
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-024-02059-8
Arch. Rational Mech. Anal.           (2025) 249:3 

On the Converse of Pansu’s Theorem

Guido De Philippis, Andrea Marchese, Andrea Merlo ,
Andrea Pinamonti & Filip Rindler

Communicated by A. Figalli

Abstract

We provide a suitable generalisation of Pansu’s differentiability theorem to
general Radon measures on Carnot groups and we show that if Lipschitz maps
between Carnot groups are Pansu-differentiable almost everywhere for some Radon
measuresμ, thenμmust be absolutely continuous with respect to the Haar measure
of the group.
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1. Introduction

Rademacher’s theorem asserts that Lipschitz functions defined on the Euclidean
space are differentiable almost everywhere with respect to the Lebesgue measure.
Obviously this result fails if the Lebesgue measure is replaced by an arbitrary
measure, for instance a Dirac delta, so it is natural to ask whether this is a rigidity
property of the Lebesgue measure, see [1–3,46]. Namely, does there exist a singular
measure for which Rademacher’s theorem holds? In [21], the first and the last author
showed that the answer to the previous question is negative (in two dimensions, this
also follows by combining the main result of [1,2] with [3]). Such a result opened
the road to a better understanding of the structure of Lipschitz differentiablility
spaces, RC D(K , N ) spaces, certain types of Sobolev spaces and also some general
measures satisfying linear PDE constraints, see [11,13,15,19,20,27,33,41].

In [18], Cheeger generalized Rademacher’s theorem to the setting of metric
spaces endowed with a doubling measure and a Poincaré type inequality. This has
inspired a lot of research in the area of analysis on metric measure spaces. The
notion of Lipschitz differentiability space has been later axiomatised by Keith in
[32]. In [16], Bate characterized Lipschitz differentiability spaces in terms of the
existence of a sufficiently rich family of representations of the underlying measure
as an integral of Lipschitz curve fragments.
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Carnot groups are connected, simply connected, nilpotent Lie groups whose
Lie algebra is stratified. Referring to the next section for more details, we only
mention here that they are metric measure spaces whose ambient vector space is
Rd , the metric allowing movements only along certain horizontal curves, tangent
to a given smooth non-involutive distribution of planes, the so-called first layer of
the Lie algebra stratification. One can define a natural notion of differentiablity for
functions between Carnot groups and a seminal theorem of Pansu, [43] , proves
the analogue of Rademacher’s theorem in this setting. In particular, Carnot groups
endowed with the Haar measure are Lipschitz differentiability spaces.

In this paper we prove the analogue in the Sub-Riemannian setting of the result
proved in [21], namely that the Haar meaesure is indeed the (essentially) unique
measure on a Carnot group, for which a Rademacher-type theorem can hold.

Theorem 1.1. Let G be a Carnot group, H an homogeneous group, and let μ be a
Radon measure onG. If every Lipschitz function f : G→ H is Pansu-differentiable
μ-almost everywhere in the sense of Definition 2.7, thenμ is absolutely continuous
with respect to the Haar measure on G.

For the proof of Theorem 1.1 we refer to Theorem 7.6. In order to prove Theorem
1.1 we follow the same general strategy of its Euclidean counterpart. First we
generalize the work of Alberti and the second author [3] by associating to every
Radon measure μ on G a decomposability bundle V (μ, ·), that identifies a set of
directions along which a Rademacher-type theorem, adapted to the measureμ holds
true; see Sect. 3. More precisely, we obtain the following result:

Theorem 1.2. Let μ be a Radon measure on a Carnot group G. Then, there exists
a μ-measurable family of homogeneous subgroups V (μ, x) such that for every ho-
mogeneous groupH and every Lipschitz function f : G→ H is Pansu differentiable
at μ-almost every x ∈ G with respect to the V (μ, x).

For the proof of Theorem 1.2 we refer to Theorem 6.6 and to Definition 2.7 for
the introduction of the notion of differentiability along a homogeneous subgroup.

Once this bundle is obtained, we exploit the work of Bate [16] to show that
for a measure μ satisfying the assumptions of Theorem 1.1, V (μ, x) = G for
μ-almost every x , see Proposition 7.4. Finally, we show that this forces μ to be
absolutely continuous with respect to the Haar measure. This last step is obtained
by a PDE-type argument that extends some of the result of [21] to the hypoelliptic
setting.

We note that, although the general strategy follows the one used to prove the
Euclidean counterpart of Theorem 1.1, its adaptation to the Carnot setting requires
several non-trivial adjustments. In particular, one of the key step in the proof of
the converse of Rademacher theorem is the link between the fact that the decom-
posability bundle of a measure has full dimension and the existence of a suitable
family of normal currents, proved in [3, Section 6]. This is indeed a crucial point
in order to rely on the results in [21]. The key geometric property used to show the
existence of this family of currents is the fact that, given a compact set K ⊂ [0, 1]
and a Lipschitz fragment γ : K → Rn with γ ‘(t) belonging to a cone C for al-
most every t ∈ K , the fragment γ mostly coincides, locally almost everywhere,
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with a Lipschitz curve γ̃ : (a, b) ⊂ [0, 1] → Rn , which still satisfies γ̃ ‘(t) ∈ C ,
for almost every t ∈ (a, b), see [3, (6.13)]. This property is in general false for
Carnot groups, see [10] and [29], and it requires specific assumptions to be true
[37,45,50,53]. We need thus to rely on a completely different construction which
we believe to be of independent interest, see Section 4.

The second key point is the extension of the theory established in [21] to the
setting of differential operators defined by Hörmander type vector fields. Indeed, the
results in [21] strongly rely on the notion of wave cone associated with a differential
operator which is, loosely speaking, related to the notion of ellipticity. This notion
is too strong in this context and it should be relaxed to the notion of hypoellipticity,
which however is less "explicit". Luckily, for second order operators (which are
the only ones needed in this context), this notion can be characterized algebraically
and this allows to adapt the proofs in [21] to this setting, see Proposition 7.5. We
conclude by noticing that it is an interesting question to extend the full results of
[21] to a "hypoelliptic wave cone"; in this context also see the examples in [14].

Concerning application of the results obtained here, we mention the recent
extension of Cheeger’s conjecture originally proved by the first, second and last
author in [20] to the context of Pansu’s differentiability spaces by Antonelli, Le
Donne, and the third-named author in [8].

List of Notations

We add below a list of frequently used notations, together with the page of their
first appearance:

|·| Euclidean norm, 3
dc Carnot-Carathéodory metric 6
δλ Intrinsic dilations 3
Xi Canonical horizontal vector fields 6
M (Rn,Rm) Family of vector-valued measures of finite mass

endowed with the topology of weak* topology
3

M(μ) Total mass of a real valued or vector-valued
measure

3

B(x, r) Ball of centre x and radius r with respect to the
metric dc

3

U (x, r) Ball of centre x and radius r with respect to the
Euclidean metric

3

Gr(G) Grassmannian of homogeneous subgroups ofG 5
GrC(G) Grassmannian of Carnot subgroups of G 5
V (μ, ·) Decomposability bundle of the Radon measure 11
N (μ, ·) Auxiliary decomposability bundle of the Radon

measure
21

∂T Boundary of a current T 8
dV f (x) Differential of a Borel map f along the sub-

group V ∈ Gr(G)
7
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2. Notation and Preliminaries

2.1. Preliminaries on Carnot Groups

In this subsection we briefly introduce some notations on Carnot groups that
we will extensively use throughout the paper. For a detailed account on Carnot and
homogeneous groups we refer to [35].

A Carnot group G of step s is a connected and simply connected Lie group
whose Lie algebra g admits a stratification g = V1 ⊕ V2 ⊕ · · · ⊕ Vs. We say that
V1 ⊕ V2 ⊕ · · · ⊕ Vs is a stratification of g if g = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

[V1, Vi ] = Vi+1, for every i = 1, . . . , s− 1, and [V1, Vs] = {0},
where [A, B] := span{[a, b] : a ∈ A, b ∈ B}. We call V1 the horizontal layer of
G. We denote by n the topological dimension of g and by n j the dimension of Vj

for every j = 1, . . . , s. Furthermore, we define πi : g → Vi to be the projection
maps on the i-th strata. We will often shorten the notation to vi := πiv.

The exponential map exp : g → G is a global diffeomorphism from g to G.
Hence, if we choose a basis {X1, . . . , Xn} of g, any p ∈ G can be written in a unique
way as p = exp(p1 X1+· · ·+ pn Xn). This means that we can identify p ∈ G with
the n-tuple (p1, . . . , pn) ∈ Rn , V1 with Rn1 and the group G itself with Rn endowed
with ∗, the group operation determined by the Baker-Campbell-Hausdorff formula.
From now on, we will always assume that G = (Rn, ∗) and, as a consequence, that
the exponential map exp acts as the identity. Further, for every z ∈ G, we introduce
the left translations τz : G→ G that are defined as τz(x) := z ∗ x . The stratification
of g carries with it a family of dilations δλ : g→ g of g defined by

δλ(v1, . . . , vs) :=
{
(λv1, λ

2v2, . . . , λ
svs), for every λ > 0,

(−|λ|v1,−|λ|2v2, . . . ,−|λ|svs), for every λ ≤ 0,
(1)

where vi ∈ Vi . The stratification of the Lie algebra g naturally induces a gradation
on each of its homogeneous Lie sub-algebrash, i.e., a sub-algebra that is δλ-invariant
for every λ > 0

h = (V1 ∩ h)⊕ . . . (⊕Vs ∩ h). (2)

We say that h = W1 ⊕ · · · ⊕ Ws is a grading of h if [Wi ,W j ] ⊆ Wi+ j for every
1 ≤ i, j ≤ s, where we mean that W� := {0} for every � > s. Since the exponential
map acts as the identity, the Lie algebra automorphisms {δλ : λ > 0} are also group
automorphisms of G.

Remark 2.1. Let us note that the definition of dilations given in (2), is not the natural
one for λ ≤ 0. The natural definition would be

δ̃λ(v1, . . . , vs) := (λv1, λ
2v2, . . . , λ

svs), for every λ ∈ R.

However, in this work and purely for notations reasons, that will come apparent
especially in (6), it is convenient to define dilations as in (1).
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Definition 2.1. A subgroup V of G is said to be homogeneous if it is a Lie subgroup
of G that is invariant under the dilations δλ with λ > 0. A homogeneous subgroup
V ⊂ G is called horizontal subgroup if V ⊆ exp(V1) = V1.

The following general fact will play a crucial role later on:

Proposition 2.1. Suppose H is a closed subgroup of G ∼= (Rn, ∗). Then H can
be identified with a vector subspace of Rn. In particular, homogeneous closed
subgroups of G are in bijective correspondence through exp with the Lie sub-
algebras of g that are invariant under the dilations δλ with λ > 0.

Proof. Thanks to [38, Theorem 3.6] we know that H is a Lie subgroup of G. In
particular its Lie algebra h is a Lie sub-algebra of g. Thanks to the definition of
the operation ∗, the exponential map exp acts as the identity and thus H , can be
identified with its Lie algebra in g ∼= Rn and in particular it can be viewed as a
vector subspace of Rn . ��

From now on, since exp acts as the identity due to the choice of ∗, we will
always identify the elements of G, with their preimage under exp in g.

In what follows, if not stated otherwise, G will be a fixed Carnot group.

Definition 2.2. (Homogeneous left-invariant distance and norm) A metric d : G×
G→ R is said to be homogeneous and left-invariant if for every x, y ∈ G we have,
respectively

(i) d(δλx, δλy) = λd(x, y) for every λ > 0,
(ii) d(z ∗ x, z ∗ y) = d(x, y) for every z ∈ G.

Given a homogeneous left-invariant distance, its associated homogeneous norm is
defined by ‖g‖d := d(g, 0), for every g ∈ G, where 0 is the identity element of
G. Given a homogeneous left-invariant distance d on G, for every x ∈ G and every
E ⊆ G we define dist(x, E) := inf{d(x, y) : y ∈ E}.

The specific choice of the metric is not relevant for our purposes thanks to
the following result, [17, Proposition 5.1.4]. In the following we will leave the
dependence of the norm on the metric always implicit:

Proposition 2.2. Assume d1, d2 are two homogeneous left-invariant metrics on G.
Then there exists a constant C > 0 depending on d1 and d2 such that C−1d1(x, y) ≤
d2(x, y) ≤ Cd1(x, y) for every x, y ∈ G.

We refer to [40, Lemma 3.6] for the proof of the following result:

Lemma 2.3. For every left-invariant and homogeneous distance and for every k >
0 there exists a constant C1 := C1(k,G, d) > 1 such that if x, y ∈ B(0, k), then

‖y−1 ∗ x ∗ y‖ ≤ C1‖x‖1/s.
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Remark 2.2. Let d be a left-invariant homogeneous distance on G. It is well known,
see for instance [17, Proposition 5.15.1], that for every compact subset K of Rn

there is a constant C(K , d) > 1 such that:

C(K , d)−1|x − y| ≤ d(x, y) ≤ C(K , d)|x − y|1/s for every x, y ∈ K ,

where |·| is the Euclidean norm. More precisely the constant C introduced above
depends only on dist(0, K )+ diam(K ) and d.

For every Lie algebra h with stratification h = W1 ⊕ . . . ⊕ Ws, we define its
homogeneous dimension as

dimhom(h) :=
s∑

i=1

i · dim(Wi ).

Thanks to (2) we infer that, if h is a homogeneous Lie sub-algebra of g, then

dimhom(h) =
s∑

i=1

i · dim(h ∩ Vi ).

It is well-known that the Hausdorff dimension, of a graded Lie group G with re-
spect to a left-invariant homogeneous distance coincides with the homogeneous
dimension of its Lie algebra, see [36, Theorem 4.4].

Definition 2.3. (Carnot subgroups) Let	 ⊂ [0,∞). Given a collectionF = {vλ ∈
G : λ ∈ 	} of elements of G we define the homogeneous subgroup S(F ) of G
generated by F as

S(F ) := cl
({
δρ1(vλ1) ∗ · · · ∗ δρN (vλN ) : N ∈ N, ρ j ∈ R and

λ j ∈ 	 for every every j ∈ {1, . . . , N }}).
We say that a subgroup V of G is a Carnot subgroup if V = S(V ∩ V1).

Definition 2.4. (Intrinsic Grassmannian on Carnot groups) Let Q := dimhom(g)

and let 1 ≤ h ≤ Q. We define Gr(h) and GrC(h) to be the family of all homoge-
neous subgroups W of G with Hausdorff dimension h and the family of all Carnot
subgroups W of G with Hausdorff dimension h, respectively. Finally, we denote
by Gr(G) and GrC(G) the sets

Gr(G) =
Q⋃

h=1

Gr(h)andGrC(G) =
Q⋃

h=1

GrC(h).

Since it will be occasionally used, it will be convenient to denote by Greu(G) the
Euclidean Grassmannian of the underlying space of G endowed with the topology
generated by the Hausdorff distance induced by the Euclidean distance. It is easy to
see that such topology and the one induced by the Carnot-Carathéodory Hausdorff
distance are the same.
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Proposition 2.4. Let V ∈ GrC(G) and assume v1, . . . , vN ∈ V ∩ V1 are such that
V ∩ V1 coincides with the linear span of {v1, . . . , vN } when seen as vectors of Rn.
Then S({v1, . . . , vN }) = V .

Proof. The inclusion S({v1, . . . , vN }) ⊆ V is obvious and thus we just need to
prove the converse. Since S({v1, . . . , vN }) is a closed homogeneous subgroup
of G, it is also a vector subspace of G; see Proposition 2.1. Therefore, we have
span{v1, . . . , vN } = V ∩ V1 ⊆ S({v1, . . . , vN }), and thus

V = S(V1 ∩ V ) ⊆ S({v1, . . . , vN }),
where the first identity follows from the fact that V is a Carnot subgroup of G. ��

As already remarked above, we can suppose without loss of generality that the
group operation ∗ is determined by the Campbell-Hausdorff formula. It is well
known that ∗ has a polynomial expression in the coordinates, see [25, Proposition
2.1], and, more precisely,

p ∗ q = p + q +Q(p, q), for all p, q ∈ Rn,

where Q = (Q1, . . . ,Qs) : Rn × Rn → V1 ⊕ . . . ⊕ Vs, and the Qi s are vector
valued polynomials. For every i = 1, . . . s and every p, q ∈ G we have

(i) Qi (δλ p, δλq) = λiQi (p, q) for λ > 0,
(ii) Qi (p, q) = −Qi (−q,−p),

(iii) Q1 = 0 and the polynomial Qi depends only on the first i − 1 components of
p and q. Hence, we can write Qi with abuse of notation as

Qi (p, q) = Qi (p1, . . . , pi−1, q1, . . . , qi−1).

Therefore, we can represent the operation ∗ as

p ∗ q = (p1 + q1, p2 + q2 +Q2(p1, q1), . . . , ps + qs
+Qs(p1, . . . , ps−1, q1, . . . , qs−1)). (3)

2.2. Lipschitz Curves and the Horizontal Distribution and the
Carnot-Carathéodory Distance

In this subsection we introduce the horizontal distribution of n1-dimensional
planes in Rn associated to G and we define the Carnot-Carathéodory distance.

Definition 2.5. Let {e1, . . . , en1} be an orthonormal basis of V1. For every i =
1, . . . , n1 we say that the left-invariant vector field tangent to ei at the origin,

Xi (x) := lim
t→0+

x ∗ δt (ei )− x

t
, (4)

is the i-th horizontal vector field. Furthermore, for every i = 1, . . . , n1 we can
write the vector field Xi as

Xi (x) :=
n∑

j=1

ci
j (x)∂ j ,
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where ci
j (x) are smooth functions since the Qi s are polynomial functions. In the

following it will be useful to write the coefficients ci
j in the form of the matrix

C (x) :=
⎛
⎜⎝
c1

1(x) . . . c
n1
1 (x)

...
. . .

...

c1
n(x) . . . c

n1
n (x)

⎞
⎟⎠ .

We further let

HG(x) := span(X1(x), . . . , Xn1(x)). (5)

The distribution HG(x) of n1-dimensional planes is usually said to be the horizontal
distribution associated to the group G.

Remark 2.3. (Expression for the ci ’s) Thanks to (4) and using the coordinate-wise
expression of the operation ∗ given in (3), it is easy to see that

Xi (x) = ei + ∂Q
∂qi
(x, 0).

This shows in particular that the matrix C (x) can be represented as

C (x) :=
(

idn1

∂qQ(x, 0)

)
.

Definition 2.6. Let B be a bounded Borel subset of the real line. Given a map
γ : B → G and a Lebesgue density point t ∈ B of γ , we denote that

γ ′(t) := lim
r→0

t+r∈B

γ (t + r)− γ (t)
r

, whenever the right-hand side exists.

Furthermore, given a < b we say that an absolutely continuous curve γ : [a, b] →
G is horizontal if there exists a measurable function h : [a, b] → V1 such that

(i) γ ′(t) = C (γ (t))[h(t)] for L 1-almost every t ∈ [a, b],
(ii) |h| ∈ L∞([a, b]).
Following the notation of [42] we shall refer to h as the canonical coordinates of
γ and if ‖h‖∞ ≤ 1 we will say that γ is a sub-unit path. Finally, we define the
Carnot-Carathéodory distance dc on G as

dc(x, y) := inf{T ≥ 0 : there is a sub-unit path γ : [0, T ] → Rn such that

γ (0) = x and γ (T ) = y}.
It is well known that dc(·, ·) is a left-invariant homogeneous metric on G. Finally
throughout the paper we will denote by‖·‖ the homogeneous function x �→ dc(x, 0)
and from now on and if not otherwise specified, G will always be endowed with the
distance dc.
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Proposition 2.5. The distance dc is a geodesic distance, i.e. for every x, y ∈ G
there exists a sub-unit path γ : [0, T ] → G such that γ (0) = x, γ (T ) = y and
dc(x, y) = T .

Proof. This follows immediately from Proposition 2.2 and [26, Lemma 3.12]. ��
The following lemma allows us to characterise those Euclidean Lipschitz frag-

ments that are also Lipschitz fragments when Rn is endowed with the
Carnot-Carathéodory distance dc introduced above:

Lemma 2.6. Let B be a bounded Borel subset of the real line. If a map γ : B → G
is L-Lipschitz with respect to the distance dc onG, then γ is an Euclidean absolutely
continuous map such that

γ ′(t) = C (γ (t))[h(t)] for L 1-almost every t ∈ B

for some h ∈ L∞(B, V1) with ‖h‖∞ ≤ L.

Remark 2.4. With abuse of language, for every Lipschitz fragment γ : B → G we
will refer to the function h yielded by Lemma 2.6 as the canonical coordinates of
γ . For the original definition of canonical coordinates, see Definition 2.6.

Proof of Lemma 2.6. The proof of the lemma follows from [42, Lemma 1.3.3]
together with an elementary localisation argument. ��
Definition 2.7. (Pansu differentiability) We say that a map f : G → H is Pansu
differentiable at the point x ∈ G with respect to a homogeneous subgroup V of G
if there exists a homogeneous homomorphism L : V → H such that

dH
(

f (x)−1 ∗ f (xh), L(h)
) = o(‖h‖G) for all h ∈ V .

When it exists, L is called the (Pansu) derivative of f at x with respect to V and is
denoted by dV f (x). If V = G then dV f (x) is the usual (Pansu) derivative, and is
simply denoted by d f (x).

The next lemma can be proved with an immediate adaptation of the argument
used to prove [42, Lemma 2.1.4] that allows us to characterise the Pansu derivative
of Lipschitz fragments.

Lemma 2.7. Let B a bounded Borel subset of the real line and assume γ : B → G
is a Lipschitz fragment. If h ∈ L∞(B, V1) is the vector of canonical coordinates of
γ , then for L 1-almost every t ∈ B we have:

Dγ (t) := lim
s→0+
t+s∈B

δ1/s(γ (t)
−1 ∗ γ (t + s)) = (h1(t), . . . , hn1(t), 0, . . . , 0).

In particular Dγ (t) exists for L 1-almost every t ∈ B.

Proof. The proof of this lemma follows from [42, Lemma 2.1.4] together with an
elementary localization argument. ��
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Remark 2.5. Let us put ourselves in the notations of Lemma 2.7. It is useful to
observe that Pansu’s differentiability theorem and the uniqueness of the limit imply
that

lim
s→0

t+s∈B

dG(γ (t)−1 ∗ γ (t + s), Dγ (t)s)

|s| = 0 for L 1-almost every t ∈ B,

where here Dγ (t)s stands for the element (s h1(t), . . . , s hn1(t), 0, . . . , 0).

Definition 2.8. (C-curves) Let e ∈ V1 be a unit vector and σ ∈ (0, 1). We denote
by C(e, σ ) the one-sided, closed, convex cone with axis e and opening σ in V1,
namely

C(e, σ ) := {x ∈ V1 : 〈x, e〉 ≥ (1− σ 2)|x |}.
Let B be a bounded Borel subset of the real line. A Lipschitz fragment γ : B → G,
is said to be a C(e, σ )-fragment (or simply a C-fragment) if

π1(γ (s))− π1(γ (t)) ∈ C(e, σ ) \ {0} for every t, s ∈ B with t < s. (6)

If the domain of a C(e, σ )-fragment γ is a compact interval, we will say that γ is
a C(e, σ )-curve (or simply a C-curve).

Proposition 2.8. Let B be a Borel subset of the real line and γ : B → G be a
Lipschitz map. Then, the measures H 1 im(γ ) and H 1

eu im(γ ) are mutually
absolutely continuous.

Proof. Since |x − y| ≤ dc(x, y) for every x, y ∈ G the definition of Hausdorff
measure immediately implies that H 1

eu ≤H 1. For the converse, let us note that for
every Lipschitz fragment γ : B → G the area formula [39, Theorem 4.4] implies
that for every Borel set A ⊆ G we have

H 1 im(γ )(A) =
ˆ

B∩A
|Dγ (t)|dt

≤ 1

minx∈im(γ )‖C (x)‖
ˆ

B∩A
|C (γ (t))[Dγ (t)]|dt

= H 1
eu im(γ )(A)

minx∈im(γ )‖C (x)‖ ,

where the last identity follows from Lemma 2.4. This concludes the proof. ��
Remark 2.6. Thanks to Lemmas 2.6 and 2.7 if γ : B → G is a C-fragment, then
for L 1-almost every t ∈ B we have

(π1 ◦ γ )′(t) = π1(γ
′(t)) = π1(C (x)[h(t)]) = Dγ (t),

where h is the map of canonical coordinates associated to γ , see Remark 2.4.

Remark 2.7. Note that any C(e, σ )-fragment is injective. Indeed, if we suppose by
contradiction that γ (s) = γ (t) for some t < s we would infer that π1(γ (s)) =
π1(γ (t)). This however is not possible thanks to (6).
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In the next lemma, given a Lipschitz curve � we construct a Borel map that at
H 1-almost every point of �, selects a vector that spans the tangent to the curve at
that point.

Lemma 2.9. Let γ : K → G be a Lipschitz fragment. Then, there exists a Borel
map vγ : G → G such that vγ (x) ∈ {Dγ (t) : t ∈ γ−1(x)} and vγ (x) �= 0 for
H 1 im(γ )-almost every x ∈ G.

Proof. Just apply Lemma A.6 to the singleton measure family {H 1 im(γ )}. ��
Definition 2.9. A Borel set E ⊂ G is called 1-rectifiable if there exists a countable
family of Lipschitz maps γi : Ki → G, where Ki are compact subsets of R such
that H 1(E \⋃∞

i=1 γi (Ki )) = 0. A Radon measure φ on G is said to be 1-rectifiable
if there exists a 1-dimensional rectifiable set E such that φ �H 1 E .

2.3. Euclidean and Horizontal Currents

We recall here the basic notions and terminology from the theory of Euclidean
currents. A k-dimensional current (or k-current) in Rn is a continuous linear func-
tional on the space of smooth and compactly supported differential k-forms on Rn ,
endowed with the topology of test functions.

The boundary of a k-current T is the (k−1)-current ∂T defined by 〈∂T ; ω〉 :=
〈T ; dω〉 for every smooth and compactly supported (k − 1)-form ω on Rn , and
where dω denotes the exterior derivative of ω. The mass of T, denoted by M(T), is
the supremum of 〈T ; ω〉 over all forms ω such that |ω| ≤ 1 everywhere. A current
T is called normal if both T and ∂T have finite mass.

By Riesz theorem a current T with finite mass can be represented as a finite
measure with values in the space∧k(Rn) of k-vectors in Rn , and therefore it can be
written in the form T = τμ where μ is a finite positive measure and τ is a k-vector
field such that

´ |τ |dμ < +∞. In particular the action of T on a form ω is given
by

〈T ; ω〉 =
ˆ
Rn
〈τ(x) ; ω(x)〉 dμ(x) ,

and the massM(T) is the total mass ofT as a measure, that is,M(T) = ´ |τ |dμ. Note
that 0-dimensional currents with locally finite mass are signed Radon measures and
the mass coincides with the total variation.

In the following, whenever we write a current T as T = τμ we tacitly assume
that τ(x) �= 0 for μ-almost every x ; in this case we say that μ is a measure
associated to the current T.

Moreover, if T is a k-current with finite mass and μ is an arbitrary measure,
we can write T as T = τμ + ν where τ is a k-vector field in L1(μ), called the
Radon-Nikodym density of T w.r.t. μ, and ν is a measure with values in k-vectors
which is singular with respect to μ.

Let G be a Carnot group. In the previous subsection we have already observed
that G can be identified with Rn , the underlying vector subspace of its Lie algebra,
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endowed with the operation given by the Baker-Campbell-Hausdorff formula. The
1-dimensional currents of finite mass in Rn that are of particular importance for
this paper and for the geometry of G are those that are tangent to the horizontal
distribution of G or simply horizontal.

Definition 2.10. (Horizontal 1-dimensional currents of finite mass) LetG = (Rn, ∗).
A 1-dimensional current of finite mass T = τμ on Rn is said to be G-horizontal,
or simply horizontal, if for μ-almost every x ∈ Rn we have τ(x) ∈ HG(x).

The following definition is a central concept throughout the paper, which is the
integration of a family of measures:

Definition 2.11. (Integration of measures) Let (I, dt) be a (σ -)finite measure space
and for every t ∈ I let μt be a real- or vector-valued measure on G ∼= Rn such that

(a) for every Borel set E in G the function t �→ μt (E) is measurable;
(b)

´
I M(μt ) dt < +∞.

Then we denote by
´

I μt dt the measure on G defined by

[ ´
I μt dt

]
(E) :=

ˆ
I
μt (E) dt for every Borel set E in G.

Note that for every Borel set E in G the function t �→ μt (E) is measurable (Borel)
if and only if t �→ μt is a measurable (Borel) map from I to the space of finite
measures on G endowed with the weak* topology.

We now introduce some notation that will be used throughout the paper.

Definition 2.12. Let B be a Borel subset of R and γ : B → G be a Lipschitz
fragment. We denote by �γ � the current of finite mass that acts on compactly
supported smooth 1-forms ω as

〈�γ � ; ω〉 :=
ˆ

B
〈γ ′(t) ; ω(γ (t))〉dt.

In the following it will be also useful to write �γ � = τγ ρH 1 im(γ ), where ρ
is a suitable non-negative function in L1(H 1 im(γ )) and τγ (x) is a unitary Borel
vector field that coincides with C (x)[vγ (x)], up to a real (non-zero) multiple,
ρH 1 im(γ )-almost everywhere. For the definition of the vector field vγ , see
Lemma 2.9.

With this notation at hand we can introduce the following result (essentially
due to Smirnov, see [49]):

Theorem 2.10. LetG be a Carnot group and letT = τμ be a 1-dimensional normal
and horizontal current with |τ(x)| = 1 forμ-almost every x ∈ G. Then, there exists
a family of vector-valued measures t �→ μt satisfying the hypothesis (a) and (b) of
Definition 2.11 such that
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(i) for almost every t ∈ I , where I is the real line with the Lebesgue measure L 1,
there exists a Lipschitz curve γt : [0, 1] → G for which μt = �γt� and

〈T ; ω〉 =
ˆ

I
〈�γt� ; ω〉 dt =

ˆ
I

ˆ
ρt 〈τγt ; ω〉dH 1 im(γt ) dt

for every smooth and compactly supported 1-form ω;
(ii) if holds that

M(T) =
ˆ

I
M(�γt�) dt =

ˆ
I
‖ρt‖L1(H 1 im(γt ))

dt,

and, in particular, τ(x) = τγt (x) for H 1-almost every x ∈ im(γt ) and for
almost every t ∈ I ;

(iii) the measure μ can be written as μ = ´
I ρtH 1 im(γt )dt.

Further, one can also rewrite T as

〈T ; ω〉 =
ˆ
R

ˆ
I

ˆ
〈τγt ; ω〉dH 1 (im(γt ) ∩ Et,s) dtds, (7)

where Et,s := {x ∈ im(γt ) : ρt (x) ≥ s} and the map (t, s) �→H 1 (im(γt )∩Et,s)

satisfies the hypothesis (a) and (b) of Definition 2.11 relative to I × [0,∞). In
addition,

M(T) =
ˆ
R

ˆ
I
H 1(im(γt ) ∩ Et,s) dtds and μ

=
ˆ
R

ˆ
I
H 1 (im(γt ) ∩ Et,s) dtds, (8)

with τγt (x) = τ(x) for H 1-almost every x ∈ im(γt ) ∩ Et,s and for almost every
(s, t) ∈ R× I .

Proof. Thanks to [44, Theorem 3.1], there exists a family of vector-valued measures
t �→ μt satisfying the hypothesis (a) and (b) of Definition 2.11 such that for L 1-
almost every t ∈ [0,M(T )] there exists a Lipschitz curve γt : [0, 1] → G such that
μt = �γt� and

T=
ˆ

M(T)

0
�γt�dt and M(T)=

ˆ
M(T)

0
M(�γt�)dt=

ˆ
M(T)

0

ˆ 1

0
|γ ′t (s)|ds dt.

(9)

The proof of items (i), (ii) and (iii) can be obtained from the above discussion with
the same argument used for [3, Theorem 5.5]. The only variation on [3, Theorem 5.5]
is how to prove that the fragments γt used to decompose the current are Lipschitz,
where the codomain is endowed with the Carnot-Carathéodory metric. This can be
obtained as follows. The argument in [3, Theorem 5.5] implies that for H 1-almost
every x ∈ im(γt ) and almost every t ∈ I we have

HG(x) � τ(x) = τγt (x),
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which coincides with vγt (x) up to real, non-zero multiples, for H 1-almost every
x ∈ im(γt ) and almost every t ∈ I , see for instance Definition 2.12. This implies
thanks to [42, Proposition 1.3.3] that for H 1 im(γt )-almost every x ∈ Rn and
almost every t the curve γt is horizontal and thus Lipschitz if seen as curve γt :
[0, 1] → G.

The proof of (7) and (8) can be obtained defining applying the Cavalieri formula
writing ρtH 1 im(γt ) =

´∞
0 H 1 (im(γt ) ∩ {ρt ≥ λ})dλ. ��

Remark 2.8. LetT be a horizontal normal current such that ∂T = 0. Then, for every
smooth compactly supported 1-form we have

〈∂T;ω〉 =
ˆ
Rn
〈τ(x); dω(x)〉dμ(x)

=
ˆ
〈τ̃ (x); dHω(x)〉Rn1 dμ(x) = 〈τ̄μ ; dHω〉, (10)

where 〈· ; ·〉Rn1 denotes the dual coupling in Rn1 (we will drop the subscript Rn1 in
the scalar product in the first layer if not otherwise specified) and

τ̃ (x) :=
n1∑

i=1

τi (x)∂i and dHω(x) :=
n1∑

i=1

Xiω(x)dxi , (11)

where τ(x) = ∑n1
i=1 τi (x)Xi (x). It will be convenient in the following to view

horizontal finite mass 1-dimensional currents as Radon measures T ∈M(G,Rn1)

which acts by duality on vector-valued smooth function ω ∈ C∞(G,Rn1).

3. The Decomposability Bundle

In this section we introduce an intrinsic notion of decomposability bundle to
the setting of Carnot groups and we prove some of its elementary properties.

Proposition 3.1. ([9, Proposition 2.3]) Fix 1 ≤ h ≤ Q. For every W1,W2 ∈ Gr(h)
let

dG(W1,W2) := dH ,G(W1 ∩ B(0, 1),W2 ∩ B(0, 1)),

where dH ,G is the Hausdorff distance of sets induced by some homogenous left
invariant distance d onG. Then, dG is a metric on Gr(h). Moreover (Gr(h), dG) is a
compact metric space for every h ∈ {1, . . . , Q} and thus (Gr(G), dG) is a compact
metric space as well.

Lemma 3.2. Let G be a Carnot group. Let μ be a Radon measure on G and let
G be a family of Borel maps from G to Gr(G) which is closed under countable
intersection, in the sense that for every countable family {Vi } ⊂ G the map V
defined by V (x) := ∩i Vi (x) for every x ∈ G belongs to G .

Then G admits an element V which is μ-minimal, in the sense that every other
V ′ ∈ G satisfies V (x) ⊂ V ′(x) for μ-almost every x. Moreover this μ-minimal
element is unique modulo equivalence μ-almost everywhere.
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Proof. The proof of this lemma is identical to its Euclidean counterpart, see [3,
Lemma 2.4]. ��
Definition 3.1. Let μ be a Radon measure on G, let F be a family of Borel vector
fields on G and let G be the class of all Borel maps V : G→ Gr(G) such that, for
every τ ∈ F if holds that

τ(x) ⊆ V (x) for μ -almost every x .

Since G is closed under countable intersection, see Proposition A.1, by Lemma 3.2
it admits a μ-minimal element which is unique modulo equivalence μ-almost ev-
erywhere. We call any of these minimal elements the μ-essential span of F .

Definition 3.2. (Decomposability bundle) Let G be a Carnot group. Given a Radon
measure μ on G we denote by Fμ the class of all families of measures {μt : t ∈ I }
where I is a measured space endowed with a σ -finite measure dt and

(a) each μt is the restriction of H 1 to a 1-Lipschitz fragment γt : Kt → G with
Kt ⊂ R compact;

(b) the map t �→ μt satisfies the assumptions (a) and (b) in Definition 2.11;
(c) the measure

´
I μt dt is absolutely continuous with respect to μ.

We denote by Gμ the class of all Borel maps V : G → Gr(G) such that for every
{μt =H 1 im(γt ) : t ∈ I } ∈ Fμ it holds that

vγt (x) ∈ V (x) for μt -almost every x and almost every t ∈ I, (12)

wherevγt was introduced in Lemma 2.9 and the map (t, x) �→ vγt (x) is Borel thanks
to Lemma A.6. Since Gμ is closed under countable intersection, by Lemma 3.2 it
admits a μ-minimal element. We call any of these minimal elements the decom-
posability bundle of μ, and denote it by x �→ V (μ, x).

Remark 3.1. If we substitute (a) with

(a*) each μt is absolutely continuous with respect to the restriction of H 1 to
a Lipschitz fragment γt in G,

the definition of decomposability bundle does not change. Let us denote with
V ∗(μ, ·) the decomposability bundle that arises from the assumptions (a*), (b)
and (c). The inclusion V (μ, x) ⊆ V ∗(μ, x) is immediately seen to hold μ-almost
everywhere. Therefore, we only need to prove the converse inclusion, i.e. that for
every family of measures μt satisfying (a*), (b) and (c) we have that

vγt (x) ∈ V (μ, x) for μt -almost every x and almost every t ∈ I. (13)

In order to see this, let γ : K → G be a Lipschitz fragment and suppose
μ is a finite measure on G such that μ � H 1 im(γ ). The Radon-Nikodym’s
decomposition theorem implies that there exists a ρ ∈ L1(H 1 im(γ )) such
that μ = ρH 1 im(γ ). Let A ⊆ G be any Borel set and note that the map
t �→H 1(A∩{x : ρ(x) ≥ t}) is monotone. Hence, the measures νt :=H 1(A∩{x :
ρ(x) ≥ t}) satisfy the hypothesis (a) and (b) of Definition 2.11 and thus their integral
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μ̃ := ´∞
0 νt e−t dt is well defined. It is an easy task to check that the measures μ

and μ̃ are mutually absolutely continuous.
Thus, let {μt }t∈I be a family of measures satisfying the hypothesis (a*), (b)

and (c). For every t ∈ I and any s ∈ [0,∞) we denote by νs,t the measure νs,t :=
H 1 im(γt )∩{x : ρt (x) ≥ s}. It is immediate to see that the measures (s, t) �→ νs,t

satisfy item (a) and a standard argument shows that they also satisfy item (b).
In addition, the above discussions proves that the measures

´ ´
νs,t e−sdtds and´

μt dt are mutually absolutely continuous and thus the νs,t satisfy also (c). By
definition of V (μ, x) this implies that

vγt (x) ∈ V (μ, x) for νs,t -almost every x and almost every (s, t) ∈ [0,∞)× I.(14)

In fact, again by the above discussion we know that
´
νs,t e−sds andμt are mutually

absolutely continuous, and thus from (14) we infer that (13) holds. This shows that
V ∗(μ, ·) = V (μ, ·).
Lemma 3.3. Let μ be a Radon measure on G. Then, V (μ, x) ∈ GrC(G) for μ-
almost every x ∈ G. In other words V (μ, x) coincides with the closed subgroup of
G generated by V1 ∩ V (μ, x) for μ-almost every x ∈ G.

Proof. Since vγt (x) ∈ V1 for μt -almost every x , by definition of V (μ, x) we have
that

vγt (x) ∈ V (μ, x) ∩ V1 for μt -almost every x and almost every t ∈ I.

Furthermore since �(x) := S(V1 ∩ V (μ, x)), the homogeneous subgroup gener-
ated by V1∩V (μ, x), is contained in V (μ, x) for every x ∈ G, we just need to show
that the map� is Borel and thus it is a competitor in the definition of V (μ, x). The
map x �→ HV (x) := V1 ∩ V (μ, x) is Borel measurable thanks to Proposition A.1
and hence, since every element W of GrC(G) is uniquely determined by W ∩ V1
and S(V1 ∩ V (μ, x)) ∈ GrC(G), we infer that for every closed set C ⊆ Gr(G) we
have

�−1(C) = �−1(C ∩ GrC(G)) = HV−1({V1 ∩ W ∈ Gr(V1) : W ∈ C ∩ GrC(G)})
= HV−1({V1 ∩ W ∈ Gr(V1) : W ∈ C}). (15)

Since C is closed, the set {V1 ∩ W ∈ Gr(V1) : W ∈ C} is easily proved to
be closed. Finally, thanks to the Borelianity of HV and (15) we thus infer that
S(V1∩V (μ, x))−1(C) is Borel as well and the proof of the proposition is achieved.
��
Definition 3.3. Let us fix a Radon measure μ on G. For every element F ∈ Fμ

we consider the family of all Borel maps V : G → GrC(G) for which (12) holds.
Since this class by Proposition A.1 is closed by countable intersection, by Lemma
3.2 it admits a μ-minimal element V(μ, F, ·) that is unique modulo equivalence
μ-almost everywhere.

Proposition 3.4. Let μ be a Radon measure on G, then
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(i) for every F ∈ Fμ there holds V(μ, F, x) ⊆ V (μ, x) for μ-almost every x;
(ii) there exists G ∈ Fμ such that V(μ,G, x) = V (μ, x) for μ-almost every x.

Proof. The proof of the proposition is identical to its Euclidean counterpart, see
[3, Proposition 2.8]. ��
Proposition 3.5. Letμ,μ′ be Radon measures onG. Then, the following statements
hold:

(i) [strong locality principle] if μ′ � μ then V (μ′, x) = V (μ, x) for μ′-almost
every x. More generally, if 1E μ

′ � μ for some Borel set E ⊂ G, then
V (μ′, x) = V (μ, x) for μ′-almost every x ∈ E,

(ii) there exists a G = {μt : t ∈ I } ∈ Fμ such that for μ-almost every x we have
V(μ,G, x) = V (μ, x) and

μ {x : V (μ, x) �= {0}} �
ˆ

I
μt dt.

Proof. The proof of (i) is identical to its Euclidean counterpart, see [3, Proposition
2.9]. In order to prove (ii) let G ∈ Fμ be the family of measures given by Proposition
3.4 (ii). The Radon-Nikodym decomposition ofμ′ := μ {x : V (μ, x) �= {0}}with
respect to ν := ´

I μt dt yields a Borel set E such thatμ′ E � ν and ν(G\E) = 0.
Observe that the choice of E implies that μt (G \ E) = 0 for almost every t ∈ I .
We need to prove that μ′(G \ E) = 0. Assume by contradiction that this is not the
case, and observe that by point (i) the family G ′ := {μt (G \ E)} ∈ Fμ (G\E)
satisfies that

{0} = V(μ′ (G \ E),G ′, x) = V (μ′ (G \ E), x)

for μ′-almost every x ∈ G \ E . This contradicts the fact that V (μ, x) �= {0} for
μ′-almost every x ∈ G. ��
Proposition 3.6. Let μ be a Radon measure on G and let T be an horizontal 1-
dimensional normal current, see Definition 2.10. Then

π1(τ (x)) ⊆ V (μ, x) for μ-almost every x ∈ G, (16)

where we write T = τμ + σ , with μ and σ being mutually singular, and τ is the
Radon-Nikodym derivative of T with respect to μ.

Remark 3.2. Note that if ‖T‖ and μ are mutually singular, then τ = 0 for μ-almost
every x ∈ G and therefore the inclusion is trivially satisfied.

Proof. Let T = τ ′μ′ with |τ ′(x)| = 1 for μ′-almost every x ∈ G and let {μt }t∈I

be the family of rectifiable measures yielded by Theorem 2.10. Thanks to Theorem
2.10, we know that for every t ∈ I we have μt = �γt� and for almost every t ∈ I
and H 1-almost every x ∈ im(γt ) we have

τ ′(x) = τγt (x) = λC (x)[vγt (x)] for some λ �= 0. (17)
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However, since μ′ = ´
I‖μt‖dt , this implies by definition of decomposability

bundle that

π1(τ
′(x)) ∈ V (μ′, x) for μ′-almost every x ∈ G. (18)

In order to conclude the proof, we need to check that

π1(τ
′(x)) ∈ V (μ, x) μ-almost every x ∈ G.

In order to do so, we just need to check that τ(x)/|τ(x)| = τ ′(x) and V (μ′, x) =
V (μ, x) forμ-almost every x ∈ G. To this end, write T = τ ′μ′ = τμ+σ , whereμ
and σ are mutually singular and where here the vector field τ is the Radon-Nikodym
derivative of T with respect to μ as in the statement of the proposition. Let A be
a Borel set, yielded by the Radon-Nikodym theorem such that μ(A) = 0 and
σ (Ac) = 0 and denote by τ̄ a μ-measurable representative τ . Finally, let E ⊆ Ac

be the μ-measurable where τ̄ �= 0. It is immediate to see that τ ′μ′ E = τμ =
(τ/|τ |)|τ |μ and hence by the uniqueness of the polar decomposition, we infer that
τ ′(x) = τ(x)/|τ(x)| on μ-almost every x ∈ E . Since 1Eμ

′ � μ, Proposition 3.5
(i) implies that V (μ, x) = V (μ′, x) for μ-almost every x ∈ E . This, together with
(18) implies that

π1(τ (x)) ⊆ V (μ, x) for μ-almost every x ∈ E .

This concludes the proof. ��

4. Integrals of Lipschitz Fragments are Pieces of Horizontal Normal
Currents

This section is devoted to the proof of Proposition 4.1. Proposition 4.1 shows
that any vector-valued measure μ which can be represented by integration of nat-
ural vector-valued measures associated to Lipschitz fragments can be closed to a
horizontal normal current by adding to μ another integral of Lipschitz fragments σ

whose total variation can be taken singular with respect to any given Radon measure
η. The strategy of the proof partially follows that of [4, Theorem 1.1], but here the
necessity to construct a horizontal normal current introduces substantial additional
difficulties.

Proposition 4.1. Let (I, dt) be a σ -finite measure space, η be a positive Radon
measure and t �→ μt be a family of vector-valued measures satisfying the hypothesis
(a) and (b) of Definition 2.11 and such that for almost every t ∈ I there exists a
1-Lipschitz fragment γt : Kt → G defined on a compact set Kt of R such that
μt = �γt�. Further more, we let

μ :=
ˆ

I
μt dt. (19)

Then, for every ε0 > 0 there exists a horizontal normal 1-current T on G ∼= Rn

such that ∂T = 0, M(T) ≤ 2
´

I M(μt ) dt + ε0 and T = μ+ σ , where σ and η are
mutually singular and σ is an integration of horizontal Lipschitz fragments as in
(19). In particular one can choose σ ⊥ ‖μ‖.
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Remark 4.1. Given a positive Radon measureμ as in Theorem 7.6, we will construct
vector valued measures μ as in (19) so that μ� ‖μ‖. However, in order to apply
the machinery of Section 7, we will need to improve the regularity of μ to that
of a horizontal normal 1-current T without boundary, such that μ � ‖T‖. The
possibility of this improvement is guaranteed by Proposition 4.1 with the choice
η := ‖μ‖.

Remark 4.2. (Heuristic for the proof of Proposition 4.1) We describe the strategy
of the proof in the simplified case in which the sets Kt on which the fragments γt

are parametrized are finite unions of closed intervals (see Proposition A.4 for the
correct reduction). For each interval, one would like to concatenate the fragment
γt with its reverse path. Of course the corresponding measure σ could fail to be
singular with respect to η. This however could be fixed by shifting the reverse paths
by a miniscule amount, (see Proposition 4.2 for the formal construction) and then
reconnecting in a suitable way to the original path to create loops, see Fig. 1.

Definition 4.1. (Distance on fragments) Denote by F the set of all 1-Lipschitz
fragments, i.e. the set of all those 1-Lipschitz maps γ : K → G, where K is a
compact subset of the real line. Denoted with deu,H the Hausdorff distance of the
graphs gr(γ ) := {(t, γ (t)) : t ∈ dom(γ )}, where dom(γ ) is the domain of γ . It is
immediate to see that F is a complete and separable metric space.

Let N ∈ N. In the following we denote by XN ⊆ F the family of the fragments
γ : dom(γ )→ G where γ is a 1-Lipschitz fragment and dom(γ ) is a union of at
most N disjoint compact intervals. In addition, we let X := ∪N∈NXN . Note that
XN ⊆ XM whenever N ≤ M and that XN is closed for every N ∈ N.

In the next proposition we show how to approximate any element of F, that is,
any 1-Lipschitz fragment γ : K �→ G, with an element γ̃ of XN for some N , in
such a way that the current �γ �−�γ̃ � has small mass. This is done by first extending
γ to a 1-Lipschitz curve defined on IK := [min K ,max K ] and then restricting the
extension to the complement in IK of those intervals that constitute IK \K and that
have sufficiently large measure.

Remark 4.3. By Remark 2.2, the Euclidean metric onG ∼= Rn and any left-invariant
homogeneous distance on G are locally Hölder equivalent therefore the topologies
respectively induced by their Hausdorff distances of graphs on XN are equivalent
as well.

Proposition 4.2. Let K be a compact subset of the real line of positiveL 1-measure
and assume that γ : K → G is a Lipschitz fragment, let η be a positive and finite
Radon measure on G. Then, there exists a set of full measure of vectors v ∈ G such
that η and H 1 (v ∗ im(γ )) are mutually singular.

Proof. Without loss of generality we can prove that η and H 1 (v ∗ im(γ )) are
mutually singular for almost every v ∈ B(0, 1) and we can assume that η is finite
by restricting η to a ball that compactly contains∪v∈B(0,1)v∗ im(γ ). We can further
assume that η and L n are mutually singular. Indeed, if we write η = ηa+ηs where
ηa � L n and ηs ⊥ L n , for every Lipschitz fragment γ and for every v ∈ B(0, 1)
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we have that H 1 (v ∗ im(γ )) and ηa are mutually singular. Let A ⊂ G be a Borel
set such that L n(A) = 0 and η(Ac) = 0 and observe that by Tonelli’s theorem

ˆ
B(0,1)

(τv)�H
1 (im(γ ))(A)dL n(v)

=
ˆ

im(γ )
L n(B(0, 1) ∩ A ∗ w−1)dH 1(w) = 0,

where τv is the left translation and the last equality follows from the right-invariance
of L n . The Borelianity of the map v �→H 1 im(γ )(v−1∗ A) can be checked with
the standard techniques and it is omitted. We deduce that (τv)�H 1 im(γ )(A) =
0 for L n-almost every v ∈ B(0, 1), so that for those v’s the measures η and
H 1 (v ∗ im(γ )) are mutually singular. ��
Proof of Proposition 4.1. We divide the proof in several steps. As this is one of
the most technical proof of the paper, let us anticipate here the content of each
step, before entering into the technical details, see also Remark 4.2. In Step 1, we
approximate in mass the vector measure μ with an integral of fragments in XN .
In Step 2 we further approximate in flat norm such integral with a finite sum of
fragments in XN . In Step 3 we perform the “shifting” described in Remark 4.2. In
Step 4 we iterate such construction and conclude the proof.

Throughout the proof we fix 0 < ε <
´

I M(μt )dt/10. Without loss of gen-
erality, we can assume that the μt ’s are supported on the closed ball B(0, R) for
some R > 0 and that I is R and dt is the Lebesgue measure, see [3, Remark
2.7 (iii)]. Thanks to the assumption that the masses of the μt are summable, i.e.´
RM(μt )dt < ∞, for every ε > 0 there exists a compact interval Ĩ such that´
R\ Ĩ M(μt )dt < ε/12.

Step 1 (Approximation of μ in mass with a continuous integral of fragments
in XN ) Since the family of measures {μt }t∈ Ĩ satisfies the hypothesis (a) and (b) of
Definition 2.11, Proposition A.4 implies that for every ε > 0 there exists a Borel
set Iε ⊂ Ĩ , N ∈ N and a Borel map cε : Iε →M (Rn,Rn) such that

• for every t ∈ Iε we have cε(t) = ��(t)� where the map � : Iε → XN is a Borel
map with respect to the metric deu,H introduced in Definition 4.1;

• ´
Ĩ\Iε

M(μs) ds ≤ ε/12,
´

Iε
M(μs − cε(s)) ds < ε/12 and ‖M(cε(s))‖L∞(Iε)

<∞.

By property (b) of Definition 2.11 and the assumption that each μt is supported on
B(0, R), we may assume, that cε(s) are supported in the ball B(0, 2R). Furthermore,
since the measures cε(s) have uniformly bounded masses, we deduce that cε takes
values in a complete separable metric space. Thanks to Lusin’s theorem and by the
absolute continuity of the integral, guaranteed by property (b) of Definition 2.11,
we can find a closed subset J ⊂ Iε and a (possibly new and larger) N ∈ N such
that

´
Iε\J M(μs) ds ≤ ε/12, L 1(Iε \ J ) ≤ εL 1(Iε) and

(i) the maps cε : J → M (Rn,Rn) and � : J → XN are continuous with respect
to the weak* topology and deu,H respectively, see Definition 4.1 and Remark
4.3;

(ii) analogously the function t �→ M(�(t)) can be supposed to be continuous on J ;



Arch. Rational Mech. Anal.           (2025) 249:3 Page 21 of 76     3 

(iii) �(J ) ⊆ {γ ∈ XN : dom(γ ) ⊆ [−N , N ]}.
(iv) denoting μ̄1 :=

´
J cε(t) dt , we see that the vector-valued measure μ − μ̄1 is

an integral of (horizontal) Lipschitz fragments in the sense of (19) and that if
holds thatˆ

I\J
M(μs) ds ≤ ε/6 and

ˆ
J
M(μs − cε(s)) ds ≤ ε/6. (20)

Step 2 (Flat approximation of μ̄1 with a finite sum N of fragments in XN ) In
this step we will prove the following claim. There exists δ = δ(ε) such that for
every τ0 ∈ J and every Borel set A ⊂ J ∩ (τ0 − δ, τ0 + δ) there exists t0 ∈ A such
that denoting NA := L 1(A)��(t0)� and TA :=

´
A��(s)�ds the following holds:

M(NA) ≤
ˆ

A
M(��(t)�) dt. (21)

Moreover, there are a horizontal 1-current RA and an Euclidean 2-current SA such
that

NA − TA = RA + ∂SA with M(SA) < ε
L 1(A)

L 1(J )
, (22)

and RA =
´

I �νt� dt , where t �→ νt satisfies the hypothesis of Proposition 4.1 and

ˆ
I
M(νt ) dt ≤ εL

1(A)

L 1(J )
. (23)

In the next paragraph, we reduce the construction of t0, RA and SA satisfying
(22) and (23) to the following claim. For every 0 < d < 1 and for every s, t ∈ J
such that deu,H (�(s), �(t)) ≤ d there are a horizontal 1-current R(t, s) and an
Euclidean 2-current S(t, s) for which

��(t)�− ��(s)� = R(t, s)+ ∂S(t, s), with M(S(t, s)) ≤ C(N )d
1
s , (24)

where C(N ) is a constant depending only on N and R(t, s) := ∑L(t,s)
i=1 νi

t,s with
L(t, s) ≤ C(N ) and νi

t,s is (the current associated to) a Lipschitz fragment defined
on a compact interval with values in G, and

L(t,s)∑
i=1

M(νi
t,s) ≤ C(N )d

1
s . (25)

Further, for every t ∈ J fixed, the currents R(t, s) and S(t, s) can be chosen in a
Borel way on a sufficiently small neighbourhood of t in J .

Taking for granted that the above claim holds true, we pick t0 ∈ J in such a
way that

M(��(t0)�) ≤
 

A
M(��(s)�)ds.
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We thus define that

RA :=
ˆ

A
R(t0, s) ds and SA :=

ˆ
A
S(t0, s) ds.

With these definitions, let us note that

NA − TA = L 1(A)��(t0)�−
ˆ

A
��(s)� ds

=
ˆ

A
R(t0, s)+ ∂S(t0, s) ds = RA + ∂SA,

where the last identity follows from the fact that the boundary commutes with
integration. Note that thanks to the choice of t0 we immediately infer that M(NA) ≤´

A M(��(s)�)ds and hence (21) follows. Let us choose δ > 0 sufficiently small in
such a way that deu,H (�(s), �(t0)) ≤ (L 1(J )−1C(N )−1ε)s for all |s − t0| < δ.
Note that δ is independent on t0 by the uniform continuity of s �→ �(s) on J . Then

M(SA) = M
( ˆ

A
S(t0, s)ds

)
≤ C(N )d

1
sL 1(A) ≤ εL

1(A)

L 1(J )
.

This shows that the claim implies (22). Finally, let us note thatRA =
´

A

∑L(s)
i=1 νi

s ds
and thus RA is a horizontal 1-current and

ˆ
A

L(t)∑
i=1

M(νi
t ) ≤ C(N )d

1
sL 1(A) ≤ εL

1(A)

L 1(J )
.

This concludes the proof of the fact that our claim implies the sought conclusion
of step 2.

Let us move to the proof of (24) and (25). Let s, t ∈ J such that deu,H
(�(s), �(t)) ≤ d, and observe that, for every z ∈ Ks,t := dom(�(s))∩dom(�(t)),
if holds that

|�(s)(z)− �(t)(z)| ≤ 2d. (26)

Note that if Ks,t = ∅, then (25) follows easily from deu,H (�(s), �(t)) ≤ d.
Indeed, since Ks,t = ∅, on the one hand we know that dom(�(t)) and dom(�(s))
are disjoint. On the other, that they are the union of at most N intervals and

deu,H (dom(�(t)), dom(�(s))) ≤ deu,H (�(s), �(t)) ≤ d.

This implies in particular that

sup
x∈dom(�(s))

dist(x, dom(�(t))) ≤ dand sup
y∈dom(�(s))

dist(y, dom(�(t))) ≤ d.

The fact that the two sets are disjoint with the above estimates implies that
L 1(dom(�(t)) ∪ dom(�(s))) ≤ 2Nd. Therefore, they satisfy ��(t)�− ��(s)� =
R(t, s), with

M(R(t, s)) ≤ 2Nd,
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thanks to the 1-Lipschitzianity of the curves �(s) and �(t), which is the sought
estimate (25).

Suppose now Ks,t �= ∅. Consider now the map g : Ks,t × [0, d] → G given
by

g(σ, τ ) =
(

1− τ
d

)
�(s)(σ )+ τ

d
�(t)(σ ).

Let us observe that thanks to our choice of J and since s, t ∈ J we have that Ks,t

has the form Ks,t =⋃M
i=1[ai , bi ], for some number M ≤ 2N . Moreover it is easy

to check that g is 3-Lipschitz, because it is 1-Lipschitz in the variable σ , being
an Euclidean convex combination of 1-Lipschitz maps, and it is 2-Lipschitz in the
variable τ , due to (26). Let us further denote that

S0 := g��Ks,t × [0, d]� = g#

(
e1 ∧ e2 L

2 Ks,t × [0, d]
)
,

R0 :=
M∑

i=1

g(bi , ·)��[0, d]�−
M∑

i=1

g(ai , ·)��[0, d]�+ ��(t) (dom(�(t)) \ Ks,t )�

− ��(s) (dom(�(s)) \ Ks,t )�,

(27)

where g# denotes the pushforward of currents through the map g, see [34, §7.4.2].
Note that since �Ks,t×[0, d]� is a 2-dimensional normal current inR2, the 2-current
S0 is well defined thanks to [22, §4.1.14] or [34, Lemma 7.4.3]. Notice also that by
definition of S0 and R0 we have

��(t)�− ��(s)� = R0 + ∂S0, (28)

and this can be seen by recalling that pushforward and boundary are two commuting
operators, i.e. ∂g#T = g#∂T for every 2-dimensional normal current T. However
S0 and R0 do not satisfy (24) and (25) since R0 is not horizontal.

Therefore, for every i = 1, . . . ,M let us denoteψai a geodesic joining g(ai , 0)
to g(ai , d) and ψbi a geodesic joining g(bi , 0) to g(bi , d) and define

Ri := �ψai �− g(ai , ·)��[0, d]�− �ψbi �+ g(bi , ·)��[0, d]�,
for i = 1, . . . ,M . Since we are working inside the fixed compact set B(0, R), there
exists a constant C(R,G) such that

M(Ri ) ≤ C(R,G)d
1
s , (29)

and this is a consequence of Remark 2.2. Let Sai and Sbi be 2-dimensional currents
with boundary g(ai , ·)��[0, d]�− �ψai � and g(bi , ·)��[0, d]�− �ψbi �, respectively,
and

M(Sai )+ M(Sbi ) ≤ Cd
1
s . (30)
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Fig. 1. The image shows the filling 2-dimensional surfaces with horizontal boundaries at-
taching the curves �(s) to �(t)

The choice of such Sai ’s and Sbi ’s, with the above control on their mass, is
achievable thanks to the classical cone construction, see for instance [48, (26.26)].
We further define Si := Sai − Sbi and

S(t, s) := S0 +
M∑

i=1

Si and R(t, s) := R0 +
M∑

i=1

Ri . (31)

Let us note that S(t, s) is an Euclidean 2-current, and since

R(t, s) = ��(t) (dom(γ̄t ) \ Ks,t )�− ��(s) (dom(γ̄s) \ Ks,t )�

−
M∑

i=1

�ψai �+
M∑

i=1

�ψbi �,

we infer that R(t, s) is a horizontal 1-current and

M(��(t) (dom(γ̄t ) \ Ks,t )�)+ M(��(t) (dom(γ̄s) \ Ks,t )�)+
M∑

i=1

M(Rai )

+
M∑

i=1

M(Rbi ) ≤ C(N )d
1
s ,

where the last inequality follows from (29). Hence, the above bound shows that
(25) holds. In addition, (28) together with the definition of Sai , Sbi , R0 and Ri we
have ��(t)�− ��(s)� = R(t, s)+ ∂S(t, s). Thanks to [22, §4.1.14] we have that

M(S0) ≤ Lip(g)2M(�Ks,t × [0, d]�) ≤ 18Nd,

and thus by (30), we infer that M(S(t, s)) ≤ C(N )d
1
s . This concludes the proof of

(24) and hence of the Step 2.
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Step 3 (Translating the curves of N infinitesimally to make them singular with
respect to η) Let us take δ as in the beginning of Step 2 and finitely many dis-
joint Borel sets A j of diameter less than 2δ such that

⋃
j A j = J . Denote NA j

and t0, j ∈ A j be the corresponding currents and times constructed in Step 2 and
T1 := ∑

j NA j =
∑

j L
1(A j )��(t0, j )�. Notice that by (20) and (21) there are a

horizontal 1-current Rα1 and an Euclidean 2-current Sα1 such that

M(T1) ≤
∑

j

L 1(A j )M(��(t0, j )�) ≤
ˆ

J
‖μt‖ dt (32)

and by (22)

μ̄1 − T1 = Rα1 + ∂Sα1 , with M(Sα1 ) < ε, (33)

where μ̄1 is the vector-valued measure defined in (iv) in Step 1,Sα1 is a 2-dimensional
(Euclidean) normal current, Rα1 = ´

I νt dt and here νt are horizontal 1-currents
associated to Lipschitz fragments with values in G such that

ˆ
I
M(νt ) dt ≤ ε.

Let γ : [0, 1] → G be a Lipschitz curve. Note that applying Proposition 4.2 to the
curve γ we infer that for L n-almost every v ∈ B(0, ε2s) we have that �v ∗ γ � and
η are mutually singular since �v ∗ γ � and H 1 v ∗ im(γ ) are mutually absolutely
continuous and that deu,H (γ, v ∗ γ ) ≤ ε2s. In addition, we can choose such
δγ < ε

2s so small that the argument in Step 2 with the choice d = δγ implies that
we can find a horizontal 1-current Rγ and an Euclidean 2-current Sγ such that

�γ �− �v ∗ γ � = Rγ + ∂Sγ , with M(Sγ ) ≤ ε/L 1(J ), (34)

where Rγ :=∑L
i=1 νi

t,s and each νi
t,s is a finite sum of Lipschitz curves defined on

compact intervals with values in G, and
∑L

i=1 M(ν
i
t,s) ≤ ε/6L 1(J ). Since T1 =∑

j L
1(A j )��(t0, j )�, applying the above argument for each j we infer that there

are vectors v j ∈ B(0, ε2s) as above. Therefore, definedZ1 :=∑
j L

1(A j )�v j∗γ j �
we infer that

μ− Z1 = (μ− μ̄1)+ (μ̄1 − Z1) = (μ− μ̄1)+ μ̄1 − T1 + T1 − Z1

= (μ− μ̄1)+ Rα1 + ∂Sα1 +
∑

j

L 1(A)(�γ j �− �v ∗ γ j �)

= (μ− μ̄1)+ Rα1 + ∂Sα1 +
∑

j

L 1(A)(Rγ j + ∂Sγ j )

= (μ− μ̄1)+
(
Rα1 +

∑
j

L 1(A)Rγ j

)
+ ∂

(
Sα1 +

∑
j

L 1(A)∂Sγ j

)

=: (μ− μ̄1)+ R1 + ∂S1.
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In addition, note that

M(Z1) ≤
∑

j

L 1(A j )M(�v j ∗ �(t0, j )�)

≤
∑

j

L 1(A j )M(��(t0, j )�) ≤
ˆ

I
M(μt ) dt.

Define for future convenience μ2 := (μ − μ̄1) + R1 and note that R1 can be
written as

´
I �σt� dt where t �→ σt is a suitable Borel map with values in F defined

on compact intervals and such that
´

I M(�σt�) dt ≤ ε/3. Note that t �→ �σt�
coincides with a Borel thanks to Lemma A.3 up to negligible sets. With abuse of
notations we will denote by t �→ �σt� such Borel map. This implies that

μ2 = μ− μ̄1 + R1 =
ˆ

I\J
μt dt +

ˆ
J
(μt − cε(t)) dt +

ˆ
I
�σt� dt =

ˆ
I
μ2,t dt,

where in the last identity we reparametrized the integrals in the second term thanks
to [3, Remark 2.7 (iii)]. Furthermore, we note thatˆ

I
M(μ2,t ) dt ≤ ε.

Finally it is immediately appart that M(S1) ≤ 2ε.
Step 4 (Iteration of the previous steps) We obtain the current T by iterating on

the previous steps, as follows. Chosen ε = ε0/4 and applying Steps 1, 2 and 3 to the
fragments {μt }t∈I we obtain currents Z1, R1, S1 and a measurable family {μ2,t }t∈I

of currents associated Lipschitz fragments with values in G with the properties
described in Step 3 above. In particular, Z1 and η are mutually singular.

We can thus apply again Steps 1, 2 and 3 with the choice ε = ε0/42 to the
fragments {μ2,t }t∈I obtaining currents Z2, R2, S2 and a vector-valued measure μ̄2
such that

μ2 − Z2 = (μ2 − μ̄2)+ R2 + ∂S2, M(S2) ≤ 2ε0/4
2, M(Z2) ≤

ˆ
I
M(μ2,t ) dt,

where μ2 =
´

I μ2,t dt and μ3 := (μ2 − μ̄2) + R2 can be represented by μ3 =´
I μ3,t dt where {μ3,t }t∈I is a measurable family of currents associated Lipschitz

fragments with values in G such that

M(μ3) ≤
ˆ

I
M(μ3,t ) dt ≤ ε0/4

2.

Note further that

μ = (Z1 + Z2)+ μ3 + ∂(S1 + S2).

Iterating the procedure, we construct a sequence of horizontal 1-currents {Zi }i∈N,
a sequence of Euclidean 2-currents {Si }i∈N and a sequence of family of currents
{μ j,t : t ∈ I } such that, defined μ j :=

´
I μ j,t dt for every j ∈ N, we have

μ−
j∑

i=1

Zi = μ j+1 + ∂
( j∑

i=1

Si

)
, (35)
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we have M(Si ) ≤ 2ε0/4i for every i ∈ N and

M(Zi ) ≤
ˆ

I
M(μi,t ) dt ≤ ε0/4

i and M(μi ) ≤
ˆ

I
M(μi,t ) dt ≤ ε0/4

i ,

for every natural i ≥ 2. Note that defined σ := −∑
i∈N Zi and S := ∑

i∈N Si

these conditions imply that

μ+ σ = ∂S, M(σ ) ≤
ˆ

I
M(μt )dt + ε0, M(S) ≤ ε0,

where the first identity holds since M(μ j ) converges to 0 as j → ∞. Finally,
denoted T := μ+ σ we get the sought conclusion since by construction each Zi is
mutually singular with respect to η and since ∂T = 0 as T is already the boundary
of S. ��
Corollary 4.3. Let (I, dt) be a σ -finite measure space, η be a positive Radon mea-
sure and t �→ μt be a family of vector-valued measures satisfying the hypothesis
(a) and (b) of Definition 2.11 and such that for almost every t ∈ I there exists a
1-Lipschitz fragment γt : Kt → G defined on a compact set Kt of R such that
μt = �γt�. Suppose, further, that there exists ϑ ∈ (0, 1) and e ∈ V1 such that

Dγt (s) ∈ C(e, ϑ) for L 1-almost every s ∈ Kt and almost every t ∈ I.

Then, defined μ := ´
I μt dt we have ‖μ‖ and

´
I‖μt‖ dt are mutually absolutely

continuous and for every ε0 > 0 there exists a horizontal normal 1-current T on
G ∼= Rn such that ∂T = 0,M(T) ≤ 2

´
I M(μt ) dt+ε0 andT = μ+σ , where σ and

η are mutually singular and σ is an integration of horizontal Lipschitz fragments
as in (19) and

dT(x)
d‖T‖ ∈ C (x)[C(e, ϑ)] \ {0} for ‖μ‖-almost every x ∈ G. (36)

Proof. First of all, it is immediate to see that ‖μ‖ � ν where ν := ´
I ‖μt‖ dt . Let

us then prove that ν � ‖μ‖. Note that for every t ∈ I , for every Borel set we have
that ‖μt‖ is the measure that acts as

‖μt‖(E) =
ˆ
γ−1

t (E)
|γ ′t (s)| ds for every Borel set E ⊆ G.

Therefore let E be any bounded Borel set. By the very definition of total variation
we know that

‖μ‖(E) ≥
∣∣∣ˆ

I

ˆ
γ−1

t (E)
γ ′t (s) ds dt

∣∣∣ ≥ 〈 ˆ
I

ˆ
γ−1

t (E)
γ ′t (s) ds dt ; e

〉
. (37)

It is furthermore clear that〈 ˆ
γ−1

t (E)
γ ′t (s) ds, e

〉
=
ˆ
γ−1

t (E)
〈γ ′t (s); e〉 ds

=
ˆ
γ−1

t (E)
|γ ′t (s)|

〈 γ ′t (s)
|γ ′t (s)|

; e
〉

dL 1 {γ ′t �= 0}(s). (38)
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However, let us note that for every s ∈ γ−1
t (E) such that γ ′t (s) �= 0, we have

〈 γ ′t (s)
|γ ′t (s)|

; e
〉
= 〈Dγ (t); e〉

|γ ′t (s)|
≥ (1− ϑ2)

|Dγt (t)|
|γ ′t (s)|

≥ (1− ϑ
2)

‖C ‖∞,E . (39)

Therefore, from (37), (38) and (39) we infer that

‖μ‖(E) ≥
ˆ

I

ˆ
γ−1

t (E)
|γ ′t (s)|

〈 γ ′t (s)
|γ ′t (s)|

; e
〉

dL 1 {γ ′t �= 0}(s) dt

≥
∑
j∈N

1− ϑ2

‖C ‖∞,E
ˆ

I

ˆ
γ−1

t (E)
|γ ′t (s)| dL 1 {γ ′t �= 0}(s) dt

=
∑
j∈N

1− ϑ2

‖C ‖∞,E
ˆ

I
‖μt‖(E)dt.

This shows that if ‖μ‖(E) = 0, we deduce that
´

I ‖μt‖(E) dt = 0. This shows
that ν � ‖μ‖.

Thanks to Proposition 4.1 we know that for every ε0 > 0 there exists a horizontal
normal 1-current T on G ∼= Rn such that ∂T = 0, M(T) ≤ 2

´
I M(μt ) dt + ε0 and

T = μ + σ , where σ and μ are mutually singular and σ is an integration of
horizontal Lipschitz fragments as in (19).

We are left to check (36). Thanks to [6, Theorem 2.22], we know that

dT(x)
d‖μ‖ = lim

r→0

T(U (x, r))
‖μ‖(U (x, r)) = lim

r→0

μ(U (x, r))+ σ (U (x, r))

‖μ‖(U (x, r))
= lim

r→0

μ(U (x, r))

‖μ‖(U (x, r)) , for ‖μ‖-almost every x ∈ G,

where as usual U (x, r) denotes the closed Euclidean ball with centre x and radius
r > 0. Reasoning as above one immediately infers that

dT(x)
d‖T‖ = lim

r→0

μ(U (x, r))

‖μ‖(U (x, r)) , for ‖μ‖-almost every x ∈ G. (40)

And further, sinceT is horizontal, we deduce by Proposition 4.1 that dT(x)
d‖T‖ ∈ HG(x)

for ‖T‖-almost every x ∈ G. Finally, for ‖μ‖-almost every x ∈ G and every r > 0
we have

〈μ(U (x, r)); e〉 =
〈ˆ

I

ˆ
γ−1

t (U (x,r))
γ ′t (s) ds dt ; e

〉
=
ˆ

I

ˆ
γ−1

t (U (x,r))
〈γ ′t (s); e〉 ds dt

≥ (1− ϑ2)

ˆ
I

ˆ
γ−1

t (U (x,r))
|π1(γ

′
t (s))| ds dt

≥ (1− ϑ2)

∣∣∣π1

(ˆ
I

ˆ
γ−1

t (U (x,r))
γ ′t (s) ds dt

)∣∣∣
= (1− ϑ2)|π1

(
μ(U (x, r))

)|.
The above computation and (40) show immediately that dT(x)

d‖T‖ ∈ C (x)[C(e, ϑ)] \
{0} for ‖μ‖-almost every x ∈ G. ��
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5. Auxiliary Decomposability Bundle

In this section we relate the decomposability bundle to the existence of suitable
horizontal normal currents, which is the key step in the proof of the main theorem;
compare with [3, Section 6].

Definition 5.1. (Auxiliary decomposability bundle) Let μ be a Radon measure
on G. For every x ∈ supp(μ) we denote with N (μ, x) the set of all vectors of
v ∈ HG(x), see (5), for which there exists a horizontal 1-dimensional normal
current T with ∂T = 0 such that

lim sup
r→0

M((T− vμ) U (x, r))

μ(U (x, r))
= 0,

where we recall that U (x, r) denotes the closed Euclidean ball centred at x of radius
r .

Remark 5.1. Let us recall that throughout the paper we have identified G with Rn

by means of the exponential map. Therefore, the elements of N (μ, x) are vectors
of Rn and hence N (μ, x) it is easily seen to be a linear subspace of G ∼= Rn . More
specifically, N (μ, x) is a vector subspace of C (x)[V1] = HG(x).

Lemma 5.1. For every Radon measure μ, the map x �→ N (μ, x) seen as a map
from G ∼= Rn to Greu(G), see Definition 2.4, is universally measurable.

Proof. The proof can be achieved following the argument used to prove [3, Lemma
6.9]. (the only difference is that here the vector v is forced to lie in the smooth
distribution of n1-dimensional planes C (x)[V1] = HG(x)): ��
Proposition 5.2. For every Radon measure μ on G and every 1-dimensional hor-
izontal normal current T with ∂T = 0, if we denote by τ the Radon-Nikodym
derivative of T with respect to μ, we have

τ(x) ∈ N (μ, x) for μ-almost every x ∈ G.

Proof. Indeed, let T = τμ + σ , where σ and μ are mutually singular. Then by
Lebesgue-Besicovitch differentiation theorem, see [6, Theorem 2.22], we have

lim sup
r→0

M((T− τ(x)μ) U (x, r))

μ(U (x, r))
≤ lim sup

r→0

 
U (x,r)

|τ(y)− τ(x)|dμ(y)

+ lim sup
r→0

σ (U (x, r))

μ(U (x, r))
= 0,

for μ-almost every x ∈ G, which in turn implies that τ(x) ∈ N (μ, x). ��
The next lemma is the counterpart of [3, Lemma 6.11]. The main difference in

the proof of these two statements is that in Lemma 5.3 we are adding the requirement
that T is horizontal. In the proof we find disjoint Euclidean balls U where the
measure τμ is well approximated by some boundary-less currentTU . In [3, Lemma
6.11] the idea is to close each TU on the boundary of U . This however is not
possible to obtain here, still maintaining T horizontal. Therefore, we must employ
Proposition 4.1 to suitably patch together all the TU s.
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Lemma 5.3. Let μ be a Radon measure on G and suppose τ is an L1(μ) vector
field such that τ(x) ∈ N (μ, x) for μ-almost every x ∈ G. Then, for every ε0 > 0
there exists an horizontal normal current T on G such that

(i) ‖τ̃−τ‖L1(μ) ≤ ‖τ‖L1(μ)/2 where τ̃ is the Radon-Nikodym derivative of T with
respect to μ;

(ii) ∂T = 0 and M(T) ≤ 2(1+ 2ε0)‖τ‖L1(μ).

Proof. If τ(x) = 0 for μ-almost every x ∈ G there is nothing to prove and hence
we may assume that τ is non-trivial. Let 0 < ε ≤ ‖τ‖L1(μ)ε0/(4M(μ)+2) and note
that thanks to Lebesgue’s differentiation theorem, see for instance [22, Corollary
2.9.9], for μ-almost every x ∈ G there exists an r0(x) > 0 such that for every
0 < s < r0(x) we have

 
U (x,s)

|τ(y)− τ(x)|dμ(y) ≤ ε.

Therefore, thanks to [22, Corollary 2.8.15] and the fact that τ(x) ∈ N (μ, x) for
μ-almost every x ∈ G, we can find countably many closed and disjoint Euclidean
balls {U (xi , ri )}i∈N such that

1. μ(G \⋃i U (xi , ri )) = 0,
2. for every i ∈ N we have

ffl
U (xi ,ri )

|τ(y) − τ(xi )|dμ(y) ≤ ε and we can find a
1-dimensional horizontal normal current Ti = τiμi such that ∂Ti = 0 and

M
(
(Ti − τ(xi )μ) U (xi , ri )

) ≤ εμ(U (xi , ri )). (41)

In the following we will take the currents Ti , we will decompose each one in
curves thanks to Smirnov’s theorem Theorem 2.10 and we will restrict to each ball
U (xi , ri ) the curves of the decomposition of Ti . Then, we will be able to apply
Proposition 4.1 to patch together these curves and get the normal current T.

Thanks to Theorem 2.10 and [3, Remark 2.7 (iii)], for every i ∈ N we can find
a family of vector-valued measures t �→ ηi

t satisfying the hypothesis (a) and (b)
of Definition 2.11 with the measure space (R,L 1) and such that for every i ∈ N
and for almost every t ∈ R there exists a 1-Lipschitz curve γ i

t : Kt → G such
that ηi

t = �γ i
t � = τγ i

t
ρt,iH 1 im(γ i

t ), recall that τγ i
t

and ρt,i were introduced in
Definition 2.12, and that

〈Ti ; ω〉 =
ˆ
R
〈�γ i

t � ; ω〉 dt for every smooth and compactly supported 1-form ω,

In addition, Theorem 2.10 tells us also that τi = τγ i
t

for ρt,iH 1 im(γ i
t )-almost

every x ∈ Rn and almost every t ∈ R. Let I be the measure space defined as N×R
endowed with the measure H 0 ⊗L 1. Here the parameter i ∈ N indexes the ball
U (xi , ri ) and for a fixed i ∈ N, the parameter t ∈ R indexes the curve γ i

t . Let
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η(i, t) := ηi
t U (xi , ri ). Note, further, that

ˆ
I
M(η(s)) ds =

∑
i∈N

M(Ti U (xi , ri ))
(41)≤

∑
i∈N

M(τ (xi )μ U (xi , ri ))

+ εμ(U (xi , ri ))

≤ εM(μ)+
∑
i∈N
μ(U (xi , ri ))|τ(xi )| ≤ 2εM(μ)

+
∑
i∈N
μ(U (xi , ri ))

 
U (xi ,ri )

|τ(y)| dμ(y) ≤ 2εM(μ)+ ‖τ‖L1(μ).

Therefore, thanks to Proposition 4.1 there exists a 1-dimensional horizontal normal
current T such that ∂T = 0, M(T) ≤ (4M(μ) + 1)ε + 2‖τ‖L1(μ) and T = ν + σ

where

ν :=
ˆ
N×R

η(i, t)dH 0( j)⊗L 1(t),

and the measures
∑

i∈N‖Ti U (xi , ri )‖ + μ and σ are mutually singular. This
guarantees that the Radon-Nikodym derivative of T with respect to μ inside the
ball U (xi , ri ) coincides with τi . More precisely, thanks to the choice of σ and to
Radon-Nikodym’s decomposition theorem we can write T as

T =
∑
i∈N

dTi

dμ
μ U (xi , ri )+

∑
i∈N

σ i + σ , (42)

where the σ i ’s are vector valued measures supported on U (xi , ri ) singular with
respect to μ U (xi , ri ), such that Ti U (xi , ri ) = dTi

dμ μ U (xi , ri )+ σ i . Hence,
if we write T as T = τ̃μ+ σ̃ , where μ and σ̃ are mutually singular, then

τ̃ (y) = dTi

dμ
(y) for μ-almost every y ∈ U (xi , ri ).

Hence
ˆ
|τ̃ (y)− τ(y)|dμ(y) =

∞∑
i=1

ˆ
U (xi ,ri )

|τ̃ (y)− τ(y)|dμ(y)

≤
∞∑

i=1

ˆ
U (xi ,ri )

|τ̃ (y)− τ(xi )|dμ(y)+ εM(μ)

=
∞∑

i=1

ˆ
U (xi ,ri )

∣∣∣dTi

dμ
(y)− τ(xi )

∣∣∣dμ(y)+ εM(μ).
(43)

Inequality (41) can be rewritten, thanks to (42), as

εμ(U (xi , ri )) ≥ M
(
(Ti − τ(xi )μ) U (xi , ri )

)
≥
ˆ

U (xi ,ri )

∣∣∣dTi

dμ
(y)− τ(xi )

∣∣∣dμ(z). (44)
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Putting together (43) and (44) we conclude that
ˆ
|τ̃ (y)− τ(y)|dμ(y) ≤ 2εM(μ).

Finally, thanks to the choice of ε > 0, we have

M(T) ≤ (4M(μ)+ 1)ε + 2‖τ‖L1(μ) ≤ 2(1+ 2ε0)‖τ‖L1(μ).

��
Proposition 5.4. Let μ be a finite measure on G and suppose τ is an L1(μ) vector
field such that τ(x) ∈ N (μ, x) for μ-almost every x ∈ G. Then there exists an
horizontal normal current T on G such that

(i) the Radon-Nikodym derivative of T with respect to μ coincides μ-almost ev-
erywhere with τ , that is T = τμ+ σ where σ and μ are mutually singular;

(ii) ∂T = 0 and M(T) ≤ 4‖τ‖L1(μ).

Proof. The proof of the proposition follows verbatim that of [3, Proposition 6.3]
where we replace [3, Lemma 6.11] with Lemma 5.3. ��
Remark 5.2. Note that if we substitute to item (a) of Definition 3.2 the assumption

(a**) each μt is absolutely continuous with respect to the restriction of H 1

to the image of a fragment γt ∈ F such that γt is 2-bi-Lipschitz as well, i.e.
dc(γt (σ ), γt (τ )) ≥ |σ − τ |/2 for every σ, τ ∈ dom(γt ).

then the notion of decomposability bundle does not change. Denote by V ∗∗(μ, ·)
the decomposability bundle arising from the assumption (a**) and items (b) and (c)
of Definition 3.2. Note that thanks to Remark 3.1 the inclusion V ∗∗(μ, ·) ⊆ V (μ, ·)
holdsμ-almost everywhere. Therefore, we just need to check the converse. In other
words, for every family of measures μt satisfying (a), (b) and (c) we need to show
that

vγt (x) ⊂ V ∗∗(μ, x) for μt -almost every x and almost every t ∈ I. (45)

However this is an immediate consequence of Step 1 of the proof of Lemma A.6.

The following is the Carnot counterpart of [3, Theorem 6.4]:

Theorem 5.5. Let μ be a Radon measure on G. Then, for μ-almost every x ∈ G
we have V1 ∩ V (μ, x) = π1(N (μ, x)).

Proof. Let us first prove the inclusion π1(N (μ, x)) ⊆ V1 ∩ V (μ, x). Assume by
contradiction that the inclusion does not hold on a set of positive μ-measure. Then,
by [51, Theorem 5.2.1] we can find a bounded Borel vector field τ : G ∼= Rn → Rn

such that π1(τ (x)) ∈ π1(N (μ, x)) \ V1 ∩ V (μ, x) on a set of positive μ-measure.
Note that π1(τ (x)) ∈ π1(N (μ, x)) is equivalent to τ(x) ∈ N (μ, x) and therefore
Proposition 5.4 can be applied. Note further that here we will make use of the
measurability of N (μ, x) provided by Lemma Lemma 5.1. Thanks to Proposition
5.4 there exists an horizontal 1-dimensional normal currentT such thatT = τμ+σ
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where σ and μ are mutually singular. Thanks to Proposition 3.6, we know that
π1(τ (x)) ∈ V (μ, x)∩ V1 for μ-almost every x ∈ G which is in contradiction with
the choice of τ .

Let us prove the converse inclusion. Denoting by M the universally measurable
set of those x ∈ G where dim(N (μ, x)) = n1, thanks to the above discussion, we
infer that V1 = π1(N (μ, x)) ⊆ V1 ∩ V (μ, x) = V1 for μ-almost every x ∈ M .
The locality of V (μ, x), proved in Proposition 3.5 and that of N (μ, x), that is
apparent from its very definition, allow us to assume without loss of generality
that dim(N (μ, x)) ≡ k < n1 for μ-almost every x ∈ G. Throughout the rest
of the proof we will identify without further mention the measure space (I, dt)
with (R,L 1) thanks to [3, Remark 2.7 (iii)]. In addition, since x �→ N (μ, x) is
universally measurable we can assume, up to modifying it on a μ-null set, that
x �→ N (μ, x) is Borel. Thanks to Remark 5.2, we just need to show that for every
family of measures t �→ μt that satisfies items (a), (b) and (c) of Definition 3.2 with
the further constraint that the 1-Lipschitz fragments γt such thatμt =H 1 im(γt )

are 2-bi-Lipschitz, we have that

vγt (x) ⊆ π1(N (μ, x)) for μt -almost any x ∈ G and almost every t ∈ I,(46)

where we recall that vγ was introduced in Lemma 2.9. Let us assume by contradic-
tion that there is such a family for which (46) fails. Let� be a family of one-sided
cones cones C = C(e, α) ⊆ V1 with e ranging in a given countable dense subset
of the unit sphere in V1 and α ranging in a given countable dense subset of (0, 1)
and define for every such C ∈ � the sets

FC :=
{

x ∈ G : C ∩ π1(N (μ, x)) = {0}} and

TC := {(t, x) ∈ R× FC : vγt (x) ∈ C \ {0}}.
Let us discuss the Borelianity of such sets. First of all, let us note that x �→
π1(N (μ, x)) is easily seen Borel, as x �→ N (μ, x) is Borel. Further, (t, x) �→ vγt (x)

is seen to be a Borel map thanks to Lemma A.6. The Borelianity of such maps di-
rectly implies the Borelianity of FC and TC and observe that thanks to our reduction
we have μ(G \ ∪C∈�FC ) = 0. Let us note that the map t �→ δt ⊗ μt TC , where
δt is the Dirac delta at t , is easily seen to be Borel and therefore, we can define νC

as the Radon measure on G that acts as

νC (E) :=
ˆ
δt ⊗ μt (TC ∩ (R⊗ E)) dt for every Borel set E ⊆ G.

In addition, for every Borel set E ⊆ G we get for νC , the representation

νC (E) =
ˆ
δt ⊗ μt (TC ∩ R⊗ E) dt =

ˆ
μt (E ∩ {x ∈ FC : vγt (x) ∈ C \ {0}}) dt

=
ˆ
μt GC,t (E) dt,

where GC,t := {x ∈ FC : vγt (x) ∈ C \ {0}}. Note further that νC (Fc
C ) = 0 and that

the map t �→ μt GC,t is Borel.
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Let us check that our contradiction assumption implies that there exists C� ∈ �
such that νC� is non-trivial. Suppose by contradiction that for every C ∈ �we have
νC = 0. This implies that for every C ∈ � and for almost every t ∈ I we have
δt ⊗ μt (TC ) = 0 and, in particular,

for every C ∈ �, almost every t ∈ I and for μt -almost every x ∈ FC we have

vγt (x) �∈ C, (47)

where we can exclude that vγt (x) = 0 on a set of μt -positive measure thanks to
Lemma 2.9.

Lusin’s theorem and the Borelianity of N (μ, x) tell us that for every ε > 0
there exists a Borel set Gε such that μ(G \ Gε) < ε and such that N (μ, x) is
continuous on Gε. In order to fix notations for every e ∈ V1 and σ ∈ (0, 1) we
let X (e, σ ) := C(e, σ ) ∪ C(−e, σ ). Since N (μ, ·) is supposed to have constant
dimension k almost everywhere, we can write Gε as a disjoint countable union of
Borel sets A j ⊆ G such that for each j ∈ N there exists a k-dimensional plane N j

of V1 for which π1(N (μ, x)) ∈ X (N j , ε) for every x ∈ A j , where

X (N j , ε) := V1 \
⋃{

C(e,
√

1− ε2) : e is unitary and orthogonal to N j in V1

}
.

Let {w1, . . . , wn1−k} be a family of orthonormal vectors of V1 orthogonal to N j .

Fix j , define Ci := C(wi ,
√

1− ε2), and note that A j ⊆ ∪n1−k
j=1 (FCi ∪ F−Ci ). This,

together with (47), implies that

for almost every t ∈ I and for μt -almost every x ∈ A j we have

vγt (x) �∈
n1− j⋃
i=1

(Ci ∪ −Ci ) ⊆ V1 \ X (N j , 4n1ε). (48)

This can be rephrased in the following more convenient way:

for almost every t ∈ I and μt -almost every x ∈ A j we have

π1(N (μ, x)) ∩ C(vγt (x), 16n1ε) �= {0}.
However, thanks to the arbitrariness of ε > 0 we get a contradiction with our
assumption that (46) fails. This proves the existence of a cone C� for which νC� is
non-trivial.

Since the fragments γt are supposed to be bi-Lipschitz, we also infer that

μt GC�,t =H 1 GC�,t =H 1 im
(
γt |γ−1

t (GC�,t )

)
.

Therefore by Lemma A.3(ii) we know that the map t �→ �γt |γ−1
t (GC�,t )

� =: μ�,t is

Borel and thanks to the fact that the γt s are bi-Lipschitz, we also infer that

μ�,t =
C (·)(vγt )

|C (·)(vγt )|
μt GC�,t .
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Thanks to Corollary 4.3 we can find a 1-dimensional horizontal normal current T�
such that

T� =
ˆ

I
μ�,t dt + σ =: μ� + σ ,

where ‖μ�‖ and
´

I‖μ�,t‖ dt = ´
I μt GC�,t dt = νC� are mutually absoulutely

continuous, ∂T� = 0 and T� = μ� + σ , where σ and μ are mutually singular and

dT�
d‖T�‖ (x) ∈ C (x)[C�] \ {0} for ‖μ�‖-almost every x ∈ G. (49)

Since ‖μ�‖ and νC� are mutually absolutely continuous, we infer by our choice
of C� that ‖μ�‖ is non-zero. In addition, since ‖μ�‖ � νC� �

´
μt dt � μ and

‖μ�‖(Fc
C�
) = 0, we infer that

dT�
d‖T�‖ (x) ∈ C (x)[C�] \ {0} on a set of μ-positive measure contained in FC� .

Thanks Proposition 5.2 we finally infer that dT�
d‖T�‖ (x) ∈ N (μ, x) on a set of μ-

positive measure contained in FC� . This however contradicts the definition of FC�
and we have reached our contradiction. ��
Remark 5.3. Note that since by construction N (μ, x) is contained in C (x)[V1], we
infer by Proposition 5.4 that N (μ, x) = C (x)[V1 ∩ V (μ, x)] for μ-almost every
x ∈ G.

6. Differentiability Along the Decomposability Bundle

This section is devoted to the proof of Theorem 1.2. We shall remark here that
the results proved in the present section are independent on the proof of Theorem
1.1. Finally, we remark that even though here we assume the target H to be a Carnot
group, the proof of Theorem 1.2 extends to homogeneous groups, see Remark 6.2.
Throughout the rest of this section and if not otherwise specified, G and H will
always be fixed Carnot groups endowed with a homogeneous and left invariant
distance and we will always assume that the dimension of the first layer V1 of the
Lie algebra of G is n1.

6.1. Construction of Vector Fields of Universal Differentiability

First of all let us introduce some notation.

Definition 6.1. A function f : G → H is said to have derivative D f (x, ζ ) at x
along ζ ∈ G if the following limit exists:

D f (x, ζ ) = lim
r→0+ δ1/r ( f (x)−1 ∗ f (xδr (ζ ))) ∈ G.

Furthermore, f is said to be differentiable at the point x ∈ G along ζ ∈ G, if
D f (x, ζ ) and D f (x, ζ−1) exist and D f (x, ζ )−1 = D f (x, ζ−1).
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Remark 6.1. Note that if D f (x, ζ ) exists, then for every λ > 0 the derivative
D f (x, δλ(ζ )) of f along δλ(ζ ) at x exists and D f (x, δλ(ζ )) = δλD f (x, ζ ). Indeed

lim
r→0+ δ1/r ( f (x)−1 f (xδλr (ζ ))) = δλ

(
lim

r→0+ δ1/λr ( f (x)−1 f (xδλr (ζ )))
)

= δλ(D f (x, ζ )).

Finally, note that a Lipschitz function f : G→ H is Pansu differentiable at x ∈ G
along a subgroup V ∈ Gr(G), see Definition 2.7 if and only if D f (x, ζ ) exists for
all ζ ∈ V and ζ �→ D f (x, ζ ) is an homogeneous homomorphism on V .

Proposition 6.1. ([9, Proposition 2.10]) Let L(G,G) be the set of linear maps from
the vector space underlying G into itself, endowed with the operator norm. Then,
the following are equivalent:

(i) V : G→ Greu(G) is a Borel map, where Greu(G) was introduced in Definition
2.4;

(ii) the projection map πV : G → L(G,G), defined as πV (x) := �V (x) where
�V (x) is the Euclidean orthogonal projection onto V (x), is Borel;

(iii) the projection map πV⊥ : G → L(G,G) defined as πV⊥(x) := �V (x)⊥ where
�V⊥(x) is the Euclidean orthogonal projection onto V⊥(x), the Euclidean or-
thogonal space to V (x), is Borel.

Finally the Borelianity of πV is also equivalent to saying that for every v,w ∈ G,
seen as vectors of coordinates, the map x �→ 〈v, πV (x)[w]〉 is Borel.

Proof. The proof of the proposition is omitted. It can be achieved by proving that the
map � associating an element of the Grassmannian V ∈ Greu(G) to its Euclidean
orthogonal projection �V is an homeomorphism. Actually what can be shown is
that � is bi-Hölder. ��

This subsection is devoted to the proof of the following:

Lemma 6.2. Let μ be a Radon measure on G. Then, there are n1 Borel maps
ζ1, . . . , ζn1 : G→ V1 such that:

(i) V (μ, x) = S({ζ1(x), . . . , ζn1(x)}) for μ-almost every x ∈ G,
(ii) every f ∈ Lip(G,H) is differentiable at x along ζi (x) for every i = 1, . . . , n1

and for μ-almost every x ∈ G.

Proof. For every i = 1, . . . , n1 define

ζi (x) :=
{
πV (μ,·)(x)[ei ]
|πV (μ,·)(x)[ei ]| if πV (μ,·)(x)[ei ] �= 0,

0 otherwise.
and wi (x) := C (x)[ζi (x)].

where the ei s are the vectors of Definition 2.5 and the map πV (μ,·) is the projection
map associated to V (μ, ·) yielded by Proposition 6.1. Note that μ-almost every
x ∈ G the vectors ζi (x) are contained V (μ, x) ∩ V1 and since e1, . . . , en1 are
orthonormal, the Borel vector fields ζi span V (μ, x)∩V1 at μ-almost every x ∈ G.
Furthermore, by Remark 2.3 for μ-almost every x ∈ G on the one hand we have
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that the vector fields w1, . . . , wn1 span the vector space C (x)[V (μ, x) ∩ V1] and
we also have that the identity π1[wi (x)] = ζi (x) holds at every x ∈ G. Further,
let us note that by Theorem 5.5 that w1, . . . , wn1 ∈ N (μ, x) for μ-almost every
x ∈ G. Therefore, for every i = 1, . . . , n1 we can apply Proposition 5.4 to get
horizontal normal 1-currents without boundary Ti = τiηi = τiμ + σ i , where σ i

and μ are mutually singular, and such that τi = wi for μ-almost every x ∈ G.
Thanks to Theorem 2.10 for every i we can find a family of vector-valued

measures t �→ ηi
t satisfying the hypothesis (a) and (b) of Definition 2.11 and such

that Ti can be written as Ti =
´

I ηi
t dt . Thanks to Theorem 2.10 we infer that

for every i and every t there exists a Lipschitz curve γ i
t : [0, 1] → G such that

ηi
t = �γ i

t � and vγt and τi coincide up to a non-zero scalar for ‖�γ i
t �‖-almost every

x ∈ G. It is elementary to see that every Lipschitz map f ∈ Lip(G,H) is Pansu
differentiable along π1(τi ) for ‖�γ i

t �‖-almost every x ∈ G and almost every t ∈ I .
This implies in particular that every f ∈ Lip(G,H) is Pansu differentiable along
π1(τi ) for

´ ‖�γ i
t �‖ dt-almost every x ∈ G. However, since by Theorem 2.10 we

have that ‖T i‖ =
´ ‖�γ i

t �‖ dt and that π1(τi ) = π1(wi ) = ζi for μ-almost every
x ∈ Rn we conclude that every f ∈ Lip(G,H) is Pansu differentiable along ζi for
μ-almost every x ∈ Rn . Thanks to Proposition 2.4 and the fact that ζ1, . . . ζn1 span
V (μ, ·) ∩ V1 μ-almost everywhere, the proof of the lemma is achieved. ��

6.2. Partial and Total Derivatives

In this subsection we relate the existence of partial derivatives to the Pansu
differentiability along the decomposability bundle. Since the group operation is
not commutative, we cannot follow the proof of the Euclidean counterpart, see [3,
Section 3].

Proposition 6.3. Let μ be a Radon measure on G and ζ : G→ G be a Borel map
such that any Lipschitz map f : G → H is differentiable μ-almost everywhere
along ζ(·). Finally let B be any μ-positive Borel subset of supp(μ). Then, for
μ-almost every x ∈ B, we have

lim
t→0

distc(B, x ∗ δt (ζ(x)))
t

= 0.

More precisely there exists a t (x) > 0 and a map x(·) : (−t (x), t (x))→ B such
that

lim
t→0

dc(x(t), x ∗ δt (ζ(x)))
t

= 0. (50)

Proof. Since in any Carnot group there is an isometrically embedded copy of R if
we prove the claim for H = R, the result follows in full generality. The first step of
the proof is to show that the function g(x) := inf{r > 0 : μ(B(x, r)∩ B) > 0} is a
non-negative 1-Lipschitz function. Note that g(x) = 0 for μ-almost every x ∈ B.
Let x, y ∈ G and note that B(y, r) ⊆ B(x, r+d(x, y)). Therefore, for every ε > 0
we have

μ(B(x, g(y)+ d(x, y)+ ε) ∩ B) ≥ μ(B(y, g(y)+ ε) ∩ B) > 0. (51)
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Inequality (51) implies that g(x) ≤ g(y)+d(x, y) and thus, interchanging x and y,
g is seen 1-Lipschitz. Suppose by contradiction that there is a μ-positive compact
set K ⊆ B for which (50) fails everywhere on K . This means that for every x ∈ K
there is an infinitesimal sequence si (x) and a λ(x) > 0 such that

dist(x ∗ δsi (x)(ζ(x)), B) ≥ λ(x)si (x) for every i ∈ N. (52)

In order to discuss why (52) is false, we shall fix a z ∈ K where g(z) = 0 and note
that (52) implies that

lim sup
r→0

dist
(
z ∗ δr (ζ(z)), B

)
|r | ≥ λ(z). (53)

We can also assume without loss of generality that g is differentiable along ζ(z) at
z. Therefore, since we are assuming that Dg(z, ζ(z)) = −Dg(z, ζ(z)−1), we infer
that

Dg(z, ζ(z)) = lim
r→0

g(z ∗ δr (ζ(z)))− g(z)

|r | = lim sup
r→0

g(z ∗ δr (ζ(z)))
|r | ≥ λ(z).

This, together with the fact that g is non-negative implies that g cannot be differen-
tiable along ζ(z) at z, since the identity Dg(z, ζ(z)) = −Dg(z, ζ(z)−1) cannot be
satisfied even if both Dg(z, ζ(z)) and Dg(z, ζ(z)−1) existed. The Borel regularity
of the measure μ yields the desired conclusion. ��

Proposition 6.4. Suppose μ is a Radon measure on G and assume ζ1, ζ2 : G→ G
are two Borel vector fields such that every f ∈ Lip(G,H) is differentiable along
both ζ1(x) and ζ2(x) for μ-almost every x ∈ G. Then, μ-almost everywhere, every
f is differentiable along ζi1(x)

β1ζi2(x)
β2 , where i j ∈ {1, 2} and β j ∈ {±1} as

j = 1, 2. Furthermore, we have:

D f (x, ζi1(x)
β1ζi2(x)

β2) = D f (x, ζi1(x))
β1 D f (x, ζi2(x))

β2 . (54)

Proof. Without loss of generality we can assume that the measure μ is supported
on a compact set K . Therefore, thanks to Severini-Egoroff’s theorem and Lusin’s
theorem we can find a compact set K1 such that:

(i) μ(K \ K1) ≤ εμ(K ),
(ii) the incremental ratios R f (x, ζi (x); t) := δ1/t ( f (x)−1 f (x ∗ δt (ζi (x)))) con-

verge uniformly to D f (x, ζi ) on K1 as t goes to 0 for i = 1, 2,
(iii) the maps ζi (·) and D f (x, ζi (x)β) are continuous on K1 for every i = 1, 2 and

β ∈ {±1}.
Let β1, β2 ∈ {±1} and i1, i2 ∈ {1, 2} and note that

R f (x, ζi1(x)
β1ζi2 (x)

β2 ; t) = R f (x, ζi1(x)
β1 ; t) ∗ R f (x ∗ δt (ζi1(x))

β1 , ζi2 (x)
β2 ; t).

(55)
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By (ii) we immediately infer that limt→0 R f (x, ζi1(x)
β1; t) = D f (x, ζi1(x)

β1).
This implies in particular that in order to conclude the proof of the proposition, we
just need to show that:

lim
t→0+ R f (x ∗ δt (ζi1(x))

β1 , ζi2(x)
β2; t) = D f (x, ζi2(x)

β2). (56)

Thanks to Proposition 6.3, for μ-almost every x ∈ K1 we can find a map x(t)
taking values in K1 for which

lim
t→0+

dc(x(t), xδt (ζi1(x)
β1))

t
= 0. (57)

With the aid of the map x(t), we can rewrite R f (xδt (ζi1(x))
β1 , ζi2(x)

β2; t) as
follows:

R f (x ∗ δt (ζi1(x))
β1 , ζi2(x)

β2; t)

= δ1/t

(
f
(
x ∗ δt (ζi1(x)

β1)
)−1

f (x(t))
)

︸ ︷︷ ︸
(I)

∗ R f
(
x(t), ζi2(x)

β2; t
)

︸ ︷︷ ︸
(II)

∗

δ1/t

(
f
(
x(t) ∗ δt (ζi2(x)

β1
)−1

f
(
x ∗ δt (ζi1(x)

β1 ∗ ζi2(x)
β2
) )

︸ ︷︷ ︸
(III)

.

(58)

Let us separately estimate the norm of the terms (I), (II) and (III). Using that f is
Lipschitz we deduce that

limt→0+‖(I)‖
Lip( f )

≤ lim
t→0+

dc(x ∗ δt (ζi1(x)
β1), x(t))

t
= 0. (59)

Furthermore, thanks to (57) we infer that

limt→0‖(III)‖
Lip( f )

≤ lim
t→0+

d
(
x(t) ∗ δt (ζi2(x)

β2), x ∗ δt (ζi1(x)
β1 ∗ ζi2(x)

β2)
)

t

= lim
t→0+‖ζi2(x)

−β2δ1/t
(
x(t)−1 ∗ x ∗ δt (ζi1(x)

β1)
) ∗ ζi2(x)

β2‖ = 0.
(60)

Finally, we can rewrite (II) in the following convenient way:

(II) = R f (x(t), ζi2 (x(t))
β2 ; t) ∗

δ1/t ( f (x(t) ∗ δt (ζi2 (x(t))
β2 )−1 ∗ f (x(t) ∗ δt (ζi2 (x)

β2 ))︸ ︷︷ ︸
(IV)

.

(61)

Thanks to (ii) and the fact that x(t) ∈ K1, for every ε > 0 there exists a tε > 0
such that

‖D f (x(t), ζi2(x(t))
β2)−1 R f (x(t), ζi2(x(t))

β2; t)‖ ≤ ε,
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for every |t | ≤ tε. Finally, the Lipschitzianity of f and (iii) imply that

lim
t→0+‖(IV)‖ ≤ Lip( f ) lim

t→0+‖ζi2(x(t))
−β2ζi2(x)

β2‖ = 0. (62)

Putting together the information we gathered, we infer that

lim sup
t→0+

‖D f (x, ζi2(x)
β2)−1 ∗ R f (x ∗ δt (ζi1(x)), ζi2(x)

β2; t)‖

=
(58),(61)

lim sup
t→0+

‖D f (x, ζi2(x)
β2)−1 ∗ (I) ∗ D f (x, ζi2(x)

β2) ∗ D f (x, ζi2(x)
β2)−1

∗ R f (x(t), ζi2(x(t))
β2; t) ∗ (IV) ∗ (III)‖

=
(59),(60),(62)

lim sup
t→0+

‖D f (x, ζi2(x)
β2)−1 ∗ R f (x(t), ζi2(x(t))

β2; t)‖

≤ lim sup
t→0+

‖D f (x, ζi2(x)
β2)−1 ∗ D f (x(t), ζi2(x(t))

β2)‖ + ‖D f (x(t), ζi2(x(t))
β2)−1

∗ R f (x(t), ζi2(x(t))
β2; t)‖ ≤ ε,

where in the last identity we also used Lemma 2.3 and where the last inequality
above comes from (iii). The arbitrariness of ε concludes the proof. ��
Theorem 6.5. Suppose D is a finite family of Borel maps ζ : G→ G such that any
f ∈ Lip(G,H) is differentiable at μ-almost every x ∈ G along ζ(x). Then, every
Lipschitz map f ∈ Lip(G,H) is Pansu differentiable with respect to the subgroup
S({ζ(x) : ζ ∈ D}) for μ-almost any x ∈ G .

Proof. Let v : G → G be a map for which there exists an N ∈ N, ρi ∈ Q and
vi ∈ D with i = 1, . . . , N such that

v(x) = δρ1(v1(x)) ∗ · · · ∗ δρN (vN (x)). (63)

Let S̃ be the countable family of maps that satisfy identity (63) for some choice of
N , ρi and vi and let

S̃(x) := {w ∈ G : there exists a v ∈ S̃ such that v(x) = w}.
Proposition 6.4 and Remark 6.1 immediately imply that for μ-almost every x ∈ G
every Lipschitz map is differentiable along v(x) whenever v ∈ S̃ and

D f (x, u(x)v(x)) = D f (x, u(x))D f (x, v(x))

for μ-almost every x ∈ G and any u, v ∈ S̃. (64)

In particular this can be rephrased as follows. For μ-almost every x ∈ G, ev-
ery Lipschitz map is differentiable along any v ∈ S̃(x) and D f (x, u ∗ v) =
D f (x, u)D f (x, v) for μ-almost every x ∈ G and any u, v ∈ S̃(x).

The next step in the proof is to show that for μ-almost every x ∈ G and any
w ∈ cl(S̃(x)) every Lipschitz function is differentiable along w at x . Thanks
to the choice of w there exists a Cauchy sequence {wi }i∈N ⊆ S̃(x) such that
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for every k ∈ N there exists an M ∈ N such that for every i, j ≥ M we have
dG(w j , wi ) ≤ 1/k. Since w−1

i w j ∈ S̃(x), thanks to (64) we infer that

dH(D f (x, wi ), D f (x, w j )) =dH(D f (x, w−1
i ∗ w j ), 0)

= lim
t→0+

dH
(

f (x)−1 ∗ f (x ∗ δt (w−1
i ∗ w j )), 0

)
t

≤Lip( f )dG(w j , wi ) ≤ Lip( f )/k.

(65)

for every i, j ≥ M . The bound (65) shows that the sequence {D f (x, wi )}i∈N is
Cauchy in H and thus there exists an element of H, that we denote by d f (x, w),
such that limi→∞ D f (x, wi ) = d f (x, w). However, for every i ∈ N we have that

lim sup
t→0+

‖δt (d f (x, w))−1 ∗ f (x)−1 ∗ f (x ∗ δt (w))‖H
t

≤ ‖D f (x, wi )
−1 ∗ d f (x, w)‖H

+ lim sup
t→0+

‖δt (D f (x, wi ))
−1 ∗ f (x)−1 ∗ f (x ∗ δt (wi ))‖H

t

+ lim sup
t→0+

‖ f (x ∗ δt (wi ))
−1 ∗ f (x ∗ δt (w))‖H

t

≤ ‖D f (x, wi )
−1 ∗ d f (x, w)‖H + Lip( f )dG(wi , w).

(66)

The arbitrariness of i implies that

d f (x, w) = lim
t→0+ δ1/t ( f (x)−1 ∗ f (x ∗ δr (w)) = D f (x, w),

and this shows that f is differentiable at x alongw. Note in particular that the above
computations also prove that the function D f (x, ·) : cl(S̃(x))→ H is continuous.

Since it can be easily seen that S({v(x) : v ∈ D}) = cl(S̃(x)) for every
x ∈ G, the only thing left to prove is that the map v �→ D f (x, v) is a homogeneous
homomorphism on cl(S̃(x)). To do to this, let v,w ∈ cl(S̃(x)) and let vi , wi ⊆
S̃(x) be two sequence converging to v and w respectively. Since the sequence
vi ∗wi ∈ cl(S̃(x)) converges to v ∗w, by the continuity of D f (x, ·), we infer that

D f (x, v ∗ w) = lim
i→∞ D f (x, vi ∗ wi ) = lim

i→∞ D f (x, vi ) ∗ D f (x, wi )

= D f (x, v) ∗ D f (x, w).

This concludes the proof, since the homogeneity of D f (x, ·) is guaranteed by
Remark 6.1. ��
Theorem 6.6. Let μ be a Radon measure on G. Then, for every Carnot group H
and for μ-almost every x ∈ G every Lipschitz map f ∈ Lip(G,H) is differentiable
along the subgroup V (μ, x) ∈ GrC(G), the decomposability bundle of μ defined
in Definition 3.2, for μ-almost every x ∈ G.



    3 Page 42 of 76 Arch. Rational Mech. Anal.           (2025) 249:3 

Proof. The Theorem follows immediately from Lemma 6.2, which guarantees that
every Lipschitz function admits directional derivatives along a family of Borel
vector fields ζ1, . . . , ζn1 : G→ G generating the decomposability bundle V (μ, x)
at μ-almost every x , and Theorem 6.5 guarantees that these directional derivatives
give rise to the Pansu differentiability with respect to the decomposability bundle.
��
Remark 6.2. Here below we list some observation on Theorem 6.6 and its proof.

1. Theorem 6.6 holds even if we suppose that H is just an homogeneous group.
Indeed, let H′ = S(V1(H)), where V1(H) is the first layer of the Lie algebra of H
and where S was introduced in Definition 2.3. Let us remark that even though S

was just introduced in Carnot groups, its definition makes perfect sense in general
homogeneous groups. Also, it can be easily checked that H′ is a Carnot group, as
by definition its Lie algebra is generated by the first layer.
Let γ be a Lipschitz curve connecting 0 ∈ G to any point w ∈ G and note that
f (0)−1 ∗ f ◦ γ is a Lipschitz curve in H connecting 0 to f (0)−1 ∗ f (w). It is not
hard to see, for instance by approximating γ with Lipschitz curves that are piece-
wise flow lines of horizontal vector fields, that this implies that f (0)−1 ∗ f ◦ γ
must be contained in H′ and hence f (0)−1 ∗ f (w) ∈ H′. This actually shows that
f (0)−1 ∗ f (G) ⊆ H′ and hence f (0)−1 ∗ f can be seen as a Lipschitz map from G
to H′. Since a function f ∈ Lip(G,H) is differentiable along V (μ, x) if and only if
f (0)−1 ∗ f is differentiable along V (μ, x), applying Theorem 6.6 to f (0)−1 ∗ f
the differentiability of f along V (μ, x) is thus proved.

2. Further, with few modifications to the proofs, the statement of Theorem 6.6 can be
strengthened to the following localized form.

Let μ be a Radon measure on G and B ⊆ G be a Borel set. Then, for every
homogeneous group H and for μ-almost every x ∈ G every Lipschitz map
f ∈ Lip(B,H) is differentiable along V (μ, x), for μ-almost every x ∈ B,
i.e.

lim
B�y→x

‖d f (x)[x−1 y]−1 f (x)−1 f (y)‖H
dc(x, y)

= 0,

for some homogeneous homomorphism d f (x) : V → H.
where here Lip(B,H) denotes the family of Lipschitz maps f : B ⊆ G→ H. This
is a non-trivial extension as it is well known that maps between general Carnot
groups do not enjoy any extension property, see for instance [12, Theorem 1].

3. At this stage it is not clear whether the decomposability bundle constructed here is
sharp in the sense that on the directions v on G not contained in V (μ, x) there are
Lipschitz function f : G→ R which are non-differentiable along v at x , compare
with [3, Theorem 1.1(ii)]. It seems however plausible that the same techniques
employed in [3] might yield the existence of a Lipschitz function f ∈ Lip(G,R)
such that f is non differentiable along any v ∈ G \ (V (μ, x)∪ exp(V2⊕ . . .⊕Vs))

for μ-almost every x ∈ G. This will be subject to further investigation.
Finally, it is a simple observation to note, see for instance [30, Remark 1.2], that
there are measures μ for which V (μ, x) is the largest subspace of differentiability
for Lipschitz functions, in the following sense: if V : G → Gr(G) is a Borel map
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such that for every Carnot group H every f ∈ Lip(G,H) is differentiable μ-almost
everywhere along V (x), then we have V (x) ⊆ V (μ, x) for μ-almost every x ∈ G.

7. The Reverse of Pansu’s Theorem

7.1. Decompositions of a Measure Satisfying Pansu’s Theorem

Definition 7.1. (Lipschitz chart) Let (X, d, μ) be a metric measure space. Let U ⊂
X be a Borel set, and let ϕ : X → Rn be a Lipschitz function. We say that (U, ϕ) is
a Lipschitz chart with target Rn , or simply chart, when the following holds. Every
Lipschitz function f : X → R is differentiable μ-almost everywhere in (U, ϕ);
i.e., for μ-almost every x0 ∈ U there exists a unique linear map D f (x0) : Rn → R
such that

lim sup
X�x→x0

| f (x)− f (x0)− D f (x0)[ϕ(x)− ϕ(x0)]|
d(x, x0)

= 0. (67)

Definition 7.2. (Lipschitz differentiability space) A metric measure space (X, d, μ)
is said to be a Lipschitz differentiability space if there exist Borel sets Ui ⊂ X such
that μ(X \ ∪i∈NUi ) = 0, an N ∈ N, and Lipschitz functions ϕi : X → Rni with
ni ≤ N , such that (Ui , ϕi ) is a chart for every i ∈ N.

Definition 7.3. We say that a Carnot group G endowed with a Radon measure μ
has the Pansu property with respect to a Carnot group H if for every Lipschitz
function f : G → H and for μ-almost every x0 ∈ G there exists a homogeneous
homomorphism d f (x0) : G→ H such that

lim sup
x→x0

dH( f (x), f (x0) ∗ d f (x0)[x−1
0 x])

dc(x, x0)
= 0. (68)

Remark 7.1. Since d f (x0) : G→ R is a group homomorphism then, thanks to [25,
Proposition 2.5], for every g ∈ G we have d f (x0)[g] = d f (x0)[π1(g)].
Remark 7.2. Suppose μ is a Radon measure on G with the Pansu property with
respect to some homogeneous group H. Let g : G → R be a Lipschitz map and e
be an element of the first layer V1 of G. It is easily seen that the map f : G → H
defined as f (x) := δg(x)(e) is Lipschitz and

0 = lim sup
x→x0

‖d f (x0)[x−1
0 x]−1 f (x0)

−1 f (x)‖H
dc(x, x0)

= lim sup
x→x0

‖d f (x0)[x−1
0 x]−1δg(x)−g(x0)(e)‖H

dc(x, x0)
.

(69)

This shows in particular that for every v ∈ G we have

lim
r→0

g(x0δr (v))− g(x0)

r
e = d f (x0)[v].



    3 Page 44 of 76 Arch. Rational Mech. Anal.           (2025) 249:3 

Therefore, the image of the homogeneous homomorphism d f (x0) is contained in
the 1-parameter subgroup generated by e. This immediately shows together with
Remark 7.1 that d f (x0) = δ〈L(x0),π1(x

−1
0 x)〉(e), where L(x0) is a suitable element

of V1. It is thus immediate to see that defined dg(x0) := 〈L(x0), π1(x
−1
0 x)〉 we

have

lim sup
x→x0

|g(x)− g(x0)− dg(x0)[x−1
0 x]|

dc(x, x0)
= 0.

This shows that in order to prove Theorem 1.1 it is sufficient to restrict ourselves to
the case where H is the real line and that the definition of the Pansu property with
real-valued functions is the weakest possible.

Proposition 7.1. Suppose the Carnot group G endowed with the measure μ has
the Pansu property. Then, (G, d, μ) is a Lipschitz differentiability space with the
global chart π1 : G→ V1.

Proof. Thanks to Remark 7.1, for every Lipschitz function f : G → R and μ-
almost every x ∈ G we have

0 = lim sup
x→x0

| f (x)− f (x0)− d f (x0)[x−1
0 x]|

dc(x, x0)

= lim sup
x→x0

| f (x)− f (x0)− d f (x0)[π1(x
−1
0 x)]|

dc(x, x0)

= lim sup
x→x0

| f (x)− f (x0)− d f (x0)[π1(x)− π1(x0)]|
dc(x, x0)

.

The above computation shows that the hypothesis of the axioms of Lipschitz dif-
ferentiability space are satisfied by (G, d, μ) with the global chart π1 : G → V1.
��
Proposition 7.2. ([16, Theorem 9.5]) Suppose that (X, d, μ) is a Lipschitz differ-
entiability space and assume that (U, ϕ) is an n-dimensional chart. Let w ∈ Sn−1

and 0 < ε < 1. Then, there is a family of measures t �→ μt satisfying the hypothesis
(a) and (b) of Definition 2.11 and such that

(i) for almost every t ∈ I there exists a bi-Lipschitz fragment γt defined on a
compact set Kt of R such that μt �H 1 im(γt ) and

μ U =
ˆ
μt dt.

(ii) for almost every t ∈ I and almost every s ∈ Kt we have (ϕ ◦γt )
′(s) ∈ C(w, ε).

Corollary 7.3. Assume μ is a Radon measure on G with the Pansu property. Then,
for every e ∈ Sn1−1 there is a family of measures t �→ μt satisfying the hypothesis
(a) and (b) of Definition 2.11 and such that
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(i) for almost every t ∈ I there exists a bi-Lipschitz fragment γt defined on a
compact set Kt of R such that μt �H 1 im(γt ) and

μ =
ˆ
μt dt.

(ii) for almost every t ∈ I and almost every s ∈ Kt we have Dγt (s) = (π1 ◦
γt )

′(s) ∈ C(e, ε).

Proof. Thanks to Proposition 7.1 we know that (G, dc, μ) is a Lipschitz differen-
tiability space and that (G, π1) is a n1-dimensional chart. Finally, Proposition 7.2
immediately yields the conclusion. ��
Proposition 7.4. Assumeμ is a Radon measure onGwith the Pansu property. Then

(i) V (μ, x) = G for μ-almost every x ∈ G,
(ii) for any j = 1, . . . , n1 we can find a 1-dimensional horizontal normal current

T j = τ jη j with ∂T j = 0 and such that μ� η j and

τ j (x) = C (x)[e j ] for μ-almost every x ∈ G,

where as usual {e1, . . . , en1} denotes an orthonormal basis of V1.

Proof. Let {e1, . . . , en1} be an orthonormal basis of V1. Thanks to Corollary 7.3,
for every j = 1, . . . , n1 there is a family of measures t �→ μ j,t satisfying the
hypothesis (a) and (b) of Definition 2.11 and such that

(α) for almost every t ∈ I there exists a bi-Lipschitz fragment γ j,t defined on
a compact set K j,t of R such that μ j,t �H 1 im(γ j,t ) and μ = ´

μ j,t dt ;

(β) for almost every t ∈ I and almost every s ∈ K j,t we have Dγ j
t (s) =

(π1 ◦ γ j,t )
′(s) ∈ C(e j , ε).

Without loss of generality we can assume that μ j,t = H 1 im(γ j,t ). This can
be seen by arguing as in the proof of (7) and (8). With this assumption, we note
that μ j,t = ‖�γ j,t�‖, thanks to the bi-Lipschitzianity of γ j,t s. This, together with
Lemma A.3(ii) implies that for every j = 1, . . . , n1 we have that the map t �→
�γ j,t� is Borel and satisfies items (a) and (b) of Definition 2.11. In addition, thanks
to (β), all the hypothesis of Corollary 4.3 are satisfied. Therefore, Corollary 4.3
implies that for every j = 1, . . . , n1 and for every ε0 > 0 the measures μ and
‖´I �γ j,t� dt‖ are mutually absolutely continuous and there are horizontal normal
1-current T j = τ jη j on G such that ∂T j = 0, T j =

´
I �γ j,t� + σ , where σ and∑n1

j=1

´
I‖�γ j,t�‖ dt are mutually singular and

τ j (x) ∈ C (x)[C(e j , ε0)] \ {0} for
∥∥∥ˆ

I
�γ j,t� dt

∥∥∥-almost every x ∈ G.

However, since μ and ‖´I �γ j,t� dt‖ are mutually absolutely continuous thanks to
Proposition 3.6 we infer that

S({τ1(x), . . . , τn1(x)}) ⊆ V (μ, x) for μ-almost every x ∈ G.
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However, chosen ε0 small we infer that the vectors τ1(x), . . . , τn1(x) of V1 are
independent μ-almost everywhere. This implies by Lemma 3.3 that V (μ, x) = G
for μ-almost every x ∈ G. This concludes the proof of (i). In order to conclude the
proof of (ii) it suffices to directly apply Proposition 5.4 and Theorem 5.5. ��

We are now ready to prove the main result, which states that the existence of n1
independent representations for a Radon measure μ in a Carnot group G implies
that μ is diffuse. This is the analogue of [21, Corollary 1.12] and the proof follows
the same overall strategy of [21, Theorem 1.1], which was in turn inspired by the
strong constancy lemma of Allard [5]. As explained in the introduction, we have
however to adapt the proof to the “hypoelliptic setting”. As additional difficulties,
we note that in this context we can not rely on a Besicovitch covering theorem
and some classical Lebesgue point arguments need to be adapted. For the sake of
readability we report these proofs in the appendix.

Proposition 7.5. Suppose μ is a Radon measure on G satisfying (ii) in Proposition
7.4. Then μ� L n.

An immediate consequence of the above proposition is our main result which
is

Theorem 7.6. Let G,H be Carnot groups. Suppose further that μ is a Radon mea-
sure on G with the Pansu property with respect to H. Then μ� L n.

Proof. The claim follows immediately from Propositions 7.5, 7.4 and Remark 7.2.
��
Proof of Proposition 7.5. We divide the proof in several steps.
(i) notations. Thanks to Proposition 7.4 we know that

(∗) for any j = 1, . . . , n1 we can find a 1-dimensional horizontal normal current
T j = τ jη j with ∂T j = 0 and such that μ � η j and τ j (x)
= C (x)[e j ] for μ-almost every x ∈ G.

Thanks to Remark 2.8, we can think of T j as a vector-valued measure T j ∈
M(G,Rn1) acting by duality with the scalar product of Rn1 on the smooth function
ω ∈ C∞(G,Rn1) and the boundary operator ∂ on these currents acts as shown in
(10) and (11). Thus, the 1-currentsT1, . . . ,Tn1 above can be written in this notation
as T j = e jη j for every j = 1, . . . , n1.

Throughout the proof, we define on the measures ν = (ν1, . . . , νn1)

∈M(G,Rn1×n1), i.e. the Radon measures taking values in Rn1×n1 , the differential
operator B that acts as

〈Bν, ϕ〉 = (〈ν1, dHϕ1〉, . . . , 〈νn1, dHϕn1〉),
on every test function C∞(G,Rn1 × Rn1),

where dH is as in (11). In the above notations, if we letT := (T1, . . . ,Tn1)we easily
see that BT = 0. Indeed, thanks to (10) and using the representation T j = e jη j ,
we have

〈BT ; ϕ〉 = (〈e1η1 ; dHϕ1〉, . . . , 〈en1ηn1 ; dHϕn1〉)
= (〈∂T1 ; ϕ1〉, . . . , 〈∂Tn1 ; ϕn1〉) = 0.
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In addition, we can write T as

T = (τ1η1, . . . , τn1ηn1) = T� = T�a + T�s,

where T : G → Rn1×n1 is a Borel map in L1(�) such that |T| = 1 for �-
almost every x ∈ G, �a � L n and �s is mutually singular with respect to L n .
Here, given an n1 × n1 matrix A the norm |A| is computed as follows: denoted
by a1, . . . , an1 ∈ Rn1 the columns of A we let |A|2 := n−1

1

∑n1
i=1|ai |2, where

|ai | denotes the usual Euclidean norm of the vectors ai . Note that since for every
j = 1, . . . , n1 we have � ≥ η j and this shows in particular that μ� �.
(ii) localisation at a singular point. In the following, we will show by con-
tradiction that the conditions x0 ∈ supp(�s) and the fact that T(x0) is invertible,
are incompatible, or more precisely that the conditions (i)-(iv) below cannot hold
together on a set of positive�s-measure. Let us assume by contradiction that there
exists an x0 ∈ supp(�s) for which there exists an infinitesimal sequence rk such
that

(i) lim
k→∞

 
B(x0,rk )

|T(x)− T(x0)| d�(x) = 0;

(ii) lim sup
k→∞

�(B(x0, rk/5))

�(B(x0, rk))
≥ 2

j0
for some j0 ∈ N;

(iii) lim
k→∞

�a(B(x0, rk))

�s(B(x0, rk))
= 0;

(iv) P0 := T(x0) = diag(κ1, . . . , κn1) for some κ1, . . . , κn1 ∈ R \ {0}.
The contradiction that will prove the theorem will arise from the fact that the item
(iv), that holds thanks to (∗), cannot hold on a set of positive�s measure. Essentially,
the fact that that P0 is invertible has two consequences. First, it allows us to promote
the weak* convergence �−1(B(x0, rk))Tx0,rkT⇀ ν, to a stronger convergence in
mass. Secondly, it will force ν � L n . Therefore, the strong convergence in mass
to ν will force �s to not be singular obtaining a contradiction, as x0 was chosen
to be a density point for �s . This will be shown in the last line of the proof of the
theorem, under (93).

First of all, let us note that Proposition B.2 that (i), (ii) and (iii) hold�s-almost
everywhere. Define the normalized blow-up sequence

νk := 1

�(B(x0, rk))
Tx0,rkT, for every k ∈ N. (70)

and note that ‖νk‖(B(0, 1)) = 1 and lim infk→∞‖νk‖(B(0, 1/5)) ≥ j−1
0 > 0 for

k sufficiently big. Without loss of generality we can assume that this holds for every
k ∈ N. Up to the extraction of a subsequence, by (ii) we can assume that

‖νk‖ ∗
⇀ ν in M+(B(0, 1)) (71)

with ν(B(0, 1)) ≤ 1 and ν(B(0, 1/5)) ≥ j−1
0 . The vector fields Xi are left-

invariant, and thus their (formal) adjoints coincide with −X j , and this implies
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that

B(μ1, . . . ,μn1
) = −

(
n1∑

i=1

Xi

(
μi

1

)
, . . . ,

n1∑
i=1

Xi

(
μi

n1

))
,

with
(
μ1, . . . ,μn1

) ∈M (Rn,Rn1),

(72)

where μi
j denotes the i th entry of μ j . In addition, since the vector fields X j are

homogeneous, we also have

X jϕ(δ1/r (x
−1 y)) = r X j (ϕ(δ1/r (x

−1·)))(y),
for every j = 1, . . . , n1, every smooth functions ϕ and every r > 0. This, together
with an elementary computation shows in particular that B[νk] = 0 for every
k ∈ N. Then B[P0‖νk‖] = −PT

0 [∇G‖νk‖] where ∇G := (X1, . . . , Xn1). On the
other hand,

B[P0‖νk‖] = B[P0‖νk‖ − νk] +Bνk = B[P0‖νk‖ − νk]. (73)

Let  be a smooth positive function supported on B(0, 1) such that
´
 dL n = 1

and (·) =  (·−1) =  (−·). Let {εk}k∈N be an infinitesimal sequence of positive
real numbers to be fixed later, let  εk (·) := ε−Qk  (δ1/εk (·)) and define that

uk :=  εk ∗ ‖νk‖ ∈ C∞(B(0, 1)),
Vk :=  εk ∗

[
P0‖νk‖ − νk

] ∈ C∞(B(0, 1),Rn1×n1),
(74)

where here ∗ denotes the convolution with respect to the group law of G, i.e.
f ∗ g := ´

f (xy−1)g(y)dL n(y). It will be clear from the context when ∗ de-
notes a convolution and when it denotes the group law of G. Then, if we let
χ ∈ C∞(G, [0, 1]) be such that χ = 1 on B(0, 1/2) and χ = 0 on B(0, 3/4)c, we
infer from the above discussions that

− PT
0 [∇G(χuk)] = B[P0χuk ] = −uk PT

0 [∇Gχ ] − χ PT
0 [∇Guk ]

= −uk PT
0 [∇Gχ ] − χ PT

0 [∇G( εk ∗ ‖νk‖)]
= −uk PT

0 [∇Gχ ] − χ PT
0 [ εk ∗ ∇G‖νk‖] = −uk PT

0 [∇Gχ ] − χ εk ∗ PT
0 [∇G‖νk‖]

= −uk PT
0 [∇Gχ ] + χ εk ∗B[P0‖νk‖]

= −uk PT
0 [∇Gχ ] + χ εk ∗B[P0‖νk‖ − νk ] + χ εk ∗B[νk ]

= −uk PT
0 [∇Gχ ] + χ εk ∗B[P0‖νk‖ − νk ].

(75)

Thanks to (72) and to the fact that for every i = {1, . . . , n1} we have 〈Xψ1, ϕ〉
= −〈ψ1, Xϕ〉 and X (ψ1 ∗ψ2) = ψ1 ∗ Xψ2 for every distributionψ1, ψ2 and every
test function ϕ. It is possible to prove that

 εk ∗B[P0‖νk‖ − νk] = B[ εk ∗ (P0‖νk‖ − νk)],
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and hence (75) can be rewritten as

− PT
0 [∇G(χuk)] = −uk PT

0 [∇Gχ ] + χB[Vk]
= −uk PT

0 [∇Gχ ] − VkB[χ ] +B[χVk]. (76)

Define

Rk := −uk PT
0 [∇Gχ ] − VkB[χ ], (77)

and let us apply to both sides of (76) the differential operator −∇T
G P0, to obtain

∇T
G P0 PT

0 ∇G[χuk] = −∇T
G P0[B[χVk] + Rk] = −∇T

G P0[B[χVk]] − ∇T
G P0[Rk].

The matrix � := PT
0 P0 = diag(κ2

1 , . . . , κ
2
n1
) is positively definite and diagonal.

Therefore, the operator ∇T
G P0 PT

0 ∇G can thus be rewritten as

D := ∇T
G P0 PT

0 ∇G =
n1∑

i=1

κ2
i X2

i =
n1∑

i=1

(|κi |Xi )
2.

Since D is a sub-Laplacian it is well known (see e.g. [17, Proposition 5.3.2] and
[17, Proposition 5.3.11]) that D admits a fundamental solution K0 satisfying K0 ∈
C∞(G \ {0}), K0 ∈ L1

loc(G) and K0(x) = K0(−x). In addition K0 is (2 − Q)-
homogeneous and hence the distribution Xi K0 is (1− Q)-homogeneous for every
i = 1, . . . , n1. Let us first note that

0 ≤ χuk = −∇T
G P0[B[χVk]] ∗ K0 −∇T

G P0[Rk] ∗ K0

= L1[χVk] ∗ K0 + L2[Rk] ∗ K0 =: fk + gk, (78)

where we note that the convolutions above are well defined in the pointwise sense
since both −∇T

G P0[B[χVk]] and −∇T
G P0[Rk] have compact support.

precompactness of {gk} In this paragraph we prove that the sequence of functions
gk := L2[Rk] ∗ K0, defined in (78), is precompact in L1(B(0, 1)). Define the
operator F2(u) := L2[u]∗K0 on u ∈ C∞

c (G,R
n1). Note that for every test function

ϕ we have

〈F2(u), ϕ〉 = 〈L2[u], ϕ ∗ K∨
0 〉 = 〈L2[u], ϕ ∗ K0〉 =

n1∑
j=1

〈κ j u
j ∗ (X j K0)

∨, ϕ〉

=
〈(
−

n1∑
j=1

κ j u
j ∗ (X j K0)

)
, ϕ

〉
,

where we denoted by u j the j th component of the map u ∈ C∞
c (G,R

n1), and we
used repeatedly the fact that K0 = K∨

0 , where�∨ denotes the distribution that acts
as 〈�∨, ϕ〉 = 〈�,ϕ(−·)〉. Since Xi K0 is an (1−Q)-homogeneous distribution, by
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[23, Proposition 1.8(i),(ii)] we know that Xi K0 ∈ L1
loc(G) and that the following

identity holds:

F2(u)(x) =
ˆ (

−
n1∑
j=1

κ j u
j
(

xy−1
) )
(X j K0)(y)dL

n(y)

for every u ∈ C∞
c (G,R

n1) and x ∈ G.

Thanks to [24, Proposition 6.2], we know that F1 is of weak type (1, Q/(Q − 1)),
i.e. F1 extends to a continuous linear operator from L1(G) to the weak L Q/(Q−1)(G)
space L Q/(Q−1),∞(G).

In order to prove that the sequence {gk : k ∈ N} is precompact in L1(G), we
will employ Kolmogorov-Riesz-Frechet theorem. First of all, we prove that gk is
bounded in L1(B(0, 1)) and secondly we will prove equi-continuity in L1. For the
exact statement of the theorem we are employing we refer to [28, Corollary 8].

Step 1: boundness. First of all, let us check that the sequence Vk converges to
0 in L1(B(0, 3/4)). Thanks to the choice of χ , we have

ˆ
χ(y)|Vk(y)|dL n(y) ≤

ˆ
B(0,3/4)

|Vk(y)|dL n(y)

=
ˆ

B(0,3/4)
| εk ∗ (P0‖νk‖ − νk)|(y)dL n(y)

≤
ˆ

B(0,1)
|P0 − Tk(y)|d‖νk‖(y),

(79)

where νk = Tk‖νk‖. On the other hand, recalling the definition of νk in (70), we
conclude that

lim
k→∞

ˆ
B(0,3/4)

|Vk(y)|dL n(y)
(79)≤ lim

k→∞

´
B(0,1)|P0 − T(x0δrk (y))|dTx0,rk�(y)

�(B(x0, rk))

≤ lim
k→∞

´
B(x,rk )

|P0 − T(z)|d�(z)
�(B(x0, rk))

= 0,

(80)

which shows that Vk → 0 in L1(B(0, 3/4)) and in turn χVk → 0 in L1(G) by our
choice of χ . Secondly, we prove that Rk is a bounded sequence in L1(G). Let us
now give a uniform upper bound on the L1(G,Rn1) norm of the functions Rk . It is
easy to see that

ˆ
|Rk |dL n ≤

ˆ
B(0,3/4)

uk |PT
0 [∇Gχ ]| +

ˆ
B(0,3/4)

|Vk ||B[χ ]|dL n

≤ ‖PT
0 [∇Gχ ]‖∞

ˆ
B(0,3/4)

ukdL n + ‖B[χ ]‖∞
ˆ

B(0,3/4)
|Vk |dL n

≤ ‖PT
0 [∇Gχ ]‖∞ + ‖B[χ ]‖∞

ˆ
B(0,3/4)

|Vk |dL n,
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where the first inequality comes from the very definition of Rk , see (77). The above
discussion together with the fact that Vk → 0 in L1(B(0, 3/4)) implies that

lim sup
k→∞

‖Rk‖L1(G,Rn1 ) ≤ ‖PT
0 [∇Gχ ]‖∞ + ‖B[χ ]‖∞ =: M. (81)

Finally, from (81) and the fact that F1 is of weak type (1, Q/(Q−1)), we infer that
gk = F2(Rk) is a sequence bounded in L Q/(Q−1),∞(G). However, an elementary
computation, shows that gk is also bounded in L1(B(0, 1)).

Step 2: equi-continuity.The second and final step to prove the precompactness
of {gk} in L1(B(0, 1)) is to show that for every ρ ∈ (0, 1) the sequence of functions
F2(Rk) are equi-continuous in L1(B(0, ρ)). In other words, we aim to prove that
for every ε > 0 and every ρ ∈ (0, 1) we want to find 0 < η < ρ/2 such that

‖gk(· ∗ h)− gk(·)‖L1(B(0,ρ)) ≤ ε whenever ‖h‖ ≤ η.
It is immediate to see that whenever u ∈ C∞

c (G,R
n1) is a smooth function support

in B(0, 1) we have

‖F2(u)(· ∗ h)− F2(u)(·)‖L1(B(0,ρ))

≤
n1∑
j=1

|κ j | ‖u j ∗ (X j K0)(· ∗ h)− u j ∗ (X j K0)(·)‖L1(B(0,ρ))︸ ︷︷ ︸
(# j )

. (82)

For every j = 1 we now estimate# j . In order to make the notation more readable
we will write u instead of u j , so that

‖u ∗ (X j K0)(· ∗ h)− u ∗ (X j K0)(·)‖L1(B(0,ρ))

=
ˆ

B(0,ρ)
|u ∗ (X j K0)(yh)− u ∗ (X j K0)(y)|dL n(y)

=
ˆ

B(0,ρ)

∣∣∣ˆ
B(0,ρ)

u(z)
(
(X j K0)(z

−1 yh)−(X j K0)(z
−1 y)

)
dL n(z)

∣∣∣dL n(y)

≤
ˆ

B(0,ρ)

ˆ
B(0,ρ)

|u(z)||(X j K0)(z
−1 yh)− (X j K0)(z

−1 y)|dL n(z)dL n(y)

=
ˆ

B(0,ρ)
|u(z)|

(ˆ
B(0,ρ)

|(X j K0)(z
−1 yh)− (X j K0)(z

−1 y)|dL n(y)
)

dL n(z).

(83)

Let us study the inner integral above. Note that
ˆ

B(0,ρ)
|(X j K0)(z

−1 yh)− (X j K0)(z
−1 y)|dL n(y)

≤
ˆ
‖z−1 y‖≤2‖h‖

|(X j K0)(z
−1 yh)− (X j K0)(z

−1 y)|dL n(y)︸ ︷︷ ︸
(I)

+
ˆ

2‖h‖≤‖z−1 y‖, ‖y‖≤ρ
|(X j K0)(z

−1 yh)− (X j K0)(z
−1 y)|dL n(y)︸ ︷︷ ︸

(II)
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In order to estimate (I) it suffices to recall that X j K0 is (1− Q)-homogeneous

|(I)| ≤
ˆ
‖z−1 y‖≤2‖h‖

|(X j K0)(z
−1 y)|dL n(y)

+
ˆ
‖z−1 yh‖≤3‖h‖

|(X j K0)(z
−1 yh)|dL n(y) ≤ 20 sup

‖p‖=1
|X j K0(p)| ‖h‖,(84)

Let us estimate (II). Thanks to [23, Proposition 1.15], there exists a constant C =
C j > 0 such that |X j K0(a) − X j K0(a ∗ h)| ≤ C‖a‖−Q‖h‖ whenever ‖h‖ ≤
‖a‖/2, where we recall that Q is the homogeneous dimension of G. This implies,
in particular, that

|(II)| ≤ C‖h‖
ˆ

2‖h‖≤‖z−1 y‖, ‖y‖≤ρ
‖z−1 y‖−QdL n(y)

≤ C‖h‖
ˆ

2‖h‖≤‖z−1 y‖≤ρ+‖z‖
‖z−1 y‖−QdL n(y).

(85)

Note now that we must impose ‖z‖ ≤ ρ+2‖h‖, otherwise the domain of integration
of the second term of the above inequality chain would be empty and hence |(II)| =
0. This in turn implies that

|(II)| ≤ C̃‖h‖ log
(ρ + ‖h‖

‖h‖
)
, (86)

where C̃ depends on C and Q. Summing up all the information gathered above in
(82), (83), (84) ,(86), we have discovered that there exists a constant C1 depending
on G and on K0 such that

‖F2(u)(· ∗ h)− F2(u)(·)‖L1(B(0,ρ)) ≤ C1‖u‖L1(B(0,ρ))‖h‖
(

1+ log
(ρ + ‖h‖

‖h‖
))
.

Finally, specializing the above inequality to our case, we infer

‖gk(· ∗ h)− gk(·)‖L1(B(0,ρ)) = ‖F2(Rk)(· ∗ h)− F2(Rk)(·)‖L1(B(0,ρ))

(81)≤ C1 M‖h‖
(

1+ log
(ρ + ‖h‖

‖h‖
))
,

proving the equi-continuity of the sequence {gk}.
Step 3. Thanks to the Step 1 and Step 2 completed above, we can apply

Kolmogorov-Riesz-Frechet theorem, see [28, Corollary 8], to infer that {gk} is
precompact in L1(B(0, 1)).
(iii) strong convergence of { fk} to 0. In this paragraph we aim to prove that the
sequence fk = −∇T

G P0[B[χVk]] ∗ K0 defined in (78) converges to 0 in L1
loc(G).

The proof follows the following path. First we show that the fks converges to 0 as
distributions, secondly in the weak L1 space L1,∞ and finally in L1(B(0, 1)).

Step 1. Convergence to 0 as distributions. We can rewrite fk as

〈 fk, ϕ〉 = 〈L1[χVk] ∗ K0, ϕ〉 = 〈χVk,L∗1[ϕ ∗ K0]〉,
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where L∗1 is the adjoint operator of L1. Since χVk converge to 0 in L1(G), it is
immediately appart that

lim
k→∞〈 fk, ϕ〉 = lim

k→0
〈χVk,L∗1[ϕ ∗ K0]〉 = 0 for every test function ϕ.

Therefore, by definition of weak* convergence of distributions we conclude that

fk
∗
⇀ 0.
Step 2. Convergence to 0 weakly. We can rewrite the action of fk on test

functions as

〈L1[χVk] ∗ K0, ϕ〉 = 〈L1[χVk], ϕ ∗ K∨
0 〉 = 〈−∇T

G P0B(χVk), ϕ ∗ K0〉

=
n1∑

i, j=1

κ j 〈χV j
k ∗ (Xi X j K0), ϕ〉,

where χV j
k denotes the j th entry of the vector valued function χVk . It is easily

checked that the distribution Xi X j K0 is −Q homogeneous and it coincides with
a smooth function away from 0. In the notations of [23, p.164], the distribution
Xi X j K0 is said to be a Kernel of type 0 and by [23, Proposition 1.8] there is a
constant C > 0 such that

Xi X j K0 = Cδ0 + PV (Xi X j K0),

where the distribution PV (Xi X j K0) acts on test functions ϕ as

〈PV (Xi X j K0), ϕ〉 = lim
ε→0

ˆ
‖x‖≥ε

Xi X j K0(x)ϕ(x)dx .

In order to see that such distribution is well defined we refer to [23, p.166]. In
addition, [23, Proposition 1.9] tells us that the operator Ti, j : u �→ u ∗ Xi X j K0 is
bounded in L p(G) for every 1 < p <∞ and thus the operator F1 that acts as

F1(u) :=
n1∑

i, j=1

κ j Ti, j (u
j ), where u ∈ C∞

c (G,R
n1),

and u j denotes the j th component of u, extends to a bounded in L p(G,Rn1) for
every 1 < p <∞.

For the sake of readability of the notation in the following we will let T = Ti, j .
To be precise [23, Proposition 1.9] gives us a little more. Indeed, defined Tε[u] =
u ∗ (Xi X j K0)

ε + Cu where (Xi X j K0)
ε is the function coinciding with Xi X j K0

on B(0, ε)c and 0 otherwise, we have that Tε are uniformly bounded in L p for every
1 < p <∞ and

lim
ε→0

‖Tε[u] − T [u]‖L p(G) = 0 for every test function u. (87)

Let us now show that the operator u �→ u ∗ Xi X j K0 is of weak (1, 1)-type. The
above discussion shows that

T [u] − Cu = lim
ε→0

Tε[u] − Cu = lim
ε→0

ˆ
‖w‖≥ε

u(· ∗ w−1)Xi X j K0(w)dL
n(w),
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where the limits above have to been understood in the L p sense. This in particular
implies that the operator

u �→ lim
ε→0

ˆ
‖w‖≥ε

u(· ∗ w−1)Xi X j K0(w)dL
n(w),

defines an operator bounded on L p. In addition, by [23, Proposition 1.15], there
exists a constant C > 0 such that

|Xi X j K0(w
−1z)− Xi X j K0(w

−1 z̄)| ≤ C‖w−1z‖−(Q+1)‖z−1 z̄‖
for every ‖z−1 z̄‖ ≤ ‖w−1 z̄‖/2.

This implies that there exists a constant A > 0 such that for every ε > 0 we haveˆ
‖w−1z‖≥ε

|Xi X j K0(w
−1z)− Xi X j K0(w

−1 z̄)| ≤ A for every ‖z−1 z̄‖ ≤ ε/4,
which, thanks to the fact that the topologies induced by the Euclidean metric and
the sub-Riemannian one are the same together with the argument employed in the
proof of [52, Chapter 1, §5 Theorem 3], allows us to conclude that the operator
T [u] − Cu is of weak (1, 1)-type. Thus, T [u] is of weak (1, 1)-type as well and
so is F1, that is a linear combination of linear operators of weak (1, 1)-type. This
together with the fact that χVk converge to 0 in L1(G), see (79) and (80), implies
that

lim
k→∞‖ fk‖L1,∞(G) = lim

k→∞‖F1(χVk)‖L1,∞(G,Rn1 ) = 0. (88)

Step 3: strong convergence to 0. We now promote the weak convergence to
0 in L1,∞ to a strong convergence to 0 in L1(B(0, 1)). Thanks to (78) we know
that fk + gk ≥ 0 and in particular f −k := max{0,− fk} ≤ |gk |. However, since gk

is precompact in L1(B(0, 1)), the functions |gk | are locally uniformly integrable,
namely for every ε > 0 there exists a δ0(ε) > 0 such that for every Borel set
E ⊆ B(0, 1) such that L n(E) < δ0(ε) we have

´
E f −k ≤ ´

E |gk | < ε. In addition,
since fk converges to 0 in L1,∞(G), we have in particular that for every η > 0 we
have

lim
k→∞L n({| fk | > η}) = 0. (89)

Let η > 0 and pick a test function ϕ supported on B(0, 1). Then

lim
k→∞

ˆ
ϕ| fk |dL n = lim

k→∞

ˆ
ϕ fkdL n + 2

ˆ
ϕ f −k dL n

= lim
k→∞〈χVk,L∗1(ϕ ∗ K0)〉 + 2

ˆ
ϕ f −k dL n

≤ lim
k→∞〈

√
χVk,

√
χL∗1(ϕ ∗ K0)〉

+ 2
ˆ
{| fk |>η}

|ϕ| f −k dL n + 2δ‖ϕ‖L1(G)

≤ lim
k→∞‖

√
χVk‖L1(G)‖

√
χL∗1(ϕ ∗ K0)‖L∞(G)

+ 2
ˆ
{| fk |>η}∩B(0,1)

|gk |dL n + 2η‖ϕ‖L1(G),
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where L∗1 is the adjoint of the operator L1. Let us estimate the limit of the last
line above. First of all, (80) together with the fact that χ is supported on B(0, 3/4)
implies that χVk converges to 0 in L1(G). Secondly, by (89) we know that for every
ε > 0 and for every η > 0 we have

L n({| fk | > η} ∩ B(0, 1)) < δ0(ε), for every k sufficiently big.

This discussion implies that

lim
k→∞

ˆ
ϕ| fk |dL n ≤ 2ε + 2η‖ϕ‖L1(G).

The arbitrariness of ε and of η imply that limk→∞
´
ϕ| fk |dL n = 0. This show in

particular that the sequence fk is converging to 0 in L1(B(0, 1)).
(iv) final contradiction. Since gk is precompact in L1(B(0, 1)), thanks to step
(III) above, we know that the sequence χuk = fk + gk is also precompact in
L1(B(0, 1)). However, since χuk has support contained in B(0, 3/4), we infer that
χuk is precompact in L1(G). This implies that there exists a v ∈ L1(G) supported
on B(0, 3/4) such that χuk → v in L1(G).

Let us show that  εk ∗ [‖νk‖ − ‖νk‖s] converges to 0 in L1(B(0, 1/2)). By
definition, we have

lim
k→∞‖uk − εk ∗ ‖νk‖s‖L1(B(0,1/2)) = lim

k→∞

ˆ
B(0,1/2)

 εk ∗ [‖νk‖ − ‖νk‖s]dL n

≤ lim
k→∞‖νk‖a(B(0, 1))

= lim
k→∞

�a(B(x0, rk))

�(B(x0, rk))
= 0,

(90)

where the last line follows from the fact that item (iii) holds at x0. This implies
in particular that the sequence  εk ∗ ‖νk‖s is precompact in L1(B(0, 1/2)). In

addition, we also have that  εk ∗ ‖νk‖s ∗
⇀ ν, where ν was introduced in (71).

Indeed, for every test function ϕ supported in B(0, 1/2) we have

lim
k→∞〈 εk ∗ ‖νk‖s, ϕ〉

(90)= lim
k→∞〈 εk ∗ ‖νk‖, ϕ〉 = lim

k→∞〈‖νk‖, εk ∗ ϕ〉

= lim
k→∞

ˆ
( εk ∗ ϕ)d‖νk‖ = 〈ν, ϕ〉, (91)

where the last identity comes from the fact that the sequence of functions  εk ∗ ϕ
converges uniformly to ϕ. The above chain of identities also proves that

〈v, ϕ〉 = lim
k→∞〈χuk, ϕ〉 = lim

k→∞〈 εk ∗ ‖νk‖, ϕ〉 = 〈ν, ϕ〉,

which means that on B(0, 1/2) the measure ν is (represented by) the L1(B(0, 1/2))
function v.
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It is now the moment to choose the sequence {εk}k∈N that are the scales of
mollification used to define the functions uk and Vk , see (74). Thanks to the lower
semicontinuity of the total variation we know that

|‖νk‖s − ν|(B(0, 1/2)) ≤ lim inf
ε→0

| ε ∗ ‖νk‖s − ν|(B(0, 1/2)),

this means that for every k ∈ N we can choose an εk such that

|‖νk‖s − ν|(B(0, 1/2)) ≤ | εk ∗ ‖νk‖s − ν|(B(0, 1/2))+ k−1. (92)

Let E be a Borel set of G such that L n(E) = 0, �s(G \ E) = 0. Thanks to (iii)
and to (ii) we know that if k is sufficiently big, we have

1/j0 ≤�
s(B(x0, rk/2))

�(B(x0, rk))
= �s(B(x0, rk/2) ∩ E)

�(B(x0, rk))
= ‖νk‖s(B(0, 1/2) ∩ δ1/rk (x

−1
0 E))

≤|‖νk‖s − ν|(B(0, 1/2) ∩ δ1/rk (x
−1
0 E)))+ ν(B(0, 1/2) ∩ δ1/rk (x

−1
0 E))

=|‖νk‖s − ν|(B(0, 1/2) ∩ δ1/rk (x
−1
0 E)))

(92)≤ | εk ∗ ‖νk‖s − ν|(B(0, 1/2))+ k−1

(93)

Since | εk ∗ ‖νk‖s − ν|(B(0, 1/2)) = ‖ εk ∗ ‖νk‖s − v‖L1(B(0,1/2)), we see
that if k is chosen big enough the inequality

1/j0 ≤ ‖ εk ∗ ‖νk‖s − v‖L1(B(0,1/2)) + k−1,

cannot be satisfied thanks to the fact that uk → v in L1(B(0, 1/2)) and to (90).
This shows that the points where (i), (ii), (iii) and (iv) hold together form a�s-null
set.
(v) conclusion. Thanks to Radon-Nikodym decomposition, we can write μ as
μ = μa + μs , where μa � L n and μs ⊥ L n and it is elementary to see that
μs � �s since μ � �. Furthermore, since ηi � � there are αi ∈ L1(�) such
that ηi = αi�. Hence, it is easy to see that

T(x) = dT(x)

d�
=

(d(τ 1η1)

d�
(x), . . . ,

d(τ n1ηn1)

d�
(x)

)

=
(d(τ 1α1�)

d�
(x), . . . ,

d(τ n1αn1�)

d�
(x)

)
= (α1(x)τ

1(x), . . . , αn1(x)τ
n1(x)),

for �-almost every x ∈ G. It is thus immediate to see that this implies that

T(x) = (α1(x)e1, . . . , αn1(x)en1) for μ-almost every x ∈ G.

We now show that for μ-almost every x ∈ G the matrix T(x) is invertible. Let
us recall that μ � ηi for every i = 1, . . . , n1, see (∗), and that ηi = αi�. This
implies, in particular, that

μ(G \ {|αi | > 0}) = 0 for every i = 1, . . . , n1,
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and hence μ is supported on ∩n1
i=1{|αi | > 0}, which therefore is a set of full μ-

measure. However, thanks to the discussion in the paragraphs (I) to (IV) of this
proof, we know that

�s({x ∈ G : T(x) = diag(α1(x)e1, . . . , αn1(x)en1) and 0 < |αi | <∞
for every i = 1, . . . , n1}) = 0.

This, however, concludes the proof of the fact that μs = 0. ��
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A. Measurability Results

In this appendix we collect some measurability results that are proved here in order to make
Section 3 and 4 more readable.

Proposition A.1. For every couple of Borel distributions of homogeneous subgroups V,W :
G→ Greu(G), the intersection map V ∩ W (x) := V (x) ∩ W (x) is Borel, where we recall
that Greu(G) was introduced in Definition 2.4.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. Since for every V,W ∈ Gr(G) we have V ∩ W = (V⊥ + W⊥)⊥, Proposition 6.1
implies that in order to prove the claim it suffices to show the Borelianity of the sum (as
vector subspaces of G ∼= Rn) of the maps V⊥ and W⊥. Let e1, . . . , en be a basis of Rn , that
as recalled above is underlying vector space of G, and define

ζi (x) := πV⊥(x)[ei ] and ζi+n(x) := πW⊥(x)[ei ] for every i = 1, . . . , n.

The vector fields ζ1, . . . , ζ2n : G→ G are Borel thanks to Proposition 6.1. In addition by con-
struction we know that the vector fields {ζ1, . . . , ζn} span V (x)⊥ while the {ζn+1, . . . , ζ2n}
span W (x)⊥ for every x ∈ G. This implies in particular that {ζ1(x), . . . , ζ2n(x)} span
V⊥(x)+W⊥(x) for every x ∈ G. Now, from the ζi s we construct some other vector fields
ω1, . . . , ω2n that still span V⊥ +W⊥ defined in the following inductive way. As a first step
we define

ω1(x) :=
{
ζ1(x)/|ζ1(x)| if ζ1(x) �= 0,
0 otherwise.

Notice that the vector field ω1(x) is trivially seen to be Borel. As a second step, sup-
pose that we already defined the vector fields ω1, . . . , ωk−1. Define ω̃k(x) := ζk(x) −∑k−1

i=1 〈ζk(x), ωi (x)〉ωi (x) and note that ω̃k is a Borel vector field. Finally, we define ωk as

ωk(x) =
{
ω̃k(x)/|ω̃k(x)| if ω̃k(x) �= 0,
0 otherwise.

Notice thatωk is a Borel vector field as well. Thanks to its very definition, we see that for every
fixed x ∈ G there are only dim(V⊥(x)+W⊥(x)) non-null elements of {ω1(x), . . . , ω2n(x)}
and those that are not null form an orthonormal basis of V⊥(x)+W⊥(x). In particular, for
every x ∈ G the map πV (x)⊥+W⊥(x) is easily seen to be represented as

πV (x)⊥+W⊥(x) =
2n∑

i=1

ωi (x)⊗ ωi (x),

which is a Borel matrix field. This concludes the proof by Proposition 6.1. ��
Proposition A.2. Let K be a compact subset ofR and γ : K → G be a 1-Lipschitz fragment.
Then, for every ε > 0 there exists N = N (ε) ∈ N, finitely many closed intervals {I j } j=1,...,N
and a 1-Lipschitz fragment γ̃ ∈ XN such that

L 1(dom(γ )! dom(γ̃ )) ≤ εL 1(domγ̃ ).

Proof. Since K is compact, we can find countably many disjoint open intervals {(a j , b j )} j∈N
such that

K ∪
⋃
{(a j , b j ) : j ∈ N} = [min K ,max K ].

Let ε > 0 arbitrary and choose N = N (ε) ∈ N in such a way that
∑

j>N (b j − a j ) < ε.
Then

[min K ,max K ] \
⋃
j≤N

(a j , b j ) = K ∪
⋃
j>N

(
a j , b j

)
,

and in particular K ∪⋃
j>N (a j , b j ) is a finite union of closed intervals. Denote now by

η j : [0, d(γ (a j ), γ (b j ))] → G a geodesic joining γ (a j ) and γ (b j ) and note that if we let

γ̃ (t) :=
{
γ (t) if t ∈ K ,

η j

(
d(γ (a j ),γ (b j ))(t−a j )

b j−a j

)
if t ∈ (a j , b j ),

(94)
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then γ̃ satisfies L 1(dom(γ )! dom(γ̃ )) ≤ εL 1(domγ̃ ). In order to conclude the proof, we
just need to check that γ̃ is a 1-Lipschitz fragment. We check here only the most complicated
case in which si ∈ (a ji , b ji ) for some j1 �= j2. Assume without loss of generality that
b j1 < a j2 and note that

d(γ̃ (s2), γ̃ (s1)) ≤d(γ̃ (b j1), γ̃ (s1))+ d(γ̃ (b j1), γ̃ (a j2 ))+ d(γ̃ (a j2 ), γ̃ (s2))

≤d(γ (a j1), γ (b j1))

b j1 − a j1
(b j1 − s1)+ (a j2 − b j1)

+ d(γ (a j2 ), γ (b j2 ))

b j2 − a j2
(s2 − a j2 ) ≤ (s2 − s1).

This concludes the proof. ��
Lemma A.3. Suppose I is a Borel subset of the real line an � : I → F is a Borel map,
where F was introduced in Definition 4.1. Then the map � : I → M (Rn,Rn) defined as
�(t) := ��(t)� and the map t �→ ‖�(t)‖ are Borel. Moreover
(i) Suppose t �→ μt is a family of vector-valued measures satisfying the hypothesis (a) and

(b) of Definition 2.11 and such that for almost every t ∈ I there exists a 1-Lipschitz
fragment γt : Kt → G defined on a compact set Kt of R such that μt = �γt �. Then,
there exists a Borel map  : I → F such that μt = � (t)� for almost every t ∈ I ;

(ii) if M : I → M (Rn) is a family of measures satisfying the hypothesis (a) and (b)
of Definition 2.11 and such that for almost every t ∈ I there exists a bi-Lipschitz
fragment γt : Kt → G such that M(t) = H 1 im(γt ). Then, there is a Borel map
� : I →M (Rn,Rn) such that �(t) = �γt � and M(t) = ‖�(t)‖ for almost every t ∈ I .

Proof. First of all, let us note that for every N ∈ N the set FN of those γ ∈ F such that
dom(γ ) ⊆ [−N , N ] is closed in F and that F = ∪N∈NFN . Note that for every γ ∈ FN , we
have M(�γ �) ≤ 2N , since the elements of F are supposed to be 1-Lipschitz. Let us remark
that MN (R

n,Rn) := {ν ∈ M (Rn,Rn) : M(ν) ≤ N } and the space of the 1-currents in Rn

with mass at most N , both endowed with the weak* topology, are isomorphic topological
spaces and from now on we will identify them.

In order to prove the proposition, we prove that the maps γ �→ �γ � and γ �→ ‖�γ �‖ are
Borel and to do so, we need to introduce three maps. Let
(i) E : FN → Lip1([−N , N ],G) be a map that to each t assigns an extension to [−N , N ]

of �(t);
(ii) D : [−N , N ] × Lip1([−N , N ],G)→ Rn be the map defined as

D(s, γ ) :=
{
γ ′(s) if γ ′(s) exists,
4e1 otherwise.

(iii) M : K ([−N , N ])→ M ([−N , N ]) be the map defined as K �→ L 1 K , where we
recall that K ([−N , N ]) is the family of compact sets of [−N , N ] endowed with the
Hausdorff distance and M ([−N , N ]) is endowed with the weak* topology of measures.

We now check that that we can find an extension map E that is Borel, and that M and D are
Borel.
borelianity of E Let us prove that we can construct an extension map E that is Borel.
In order to do this, we will construct a multimap that assigns to each element of FN the
family of all its extensions. We prove that this multimap is measurable and conclude by
Kuratowski-Ryll-Nardzewski selection theorem that it admits a Borel selection that will be
our sought map E .

As a first step, we construct the (graph of the) extension multimap. Letd : F×Lip1([−N , N ],G)→
R be the map defined as

d(γ, η) := sup
z∈gr(γ )

disteu(z, gr(η)).
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Let us note that if d(γ, η) = 0 where γ ∈ F and η ∈ Lip1([−N , N ],G), then this implies
that gr(γ ) ⊆ gr(η). Therefore, if (γ, η) ∈ d−1(0), then γ ∈ FN and η is an extension of the
map γ to [−N , N ]. Let us check that d is Lipschitz. Indeed

|d(γ1, η1)− d(γ2, η2)| ≤ |d(γ1, η1)− d(γ1, η2)| + |d(γ1, η2)− d(γ2, η2)|
≤ deu,H (η1, η2)+ deu,H (γ1, γ2).

(95)

Therefore, d−1(0) is a closed set in F × Lip1([−N , N ],G). Finally, thanks to Proposition
A.2, the projection of d−1(0) on F coincides with FN . This implies that that the multimap
that assigns to each γ ∈ FN the family of all its extensions in Lip1([−N , N ],G) is closed,
i.e. it takes closed sets as values, as its (multi)graph coincides with d−1(0). If the exten-
sion multimap is shown to be Borel measurable, the Borelianity of E is proven thanks to
Kuratowski-Ryll-Nardzewski selection theorem, see [51, Theorem 5.2.1].

Now we check that the extension multimap is Borel. To do this, it is sufficient to prove that
for every closed set C ⊆ Lip1([−N , N ],G) the family of those γ ∈ FN that are extended
by some η ∈ C is Borel, see [51, p. 184]. Without loss of generality we can assume that C
is compact. Indeed, we can write Lip1([−N , N ],G) = ∪R∈NLip1([−N , N ], B(0, R)) and
note that each Lip1([−N , N ], B(0, R)) is compact. This implies in particular that CR :=
C ∩ Lip1([−N , N ], B(0, R)) is compact. Therefore, if we show that for every compact set
C ⊆ Lip1([−N , N ],G) the family of those γ ∈ FN that are extended by some η ∈ C is
Borel, the proof of the claim is achieved. However, if we take a sequence {γk}k∈N ∈ FN
with the property that they are extended by some curve {γ̄k}k∈N in the compact set C , up
to subsequences there exist γ ∈ FN and γ̄ ∈ C such that limk→∞ deu,H (γk , γ ) = 0 and
limk→∞ deu,H (γ̄k , γ̄ ) = 0. It is an elementary computation to see that γ̄ is an extension
of γ . This shows that the set of those γ ∈ FN that are extended by some η ∈ C is compact.
Therefore, this concludes the proof that the extension multimap is Borel and hence such
multimap admits a Borel selection that we denote by E .

Let us further check that the map (γ, s) �→ E (γ )(s) is Borel. First note that eval-
uation map Es : Lip([−N , N ],Rn) → Rn defined as Es(γ ) := γ (s) is continuous
on Lip([−N , N ],Rn). Therefore the map s �→ E (γ )(s) is continuous for every γ and
γ �→ E (γ )(s) = Es(E (γ )) is Borel for every s ∈ [−N , N ]. The check of the joint Bore-
lianity is elementary. It suffices to observe that the above remarks imply that the Borel
maps

Ek(γ )(s) := E (γ )("ks#/k)

converge pointwise to E (γ )(s).
borelianity of D Fix a closed set C ⊆ Rn and ε, δ > 0. Let us note that the set Dε,δ,C of
those (s, γ ) ∈ [−N , N ] × Lip1([−N , N ],G) for which there exists a v ∈ C such that

|γ (σ )− γ (s)− (σ − s)v| ≤ ε|σ − s|, for every |σ − s| ≤ δ (96)

is closed. Let (si , γi ) ∈ Dε,δ,C satisfy (96) for some vi ∈ C and suppose (si , γi ) converge
to (s, γ ) ∈ [−N , N ] × Lip1([−N , N ],G). Since the γi s are converging to γ in deu,H ,
we infer that there there exists a constant c = c(ε, γ ) such that ‖vi‖ ≤ c and thus, up to
subsequences, vi → v for some v ∈ C . This together with an elementary computation shows
also that Dε,δ,C is closed. Therefore, we infer that

DC :=
⋂
ε∈Q+

⋃
δ∈Q+

Dε,δ,C

is Borel. The set of those (s, γ ) where γ ′(s) does not exists is contained in Dc
Rn , which is

clearly Borel.
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Let us check the Borelianity of D. First of all, let us observe since γ ∈ Lip1
([−N , N ],G) we have that whenever γ ′ exists, we have |π1(γ

′)| ≤ 1 by the definition
of the group operation. Therefore the image under D of those points (s, γ ) such that γ is
differentiable at s is contained in the cylinder κ := {z ∈ Rn : |π1(z)| ≤ 1}. Therefore, the
Borelianity of D follows by observing that if C is a closed set not intersecting {4e1}, we
have D−1(C) = DC , which is a Borel set as shown above. If on the other hand 4e1 ∈ C ,
we have

D−1(C) = D−1(C ∩ κ ∪ {4e1}) = D−1(C ∩ κ) ∪ D−1({4e1}) = DC∩κ ∪D{4e1},
which is Borel.
borelianity of M Let us check that the map M is Borel. Recall that the sets

B(ψ;φ, ε) :=
{
μ ∈M ([−N , N ]) :

∣∣∣ˆ φ dμ−
ˆ
φ dψ

∣∣∣ < ε},
where ψ ∈ M ([−N , N ]), φ ∈ Cc([−N , N ]) and ε > 0, are a pre-basis of the weak*
topology of M ([−N , N ]). Therefore, in order to check the Borelianity of M it is sufficient
to prove that the sets U (ψ;φ, ε) := M−1(B(ψ;φ, ε)) are Borel for every ψ , φ and ε as
above. Thanks to the following chain of identities

U (ψ;φ, ε) =
{

K ∈ K ([−N , N ]) :
∣∣∣ˆ φ dL 1 K −

ˆ
φ dψ

∣∣∣ < ε}

=
{

K ∈ K ([−N , N ]) :
ˆ
φ dL 1 K −

ˆ
φ dψ < ε

}

∩
{

K ∈ K ([−N , N ]) :
ˆ
φ dψ −

ˆ
φ dL 1 K < ε

}
,

(97)

in order to prove the Borelianity of U (ψ;φ, ε) it is therefore sufficient to show that the maps

f+ : K �→
ˆ
φ+ dL 1 K and f− : K �→

ˆ
φ− dL 1 K ,

are upper semi-continuous, where as usual φ+ and φ− are the positive and negative parts of
φ.

Let us prove that f+ is upper semi-continuous and the result for f− will follow similarly.
Let η > 0 and {Kι}ι∈N be a sequence of compact sets converging in the Hausdorff distance
to some compact set K . Finally, fix an open set A containing K such that

ˆ
A
φ+dL 1 ≤

ˆ
K
φ+dL 1 + η.

Such open set A exists thanks to the continuity ofφ+ and the Borel regularity of the Lebesgue
measure. On the other hand, it is immediately seen that the compact sets Kι, that converge
to K in the Hausdorff distance, are contained in A for ι sufficiently big. Therefore

lim sup
ι→∞

f+(Kι) ≤
ˆ

A
φ+dL ≤ f+(K )+ η.

The arbitrariness of η concludes the proof of the fact that U (ψ;φ, ε) is Borel for every
ψ ∈M ([−N , N ]), φ ∈ Cc(R) and every ε > 0. This concludes the proof of the Borelianity
of M.
construction and borelianity of � Let �N : FN → M (Rn,Rn) be the map defined
as follows. For every γ ∈ FN and φ ∈ C∞c (Rn,Rn) we let �N (t) ∈ M (Rn,Rn) be such
that

〈�N (γ ) ; φ〉 :=
ˆ
〈D(s,E (γ )) ; φ(E (γ )(s))〉dνγ (s) =: fφ(γ ),
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where νγ := M(dom(γ )). Throughout the rest of this paragraph, in order to improve
readability with abuse of notations, we will let� := �N as N will be fixed. In the following
we aim to prove that � is Borel. In order to do this, it is easy to check, in a similar way
to what we did in the proof of the Borelianity of M, that it suffices to show that for every
φ ∈ Cc(Rn,Rn) and every r > 0 the set

{γ ∈ FN : 〈�(γ ) ; φ〉 ≤ r} = {γ ∈ FN : fφ(γ ) ≤ r}, is Borel.

Hence, the Borelianity of the map� is equivalent to that of all the maps fφ . Therefore, here
below we check that the maps fφ are Borel.

As a first step, let us check that the map γ �→ νγ is Borel. The map γ �→ dom(γ ) is Borel,
and this can be checked by recalling that � is Borel and that the projection of the graphs γ on
the first component is a 1-Lipschitz map with respect to the Hausdorff distance. Further, since
M was shown in the previous paragraph to be Borel, we infer that γ �→ νγ =M(dom(γ ))
is a Borel map.

Clearly, in order to prove that fφ is Borel we now proceed in steps. Let us fix notations.
For every Borel function g : FN ×[−N , N ] → R bounded with bounded support we define
the map

�g : γ �→
ˆ

g(γ, s) dνγ (s).

First we note that for every Borel sets E1 ⊆ FN and E2 ⊆ [−N , N ] the map �1E11E2
is

Borel. This however is an immediate consequence of the fact that the map γ �→ νγ is Borel.
Indeed, it can be checked that this implies that for every Borel set E ⊆ R we have that the
map γ �→ νγ (E) is Borel. Compare with Definition 2.11.

Now we prove that for every continuous function g with bounded support we have that
the map �g is Borel. Let us note here that bounded and closed subsets of FN are compact.
First recall that g is uniformly continuous (having compact support) and therefore for every
ε > 0 there exists δ > 0 such that if deu,H (γ1, γ2) ≤ δ and |s1 − s2| ≤ δ then

|g(γ1, s1)− g(γ2, s2)| ≤ ε.
Let {Aδj } j∈N be a Borel (countable) partition ofFN such that diam(A j ) ≤ δ and let γ δj ∈ Aδj .
Then, we let L ≥ − log2(δ/N ) and

gδ(γ, s) :=
∑
j∈N

2L−1∑
k=−2L

g(γ δj , Nk2−L )1Aδj
(γ )1[Nk2−L ,N (k+1)2−L )(s)

+
∑
j∈N

g(γ δj , N )1Aδj
(γ )1{N }(s).

It is easy to see that gδ has bounded support, since g has compact support, and that gδ
converges to g uniformly. On the one hand, it is follows from the discussion above that the
functions �gδ are Borel, as they are sum of Borel functions. However, it is also immediate
to see that �gδ converge uniformly to �g on FN and hence �g is Borel as it can be written
as a limit of a sequence of Borel functions.

However, this actually concludes the proof. Let us see why this is the case. We recall that
a function is of Baire class ζ ∈ N if it is the pointwise limit of a sequence of functions in
the Baire class ζ − 1. The Baire class 0 is by definition the family of continuous functions.

Let us prove that if g is bounded, boundedly supported and of Baire class 1, then �g is
Borel. By definition, we can find a sequence of continuous functions g� converging to g
pointwise. It is immediate to see that we can assume that the functions g� are uniformly
bounded and that their support is contained in a common bounded set. However, for every
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γ ∈ FN this implies that lim�→∞�g� (γ ) = �g(γ ) by dominated convergence theorem.
This shows, since the functions �g� are Borel, that �g is Borel as well.

However, since every Borel function is in some Baire class, see [31, Theorem 24.3], arguing
as above inductively, implies that�g is Borel whenever g is bounded with bounded support.

Let us conclude this paragraph with the proof of the Borelianity of �. The function

gφ(γ, s) := 〈D(s,E (γ )) ; φ(E (γ )(s))〉,
is Borel since all the functions involved in the definition are Borel, and it is easy to check that it
has bounded support and it is bounded. Indeed D(γ, s) ≤ 1 for every (γ, s) ∈ FN×[−N , N ],
since the curves γ are 1-Lipschitz, and hence ‖gφ‖∞ ≤ ‖φ‖∞. This proves that the functions
�gφ = fφ are Borel for every φ ∈ Cc(Rn,Rn). This concludes the proof that � is Borel.

We further observe that for every γ ∈ FN and φ ∈ Cc(Rn) we have that

〈‖�(γ )‖ ; φ〉 =
ˆ
φ(E (γ )(s))dνγ (s).

Hence, the above argument proves also that ‖�(γ )‖ is Borel.
conclusion of the proof. Since � is Borel, we infer that TN := �−1(FN ) ∩ [−N , N ]
is Borel, where � is the curve of curves given in the statement of the lemma. Therefore, the
Borelianity of t �→ ��(t)� and that of t �→ ‖��(t)�‖ follow from the fact that ��(t)� =
�N (�(t)) for every t ∈ TN .

Towards a proof of item (i) of the Lemma, consider the setX the set of those (t, γ ) ∈ I×F

such that μt = �γ �. By assumption, there exists a Borel subset Ĩ ⊂ I of full measure, for
which for every t ∈ Ĩ there exists γ ∈ F such that μt = �γ � and such that the map
t �→ μt restricted to Ĩ is Borel. This is due to Lusin’s theorem. Define now the map
1ג : (t, γ ) �→ M[μt − �γ �] and let us check that it is Borel. First of all, the mass M is lower
semicontinuous and the map Ĩ×F � (t, γ ) �→ μt−�γ � is Borel. Therefore,X = �−1(0) is
Borel and von Neumann measurable selection theorem, see [51, Theorem 5.5.2] guarantees
that there exists a universally measurable selection  ̃ : Ĩ → F of X . Therefore, there exists
a Borel map  : I → F that coincides L 1-almost everywhere on I with  ̃ and hence

μt = � (t)� for L 1-almost every t ∈ I.

Finally, the proof of item (ii) can be obtained with the same argument, mutatis mutandis,
employed for item (i) by showing that with von Neumann selection theorem, we can extract
a universally measurable section of the set Y of those (t, γ ) ∈ I ×F such that μt = ‖�γ �‖.
The Borelianity of the set Y is inferred from the Borelianity of the map ,t)2ג γ ) := M[μt −
‖�γ �‖], since Y = ג

−1
2 (0). ��

Proposition A.4. Let (I, dt) be a (possibly unbounded) Borel subset of real line
endowed with the Lebesgue measure L 1 and t �→ μt be a family of vector-valued
measures satisfying the hypothesis (a) and (b) of Definition 2.11 and such that for
almost every t ∈ I there exists a 1-Lipschitz fragment γt : Kt → G defined on a
compact set Kt of R such that μt = �γt�. Then, for every ε > 0 there exists a Borel
set Iε ⊂ I , N ∈ N and a Borel map cε : Iε →M (Rn,Rn) such that

(i) for every t ∈ Iε we have cε(t) = ��(t)� where the map � : Iε → XN is a Borel
map with respect to the metric deu,H introduced in Definition 4.1;

(ii)
´

I\Iε
M(μs) ds < ε/2,

´
Iε
M(μs − cε(s)) ds < ε/2 and ‖M(cε)‖L∞(Iε) <∞.

Proof. Throughout the proof, we identify without further comment G with its un-
derlying vector space Rn as Lipschitz fragments in G, as it has been previously
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remarked, are Lipschitz in G ∼= Rn endowed with the Euclidean metric. Without
loss of generality, we can assume that the μt ’s are supported on the closed ball
B(0, R) for some R > 0. Since t �→ M(μt ) is supposed to be measurable and
since

´
RM(μt )dt < ∞, for every ε > 0 there exists a compact set Ĩε such that´

I\ Ĩε
M(μt )dt < ε/6 and ‖M(μt )‖L∞( Ĩε) <∞ and t �→ μt is Borel on Ĩε.

Fix N ∈ N. In the proof of Lemma A.3 we have showed that the map � :
I × F → M (Rn,Rn) defined as (t, γ ) �→ M(μt − �γ �) is Borel. Let Gε,N :=
Ĩε ×XN ∩�−1([0, ε/6L ( Ĩε))) and note that by the Borelianity of� we infer that
Gε,N is Borel and that the set

Iε,N := {t ∈ Ĩε : there exists γ ∈ XN such that (t, γ ) ∈ Gε,N } is Suslin.

In particular Iε,N is universally measurable. We define Iε := ∪i∈NIε,i \Iε,i−1
and note that thanks to Proposition A.2 we have L 1( Ĩε \Iε) = 0 and that Iε is
universally measurable. Therefore, there exists an N ∈ N and a compact set Iε of
Iε,N such that

ˆ
Ĩε\Iε

M(μt ) dt ≤ ε/6.

Recalling that both Iε andXN are Polish spaces, von Neumann measurable selection
theorem, see [51, Theorem 5.5.2], implies that there exists a universally measurable
uniformization of Iε×XN ∩Gε,N , that is, a universally measurable map �̃ε : Iε →
XN such that (t, �̃ε(t)) ∈ Gε,N . By Lusin’s theorem, there exists a map that we
denote with �ε that coincides with the map �̃ε outside a L 1-null subset of Iε.

Therefore, applying Lemma A.3 to�ε we get that the map cε : Iε →M (Rn,Rn)

defined as cε(t) := ��ε(t)� is Borel. Let us now check item (ii). First of all
ˆ

I\Iε
M(μt )dt ≤

ˆ
I\ Ĩε

M(μt )dt +
ˆ

Ĩ\Iε
M(μt )dt ≤ 2ε/6 < ε/2.

Secondly
ˆ

Iε
M(μs − cε(s)) ds ≤ L 1(Iε) · ε

6L 1( Ĩε)
< ε/2,

Where in the first inequality above we used the fact that by construction

M(μt − cε(t)) = M(μt − ��ε(t)�) ≤ ε/6L 1( Ĩε).

Finally, for almost every t ∈ Iε, we have

M(cε(t)) ≤ M(μt )+ M(μt − cε(t)) <∞.
This concludes the proof. ��
Lemma A.5. Let n,m ∈ N. For every r > 0 the map En,m

r :M (Rn,Rm)× Rn →
Rm defined as En,m

r (ν, x) := ν(U (x, r)) is Borel, where U (x, r) denotes the closed
Euclidean ball with centre x and radius r > 0.
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Proof. First of all, let us prove that the map E+r : M (Rn) × Rn → R defined as
E+r (U (x, r)) := ν(U (x, r)) is Borel. Without loss of generality we can restrict the

map E+r to a set of measures with equibounded mass. Let νi
∗
⇀ ν and xi → x and

note that for every ε > 0 we have

lim sup
i→∞

E+r (νi , xi ) = lim sup
i→∞

νi (U (xi , r))

≤ lim sup
i→∞

νi (U (x, r + ε)) ≤ ν(U (x, r + ε)), (98)

where the last inequality follows from Portmanteau’s theorem. However, thanks to
the arbitrariness of ε, we conclude thatE+r is upper semi-continuous. This concludes
the proof for positive measures.

For measures in M (Rn,R), one just uses Hahn’s decomposition theorem and
applies the above discussion to the negative and positive part and recalls that the
sum of Borel functions is Borel.

Finally, to obtain the result for vector valued case we apply the above discussion
component-wise. ��
Lemma A.6. Let I be a Borel subset of R. Suppose that I � t �→ μt is a map
satisfying items (a) and (b) of Definition 2.11 and for which for almost every t ∈ I
there exists a Lipschitz fragment γt : Kt → G such that μt =H 1 im(γt ). Then,
there exists a Borel map v : I × G→ V1 and a Borel set E ⊆ I × G such that for
almost every t ∈ I we have

H 1(im(γt )!{x ∈ G : (t, x) ∈ E}) = 0,

v(t, x) ∈ {λDγt (s) ∈ V1 \ {0} : λ ∈ R and s ∈ γ−1
t (x)} and |v(x, t)| = 1 for

every (t, x) ∈ E and v = 0 otherwise.

Proof. We divide the proof in several steps. First, since t �→ μt is measurable, by
Lusin’s theorem there exists a Borel map coinciding with t �→ μt up to Lebesgue
null sets. Thus, in the following we will assume that the map t �→ μt is Borel and
that μt =H 1 im(γt ) for every t ∈ I . This reduction is without loss of generality
because we are required to prove a statement up to sets of null L 1 measure.

Step 1. In this first step we check that we can split in a Borel way each μt

as a sum of mutually singular measures that are H 1 restricted to the image of a
bi-Lipschitz fragment. We claim that there exists a Borel map ( j, t) �→ μ j,t such
that for almost every t ∈ I we have

(i) μt =∑
j∈N μ j,t whereμ j,t =H 1 im(γ j,t ) for some 2-bi-Lipschitz fragment

γ j,t : K j,t → G;
(ii) Dγ j,t (γ

−1
j,t (x)) ∈ {λDγt (s) ∈ V1 \ {0} : λ ∈ R, s ∈ γ−1

t (x)} for every j ∈ N
and for μ j,t -almost every x ∈ G.

In order to prove items (i) and (ii) let us observe that [7, Lemma 4.1] implies
that for every t ∈ I there exists a family of 2-bi-Lipschitz maps γ̃ j,t : K j,t → G
such that im(γ̃ j,t ) are pairwise disjoint and

H 1
(

im(γt ) \
⋃
j∈N

im(γ̃ j,t )
)
= 0 and

∑
j∈N

H 1(im(γ̃ j,t )) =H 1(im(γt )).
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Denote by B the space of 2-bi-Lipschitz fragments and note that B is complete
and separable when endowed with the metric deu,H . Further, it is also immediate
to see that BN, the space of sequences in B, is Polish. Thanks to (the proof of)
Proposition A.3 we know that the map γ �→ ‖�γ �‖ is Borel. Hence, let M :
I ×BN →M (Rn,R) be the function defined as

M(t, {γ̃ j } j∈N) :=
{
μt −∑

j∈N‖�γ̃ j �‖ if
∑

j∈NH 1(im(γ j )) <∞;
L 1 B(0, 1) otherwise.

Being a composition of Borel maps, it is immediate to see that M is Borel.
Hence, the set M−1(0) is a Borel set and thus thanks to von Neumann measurable
selection theorem, see [51, Theorem 5.5.2] we can find a universally measurable
map t �→ {γ j,t } j∈N such that μt = ∑

j∈N‖�γ j,t�‖. Summing up, so far we have
shown that there exists a universally measurable map � : t �→ {γ j,t } j∈N such that

μt =
∑
j∈N
‖�γ j,t�‖ for L 1-almost every t ∈ I. (99)

Clearly, by Lusin’s theorem there exists a Borel map that we will call with abuse of
notations �, still satisfying (99) and coinciding with the original � on a set of full
L 1 measure. The metric that makes BN a complete and separable metric space is

d∞({γ 1
j } j∈N, {γ 2

j } j∈N) :=
∑
j∈N

2− j
deu,H

(
γ 1

j , γ
2
j

)
1+ deu,H

(
γ 1

j , γ
2
j

) ,
and it can be easily checked that the projection on the kth componentπk ({γ j } j∈N) =
γk is continuous from (BN, d∞) to (B, deu,H ). This implies that for every j ∈ N
the map t �→ ‖�γ j,t�‖ = ‖�π j ({γk}k∈N)�‖ is composition of Borel maps and hence
it is Borel. However, since N is countable, this also implies that ( j, t) �→ ‖�γ j,t�‖
is Borel. So, defined μ j,t := ‖�γ j,t�‖ we have by construction that for L 1-almost
every t we have

H 1 im(γt ) = μt =
∑
j∈N
‖�γ j,t�‖ =

∑
j∈N

H 1 im(γ j,t ),

where the last identity follows from the fact that the curves γ j,t are biLipschitz.
The above identity implies that the measures μ j,t are mutually singular. If this was
not the case there would be a Borel set of positive H 1-measure where the Radon-
Nykodim derivative of

∑
j∈N μ j,t with respect to H 1�im(γt ) would be bigger

than 2, which is excluded by the computation above. This concludes the proof of
item (i).

Let us check item (ii). Thanks to [39, Theorem 4.4], we know that

H 1(im(γt ) \ γt (K̃t )) = 0,
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where K̃t := {s ∈ Kt : Dγt (s) �= 0} and fix a j ∈ N. It elementary to see that
μt -almost every x ∈ im(γt ) is a μt density point of im(γ j,t ). For such x’s can find
σ0 ∈ K j,t and τ0 ∈ K̃t such that the points σ0 and τ0 are two Lebesgue density
points for K j,t and K̃t respectively with γt (τ0) = x , γ j,t (σ0) = x and such that
Dγt (τ0) and such that Dγ j,t (σ0) exist; that τ0 is a L 1 density point of the set
C j,t := {s ∈ K̃t : γt (s) ∈ im(γ j,t )}. In addition, for every r ∈ C j,t there exists
σ(r) ∈ K j,t such that γ j,t (σ (r)) = γt (r) and, since γ j,t is bi-Lipschitz, we infer
that if r → τ0 then σ(r)→ σ0. By Pansu’s differentiability theorem, see Remark
2.5, we know that

lim
C j,t�s→τ0+

dG(δ|s−τ0|−1(γt (τ0)
−1 ∗ γt (s)), Dγt (τ0)) = 0, (100)

lim
C j,t�s→τ0+

dG
(
δ|σ(s)−σ0|−1(γ j,t (σ0)

−1 ∗ γ j,t (σ (s))), Dγ j,t (σ0)
[ σ(s)− σ0

|σ(s)− σ0|
])

= lim
C j,t�s→τ0+

dG(δ|σ(s)−σ0|−1(γ j,t (σ0)
−1 ∗ γ j,t (σ (s))), Dγ j,t (σ0)o(s)) = 0,

(101)

where in the second display equation above o(s) denotes the sign of σ(s)− σ0 and
since Dγ j,t (σ0) is (or more precisely, can be represented by) a vector in the first
layer of the algebra V1, the element Dγ j,t (σ0)o(s) has to be intended as Dγ j,t (σ0)

if o(s) = 1 and as −Dγ j,t (σ0) if o(s) = −1. Note, further, that since γ j,t is
2-biLipschitz, we also know that

|σ(s)− σ0|
|s − τ0| ≤ 2

dG(γ j,t (σ (s)), γ j,t (σ0))

|s − τ0| = 2
dG(γt (s), γt (τ0))

|s − τ0| ≤ 2, (102)

where the last inequality follows from the fact that γt is assumed to be 1-Lipschitz.
This implies in particular that

0
(100)= lim

C j,t�s→τ0+
dG(δ|s−τ0|−1 (γt (τ0)

−1 ∗ γt (s)), Dγt (τ0))

= lim
C j,t�s→τ0+

dG(δ|s−τ0|−1 (γ j,t (τ0)
−1 ∗ γ j,t (σ (s))), Dγt (τ0))

= lim
C j,t�s→τ0+

dG
(
δ |σ(s)−σ0 ||s−τ0 |

(
δ|σ(s)−σ0|−1

(
γ j,t (σ0)

−1 ∗ γ j,t (σ (s))
))
, Dγt (τ0)

)

≥ lim
C j,t�s→τ0+

dG
(
δ |σ(s)−σ0 ||s−τ0 |

(Dγ j,t (σ0)o(s)), Dγt (τ0)
)

− lim
C j,t�s→τ0+

|σ(s)− σ0|
|s − τ0| dG

(
δ|σ(s)−σ0|−1

(
γ j,t (σ0)

−1 ∗ γ j,t (σ (s))
)
, Dγ j,t (τ0)

)
(101), (102)= lim

C j,t�s→τ0+
dG

(
δ |σ(s)−σ0 ||s−τ0 |

(Dγ j,t (σ0)o(s)), Dγt (τ0)
)
.

Since both Dγ j,t (σ0) and Dγt (σ0) are contained in the first layer V1, we know that
the above identity implies that

lim
C j,t�s→τ0+

|σ(s)− σ0|o(s)
|s − τ0| Dγ j,t (σ0) = Dγt (τ0).
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In particular this shows that |σ(s)−σ0|o(s)|s−τ0| converges to some λ ∈ R and hence item
(ii) is proved.

Step 2. In the next step we show that the map that associates to each point x ∈ G
and to any bi-Lipschitz fragment γ j,t the Radon-Nykodym derivative of �γ j,t� with
respect to ‖�γ j,t�‖ at x ∈ G is Borel. Thanks to Lemma A.3(ii) there is a Borel map
� : N × I → F such that ( j, t) �→ ��( j, t)� is Borel and ‖��( j, t)�‖ = μ j,t for
H 0 ⊗L 1-almost every ( j, t) ∈ N × I . Concerning the applicability of Lemma
A.3(ii) to the above situation, we note that the statements in Lemma A.3 requires that
the μt ’s are parametrized by a Borel subset of R, however, either by skimming the
proof of Lemma A.3, or by recalling that we can reparametrize (N× I,H 0⊗L 1)

as (R,L 1) by [3, Remark 2.7 (iii)], we see that Lemma A.3(ii) is still applicable.
Let us denote by I0 a Borel subset of I of full measure such that ‖��( j, t)�‖ =

μ j,t on N× I0 and let us note that ( j, t) �→ δ j ⊗ δt ⊗ μ j,t is Borel on N× I0. To
see this, it is sufficient to check that for every Borel set G ⊆ N× I0 × Rn the map
( j, t) �→ δ j ⊗ δt ⊗ μ j,t (G) is Borel, where δι and δs denote the Dirac deltas at ι
and s respectively, compare with Definition 2.11. Note that

δ j ⊗ δt ⊗ μ j,t (G) =
ˆ ˆ ˆ

1G(k, s, x)dδ j (k)dδt (s)dμ j,t (x)

= μ j,t ({x ∈ G : ( j, t, x) ∈ G}) for every ( j, t) ∈ N× I0.

Since N is countable, to check that ( j, t) �→ δ j ⊗ δt ⊗μ j,t (G) is Borel, it is clearly
enough to prove that for every fixed k ∈ N we have that t �→ μk,t ({x ∈ G :
(k, t, x) ∈ G}) is Borel. This however can be proved arguing, mutatis mutandis, as
in the step construction and Borelianity of � of the proof of Lemma A.3. The fact
that the map ( j, t) �→ δ j ⊗ δt ⊗ μ j,t is Borel implies that we can therefore define
the measure

ν :=
ˆ
N×I0

δι ⊗ δs ⊗ μι,s dH 0(ι)ds.

It is immediate to see that the set

H1 := {( j, t, x) ∈ N× I0 × G : x ∈ im(γ j,t ) and γ ′j,t (γ
−1
j,t (x)) exists},

is a set of full ν-measure and therefore it coincides up to sets of ν-null measure
with a Borel set H2. Further, define the map

)�ג j, t, x) := ��( j, t)�(U (x, �−1))

μ j,t (U (x, �−1))
= En,n

�−1(��( j, t)�, x)

En,1
�−1(μ j,t , x)

,

where En,n
�−1 and En,1

�−1 are the Borel map introduced in Lemma A.5. Observe that
since �ג is composition of Borel functions (on H2), it is Borel as well. By Besicovitch-
Lebesgue differentiation theorem, see [6, Theorem 2.22], for every j ∈ N and every
t ∈ I0 we have that

d��( j, t)�

dμ j,t
(x) = lim

r→0

��( j, t)�(U (x, r))

μ j,t (U (x, r))
= lim
�→∞

��( j, t)�(U (x, �−1))

μ j,t (U (x, �−1))

= lim
�→∞ )�ג j, t, x) for μ j,t -almost every x ∈ G.



Arch. Rational Mech. Anal.           (2025) 249:3 Page 69 of 76     3 

This shows that on Borel a subset of full ν-measure H3 of H2, the function
( j, t, x) �→ d��( j,t)�

dμ j,t
(x) coincides with a Borel function, being pointwise limit

of a sequence of Borel functions. In addition, thanks to the definition of ��( j, t)�,
Lebesgue differentiation theorem implies that for every j ∈ N and t ∈ I0 we have

d��( j, t)�

dμ j,t
(x) = γ ′j,t (γ−1

j,t (x)) ∈ HG(x) \ {0}, for μ j,t -almost every x ∈ G.

(103)

Summing up, this shows that we can find a Borel subset H4 of full ν-measure in
N× I0 × G such that for every ( j, t, x) ∈ H4 we have

(a) x ∈ im(γ j,t );

(b) γ ′j,t (γ
−1
j,t (x)) ∈ HG(x) \ {0} exists and d��( j,t)�

dμ j,t
(x) = γ ′j,t (γ

−1
j,t (x)) and

( j, t, x) �→ d��( j,t)�
dμ j,t

(x) is Borel on H4.

Therefore, we define on N× I × G and on I × G respectively the maps

d̃( j, t, x) :=
{

d��( j,t)�
dμ j,t

(x) if ( j, t, x) ∈ H4

0 otherwise
and d(t, x) :=

∑
j∈N

d̃( j, t, x).

Both d̃ and d are immediately seen to be Borel. However, since μ j1,t and μ j2,t are
mutually singular whenever j1 �= j2, we infer that

d(t, x) = d̃( j, t, x) for μ j,t -almost every x ∈ G,

for L 1-almost every t and every j ∈ N. (104)

This immediately implies by item (i) of step 1 that we also have that d(t, x) ∈
HG(x) \ {0} for μt -almost every x ∈ Rn and L 1-almost every t .

Step 3. In this last step we introduce the map v and conclude the proof. Define

v(t, x) :=
{
π1(d(t,x))|π1(d(t,x))| if d(t, x) �= 0;

0 otherwise.
,

and note that v is immediately seen Borel. Since d(t, x) = γ ′j,t (γ
−1
j,t (x)) on

( j, t, x) ∈ H4, we infer that for those (t, x) for which there exists j ∈ N such
that ( j, t, x) ∈ H4 we have

v(t, x) = π1(d(t, x))

|π1(d(t, x))| =
π1(γ

′
j,t (γ

−1
j,t (x)))

|π1(d(t, x))|

= Dγ j,t (γ
−1
j,t (x))

|π1(d(t, x))| ∈ {λDγt (s) ∈ V1 \ {0} : λ ∈ R, s ∈ γ−1
t (x)},(105)

where in the first identity above we used the definition of v; in the second identity we
have employed item (b) of the properties of H4 in step 2, (104) and the definition ofd;
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in the last identity we used Lemma 2.6 and Lemma 2.7 that imply that Dγ = π1(γ
′);

finally in the inclusion we have used item (ii) of step 1. The set Ẽ :=⋃
j∈N{(t, x) ∈

I × G : ( j, t, x) ∈ H4} is Borel and he have therefore proved above that

v(t, x) ∈ {λDγt (s) ∈ V1 \ {0} : λ ∈ R, s ∈ γ−1
t (x)}

for every (t, x) ∈ Ẽ .

However, since H4 has full ν-measure it is elementary to check that Ẽ has full´
δs ⊗ μs ds-measure and this shows in particular that

v(t, x) ∈ {λDγt (s) ∈ V1 \ {0} : λ ∈ R, s ∈ γ−1
t (x)}

for μt -almost every x ∈ G for almost every t ∈ I,

concluding the proof. ��

B. Differentiation Properties for Non-doubling Radon Measures

In this section we prove that for every Radon measure ν and ν-almost every-
where there exists a sequence of scales on which ν behaves like a doubling measure
and along such sequence of scales a Lebesgue differentiation type theorem holds.
The following Lemma is a Carnot analogue of [47, Lemma 2.4].

Lemma B.1. Let ν be a non-negative Radon measure onG and let t ∈ (0, 1). Then,
for every j ∈ N the set

Et
ν, j :=

{
x ∈ Rn : lim sup

k→∞
ν(B(x, tk+1))

ν(B(x, tk))
> j−1

}
,

is Borel. In addition ν(Rn \ Et
ν) = 0, where Et

ν = ∪ j∈NEt
ν, j .

Proof. Since the map x �→ ν(B(x, tk)) is upper semicontinuous, we infer that

r(x) := lim sup
k→∞

ν(B(x, tk+1))

ν(B(x, tk))
is Borel.

This shows that the set Et
ν, j = {x ∈ Rn : r(x) > j−1} is Borel as well. Denote

B := Rn \ ∪ j∈NEt
ν, j and assume by contradiction that ν(B) > 0. Since as

seen above, the functions x �→ ν(B(x, tk+1))/ν(B(x, tk)) are Borel, by Severini-
Egorov’s Theorem there exists a compact set K ⊂ B with ν(K ) > 0 where for
every ε > 0 there exists k0 ∈ N such that

ν(B(x, tk+1)) ≤ εν(B(x, tk)) for every x ∈ K and every k ≥ k0.

For every such x ∈ K it therefore holds that

ν(B(x, tk)) ≤ ν(B(x, tk0))εk−k0 whenever k ≥ k0.
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Since K is compact, ν is Radon and t < 1, there exists a constant C > 0 such that
supx∈K ν(B(x, t

k0)) ≤ C . Therefore, thanks to Remark 2.2 there exists a constant
ϑ ∈ (0, 1) possibly depending on K such that

ν(U (x, ϑ tsk)) ≤ Cεk−k0 whenever k ≥ k0,

where U (x, r) denotes the closed euclidean ball with centre x and radius r . If we
let δ ∈ (0, 1) and ε := δtsn , there exists k0 = k0(δ, ϑ, t) such that

ν(U (x, ϑ tsk)) ≤ Cδk−k0 tsn(k−k0) = Cδk−k0 t−snk0ϑ−n(ϑ tsk)n whenever k ≥ k0.

Let k1 ≥ k0 + 2 and U := {U (x, ϑ tsk) : x ∈ K and k ≥ k1} and note that,
thanks to Besicovitch’s covering theorem, (see [22, Corollary 2.8.15]), there exists a
countable disjoint subfamily Ũ = {U (xi , ri )}ofU such that ν(K \∪i∈NB(xi , ri )) =
0. This implies that

ν(K ) =
∑
i∈N
ν(B(xi , ϑ tski )) ≤ Ct−snk0ϑ−n

∑
i∈N
δki−k0(ϑ tski )n

≤Cδk1−k0ϑ−nt−snk0
∑
i∈N
(ϑ tski )n

=CL n(B(0, 1))−1δk1−k0ϑ−nt−snk0
∑
i∈N

L n(U (xi , ϑ tski ))

≤CL n(B(0, 1))−1δk1−k0ϑ−nt−snk0L 1(U (K , 1)).

where U (K , 1) denotes the closed Euclidean neighbourhood of radius 1 of the
compact set K . Since δ ∈ (0, 1) the arbitrariness of k1 implies that ν(K ) = 0 and
in turn ν(B) = 0. This is a contradiction. ��
Proposition B.2. Let ν be a Radon measure on G and let f ∈ L1(ν). Then, for
ν-almost every x ∈ G there exists an infinitesimal sequence r x

k such that

lim inf
k→∞

ν(B(x, r x
k /5))

ν(B(x, r x
k ))

> 0 and lim
k→∞

 
B(x,r x

k )

| f (y)− f (x)|dν(y) = 0.

(106)

In addition, if we let ν = νa + νs be the Radon-Nikodym decomposition of ν where
νa � L n and νs ⊥ L n, we have that

lim
k→∞

νa(B(x, r x
k ))

νs(B(x, r x
k ))

= 0 for νs -almost every x ∈ G.

Proof. Let us fix t := 1/5, and note that thanks to Lemma B.1 it is clearly sufficient
to prove the proposition for x ∈ Et

ν, j . Let j ∈ N and

U j := {B(x, tk) : x ∈ Et
ν, j and ν(B(x, tk)) ≥ j−1ν(B(x, tk+1))},

The covering U j is fine at every x ∈ Et
ν, j and, applying [22, Theorem 2.8.17] with

the choice δ := diam(·) to U j we see that U j is a ν-Vitali covering of Et
ν, j , see [22,
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§2.8.16]. Therefore, by [22, Corollary 2.9.9] we infer that for every ϕ ∈ L1
loc(ν)

we have

lim
k→∞

B(x,tk )∈U j

 
B(x,tk )

|ϕ(y)− ϕ(x)| dν(y) = 0,

for ν-almost every x ∈ Et
ν, j . Finally, since νa and νs are mutually singular, there

exists a Borel set E such that νs(G \ E) = 0 and νa(E) = 0. This implies in
particular that for ν-almost every x ∈ E ∩ Et

ν, j we have

0 = lim
k→∞

B(x,tk )∈U j

ν(B(x, tk) \ E ∩ Et
ν, j )

ν(B(x, tk))
= 1− lim

k→∞
B(x,tk )∈U j

ν(B(x, tk) ∩ E ∩ Et
ν, j )

ν(B(x, tk))

= 1− lim
k→∞

B(x,tk )∈U j

νs(B(x, tk) ∩ Et
ν, j )

ν(B(x, tk))
.

The above computation shows in particular that

lim
k→∞

B(x,tk )∈U j

νa(B(x, tk))

ν(B(x, tk))
= 0 for ν-almost every x ∈ E ∩ Et

ν, j ,

that in turn immediately implies that

lim
k→∞

B(x,tk )∈U j

νa(B(x, tk))

νs(B(x, tk))
= 0, for νs-almost every x ∈ Et

ν, j .

This concludes the proof. ��
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