMS [{r}S , {r}M ] are the “real” potential energies of interaction of the solute with itself and

the solvent with the solute, respectively (and depends on the choice of the force field and the

model of the solvent used). Clearly, the knowledge of this PMF is essential if we want to mimic

the thermodynamical properties of the protein system in the implicit solvent exactly. However,

as one can imagine, a general solution to extract Veff[{r}M ] from this criterion is essentially

unfeasible, neither analytically nor numerically.

In the past decades there have been a lot of attempts to construct a quantity that is able to

well approximate that PMF while being sufficiently general and computationally light [102,

103], in a more top-down fashion. The main group of this methods starts generally by one first

approximations, i.e. to represent the free energy of solvation Veff[{r}M ] ≈ ∆Gsolv[{r}M ] as a

sum of two terms (see also figure 3.10):

∆Gsolv[{r}M ] = ∆Gel[{r}M ] + ∆Ghydro[{r}M ] (3.22)

Here, ∆Ghydro[{r}M ] is the free energy of solvating a solute from which all charges have been

removed (i.e. partial charges of every atom are set to zero, essentially the Lennard-Jones inter-

actions), while ∆Gel[{r}M ] is the free energy of first removing all partial charges in the vacuum,

and then adding them back in the presence of a mean field solvent environment. The common

approximation widely in use today [104, 103] for estimating the second addend of this sum as-

sumes it proportional to the total solvent accessible surface area ∆Ghydro[{r}M ] ≃ σ · A[{r}M ]

(defined in chapter 2), with a proportionality constant σ fitted against experimental data on

small peptides or molecular fragments. The second addend, on the other hand, is by nature

long-ranged and requires more care. Among others, two approaches are recurrent in literature:

the so called Poisson-Boltzmann (PB) method and the generalized Born (GB) method, which
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is a simplified version of the PB one. The first one is very general, physically speaking: it is

in fact a direct application of electrostatic treatment of the solvent as a continuum dielectric in

the linear response regime. The idea is to solve the PB equation:

∇ (ϵ(r)∇(ϕ(r))) = C ·

ρM (r) + |e|
∑
j

njzj exp(−ϕ(r)|e|zj/kBT )

 (3.23)

with a given solute partial charge distribution (assumed to be static, step by step), at every

time step of the simulation. Here the sum over j takes into account multiple ionic species in the

solvent, nj is the density, zj is the ionic number and |e| is the elementary charge. While being

fully general, its computational cost makes it hard to use in most of the practical cases.

A simple ilnearization of the PB equation leads to the so-called Debye-Huckel (DH) potential for

the screened electrostatic potential. By introducing the ionic strength I :=
1

2

∑
j njzj , approxi-

mating ϵ(r) ≃ ϵrϵ0 (with typical values of ϵr ∼ 80 for water bulk), and defining κ2 :=
2I|e|

ϵrϵ0kBT
one gets the following Helmholtz equation (which holds under the hypothesis of neutrality con-

ditions):

∇2ϕ(r) = C · κ2ϕ(r) ⇒ ϕ(r) = C ′ exp(−κr)
r

(3.24)

whose general solution is the Debye-Huckel potential written above. So, in turn, the DH potential

between charge qi and charge qj of the solute takes the form ϕ(|ri − rj|) = C ′′ qiqj exp(−κ|ri − rj|)
|ri − rj|

.

Other than being the implicit solvent model implemented in oxDNA and oxRNA, the DH po-

tential will be also adopted by us (see chapter 6) as IS together with the CANVAS model, so as

to explore the feasibility and the accuracy of this combination.

Alternatively, one can push the approximations even more, obtaining the GB potential. In the

GB model, ∆Gel[{r}M ] is calculated as follow:

∆Gel[{r}M ] ≃ −1

2

(
1− 1

ϵw

)∑
ij

qiqj√
r2ij +RiRje

−r2
ij

4RiRj

(3.25)

where qi,qj are the partial charges of the solute’s atoms, ϵw is the relative dielectric constant of

the bulk water; Ri and Rj are the so-called Born radii ; an effective Born radius corresponds to

a spherical ion having the same ∆Gel as the same solute with partial charges set to zero would

have for all atoms except the atom of interest. A plethora of sub-methods starts from (3.25),

each one of them consisting in different ways of calculating the Born radii. The plain speed up in

computation for the GB method is clear: apart from calculating Ri, the free energy of solvation
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is analytically differentiable and leads to a quantity that can be efficiently implemented for the

calculation of the forces in an MD engine. However, a number of limitations that we will not

discuss here (see e.g. [103]) have been already pointed out on the accuracy of these methods.

In chapter 5 we introduce a new method to approximate Veff[{r}M ] by making use of a simple

artificial neural network, discussing applications, pros and cons extensively.



Chapter 4

In Search of a Dynamical

Vocabulary: A Pipeline to Construct

a Basis of Shared Traits in

Large-Scale Motions of Proteins

Note: The content of this chapter is entirely taken from the work: “In Search of a Dynami-

cal Vocabulary: A Pipeline to Construct a Basis of Shared Traits in Large-Scale Motions of

Proteins”, published in Applied Sciences in 2022 [105]. Accordingly, I here acknowledge Dr.

Thomas Tarenzi, Dr. Marta Rigoli and Dr. Raffaello Potestio for their crucial contribution to

this chapter.

4.1 Introduction

Internal motions of proteins are intimately linked to protein function [106]. Such conformational

movements span a wide range of spatial and temporal scales, going from local sidechain rota-

tions and loop motions (ps to ns), to conformational transitions involving unfolding/refolding

processes (ms to hours) [107]. In between these two extremes, internal large-scale protein fluc-

tuations happening on timescales of the order of ns-µs [108] typically involve the collective

movements of secondary structure elements; such fluctuations lead to a variety of potential

conformational states, which might promote the exposure of specific binding sites [109, 110] or
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facilitate the induced fit of the protein upon interaction with partner molecules [111, 112]. It

has been shown not only that this large-scale dynamics is essential for a protein to carry out its

biological role [113], but also that a remarkable correlation exists between a protein’s function

and its specific dynamical signature [114], thus strengthening the view of dynamics as a link

between a protein’s structure and its specific function. This is particularly evident for the case

of allosteric proteins, where the binding of a ligand conveys a signal that is propagated within

the protein structure through a modulation of its internal dynamics, resulting in alternative

conformational states and an altered protein function [115, 116, 117].

Several computational methods exist for the study of collective dynamics in proteins [118,

119, 120]; however, in order to develop a more general view of how dynamics bridges structure

and function, it is necessary to build a dataset-wise approach for the comparison of such large-

scale dynamics among proteins sharing different degrees of sequence and structural similarity.

Attempts in this direction have been performed in several works [121, 122, 123, 124, 125, 126].

Maguid et al. [127] based their analysis on a dataset of pairs of homologous proteins; comparison

of vibrational backbone dynamics within each pair led to the remarkable observation of correla-

tion between dynamics and evolutionary conservation. Velázquez-Muriel et al. [128] performed

a comparison between the protein flexibility shown by the structurally aligned members of a

CATH superfamily [129] and the protein flexibility sampled by molecular dynamics simulation

of a reference protein belonging to the same superfamily. Single value decomposition was used

to capture the essential components of the two spaces, which show different size and complexity,

and are therefore suggested to be combined for a thorough exploration of protein deformations.

Analyses of the distance in dynamics have also been performed in the case of structurally and

functionally diverse sets of proteins; in this regard, Hensen et al. [114] introduced the notion

of “dynasome”, namely an ensemble of observables computed from molecular dynamics (MD)

simulations of a structurally heterogeneous protein dataset. The method highlights a striking

correlation between the dynasome descriptors (which include 34 observables for each protein,

ranging from the first five eigenvalues of the covariance matrix of Cα fluctuations to the average

ruggedness of the energy landscape) and the proteins functional classification. However, this ap-

proach relies on time-consuming MD simulations, which limits its applicability to large protein

datasets. In addition, the large number and sophistication of the descriptors employed does not

enable a straightforward recognition and visualization of the similarities in dynamics between

proteins in term of conformational movements.

To overcome these limitations, in this work, we set-up and validate a novel pipeline for



4 In Search of a Dynamical Vocabulary 78

the identification of a basis set of conformational motions in an enzymatic family, representing

a common vocabulary of their large-scale dynamics. To this aim, we investigated internal,

collective protein dynamics in terms of fluctuations at the level of single residues. Our approach

does not require the acquisition of expensive MD simulations, since it is based on the topology of

native contacts derived from a protein’s experimental structure; specifically, we made use of the

normal mode analysis (NMA) [130], which represents, together with the principal component

analysis (PCA) [131], one of the main protocols employed to identify the most relevant patterns

in the large-scale dynamics of proteins. While PCA requires a large set of configurations (for

example from MD trajectories) to build the covariance matrix, NMA can be performed with

the sole knowledge of an equilibrium configuration of the system. For this reason, NMA is

often used in combination with simplified quadratic models, such as the linearized versions of

elastic network models (ENMs) [82]. Another degree of simplification can also be introduced

by building coarse-grained (CG) models of the protein, where the atomistic degrees of freedom

are replaced by a smaller number of physically relevant representative beads. In spite of this

simplicity, the collective, large-scale dynamical features obtained by NMA of ENMs of proteins

showed to be successful to predict experimental B-factors [132] and also conformational changes

[133, 134].

Given the nature of the ENM, the proposed pipeline is particularly suited for the study of

collective dynamics in globular proteins; ENM might indeed show limitations for biomolecules

whose dynamics is strongly anharmonic, as in the case of intrinsically disordered proteins. For

this reason, the validation of the method is here performed on a set of globular enzymes, namely

chymotrypsin-related proteases, for which in-depth analyses of evolutionary relationships and

structural similarities are available in the literature [135, 136, 137, 138]; in addition, ENM-

based NMA has been successfully applied on chymotrypsin-like proteases in previous works,

both in Cartesian space [139, 140] and in torsion space [141]. In our approach, normal modes

are computed from the β-Gaussian elastic network model of the dataset members [142]. In

the β-Gaussian model, each residue is described in a simplified representation as two beads:

one corresponds to the Cα atom and represents the mainchain, while the second, describing

the sidechain, is positioned according to the degrees of freedom of the first bead. An effective

quadratic potential energy is used to model the bead fluctuations from the native conformation.

We made use of this information to perform a dynamics-based alignment between all pairs of

proteins from the dataset; the results from the alignment were used to construct a distance

matrix in the space of protein dynamics and to cluster together proteins with similar large-
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scale motions, thus adding an additional layer of information to clustering procedures based on

sequence identity [143, 144] or structural similarity [145, 146, 147].

Moreover, we developed a way to represent each protein’s large-scale normal mode as a

vector field on the 3D space. Thanks to this representation, we were able to build a high-

dimensional basis set of large-scale protein modes. The basis set is validated by comparison with

results from MD simulations, with the perspective of applying this methodology to a dataset

comprehensive of a large number of protein classes, differing in structure and function. In this

way, common fluctuations between distant proteins can be correlated to the presence of local

structural elements, with implications in protein engineering for the design of scaffolds that are

able to perform controlled conformational changes in functional enzymes [148, 149]. In addition,

the large-scale dynamics might serve as a guide in the identification of those patterns where the

preservation of a high resolution is of paramount importance in the construction of simplified,

multiscale models [150, 151, 152, 153, 90] that retain the original dynamics. In particular, by

describing at an atomistic level the structural elements identified as important for the desired

conformational movements and simultaneously coarse-graining the remainder of the protein, it

might be possible to obtain a simplified and computationally inexpensive protein model that

shows the conformational dynamics of the high-resolution one.

4.2 Overview of the workflow

In our approach, the identification of a common set of conformational motions among different

proteins is based on the analysis of their dynamics in a CG representation; from here, a repre-

sentative set of normal modes is identified through a dynamics-based clustering of the proteins

comprising the initial dataset. The selected, representative modes are then orthonormalized and

ordered, so as to obtain the final basis set. An overview of the workflow is given in Figure 4.1

and explained in detail in the following paragraphs.
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Figure 4.1: Schematic representation of the workflow proposed, from the choice of the protein dataset

to the creation of the vector fields on a grid. Once orthonormalized and ordered, the latter

are used to construct the final basis set.

The starting point is the identification of a set of proteins (Figure 4.1.a). The choice of this

dataset is arbitrary and independent on the pipeline; however, the number of proteins that the

dataset contains is supposed to be large enough so as to be representative of the families or

superfamilies that are included, meaning that the more distant are the members in terms of

homology, the larger should be the dataset. This is necessary to ensure sufficient generality of

the resulting basis set of conformational motions.

The selected set of structures is used to run pairwise dynamics-based protein alignments



4 In Search of a Dynamical Vocabulary 81

with the ALADYN software developed by some of us [154] (Figure 4.1.b). ALADYN takes two

input structures and performs the maximization of a score function that takes into account the

spatial superposition of protein regions that have similar motion. The dynamical information is

encoded in the low-energy (large-amplitude) eigenvectors obtained from the diagonalization of

the interaction matrix Mij of the Hamiltonian function of the β-Gaussian Network Model:

H =
1

2

∑
ij

δx⃗iMijδx⃗j (4.1)

where δx⃗i is the displacement vector of the i-th bead with respect to the equilibrium config-

uration. Once the eigenvectors have been obtained, the extent and consistency of the alignment

are quantified through the root-mean-square inner product (RMSIP) between the spaces given

by the first 10 modes of each aligned protein. If we call Ni and Nj the total number of residues in

the chains of the two aligned proteins, the RMSIP calculation is limited to a subset q < Ni, Nj

of marked Cα. These subset of amino acids are chosen by firstly grouping the amino acids

in groups of 10 subsequent ones; then maximizing a single scoring parameter via the standard

Metropolis criterion over the space of possible pairs of groups among the two proteins’ sequences,

as exhaustively explained in [154]. Specifically, the RMSIP is defined as:

RMSIP({v⃗kl }i, {w⃗k
m}j) = RMSIPij :=

√√√√ 1

10

10∑
l,m=1

∣∣∣∣∣
q∑

k=1

v⃗kl · w⃗k
m

∣∣∣∣∣
2

(4.2)

The RMSIP ∈ [0, 1] takes on the value 1 in case of perfect correspondence of the spaces, and

0 in case of their complete orthogonality. The quantity (1.0 - RMSIP), which still takes values

in the interval [0, 1], is therefore suitable to define a distance in dynamics between two proteins

after alignment. Statistical significance of the alignment, quantified by means of a z-score, is

taken into account by weighting the RMSIP by the hyperbolic tangent of the module of the

z-score, so as to give more importance to the most reliable results. The distance in dynamics

between two aligned proteins i and j is therefore defined as:

dij = 1.0− (RMSIPij · tanh|zij |) (4.3)

After all the pairwise alignments between the elements of the dataset are performed, a

distance matrix that expresses differences in the large-scale dynamics is obtained (Figure 4.1.c);

then the dataset undergoes hierarchical clustering [155] based on this distance matrix, in order

to identify groups of dynamics-related proteins (Figure 4.1.d). The optimal number of clusters
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is identified from the interplay between resolution and relevance [156, 157, 158, 159, 160]. These

two quantities are entropies that are related to each other and depend on the clusterization

procedure adopted. We exploited them to select the number of clusters to retain, by considering

the smallest number of clusters (hence the lowest resolution) that gives the highest relevance

(Figure 4.2). Specifically, given a labeling ŝ := (s1, . . . , sη) (e.g. a clustering) to a sparse dataset

made by N ≥ η data points (in our case the single proteins in the dataset), the resolution is

defined as an entropy Ĥres representing the relative amount of information loss in the process:

Ĥres[ŝ] := −
∑
s

ps · log2(ps) ps :=
ks
N

(4.4)

where ks is the number of data points that fall into the same cluster s. It is proven [157]

that Ĥres increases monotonically with the number of clusters, in accordance with the idea that

the coarser is our clustering, the more information we loose. On the other hand, the relevance

Ĥrel is defined as:

Ĥrel[k̂] := −
∑
k

k ·mk

N
· log2

(
k ·mk

N

)
(4.5)

where mk is the number of clusters containing the same amount k = 0, . . . , N of data points,

for a given clustering process. By choosing the lowest resolution value corresponding to the

largest relevance (Figure 4.2), we can rely on the most compact clusterization (thus increasing

the statistics within each cluster) that preserves the highest empirical information content.
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Figure 4.2: Resolution-relevance curve used to determine the optimal number of clusters in the

dynamics-based clusterization of the protein dataset. Each point corresponds to a differ-

ent number of clusters. The optimal subdivision, indicated with an orange star, corresponds

to 9 clusters.

Once the optimal number of clusters is derived, protein representatives of each cluster are

identified as the cluster centroids, namely the proteins with the shortest distance to every other

protein of the cluster itself. In addition, a representative for the whole dataset is selected as the

protein with the most characteristic dynamics, expressed in terms of the lowest distance with

respect to all the other dataset members. The other protein structures are then dynamically

aligned to this one with ALADYN, so as to have a consistent orientation in space (Figure 4.1.e).

From an ENM representation of each of these newly oriented structures, normal modes are

computed. In order to facilitate the comparison between modes belonging to proteins with

a different sequence length, the first 5 reoriented normal modes of the cluster representatives

are placed on a cubic lattice, and interpolated on the grid points so as to obtain a smooth

vector field (Figure 4.1.f). In this way, we move from comparing the 3N -dimensional modes of

different proteins (where N is the number of residues, different for each protein), to comparing

vector fields defined on identical 3D lattices having the same dimension. More details on the

lattice construction and interpolation are given in Section 4.3. Proteins belonging to the dataset

employed in this work, despite displaying a range of sequence length and radius of gyration,

do not grandly differ in size; therefore, the modes interpolated on the lattice can be directly

compared. However, it might be the case that the dataset includes proteins with very different

size; this would require a rescaling of the protein coordinates before the interpolation on the
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lattice, so as to compare motions occupying similar volumes in space.

The interpolated modes are orthonormalized using the Gram-Schmidt algorithm [161]. The

components of the basis are finally ordered according to decreasing entropy, considered as a

measure of their degree of collectivity. The entropy S of a mode k is defined as:

Sk = −
∑

i ϕ
k
i lnϕ

k
i

lnN
, (4.6)

where N is the number of lattice sites and ϕki is the square modulus of the k-th mode on the

lattice site i. Sk takes a maximum value of 1 if the mode is delocalized on all the lattice sites,

and a minimum value of 0 if the mode is localized on a single site.

The final set of orthonormalized and ordered vector spaces represents the basis of protein

dynamics. In the next section, technical details of the methods employed are presented.

4.3 Materials and methods

4.3.1 Preprocessing of the dataset

A dataset of 116 chymotrypsin-related proteases, for which structural experimental information

is available, was selected. This dataset is based on the one used in ref. [138], from which

proteins with sequence identity > 70% were removed. The dataset comprises serine proteases

from bacteria, eukaryotes, archaea, and viruses, in addition to chymotrypsin-related cysteine

proteases from positive-strand RNA viruses. The full list of proteins’ PDB IDs is given in Table

S1. The structures were downloaded from the Protein Data Bank, and the coordinate files were

cleaned-up from heteroatoms, from copies of the protein in the crystallographic cell, and from

residue-configurations with low occupancy. The position of missing atoms was rebuilt and the

protein conformations were optimized using the software FoldX [162]. Non-terminal missing

residues were modelled with MODELLER [163, 164]. An analysis of the first 3 normal modes

for each protein was run using an elastic network model with a cutoff of 10 Å, in order to identify

the problematic cases in which the flexible protein termini impaired the analysis of the motion of

the protein core. Such analysis was conducted by visual inspection of the modes on the protein

structures. In those cases, flexible tails were not considered in the following analyses, which

thus focused on globular structures. Moreover, in the case of multi-domain structures, only the

domain known to have protease activity was retained.
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4.3.2 Dynamics-based alignment and clustering

The dynamics-based alignment of all the pairs of protein structures was performed with the

ALADYN software [154], using as input the cleaned coordinates files. From the resulting align-

ment scores, clustering of the structures was performed with the Python library SciPy, using the

ward linkage method. The calculation of relevance and resolution, used to identify the optimal

number of clusters, was performed with an in-house script.

4.3.3 Lattice interpolation and basis construction

Normal modes of each protein of the dataset have been computed with an in-house code. The

first 5 reoriented normal modes of the cluster representatives were placed on a cubic lattice,

with a lattice constant of 1 Å(for a total of 45 modes, namely vector fields). The vector on each

protein Cα was translated on the nearest lattice grid point. The mode vectors were interpolated

on the lattice in order to create a smooth vector field (Figure 4.1), using Gaussian functions with

σ=0.8 Å and truncated at a distance of 2 Å. This distance is slightly smaller than the lowest

spatial distance between two Cα atoms to make sure that the vector coming from the original

protein mode is not spuriously modified during interpolation. The chosen value of σ ensures

that in correspondence of the cutoff the mode field is close to zero. The resulting vector at each

grid point ijk is the sum of the mode fields centered on the nearby Cα grid points, calculated at

ijk, within the cutoff. Eventually, orthonormalization and ordering of the modes was performed

with Python scripts.

4.3.4 Molecular dynamics simulations

Molecular dynamics simulations have been performed on the representatives of each cluster,

using the software Gromacs 2019 [40]. The proteins were described with the Amber99sb-ildn

force field [41], and the TIP3P model [42] was used for water molecules. Sodium and chloride

ions were added at a concentration of 0.15 M, and balanced so as to neutralize the charge in

the simulation box. All systems were energy minimized for 100 steps by steepest descent. The

solvent was then equilibrated for 500 ps with positional restraints on the protein heavy atoms,

using a force constant of 1000 kJ·mol−1·nm−2. MD simulations were carried out in the NPT

ensemble for 250 ns for each system. Protein and solvent were coupled separately to a 300 K

heat bath with a coupling constant of 0.1 ps, using the velocity-rescaling thermostat [165]. The

systems were isotropically pressure-coupled at 1 bar with a coupling constant of 2.0 ps, using
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the Parrinello-Rahman barostat [43]. Application of the LINCS [166] algorithm on hydrogen-

containing bonds allowed for an integration time step of 2 fs. Short-range electrostatic and

Lennard–Jones interactions were calculated within a cut-off of 1.0 nm, and the neighbor list was

updated every 10 steps. The particle mesh Ewald (PME) method was used for the long-range

electrostatic interactions [167], with a grid spacing of 0.12 nm.

The calculation of the root-mean-square fluctuations from the trajectory coordinates was

performed on the protein Cα atoms using the Gromacs tool gmx rmsf. The dynamic cross-

correlation was computed with a Python script, using the library MDTraj [168]. Plots were

produced with Python libraries, and protein images were rendered with VMD [169].

4.4 Results and discussion

4.4.1 Overview of the protein dataset

Proteases are enzymes catalyzing the reaction of hydrolysis of peptide bonds. The independent

evolutionary origin of these enzymes [170] is reflected in their large variety of sizes, shape and

specificity [171]. In this work we focus on a specific superfamily, namely the chymotrypsin-related

proteases. The latter share a common structure with two β-barrel-like domains accommodating

the binding site (Figure 4.3); however, the size and structural completeness of the β-barrels

and the length of the turns and loops connecting the sheets greatly vary. The result of this

structural variability is a range of sequence lengths and protein sizes among the 116 proteins

included in our dataset (Figure S8). The proteolytic reaction is performed by a catalytic triad of

residues, located between the β-barrels. The type of amino acid playing the role of nucleophile

in the mechanism of catalysis determines the class of proteases: in the serine proteases, the

catalytic triad contains His, Asp/Glu, and Ser residues [172]; in the cysteine proteases, the triad

is composed of His, Asp/Glu, and Cys or of a dyad of His and Cys residues [173].

The classification used in the remainder of the paper is based on MEROPS, a hierarchical

classification scheme for proteases [174, 175]. In the MEROPS database, chymotrypsin-related

proteases constitute the PA clan, which contains 9 families of cysteine proteases (representing

proteases of positive-strand RNA viruses) and 14 families of serine proteases (representing pro-

teolytic enzymes from eukaryotes, bacteria, some DNA viruses and eukaryotic positive-strand

RNA viruses). Families are defined on the basis of sequence similarity and/or resemblance of the

folds among their protein members. However, experimental structural information is available

for a limited number of these families; therefore, not all of them are represented in the dataset
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employed in this work.
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Figure 4.3: Cartoon representation of chymotrypsin from Bos taurus (PDB ID: 2CGA). Colors are used

to differentiate the structural elements; in particular, the two β-barrels are distinguishable

in yellow. The catalytic triad is represented in licorice and colored in red.

4.4.2 Results of the dynamics-based alignment

We performed an alignment based on the dynamical information entailed into the first 10 lowest

frequency modes obtained by the NMA on the β-Gaussian Network Model of each pair of proteins

in the dataset. The alignment consists in the optimization of a score function that maximizes

the RMSIP of the two sets of normal modes. For each pair of dynamically-aligned proteins,

matching regions in the two structures are identified as the subset of residues giving the best

overlap. The number of residues belonging to these cores shows great variability (Figure S9),

and their RMSD values range from 0.6 to 4.0 Å; these results are indicative of heterogeneity in

dynamics within the dataset.

The distance matrix obtained from the pairwise dynamics-based alignments of all proteins

of this dataset is used as a measure of similarity in dynamics. This can be compared to the

MEROPS classification by computing the average distance between protein pairs that fall into

the same family. Following such a procedure, it is apparent that the average distance in dynamics

is lower within each family, with respect to the total average (Figure 4.4). In other words,
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proteins belonging to the same family are significantly closer in dynamics than they are to

members of other families.

Figure 4.4: Average distances (in terms of dynamics) between proteins of the dataset belonging to

the same family. Only those subfamilies including more than one representative member

are displayed here. The histograms show that proteins are significantly closer in dynamics

within the same family then they are to members of other families.

The distance matrix is used as input for the division of the dataset into dynamically homo-

geneous protein clusters. The outcome of the hierarchical clustering is graphically expressed by

the dendrogram in Figure S10. On the basis of the resolution-relevance plot, 9 clusters were

identified (Figure 4.2); this corresponds to a threshold of ≈ 0.58 in the clustering dendrogram.

The resulting clusters appear to be quite homogeneous in terms of protease classification (Figure

S11). Importantly, the dynamics-based clustering automatically tends to group proteins belong-

ing to the same subfamily. Figure 4.5.a shows that in most of the cases (17 of the 19 subfamilies

represented in the dataset) all the members of each subfamily fall into the same cluster, thus

suggesting that these proteins share a similar conformational dynamics and strengthening the

idea of homogeneity in dynamics between homologous proteins [176, 177]. On the other hand,

each cluster groups several subfamilies, and only 4 clusters out of 9 include proteins belonging to

only one subfamily (Figure 4.5.b). Therefore, the clustering procedure proves able to effectively

group different protein subfamilies that, despite the different evolutionary origin, share similar

dynamics.
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Figure 4.5: a. Distribution of the members of each subfamily among the different clusters, expressed

as percentage with respect to the total number of members of the subfamily. In b. each row

represents the content of each cluster classified on the basis of the function (in percentage

with respect to the total population of the cluster). The results show that the dynamics-based

clustering automatically tends to group proteins belonging to the same subfamily.

4.4.3 Comparison between the dynamics-based and the structure-based clus-

tering

We compared the results from the dynamics-based clustering on the proteases of the PA clan

with the structure-based distance tree calculated in the work of Mönttinen et al. [138]. There,

the authors identified a common structural core of 72 residues for the set of PA clan proteases

taken into account; according to the structural similarities of this common core, they built a

distance tree between the members of the dataset. 5 different clusters were identified, contrary

to the 9 cluster found in this work.

Despite the two different approaches, the results present several similarities, showing a close

relation between structure and dynamics. The S1A subfamily, which includes both bacterial

and eukaryotic proteases, forms a clearly distinct and compact cluster both in terms of structure

and dynamics. On the other hand, the S1D subfamily, which includes bacterial proteases, is

split in two different groups in terms of structure as well as dynamics: in both cases, the S1D

Achromobacter protease I (1ARB) is close to the bacterial S1B proteases, while the S1D protease

AL20 of Nesterenkonia abyssinica (3CP7) is close to the members of the bacterial S1E subfamily.

This difference between members of the S1D subfamily has been explained on the basis of the
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different evolutionary history of the bacteria in which they are expressed [138].

Another common feature emerging from the two clustering approaches is the similarity be-

tween the S39 subfamily of positive-strand RNA viruses and the bacterial S1B proteases; inter-

estingly, such degree of similarity is higher than between S39 and the other viral proteases, as

already reported on the basis of structural comparisons [178]. Moreover, the bacterial S6 family

forms an independent group in both clustering approaches. This peculiarity has been attributed

to the presence of a long β-stalk structure at the C-terminus (Figure S12), which is absent in

all the other proteases of the PA clan [179, 138]; the protease domain alone, instead, shares

high structural similarity with that of the S1A subfamily. However, the β-stalk domain was cut

before the dynamics-based alignment, meaning that our analysis of dynamics of the S6 protease

domain alone is able to distinguish this subfamily from the other members of the PA clan.

Importantly, the two types of clustering present also some differences. In the case of the

structure-based analysis, the cysteine proteases tend to be grouped together; however, in the

dynamics-based alignment, the similarity is only at the level of one of the two large groups in

which the dataset is divided, as evident from the dendrogram in Figure S11. Within this group,

C families are mixed with S families, and appear to be more distributed among different clusters

than in the distance tree built on the basis of the structural features. This is indicative of a clear

differentiation of the C proteases in terms of dynamics, despite their structural similarity in the

protein core. This can be explained not only by the fact that different classes of C-proteases are

involved in the processing of different viral polyproteins (therefore requiring adaptation to the

substrate), but also because some of them have additional functions, playing the role of inhibitors

of host cell protein synthesis [180]. Another difference regards the heat-shock proteases S1C,

which include proteins from bacteria, chloroplasts, and mitochondria; even though structurally

similar in the proteolitic core, members of this subfamily appear very scattered in the dynamics-

based clustering. Specifically, the observed similarities in dynamics accentuates the structural

relatedness already observed between some eukaryotic S1C proteases and different viral protease

subfamilies, inasmuch that these similarities are stronger than the similarity within the S1C

subfamily itself. This relatedness has been previously explained on the basis of exchanges of

protease genes between eukaryotic viruses and their hosts [138].

In the structure-based distance tree, proteases from flavivirus (families S29 and S7) and

from togavirus (family S3) are grouped together, even though the two viruses belong to different

families; on the opposite, S29/S7 and S3 are placed in different clusters when their dynamics

is included in the analysis. This distinction might arise from the difference in function: the S3
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protein togavirin, in fact, does not only function as a viral protease, but plays also the structural

role of capsid protein of the virus [181]. S29 and S7 proteases, on the other hand, possess only

proteolitic function and do not work as structural components.

Overall, the inclusion of dynamics in the comparison of the proteases from the PA clan adds

therefore an additional level of classification, which seems appropriate to bridge structural and

functional similarities.

4.4.4 Creation and validation of the basis set of the high-dimensional space

of protein dynamics

The representative proteins of the 9 clusters are identified by the PDB codes: 3D23, 1HPG,

2YOL, 1VCP, 3QO6, 1L1J, 1WXR, 4JCN, 4I8H. Their structures are represented in Figure

S13. Protein 1GDQ is chosen as the reference structure of the whole dataset, against which

the other representatives are dynamically aligned prior to lattice interpolation of their normal

modes (see Section 4.3). In the latter, the oriented protein modes are placed and interpolated

on a cubic lattice, orthonormalized, and finally ordered. The interpolation on the grid allows us

to easily compare the dynamics of any pair of proteins, irrespectively on the number of residues.

For instance, modes from proteins with a different number of Cα cannot be directly compared in

terms of scalar products, while different vector fields on the grid have the same dimensionality.

We investigated the quality of the orthonormalized modes as a basis set for the dynamics

of the whole dataset, by computing the overlap between the spaces given by the protein modes

and by the basis. To this aim, the RMSIP was computed between the space spanned by the

first 5 modes of each protein in the dataset (after their interpolation on the lattice) and the

first n components of the basis. For each protein, the components of the basis are ordered so

as to maximise the RMSIP with the protein modes. The resulting RMSIP for each protein

is plotted in Figure 4.6.a as a function of the number n of basis vectors considered for the

calculation of the RMSIP. From the distribution of the values attained when using the full basis

set (45 vector fields), the RMSIP is greater than 0.5 for ≈ 94% of the proteins, showing in

those cases a good agreement between the dynamics of the protein and the one expressed by

the basis [182]. The agreement is excellent (RMSIP> 0.7) for ≈ 61% of the proteins; therefore,

we can conclude that the identified basis is indeed able to describe with a good generality the

large-scale conformational dynamics of the dataset. For each protein, we also computed the

normalized RMSIP, by dividing each value of RMSIP with the value obtained with the use of

the full basis set. The normalized RMSIP curves show that, for each dataset member, as few as
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15 basis components are sufficient to reproduce the 80% of the dynamics that would be attained

with the use of the full basis set (Figure 4.6.b); however, such components differ from protein

to protein, meaning that there are no vector fields in the basis that can be considered more

essential than others. This suggests that a further reduction in the dimension of the basis set

would lead to a loss of generality in the description of the dynamics of this class of proteins.

Figure 4.6: a. Root-mean-square inner product (RMSIP) between the subspaces spanned by the first

5 modes of each protein and the first n basis vectors, as a function of the basis size n. The

histogram on the right represents the distribution of the RMSIP values attained when the

full basis is used. The RMSIP shows a good overlap of the subspaces (RMSIP>0.5) for

≈ 94% of the proteins. b. RMSIP normalized with respect to the value attained from the

use of the full basis. For each dataset member, as few as 15 basis components are sufficient

to reproduce the 80% of the dynamics that would be attained with the use of the full basis

set.

4.4.5 Comparison with MD simulations

In order to better assess the ability of the basis to reproduce the general dynamics of chymotrypsin-

like proteases, we performed MD simulations of four proteins belonging to the same family, and

compared the per-residue fluctuations emerging from the simulations with those obtained by

filtering the trajectory along the vectors of the basis; a good agreement would be indicative of

the ability of the basis to describe the large-scale dynamics of the protein. Two of the proteins

used as test-case belong to the dataset; these are 1EKB [183] and 1NPM [184], eukaryotic pro-

teases belonging to the S1A subfamily. The other two proteins, 4YOG [185] and 3W94 [186],

are external to the dataset, and as such have not been used to define the basis. 4YOG is a C30
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protease from the bat coronavirus HKU4, while 3W94 is an S1A enteropeptidase. These two

proteins have been included here in order to test the generality of the identified basis for the

description of the dynamics of the PA clan, independently on the specific members of the initial

dataset.

For each of the four proteins we compared the root-mean-square fluctuations (RMSF) as

computed from the simulation, and as computed from the same trajectory filtered along the

“modes” given by the backmapping of the protein structure on the basis vectors. The compari-

son shows a good qualitative agreement (Figure 4.7 and Figure S14), in particular in correspon-

dence of all the secondary structure elements. In the unstructured regions, the comparison is

slightly less accurate; this is particularly true for long loops, which are more sensitive to the

limitations of the ENM and of the NMA employed to define the modes of the basis, since both

assume small-amplitude fluctuations from a well-defined reference structure. From the two sets

of trajectories, namely the original MD simulations and the filtered ones, we also computed the

dynamic cross-correlation matrices (Figure S15 and Figure S16), which give a measure of the

degree of correlation between each pair of Cα atoms in terms of fluctuations from their average

position. When comparing the original and filtered trajectories, the intensity of the resulting

correlations are different, with higher correlations/anti-correlations emerging form the trajec-

tory filtered on the basis; however, the patterns of correlation are strikingly similar between the

two trajectories for all of the four proteins. In addition, we computed the RMSIP between the

first n modes obtained from the PCA of the MD simulation and of the filtered trajectory, where

n is the number of components that capture the 80% of the variance in the original simulation

(Table S2); in all cases, the results show a good overlap of the two subspaces, with RMSIP>0.5.

Therefore, the basis set appears to be able to describe the relevant large-scale dynamics of the

considered protein systems.
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Figure 4.7: Root-mean-square fluctuations (RMSF) of the Cα atoms, normalized with respect to their

sum, computed on proteins belonging to the initial dataset (1EKB, 1NPM) and external to

it (4YOG, 3W94). The shaded areas correspond to structured regions, identified with the

DSSP algorithm [187, 188]. The comparison shows a good qualitative agreement, particularly

in correspondence of secondary structure elements.

4.5 Conclusions

In this work, we proposed a workflow for the identification of common large-scale conformational

motions in a set of proteins. Specifically, we performed a dynamics-based clusterization of 116

chymotrypsin-related proteases, belonging to the PA clan, and compared the resulting clusters

to the MEROPS classification and to a more recent structure-based classification of the same

dataset of proteases. The clustering based on the dynamics adds interesting information to

that known on the basis of structural and evolutionary relationships between the members of
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the protein family, thus facilitating the interpretation of dynamics as a bridge between protein

structure and function. In addition, we used NMA and the β-GNM to build a basis set of vectors

of the high-dimensional space of the PA clan large-scale dynamics, and tested the basis set to

demonstrate that it is sufficiently complete to describe the main large-scale dynamical features

of the members of the dataset. The basis set of conformational motions was also successfully

validated by comparison with results from MD simulations of proteins internal and external to

the initial dataset.

In this regard, the method proved to deal particularly well with the conformational dynamics

of structured regions; loops and disordered regions are by definition challenging to describe with

an ENM, which is able to reproduce only small-amplitude fluctuations with respect to a well-

defined reference structure; the dynamics of such regions, however, is qualitatively different from

the functional one of the structured part, which is the one responsible to carry out the biological

function in the proteins under examination. Additionally, we note that the dataset employed

contained only a number of proteins belonging to the family of chymotrypsin-related proteases:

a larger dataset is expected to lead to more general results; however, the number of proteins

included was limited by the availability of experimental structures and by the choice to remove

proteins with too high sequence identity. The natural development of the methodology presented

and discussed in this work is its application to a larger dataset of proteins, comprehensive of

multiple enzyme superfamilies, with the aim of building a basis set of conformational motions

that represents a general vocabulary of proteins’ common dynamics. Once mapped on a protein

structure, the basis components can help to identify the most common –but diverse among

each other– movements that better describe the common large-scale dynamics of the proteins

belonging to the dataset. The dynamics of any protein not belonging to the initial set can

be projected on the basis, so as to describe it in terms of a few general movements and thus

facilitating the comparison between the dynamical features of different proteins. In addition,

the method can be employed to identify those common structural signatures that characterise

the dynamics encoded in the basis components, and relate them to specific biological functions.
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4.6 Appendix

4.6.1 Additional Figures

  

  

a.

b.
  

a.

b.

  

a.

b.

Figure S8: Histograms of the sequence length (a) and radius of gyration (b) of the proteins in the

dataset.
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Figure S9: Histograms of the number of residues belonging to the superimposed protein cores, defined

from the dynamics-based alignment of each pair of proteins from the dataset.
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Figure S10: Dendrogram resulting from the hierarchical clustering, performed on the basis of the dis-

tance in dynamics between the dataset elements. The labels represents the PDB IDs, and

colors are used to differentiate the clusters.
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Figure S11: Dendrogram resulting from the hierarchical clustering, performed on the basis of the dis-

tance in dynamics between the dataset elements. The labels represents the protease sub-

family of each protein, and colors are used to differentiate the clusters.
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Figure S12: a. Full structure of the 1WXR protease from subfamily S6, displaying the long β-stalk

domain at the C-terminus. b. Structural alignment of 1WXR (in cyan) and 4I8H from

subfamily S1A (in orange), showing the similarity of their protein core.
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Figure S13: Structure of the representatives of each protein cluster, resulting from the dynamics-based

alignment. The color corresponds to the type of secondary structure element: β-sheets in

yellow, α-helices in magenta, 3-10 helices in blue and loops in cyan.
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Figure S14: Scatter plots of the root-mean-square fluctuation (RMSF) values, computed on the Cα

atoms, from the MD simulations of the protein and from the same trajectories filtered on

the basis set. ρ indicates the value of Pearson Coefficient computed between the two sets of

fluctuations. All cases show satisfactory results.
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1EKB - MD 1EKB - filtered

1NPM - MD 1NPM - filtered

Figure S15: Cross-correlation computed from the simulations of the proteins 1EKB and 1NPM, both

on the original and filtered trajectories. Both proteins belong to the dataset.
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Figure S16: Cross-correlation computed from the simulations of the two proteins 4YOG and 3W94,

both on the original and filtered trajectories. The two proteins are not part of the dataset

from which the basis set is derived.
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4.6.2 Additional Tables

Table S1: List of the PDB IDs of the proteins comprising the dataset.

1A0L 1CGH 1FY1 1MBM 1TE0 2AS9 2O8L 2SNW 3F1S 3QO6

4BXW 1DIC 1GDQ 1MZA 1TON 2ASU 2OK5 2W5E 3F6U 3RP2

4E7N 1EKB 1GVZ 1NPM 1VCP 2B9L 2OLG 2WV4 3FAN 3RUO

4FLN 1AGJ 1ELT 1HAV 1OP8 1WXR 2CGA 2OQ5 2XXL 3FZZ

3S9B 4GHT 1AO5 1EP5 1HJ8 1P3C 1YC0 2EA3 2OUA 2XYA

3H09 3SYJ 4I8H 1ARB 1EQ9 1HPG 1P9U 1YM0 2FM2 2PFE

2YOL 3H7O 3SZE 4IGD 1AZZ 1EUF 1L1J 1QTF 1Z8G 2H5C

2PSY 2ZCH 3H7T 3TLO 4J1Y 1BDA 1FI8 1LCY 1RFN 1ZJK

2HLC 2Q6D 2ZGJ 3HGP 3W95 4JCN 1BQY 1FIZ 1LO6 1SGF

1ZYO 2HRV 2QAA 3CP7 3K6Y 3ZV8 4K3J 1BRU 1FQ3 1LVM

1SPJ 2AMD 2I6Q 2QXI 3D23 3MMG 4AFS 4MVN 1C5M 1FUJ

1M9U 1SQT 2ANW 2IPH 2SFA 3E0N 3NZI 4BNR

Table S2: RMSIP computed between the first n modes obtained from the PCA of the MD simulation

and of the filtered trajectory, where n is the number of components that capture the 80% of

the variance in the original trajectory. The results show a good overlap of the two subspaces

in all the simulated systems.

PDB ID N. of components RMSIP

1EKB 48 0.61

1NPM 43 0.62

4YOG 24 0.60

3W94 39 0.59



Chapter 5

An Efficient Deep Neural Network

Approach to Implicit Solvation

Figure 5.1: Scheme of the simplest neural network architecture adopted to learn Veff[{r}P ] ≃ Veff[{r}P ]
(here P stand for Protein, while more generally we can useM indicating the soluteMolecule).

As input layer, the first 10 neurons receive the values of the 10 SF calculated with different

values of η. The activation function used is the tanh and each value of the hidden neurons is

used in order to calculate the gradient of the output with respect to the input, as explained

in the Appendix.

In this chapter, we describe our attempt to answer to the question formulated in chapter 3 about

the implicit solvent models, following a totally different perspective. We show a way to estimate
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the PMF of solvation by relying on an artificial neural network. The core ideas of the project

originate from a pioneering work by Behler and Parrinello [189]. It’s important to stress that

the choice of building a model for the PMF (and not, for example, directly the mean force itself)

is not casual: being Veff[{r}M ] a scalar, it is translationally and rotationally invariant and so

independent on the choice of the frame of reference.

Nota Bene: since its promising results in almost every field of scientific research, machine

learning methods such as ANN-based regression acquired a lot of visibility. For these reasons, it

is expectable that the same idea of applications can be developed from different research group

around the world independently. This is what happened for the core idea of this project: while we

were working on the MALIS model, Noé and coworkers came up with a similar implementation

of essentially the same idea, which is explained in [190]. At the end of the chapter we dedicate

a paragraph to recap similarities and differences between the two works.

5.1 Methods

5.1.1 Deep Neural Network PMF

A generic deep neural network can be seen as a function f : Rn → Rm that depends parametri-

cally on a tensor W of weights. The dimensions of W depend on the number of hidden layers

and the number of neurons chosen for the specific application. The dataset used to train the

neural network is a set of input and output values, which are used to parametrize the network

itself (by tuning W). The goal of the training is to make the network reproduce the same

input-output relation, together with being able to predict new outputs from inputs that are in a

region of the domain not visited by the training dataset. In our case, we have m = 1 because the

target function Veff[{r}M ] is a scalar function and, in general, we should have n = 3N (solute

degrees of freedom). By the way, a first typical approximation that is done in these contexts is

to assume that Veff is separable into the contribution coming from each solute atom i indepen-

dently, i. e. Veff ≃ Veff[{r}M ] =
∑N

i=1 V
(i)
eff [{r}i], where {r}i indicates the neighborhood of atom

i, within a certain cutoff. This simplification opens the door to the possibility of building a NN

that is able to predict each term V
(i)
eff [{r}i] without any specific bias, using input functions of the

atomic coordinates that are able to describe the environment of each atom of the solute, taking

into account for example the spatial neighborhood and their chemical properties. The functions

we chose to use are called symmetry functions (SF) [189] and they work as descriptors of each

atom’s local environment. The choice of the functional form is dictated also by the property
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of translational and rotational invariance of the SF. To be more explicit, the final form of the

ANN PMF of solvation of each atom i will be V
(i)
eff [g({r}i)], where g := [g1({r}i), . . . , gS({r}i)]

represents a specific choice of S of these SFs (introduced below). We now want to introduce

another approximation. As already anticipated, the input values of our NN are the SF, cal-

culated for each atomic environment. For the output values used in the training, we chose to

train the NN to reproduce the instantaneous energies of interaction between the atoms of the

solute molecule and the solvent molecule. In the ideal case, concerning classical force fields for

molecular systems, this quantity consists in the so-called non-bonded interactions for each atom

at each frame of the trajectory:

U
(i)
MS [{r}S , {r}M ] =

N∑
j=1

Usol[rij ] =
N∑
j=1

[
k
qiqj
rij

+ ϵij

(
σij
rij

)12

− ϵij

(
σij
rij

)6
]

(5.1)

while for practical purposes in molecular dynamics softwares like those used by us for this

work (LAMMPS and GROMACS) this terms are either calculated up to a cutoff distance or

approximated with various techniques, such as Particle Mesh Eward [24]. We consider this the

ideal case in the sense that we use the all-atom description as the reference one and the goal is

to build a CG model (coarse-grained in the sense discussed in chapter 3) that is able to properly

sample the configurational space and energetics of the all-atom solute. We picked the mean

squared error (MSE, indicated by L) as an error function to be minimized during the training

process of the NN. The final form of the error function is then:

L({UMS}, {Veff[g]};W) =

〈
N∑
i=1

(
U

(i)
MS({r}M )− V

(i)
eff [g({r}M );W]

)2〉
(5.2)

where < · >= 1

T

T∑
t=1

· is the average on all the frames collected in the training dataset. We

notice that this error function recalls the one proposed in [191], with some differences. To match

our formalism with theirs we can do the following:

E (M({r})) = UMM ({r}M ) + Veff({r}M ) u({r}) ≡ Utot({r}M , {r}S) (5.3)

because in an implicit solvent the mapping is essentially a decimation one that removes every

degree of freedom of the solvent, M({r}) = {r}M . By manipulating a bit the quantity χ2[E]
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they use as cost function, one can obtain:

χ2[E] =

〈∣∣∣∣∣
N∑
i=1

(
U

(i)
MS({r}M )− V

(i)
eff [g({r}M )]

)
+ USS({r}S)

∣∣∣∣∣
2〉

= (5.4)

= L({UMS}, {Veff[g]}) +
〈
|USS({r}S)|2

〉
+ (5.5)

+ 2

〈∑
i ̸=j

∣∣∣(U (i)
MS({r}M )− V

(i)
eff [g({r}M )]

)(
U

(i)
MS({r}M )− V

(i)
eff [g({r}M )]

)∣∣∣〉 (5.6)

Since the second term is independent of the weights, minimizing L({UMS}, {Veff[g]}) differs from
minimizing χ2[E] only by the third term.

The next section is dedicated to introduce these SF, to explain how they are treated in the

ANN and the way how to calculate the force term from the whole model of Veff[{r}M ], which

we already called Veff[{r}M ].

5.1.2 Symmetry Functions

Figure 5.2: Generic representation of the workflow of MALIS: after defining the local environment of

atom i (within a cutoff), the atomic positions and partial charges of the atom’s neighborhood

are treated with the SF and passed to the NN, which in turn is able to calculate V
(i)
eff and

F
(i)
eff .

In our applications we will mainly focus on two different kinds of SF, all dependent on some

parameters that can be changed in order to give diversity to the structural information we want

to extract and pass to the ANN. Following the literature [189], these are named G
(i)
1 and G

(i)
2 ,
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for each atom i. We define them below:

G
(i)
1 := qi

∑
{j}i

qj fc(Rij) (5.7)

where: Rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2; qi indicates the partial charge of the specific

atom; {j}i restricts the sum over all other atoms with a distance less than a given cut-off Rc

from the i-th atom (the neighbors); and

fc(Rij) :=


1

2

[
cos

(
π
Rij

Rc

)
+ 1

]
, if Rij ≤ Rc

0, otherwise

(5.8)

G
(i)
2 is a more complex version of G

(i)
1 that includes a Gaussian filter that highlights the presence

of atoms with distance close to a new parameter Rs:

G
(i)
2 := qi

∑
{j}i

qj e
−η(Rij−Rs)2 fc(Rij) = qi

∑
{j}i

qj Fc(Rij) (5.9)

where we introduce Fc(Rij) := e−η(Rij−Rs)2 fc(Rij) for simplicity (see Appendix). We pinpoint

that this version of SF is slightly modified from that found in literature due to the presence

of the partial charges qi,qj of the atomic species involved in the Gaussian filter: the goal for

it is to include chemical information in the inputs of the network. Here of course the other

new parameter η is set to control the width of the Gaussian. In our applications, we used the

following couples of parameters to calculate the 10 SF used as input for the NN: (Rs, η) = (0, 0),

(10, 22), (10, 12), (10, 8), (10, 4), (10, 3), (10, 2), (10, 1), (10, 0.05), (10, 0.01), [Å, Å−2].The

first is in fact equivalent to a G1-type.

5.2 Implementation

5.2.1 Training process

In this paragraph we summarize the paradigm followed to prepare the training dataset and to

train the ANN’s parameters. We can divide the process into 4 main steps:

1. Explicit solvent simulation: the first step is to obtain a trajectory of the system (solute and

solvent) that can be considered long enough for the solute to explore its conformational

space (or at least the basin of the first local minimum reached by the molecule from the

initial configuration). In our applications this step was made relying on GROMACS; the

specific setup of the simulations is reported in the Appendix.
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2. Symmetry function calculation: the second step was performed by a Python v3 [192]

script, which calculates a set of 10 different G
(i)
2 , as anticipated. This step produces the

set of {Xtrain} input data used during the training process of the ANN, together with the

{ytrain} labels.

3. Solute-solvent interaction energy calculation: this second step was made again relying on

GROMACS, and specifically by using the rerun functionality, which allows to define new

atom groups and to calculate single atom-solvent interaction energies for each frame of a

given trajectory, which was of course the one obtained in step 1. This step is required to

obtain the set {ytrain} of target labels that the ANN is asked to associate to the relative

set of {Xtrain}, during the training process.

4. Training of the ANN: this step was performed by a Python v3 script using the Keras

framework for Tensorflow [193]. Before the construction of the model, which has 3 hidden

layers with 10, 7 and 2 neurons (see 5.1), the dataset was shuffled, divided in two groups

(80% training and 20% testing) and finally normalized to values in the range [0, 1]. More

details on the choices made in the training step and on the results of the training are

reported in the Application section.

5.2.2 Force Calculation

We can calculate the instantaneous force acting on each atom i by performing the gradient of

Veff[g({r}M )]. First of all, as anticipated, by construction Veff[g({r}M )] can be decomposed in

the sum of the PMF relative to each single solute atom i:

Veff[g({r}M )] =

N∑
i=1

V
(i)
eff [g({r}M )] (5.10)

Now we can focus on the calculation of the solvent mean force. As an example, we can consider

the force acting on atom i along the x̂ direction:

F (i)
x = −

∂V
(i)
eff

∂xi
(5.11)

We know that V
(i)
eff = V

(i)
eff [{gα(. . . , xi, . . . )}] and so this derivative can be performed with the

chain rule:
∂V

(i)
eff

∂xi
=
∑
α

∂gα
∂xi

∂V
(i)
eff

∂gα
(5.12)
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In the appendix we show how to calculate both
∂V

(i)
eff

∂gα
and

∂gα
∂xi

analytically. In particular, we

show how the first term can be calculated as the derivative of the ANN output with respect

to its inputs that are indeed the SF. We stress the fact that having an analytic form for both

these two quantity enhances the algorithmic implementation of the method, since there is no

requirement of calculating derivatives numerically.

5.3 Applications

Molecule Ttrain [ns] δt[ps] Rcut[nm] Ttest [µs] # runs

Alanine Dipeptide 10 1 10 2 1

Icosalanine 50 10 20 1 20

ssRNA fragment 50 10 20 1 50

Table 5.1: Table summarizing the parameters involved in building the NN training datasets and in gen-

erating the trajectory used for the comparison with the IS simulations (testing). Ttrain/Ttest

indicates the length of the ES training/testing trajectory; δt indicates how often we selected

each frame in the training trajectory in order to extract {Xtrain} and {ytrain}; Rcut is the

cut-off used to calculate the SF; # runs is the number of IS parallel runs launched for the

comparison.

In this section we show some standard analysis performed on the trajectories obtained by

the GROMACS simulations used for training the ANN and the trajectories obtained by the

LAMMPS simulations with the implicit solvent model. Three systems have been chosen for

the comparison: a typical benchmark molecule, alanine dipeptide; a simple polypeptide chain

made up of 20 alanines (Ala)20; and a single-stranded RNA fragment, with sequence UUUAUC-

CGUACUCAGCCAUUGUACACUACCG (31 nucleotides). Every calculated quantity is ex-

plained in more details in the Appendix.
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5.3.1 Alanine Dipeptide

(a)

(b)

Figure 5.3: (a) VMD [39] CPK visualization of alanine dipeptide in a configuration of those belonging

to the basin with Φ ≃ 50o (MALIS simulation). (b) scatter plot of the normalized output

of the NN {ypredicted} after the last step of training, compared to the true output {ytrain}
(equivalent to {ytrue}) with the relative ρ.

One of the most typical benchmark molecule used to test new methodological frameworks in

theoretical and computational biophysics is alanine dipeptide [194, 195, 196, 197]. The two

main reasons why it adapts so well are: 1) it’s very small (22 atoms) and therefore it requires

minimal computational effort to be simulated and 2) it is well known that it describes a peculiar

free energy profile (FEP) by using the (only) two dihedral angles of its backbone as collective

variables (CV) [194]. This FEP is of course different if one simulates the peptide surrounded by

solvent molecules or not, and for this reason it adapts to our purpose of testing a novel IS model.

As shown in figures 5.4 (a) and (b), one can see that in the ES case the FEP has 5 distinct

minima in the Ramachandran angle space (out of 6 explorable with longer simulations, see [198]).

The peculiar FEP of alanine dipeptide originates from an interplay of non bonded interactions:

the formation/disruption of the hydrogen bond involving the right-hand side nitrogen (in blue)

as donor, with its hydrogen (in white), and the left-hand side oxygen (in red) as acceptor; and

the steric repulsions due to the van der Waals interactions. As a consequence, an implicit solvent

that is able to reproduce the proper FEP is in principle reliable also from a chemical perspective.

For these reasons, we decided to apply the MALIS framework to this peptide and we used

the Ramachandran FEP as analysis to assess the goodness of the implicit solvent model. In

figure 5.4 (c) we report the FEP obtained through a MALIS simulations with a NN trained on

a dataset with summary properties described in table 5.1. Clearly, the two minima explored

with a 2µs-long simulation are on one hand compatible with the corresponding one explored
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by the ES simulations, while on the other hand they are too enduring, in a kinetic sense (see

the time windows spanned by the values of Φ in figure 5.4 (d)). In spite of that, however,

we want to point out that it is hard to do kinetic considerations and comparisons between an

implicit solvent simulation and an explicit solvent one: the integration of the solvent degrees

of freedom could certainly lead to an acceleration of dynamical processes, like jumping from

one minimum to another. Curiously, by looking at 5.4 (d)), one is induced to think that the

characteristic time of jumping is increased in the IS simulation, fact that contradicts the above-

mentioned consideration. At this stage, we are not able to establish what are the real causes of

this observation and so the predictive power of the method, from a kinetic perspective, remains

unclear and we will keep it in mind for future developments.

In figure 5.4 we reported the dihedral space sampled in a simulation performed with the

simplest implicit solvent model available in the LAMMPS package version we used (v2018).

It is based on an heuristic mean-field description of the shielding action of the solvent on the

solute, described as a continuum dielectric: the relative dielectric permittivity is assumed to be

a linear function of the relative distance of the 2 partial charges i, j involved in each Coulomb

interaction, ϵr := ϵr(rij) = αrij (α = 1Å is introduced to make ϵr adimensional), so that the

Coulomb pairwise potential and force become the following:

Vrdie(rij) ≡
1

4πϵ0

qiqj
αr2ij

⇒ F(rij)rdie = 2
1

4πϵ0

qiqj
αr3ij

r̂ij (5.13)

where the pedices rdie refer to the nomenclature used in [199] and stand for linear r dielectrics.

The 2 basins sampled are clearly wrong and resemble a lot those sampled by a simulation

performed in vacuum (i.e. ϵr = 1). This fact allows us to at least claim that our implementation

of MALIS in LAMMPS is a step forward in modeling implicit solvation for biomolecules MD

simulations for this package (at least up to the v2018 used here). Keep in mind that this

IS model is considered unreliable because it leads to dynamical motion suppression at high

(∼ 300K) temperatures [199].

Nevertheless, the central issue in the MALIS simulation, which in turn causes a wrong

sampling of the dihedral space, is the observation of a kinetic trap, which is supported by visual

inspection of the trajectory. We identify the formation of the aforementioned hydrogen bond as

the underlying cause of the kinetic trap, for it leads to a structural constraint that is shown to

be irreversible, at least at the temporal scale investigated by us. This phenomenon of excessive

hydrogen bond persistence in implicit solvent models has been well documented in previous

literature [200]. For a comprehensive examination of this issue, the reader is directed to the
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(a) (b)

(c)
(d)

Figure 5.4: (a)-(b)-(c): FEPs calculated using the two dihedral angles Ψ and Φ as collective variables.

Plot (a) and the grey plots in (b) and (c) refers to the explicit solvent simulation and shows

the well-known [194] pattern of alanine dipeptide dihedral angles. The colored plots in (c),

from the implicit solvent simulation, points out that the system is somehow trapped into

two of the five minima that are instead explored by the explicit solvent simulation; in the

linear dielectric approximation simulation (b), however, the two minima explored are clearly

different; (d) time series of the sole dihedral angle Φ. It is interesting to notice that for the

explicit case at least three ranges can be identified, which are related to the minima seen

in (c); on the other hand, the implicit solvent values cover only two of the three ranges of

values.



5 MALIS: MAchine Learning Implicit Solvent 116

discussion section. As we will show in the next sections, further investigations were conducted

using two other systems which are expected to manifest hydrogen bonds along their chains, but

with an increased flexibility (due to their polymeric nature), to assess the behavior of the model

with longer chains.

5.3.2 Icosalanine

(a)

(b)

Figure 5.5: (a) VMD [39] CPK visualization of Icosalanine in the last conformation after the 50ns of

simulation used to train the MALIS neural network. (b) scatter plot of the normalized

output of the NN {ypredicted} after the last step of training, compared to the true output

{ytrain} (equivalent to {ytrue}) with the relative ρ.

The second application of the MALIS that we want to discuss involves a simple, biologically

irrelevant molecule, Icosalanine, which is an amino acid chain made of 20 alanines. This system

is chosen for some reasons. For being non-exotic from a chemical point of view, given the simple

nature of the monomers. It is a natural subsequent step after alanine dipeptide, since it is

nothing but a polymer made by copies of it. It has a predisposition to form secondary structural

motifs, mainly α-helices, and this feature can manifest in a molecular dynamics simulation; by

the way, we can say a posteriori that the limits of the timescales explorable by the current

implementation of the MALIS method don’t allow for the formation of any secondary structure

in the peptide.
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Figure 5.6: (a): RMSF (red circles from ES simulation, blue circles from IS one) calculated after the

best alignment, performed with MDAnalysis; PADω (red squares from ES simulation, blue

squares from IS one), performed with a VMD script provided by the authors of [201]. (b):

Plots of the FEP calculated on the first two PCs. As for the alanine dipeptide, the grey

plot refers to the ES trajectory, while the coloured one to the IS. The ranges of values are

comparable, but for the IS case there is a clear formation of two clusters of values, a feature

that is not present in the ES case.

By looking ate the root mean square fluctuation (RMSF) values 5.6a, one can notice that even

if there is a similarity between the explicit and implicit cases, there is a quantitative difference

in the curves’ behavior. In particular, the explicit case exhibits a double-well shape, whereas

the implicit case displays a single-well shape. Intriguingly, the PADω curves (see appendix

for the definition) show a different trend with respect to RMSF, with the IS curve displaying

very high values, nearly 180o, indicating high variability in the dihedrals of the central carbon

alpha, while the external ones show lower values in both cases. A potential explanation for this

phenomenon is that the polymer’s extremities behave like rigid rods that are highly agitated at

the junction with the central core of the polymeric chain. Although this may seem unrealistic,

it is worth noting that this quantity is better suited for structured proteins, rather than random

coil polymers: the interpretability of these values is not guaranteed to be the same as for systems

sampling well defined local minima of the free energy. Additionally, the values of the first two

principal components (PCs) 5.6b are comparable, but, in this case, a double-well is also observed

in the IS case, whereas the values are concentrated in a single cluster in the explicit solvent (ES)

case. Even in this case, by the way, the use of PCA is not optimal: the principal components
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strongly depend on a successful alignment of the frames in the trajectory, but this process is not

accurate when dealing with fast-fluctuating polymers.
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Figure 5.7: (a): Histograms of the values of Rg assumed along the simulations. While the range of values

covered by the two solvation model is very similar, it is notable the bimodal behaviour of

the implicit solvent case, which is not present in the explicit solvent one. (b): Histograms

of the values of the end-to-end distance assumed along the simulations. It is interesting to

notice that the behaviour of the distribution for the implicit case resembles a lot the one of

p(Rg).

Our analysis of the radius of gyration 5.7a and end-to-end distance 5.7b values revealed a

consistent trend between them. Although the similarity between the two solvent models was

confirmed by the Jensen-Shannon divergence, a slight bimodality was observed in the IS case

that was not visible in the ES one. Visual inspection of the simulations confirms this trend,

revealing more extended and stretched conformations in the IS case, a fact that we believe to

be consistent with the bimodality of the distributions and the presence of two distinct clusters

in the first two Principal Components (PC) plot: these are able to capture the presence of two

main conformational basins representing a stretched and a compact class of structures. The fact

that this aspect is not present in the ES histograms suggests that the forces arising from the

MALIS model favor more extended conformations than the explicit solvent simulation.
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5.3.3 ssRNA fragment

(a)

(b)

Figure 5.8: (a): VMD [39] NewCartoon visualization of Icosalanine in the last conformation after the

20ns of simulation used to train the MALIS neural network. (b): scatter plot of the nor-

malized output of the NN {ypredicted} after the last step of training, compared to the true

output {ytrain} (equivalent to {ytrue}) with the relative ρ.

The third system chosen as a benchmark for MALIS is another polymer, with a biochemically

distinct nature from icosalanine. In this case, we aimed to test the method on a single-stranded

RNA molecule consisting of 31 nucleotides and a total of 975 atoms. The reasons for this

choice are primarily threefold: size, as the number of atoms is approximately 5 times that

of icosalanine, allowing the method to be tested on systems that approach the size biological

relevant molecules; practicality, as the sequence was selected and extracted from a much longer

filament that was already available to us (viral RNA2 of CCMV, see next chapter) and that has a

very simple secondary structure (predicted by the RNAfold webserver 5.9); biochemical nature,

as the propensity of single-stranded RNA fragments to be both flexible yet with a conformational

space with many local minima makes this type of system a good challenge to test the ability of the

IS model to simultaneously predict the geometric and mechanical properties (shape, flexibility)

as well as the chemical properties (formation of hydrogen bonds that determine the secondary

and tertiary structure of the system).

By looking at the scatter plot that shows the results of the training process, 5.8b, one

can immediately notice that the matching is worse than in the other cases already analyzed.

Apart from the central region (values in the range [-0.4,0.1]), the other clusters of points are
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Figure 5.9: Secondary structure predicted by RNAfold [202] of the ssRNA simulated with GROMACS

and MALIS: given the sequence, the system is expected to form few Watson-Crick bonds

that cooperate to form a single duplex of 4 base pairs and an hairpin in correspondence to

the central nucleotides of the sequence.

far from being ellipsoidal with the main axis oriented along the red dashed line (which is the

ideal behaviour). The conclusion we can get from it is that the training process was not as

successful as in the other cases: the causes could be several, from the size of the training dataset

to the architecture of the neural network. About this last point, we remark that for simplicity

of the implementation we decided to stick with the choice of using the same architecture for

every system tested with the method: this is for sure a limitation of the predictive power of

the algorithm, considering the variability of the amount of information carried by the symmetry

functions that is necessary to learn in order for the proper forces to be calculated, from system

to system.
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Figure 5.10: (a): Histograms of the values of Rg assumed along the simulations of the ssRNA fragment;

(b): Histograms of the values of the end-to-end distance assumed along the simulations

of the ssRNA fragment. Even if the superposition of the D histograms is slightly better

than the Rg values, the discrepancy is evident: the ES simulation consists in one single

run reaches a compact conformation of (metastable) equilibrium, while the IS runs are too

short to reach something analogous.

To compare the IS simulations to the ES one, we firstly observed the histograms of the radius

of gyration 5.10a and end-to-end distance 5.10b values, as for the icosalanine. The distributions

differ a lot, particularly in the case of Rg values, as pointed out by the JS divergence value. The

reason for this gap is evident also by looking at the values of Rg in time 5.11: for a system of this

size, the simulation time used for the single parallel runs of MALIS (20ns each) is not enough for

it to relax to a state of even metastable equilibrium. On the other hand, it is clear that in the 1µs-

long ES run the system had the chance to relax to some equilibrium configuration. To further

explore this issue, we decided to complement the histogram analyses with additional analyses.

In particular, we selected configurations sampled by MALIS that had a radius of gyration value

compatible with the range of values most explored by the simulation with explicit solvent 5.10a:

by convention and visual inspection, we chose the range Rg ∈ [10, 20]Å. These configurations

(about a hundred) were compared with a subset of frames from the simulation in ES (uniformly

sampled along the trajectory), from the first 200ns onwards.

For comparison, we chose to calculate the RMSD between each pair of frames, after optimal

alignment taking into account all the atoms. This procedure does not claim to be informative



5 MALIS: MAchine Learning Implicit Solvent 122

in quantitative terms, but mainly aims to identify, where they exist, those frames that are

sufficiently similar to allow the alignment process to return low RMSD values.
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Figure 5.11: Radius of gyration as a func-

tion of the time frames along

the single trajectory of the

ES simulation.

As can be seen from Figure 5.12a, the values ob-

tained are all greater than 8Å, indicating a substantial

average diversity between the positions of all the atoms,

even for the most similar structures (or, in other words,

those that were best superimposed in the alignment pro-

cess). As an example, we report the licorice-style rep-

resentation of the structures with the minimum RMSD

among those calculated in the map 5.12b: it is evident

that, given the diversity in shape and 3D structure, the

alignment process is not capable of identifying similar

structures with low RMSD values.
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Figure 5.12: (a): RMSD values calculated between those ES and IS configurations with Rg ∈ [10, 20]Å.

(b): Licorice representation of the two most similar configurations taken from the RSMD

map shown in (a): the value of the RMSD is still ∼ 10 Å and in fact the two conformations

are visibly different.

To complement the analysis of the simulations, we
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tracked the base pairings using BARNABA [203], a

Python library specifically designed to perform analyses

of atomistic structures and trajectories of RNA systems.

Interestingly, none of the base pairs pinpointed by it are Watson-Crick in nature, both for the

ES and the IS case. As a consequence, the program is not able to construct any contact map

based on canonical base pairings. Moreover, the pairs of nucleotides involved in the base pairs

that are pinpointed don’t ever match those predicted by the minimum free energy secondary

structure of RNAfold (5.9). Visual inspection of the trajectories confirms that the configurations

explored in both cases do not manifest any stable secondary structure.

5.4 Discussion

In this section we proceed in discussing three main points regarding the pros and cons of the

MALIS model. In particular, we expand the considerations on the hydrogen bond network and

persistence by performing other analyses. We also report the results obtained in applying the

method to small protein [6] that are known to fold into stable structures computationally: in

fact, the whole idea of making a machine learning based implicit solvent model was conceived

for applications to protein folding and/or sampling of different free energy basins of even larger

macromolecules, taking advantage of the theoretical gain in computational speed due to the

integration of the many solvent degrees of freedom.

5.4.1 Hydrogen Bonds

As anticipated, hydrogen bonds formation is a key feature in testing an implicit solvent model.

The reason is quite simple: in an explicit solvent simulation, water molecules constantly act as

donors and acceptors of hydrogens, involving both their oxygen and their two hydrogen atoms.

Moreover, once an hydrogen bond is established between one atom (being it an acceptor or a

donor) of the solute and a water molecule, the chance of making another one with other solute

atoms is essentially forbidden. This holds even in classical molecular dynamics simulations,

where electrons are not taken into account explicitly: the way how we interpret a geometric

disposition of atoms to form an hydrogen bond (see 5.16) and the real interactions involved

(especially the excluded volume term in the Lennard-Jones non bonded potential) make a double

involvement of a single acceptor into two hydrogen bonds very unlikely. The main consequence

of this fact is that by integrating the degrees of freedom of solvent molecules, one has to bee sure
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that hydrogen bonds within atoms of the solute molecule itself are not overestimated. In our IS

model, the assumption that we decided to make and to test was that the neural network would

have been able to recognize this over-esteem, by looking ate the environmental information

provided by the symmetry functions, and to adjust the energies (and eventually the forces) in

order to decrease the probability of “self” hydrogen bonding formation of the solute.
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Figure 5.13: (a): comparison between IS and ES runs about the formation of the only hydrogen bond

predicted to potentially form in alanine dipeptide (more details in the text); (b): histogram

of the frames with a given number of hydrogen bonds in the Icosalaine runs; (c): histogram

of the frames with a given number of hydrogen bonds in the ssRNA runs; (d): scatter plot

of the frequency of involvement of each residue whose atoms appear either as donors (D) or

acceptors (A) in the ssRNA, directly comparing the ES and IS runs. NB: for histograms

built on arrays of integers, each bin counts the frequency of appearance of the lower extreme

(e.g. the bin plotted in the range [0, 1] contains the p(0)).
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The quantitative analysis of hydrogen bond formation in our simulations has been carried

out with the MDAnalysis Python package. In particular, we tracked the number of hydrogen

bonds per each frame in each trajectory, letting the algorithm to select a priori those atoms

suitable for being donors/acceptors. In the case of alanine dipeptide, the pair of D and A is one:

the nitrogen in the N-terminal and the Oxygen in the C-terminal of the small peptide. This

pair’s hydrogen bonding is in fact responsible for the kinetic trap that leads to the bad sampling

of the dihedral space. By looking at 5.13a one can notice that the fraction of frames with the

hydrogen bond is much higher in the IS simulation (indicated with IS av or ES av in the figure).

For the icosalanine and the ssRNA simulations we decided to look at the histograms that track

the fraction of frames with a given number of HBs. In the case of icosalanine 5.13b, the IS

shows a higher number of frames with 1 or 2 HBs, while the ES histogram is more populated

between 2 and 4. Here the HBs are expected to form involving atoms of the backbone, which

are in turn responsible for the formation of the secondary structure motifs in proteins in general,

and in particular in a potential α-helix in this system [204]. The major discrepancy is actually

highlighted in the analysis of the ssRNA system 5.13c. There we have two very highly populated

columns in the lowest-value range for the ES, while the distribution is clearly shifted to higher

values in the IS case. This shows that the number of HBs in the MALIS simulation has been

largely overestimated. However, we wanted to refine this analysis, to see if at least there is

correlation between the involvement of a specific atom as donor/acceptor in the ES and the IS

simulation. To do so, we tracked the fraction of frames where each donor/acceptor atom was

involved in an HB, we attributed those to the relative nucleotide (lowering the resolution of HB

participation to the single nucleotides: each star in 5.13d is related to a single nucleotide) and

we calculated the Pearson’s coefficient of this fraction related to the IS and the ES simulation.

The result shows a good correlation: we can deduce that even if the HBs are overestimated, at

least the atomistic interactions in the MALIS model preserve the proper chemical specificity of

donor/acceptor along the chains, which participate to the HBs.

In conclusion, as we already anticipated and as these analyses support, the MALIS model

apparently is not able to compensate for the absence of water molecules, where their presence

is essential to keep the right balance in hydrogen bonding formation. One future attempt to

improve this aspect will certainly be to try to train the MALIS with also G5-type SF: one of the

missing bricks for the HB prediction in fact could be the geometrical information on the angular

disposition of atoms (in other words including an effective 3-body term).
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5.4.2 Structured vs Unstructured molecules

(a) (b)

Figure 5.14: (a): starting configuration (in blue) and configuration after ∼ 1ps of MALIS simulation (in

red); (b): scatter plot of the normalized output of the NN {ypredicted} after the last step of

training, compared to the true output {ytrain} (equivalent to {ytrue}) with the relative ρ.

In addition to testing the hybrid deep learning and molecular dynamics approach on random

coil polymers, we also tested the method on structured proteins by training on trajectories of

both folded and unfolded states. We chose to use two small, fast-folding proteins, 1PRB and

2JOF. Interestingly, our training/testing approach yielded excellent results even when mixing

datasets, coming from different basins of the free energy profile. For example, the network was

able to predict the solvation energy values of unfolded conformations using a network trained

on a folded trajectory, and vice versa. However, a major issue arose when applying the MALIS

model in the molecular dynamics simulations of the structured proteins. Within just a few tens of

femtoseconds, the folded protein became de-structured, rendering the results of the simulations

unreliable (an example of it is shown in figure 5.14a). This behaviour appeared also using a

network trained on a dataset from a simulation of the already folded protein (native state). One

possible explanation to this counter-intuitive behaviour could be that we are over-fitting the

potential in the small region explored by the system in the short simulation used for training.

However, this could not explain the success in training the network with a dataset obtained by a

simulation of the e.g. unfolded state, and successfully predict the energies of the folded dataset.

Further work is needed to address this challenge, and to explore the limits and capabilities of

the hybrid deep learning and molecular dynamics approach for studying structured proteins.
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One interesting observation from our results is the discrepancy between the excellent re-

sults obtained during training and the weaknesses observed during testing. This is particularly

striking when it comes to fast-folding proteins, where the model’s predictive power is limited.

Another intriguing finding from our training process is the presence of clusters of energy values,

ranging from -1 to +1, which gradually merge to form a single ellipse as the system size increases

(see 5.3b, 5.5b, 5.8b, 5.14b). This phenomenon is especially prominent in the case of fast-folding

proteins, where the distribution becomes essentially continuous. One potential improvement we

consider is to train the model to learn forces instead of energies, which could preserve more

directional information and lead to more consistency between the predictive power of the in-

stantaneous values of the observables and the impact of them on the dynamics of the systems.

In order to to so, one idea would be to define relative coordinate systems around each atom and

train the forces projected onto those systems to maintain rotational and translational invariance.

These future perspectives could enhance the model’s performance and applicability.

5.4.3 Computational Gain and Speed up

Figure 5.15: On the y axis (logarithmic scale): ratio between the ns per day and per core (the number of

cores used is> 1 only in the GROMACS runs) of MALIS (numerator) and ES (denominator)

simulations. The higher the ratio, the higher is the computational gain obtained by using

the MALIS on that specific system (labelled on the x axis).

In this paragraph, we discuss a direct comparison of the MALIS method with GROMACS sim-

ulations for systems with different numbers of atoms. As we report in the appendix, a rough

estimated ratio between the simulation times of an explicit and an implicit solvent model is

approximately 102. This estimate, however, does not take into account many facts, such as the

speed of the algorithms used to integrate the equations of motions and those used to calculate
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non-bonded interactions between molecules, which is the most expensive process in molecular

dynamics simulations. Specifically, in our case we compare simulations made in LAMMPS with

simulations made in GROMACS, which is highly optimized for water calculations, allowing it to

scale better as water molecules are added. Additionally, in GROMACS the PME algorithm is

used, which scales better (N · log(N )) then the brutal cut-off LJ and Coulomb terms. So, given

this facts, the comparison between the efficiencies of simulations is to be considered qualitative:

unfortunately, a more unbiased comparison (using LAMMPS with cut-off non-bonded terms in

ES simulations) would have been too expensive to perform sufficiently long runs for benchmark-

ing purposes. Nevertheless, we compared the simulation times of the ES and IS simulations of

the 3 different systems reported in the applications section. The total number of atoms in the

simulation boxes are: 22 (IS) and 2344 (ES) for alanine dipeptide; 203 (IS) and 46682 (ES) for

the icosalanine; 975 (IS) and 105783 (ES) for the ssRNA fragment. The ratios of the simulation

times are plotted in 5.15 and shows a monotonically decreasing trend. The two main reasons

we can give for this trend are: the increase of the cutoff radius used to calculate the SFs in the

icosalaine and ssRNA (2nm, while it is 1nm in the alanine dipeptide case) and increase in the

scaling quality of GROMACS with the tested sizes of the systems, using 48 cores as we did.

Anyway, in general we can state that the MALIS performances remain good with respect to the

GROMACS ones, considering that the implementation we did in LAMMPS was not thought to

be efficient but rather it aimed for test and validation of the algorithm.

5.5 Perspectives and Conclusions

The current project presents several limitations that need to be addressed in order to improve

its performance. Firstly, the workflow is convoluted and requires the use of different software

with few automated steps. This makes the process more time-consuming and prone to errors.

Additionally, the implementation is not optimized, and the tests conducted were done in serial

simulations on a single core, making it challenging to parallelize, especially for larger systems.

The quality of the results obtained, when compared to ES models, is also poor, and the reasons

for this could be due to intrinsic limitations in the model and/or the size of the dataset used

for training. Furthermore, there are doubts about the method itself, such as whether PME is

suitable for generating the dataset and whether SF of type 1-2 is sufficient. The PME method, in

fact, relies on the knowledge of both short-range and long-range (or low-frequency) information

to be addressed, while the SF bring only short-range information. This way, it is hard to expect
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that the network’s predicted energy correlates well with the PME energy, given this lack of input

information.

On the other hand, the project also has some significant strengths. The code runs much

faster when compared to GROMACS. The code in LAMMPS is relatively easy to use and,

once formatted correctly, the use of the pair-style is as simple as the others. Finally, although

the project has not shown much efficiency in predicting dynamics, it could be beneficial for

estimating solvation free energy from unknown structures, an aspect that is very useful in many

fields of applications, such as drug design. In this case, a network trained on several different

proteins (i.e., a generalized network) would be needed, but from our results this seems feasible

given the transferability shown, for example, from unfolded to folded proteins in the 1PRB.

In the future, we plan to extend the method to increase both quality and performance, with

the aim of obtaining an IS model that is a good compromise between chemical accuracy and

computational speedup, with the goal of reducing the gap between the timescales attainable

with simulations and experimental techniques.

5.5.1 Comparison with the work of Noé and coworkers

We report here a comparison summarizing pros and cons of the MALIS model and the ISSNet

[190]. We divide them in 4 categories.

1. quality of the results (predictive power compared to ES): concerning this aspect, the work

of Noé and coworkers is clearly effective, in both system under investigation (alanine

dipeptide, chignolin); not only they are able to reconstruct the proper FEP in the dihedral

space of alanine dipeptide, but they also manage to predict the proper melting temperature

of chignolin.

2. computational cost: as reported in Figure S5 of [190] Supplementary Materials, their

model is faster than ES simulations only for alanine dipeptide and with certain choices of

batch size, while it is always slower in chignolin simulations (which has a number of atoms

comparable with icosalanine); on the other hand, as we showed in figure 5.15, we are able

to over-perform GROMACS in every case tested.

3. interpretability of the model: although the complexity of their graph neural network is

higher than ours, we cannot claim that our network can be easily interpreted in physical

terms; on the contrary, by studying the use of inputs such as atom types or the atomic

partial charges, they at least exhibit the relevance of retaining these information. From
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this point of view, we can only state that combining radial distribution quantities alone

(like the SF G2) is not enough: we can deduce that a mean field description of the solvent

effect is by nature many-body, which is reasonable.

4. accessibility of the model: in our case, we prepared a pair style that can be compiled in

the LAMMPS package (v2018); in order for a new user to play with the MALIS, however,

all the stages before the simulations in LAMMPS are still intricate: from the atomistic

simulations in ES to the creation of the parameters files of the network, the pipeline is

still newborn and based on a multiplicity of different scripts. We were not able to find any

reference to github repositories or similar of ISSNet in [190], even if in the previous works

on SchNet they refer to a github and a well-written documentation can be easily found on

the web.
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5.6 Appendix

NN derivative of the Output (with respect to the Input)

In this section we give some nomenclature to the variables involved into the NN calculations.

After that, we dig into performing the derivative of the (single) output of the network with

respect to one of the inputs. This calculation are useful in order to extract the mean field forces

from the potential of mean force that is calculated by the NN.

We focus on a fully-connected neural network with a generic number of inputs. In our

example, the NN has 3 hidden layers with, respectively, N1, N2 and N3 neurons. We call

the output of a generic neuron y
(n)
i , where (n) represents the specific n-th hidden layer and j

indicates the j-th neuron of that specific layer. Each neuron is characterized by an activation

function f(z), where z is a combination of the input values that each generic neuron receives.

More explicitly:

f(z) = tanh(z) =
ez − e−z

ez + e−z
y
(n)
i = f(z

(n)
i ) = f

Nn−1∑
k=1

wn,n−1
i,k y

(n−1)
k + b

(n)
i

 (5.14)

Imagine now that we want to extract the derivative of the single output neuron, F , with respect

to one of the input neurons, e.g. that labelled with the symbol x (and whose associated variable

is x). In other words, we want to know
∂F

∂x
, where F is a chain composition of functions that

eventually would directly depend on x. The first step to do is to express F in terms of the

outputs of the neurons belonging to the third hidden layer:

F (y31, . . . , y
3
N3

) = f

(
N3∑
k=1

w4,3
F,k y

(3)
k + b

(4)
F

)
(5.15)

where we introduced the weight w4,3
F,k, related to a connection from the k-th neuron of the 3rd

hidden layer to the “F -th” neuron of the 4th layer (which in this case is not hidden, because is

the single-neuron output) and the bias b
(4)
F , of the 4th (output) layer of the “F -th” neuron (the

only output neuron). We can perform the derivative of this quantity to obtain the following:

∂F

∂x
=

df

dzF

[
N3∑
k=1

w4,3
F,k

∂y
(3)
k

∂x

]
(5.16)

where we also introduced the notation
df

dzF
:=

df

dz
. In the specific case of tanh(z) this derivative

can be express as function of the function itself:

d

dz
tanh(z) =

d

dz

ez − e−z

ez + e−z
= 1− [tanh(z)]2 (5.17)
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so that for the output neuron, we have
df

dzF
≡ 1−F 2. This is nice because we begin to see that

these derivatives can be expressed in terms of quantities that we have under control when we

use the NN.

The next step is to calculate the derivative of each y
(3)
k with respect to x. As one can

imagine, this will generate a cascade of sums of weights and derivatives. Each hidden layer will

have its own sum of products of weights and other derivatives. Moreover, new derivatives of

the activation function will appear and these will be evaluated at the proper values of z. So for

example:

∂y
(3)
k

∂x
=

df

dz
(3)
k

[
N2∑
i=1

w3,2
k,i

∂y
(2)
i

∂x

]
(5.18)

where now
df

dz
(3)
k

=
df

dz

∣∣∣∣
z=z

(3)
k

≡ 1− (y
(3)
k )2.

This can be done also for the 1st hidden layer and finally for the single input we took into

account. For it, there will be no sum (because the “0-th” layer has N0 = 1 which is the neuron

that shoots the value gα) and we can wrap up the final result:

∂F

∂gα
= [1− F 2]


N3∑
k=1

w4,3
F,k

(
1− (y

(3)
k )2

) N2∑
j=1

w3,2
k,j ·

·
(
1− (y

(2)
j )2

)( N1∑
i=1

w2,1
j,i

(
1− (y

(1)
i )2

)
w1,0
i,α

)]}
(5.19)

Output gradient in terms of matrix products

It can be useful to reformulate the product in (5.19) as a product of matrices; a good reason

would be, for example, the need to implement this calculation in a Python script, which is op-

timized for matrix algebra and performs poorly with for loops.

If we introduce the diagonal matrix diag
[(

1− (y
(α)
1 )2

)
, . . . ,

(
1− (y

(α)
Nα

)2
)]

, made by the deriva-
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tive of tanh for each neuron output, at each layer α, we can write:

∇gF = [1− F 2] ·


w4,3
F,1
...

w4,3
F,N3

 ·


(
1− (y

(3)
1 )2

)
. . . 0

...
. . .

...

0 . . .
(
1− (y

(3)
N3

)2
)
 ·

·


w3,2
1,1 . . . w3,2

1,N2

...
. . .

...

w3,2
N3,1

. . . w3,2
N3,N2

 ·


(
1− (y

(2)
1 )2

)
. . . 0

...
. . .

...

0 . . .
(
1− (y

(2)
N2

)2
)
 · . . . (5.20)

and this is the general formula of the gradient of the output with respect to the vectorial input

g, which in our case will be a vector of scalar symmetry functions g = [g1, . . . , gN0 ].

Derivatives of the Symmetry Functions

In this paragraph we report the analytical calculations of the derivatives of the SF with respect

to the Cartesian coordinates of the atoms. We also introduce a third kind of SF, which we did

not use in the applications reported here, but that are reccuring in other works based on the

Beheler-Parrinello-like NN potentials. This kind is named G
(i)
5 and requires the introduction of

a last new parameter ξ and its defined as follow:

G
(i)
5 := 21−ξ qi

∑
{j}i

∑
{k}i

qj qk Fc(Rij)Fc(Rik) · [cos θijk + 1]ξ (5.21)

In the calculation of the forces, we anticipated that we need to calculate the terms
∂gα
∂xi

. Now

we know that gα can have the form of one of the Gs defined above, so that this derivative will

be of one of the three different kinds of SF. All we have to do so is to perform the derivative of
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these Gs with respect to a generic Cartesian coordinate of a generic i-th atom:

∂Rij

∂xi
=

(xi − xj)

Rij
,

∂fc(Rij)

∂xi
= − π

2Rc
sin

(
π
Rij

Rc

)
· ∂Rij

∂xi
(5.22)

∂G
(i)
1

∂xi
= qi

∑
{j}i

qj
∂fc(Rij)

∂xi
(5.23)

∂G
(i)
2

∂xi
= qi

∑
{j}i

qj
∂Fc(Rij)

∂xi
= qi

∑
{j}i

qj

{
e−η(Rij−Rs)2

[
∂fc
∂xi

− 2η(Rij −Rs)fc(Rij)
∂Rij

∂xi

]}
(5.24)

∂G
(i)
5

∂xi
= 21−ξ qi

∑
{j}i

∑
{k}i

qj qk
∂

∂xi

[
Fc(Rij)Fc(Rik) · (cos θijk + 1)ξ

]
= 21−ξ qi

∑
{j}i

∑
{k}i

qj qk·

(5.25)

·
{
(cos θijk + 1)ξ

[
∂Fc(Rij)

∂xi
+
∂Fc(Rik)

∂xi

]
+ Fc(Rij)Fc(Rik)

∂

∂xi
(cos θijk + 1)ξ

}
(5.26)

where the last missing part is given by:

∂

∂xi

(
Rij ·Rik

RijRik
+ 1

)ξ

= ξ

(
Rij ·Rik

RijRik
+ 1

)ξ−1 ∂

∂xi

(
Rij ·Rik

RijRik

)
(5.27)

∂

∂xi

(
Rij ·Rik

RijRik

)
=

1

(RijRik)2

[
(2xi − xj − xk) (RijRik)−Rij ·Rik

(
∂Rij

∂xi
Rik +Rij

∂Rik

∂xi

)]
=

(5.28)

=

[
(2xi − xj − xk)

RijRik
− cos θijk

(
1

Rij

∂Rij

∂xi
+

1

Rik

∂Rik

∂xi

)]
(5.29)

Of course, this can be done for every Cartesian coordinate of interest in order to find the

component acting on the atom of interest.

We conclude by stressing the fact that these calculations require knowledge of the Cartesian

coordinates for every neighbor of the atom on which the force is acting.

Molecular dynamics simulation details

Molecular dynamics simulations have been performed using the softwares GROMACS 2018 [40]

and our modified version of LAMMPS (12Aug18) [205]. The molecules were modeled with the

Amber99sb-ildn force field [41]. For the explicit solvent simulations the TIP3P model [42] was

used for water molecules; sodium and chloride ions were added at a concentration of 0.15 M, and

balanced so as to neutralize the charge in the simulation box. In the GROMACS simulations,
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all systems were energy-minimized for 1000 steps by steepest descent. The solvent was then

equilibrated for 1 ns (500 ps of NVT and 500 ps of NPT ensemble simulations) with positional

restraints on the protein heavy atoms, using a force constant of 1000 kJ·mol−1·nm−2. During the

NPT, the systems were isotropically pressure-coupled at 1 bar with a coupling constant of 2.0

ps, using the Parrinello-Rahman barostat [43]. In the production run, solute and solvent were

coupled separately to a 300 K heat bath with a coupling constant of 0.1 ps, using the velocity-

rescaling thermostat [165] (same as equilibration). Application of the LINCS [166] algorithm on

hydrogen-containing bonds allowed for an integration time step of 2 fs. Short-range electrostatic

and Lennard–Jones interactions were calculated within a cut-off of 1.0 nm, and the neighbor list

was updated every 10 steps. The particle mesh Ewald (PME) method was used for the long-range

electrostatic interactions [167], with a grid spacing of 0.12 nm. In the LAMMPS simulations,

however, we were bound to use a cut-off description for the full electrostatic contribution. As

already anticipated in the Application section, we kept the cut-off high enough (depending on

the system) to minimize artifacts arising from cut-off long range Coulomb potentials. As initial

configurations for the LAMMPS parallel runs, we extracted (uniformly) frames from the short

runs performed to build the training dataset.

LAMMPS implementation

To create the pair style for the MALIS, in LAMMPS, we modified the lj/cut/coul/cut file,

present in original the code. Roughly speaking, it is structured in a series of functions, one

of which calculates the energies and forces of the non-bonded terms in a cut-off scheme. To

do so, for the i-th atom in the system the function calculates the pairwise terms using three

for cycles: one for those atoms directly bonded to it, one for those atoms that share a 3-body

angular bonded interaction with it and the last one that involves those atoms that are involved

in a 4-body bonded interaction and every other non-bonded atom to it, within the cut-off. We

inserted the calculation of the G
(i)
2,α and the

∂G
(i)
2,α

∂xi
at the level of each one of these for loops to

be sure that every atom of the surrounding region (within the SF cutoff, which coincides with

the pairwise non-bonded interactions) is considered. After collecting the values of the SFs and

their derivatives, we defined a new function that reads a .csv file containing the weights of the

already trained neural network, and uses it to compute the force components
[
f
(i)
x , f

(i)
y , f

(i)
z

]
as scalar products with

∂V (i)

∂gα
. Then the forces are added to the variables that are sent to the

integrator of Newton’s equations.
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How to deal with normalized datasets

What we saw in equations (5.11),(5.12) is the recipe to directly calculate the forces (in Cartesian

components) acting on each atom, using both numbers that comes from the NN and the values

of the derivatives of the g’s. The unit of measurement of the force component will be coherent

with those of V
(i)
eff and xi and, indirectly, those of the g’s. This is an important fact, because

the dataset used in the training is composed by normalized values of inputs/outputs, and this

is reflected in the calculation of
∂V

(i)
eff

∂gα
. The “true” values and the normalized ones are related

by two affine trasformations:

gα,nor =
2

gmax − gmin
gα − gmax + gmin

gmax − gmin
= A · gα +B ⇒ ∂gα,nor = A · ∂gα (5.30)

V
(i)
eff =

Vmax − Vmin

2
V

(i)
eff,nor +

Vmax + Vmin

2
= C · V (i)

eff,nor +D ⇒ ∂V
(i)
eff = C · ∂V (i)

eff,nor (5.31)

The NN operates with the normalized versions of these two quantities, so if we want to calculate

∂V
(i)
eff

∂gα
we have to keep in mind the following:

∂V
(i)
eff

∂gα
= A · C ·

∂V
(i)
eff,nor

∂gα,nor
=
Vmax − Vmin

gmax − gmin
·
∂V

(i)
eff,nor

∂gα,nor
(5.32)

and be aware that the NN calculates
∂V

(i)
eff,nor

∂gα,nor
. Wrapping up everything, the x -component of

the force acting on the i-th atom can be directly calculated by:

F (i)
x = −Vmax − Vmin

gmax − gmin

∑
α

∂V
(i)
eff,nor

∂gα,nor

∂gα
∂xi

(5.33)

These calculations are important since the normalization factor is dataset-dependent, forcing us

to insert it as one of the values to be passed in the input script of the LAMMPS run.

Estimated Computational Gain

In MD simulations, each time step requires the update of the value of each degree of freedom

explicitly taken into account in the system (i.e. the atomic positions and velocities). It is then

clear that, given N ≫ N (where N is the number of solvent atoms and N is the number of

solute atoms), an implicit solvent model would result into a huge speed up for the simulation.
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Therefore, in this paragraph we want to qualitatively compare this gain to the cost of applying

our specific implicit solvent framework, just to have an idea.

For a system with N+N DOFs, in each time frame the distance matrix (required to calculate

the forces for the integration of the equations of motions) will be made by (N+N )×(N+N−1)/2

independent terms, but we know that if we work e. g. with cut-off Coulomb and LJ potentials,

this number is lower. Let’s call N +N − 1 < (N + N − 1) the approximate average number

of neighbors for the atoms in the system. The real number of terms required for the update of

the positions of the atoms becomes then Csol := (N +N )× (N +N − 1)/2. By assuming that

the number of solvent atoms is 10a times the number of protein atom, N ≃ 10a · N , and by

assuming that N +N − 1 ∼ 10b, this number is around Csol ∼ 10a+b ·N . In our framework we

have instead Cmalis ∼ (10c · 10d) ·N terms, where 10c is the number of SF we choose to use and

10d ≃ N − 1, because we are needed to construct a constrained distance matrix of the protein

to calculate the SF. The speed-up is then:

S :=
Csol

Cmalis
=

10a+b

10c+d
= 10(a+b)−(c+d) (5.34)

In a realistic case where a = 2, b = 2, c = 1 and d = 1, for example, the speed-up would result

in S ≃ 102.

Observables used in the Analysis

• Radius of gyration: the radius of gyration Rg is a scalar geometrical feature of the

system. It is calculated for each configuration {r(tj)}M of the trajectory. Given the center

of mass:

rc(tj) :=

N∑
i=1

miri(tj)∑
i

mi

(5.35)

of the configuration at time tj , it is defined as the square root of the mean square displace-

ment of each atomic position with respect to rc(tj):

Rg[{r(tj)}M ] :=

√√√√√√√√√√
N∑
i=1

mi∥ri(tj)− rc(tj)∥2

N∑
i=1

mi

(5.36)
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• PADω: similarly to RMSF, Caliandro et al. [201] introduced another quantity, called

PADωr , which quantifies the variability of the values of the dihedral angles of each residue

r along a trajectory. PADωr ∈ [0, 180] and is 0 when the dihedral angles do not vary at all

along the trajectory and is equal to 180 if the values of Φr and Ψr are randomly sampled.

In formulae, we have:

ωr(t) := Φr(t) + Ψr(t), for t = 1, . . . , T (5.37)

Rk,ωr :=
1

T

∣∣∣∣∣
T∑
t=1

eikωr(t)

∣∣∣∣∣ ⇒ CSωr :=
1−R2,ωr

2R2
1,ωr

(5.38)

PADωr :=
180

π
arccos

(
1− CSωr

1 + CSωr

)
(5.39)

• End-to-end distance: this quantity is simply defined as the distance between the posi-

tions of the first r1(t) and the last rN (t) atom of a polymeric chain at each frame:

D(t) = ∥r1(t)− rN (t)∥ (5.40)

• Hydrogen Bond Analysis: although quantum by nature, the hydrogen bond formation

can be modelled and described also in MD simulations, by looking at some geometrical

dispositions of donor (D) atoms, hydrogen (H) atoms and acceptor (A) atoms. In this

work we relied on the HydrogenBondAnalysis class implemented in the Python package

MDAnalysis [45], using the default input parameters to deduce valid candidates for the

determination of the presence/absence of one or multiple hydrogen bonds along the trajec-

tory. Referring to figure 5.16, we used the following cutoffs to identify an hydrogen bond:

rH ≤ 1.2 Å, rD ≤ 3.0 Å θ ≥ 150o and qA, qD ≤ −0.5e (effective charges).

D

H

A
r

rH

A

θ

Figure 5.16: Simple scheme of an hydrogen bond: the donor and acceptor atoms are typically elec-

tronegative species (Oxygen and Nitrogen are the most common ones in biomolecules).

The dashed line indicates the hydrogen bond.
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It can take values in the interval [0, 1], 0 being perfect matching and 1 being zero overlap

(depending on the binning chosen for creating the histogram).

• Pearson coefficient: in this application, we used this quantity (indicated with ρ) as a

measure of the correlation between the true and predicted values of normalized solvation

energies during the training process of MALIS networks and to quantify the correlation

between the involvement of nucleotides in hydrogen bonds in the ES and IS simulations.

It is defined as follow:

ρ[{ytrue}i, {ypred}j ] :=

∑
i

(
y
(i)
true − ȳtrue

)(
y
(i)
pred − ȳpred

)
√∑

i

(
y
(i)
true − ȳtrue

)2√∑
j

(
y
(j)
pred − ȳpred

)2 (5.41)

where ȳtrue and ȳpred indicate the averages of the raw data.



Chapter 6

A comprehensive Multi-resolution

Study of a CCMV virion particle

and of its constituents

6.1 Introduction

Viruses are enigmatic entities that have captured the attention of scientists and researchers for

decades. These microscopic agents are a-cellular, consisting of genetic material (either DNA

or RNA) encased within a protein coat called viral capsid. Other viruses posses another layer

of coating, made of lipid bilayers: it is called envelope and it gives the virus more resistance;

moreover, having a lipid coat allows the viruses to infect their target cells by causing the viral

envelope and cell membrane to fuse. They lack the ability to carry out metabolic processes on

their own and rely on host cells to replicate and propagate. Despite their small size, viruses can

cause a wide range of diseases in plants, animals, and humans, making them crucial subjects of

study to understand and combat infectious diseases, as the recent times demonstrated worldwide

[206].

Among the vast variety of groups, plant viruses have generally a simpler structure, lacking of

the lipid envelope. The mechanisms of infection and proliferation of plant viruses are intricate

processes that involve many molecular interactions [207]. When a plant is infected, the virus

attaches to specific receptors on the plant’s cell surface, facilitating entry into the cell. Once

inside, the viral genetic material takes control of the host’s cellular machinery, directing it to
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replicate the virus’s genetic material and synthesize viral proteins. These newly synthesized

components then assemble into complete viral particles, which are released from the host cell to

infect neighboring cells, further propagating the infection.

Figure 6.1: Description of a generic virus life cycle. Image taken from [207].

Although their threatening nature, the study and understanding of viruses led also to bril-

liant ideas on how to use them for beneficial applications. In fact viral capsids have garnered

significant interest due to their unique properties and potential technological applications. Here

are a few notable ones:

1. Nanoparticle-based Drug Delivery [208]: Viral capsids can be engineered to serve as nano-

sized carriers for targeted drug delivery. By modifying the capsid’s surface, scientists can

attach specific ligands that bind to receptors on target cells. This allows precise drug

delivery, reducing off-target effects and enhancing therapeutic efficacy.

2. Vaccine Development [209]: Viral capsids can be utilized as vaccine platforms. Non-

infectious viral capsids can be engineered to display antigens from other pathogens, stim-

ulating a targeted immune response. These virus-like particles (VLPs) offer a safe and

effective means of vaccination without the risk of causing disease.

3. Nanoscale Imaging and Sensing [210]: The unique structural properties of viral capsids,

including their defined sizes and shapes, make them ideal templates for nanoscale imaging

and sensing applications. Capsids can be modified with fluorescent tags or other imaging

agents, allowing researchers to track cellular processes or detect specific biomolecules.

4. Nanoelectronics and Nanomaterials [211]: Viral capsids’ symmetrical and self-assembling

nature has inspired research in nanoelectronics and nanomaterials. By engineering cap-
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sids to encapsulate different materials, they can act as scaffolds for the creation of novel

nanomaterials with unique properties.

5. Biocatalysis and Enzyme Encapsulation [212]: The interior of viral capsids can provide

a confined and protected environment for enzyme encapsulation. This controlled envi-

ronment enhances the stability and activity of enzymes, making them more efficient as

biocatalysts for various industrial and medical applications.

6. Bioimaging and Diagnostics [213]: Viral capsids can serve as contrast agents in bioimaging

techniques such as magnetic resonance imaging (MRI) and positron emission tomography

(PET). Their unique properties enable improved visualization of specific tissues and organs

in medical diagnostics.

Figure 6.2: Symptoms elicited by CCMV infection in cowpea (1), yardlong bean (2) and mung bean (3).

Image taken from the Supplementary Materials of [214].

One noteworthy plant virus that has piqued the interest of researchers is the Cowpea Chlorotic

Mottle Virus (CCMV). Discovered in the mid-20th century [215], CCMV belongs to the Bro-

moviridae family and is known for infecting a variety of leguminous plants, including cowpea

(Vigna unguiculata). It possesses a single-stranded RNA genome encapsulated within a ro-

bust icosahedral protein shell, forming its characteristic viral particle. One intriguing aspect of

the CCMV genome is its multipartite nature. This means that instead of possessing a single

continuous piece of RNA, the viral genome is divided into multiple segments, each encoding

different genetic information essential for its replication and infection process. These segments

are separately encapsulated in distinct virus particles. In the case of CCMV, it consists of four

genome fragments referred to as RNA1, RNA2, RNA3 and RNA4. Moreover, CCMV’s unique

structural features and well-studied self-assembly process make it an ideal model for studying

viral dynamics at the molecular level [216, 217, 218].
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(a) (b)

Figure 6.3: 3-dimensional structures of the Cowpea Chlorotic Mottle Virus used in this work. (a) reports

the structure of the capsid alone, in ribbon representation, as resolved via X-ray christallog-

raphy by Speir et al. in 1995 [219]; (b) shows the atomistic model of the virion particle built

and used in this work, with the capsid (in dark green) containing the RNA2 fragment inside

(CPK representation, in blue). All the images are obtained using VMD [39].

Driven by these facts, we decided to select CCMV as a case study for the characterization of

the dynamical behaviour of a virus particle. The decision to focus on studying the CCMV was

primarily driven by the desire to undertake a challenging molecular dynamics simulation that

would stretch the capabilities of our in-house developed CANVAS model. The research project

discussed in this chapter involves conducting molecular dynamics simulations at various levels of

resolution to unravel different aspects of CCMV’s structure and behavior. At the coarse-grained

level, we employed the oxRNA model [88] to simulate the RNA2 fragment of the virus. The

oxRNA model simplifies the representation of the RNA, allowing us to study larger timescales

and explore the folding and dynamics of this specific genomic segment. Moving to the atomistic

level, we conducted simulations of one capsid (the protein shell) and one complete virion particle,

which includes the RNA2 fragment within the capsid. This level of detail enables us to study

the interactions between the viral genome and the capsid, shedding light on the assembly and

stability of the viral particle. Additionally, we studied one trimer, comprising three individual

capsid proteins (CP) that collectively form a subunit of the capsid. We used this system to

benchmark the CANVAS model coupled to the Debye-Hückel model for implicit solvation, with

the future goal to apply it to the whole capsid both empty and containing the RNA2 fragment.

By combining these different levels of simulation, our research aims to provide a comprehensive

understanding of the CCMV dynamics, ultimately contributing to advancements in the field of

virology.
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6.2 Coarse-Grained Molecular Dynamics of the RNA2 viral frag-

ment

The process of self-assembly (SA) of biomolecular structures, such as viral particles, is a fas-

cinating topic whose general understanding impacts several scientific fields, from evolutionary

biology to drug design and delivery. However, its intrinsic complexity sets a challenge for the

high-resolution reconstruction of the assembly pathway, both to experimental and computational

scientists.

While models and simulations have provided extremely insightful spatial and temporal de-

tails, they are limited by the current computational overhead. On the contrary, in vitro ex-

periments cannot access the fine resolution detail that is essential to deeply understand the

phenomena under study. In particular, in order to simulate the process of viral SA, it is re-

quired to reproduce many sub-steps: the folding of the CP (or the lipid membranes for some

viruses), the folding of the RNA and finally the aggregation of CPs and RNA to form the assem-

bled virion. Although the folding process of CPs could not be strictly necessary, for example if

the 3D structure of them is already known experimentally, the folding of RNA can take advan-

tage of computational modelling, since it is almost impossible to reconstruct all the conformers

compatible with the given thermodynamical state.

By exploiting the numerical efficiency provided by a recently developed CG model of RNA

(oxRNA [220], described in chapter 3), we have assessed the folding pathways of a ssRNA viral

fragment (one of the 4 found in CCMV capsids) by means of MD simulations. By construc-

tion, the oxRNA model has been developed to consistently predict the emergence of secondary

and tertiary structural motifs (such as helices and stem loops), although allowing for the sole

Watson-Crick coupling of base pairs and the GU wobble base pair. In addition, the level of

resolution of the model is suitable to perform an extensive exploration of the configurational

space of biologically-relevant systems, expanding on the typical timescales of classic, atomistic

MD assessments by more than 3 orders of magnitude. Therefore, simulations performed with

the oxRNA force field might provide insightful details on the earliest stages of SA processes,

which have been shown in vitro to occur on timescales about the order of seconds [221].

For this study, we had the following goals:

1. to give an extensive description of the conformational space of the RNA2 fragment found

in the CCMV viral capsid both in the presence and in the absence of an external field that

mimics the effect of the capsid itself;
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2. to generate structures with realistic topologies and conformations to be back-mapped

into AA representations of the system, which would be subsequently employed in high-

resolution simulations of the whole virion.

An insightful feature of these simulations is the spontaneous emergence of secondary and ter-

tiary structural motifs in the viral RNA, tracked via the evolution of the hydrogen-bond network

between nucleotides. In the following we will describe the protocol followed to setup the simula-

tions and the analysis performed. we will then carry out a comparison between the two scenarios,

followed by a final discussion of the results obtained. After explaining the protocol followed for

the setup of the simulations, we discuss the convergence of the potential energy as a tool to

assess the achievement of equilibrium. Then we analyse the hydrogen-bond network between

the nucleic bases and we focus on the formation of duplexes and their persistence, also looking

for the formation of pseudoknots (in a qualitative manner). The last analyses are based on the

construction of a so-called dual graph [222] starting from the the secondary structures’ contact

map. The graph is used to classify these structures in topological terms, and some features are

extracted and compared. This analysis revealed to be a necessity, since the huge complexity of

the system does not allow for a frame-by-frame visual inspection of the simulation to identify

interesting features, as can be done for smaller system, thereby requiring me to resort to the use

of automatized algorithms to filter out some information.

6.2.1 Folding of the RNA2 fragment

Figure 6.4: Two examples of conformations obtained by simulating the freely folding RNA2 fragment.

The conformation on the left-hand side is an example of those at the beginning of the

production runs, after the relaxation runs (see text); the one of the right-hand side is instead

an example of the folded structures, from the final part of the production runs.
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For a 2774-nucleotide viral ssRNA fragment, what kind of structures are predicted by the oxRNA

model? Are there pseudoknots in the final structures? What is the variability of the secondary

structures in the conformations sampled at equilibrium? We try to give exhaustive answers

to these questions by analysing two runs of the same RNA2 fragment, with two different De-

bye screening terms in the Coulombic part of the potential energy (corresponding to two salt

concentrations: 0.15 M and 0.50 M).

Simulation setup and creation of the starting structure

NB: all the runs were made using the oxDNA source code [223, 224, 225], the oxRNA2 version

of the force field [220] and the sequence-dependent parametrization of the stacking terms.

The choices we made for the simulation setup are mainly based on the suggestions presented

in [226]. In the following, we will report the passages as a list. The first steps are common for

both scnarios, i.e. at [Na+] = 0.15M , and at at [Na+] = 0.15M . They involve: (NB: for units

conversion, we refer to table 6.2, taken from the oxRNA’s webpage on the Oxford University wiki)

1. extraction of the sequence of the ssRNA RNA2 fragment of CCMV from the National

Library of Medicine’s website

2. creation of a rod-like 3D structure of the fragment, using a python script provided by the

oxRNA developers

3. relaxation runs: two runs (109 steps each, with a timestep of δt = 3 · 10−3τox) for a total

of tr = 6µs in converted units (see table 6.2); the temperature was T = 333K in order to

favour the decorrelation of the polymer; the salt concentration was [Na+] = 0.15M

The product of these steps was a relaxed, yet still elongated filament (see e.g. left-hand side

of figure 6.4). Next, we used these structures to proceed in two directions for the two different

runs.

Concerning the [Na+] = 0.15M run:

4. production run: one single run at temperature T=310 K, [Na+] = 0.15M and a total

sampling time equivalent to ts ≃ 0.5ms (trajectory frames were sampled for the analyses

every 3 · 104 τox)

Concerning the [Na+] = 0.50M run:

https://dna.physics.ox.ac.uk/index.php/RNA_model_introduction
https://www.ncbi.nlm.nih.gov/nuccore/NC_003541.1
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4. increase of the salt concentration: linear increase of [Na+], from 0.15 M to 0.50 M, in time

(at T = 310 K, for a total simulation time of ti = 10µs)

5. production run: one single run at temperature T=310K, [Na+] = 0.50M and a total

sampling time equivalent to ts ≃ 0.5ms (frames sampling for the analyses: 3 · 104 τox)

All the analyses presented below refer either to the production runs or to a subpart of it (the

equilibrated part, see next paragraph).

Convergence of the potential energy

(a) (b)

Figure 6.5: Values of the potential energy UoxRNA sampled in the production runs with salt concentra-

tion 0.15 M (a) and 0.50 M (b). The scales of the y axes are not the same.

The first observable that we tracked along the simulations is the total potential energy, whose

functional terms are reported in chapter 3 (3.18) and, more explicitly, in the related literature

[220]. The values of UoxRNA over simulation time are reported in 6.5, for both setups. We

decided to fit the curve to an exponential function U theo(t) := A · e−t/t0 +B, in order to extract

the characteristic times t0, as well as the converged energy B. To perform the fit, we used the

curve fit() function from the scipy python package [227]. It uses non-linear least squares to

perform the regression. The values obtained are:

A[0.15M ] = 1.41 kBT t0[0.15M ] = 1.32 · 107 τox B[0.15M ] = −11.2 kBT (6.1)

A[0.50M ] = 0.43 kBT t0[0.50M ] = 3.43 · 107 τox B[0.50M ] = −13.1 kBT (6.2)
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From the values of R2 (R2[0.15M ] = 0.11 and R2[0.50M ] = 0.61), which are associated to the

quality of the fit, we can deduce that the fit works better for the 0.50M case, although a visual

inspection suggests that the model curve is sufficient to describe the trend in both cases.

One thing to notice is the difference in the converged energy U theo(∞) ≡ B among the simula-

tions, this being higher in the [Na+] = 0.15M scenario. The simplest explanation for this fact

accounts for the most straightforward difference in the two setup, which is the different screening

factor in the Yukawa-like potential (Debye-Hückel) that mimics the equivalent ionic strength of

the solution: a higher screening leads to a minor repulsive energy between (non-consecutive)

backbone sites of the chain. This argument might be valid as a rough approximation of the

electrostatic contribution, although the energy value is determined by the interplay between all

the terms involved. More about this point will be discussed below.

Anyway, the main goal of the fit was to establish quantitatively an equilibrated part of the tra-

jectory, which by our convention we picked as 3 times the value of the characteristic time of the

exponential, 3 · t0. As we will discuss later on, some analyses have been performed considering

only those frames sampled at t > 3 · t0.

Time-resolved base pairing and contact maps analysis

The core of the analyses performed in this section is based on the study of the emerging secondary

structures of the fragments during the simulations. Hereafter, we will briefly report the criteria

to establish whether two nucleotides are bound (via hydrogen bonding) or not.

Given two nucleotides (each made by 3 interaction sites, one for the backbone, one for the

stacking and one for the hydrogen bonds as shown in figure 3.6) hydrogen bonds are formed

according to the following rules:

1. distance criterion between hydrogen bond sites: an HB is formed if the distance δrHB is

less than δrcutHB = 0.75nm (which is the real cut-off used in the calculation of VHB, which

is a Morse potential [228])

2. anti-parallelism between the versor a1 of both nucleotides. This versor is built by joining

the backbone site with the HB site, and points towards the HB; as a consequence, the ideal

HB between nucleotide i and j is formed when a
(i)
1 · a(j)1 = −1. The criterion we adopted

to discriminate between hydrogen-bonded and unbound nucleotides is a
(i)
1 · a(j)1 < −0.85,

which correspond to a discrepancy of ∼ 30o from the anti-parallelism (the choice is purely

arbitrary)
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3. non-complementarity: we discarded every pair of nucleotides that satisfies the above-

mentioned criteria but are almost consecutive in sequence (|i− j| needs to be ≥ 3) as well

as those pairs that are not considered as complementary (i.e. AU, GC or GU)

(a) (b)

Figure 6.6: The number of HB found in the configurations sampled along the production runs: (a) refers

to [Na+] = 0.15M , while (b) refers to [Na+] = 0.50M .

Based on these rules, we constructed a boolean contact map of values kij (i.e. a 2774 × 2774

symmetric, binary matrix of True and False values that is True if nucleotides i and j satisfy

the criteria, and False otherwise). Due to the high computational cost of these calculations, we

limited to 1/10 of the sampled frames for both trajectories, for a total of roughly a thousand of

contact maps generated.

The most straightforward observable that can be extracted from the contact maps is the total

number of HB per frame, nHB: the values are reported in figure 6.6. The curves show a fast

increase (which is sharpest in the 0.15M plot) in the first part, somehow reaching a plateau

after the equilibration time, indicated by a black dashed vertical line. The converged values

reached in the two simulations are different: nHB ∼ 450 for the 0.15M and nHB ∼ 580 for the

0.50M , roughly corresponding to 1/3 and 2/5 of the total number of nucleotides of the chain

involved in duplexes. This difference can be correlated to the difference in the value of U theo(∞)

expressed before. In fact, HB formation leads to a lower value of VHB and so the highest is nHB

the more negative is the contribution of VHB to the total potential energy.

In order to use the information contained in the contact maps to compare pairs of frames,

we defined a distance dKM that accounts for the fact that the two contact maps are sparse (we
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want to ignore the non-contacts and focus only on the non-zero part of both matrices, i.e. the

contacts) and that they can have different absolute numbers of contacts (we need a quantity

that is symmetric with respect to the exchange of the contact maps). By calling n[criterion]

the total number of matrix elements that satisfy the criterion expressed as input, the distance

is defined as follow:

dKM (k(1), k(2)) =
n[(k

(1)
i>j == True) ∧ (k

(2)
i>j == False)] + n[(k

(1)
i>j == False) ∧ (k

(2)
i>j == True)]

2
(6.3)

dKM is maximum if the two contact maps do not have any contact in common, and dKM = 0

if the two contact maps have exactly the same contacts. The factor 2 at the denominator has

been introduced to obtain values of distance that can be qualitatively interpreted as an averaged

number of different pairs: with this normalization factor, in fact, dKM cannot be higher than

the highest nHB among k(1) and k(2).

(a) (b)

Figure 6.7: Normalized histogram of the values of dKM for both the simulations compared, including all

the frames of the simulations (a) or only the frames relative to the equilibrated part of the

simulations (b).

In figure 6.7 we reported the normalized histogram of the values of dKM comparing all frames

and also those from the equilibrated part of the production run. Qualitatively, the full distri-

butions are moderately different while those related to the equilibrated parts are very similar in

shape. From this fact we can deduce that, at equilibrium, the variability in secondary structures

is close to be independent on the salt concentration (at least for the values implemented here).

Moreover, the numerical values of dKM at equilibrium, which vary approximately from 200 to

400, indicate an intense variability in the contact maps, considering the total number of contacts
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shown before.

We notice that this distance can be used to perform clustering of the secondary structures, so

to reveal the conformational basins and extract a small number of representative contact maps

(e.g. the centroids of the clusters) that are easier to handle in order to perform further analyses.

In the appendix 6.30 we report the plot of the values dKM per each couple of sampled frame,

which can be used as a starting point for the clustering. However, given the non-self-similarity

of the system, we considered the analysis to be somewhat redundant or of secondary importance

for the scope of this work.

Duplex persistence

[Na ] = 0.15 M+

0

Nucleotides

2773

(a)

[Na ] = 0.5 M+

0

Nucleotides

2773

(b)

Figure 6.8: Chord diagrams representing the most persistent duplexes (at least 50%) in the simulations.

We decided to use a color map, ranging from blue to red, to highlight the sequence identity

of each nucleotide (from 0 to 2773).

A second kind of analysis we performed on the equilibrated part of the trajectories, based on

the evolution of the secondary structures, involves the persistence of duplexes, i.e. groups of

consecutive bases in sequence that participate to form a double stranded region of RNA. We

made use of the function duplex finder() provided by the oxDNA developers. As a consequence,

the criterion used to detect HBs is the energy based one, which differs from that introduced

in this work and used to generate the contact maps discussed before. Firstly, given all the

duplexes for each time frame analyzed, we grouped those that are similar for at least 50% of

the bases involved in the double strand. In this way, we wanted to remove some redundancy in

the counting. Then, we counted the number of times each duplex occurs in the simulation and



6 Multi-resolution modelling of CCMV dynamics 152

we retained those ones that had appeared 50% of the time at least. The obtained duplexes are

reported in figures 6.8. The first thing to notice is that the persistent duplexes (the parabola-

shaped objects connecting the nucleotides involved in their formation) involve nucleotides that

are close in sequence (|i−j| ≲ 200 for the 0.15 M and |i−j| ≲ 400 for the 0.50 M). This could be

the sign that even simulations with a duration comparable to ours might still be biased by the

choice of the starting, rod-like conformation: with a non exhaustive sampling the energy barrier

to overcome in order for those duplexes to break and reform others with new nucleotides that

are far in sequence could be too high. This is not necessarily in contrast with the variability

in contact maps highlighted by dKM : the process of selection of the duplexes, in fact, assigns

the same identity to duplexes that vary at most 50% in base pairs composition; however, those

could manifest in very diverse contact maps. We can say, in other words, which the contact

maps analysis is finer than the duplex one. Another thing that is worth noticing is the more

extended nature of the bridges present in the 0.50 M simulation, with respect to the 0.15 M case.

This was expected due to the higher shielding of the electrostatic repulsion between nucleotides,

which allows for a higher conformational variability.

We also looked for for persistent pseudoknots formation: those would be easily detected in figure

6.8 as bridges that cross each other. As one can clearly see there is no such crossing in neither

of the chord diagrams: this is curious, since the presence of pseudoknots in long ssRNA chains

is expected (see e.g. [229, 230, 231]). We ascribe this lack of persistent pseudoknots to the short

sampling: although pseudoknots might form in simulations performed with oxRNA [220], the

rarity of their formation in a system as large as this viral RNA fragment poses an intrinsic limit.

Graph-based analysis of RNA secondary structures

The last approach that we followed to investigate the variability of secondary structures in our

simulations is based on the construction of a dual graph [232, 233, 222] for each secondary

structure. The use of graph theory as a tool to characterize and classify secondary structures of

ssRNA filaments in a topological way revealed useful not only for an a posteriori analysis but

also to predict new RNA-like topologies [222]. In our work, the use of dual graphs to analyse

secondary structures has multiple advantages: a) despite being developed for atomistic 3D RNA

structures, it is directly compatible with a coarse-grained model of RNA; b) it is an automatable

approach to give a general, quantitative description of secondary structures, independently on

their complexity and the dimensionality; c) it highlights features that are potentially different

to those highlighted by analyses based on real space positions.



6 Multi-resolution modelling of CCMV dynamics 153

We will hereby explain how a dual graph is built, given the contact maps representing the

secondary structure of an RNA configuration. The steps are the following (see [222]):

1. each duplex (involving at least 3 base pairs) is mapped into a vertex

2. an at least 3-nucleotide-long sequence of consecutive nucleotides that are not involved in

any pairing is mapped into an edge that connects the duplexes found at the far ends of it

3. hairpins are mapped into self-edges that point against the node related to the stem involved

in the stem-loop motif

4. unpaired residues at the 5’ and/or 3’ ends of the RNA chain are not represented.

For each graph obtained in this way, one can construct three matrices: the adjacency matrix

[Aij ], the degree matrix [Dij ] and the Laplacian matrix [Lij ] := [Dij ]− [Aij ]. [Aij ] specifies the

number of edges between vertices in the dual graph. Thus, the element Aij is the number of

edges between vertices i and j if they are connected, 0 otherwise; the diagonal element Aii = 2

if a self-edge exists at vertex i, 0 otherwise. The diagonal element of [Dij ] contains the number

of edges incident on vertex i, or the row-wise sum of elements i in matrix [Aij ]; all off-diagonal

elements of matrix [Dij ] are zero. The Laplacian matrix can be diagonalized, and the lowest

non-null eigenvalue λ1 defines the algebraic connectivity (or Fiedler value) of the dual graph,

and is a measure of the connectivity or compactness of the dual graph topology [222]. Other

important features of the spectrum of [Lij ] are the fact that for connected graphs (like those

in our application) the eigenvalues are always non-negative and the minimum one is λ0 = 0.

We used this property to check that our graphs was always connected (no isolated groups of

vertices). Isomorphic dual graphs (ignoring self-edges) have identical eigenvalue spectra for [Lij ],

but dual graphs with identical eigenvalue spectra are not necessarily isomorphic.

We calculated the values of λ1 for each secondary structure built up on the frames of the

equilibrated part of the trajectories. Moreover, we calculated the diameter of the graph, which

is the length of the shortest-path between the most distant nodes (where the distance between

two nodes is expressed in the minimum number of edges to connect them).
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(a) (b)

Figure 6.9: Normalized histograms of the values of (a) Rg and (b) D for the equilibrated parts of the

production runs.

In figure 6.9 we report the normalized histograms of the values of the radius of gyration (Rg)

6.9a and of the graph diameter (D) 6.9b. The most evident and interesting observation that

can be extracted from the comparison of these plots is the fact that while there is a remarkable

difference in the Rg distributions, the values of the graphs’ diameters are very similar between

the two scenarios. This suggests that, although conformationally different, the topologies of the

graphs generated from the secondary structures can be similar. By comparing these values to

the normalized histogram of the total number of nodes (figure 6.35a of Appendix A) one can

see that the diameters involve roughly 1/3 of the total number of nodes in the 0.15 M case and

less than 1/4 in the 0.50 M case. This indicates that the 0.15M graphs’ topologies are more

rod-like, while the 0.50M ones are more tree-like.

In figure 6.10a we report the normalized histogram of the values of λ1 per each graph built

on the equilibrated configurations. In order to extract a qualitative idea of their meaning, we

compare these values to the analytical values of λ1 calculated for 3 different kinds of simple

“model” graphs (with a number of nodes equal to n): the path graph Pn [234], the cycle graph

Cn [234] and the 2D squared lattice graph Ln [235] (examples of those graphs are reported

in the appendix 6.34). While Pn and Cn are one-dimensional and linear in shape (Cn having

constrained ends, unlike Pn), Ln is very well connected and tangled, with a complex yet regular

topology. Similarities with the values of λ1 derived from the spectra of these simple graphs is a

good baseline to interpret the λ1 values of our RNA graphs. The eigenvalues λ1 of Pn, Cn and
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Ln are given by [234, 235]:

λ1(Cn) = 2 ·
[
1− cos

(
2π

n

)]
, λ1(Pn) = 2 ·

[
1− cos

(π
n

)]
, λ1(Ln) = 4 ·

[
1− cos

(
π√
n

)]
(6.4)

and are plotted in figure 6.10 within a range of n that is compatible to the values associated

with the RNA2 secondary structures, as one can see from the normalized distribution of the

number of nodes reported in figure 6.35a of the appendix.

(a) (b) (c)

Figure 6.10: (a) Normalized histogram of the values of λ1 of the equilibrated parts of the production

runs; (b) the scatter plot of the values of n (number of nodes in each graph) and λ1; (c)

the analytical values of λ1 for three simple classes of graph topologies, whose functional

form are reported in equation (6.4): the horizontal dashed lines indicate the range of values

of λ1 shown in (a).

The first consideration that can be done is that the values of λ1 for both the simulations are

more compatible with the Cn and Pn scenarios rather then Ln. This can be the signal of the

presence of more rod-like topologies, instead of dense and much interconnected networks. It is

still interesting to notice that the values from the simulations are more than twice those of Cn

and Pn, indicating that their topologies are more interconnected than simple linear topologies.

One last consideration that we can make by comparing the histograms of λ1 6.10a and of

the number of nodes n 6.35a is that in the 0.15 M case the number of nodes is on average lower

but the connectivity is higher (λ1 is higher), while the opposite holds for the 0.50 M case. We

can accordingly deduce that the network of duplexes is more packed and dense of connections

in the 0.15 M case, even if the duplexes are less in number, while in the 0.50 M case a higher

number of duplexes (possibly even composed by a lower number of base pairs) shows a lower

inter-connectivity (as indicated by values of λ1 more similar to those of Pn and Cn).



6 Multi-resolution modelling of CCMV dynamics 156

6.2.2 Out-of-equilibrium dynamics of RNA2 fragment under time-dependent

spherical constraint

Figure 6.11: Three representative steps (3D configurations) of the packing process simulations, discussed

in this subsection: on the left, the starting configuration (which coincides with the last,

folded configuration of the runs discussed before); in the middle, an intermediate step; on

the right, the last frame obtained before the simulation underwent interruption for numerical

instability: it coincides with the most squeezed configuration possible before some of the

bonds between the CG sites is broken due to van der Waals repulsion.

This subsection collects the results obtained by performing a non-equilibrium molecular dynam-

ics simulations of the RNA2 fragment, adopting similar salt concentration conditions as before

(0.15 M and 0.50 M). The purpose of this investigation is twofold:

1. on one hand, we wanted to squeeze the RNA2 fragment to occupy a very small spherical

volume, to obtain a 3D structure of the fragment compatible with the available space

inside the X-ray resolved 3D structure of the icosahedral capsid of the CCMV virus [219],

such that a 3D model of full virion particle can be constructed and simulated

2. on the other hand, we wished to understand the process of self-assembly of the fragment

[215, 216, 217], starting from the behaviour of the RNA (by forcing the packing via an

outer external field, thus avoiding to include the explicit presence of the environment, i.e.

the solvent and the capsid molecules)

Although the first purpose has been fulfilled, the second one was more ambitious; in fact,

hereafter we will discuss some preliminary results that are far from being exhaustive to clarify
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the self-assembly process. However, our simulations show that the model is suitable for this

application and that future simulations might be able to provide microscopic information e.g.

regarding the energetics of the process, such as the work required for the external force to

complete the packing.

After an overview of the setup, we will show and discuss the observables of interests: the total

number of HB nHB (based on the criteria introduced in section 6.2.1), the radius of gyration

Rg, the values of λ1 and the diameter D of the secondary structures’ based graphs built as done

before.

Simulation setup

One substantial difference with the freely folding runs is the use of LAMMPS [205] as molecular

dynamics engine, instead of the native oxDNA software (provided with GPU implementation).

Since we required a software with an already implemented spherical, time-dependent external

force, we employed the fix wall/lj93 command (see LAMMPS [205] (v2021) documentation for

more details), whereby the external potential acting on a generic CG site i at position ri is a

time-dependent Lennard-Jones like potential with the following functional form:

V LJ(ri, t) := ϵ

[
2

15

(
σ

ρ(t)− |ri − c|

)9

−
(

σ

ρ(t)− |ri − c|

)3
]
, ρ(t)− |ri − c| < rcut (6.5)

where c is the position vector of the center of the closing sphere and ρ(t) is the radius of the

sphere. This external sphere acts as a repulsive confinement; in fact, we set rcut = σ · 6

√
2

5
so

that the wall is ineffective if the distance between the CG site and the wall sphere is higher than

the minimum of the Lennard-Jones like function. The radius of the sphere ρ(t) varies linearly

with time, as:

ρ(t) = ρ0 +
t

Tsim
(ρf − ρ0) (6.6)

where ρ0 = 100dox (see the table for unit conversion 6.2) and ρf = 5dox. For these scenarios,

however, we were limited to perform substantially shorter simulations with respect to the freely

folding runs because of the lack of a stable GPU implementation of the MD package coupled

with oxDNA. Given the volumes occupied by both initial configurations, the spherical walls

start to effectively act about half-way of the simulation. Thus, the radius of the wall sphere

starts from a value of ρ0 and linearly decreases until the total simulation time is reached, where

ρ(Tsim) = ρf .

We want to highlight the fact that there is no experimental evidence that the self-assembly
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process occurs by linearly packing the RNA (see e.g. [236] for experimental evidences on this

process): our choice is again dictated by the simplicity of implementation and interpretability, yet

the protocol can be easily adapted, for both the as functional forms employed for the potential

and for the explicit time dependence of ρ(t). The starting configurations for these packing

simulations were taken from the last frames of the production runs for the free folding dynamics.

The two simulations covered about 6 · 107 steps with a timestep of δt = 5 · 10−3τox, for a total

simulation time of Tsim ≃ 3 · 105τox.

Hydrogen bonding and graph-based analysis

(a) (b)

Figure 6.12: Results obtained by analysing the packing simulations. (a) Total number of HBs in time,

as detected with the algorithm introduced above; (b) the values of λ1 in time.

We first traced the number of HBs over time and plotted the results 6.12a. Probably due to the

spatial proximity and extreme external pressure conditions during the later stages of the packing

process, the number of nucleotide pairs satisfying HB conditions was unexpectedly high, leading

to a rapid increase of the values of nHB. We believe this growth to be somewhat artificial, likely

revealing a weakness in the HB criteria adopted, as we would actually expect a greater breakage

of the existing bonds with consequent decrease of the curves, given the strong instability of

the system. In this concern, we hypothesize that an energy-based criterion for HB calculation

(like the one suggested by the oxDNA developers) might reveal more robust and provide more

insights into the system’s behavior, under these unusual conditions.

As for the free folding case, we performed graph-based analyses. However, caution should be
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exerted while interpreting results obtained from these analyses, as they will in fact be similarly

affected by the artifacts arising from the misconstruction of the contact maps, thereby impacting

on the overall conclusions.

In 6.12b we report the values of λ1 over time, which interestingly show a drastic decrease in

graph connectivity during the final stages of packing. This observation suggests that significant

changes in the structural properties of the system takes place during this phase.

(a) (b)

Figure 6.13: (a) Values of Rg in time and (b) values of D in time.

The radius of gyration over time 6.13a overall exhibits an unsurprising trend, in spite of

a moderate rise just before the monotonous decrease caused by the packing. One possible

explanation for this phenomenon lies in the fact that, in the initial moments when the spherical

wall exerts its action, the most exposed parts of the fragment adhere to it (to take the shape of

a spherical shell). Perhaps even the parts of the filament that are further away are indirectly

attracted to the compressing sphere (a kind of entropic effect). We also calculated the values

of the diameter D for the graphs 6.13b, and the total number of nodes n per graph, in time

6.35b. The number of nodes and the total number of HB follow a similar trend: they start to

decrease in the first stages of the packing and then they rapidly surge in the final steps. This

correlation can be explained by assuming that the increase of n is caused by the formation of

new, sparse duplexes (both the real and the fake ones), which is also in line with the increase of

nHB. Interestingly, the diameters follow different trends in the two simulations: while the 0.50

M value drops rapidly in the very last steps, the 0.15 M value, after a slight reduction, reaches

a peak of around 50 and then it drops again close to the equilibrium values. The effect of the
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packing on the 0.15 M system can be interpreted as a drift of the topology of the graphs to a more

elongated and stretched one which can be the symptom of a disruption of some interconnections

between the nodes, while for the 0.50 M case the drop of diameter together with the rise of

the number of nodes could be the signal of an increased connectivity and complexity of the

topologies, although this observation is in contrast with the decrease of the values of λ1 also in

the 0.50 M. We are led to conclude that, as anticipated, the results obtained by the graph-based

analyses in the last, critical stages of these simulations are vague and hard to be interpreted and

this can be related to the unreliability of the contact maps created by using our algorithm for

the HB detection.

6.3 All-atom simulation of the capsid and the virion

In this section we present the results of our all-atom molecular dynamics simulations of the

CCMV virus capsid and virion models. The primary objectives of this sub-project are as follows:

1. To develop a reproducible and generalizable atomistic model of the viral capsid and virion

using a well-defined algorithmic procedure.

2. To perform all-atom solvent-explicit dynamics simulations of the capsid and solvated

virion, aiming to obtain high-resolution data for future comparison and validation of the

CANVAS model.

3. To assess the stability of the CCMV capsid simulation with unstructured tails, a crucial

feature that has not been explored in previous studies [237, 238].

4. To conduct MD simulations of an all-atom representation of the CCMV virion with its

correct genetic content [219] (one of the three possible configurations), a novel investigation

that has not been undertaken before for this virus.

5. To characterize the capsid-RNA contacts within the virion simulation.

To achieve these objectives, we performed all-atom molecular dynamics simulations in explicit

solvent using GROMACS, leveraging GPU-accelerated computation for enhanced efficiency and

performance. In this section, we briefly outline the steps involved in setting up the simulations,

referring to the appendix for more detailed descriptions. Additionally, we present and discuss

the analyses performed, including RMSD, radius of gyration , RMSF (all of these made using the
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MDAnalysis python package [45]), RNA-capsid contact analysis using another (in-house modi-

fied) python package, pynteraph [239], and an in-depth examination of solvent-related artifacts.

6.3.1 Simulation setup and creation of the starting structures

Figure 6.14: Schematic representation of the key steps followed to build the capsid and the virion start-

ing atomistic models for MD simulations. A more exhaustive explanation is reported in

appendix B of this chapter.

In this paragraph we briefly review the steps that we followed to model the starting structures.

For a complete setup of the simulations involved in these steps, we redirect the reader to Ap-

pendix B of this chapter.

As shown in the infographic in figure 6.14, we took the structure of a trimer (one of the 60
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different building blocks of the structure of the full capsid) from the PDB entry 1CWP [219].

We then used MODELLER [240] to create a model of N-terminal tails, which are disordered

and as a consequence they cannot be resolved by means of X-ray crystallography. With it,

we built a model of the full capsid, by reproducing the same modelled trimer 60 times and by

taking advantage of its icosahedral symmetry: these steps produced the starting point for the

simulations (equililbration and 200ns-long production run) performed on the empty capsid (no

RNA inside), in explicit solvent. Then we performed a steered molecular dynamics on the last

residues of the tails, in order to gain more free space inside the capsid. Finally, we inserted the

structure obtained in the packing run of the RNA2 fragment with oxRNA (discussed before).

In order to do that, we used the web-server TacoxRNA [241] to back-map the oxRNA structure

into an atomistic one. The output of this insertion made the starting point for the simulations

(equililbration and 200ns-long production run) performed on the virion particle, in explicit sol-

vent.

In the next paragraph we discuss the results of the analyses performed on the trajectories ob-

tained in the above-mentioned 200ns-long production runs.

6.3.2 Analysis of the trajectories

The first analyses performed on the frames extracted during the production runs of the capsid

and the virion are: the calculation of the capsid protein-averaged RMSD with respect to the

initial frame, in time (defined below); the radius of gyration in time; the capsid protein-averaged

RMSF (defined below).

We defined this peculiar RMSD, averaged over the trajectories of all the capsid proteins, in

order to take advantage of the huge amount of sampling the simulation of a full capsid provided,

to extract an estimation of the deviations of these values. Moreover, in this case, we preferred

to keep the calculations separated for the residues of the N-terminal tails (1 to 50) and the

others. In particular, given the number of atoms in a single capsid protein (Na,cp = 2900 in

total, subdivided in tails Na,t ≃ 750 and shell Na,s ≃ 2150) and given the number of proteins in

the capsid (Ncp = 180, for a total of 60 trimers), the averaged RMSD at each frame t and the

relative standard deviation are defined as follow:

RMSD
(i)
s/t(t) :=

√√√√√ 1

Na,s/t

Na,s/t∑
j=1

∥rj(t)− rj(0)∥2
〈
RMSDs/t

〉
cp
(t) :=

1

Ncp

Ncp∑
i=1

RMSD
(i)
s/t(t)

(6.7)



6 Multi-resolution modelling of CCMV dynamics 163

σ[RMSDs/t](t) :=

√√√√ 1

Ncp − 1

Ncp∑
i=1

(
RMSD

(i)
s/t(t)−

〈
RMSDs/t

〉
cp
(t)
)2

(6.8)

In this equations we do not explicitly report the minimization process involved in the calculation

of RMSD
(i)
s/t(t), which as already discussed in the Appendix of chapter 2.

(a) (b)

Figure 6.15: RMSD values of the (a) capsid and (b) virion production run, calculated as explained in

the text, with respect to the initial frames.

The results are reported in figure 6.15. By looking at the behaviour of these curves, one

can make some considerations about the equilibration of the trajectories along the 200ns. From

these findings, it can be inferred that the capsid may not have reached convergence yet, while

for the virion, convergence is more pronounced and occurs much more rapidly. Certainly, the

interaction between RNA and tails plays a significant role, as they become less mobile after

the initial stages of their attachment. This is in accordance with the RMSD value of the

RNA2, reported in figure 6.15b: after a very rapid and intense growth, the value is strongly

stabilized throughout the rest of the simulation. The fact that in the capsid run the values

cannot be considered as converged can be the symptom that the system did not relaxed to

equilibrium yet. This is not extraordinary, considering the size of the system itself (more than

500,000 atoms). This suggests that with our setup a longer run is required for the system to

be considered at equilibrium, differently from other cases found in literature about molecular

dynamics simulations of other viral capsids [242, 243].

The next quantity we calculated is the radius of gyration of the capsid and of the RNA2,
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in the virion run. The values obtained are reported in figure 6.16, accompanied by a sub-

graph displaying the numerical derivative, to demonstrate that both cases exhibit rapid and

intense variation in the initial stages of the simulation. However, after the first growth the

trend diverges: the capsid’s Rg keeps increasing, and it is likely that 200 ns are insufficient

to reach the equilibrium value. On the other hand, in the virion, the capsid’s Rg decreases

quasi-linearly, indicating that it also does not reach a plateau within the 200 ns time-frame.

The observed difference is undoubtedly influenced by the presence of RNA2, but explaining

the nearly linearly decreasing trend in the second case, after the initial rapid growth, is not

straightforward. Notably, the Rg of RNA2, as reported in the appendix 6.36, follows the same

trend as the capsid.

(a) (b)

Figure 6.16: Radius of gyration values of the (a) capsid and (b) virion production run. In the small

box, a numerical derivative (in red) and its time-window averaged value (in black) of the

radius is reported, showing that the most remarkable variation happens in the very first

nanoseconds of simulations, in both cases.

It is noteworthy to report that the literature is rich of observations of a swelling process

that occurs to CCMV virions, if they are brought to physiological pH conditions from pH = 5

[244, 245]. It is curious to observe the behaviour of the simulated virion is opposite, showing a

shrinkage after the rapid growth. In our simulations, however, although we chose the protonation

states of charged amino acids to be coherent with a physiological pH condition, we do not control

the pH value (and, in turn, possible changes in the protonation states) along the simulations.

Future investigations, with a longer and statistically more relevant sampling, are required to

assess whether the conditions of the simulations (pH and salt concentration) or other intrinsic
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properties of the choices made (force field used, here CHARMM36m, dimension of the simulation

box...) are the cause of this discrepancy.

We also monitored the value of the relative fluctuations of the Cα atoms of the backbone of the

residues in each capsid protein, by averaging over all the capsid proteins in the capsid (similarly

to what we did for the RMSD). Specifically, the RMSF values and standard deviations are

defined as follow:

RMSF (i)[Cαj ] :=

√√√√ 1

T

T∑
t=1

∥∥∥r(i)j (t)−
〈
r
(i)
j

〉∥∥∥2 ⟨RMSF [Cαj ]⟩ :=
1

Ncp

Ncp∑
i=1

RMSF (i)[Cαj ]

(6.9)

σ[RMSF [Cαj ]] :=

√√√√ 1

Ncp − 1

Ncp∑
i=1

(
RMSF (i)[Cαj ]− ⟨RMSF [Cαj ]⟩

)2
(6.10)

where the RMSF
(i)
Cαj

refers to the fluctuation relative to the mean position, along the trajectory,

of the j-th Cα (or residue) taken from the i-th capsid protein.

(a) (b)

Figure 6.17: RMSF values of the (a) capsid and (b) virion production run, calculated as explained in

the text. In the box reported below we show the differences of the mean values (the bold

lines above).

The calculation was divided into two 100 ns blocks, and for each block, the RSMF represents
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the fluctuation relative to the mean position of the Cα data in that block. As for the RMSD,

the alignment of the trajectory frames was performed with respect to the initial structure. In

the case of the capsid, it is evident that the fluctuations are quite similar for residues within

the shell, while for the tails, a more substantial difference is noticeable (as highlighted by the

diff lower graph, which represents the difference between before and after). It can be inferred

that the tails exhibit higher fluctuations around their mean positions in the initial phase, likely

seeking their equilibrium. In the second phase, the fluctuations are generally comparable to those

of the shell residues, though with a more pronounced deviation. This is consistent with their

disordered nature, as further supported by the experimental fact that the starting crystalline

structure does not include their atomic positions due to their high mobility. Regarding the virion

simulation values, it is evident that the RMSF values in the first 100 ns block are substantially

higher. In my opinion, these numbers indicate some pathological behavior, possibly related

to the alignment process, which, not being optimal, resulted in a less representative average

structure, thereby offsetting the numerical values of fluctuations relative to it. Despite this, an

interesting observation can still be made, even considering the less “pathological” values in the

second block. The fluctuations of the tails are even reduced (both in mean value and standard

deviation) compared to the shell residues. From this deduction, supported by visual inspection

of the simulations, it can be inferred that the tails attach to RNA2, forming a complex with a

highly stable and less mobile structure. This observation aligns with the nearly constant RMSD

value of RNA2 throughout the simulation after the initial rapid growth phase.

Capsid-RNA contacts

To investigate the network of interactions formed between the negatively charged phosphate

groups of RNA2 nucleotides and the positively charged groups of protonated residues (atoms

NZ, HZ* for LYS, atoms NE, HE, CZ, NH*, HH1*, and HH2* for ARG, atoms N, H1, H2, H3

for N-terminal MET), we conducted a study of so-called salt bridges, following the nomenclature

dictated by the analysis tool we used, namely pyfferaph (a modified version of the python package

pynteraph [239]). For a given virion system configuration, a salt bridge between two charged

residues (one acidic and the other basic or, equivalently for our system topologies, one with

a negatively charged group and the other with a positively charged group) is conventionally

established if at least one pair of atoms from each charged group is within a distance of 4.5 Å.

Consequently, salt bridges under this definition are established by partial charge interactions

and excluded volume effects of chemical environments.
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Figure 6.18: Contact persistence of the salt bridges formed between the charged group reported in the

text: on the y axis the indices of the nucleotides of the RNA2 are reported, while on the x

axis the names and indices of the amino acids containing the charged groups within each

of the 180 capsid molecules are reported.

Similar to hydrogen bonds, these interactions emerge primarily from the non-bonded part

of the force field. For a trajectory, pyfferaph’s output (for our system) is a matrix of size

2774× (12 ·180), as there are 2774 acidic groups (one phosphate group for each nucleotide), and

12 · 180 basic groups, representing 12 protonated residues for each of the 180 capsid molecules.

The (i, j) element of the matrix indicates the total number of frames (200, one for each 1 ns of

production run) where a salt bridge was observed between the i-th phosphate group and the j-th

protonated amino acid group. To simplify the representation, the 180 blocks of the matrix (each

with dimensions 2774× 12) were averaged. The (i, k) element of the resulting averaged matrix

represents the average persistence between the i-th phosphate group and the k-th amino acid

class. This number can exceed 1.0 (or in percentage, >100%), indicating that, on average, the

i-th nucleotide frequently interacts with more than one amino acid of the k-th class, specifically,

amino acids with the same index but from different capsid molecules. Figure 6.18 depicts the

discussed averaged matrix. Upon initial observation, it is apparent that nucleotides less involved

in salt bridge formation are those more centrally positioned in the sequence. Another observation
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is the limited participation of lysines LYS42 and LYS45, likely due to their reduced accessibility

to the RNA fragment, being closely positioned to the structured part of the capsid molecule.

Applying an additional filter to this matrix allows counting the number of nucleotides involved

in a salt bridge with a persistence (e.g., total number of times the bridge forms during the entire

run) of at least 50% for each class of tail residues. This way, a value is obtained for each class

of charged amino acids, indicating how frequently that specific class interacts with phosphate

groups on average, thus identifying the residues most active in salt bridge formation.

(a) (b)

Figure 6.19: (a): Histograms of the number of contacts found by filtering the matrix shown in 6.18 and

summing up the number of filtered contacts per each amino acid class. (b): 3D ribbon

representation of a single capsid molecule highlighting the position of the charged groups

of the N-terminal tails involved in the salt bridges (colored spheres); the color scale is

interpreted as follow: red indicates a very low number of contacts (< 10), white a medium

number (∼ 100) and blue a high number (∼ 200).

Figure 6.19a presents the outcome of applying this secondary filter. In the plot, a value

close to 180 indicates that many (if not all) amino acids of the respective class are, on average,

involved in a 50% frame contact. Figure 6.19b illustrates the spatial distribution of Cα atoms

for each of the 12 protonated amino acids along a representative capsid molecule chain. A

clear observation from these data is the markedly greater involvement of arginines compared
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to lysines: a possible explanation of this fact can rely on the observation that the charged

group in arginine occupies a broader volume with respect to lysine, and this makes the group

in general more exposed also to salt bridges formation. Particularly, the most active arginines,

namely ARG19 and ARG23, corresponding to the most intense blue spheres in Figure 6.19b,

are situated in the central portion of the amino acid sequence of the tails, not the more terminal

region (N-terminus). This observation challenges the simple expectation that charged groups

spatially closer to the initial RNA structure create more persistent bonds during the simulation,

and is both intriguing and non-trivial.

Solvent behaviour

(a) (b) (c)

Figure 6.20: Snapshots of an hexagonal slice of 4nm of thickness, containing the center of the simulation

box. The snapshots are taken (a) at t = 0ns, (b) at t = 1ns and (c) at t = 7ns of the

production run of the virion simulation. A more general 3D visual inspection via VMD

shows clearly that the region of vacuum formed inside the virion has a spherical shape.

A visual inspection of both the production runs, on VMD [39], shows a rapid initial unexpected

behaviour of the solvent molecules (both the water molecules and the ions, Na+ and Cl−): the

formation of an empty hole inside an almost spherical volume of about 5nm of radius, as partially

documented with figure 6.20. We wanted to investigate more deeply this strange behaviour by

performing two analyses: the calculation of the radial density of atomic/molecular species in the

simulation box, at different instants of times; and the calculation of the total number of atoms

belonging to the solvent atomic/molecular species in three different regions of the simulation

box, every 1ns all along the production run.

In order to calculate the radial density of atoms (single ions or residues’ representatives), we

approximate the box to a sphere. Then, we divide the radius R = 180Å of this sphere into
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N = 40 spatially equivalent intervals Ii defined as follow:

ri :=
R

N
· i ≡ δR · i ⇒ Ii := [ri, ri + δR] ∀ i = 0, ..., N − 1 (6.11)

We count the number of atoms (single ions or residues’ representatives) ni = n(Ii) of a given

species contained in the spherical crown with radii taken as the extremes of each Ii. We normalize

each of these counters by the total number N of atoms of the given species, introducing fi =
ni
N

(in order to be able to use the same scale for the distributions, independently on the species).

Finally, we divide this numbers by the volume of the circular crown and we plot these values:

ρi :=
fi

4

3
π
(
(ri + δR)3 − (ri)

3
) ≡ fi

4

3
πδR

(
3r2i + 3δRri + δR2

) (6.12)

The histograms representing the values of ρi for the capsid and the virion production runs at

t = 0ns, t = 100ns and t = 200ns are reported in figures 6.21 and 6.22.

(a) (b) (c)

Figure 6.21: Histograms representing the (normalized) radial density of the atomic species in the sim-

ulation box (Na+, Cl−, water molecules and capsid Cαs). The histograms are taken (a)

at t = 0 ns, (b) at t = 100 ns and (c) at t = 200 ns of the production run of the virion

simulation.
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(a) (b) (c)

Figure 6.22: Histograms representing the (normalized) radial density of the atomic species in the sim-

ulation box (Na+, Cl−, water molecules, capsid Cαs and RNA2 backbone’s phosphori).

The histograms are taken (a) at t = 0 ns, (b) at t = 100 ns and (c) at t = 200 ns of the

production run of the virion simulation.

In the case of the capsid, it is evident from the initial frame of the production run, in

agreement with visual inspection, which there are virtually no atoms within the sphere centered

at the box’s midpoint with a radius of almost 5nm. In fact, as also explained in Appendices B

of this chapter, inspecting the frames preceding and following the initial equilibration process

of the solvated system already shows the appearance of this empty void. Unfortunately, as

we did not save the solvent-containing frames during the simulation, a more detailed analysis

of the solvent behavior during this phase was not possible. Nevertheless, some insights can

still be deduced from the graphs. At t = 0ns, the following observations can be made: two

distinct peaks for Cα, indicating spatial separation between residues in the shell and tails; a

spread peak of chlorine ions near the tails; two separate peaks of sodium ions, one at the edge

of the void sphere and the other at the outer edge of the capsid; three peaks, two of which

are close to the chlorine peak and one separated and external to the capsid, representing water

molecules. At t = 100ns and t = 200ns, the situation is slightly different. The observations

are as follows: a single peak for Cα, indicating that the tail residues have approached the inner

edge of the capsid, resulting in a more compact radial density; the single chlorine peak remains

fairly unchanged; the two separate peaks of sodium ions persist but with different populations,

as the external peak becomes more populated compared to the internal peak, contrary to the

situation at t = 0ns; the three peaks of water molecules become two, and the first peak shows

a decrease towards the outside, qualitatively corresponding to the growth of Cα density as we

approach the core of the capsid shell. This histogram suggests that, starting from a uniform

distribution (in the empty space) of water molecules and sodium ions, which should correspond
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to a mostly flat histogram, at least in the region between 0 Å and 75 Å approximately, the ions

undergo substantial migration during the solvent equilibration phase before the production run.

In particular, chlorine ions become denser near the tails, which are rich in positively charged

LYS and ARG residues; in response to this, the water molecules that form the solvation shell

move together with the ions, leaving the void behind. Initially, the sodium ions are carried

by the flow of chlorine ions, but in a later phase they accumulate on the outer side, where

some negatively charged residues (ASP and GLU) are present, to stay away from the tails.

Therefore, we conclude that this phenomenon is mainly guided by electrostatic interactions. The

capsid presents a strongly acidic environment internally (with a total charge, as calculated by

GROMACS under physiological pH conditions, of approximately 1600e), and this environment,

if not locally modified by potential charge exchanges with water molecules (which are impossible

in a simulation without maintaining locally constant pH), causes an artifact in the solvent. we

consider it highly improbable for such void conditions to occur in nature.

As anticipated, in order to deepen the understanding of the solvent behaviour, we also calculated

the total number of atoms contained in three different regions of the simulation box in time (every

1 ns):

1. a sphere with radius 6nm centered in the center of the box (named Inner sphere)

2. a spherical crown with inner radius 6nm and outer radius 10nm (named Mid shell)

3. the remaining space in the simulation box (named Outer space)

The values obtained by this analysis have been normalized with their initial value, for a better

visualization of the time series: they are reported in figures 6.23 and 6.24.
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(a) (b) (c)

Figure 6.23: Number of atomic/molecular species of the solvent in time along the production run of

the capsid, normalized with respect to their initial value, in three different regions of the

simulation box: (a) Inner sphere, (b) Mid shell and (c) Outer space.

(a) (b) (c)

Figure 6.24: Number of atomic/molecular species of the solvent in time along the production run of

the virion, normalized with respect to their initial value, in three different regions of the

simulation box: (a) Inner sphere, (b) Mid shell and (c) Outer space.

Regarding the two graphs related to the inner shell, the trend is evident and consistent

between the virion and capsid simulations: all three solvent species rapidly escape from the

center of the box within the first nanosecond. For the capsid, the escape is more pronounced

for ions (compared to the initial number) than for water molecules (75% of which remain in

the region). In the case of the virion, approximately 50% of water molecules escape, while ions

show an even more marked escape. Notably, in the capsid run, chlorine ions exhibit less escape

compared to the virion run. This phenomenon is likely due to the shielding effect induced by

the negative charges of RNA on the positively charged residues present on the capsid tails.

In the mid shell, the behaviors are different. For the capsid, sodium ions (which also escape from
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the inner sphere) also escape from the mid shell, essentially populating the external space. On

the other hand, chlorine ions show a more stable trend with an initial entry into this region and

then a subsequent slight exit. In the case of the virion, sodium ions increase rapidly, remaining

almost double in number compared to the initial instant. Chlorine ions, however, show a slight

initial decrease, followed by an increase, surpassing the initial number by 25%.

It is again evident that the electrostatic contribution is the most relevant factor. For the capsid,

positively charged residues in the tails play the main role, whereas in the virion the negative

charges of RNA dominate this effect (since there are more of them, with a total charge of -2773e

due to 2774 nucleotides, one of which is capped). Interestingly, in the mid shell of the virion,

chlorine ions return to this region after the initial migration, likely being carried by the flow of

sodium ions but with a slightly delayed escape kinetics.

In conclusion, we can claim that the artifact present in both capsid and virion simulations

is caused by an electrostatic environment that, despite being modeled according to standard

GROMACS criteria and being theoretically compatible with physiological pH conditions (as

observed experimentally for stable virions [244]), evidently does not reflect the real environment

that forms in the studied systems.

6.4 Multi-Resolution Simulations of the Trimer in Implicit Sol-

vent

Figure 6.25: 3D Ribbon representation of the trimer model built and employed in this paragraph as

starting configuration for multi-resolution MD simulations. The three colors highlight the

3 monomers composing the trimer, each one having the same amino acidic sequence.



6 Multi-resolution modelling of CCMV dynamics 175

In this section, we present the results of our all-atom and multi-resolution molecular dynamics

simulations of a trimeric unit (three capsid molecules, an example show in 6.25) of the CCMV

virus. The objectives of this sub-project are the following:

1. To assess the validity of the CANVAS model coupled with the implicit Debye-Hückel

solvent implemented in LAMMPS [205], focusing on the fundamental building block of the

CCMV capsid. The ultimate aim is to create a CANVAS model of the CCMV capsid/virion

and simulate it with implicit solvent to reduce simulation times.

2. To estimate the simulation times required with LAMMPS and compare them with all-atom

simulations in GROMACS. We investigate whether lower resolution simulations provide

computational advantages in terms of speed.

To achieve these objectives, we employ molecular dynamics simulations at various levels of

resolution, exploring both all-atom and multi-resolution approaches. The CANVAS model [93],

in conjunction with implicit solvent representation, offers a lighter (in terms of the number

of degrees of freedom) alternative to traditional all-atom simulations, potentially accelerating

investigations of larger capsid and virion systems.

6.4.1 Simulation setup and creation of the starting structures

In order to test the validity of the CANVAS model, coupled with the Debye-Hückel model for

implicit solvation (at an equivalent ionic concentration of 0.15M), we performed 5 different simu-

lations of the trimer, each 100ns long, after a brief minimization protocol to avoid steric clashes

and exploding Coulombic interactions. All the simulations have been done using LAMMPS,

with the CHARMM36m force field [246]. Below we report the list of the models employed in

the simulations (also shown in figure 6.26):

1. all-atom model of the trimer in explicit solvent (TIP3P water molecules)

2. all-atom model of the trimer in Debye-Hückel solvation (see figure 6.26a)

3. CANVAS model of the trimer (called CAN1, C1 or CG1 below) in Debye-Hückel solvation,

obtained by treating the tails at atomistic resolution, a 1nm-thick layer of atoms in the

junction of the tails to the structured part of the capsid molecules treated at medium-

grained resolution, and the rest at the Cα low resolution (see figure 6.26b)
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4. CANVAS model of the trimer (called CAN2, C2 or CG2 below) in Debye-Hückel solvation,

obtained by treating the tails and a few residues in the central region of the structured part

of the trimer (at the interface between monomers of the trimer itself) and at atomistic

resolution, a 1nm-thick layer of atoms around the atomistic region treated at medium-

grained resolution, and the rest at the Cα low resolution (see figure 6.26c)

5. CANVAS model of the trimer (called CAN3, C3 or CG3 below) in Debye-Hückel solvation,

obtained by treating the tails and a few residues in the external region of the structured

part of the trimer (at the interface between monomers of different trimers, which will be

present in the future model of the full capsid) and at atomistic resolution, a 1nm-thick

layer of atoms around the atomistic region treated at medium-grained resolution, and the

rest at the Cα low resolution (see figure 6.26d)
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(a)
(b)

(c) (d)

Figure 6.26: Starting configurations of the trimer simulations: (a) is the all-atom model; (b) is the

CAN1 model; (c) is the CAN2 model. (d) is the CAN3 model. The figure shows the

coarse-grained sites as van der Waals spheres, with radius given by the rules dictated by

the CANVAS protocol for the topology construction. The color map used for the CG sites

represents the charge (blue is positive and red is negative): unfortunately, every model has

its own scale of colors and so it is not possible to make quantitative comparisons of the

charges by looking at the figures.

The starting configuration for all the simulations was taken as the trimer model built to

construct the all-atom model of the capsid, as explained in the Appendix B.

6.4.2 Analysis of the trajectories

We analysed the trajectories with the purpose of probing the validity of the CANVAS models

employed, with respect to the all-atom explicit solvent model, here considered as the reference

case. The analyses performed consist in: the calculation of the RMSF per residue (excluding the

disordered tails) and a correlation study, quantified by the Pearson coefficient; the estimation

of the stability in time of the secondary structures in all-atom explicit solvent and the all-atom
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implicit solvent, to test the goodness of the implicit solvent model to preserve possible secondary

structures in the atomistic regions modelled by CANVAS; the calculation of the atom-wise values

of the SASA in the atomistic regions (excluding the disordered tails), to see if those regions in

the CANVAS models preserve the same solvent exposure to those in the all-atom explicit solvent

model.

In figure 6.27 we report the values of the per residue RMSF (tails excluded) of the explicit solvent

run (x axis, labelled as ES) plotted against the values obtained in the implicit solvent runs (y

axis, labelled as DH, each one represented with a different color). The first observation that can

be done is that the clouds of points relative to the all-atom DH and the C1 DH runs are the

most scattered ones, while the C2 DH and the C3 DH appear very narrow and linear: this fact

suggests a good correlation in the latter cases, while for the former a sub-optimal correlation

is observed. Another notable fact is that the RMSFs are increasingly lower in amplitude, with

respect to the AA ES simulation (the slope of the straight lines passing through the points

is lower and lower, from AA DH to C1, C2 and C3 DH): this indicates that the CG sites in

the core are somehow affected to the different modellization of the regions at the interface of

the capsid molecules in the C2 case and at the border of the trimer in the C3 case, with an

additional stiffening of the Cα behavior. The analysis confirms the ability of the CANVAS model

to reproduce well the relative fluctuations among the residues [93], although it is not able to be

quantitatively predictive in that. This can be a problem or not, depending on the feature or

process that CANVAS is required to reproduce: for example, if we want to employ the model to

describe the energetics of the disassembly of the capsid into trimers in certain conditions of pH

and salt concentration, it might not be a problem that the fluctuations of the residues within

the trimers themselves do not match quantitatively the absolute values found in the atomistic

model.
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Figure 6.27: Scatter plot of the values of RMSF per residue in the structured region of the monomers

(shell): on the x axis the values of the AA ES run are reported, while on the y axis the

values of each run performed with the Debye-Hückel implicit solvation model are reported,

as described in the legend.

The second, already mentioned analysis we performed consists in the calculation of the

persistence of the secondary structures of the trimer in time, by comparing the AA ES simulation

to the AA DH one. It is in fact known (as it was already discussed the topic in chapter 5 of this

Thesis) that the implicit solvent models, coupled with atomistic force fields that are built in order

to perform best with the presence of explicit water molecules, have the tendency to overestimate

the formation of hydrogen bonding, affecting in turn the formation of secondary structures

in the proteins. In figure 6.28 we reported a plot that associates to every residue, at every

time frame, its co-participation (or not) to a secondary structure motif: the red color indicates

the participation to a β sheet or β-like structures in general; the light-blue color indicates

the participation to an α-helix, the dark blue color the participation to other helices and the

white color represents unstructured/coiled pieces of the polymer. The y axes of the figures are

divided in three regions for the three monomers of the trimer (each one made up by 190 residues).

Although the figures are dense of information, there are some features that can be easily noticed.

The first one consists in the fact that, differently from the expectations, the residues in the tails

(residue ids 1 to 45/50, 191 to 235/240 and 381 to 425/430) remains unstructured in the implicit

solvent simulation, while they show a tendency to form new secondary structures in the explicit

solvent run.
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(a) (b)

Figure 6.28: Plots that represent the secondary structure motif that each residue of the trimer is involved

in, in time, as calculated by the VMD Timeline plug-in. (a) refers to the AA ES simulations,

while (b) refers to the AA DH one.

In addition to this distinction, a general observation is that the implicit solvent tends to

distort existing structures rather than overestimate them, albeit to a minor extent. Interestingly,

the most remarkable differences are observed in the third monomer (residue ids 380 to 570),

where a helical structure in the middle of the sequence converts to a β sheet in the DH simulation.

Overall, however, we can infer that, within this limited sampling (which should certainly be

extended for robust validation), the DH model performs well in this regard.

Calculation of the Solvent Accessible Surface Area (SASA) per residue, averaged over the entire

run, was performed for the atoms preserved in the high-resolution part of the CANVAS model

(excluding the disordered tails). This was conducted to investigate whether the exposure of the

atomic portion to the solvent remains comparable to the all-atom explicit solvent (AAES) case.
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(a) (b)

Figure 6.29: Solvent Accessible Surface Area calculated with the gmx sasa tool implemented in GRO-

MACS, averaged over the trajectories. The values refer to the total averaged SASA per

atomistic residue present in the (a) CAN2 and (b) CAN3 multi-resolution models.

The results, depicted in figure 6.29, exhibit excellent agreement between the explicit solvent

simulation and the two CANVAS models, which involve additional atomic residues apart from

the tails (CG2 and CG3). Notably, a slight tendency of the CANVAS model to overestimate

SASA is observed, implying greater solvent exposure of atomic residues. However, this could

potentially stem from an artifact of the van der Waals sphere model for low-resolution residues,

which no longer align as closely as atomic atoms. Consequently, this leads to reduced shielding

around sites, resulting in increased exposure even for atomic resolution sites.
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6.5 Conclusions

In this section, we would like to wrap up the keys observations that came out from this broad

work on the CCMV virus and its molecular constituents.

Regarding the RNA simulations, studying such a long RNA2 with the oxRNA model is feasible

on GPUs, and the timescales, on the order of milliseconds (CG), seem to allow the system to relax

to a state of equilibrium energy/volume occupancy. However, concerning secondary structures

and their internal rearrangements, the analyses demonstrate that the contact maps’ variability

remains high (as expected for ssRNA [247]), but likely the simulated timescales here do not

allow such a large system to undergo significant conformational changes in tertiary structure.

At this point, it is unclear whether this limitation stems from the model or the duration of the

sampling (also due to the fact that there are no applications of oxRNA to ab initio RNA folding

in literature, given the relative youth of the model itself), although we think the model possesses

all the attributes to facilitate the formation of more complex structures, such as pseudoknots or

even true topological nodes. Graph-based analyses performed on free folding simulations show

excellent potential for dimensionality reduction and more convenient handling and comparison

of secondary structures produced by the simulations. Certainly, the results presented here can

be further extended, for instance, studying other characteristics of the Laplacian spectrum. Note

that the complexity of the graphs extracted from these simulations doesn’t allow comparisons

with the topologies studied in the context of dual graphs as a means of categorizing secondary

structures of single-stranded RNA filaments. Regarding simulations of the out-of-equilibrium

fragment, we can affirm that they have proven to be essential tools for constructing the initial

structure of the virion, but they may not suffice to draw clear conclusions about the virion’s

self-assembly process solely from the RNA2 fragment perspective. One could also hardly try

to rationalise the results obtained here in terms of nucleation theory [248], being the process

strongly out-of-equilibrium. An extended study with different initial schemes and more realistic

kinetic (see e.g. [236]) closure conditions could shed more light on the energetic aspects of the

process, which we haven’t explored here. Moreover, the choice of a perfectly symmetric, mean

field spherical packing force is another weakness of our setup: a different choice, with for example

the explicit use of capsomers-like units (pentamers and hexamers), could introduce less artifacts.

Graph-based analyses, based on contact matrices that exhibit weaknesses in extreme regimes like

these (when built using geometric criteria), have yielded results that can be hardly interpreted,

except for the following. By looking at the behaviours of D and λ1 in time (figures 6.13b and

6.12b), it seems that the 0.15 M case suffers substantially more the packing protocol, with respect
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to the 0.50 M. In fact, the trend of the above-mentioned observables is clearly affected in the

0.15 M case, while almost untouched in the 0.50 M one (excluding the last frames that probably

contain artifacts, as already discussed). We are led to conclude that the Coulombic repulsion

could be one of the main players in the emergence of graph topologies and their connectivity,

as the direct consequence of changing the Debye screening factor leads to opposite behaviours in

our simulations. As previously mentioned in the text, exploring the behavior of such topologies

by constructing graphs based on energy criteria to establish hydrogen bond formation will be

equally interesting.

Regarding the simulations of capsid and virion, the first thing we can infer is that a 200ns

sampling is not sufficient to stabilize the value of the radius of gyration. Other works involving

atomistic MD simulations of viral systems [249, 243, 250] demonstrate that longer sampling (on

the order of microseconds at least) allows more pronounced convergence of observables. The high

resolution of these simulations and the vast amount of information that can be obtained from

them make them very useful for studying microscopic properties of contact between capsid tails

and RNA, as partially shown in this study. A major open question on this topic, for instance,

is the validity of the Hamiltonian Path Hypothesis proposed by Dykeman and coworkers [251].

See the next paragraph for a discussion on how simulations of this kind could be exploited to

investigate its validity. My simulations show the occurrence of solvent instability inside the

capsid, which might be related to a subsequent instability of the capsid structure itself. In

short test simulations not reported in this Thesis, we attempted setting up and equilibrating

solvent with a shell-only capsid simulation (without the tails), and the vacuum region did not

form. This further confirms that the cause resides in the presence of the tails (and, in turn, in

the high charge of the N-terminal tails) and the phosphate groups of RNA2 in the simulations

mentioned above. The claim that we can draw from the capsid/virion simulations is that plain

MD simulations with a protonation state assigned at the beginning without the ability to update

based on the local electrostatic environment (i.e., non-constant pH simulations) are likely not

suited for systems with critical charge conditions, such as those studied here.

The studies conducted here to test the applicability of the CANVAS model to the modeling

of the trimer, potentially useful in creating a multi-resolution model of capsid and virion, have

yielded satisfactory results. We can conclude that the model, coupled with the implicit solvent, is

justified for extended studies of the dynamics of the aforementioned systems. The only drawback

lies in computational efficiency: utilizing LAMMPS implemented on CPU for implicit solvent

simulations drastically reduces efficiency to the point of risking being less efficient than the
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same simulation performed in GROMACS with implicit solvent, as shown in table 6.3. The

observations made on the pathological solvent behavior in the all-atom simulations of capsid

and virion would naturally vanish with an implicit solvent model: it will certainly be interesting

to compare the behavior of the capsid with and without RNA2 under these new conditions,

to determine whether the formation of solvent voids affects the solute dynamics and to what

extent.

6.6 Perspectives

Here we report all the ideas that we came up with, during the planning, execution, revision and

writing processes of the 3 projects discussed in this chapter. We tried to be exhaustive, realizing

that it would probably take more than one lifetime to explore all of them.

• Expand the sampling of all simulations, both with different initial conditions and longer

simulation times.

• Review some of the protocols: perform a slower RNA packing, improve the kinetic analysis

by incorporating experimental information, study other components of the capsid instead

of just the trimer (capsomers like pentamers or hexamers, as done in [238] for the salt-stable

CCMV mutant).

• For RNA2: use a different criterion for calculating HB contacts; quantitatively compare the

contacts obtained from simulations with contacts predicted by Vienna or other secondary

structure prediction software.

• For RNA2: quantify the work done by the spherical shell to understand the extent of non-

equilibrium processes and investigate the variation in free energy during packing. This

could provide insights into the energetic of the self-assembly process (entropy vs. internal

energy) and also shed light on the influence of the environment on this process. Address

questions such as why the stable state during assembly is the virion, whereas during

infection, the virion ruptures and releases all RNA into the new host cell. Determine if it

is a matter of thermodynamic equilibrium between two states or if there’s a change in the

environment (e.g., pH, salt concentration) triggering the rupture.

• For the capsid and virion: study the asymmetry of motion, similar to what has been done

for HBV [243], by comparing the RMSF (root mean square fluctuations) of individual CPs
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or dimers aligned with the trajectory, or with respect to the overall mediated structure,

or with respect to the mediated structure of the same individual CP/dimer. A 5-fold

symmetric behavior would exhibit RMSF symmetrically distributed over the structure,

whereas in the case of HBV, it was observed that in regions where the RMSF should be

the same due to symmetry, this is not the case.

• For the capsid and virion: investigate the acoustic properties of Cα atoms. Cluster the

structures based on RMSD, determine the optimal number of clusters, find the medoid

for each cluster, and calculate a kind of normalized RMSF with respect to the medoid for

each Cα. Then, generate the temporal series of this RMSF-like data, perform FFT (fast

Fourier transform) to identify frequencies with higher amplitudes.

• For the capsid and virion: thoroughly investigate the issue of solvent hole formation.

Conduct alchemical transformations to understand how this effect correlates with the

presence of an extremely charged environment (considering constant-pH MD for valuable

insights). Calculate hydrodynamic pressure with the virial and perform short simulations

with larger simulation boxes to determine if this affects the solvent hole formation (i.e.,

the water hole effect at the boundary).

• For the capsid and virion: find a way how to use my simulations to investigate the above-

mentioned Hamiltonian Path Hypothesis. It is a proposed concept that attempts to explain

the contacts between viral RNA and the capsid in the context of virus assembly. This

hypothesis suggests that the RNA molecules within a virus, particularly single-stranded

RNA viruses, might adopt a path along the inner surface of the capsid that corresponds

to a Hamiltonian path – a path that visits each vertex exactly once in a graph. In this

case, the vertices represent distinct sites on the inner surface of the capsid, and the path

would symbolize the physical route taken by the viral RNA as it interacts with the capsid.

The hypothesis posits that the viral RNA adopts a specific conformation that allows it

to interact with the inner surface of the capsid in a way that maximizes the formation

of stabilizing interactions, such as hydrogen bonds and electrostatic interactions. This

could contribute to the overall stability of the viral structure and aid in the process of self-

assembly during viral replication. It suggests that the RNA sequence encodes not only

the genetic information for viral replication but also a physical template for how the RNA

should interact with the capsid during assembly. One idea would be to perform multiple

MD simulation of the relaxation process alone of the RNA inside the capsid (as it happens
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in the very first nanoseconds of the virion run), by starting from initial configurations with

different relative orientations of the RNA and the inner surface of the capsid: this way, it

would be possible to collect statistics about the multiple ways in which RNA adapts and

relax inside the capsid and by locating the disposition of the contacts we would be able

test the hypothesis.

• For the capsid and virion: perform MARTINI simulations for both components. MARTINI

simulations of the capsid without the tails have been already done [237], but for the

virion, a model with fixed RNA2 secondary structure using an elastic network model

can be used to simulate the virion stability for long times. In this regard, it would be

extremely interesting to test the experimentally determined phase diagram for CCMV

self-assembled structures reported in [252], which involves multiple combinations of pH

and salt concentration conditions: also here, a constant-pH protocol would be required.

• For the capsid and virion: perform CANVAS simulations for the entire capsid and the

entire virion, in order to test the applicability to the model to a huge and complex system.
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6.7 Appendix A: RNA2 simulations

Additional Figures

(a) (b)

Figure 6.30: Distances dKM among every couples of the frames used to perform the hierarchical cluster-

ing.
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0.0

[Na ] = 0.15 M+

(a)

0.25 0.50 0.75 1.00

Duplex Persistence

0.0

[Na ] = 0.5 M+

(b)

Figure 6.31: Structures of the last configurations obtained in the free folding runs, both for the (a)

0.15 M and the (b) 0.50 M salt concentrations. The color map represents the nucleotides’

affinity to participate to a duplex, as emerged from our simulations.
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(a) (b)
(c)

Figure 6.32: (a) Adiacency matrix, (b) Laplacian matrix and (c) a 2D pictorial representation of the

graph corresponding to the structure shown in figure 6.31a.

(a) (b)
(c)

Figure 6.33: (a) Adiacency matrix, (b) Laplacian matrix and (c) a 2D pictorial representation of the

graph corresponding to the structure shown in figure 6.31b.
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(a)

(b) (c)

Figure 6.34: Examples of simple graph topologies: (a) 4 different path graphs Pn; (b) one circular graph

Cn with n = 8 nodes; (c) one 2D lattice graph Ln with n = 16 nodes.

(a) (b)

Figure 6.35: (a) Normalized histograms of the values of n (number of nodes) relative to the equili-

brated parts of the free folding simulations; (b) values of n in time relative to the packing

simulations.
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Additional Tables

Folding (1 GPU) Packing (48 CPU cores)

1.56 · 106τox/day 2.86 · 104τox/day

Table 6.1: Performances of the simulations by using respectively the native oxDNA software (Folding)

and the LAMMPS implementation of the oxRNA2 model (Packing).

Simulation unit Physical unit

1 unit of length (dox) 8.4 Å

1 unit of time (τox) 3.06 ps

Table 6.2: Summary of the two units of measurement used in this work, from the oxRNA units to the

IS units. Taken from the oxRNA wiki.

6.8 Appendix B: Capsid and virion simulations

Setup of the Capsid all-atom Simulation

Here we summarize the practical steps followed to setup the all-atom simulation of the viral

capsid CCMV with GROMACS (v2018), for the sake of reproducibility of the results presented

in the chapter.

Building the capsid structure from the trimer

1. We downloaded the PDB structure 1CWP [219]. NB on the PDB one can find both

the PDB containing the structures of chain A, chain B and chain C along with a small

piece of (presumed) RNA and the whole structure of the assembled capsid in its icosaedral

geometry.

2. Starting from the trimer contained in the PDB, we removed the pre-existing RNA frag-

ments and we used CHIMERA [253] as visual interface for MODELLER [164] to add the

missing residues in the tails of the N-termini.

• 26 missing for chain B and C and 42 missing for chain A

• we used the MODELLER tool “Model/Refine Loops” from CHIMERA’s interface

https://dna.physics.ox.ac.uk/index.php/RNA_model_introduction
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• we did not modify the residues already present in the chains

• we generated 5 models for the structure and kept the one with higher score values

3. We created a box and we performed energy minimization of the structure inside the box

(in vacuum, i.e. protein only, constraining everything BUT the N-termini), as suggested

in Bonvin’s website, in order to relax the tails.

4. we took the minimized structure, solvated it and added salt (0.15M of NaCl).

5. we performed another energy minimization (restraining everything BUT the N-termini).

6. we performed an NVT equilibration run of 1ns (restraining everything BUT the N-termini).

7. we performed an NPT equilibration run of 200ps (restraining everything BUT the N-

termini).

8. we took the frame with the smallest Radius of Gyration from the NPT trajectory and we

performed another ∼10ns-long NVT run, with the same conditions.

9. From the last simulation, we extracted one of the 3 monomers that appeared to be the

one with the “most reasonable” N-terminus tail. Reasonable means with a tail’s vol-

ume/structure that does not risk to interfere with neighbor capsomers.

10. we used this capsomer to build the whole capsid:

• with the “MatchMaker” function included in CHIMERA, we superimposed three

copies of the extracted monomer to each monomer contained in the trimer’s structure

of PDB 1CWP

• we built a trimer with these 3 copies

• we built the full capsid starting from the 60 trimers contained in the same PDB file

1CWP (without the N-terminal tails)

• with the “MatchMaker” function included in CHIMERA, we superimposed each

trimer contained in the full capsid’s structure of PDB 1CWP, to the trimer built

in the previous point

11. we inizialized the system’s topology using CHARMM36m force field both for proteins and

water (TIP3P suggested model)

https://www.bonvinlab.org/education/molmod/simulation/
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Energy minimizations of the whole capsid

1. we created a box of dodecahedral shape, with d = 1.2nm ≡ rcut for the non-bonded

interactions

2. we performed three energy minimizations (algorithm: steepest decent), with |Fmax| ≤
Ftol = 5000kJ/(mol · nm), |Fmax| ≤ Ftol = 1000kJ/(mol · nm) and then |Fmax| ≤ Ftol =

100kJ/(mol · nm)

3. we added solvent molecules

4. Ionization: we divided the solvated system into two regions: an inner sphere of radius

11nm and the rest of the simulation box. we manually inserted ions to neutralize these

two regions separately and then we added randomly in the box a number of remaining

atoms needed to reach the desired concentration (Na+ and Cl− at 0.15M) and neutrality.

5. we performed another three energy minimizations, with the same parameters, onto the full

solvated system

Restrained Molecular Dynamics

Given the dodecahedral box, filled with both the capsid and the solvent structures minimized,

the next step consists in heating up the system to the desired temperature (Tmd = 300K in our

case). To do so, we chose to couple water and the capsid with two different thermostats and we

performed an annealing procedure, bringing the system from 0K to 300K in 10 ps.

1. we heated the system (restraining the capsid) from 0K to 300K via the annealing protocol

in GROMACS

• No strange empty holes in the center of the system up to here

2. we performed a restrained MD simulation of 100ps in the NVT ensemble, to equilibrate

the water at the desired temperature, using (kx, ky, kz) = (1000, 1000, 1000)
kJ

mol · nm2

• ∼5nm-radius sphere of empty space generates at the end of this run. We

hypothesize that the migration of ions due to the electrostatic interactions

with the tails of the capsid drags also solvation’s shells

3. we performed a restrained MD simulation of 500ps in the NPT ensemble, to equilibrate

the water at the desired pressure, using (kx, ky, kz) = (1000, 1000, 1000)
kJ

mol · nm2
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• Same hole as before is present at the end of this run

4. we relaxed the retrains with a restrained MD simulation of 500ps in the NPT ensemble,

using (kx, ky, kz) = (100, 100, 100)
kJ

mol · nm2

After the equilibration of the solvent, we performed a 200ns-long unrestrained molecular

dynamics simulation of the whole system.

Setup of the Virion all-atom Simulation

In order to construct the initial configuration for the virion simulations, we took as starting step

the capsid structure (capsid molecules with the N terminals) as obtained from the procedure

described in the above paragraph “Building the capsid structure from the trimer”. Then the

following steps are followed, in order to insert the RNA2 structure:

1. we made a 1ns-long steered molecular dynamics run to pull the center of mass of the last

amino acid of each N-terminal tail of the capsid molecules towards the inner surface of the

capsid shell. This step was required to create more free space inside the capsid, in order

to setup the subsequent manual insertion of the atomistic structure of the squeezed RNA2

fragment: otherwise, no back-mapped structures obtained from the packing procedure

revealed to be compatible with the original free space in the capsid.

2. we took the final structure obtained by the packing process of the RNA2 fragment with

oxRNA (described in the second section of this chapter) made at [Na+] = 0.15M and back-

mapped it into its DNA-equivalent all-atom version, by using a webtool called TacoxDNA

[241]

3. we used the software HiRE-RNA [254] to perform the conversion from atomistic DNA to

atomistic RNA

4. we relaxed the dihedral angles of the structure by using the YASARA minimization web-

server [255]

5. we manually inserted the structure so obtained into the capsid with the pulled tails by

using the VMD software

After that, we followed the same steps described for the capsid in the paragraphs “Energy

Minimizations of the whole capsid” and “Restrained Molecular Dynamics”, by restraining also
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the RNA2 fragment together with the capsid molecules.

NB: for all the simulations (both of the capsid and the virion) we used PME for the elec-

trostatics and a cut-off of 1.2nm for the Lennard-Jones term.

Additional Figures

Figure 6.36: Radius of gyration in time calculated for the RNA2 fragment in the virion run.
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6.9 Appendix C: Trimer simulations

Additional Figures

Figure 6.37: RMSD values calculated for the Cα of the residues in the core part of the capsid molecules

(tails excluded), with respect to the first frame of the production run.
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Figure 6.38: Mutual Pearson coefficients calculated by comparing the RMSF arrays relative to each

monomer (capsid molecule, tails excluded) of each of the 5 simulations performed.



6 Multi-resolution modelling of CCMV dynamics 197

Additional Table

System MD Engine Performance (48 cores)

AA ES GROMACS 25.2 ns/day

AA ES LAMMPS 4.4 ns/day

AA DH LAMMPS 25.4 ns/day

C1 DH LAMMPS 14.2 ns/day

C2 DH LAMMPS 7.2 ns/day

C3 DH LAMMPS 8.4 ns/day

Table 6.3: Performances of simulations of the trimer system with (ES) and without (DH) the solvent,

by using GROMACS and/or LAMMPS simulation packages. The reduced efficiency of the

CANVAS models is probably due to the higher and higher presence of long-range harmonic

springs connecting the CG sites in the elastic network model part, as dictated by the CANVAS

procedure for model building.



Chapter 7

Conclusions

In this chapter, we will reflect on the advantages and limitations of employing atomistic and

multi-resolution molecular dynamics simulations in the study of biomolecules. We will draw upon

the conclusions from the various chapters of this thesis to provide a comprehensive overview.

Atomistic Molecular Dynamics Simulations:

Pros:

1. Detailed Insights: Atomistic simulations provide a high level of detail, allowing us to

observe molecular interactions, structural changes, and dynamical behaviors at the atomic

level. This level of granularity is essential for understanding the fine-grained mechanisms

of biomolecular processes.

2. Accurate Energetics: Atomistic simulations offer precise energetic information, enabling

us to calculate thermodynamic properties, binding affinities, and reaction pathways accu-

rately. This information is valuable for rational drug design and other applications.

Cons:

1. Computational Intensity: Atomistic simulations are computationally demanding, espe-

cially for large biomolecular systems and long timescales. This can limit the feasibility of

exploring certain phenomena, such as rare events or long-term conformational changes.

2. Sampling Challenges: Achieving adequate conformational sampling in atomistic simula-

tions can be challenging, particularly for biomolecules with rugged energy landscapes. The
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limited timescales accessible with current computational resources may lead to incomplete

exploration of phase space.

Multi-Resolution Molecular Dynamics Simulations:

Pros:

1. Enhanced Efficiency: Multi-resolution simulations, which utilize coarse-grained models or

other simplifications, offer substantial computational efficiency. They allow the explo-

ration of longer timescales and larger systems, making them suitable for studying complex

biological processes.

2. Exploring Large Systems: Multi-resolution approaches enable the investigation of large

biomolecular complexes, such as viral capsids or ribosomes, which are often beyond the

reach of fully atomistic simulations. This is critical for understanding complex biological

systems.

Cons:

1. Loss of Detail: Coarse-grained and multi-resolution models sacrifice some level of structural

and energetic detail, which may limit the accuracy of certain analyses. This can be a

drawback when precision is essential, as in drug discovery.

2. Model Dependence: The choice of simplification or coarse-graining strategy is critical and

must be made carefully. The accuracy of multi-resolution simulations is highly dependent

on the quality of the chosen model, and inaccuracies can lead to erroneous conclusions.

Overall, the choice between atomistic and multi-resolution molecular dynamics simulations

should be guided by the specific research goals and system characteristics. In our work, we have

demonstrated the power of atomistic simulations in revealing detailed molecular insights, such

as the behavior of pathogenic mutations in SBDS. These simulations allowed us to understand

the impact of these mutations on structural dynamics and binding affinities. However, we also

encountered limitations in terms of computational intensity and sampling challenges, particularly

when dealing with large-scale conformational changes of the system.

In contrast, our study of chymotrypsin-related proteases showcased the advantages of multi-

resolution modeling that identifies common conformational motions across a diverse protein

family. The potential efficiency of these simulations will allow to explore a broader range of

protein dynamics. However, we acknowledge the trade-off in detail and precision.
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In the study of the CCMV virus, we employed multi-resolution techniques to explore large

systems. These simulations were instrumental in gaining insights into viral assembly processes,

but they also revealed the need for longer timescales to achieve convergence, regarding both the

all-atom (capsid and virion) and the coarse-grained (viral genome) simulations.

In conclusion, both atomistic and multi-resolution molecular dynamics simulations are in-

dispensable tools in the study of biomolecular systems. They complement each other and offer

a spectrum of insights depending on the research objectives. Future research should continue to

harness the strengths of both approaches while addressing their respective limitations, ultimately

advancing our understanding of the complex world of biomolecules.
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[59] Jing-Tao Lü et al. “Semi-classical generalized Langevin equation for equilibrium and

nonequilibrium molecular dynamics simulation”. In: Progress in Surface Science 94.1

(2019), pp. 21–40.

[60] Roberto Menichetti and Andrea Pelissetto. “Comparing different coarse-grained poten-

tials for star polymers”. In: The Journal of Chemical Physics 138.12 (2013).

[61] Roberto Menichetti et al. “Integral equation analysis of single-site coarse-grained models

for polymer–colloid mixtures”. In: Molecular Physics 113.17-18 (2015), pp. 2629–2642.

https://doi.org/10.1103/PhysRevE.75.051109
https://link.aps.org/doi/10.1103/PhysRevE.75.051109
https://link.aps.org/doi/10.1103/PhysRevE.75.051109
https://doi.org/10.1063/1.2938860
https://doi.org/10.1063/1.2938860
https://doi.org/10.1063/1.2938860
https://doi.org/10.1063/1.4818908
https://doi.org/10.1063/1.4818908
https://doi.org/10.1063/1.4818908


Bibliography 207

[62] Patrick Diggins IV et al. “Optimal coarse-grained site selection in elastic network models

of biomolecules”. In: Journal of chemical theory and computation 15.1 (2018), pp. 648–

664.

[63] Marco Giulini et al. “An Information-Theory-Based Approach for Optimal Model Re-

duction of Biomolecules”. In: J. Chem. Theory Comput. (2020). doi: doi.org/10.1021/

acs.jctc.0c00676.

[64] M. Scott Shell. “The relative entropy is fundamental to multiscale and inverse thermody-

namic problems”. In: The Journal of Chemical Physics 129.14 (Oct. 2008). 144108. issn:

0021-9606. doi: 10.1063/1.2992060. url: https://doi.org/10.1063/1.2992060.

[65] Jiang Wang et al. “Machine learning of coarse-grained molecular dynamics force fields”.

In: ACS central science 5.5 (2019), pp. 755–767.

[66] Siewert J Marrink et al. “The MARTINI force field: coarse grained model for biomolecular

simulations”. In: The journal of physical chemistry B 111.27 (2007), pp. 7812–7824.

[67] Saeed Najafi and Raffaello Potestio. “Folding of small knotted proteins: Insights from

a mean field coarse-grained model”. In: The Journal of chemical physics 143.24 (2015),

12B606 1.

[68] Gregory L Dignon et al. “Temperature-controlled liquid–liquid phase separation of dis-

ordered proteins”. In: ACS central science 5.5 (2019), pp. 821–830.

[69] Sebastian Kmiecik et al. “Coarse-grained protein models and their applications”. In:

Chemical reviews 116.14 (2016), pp. 7898–7936.

[70] Sergei Izvekov and Gregory A. Voth. “AMultiscale Coarse-Graining Method for Biomolec-

ular Systems”. In: J. Phys. Chem. B (2005). doi: doi.org/10.1021/jp044629q.

[71] Izvekov S et al. “Effective force fields for condensed phase systems from ab initio molecular

dynamics simulation: a new method for force-matching.” In: J Chem Phys. (2004). doi:

10.1063/1.1739396.

[72] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The

annals of mathematical statistics 22.1 (1951), pp. 79–86.

[73] Joseph F. Rudzinski and W. G. Noid. “Coarse-graining entropy, forces, and structures”.

In: J. Chem. Phys. (2011). doi: 10.1063/1.3663709.

https://doi.org/doi.org/10.1021/acs.jctc.0c00676
https://doi.org/doi.org/10.1021/acs.jctc.0c00676
https://doi.org/10.1063/1.2992060
https://doi.org/10.1063/1.2992060
https://doi.org/doi.org/10.1021/jp044629q
https://doi.org/10.1063/1.1739396
https://doi.org/10.1063/1.3663709


Bibliography 208

[74] W. Tscho et al. “Simulation of polymer melts I. Coarse-graining procedure for polycar-

bonates”. In: Acta Polymerica (1998). doi: 10.1002/(SICI)1521-4044(199802).

[75] Florian Muller-Plathe Priv.-Doz. Dr. “Coarse-Graining in Polymer Simulation: From the

Atomistic to the Mesoscopic Scale and Back”. In: ChemPhysChem (2002).

[76] Alexander P. Lyubartsev and Aatto Laaksonen. “Calculation of effective interaction po-

tentials from radial distribution functions: A reverse Monte Carlo approach”. In: Phys.

Rev. E 52 (4 Oct. 1995), pp. 3730–3737. doi: 10.1103/PhysRevE.52.3730. url: https:

//link.aps.org/doi/10.1103/PhysRevE.52.3730.

[77] Taketomi Hiroshi, Ueda Yuzo, and Nobuhiro. “Studies on protein folding, unfolding and

fluctuations by computer simulation”. In: Int. J. Peptide Protein Res. (1975).

[78] P. Faccioli et al. “Dominant Pathways in Protein Folding”. In: Physical Review Letters

(2006).
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[220] Petr Šulc et al. “A nucleotide-level coarse-grained model of RNA”. In: The Journal of

Chemical Physics 140.23 (2014), p. 235102. doi: 10.1063/1.4881424. eprint: https:

//doi.org/10.1063/1.4881424. url: https://doi.org/10.1063/1.4881424.

[221] Rees F. Garmann, Aaron M. Goldfain, and Vinothan N. Manoharan. “Measurements

of the self-assembly kinetics of individual viral capsids around their RNA genome”. In:

Proceedings of the National Academy of Sciences 116.45 (2019), pp. 22485–22490. doi:

10.1073/pnas.1909223116. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.

1909223116. url: https://www.pnas.org/doi/abs/10.1073/pnas.1909223116.

[222] Swati Jain et al. “An extended dual graph library and partitioning algorithm applicable

to pseudoknotted RNA structures”. In: Methods 162 (2019), pp. 74–84.

[223] Lorenzo Rovigatti et al. “A comparison between parallelization approaches in molecular

dynamics simulations on GPUs”. In: Journal of computational chemistry 36.1 (2015),

pp. 1–8.

[224] Erik Poppleton et al. “OxDNA. org: a public webserver for coarse-grained simulations of

DNA and RNA nanostructures”. In: Nucleic acids research 49.W1 (2021), W491–W498.

[225] Erik Poppleton et al. “oxDNA: coarse-grained simulations of nucleic acids made simple”.

In: Journal of Open Source Software 8.81 (2023), p. 4693.

[226] A Sengar et al. “ˇSulc P (2021) A Primer on the oxDNA Model of DNA: When to Use it,

How to Simulate it and How to Interpret the Results”. In: Front. Mol. Biosci. 8: 693710.

doi: 10.3389/fmolb (2021).

https://doi.org/10.1063/1.4881424
https://doi.org/10.1063/1.4881424
https://doi.org/10.1063/1.4881424
https://doi.org/10.1063/1.4881424
https://doi.org/10.1073/pnas.1909223116
https://www.pnas.org/doi/pdf/10.1073/pnas.1909223116
https://www.pnas.org/doi/pdf/10.1073/pnas.1909223116
https://www.pnas.org/doi/abs/10.1073/pnas.1909223116


Bibliography 222

[227] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in

Python”. In: Nature methods 17.3 (2020), pp. 261–272.

[228] Philip M Morse. “Diatomic molecules according to the wave mechanics. II. Vibrational

levels”. In: Physical review 34.1 (1929), p. 57.

[229] Birgit ALM Deiman and Cornelis WA Pleij. “Pseudoknots: A vital feature in viral RNA”.

In: Seminars in Virology. Vol. 8. 3. Elsevier. 1997, pp. 166–175.

[230] Namhee Kim et al. “Candidates for novel RNA topologies”. In: Journal of molecular

biology 341.5 (2004), pp. 1129–1144.

[231] Ian Brierley, Simon Pennell, and Robert JC Gilbert. “Viral RNA pseudoknots: versatile

motifs in gene expression and replication”. In: Nature Reviews Microbiology 5.8 (2007),

pp. 598–610.

[232] Hin Hark Gan, Samuela Pasquali, and Tamar Schlick. “Exploring the repertoire of RNA

secondary motifs using graph theory; implications for RNA design”. In: Nucleic acids

research 31.11 (2003), pp. 2926–2943.

[233] Samuela Pasquali, Hin Hark Gan, and Tamar Schlick. “Modular RNA architecture re-

vealed by computational analysis of existing pseudoknots and ribosomal RNAs”. In: Nu-

cleic acids research 33.4 (2005), pp. 1384–1398.

[234] Jiaqi Jiang. An introduction to spectral graph theory. 2012.

[235] Yuji Nakatsukasa, Naoki Saito, and Ernest Woei. “Mysteries around the graph Laplacian

eigenvalue 4”. In: Linear Algebra and its Applications 438.8 (2013), pp. 3231–3246.

[236] Rees F Garmann, Aaron M Goldfain, and Vinothan N Manoharan. “Measurements of

the self-assembly kinetics of individual viral capsids around their RNA genome”. In:

Proceedings of the National Academy of Sciences 116.45 (2019), pp. 22485–22490.

[237] Jingzhi Chen, Yves Lansac, and Guillaume Tresset. “Interactions between the molecular

components of the cowpea chlorotic mottle virus investigated by molecular dynamics

simulations”. In: The Journal of Physical Chemistry B 122.41 (2018), pp. 9490–9498.

[238] Janos Szoverfi and Szilard N Fejer. “Dynamic stability of salt stable cowpea chlorotic

mottle virus capsid protein dimers and pentamers of dimers”. In: Scientific Reports 12.1

(2022), p. 14251.



Bibliography 223

[239] Matteo Tiberti et al. “PyInteraph: a framework for the analysis of interaction networks

in structural ensembles of proteins”. In: Journal of chemical information and modeling

54.5 (2014), pp. 1537–1551.
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