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Abstract—A clear understanding of where humans move in
a scenario, their usual paths and speeds, and where they stop,
is very important for different applications, such as mobility
studies in urban areas or robot navigation tasks within human-
populated environments. We propose in this article, a neural
architecture based on Vision Transformers (ViTs) to provide
this information. This solution can arguably capture spatial
correlations more effectively than Convolutional Neural Networks
(CNNs). In the paper, we describe the methodology and proposed
neural architecture and show the experiments’ results with a
standard dataset. We show that the proposed ViT architecture
improves the metrics compared to a method based on a CNN.

Index Terms—vision transformers, human motion prediction,
semantic scene understanding, masked autoencoders, occupancy
priors

I. INTRODUCTION

An essential requirement for a mobile robot to be able to

move within a human-populated environment [1] is its ability

to evaluate the human occupancy of the different areas of

the environment and to foresee their most likely direction of

motion in the near future. This information is reconstructed by

humans by a quick sight of the scene and is instinctively used

to identify the most convenient and efficient path to follow.

Robots require a collection of sophisticated algorithms to

accomplish the same results. In this paper, we will concentrate

on the problem of understanding where people move in a

scenario, which are their common trajectories and speeds and

where they stop. This information can be mainly used to know

the priors of human motion for different applications of robot

navigation tasks, whilst its application is envisioned in many

different fields of robotics. For instance, motion priors are of

paramount importance in production plants when robots, most

probably cobots, deal with cooperative and coordinated tasks

with humans in modern robotics cells in order to improve

simultaneously efficiency and safety.

Motivated by previous papers [2] on the importance of

understanding human motion in shared spaces, our approach

takes on the challenges of predicting occupancy priors for

walking individuals in unfamiliar locations by relying solely

on the semantic information of the area. Semantic maps allow

us to break down the observed area into small parcels. The

resulting network has a low complexity and is suitable for

producing real–time predictions within a small time horizon.

The price to pay is the loss of the ”big picture”, i.e., on how the

motion between the different areas is related. Our proposed so-

lution brings about an important advance in the state of the art

proposing the adoption of novel architecture based on Vision

Transformers (ViTs) to predict the occupancy distributions of

walking individuals. The choice of ViTs is dictated by their

well-known ability to extract effectively contextual informa-

tion. This feature is exploited to understand the spatial relation

between the different parcels, thereby enabling the network to

reconstruct global information and learn how humans use the

different areas (affordance). The resulting algorithm keeps the

real–time computation cost within acceptable bounds, but it

significantly improves the performance of the network even in

the face of quick changes in the environment.

The simulation results unequivocally demonstrate that our

ViT-based models outperform the baseline in terms of accu-

racy, reinforcing our belief that this solution can be a natural

choice for real-world applications, in which mobile robots

navigate across complex and dynamic environments.

The paper is organised as follows. In Section II, we offer a

thorough review of the state-of-the-art on existing methodolo-

gies for inferring occupancy prior distributions in semantically

rich urban environments. In Section III, we describe the key

components of our proposed architecture, along with the pro-

posed evaluation metrics and a description of the data set used

in the training phase. In Section IV, we propose an ablation

study to point out the impact of the different components in the

architecture. In Section V, we illustrate our simulation results

on known data set to show the improvement brought by our

solution over the baselines. Finally, in Section VI, we offer

our conclusions and announce future work directions.



II. RELATED WORK

In this section, we explore the existing body of research on

human motion prediction, focusing particularly on the crucial

role of map priors inference. We provide a succinct overview

of various Neural Network architectures used in vision. Ad-

ditionally, we scrutinize the methodologies and limitations of

previous approaches, with a detailed examination of Rudenko

et al.’s semapp [2]. Notably, we highlight the scarcity of

literature addressing the direct prediction of priors from maps,

a gap we aim to fill with our work.

A. Human Motion Prediction and Prior Occupancy Inference

Anticipating human motion intentions represents a long-

standing challenge, demanding a nuanced comprehension of

social dynamics [3]. As described in the survey [4], the

modelling of human motion trajectories can be categorized

through the representation of the underlying causes. Physics-

based methods rely on explicit dynamical models derived

from Newton’s laws, either with a single model or a set of

adaptive multi-models [5]–[7]. Pattern-based techniques learn

motion patterns from observed data, either sequentially over

time or non-sequentially considering the entire trajectory dis-

tribution [8]. Planning-based methods explicitly consider the

agent’s long-term goals [9], classifying into forward planning,

assuming explicit optimality criteria, and inverse planning,

estimating reward functions from observed trajectories. In [4],

a significant increase in related works in this area is described,

particularly in pattern-based methods.

Importance of Prior Occupancy Inference: Predicting prior

occupancy distribution, rather than individual trajectories,

proves valuable in extrapolating contextual information and

enriching our understanding of a location. While the problems

may appear similar, they represent distinct perspectives. The

former focuses on dynamic predictions of individual or group

actions within an environment, while the latter involves analyz-

ing the environment itself, offering insights into typical human

behaviours within that context. This differentiation enhances

our ability to anticipate future events and make informed

decisions based solely on environmental information [10].

Despite the evident importance of this approach, there is

a distinct gap in existing literature dedicated to the direct

prediction of priors from maps.

B. Neural Network Architectures

We’d like to highlight that our literature review will promi-

nently showcase segmentation models, underscoring the ex-

tensive research in this domain. Unlike classification tasks,

segmentation involves pixel-wise classification, where the goal

is to assign a class label to each pixel in an image, effectively

creating segments based on pixel content. As you explore

further sections, you will observe our focus on a similar pixel-

wise classification task, where the objective is to predict the

likelihood of human presence in individual pixels. This focus

aligns with cutting-edge approaches in segmentation, known

for generating output tensors with the same dimension as the

input. Consequently, our architecture is designed to meet the

unique requirements of these tasks.

Convolutional Neural Network (CNN): CNNs have been

instrumental in the advancements in computer vision, notably

excelling in challenges such as the ImageNet classification

challenge [11]. Their success in image classification and

semantic segmentation has positioned them as a popular choice

for various vision-related tasks. In spite of considerable efforts

and substantial advancements in recent years, image segmenta-

tion remains a formidable challenge [12]. This difficulty arises

from the intricate intra-class variations, contextual disparities,

and ambiguities introduced by occlusions and low image reso-

lution. All these limitations can be extended to the inference of

map priors, where context is key for a good prediction. In [13],

Doellinger et al. use the architecture introduced by Jegou et

al. [14], which combines dense blocks [15] and fully CNNs,

to predict average occupancy maps of walking humans even

in environments where no human trajectory data is available,

using the static grid maps as input. In [2], Rudenko et al.

extend this architecture using as input semantic maps, instead

of the plain grid map.

However, the landscape is undergoing a transformation,

with a discernible shift towards transformer-based models.

While CNNs have long dominated, the current trend indicates

a growing adoption of transformer architectures in various

vision-related tasks. This shift is clearly seen in the ImageNet

classification challenge, where more and more people are

opting for Vision Transformers (ViTs) [16], [17].

Vision Transformers: Vision Transformers (ViTs) [18]

presents a cutting-edge approach to image processing by

incorporating self-attention mechanisms to capture contextual

information. While in image classification often an encoder

structure to downsample features into a latent space and gen-

erate label predictions is enough, in image segmentation, we

need to employ an encoder-decoder structure. In segmentation

and reconstruction tasks, this structure upsamples the latent

space to produce images with per-pixel class scores. To address

the biases towards local interactions observed in convolutional

architectures during segmentation tasks, Strudel et al. [19]

propose a novel perspective. They formulate semantic seg-

mentation as a sequence-to-sequence problem and adopt a

transformer architecture to leverage contextual information

throughout the entire model [20]. The authors claim to surpass

all previous state-of-the-art convolutional approaches by a

substantial margin of 5.3%. This notable improvement is

attributed, in part, to the enhanced global context captured

by their method at every layer of the model.

The potential of ViTs in tasks related to human motion

prediction remains an area of exploration. In this paper, we

delve into the capabilities of Vision Transformers (ViTs)

to map priors inference, investigating their applicability and

performance in this domain.

Masked Autoencoder: The success of masked language

modelling, exemplified by BERT [21] and GPT [22] in NLP

pre-training, lies in holding out portions of input sequences

and training models to predict the missing content. This



method, proven to scale excellently, has demonstrated effec-

tive generalization to various downstream tasks. Inspired by

these achievements, Masked Autoencoders (MAEs) [23] were

developed to introduce a novel approach in computer vision,

specifically addressing challenges related to latent representa-

tion learning. In contrast to traditional supervised learning in

computer vision, which heavily depends on labeled datasets,

Masked Autoencoders (MAEs) adopt a self-supervised ap-

proach for the classification task. Unlike conventional semantic

segmentation based on ViTs, where images are decomposed

into visual analogs of words, MAEs deviate by randomly

removing patches during training. In essence, MAEs focus

on reconstructing pixels, which are not inherently semantic

entities. However, intriguingly, the MAE model demonstrates

the ability to infer complex and holistic reconstructions, sug-

gesting a learned understanding of various visual concepts and

semantics. This behavior hints at the presence of a rich hidden

representation within the MAE, leading to the hypothesis that

the model captures diverse visual concepts through its self-

supervised learning framework.

In this paper, we extend its exploration beyond pixel re-

construction. In particular, we delve into the performance of

MAEs in the realm of map priors inference, investigating their

ability to understand and interpret underlying visual concepts

and semantics, and comparing its performance to the ViT.

By scrutinizing the model’s proficiency in this distinct task,

we aim to unravel the extent to which MAEs can harness

their learned representations for more advanced cognitive

processes. This multifaceted analysis not only broadens our

understanding of MAEs in computer vision but also provides

valuable insights that can guide and inspire future research

endeavors in the field.

To pay homage to the pioneering work in [2], we affection-

ately name our Vision Transformer-based approach ”Semantic

Map-Aware Pedestrian Prediction 2” (semapp2), described

in the next section

III. METHODOLOGY

We start the description of the proposed solution by com-

paring the different metrics to compute the distance between

probability distributions.

A. Metrics

1) Kullback-Leibler divergence: The Kullback-Leibler

(KL) divergence [24] is a measure of how one probability

distribution diverges from a second, expected probability dis-

tribution as

KL(PGT ||Qpred) =
∑

i

PGT (i) log

(

PGT (i)

Qpred(i)

)

,

i.e., the divergence of the probability distribution of the

prediction Qpred from the probability distribution of the target

PGT , over a discrete set of events indexed by i.

The KL divergence is not symmetric, meaning that

KL(P ||Q) is not necessarily equal to KL(Q ||P ). In the

context of neural networks training, it is typically applied

in the direction of the predicted distribution (P ) compared

to the target distribution (Q). The reason for this choice is

often related to the nature of the optimization problem. In

tasks like probabilistic modeling or generative modeling, you

want the predicted distribution to approach or match the target

distribution. Minimizing the KL divergence in the direction of

the predicted distribution helps achieve this goal.

However, in this specific application, it might be meaningful

to also calculate the reverse KL divergence, i.e., KL(Q ||P ),
contrary to the traditional machine learning approaches. This

unconventional choice can be justified by examining the

KL divergence formula: when PGT (i) is near zero, the KL

divergence tends to be low, potentially masking issues in

predictions, leading to misinterpretation of the model’s per-

formance. Instead, by calculating the reverse KL divergence

KL(Q ||P ), the contribution to the divergence is weighted

based on the prediction, ensuring that deviations in regions

where the prediction is far from zero but the target is zero are

appropriately penalized.

2) Earth Mover’s Distance (EMD): The Earth Mover’s

Distance (EMD) [25], also known as Wasserstein distance or

optimal transport distance, is a metric used to quantify the

dissimilarity between two probability distributions. It provides

a measure of the minimum amount of work required to trans-

form one distribution into another. More in-depth, given two

probability distributions P and Q representing the histograms

of pixel intensities in the occupancy distributions, and a ground

distance function d(x, y) representing the cost of transporting

mass from intensity x to intensity y, the EMD is defined as

EMD(P,Q) = min
γ∈Γ(P,Q)

∑

(x,y)∈supp(γ)

γ(x, y) · d(x, y).

Here, Γ(P,Q) represents the set of all possible joint distribu-

tions (couplings) of P and Q whose marginals are P and Q

respectively. The minimization is over these couplings, while

supp(γ) denotes the support of the coupling, i.e., the set of

pairs (x, y) with non-zero probability.

Unlike the KL divergence, the Earth Mover’s Distance is a

metric that adheres to the triangle inequality and is symmetric.

Its symmetry makes it particularly suitable for scenarios where

a balanced evaluation of differences in both directions is

desired. In the paper experiments, we will employ the forward

KL divergence (KL-div), the reverse KL divergence (rKL-div)

and the Earth Mover’s Distance (EMD) to thoroughly assess

the performance of our model in capturing the nuances of

probability distributions.

B. Datasets

Our study builds upon the Stanford Drone Dataset

(SDD) [26]. This extensive dataset captures images and videos

featuring diverse agents like pedestrians, bicyclists, skate-

boarders, cars, buses, and golf carts navigating a real-world

outdoor environment. It provides a comprehensive representa-

tion of human motion in shared spaces.

We utilized a subset of 20 maps from the Stanford Drone

Dataset for training, including ”bookstore”, ”coupa”, ”death



TABLE I
QUANTITATIVE EVALUATION OF 9 SEMANTIC CLASSES

KL-div rKL-div EMD

semapp 0.66± 0.15 2.50± 1.51 40.18± 26.55

semapp2 0.49± 0.15 2.15± 1.20 34.24± 26.47

TABLE II
QUANTITATIVE EVALUATION OF 13 SEMANTIC CLASSES

KL-div rKL-div EMD

semapp 0.58± 0.14 2.43± 1.24 41.16± 26.98

semapp2 0.46± 0.16 2.19± 1.50 27.65± 19.89

circle”, ”gates”, ”hyang”, ”little” and ”nexus”. Due to the

limited availability of maps, we employed a cross-validation

strategy, leaving one map out at a time for testing while

training and validating on the remaining maps. This approach

allowed us to maximize the use of the available data and ensure

a robust evaluation of our model across various scenarios.

During preprocessing, the Stanford Drone Dataset (SDD)

scenes were not only scaled but also manually segmented into

refined semantic classes. All scenes were uniformly scaled to

a resolution of 0.4 meters per pixel. Given that our network

operates on map crops of fixed size (64x64 pixels), we adopted

a strategy of decomposing the larger input images from the

SDD into 500 random crops of appropriate size (like in [2]).

Each crop in the training data is augmented 5 times by rotating

and mirroring. The final distribution p(s) for state s was

reconstructed by averaging the predicted occupancy values of

s across all crops containing that state. This approach, as stated

in [2], enhances the robustness of our model’s predictions

by addressing potential artefacts associated with neighbouring

crops.

To enhance prediction accuracy, we extend the semantic

classes beyond those considered by Rudenko et al. [2]. In

the paper, the authors use 9 semantic classes: pedestrian

area, vehicle road, bicycle road, grass, tree foliage, building,

entrance, obstacle and parking. We choose to add 4 more

classes: sitting area, stairs, shaded area and intersection zone,

reaching a total of 13 semantic classes. We find that using

semantic classes that heavily influence human motion greatly

affects the accuracy of the predictions. In Table I we compare

the use of the 9 classes (pedestrian area, vehicle road, bicycle

road, grass, tree foliage, building, entrance, obstacle and

parking) and in Table II the complete model with all 13 classes

(adding stairs, shaded area, intersection zone and sitting areas).

Notably, semapp2 already exhibits notable advancements in

prediction accuracy compared to semapp when restricted to

the original 9 semantic classes, as evidenced by the metrics

in Table I. In Table II, semapp2 consistently performs better

than semapp across all evaluation metrics. The addition of

the 4 new semantic classes refines the semantic understanding

and contributes to improved accuracy in predicting occupancy

distribution priors. This observation aligns with our goal of

Fig. 1. The semapp2 architecture.

Fig. 2. semapp2 variation using a MAE autoencoder.

enhancing the model’s capability to capture nuances in human-

centric environments.

C. Proposed Vision Transformer architecture

The proposed semapp2 consists of a ViT autoencoder

designed to generate a prior prediction image from the input

semantic map with multiple channels, each corresponding to

different semantic classes (see Figure 1). We use a simple

autoencoder architecture, where an encoder maps the observed

signal (semantic map) to a latent representation, and a decoder

predicts the prior from the latent representation.

In Figure 2 we provide a visual representation of the

MAE-semapp2, an architecture variation of the semapp2

that uses a MAE autoencoder, with 75% masking ratio.

Note that the two architectures are the same: if we set a

masking ratio of 0% on the MAE-semapp2, we obtain the

same behaviour of a ViT-based semapp2. For simplicity, we

will refer to a semapp2 with a masking ratio of 75% as

MAE-semapp2 from now on.

Encoder: The encoder employs the ViT architecture, cus-

tomized for semantic map processing. The input semantic map,

with multiple channels representing various semantic classes,

undergoes a linear projection with added positional embed-

dings. Subsequently, the resulting set of tokens is processed

through a series of Transformer blocks. In the MAEs variation,



the encoder is identical to the ViT encoder, but it handles only

the subset of unmasked patches of the semantic map.

Decoder: The decoder takes the full set of tokens consisting

of encoded visible patches, and mask tokens. Each semantic

class in the map is represented by a learned vector, and

positional embeddings are added to all tokens in the set for

reconstruction purposes. The decoder consists of a series of

Transformer blocks designed to reconstruct the prior prediction

image. Notably, the decoder architecture is independent of the

encoder’s design, providing flexibility.

D. Training and Evaluation

Our primary objective is predicting prior occupancy distri-

bution based on semantic information, encompassing stop dis-

tribution and velocities heat map prediction. This task expands

previous works, such as Rudenko et al.’s [2], which focus on

occupancy distribution prediction only. We compare two main

models in our study: our novel framework semapp2, which

is based on ViTs, and Rudenko et al.’s semapp, based on

CNNs. Additionally, we provide a concise comparison with a

variation of our semapp2, based on the Masked Autoencoder.

The training process spans 100 epochs, employing the

AdamW optimizer. We employ a mean squared error (MSE)

loss per patch to calculate the prediction error. The training

halts if the loss on the validation set shows no improvement

for at least 15 consecutive epochs. A warmup cosine schedule

is utilized for the learning rate, with a warmup period of 20

epochs. The base learning rate (base lr) is set to 1×10−4, and

the absolute learning rate (absolute lr) is calculated using the

formula

absolute lr = base lr ×
total batch size

256
.

A weight decay of 0.3 is applied to the optimizer. Moreover,

the training is conducted on two NVIDIA RTX A5000 GPUs

using PyTorch’s ”Distributed Data Parallel” to leverage dis-

tributed training. This configuration enhances the scalability

and speed of our training process.

For cross-validation, we employ a leave-one-out strategy

with semantic maps. Our dataset is divided into training and

validation maps using an 80/20 split. During each iteration,

we exclude one map and train the model on the training set,

validating on the validation set and evaluating on the withheld

map for assessment. This process is repeated for each map

in the dataset. This strategy helps assess the generalization

capability of our model across different semantic maps. Ad-

ditionally, we experiment with various patches and crop sizes

to identify optimal configurations.

IV. ABLATION STUDY

In order to methodically examine the effects of various

elements in the suggested Semantic Map-Aware Pedestrian

Prediction 2 (semapp2) model, we carry out an ablation

study in this section. Our objective is to comprehend the role

that each component plays in the overall performance and to

choose the best performing model structure. To measure the

impact of each ablation, we employ quantitative metrics such

TABLE III
IMPACT OF THE BACKBONE ON semapp2 MODEL

Backbone KL-div rKL-div EMD

ViT-Base 0.42± 0.13 2.52± 1.88 54.53± 30.80

ViT-Large 0.34± 0.21 2.19± 1.84 45.77± 30.74

ViT-Huge 0.31± 0.15 1.69± 1.11 39.64± 30.16

TABLE IV
IMPACT OF THE CROP SIZE ON semapp2 MODEL

Crop Size KL-div rKL-div EMD

32 0.62± 0.18 3.74± 1.13 54.56± 29.84

64 0.34± 0.21 2.19± 1.84 45.77± 30.74

100 0.56± 0.19 3.60± 1.77 117.38± 93.33

as KL divergence, reverse KL divergence and Earth Mover’s

Distance. These distances provide insights into the model’s

ability to accurately predict priors in semantic maps.

A. Architectural Components

To gauge the significance of specific architectural compo-

nents, we conducted a series of experiments, systematically

tweaking key elements within our semapp2 model based

on Vision Transformer (ViT). First of all we need to choose

the backbone for the architecture between ViT-Base, ViT-

Large and ViT-Huge [18]. Then we explore variations on

patch dimensions and crop size with the overarching goal of

pinpointing the optimal configuration that strikes a balance

between model complexity and predictive accuracy.

1) Backbone: We start by investigating the impact of dif-

ferent backbones on the MAE-semapp2 model, whose results

are detailed in Table III. During the ablation tests, we keep un-

changed the mask ratio of 75%, crop size of 64×64 pixels and

patch size of 8× 8 pixels. Our investigation revealed that the

ViT-Huge backbone achieved the best results, demonstrating

lower values across KL-divergence, reverse KL-divergence,

and EMD metrics. Despite this superior performance, we opt

for utilizing the ViT-Large backbone for practical consider-

ations. The increment in performance with ViT-Huge is not

significant, and it does not justify the significantly longer

training times associated with its use. Thus, ViT-Large, being

both proficient and quicker to train, emerges as the pragmatic

choice for our MAE-semapp2 model. Moreover, as stated

in [23], a single-block decoder can perform strongly and speed

up training, for this reason we use a modified version of the

ViT-Large changing the decoder layers depth to 1.

2) Crop Size: Delving into the impact of varying the size

of the analyzed crop of the semantic map in our semapp2

model, we systematically adjusted the crop size, resulting the

64 the most promising (see IV).

3) Patch size: Examining the influence of patch size on

the semapp2 model, we conducted experiments to observe

variations in performance. Table V shows how a patch size of

8 fits the paper needs.



TABLE V
IMPACT OF THE PATCH SIZE ON semapp2 MODEL

Patch Size KL-div rKL-div EMD

8 0.34± 0.21 2.19± 1.84 45.77± 30.74

16 0.52± 0.10 2.43± 1.02 53.02± 34.39

32 0.60± 0.20 4.57± 1.79 46.69± 30.03

TABLE VI
IMPACT OF MASKING PERCENTAGE ON semapp2 MODEL

Masking Ratio KL-div rKL-div EMD

0% 0.46± 0.16 2.19± 1.50 27.65± 19.89

25% 0.45± 0.17 2.32± 1.66 38.78± 31.72

50% 0.41± 0.11 2.36± 1.44 49.30± 29.92

75% 0.34± 0.21 2.19± 1.84 45.77± 30.74

4) MAE Masking Percentage: To investigate the impact

of different masking percentages on the performance of the

semapp2 model, we conducted ablation experiments by

varying the masking percentage during training obtaining the

results of Table VI. The masking percentage determines the

proportion of patches excluded during the training process,

influencing the model’s ability to capture underlying patterns

in the data.

V. RESULTS AND DISCUSSION

The evaluation metric involves computing the Kullback-

Leibler (KL) divergence, Reverse KL divergence and Earth

Mover’s Distance (EMD) for all the leave-one-out maps,

resulting in a mean metric value along with standard devia-

tion, providing insights into the model’s generalization across

various semantic maps.

We present a qualitative comparative analysis in Figure 3

between semapp and semapp2. The top-left section de-

picts the semantic map and the top-right section represents

the corresponding ground-truth occupancy distribution. In the

bottom-left, predictions from semapp, while the bottom-

centre and the bottom-right show predictions from semapp2

and MAE-semapp2. Moreover, in Figure 4, we compare the

quality of the predictions of the model semapp2 using 9

semantic labels, shown on the left in the figure, or using 13

semantic labels, on the right. Visually the difference is barely

noticeable, but quantitatively we have a slight improvement,

as reported in Tables I and II.

A. Quantitative Evaluation

We provide in Table VII the mean and standard deviations

of KL-divergences, reverse KL-divergences and EMDs for all

three models (semapp, semapp2, MAE-semapp2) applied

to the Stanford Drone Dataset using a cross-validation ap-

proach, as described in Section III-B. In the Stanford Drone

Dataset, semapp2 shows competitive performance compared

to semapp. This main comparison provides insights into the

effectiveness of ViT in predicting occupancy priors based on

semantic information.

Fig. 3. Qualitative comparison of results in the Stanford Drone Dataset. Our
ViT-based model showcases competitive performance compared to semapp

(Rudenko et al. [2]), demonstrating the effectiveness of Vision Transformers
in predicting occupancy priors. Top left: presents the original semantic map
highlighting different classes, Top right: displays the ground-truth distribution
of occupancies. Bottom left, Bottom middle and Bottom right showcase the
predictions generated by semapp, semapp2 and MAE-semapp2, respec-
tively.

Fig. 4. Qualitative comparison between using 9 semantic classes (Left) and
13 semantic classes (Right)

semapp2 vs. MAE-semapp2: The four images in Fig 5

showcase different aspects of the prediction process using the

MAE-based semapp2. The first semantics image represents

the original crop of the semantic map, while the second

masked image displays the same crop after the masking

process, emphasizing the regions of interest during the model’s

inference. The original image presents the ground truth of the

occupancy distribution, providing a reference for the expected

outcome. Finally, the prediction image depicts the result of the

MAE-based semapp2, illustrating the model’s capability to

anticipate and reproduce the occupancy distribution based on

the masked semantic input.

The MAE-based semapp2 exhibits a notable level of

generalization ability compared to the ViT-based semapp2.



TABLE VII
QUANTITATIVE EVALUATION IN THE STANFORD DRONE DATASET

Method Average KL-Div Average rKL-Div Average EMD

semapp 0.58± 0.14 2.43± 1.24 41.16± 26.98

semapp2 0.46± 0.16 2.19± 1.50 27.65± 19.89

MAE-semapp2 0.34± 0.21 2.19± 1.84 45.77± 30.74

Fig. 5. Example of prediction using the MAE-based semapp2.

In [23], the authors demonstrate that masking patches in MAEs

does not result in a decremental impact on reconstruction and

classification, underscoring the significant data redundancy

present in vision tasks. This observation suggests that the

MAE model might be well-suited for learning underlying laws

of social motion. Indeed, in Table VII, the MAE-semapp2

variation shows slightly worse performance over the EMD

metric compared to both semapp and semapp2. However,

from a qualitative evaluation, the model seems to predict

extremely well local variations of the occupancy distribu-

tion. Two examples are shown in Figure 6: the MAE-based

semapp2 is clearly superior at predicting the distribution.

The low metric values could be due to a lack of trajectories

in the timespan analysed in the SDD video. For this reason,

the generalization ability of the MAE, especially in complex

scenarios, warrants further exploration and investigation in

future works. To assess the quality of the prediction, it could

be necessary to collect more data on a specific location at

different times in order to converge to a global probability

distribution of the human occupancy, rather than the time-

variant distribution that we obtain from the SDD videos.

B. Predicting Stops and Velocities

Furthermore, we delve into assessing the network’s profi-

ciency in predicting stops and velocities—priors that have been

relatively underexplored in existing literature. This unique

investigation holds significant implications for the field of

mobility, where accurately anticipating stops and velocities

could be crucial for enhancing planning tasks. Our exploration

of these nuanced prediction tasks adds valuable insights to

the broader understanding of Vision Transformers’ capabil-

ities in addressing complex aspects of occupancy prediction,

particularly in real-world mobility scenarios. Figures 7 present

the prediction of the velocity profile distribution and the stop

distribution. Additionally, Table VIII provides a quantitative

evaluation of the predictions of velocities and stops.

VI. CONCLUSION

The analysis of human occupancy of the different areas

of an environment is essential to enable safe and efficient

TABLE VIII
QUANTITATIVE EVALUATION OF VELOCITIES AND STOPS

KL-div rKL-div EMD

Velocities 0.47± 0.15 2.50± 1.51 40.18± 26.55

Stops 0.63± 0.15 2.15± 1.20 52.88± 27.94

navigation of mobile robots. The past literature has shown

that the use of semantic maps can significantly speed up

the reconstruction of this information by breaking down the

environment into several smaller parcels. The price to pay

is a potential limitation of the accuracy due to the use of

local information. We have proposed a solution that holds the

promise to mitigate this problem by the use of a ViT backbone.

Indeed the use of transformers allows the network to learn the

spatial relation between nearby areas, hence reconstructing a

global view of the environment. The results show that our

solution significantly improves the prediction accuracy with a

limited impact on the computation time, which remains accept-

able for real–time applications of the solution. Many problems

remain open and are reserved for future research activities. The

first activity will be to test our method on a more complete

dataset than the Stanford Drone dataset used for this paper,

which contains more trajectories per map, to better evaluate

the generalisation ability of the models. A second activity

will be the integration of the module into a robot navigation

framework. Third, we are considering a possible extension

of the approach to predicting the motion of bicycles or cars,

which would open other interesting application opportunities

(i.e., autonomous driving). Finally, we are actually working to

extend the same idea to cobots in production cells for product

quality control and reworking of defected working pieces.
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