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Abstract. The paradigmatic shift occurred in biology that led first to
high-throughput experimental techniques and later to computational sys-
tems biology must be applied also to the analysis paradigm of the relation
between local models and data to obtain an effective prediction frame-
work. In this work we show that the new relation between systems biol-
ogy models and high-throughput data permits new integrations on the
systemic scale like the use of in silico predictions to support the mining
of gene expression datasets. We introduce a unifying notational frame-
work in which we propose two applications concerning the use of system
level models to support the differential analysis of microarray expression
data. The approach is tested with a specific microarray experiment on
the phosphate system in Saccharomyces cerevisiae and a computational
model of the PHO pathway that supports the systems biology concepts.

1 Introduction

Computational modelling of biological phenomena is motivated by the need of
abstract representations of complex biochemical systems with the possibility to
quantitatively reproduce and predict their behaviour. The sophistication reached
by computers and programming languages permits one to effectively simulate the
models allowing in silico predictions at the level of intricate metabolic and sig-
nalling pathways like in [5][6]. Even though the complexity of these models can
be very high, they still describe local aspects of biochemical systems. Recently, a
paradigmatic shift in the dimensions and complexity of the models is occurring
as consequence of the introduction of modelling paradigms that natively handle
high parallelism and incremental model construction [14][12]. An example of ap-
plication of these new paradigms is the PHO pathway model presented in [16]
in which we model and simulate the phosphate systems in Saccharomyces cere-
visiae with the stochastic π-calculus, a language that support compositionality
(the ability of building models incrementally). In this scenario the models can
reach the systems biology level (as schematized with the compositional model
of Figure 1). Although the system level modelling of simple microorganisms is
still more theoretical than effective, the potentialities of the in silico approach
in this context are extremely promising for the biological community.

The systems biology concept [8] that is now becoming crucial in the com-
putational modelling field, received the definitive incentive with the success,
especially in certain areas, of the “globalists” over the “localists” [7]. The main
factor for the shift from the local study of biochemical pathway to the genomic
scale analysis of interaction networks was the developing of massively-parallel
and high-throughput techniques [9] which made available a huge amount of
unstructured gene-specific or protein-specific data. One of the more important
high-throughput techniques is the microarray technology, used for example in [3]
to detect the genes related to the phosphate accumulation and polyphosphate
metabolism in Saccharomyces cerevisiae. The identification of genes that show
significant changes in expression associated with experimental variables of inter-
est on a microarray is called differential analysis of gene expression data [4][13]



and it is not a trivial task because the high-throughput datasets are large, ex-
tremely noisy and subject to biological bias. The interpretation of the set of
differentially expressed genes is a hot topic in research mainly because the typi-
cal high cardinality of the set prevents the functional profiling and the validation
of each gene singularly. Some authors addressed the problem through literature
profiling [2] or Gene Ontology-based tools [11].
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Fig. 1: Integration between local models and data and between systemic model and
high-throughput data. Each local model Mx with the corresponding parameters Px can
be integrated with classical relations of tuning and validation with specific data (Datax)
retrieved by proper experiments (Expx). The systems biology model, built composing
the local sub-models, have new possibilities of integration with high-throughput data.
The + symbol stands for the abstract compositional operator of the models.

Regardless to the dimensionality, a model can assume a biological valence
only if there are experimental data for the same biological aspect. Typical re-
lations between data and models are parameter estimation, model validation
and output data interpretation. When the biological description is not on a
system level, there is a one-to-one relation between a local model and the pos-
sibly available data that permits in silico simulations and thus biological pre-
dictions (schematized in Figure 1 with the double arrows between each local
model and each dataset derived from specific experiments). However, data from
of high-throughput techniques are not suitable for tune and validate local path-
way models because of the genomic scale and the uncertainty of the datasets.
With the introduction of computational systems biology, new analysis paradigms
of the relation between systems biology models and high-throughput can be ex-
plored (the big double arrow in Figure 1). For example, the definition of these
new paradigms can highlight the relation between the PHO pathway model [16]
and the genic expression data on the phosphate metabolism in Saccharomyces
cerevisiae [3]. Therefore, as the shift from biology to systems biology needed a
paradigmatic change, also this new relation needs investigation to understand



how to handle some critical aspects like the uncertainty and dimensionality of
the high-throughput techniques and the computational weight of the models that
makes too many replicas of in silico predictions heavy.

In this work, we show that the expression datasets obtained with in sil-
ico simulations of system level models can support the differential microarray
analysis. This approach is possible assuming to have a reasonable large model
built in a compositional way, thus permitting the independent validation of each
pathway with biological data and it is complementary to other knowledge-based
mining methods. We define a unifying notational framework for the experimental
high-throughput data and in silico high-throughput expression values obtained
with a computational model. The model indirectly reflects the state of the art of
the biological knowledge, so the framework allows the biological information to
be included in the process of microarray expression mining with the prediction
potentialities of the systems biology models. The first application we propose in
the framework aims to remove from the set of regulated genes those genes that
the model predicts as normal to be regulated in the specific conditions. In this
way the experimenter can focus only on the genes with really new biological in-
formation. We effectively test the introduced approach and the first application
to the microarray experiment of [3] using the PHO pathway model [16]. Even if
this model is not on the genomic scale, it highlights the utility of the methods
and confirms that, as the models scale up to the system level, our approach can
give a systematic support to the the analysis of regulated genes in microarray
experiments. The second application tackles the problem of the genes that are
regulated by dependent and non directly controllable conditions that crowd the
set of differentially expressed genes, possibly hiding genes regulated only by the
direct and desired experimental conditions. This application is based on the in
silico prediction of the effects on gene expression of the dependent variables only.

The paper is organized as follows: Section 2 introduces the unifying notational
framework for microarray and in silico gene expression experiments. Section 3
focuses on the specialization of the framework for microarray differential analysis
proposing some measures for quantifying the level and the precision of the inte-
gration. Section 4 describes the two specific application based on the framework
and in Section 5 we discuss the possibility of developing general software tools
in this context. The running example based on the microarray work of [3] and
the PHO pathway model [16] is discussed step by step in the sections.

2 A unifying notational framework

We define a framework to formally specify the microarray experiments and the
model-based estimation of gene expression in order to allow integrations of the
two approaches. We focus on Affymetrix oligonucleotide chips [10] as far as the
microarray technology is concerned, even though the framework can be adapted
to cDNA chips. The cDNA chips, in fact, can be modelled as the combinations of
two Affymetrix chips reflecting the expression of Cy3- and Cy5-labeled probes,
like in the case of the microarray experiment of the running example.



2.1 The microarray experiments

An Affymetrix microarray experiment consists in the absolute quantification
of the expression profiles of a set of genes. The parameters of a microarray
experiment are essentially the controlled independent variables with their levels,
and the measured dependent variables. Formally, the parameters are

qµA = (GµA, C,M, P ) (1)

where:

GµA is the set of genes that are spotted on the microarray1.
C = {(V1, l1), (V2, l2), . . . , (Vk−1, lk−1), (Vk, lk)} is the set of k different condi-

tions applied on the chip. A condition Ci with 1 ≤ i ≤ k is a pair (Vi, li)
where Vi is an independent variable controlled by the experimenter and
li ∈ R is a real value assigned to the variable. Hereafter, we assume that the
set of k independent variables V = {V1, V2, . . . , Vk−1, Vk} can be retrieved
from the experiment with the function IV (qµA) = V .

M = {(Vk+1,mk+1), (Vk+2,mk+2), . . . , (Vn−1,mn−1), (Vn,mn)} is the set of n−
k different dependent measured parameters of the chip. A dependent mea-
sured parameters Mi with k + 1 ≤ i ≤ n is a pair (Vi,mi) where Vi is
a dependent measured variable and mi ∈ R is the real value assigned to
the variable. Hereafter we assume that the set of dependent variables VD =
{Vk+1, Vk+2, . . . , Vn−1, Vn} can be retrieved with the function DV (qµA) =
VD and that V ∩ VD = ∅.

P represents the information regarding the experiment. It should contains the
parameters that are not variable and that are sufficient to reproduce the
experiment in a rigorous way. For instance, P may contain the sample used,
the extract preparation and labeling, the procedure and the parameters for
the hybridization and the environment and instruments information. In gen-
eral it can contains all the information of the MIAME exchange standard [1]
not handled by the other defined parameters.

With this conventions, the cDNA chip used in [3] (FODB are the initials of the
authors) for the expression profiling between low and high phosphate conditions
can be represented with the two following Affymetrix microarray experiments

FODBµA,Cy3 = (GFODB
µA , {Pi, 0.2mM}, ∅, PFODB)

FODBµA,Cy5 = (GFODB
µA , {Pi, 10mM}, ∅, PFODB)

Where GFODB
µA is the set of genes considered in the experiment (approximatively

6400 distinct DNA sequences, available in the additional materials of [3]), Pi is
the phosphate concentration, and PFODB contains an exhaustive qualitative and
quantitative description of the experimental parameters that allows experimen-
tal reproduction. The only experimental independent variable is the phosphate
1 Note that it is not always trivial to associate a gene to each spot on the microarray

if an oligonucleotide microarray chip is used.



concentration IV (FODBµA,Cy3) = IV (FODBµA,Cy5) = Pi which assumes two
different values in the two chips. The work does not measure any dependent
variables (so DV (qµA) = ∅).

For a specific microarray experiment we can define a function reflecting the
experimental procedure (which is as standard as possible) that promotes the
biochemical reactions on the chip and results in the values of absolute expres-
sion detected by the experimental instruments. This function for a microarray
experiment qµA = (GµA, C, M,P ) has the form

ExprqµA : G &→ R (2)

ExprqµA associates to a gene g ∈ GµA a real value reflecting its expression.
All the genes spotted on the microarray with the corresponding expression

values are included in a dataset, denoted as EqµA and defined as

EqµA = {(g,ExprqµA(g)) | g ∈ GµA} (3)

The dataset of the microarray experiment of our example is EFODBµA and
is available in the additional materials of [3] with the relative quantification
between FODBµA,Cy3 and FODBµA,Cy5 since a cDNA technology is used.

2.2 The in silico model-based simulation of expression experiments

Here we propose how to simulate in silico an experiment to obtain a dataset of
expression profiles. The model can be viewed as a set of metabolic and signalling
pathways interacting each others. In particular, the prerequisites for a model to
be suitable in this context are mainly three:

– The model must consider the gene transcription and allow the quantification
of gene expression during the simulations.

– The model must have a genomic scale; it is not necessary to have a com-
prehensive model of all the genes of the cell, but the number of considered
genes must be comparable to number of genes spotted on a microarray chip.

– The model must allow in silico experiments that accepts as inputs the envi-
ronment conditions (like concentrations of the nutrients, temperature, pH,
etc.) as independent variables controlled by the experimenter.

The PHO model we use to test the framework, matches the first and the last
conditions. The genomic scale, instead, is not respected, and so the model is not
suitable for real large-scale microarray mining, but it can still test the usefulness
and quality of the approach. Moreover, the used modelling language support the
incremental development, and so the model can be extended to other pathways
influencing more genes.

In the definition of the microarray experiment we have the controllable con-
ditions, the dependent variables and the parameters; the intuition is that they
match the input requirements of an in silico simulation of a sufficient large sub-
set of the biological network of a cell. So, similarly to the microarray experiment



we can give the following definition of the parameters of a model-based in silico
expression experiment:

qm = (Gm, C, M, P ) (4)

where C, M and P are the conditions, the measured parameters and the exper-
imental information as defined for qµA, while Gm is the set of genes for which
the model is able to estimate the expression profile.

The simulated expression experiments described in [16] (SBP are the ini-
tials of the authors, lp and hp are the label denoting respectively low and high
phosphate conditions) of the reference microarray work [3], are

SBPm,lp = (GSBP
m , {Pi, 0.2mM}, ∅, PSBP )

SBPm,hp = (GSBP
m , {Pi, 10mM}, ∅, PSBP )

with the same definition given for FODBµA,Cy3 and FODBµA,Cy5 except for
PSBP which is the in silico correspondent of PFODB and GSBP

m which contains
very few genes with respect to GFODB

µA since the used model has not a genomic
scale. In particular

GSBP
m = {PHO2,PHO4,PHO81,PHO5} (5)

The expression of a gene can be seen as the result of a particular instance of
the model that is simulated with the particular inputs. So, with a conceptual
analogous of the microarray expression function, for every qm there exists an
intensionally defined function that associates a real value to each gene as follows

Exprqm : G &→ R (6)

Exprqm reflects the simulated biochemical reactions occurring in a living cell,
while ExprqµA reflects the biochemical reactions occurring in the microarray
experiment preparation. ExprqµA and Exprqm can be seen as in silico and high-
throughput approximations of the real function that results in the gene expres-
sion regulation in a living cell. The corresponding dataset for Exprqm is

Eqm = {(g,Exprqm(g)) | g ∈ Gm} (7)

The datasets of the in silico PHO pathway experiment are EqSBP
m,lp

and EqSBP
m,hp

.

3 Differential analysis of microarray gene expression data

The main objective in gene expression analysis is the detection of the genes
that are differentially expressed (or regulated) between two biological samples
with some experimental differences. In differential analysis the classification of
the genes is made with complex statistical techniques that analyse the entire
distribution of gene expressions [4][17].

We define the following microarray experiments:

q1
µA = (GµA, C1,M1, P )

q2
µA = (GµA, C2,M2, P ) with

IV (q1
µA) = IV (q2

µA) and
DV (q1

µA) = DV (q2
µA) (8)



q1
µA and q2

µA can differ for definition only in the quantification of the dependent
and independent measured variables.

The set RµA ⊆ GµA represents the genes that are regulated between the two
microarray experiments q1

µA and q2
µA which reflect the differences between C1

and C2 and between M1 and M2. In the formalism defined for the microarray
experiments this set can be detected by a class of functions called δµA that, in
general, takes two datasets and returns the genes that are regulated2:

RµA = δµA(Eq1
µA

, Eq2
µA

) (9)

In our microarray reference experiment [3], the δµA function is based on the
two-fold derepression ratio, and the resulting set of regulated genes RFODB

µA ,
calculated as δµA(EFODBµA,Cy3 , EFODBµA,Cy5), is

RFODB
µA = { PHO5,PHO11,PHO12,PHO8,PHO84,PHO89,PHO86,PHO81,SPL2,PHM1,

PHM2,PHM3,PHM4,PHM5,PHM6,PHM7,PHM8,HOR2,CTF19,HIS1} (10)

The same procedure can be applied to the expressions retrieved from the in
silico simulations. The experiments are defined maintaining the same conditions
and so the same dependent variables of the microarray experiment:

q1
m = (Gm, C1,M1, P )

q2
m = (Gm, C2,M2, P ) with IV (q1

m) = IV (q2
m) and

DV (q1
m) = DV (q2

m) (11)

On q1
m and q2

m we can now apply the classification function δm which is, in
general, different from δµA because the assumptions on the distribution of the
expression dataset of a microarray and of in silico experiment can differ. The
set of regulated genes with the in silico approach is denoted with Rm ⊆ Gm and
computed with a δm function :

Rm = δm(Eq1
m

, Eq2
m

) (12)

This formula, in the case of the PHO pathway model, is RSBP
m = δm(EqSBP

m,lp
, EqSBP

m,hp
)

and, via the computational simulations, gives the following set

RSBP
m = {PHO81,PHO5} (13)

In ideal conditions we should have RµA = Rm (and Gm = GµA), but in
a scenario where all kind of systematic and random errors can occur the GµA,
Gm, RµA and Rm sets are all potentially different. We further discuss the subsets
of RµA which is the set of genes we want to “clean”, distinguishing the cases
Gm ⊆ GµA, Gm ≡ GµA and GµA ⊆ Gm. Since the microarray chips can handle
almost the whole genome while the computational models are still far from it
(as in our case), we focus on the first case represented in Figure 2:

2 The δµA as used here accepts two expression datasets, but it can be generalised to
consider two sets of expression data in presence of experimental designs with replicas.
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Fig. 2: Representation of the possible intersections between GµA (the set of genes with
a correspondent spot on the microarray), Gm (the set of genes considered in the model),
RµA (the set of regulated genes in the microarray) and Rm (the set of regulated genes
in the in silico experiment) assuming Gm ⊆ GµA.

RµA \ Gm contains the microarray regulated genes which are not considered in
the computational model. The genes in this set are those whose investigation
can potentially increase the biological knowledge and improve the model.

R = RµA ∩Rm represents the set of genes that are regulated in both approaches.
Rc ⊆ R contains, for definition, the genes of the model that are regulated in a

consistent way with respect to the regulations detected by the microarray:

Rc =

{
g ∈ RµA ∩Rm

∣∣∣
Exprq1

µA
(g)

Exprq2
µA

(g)
*

Exprq1
m

(g)
Exprq2

m
(g)

}
(14)

The expression comparison operator (*) is not precisely defined since dif-
ferent levels of consistency can be considered. The most restrictive is the =,
while the less restrictive is an operator that evaluates to true if the gene
is over or under expressed (expression ratio greater or less than 1) in both
approaches, but other intermediate operators can be defined. Also the com-
parison of the expression ratios is not the only comparison technique [17].
The set of the genes that are regulated consistently (with a comparison based
on the over- or under-expressed condition) between RFODB

µA and RSBP
m of our

running example is
RPHO

c = {PHO81,PHO5} (15)

(RµA ∩Gm) \ R contains the genes regulated in the microarray but not in the
in silico simulations. The mismatch can be due to errors, or to the lack of
biological information on which the model is constructed.

Other meaningful sets are:

C = (GµA ∩Gm) \ (RµA ∪Rm) the set of genes that are constitutive (i.e. not
regulated) in both microarray and in silico experiments. In the running
example we have that CPHO = {PHO2,PHO4}

Rm \ R the set of genes that are regulated only in the in silico experiments.



GµA ≡ Gm

RµA RmR RcC

GµA!!"Gm

RµA RmR RcC

Fig. 3: Representation of GµA, Gm, RµA and Rm assuming Gm ≡ GµA and GµA ⊆ Gm.

The cases Gm ≡ GµA and GµA ⊆ Gm are represented in Figure 3; the main
differences with the Gm ⊆ GµA case are that RµA \ Gm = ∅ and that in the
GµA ⊆ Gm case there is the Rm \ GµA set of the genes considered in the com-
putational model but not on the microarray chip.

3.1 Accuracy and coverage measures

From a methodological point of view, for the genes in Rc and in C the mod-
elling approach is consistent with the microarray one, while the genes in R \Rc,
(RµA ∩ Gm) \ R and (Rm ∩ GµA) \ R represent an incongruence between the
approaches. With these sets we can formally define the accuracy of the combi-
nation of computational modelling (and indirectly of the biological knowledge)
and of the microarray information in the following way:

A =
|Rc| + |C|
|GµA ∩Gm| × 100 (16)

Another measure of the quality of the framework applied to specific cases
reflects the gene coverage level of the model with respect to the microarray chip.
This measure is called chip coverage and can be defined as follows:

Cov =
|GµA ∩Gm|

|GµA| × 100 (17)

It is an a priori quantification of the percentage of the genes in the microarray
chip that are also considered in the model. However, a low chip coverage does
not implies that the approach is useless because the microarray regulated genes
can be highly covered by the model even if the chip is poorly covered. So another
coverage measure, that we call experimental coverage (Cove), is introduced:

Cove =
|RµA ∩Gm|

|RµA| × 100 (18)

This value can be calculated only when both the microarray and the in silico
experiment are performed and it is referred only to a single experiment, but it is a
more accurate evaluation of the experimental quality. Moreover, minimizing the
chip coverage after maximizing the experimental coverage, gives the same results
of a complete chip coverage, but it requires a much lower computational effort to
perform the in silico experiments. On the other hand a complete chip coverage



permits to use the same computational model for all the possible experiment with
that chip. In any case, the coverage and the accuracy must be considered together
for evaluating the overall quality of the approach for a performed experiment.

Observing on the running example that |RPHO
c | = 2, |CPHO| = 2, |GFODB

µA ∩
GSBP

m | = |GSBP
m | = 4, |GFODB

µA | = 6400, |RFODB
µA | = 20 and |RFODB

µA ∩GSBP
m | =

2, the introduced measure are:

APHO = 100% CovPHO = 0, 0625% CovPHO
e = 10%

This means that the model predicts the expression profiles consistently with the
microarray experiment, but the coverage is very low as we expected since the
model is local. The relatively high experimental coverage means that the model
fits at least partially the pathways whose genes are interested in the regulation.

4 Applications in microarray differential analysis

The set of genes detected with the microarray differential analysis whose reg-
ulation is in relation with a specific condition, can be very large and so hard
to analyse. The applications we propose here are based on the described frame-
work and are intended to be applied on the set of differentially expressed genes
in order to detect the most informative genes before further analysis.

4.1 Removing the genes regulated in the in silico predictions

The set of regulated genes can include many genes that are already indirectly
known to be related with the conditions of the analysis. The removing of these
genes allows the biologist to focus only on the really unknown genes that can
thus have more new biological information. The idea is to use computational
models, built on the current biological knowledge, to predict the genes that will
be regulated in a specific microarray experiment and remove them from the
microarray experimental results.

So, the aim of this application is to filter out from the regulated genes of
the microarray experiment (RµA), those genes that the model suggests to be
regulated (Rm). We would remove directly the genes in Rm from the genes in
RµA. In other words the set of really interesting genes Rint would be:

Rint = RµA \ Rm (19)

In presence of errors and approximations, the definition of the interesting reg-
ulated genes Rint as RµA \ Rm is no more acceptable mainly because the un-
certainty on Rm. We need a more robust definition of the set of genes that can
be safely removed from the microarray regulated ones. So instead of subtracting
from RµA the Rm set, we subtract the genes that are regulated in a consistent
way in both approaches, i.e. the Rc set as defined in (14). So:

Rint = RµA \ Rc (20)



Returning to the running example, this definition is RPHO
int = RFODB

µA \RPHO
c

where the RFODB
µA and RPHO

c sets are computed and shown respectively in (10)
and (15). The resulting set of really interesting genes is

RPHO
int = { PHO11,PHO12,PHO8,PHO84,PHO89,PHO86,SPL2,PHM1,PHM2,PHM3,

PHM4,PHM5,PHM6,PHM7,PHM8,HOR2,CTF19,HIS1} (21)

Our application has filtered out from the set of regulated genes of the reference
microarray experiment [3] two genes (PHO5 and PHO81) predicted by the com-
putational model [16]. So we have reduced the number of genes that represent
new biological information suggesting that this application is useful.

The genes considered in the model are only 4, and the two that have been
removed from RPHO

int are those that the model predicts sensitive to different
phosphate metabolism. So, as the accuracy measure (APHO = 100%) suggests,
the model predictions are in this case the more desirable ones with respect to
the very low coverage. We can conclude that this application can be a helpful
tool for a biologists, especially in the cases where the microarray experiment
detects an high number of regulated genes and the computational model has a
reasonable good experimental coverage in addition to the accuracy.

4.2 Removing the genes regulated by the non controlled variables

The definition of the microarray experiment includes the notion of controlled
conditions and dependent not-directly controlled variables. Obviously the ef-
fects of the dependent variables in terms of regulated genes cannot be detected
in isolation or separated from the independent variable effects through the mi-
croarray experiment. Since biologists are interested in the genes regulated only
by the directly controlled conditions, the idea of this application is to estimate
in silico the genes that are regulated because of the dependent variables in order
to remove them from the set of microarray regulated genes. Note that the values
of the dependent variables included in the specification of the in silico gene ex-
pression experiments are those measured on the microarray experiment. Since,
as discussed, the microarray experiment of [3] does not provide any dependent
variables, we cannot test this conceptual application with our running example.

Consider the following three microarray experiments3:

qµA = (G, C,M,P ) qcntr
µA = (G,Ccntr,M cntr, P ) qh

µA = (G,C, M cntr, P )

with IV (qµA) = IV (qcntr
µA ) = IV (qh

µA) and DV (qµA) = DV (qcntr
µA ) = DV (qh

µA).
The first two chips are a microarray experiment (qµA) and the relative control
chip (qcntr

µA ), while the third (qh
µA) is a hypothetical variation of the microarray

chips in which the actual values of dependent variable are replaced with the
control ones. Notice that the qh

µA experiment cannot be really performed since

3 In this subsection we assume that the set of genes spotted on the microarray and
the set of genes considered in the model are identical, without loosing generality.
Formally: G = GµA ≡ Gm



the values of the independent variables C force the values of the dependent
controlled variables to be M and not M cntr. Suppose to apply a δµA function in
the following way:

RµA = δµA(EqµA , Eqcntr
µA

) RV
µA = δµA(Eqh

µA
, Eqcntr

µA
) RVD

µA = δµA(EqµA , Eqh
µA

)

RµA is the standard set of genes that are regulated because of the differences
between levels of the independent a dependent variables between the two chips,
RV

µA contains the genes that are regulated only by the independent variables
(since qh

µA and qcntr
µA have the same values of dependent variables M cntr), and

RVD
µA represents the genes that are regulated only by the dependent variables

(since qµA and qh
µA have the same values of the independent variables C). RV

µA
is the set of genes that the experimenter would have because it is not influenced
by the dependent variables, but it is not possible to obtain because the qh

µA chip
is only hypothetical.

Under the assumption that the sets of genes regulated by the dependent and
independent variables are disjoint, RV

µA could be estimated subtracting from
RµA the genes that are regulated because of the dependent variable RVD

µA. So

RV
µA = RµA \ RVD

µA (22)

but also RVD
µA is not possible to obtain, since it needs the hypothetical qh

µA chip.
However, in this framework we have the possibility to estimate expression

experiments with the computational model. In particular, all the following ex-
periments can be performed in silico:

qm = (G, C,M,P ) qcntr
m = (G,Ccntr,M cntr, P ) qh

m = (G,C,M cntr, P )

With these in silico experiments it is possible to detect the gene regulated only
by the independent (RV

m) and only by the dependent variables (RVD
m ):

RV
m = δm(Eqh

m
, Eqcntr

m
) RVD

m = δm(Eqm , Eqh
m

)

The direct approximation of RV
µA with RV

m is useless because in this way we rely
only on the model, loosing the information of the microarray experiment.

The idea for integrate the microarray and the in silico data consists in filter-
ing out from the set of microarray regulated genes those genes that are regulated
because of the dependent variables, substituting RVD

µA with RVD
m in (22)

RV
µA * RµA \ RVD

m (23)

If a gene is regulated both because of the independent and because of the depen-
dent variables, the estimation of RV

µA will not include that gene. For this reason
is necessary to assure that V and VD regulate two different set of genes meaning
that the influence on gene regulation of the two set of variables is disjoint.



Definition 1. V and VD are disjoint with respect to the gene regulation, or sim-
ply, ge-disjoint, if and only if for every possible values associated to the variables
the following holds: RV

µA ∩RVD
µA = ∅ ∧ RV

m ∩RVD
m = ∅

This definition is too restrictive because it is impossible to directly obtain RV
µA

and RVD
µA. However, the theoretical definition can be made less strict for an

effective application if we have an high accuracy and a good confidence in the
quantitative estimation of gene expression of the model.

Definition 2. V and VD are ge-disjoint, if and only if for every possible values
associated to them the following holds: RV

m ∩RVD
m = ∅

The complete definition for removing from the set of regulated genes of a mi-
croarray, the genes that are regulated only by the dependent variables, is

RV
µA * RµA \ RVD

m if RV
m ∩RVD

m = ∅ (24)

If V and VD are not ge-disjoint (or if it is not possible to show it), we can
partition VD in two subsets V ′

D, V ′′
D ⊂ VD with V ′

D ∩ V ′′
D = ∅ and V ′

D ∪ V ′′
D = VD

such that V ′
D and V are ge-disjoint. At this point we can still remove some genes

from RµA, and precisely the genes that are regulated because of V ′
D.

So in the cases where it is possible to show that the set of independent
variables (or a subset) are ge-disjoint from the set (or from a subset) of the
dependent measured variables, we can remove all (or some of) the genes that
are not directly regulated by the experimental conditions.

5 From a conceptual to a software framework

Our notational framework can be a guide for the development of software tools
for supporting analyses that combine the two fields of the microarray technology
and the system level modelling and simulation of biological networks. While for
the first a lot of bioinformatics tools have been developed for every aspect of
the technology, the second still needs research in order to make the development
and the simulation of systems biology models effective.

Our conceptual framework assumes to have a computational model and mi-
croarray chips and can actively act on different phases: the experimental con-
ditions and design, the expression profiling, the regulated genes detection and
the integration of regulated genes belonging to the two approaches. The first
application (Figure 4.a) concerns only the manipulation of the regulated genes
belonging to microarray and in silico experiments designed with the same con-
ditions, while the second (Figure 4.b) interests also the design, requiring some
experiments with particular settings of the dependent and independent condi-
tions. Other applications can regards also the other phases. Regardless of the
number of phases interested in the specific case, each phase requires formal and
software tools to allow real implementations of applications in the framework.
We discuss the availability of implemented software or formal specification for
each phase:



(a) (b)

µA chips Model m

µA exp. des. m exp. des.

FODBµA SBPm

EF ODBµA
ESBPm

RF ODB
µA RSBP

m

RP HO
int

δµA δm

µA chips Model m

µA exp. des. m exp. des.

qµAqcntr
µA qm qcntr

m qh
m

EqµA
Eqcntr

µA
Eqm Eqcntr

m
E

qh
m

RµA RV
mR
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m
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δµA δm

Experimental
design
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measurement

Regulated
genes det.
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Fig. 4: These schemes highlight the modules interested by the application for removing
the genes regulated in the in silico predictions (a) and by the application for removing
the genes regulated by the non controlled variables (b).

Experimental design Approfondite studies have been done to make microar-
ray experiments maximally informative, given the effort and the resources [18]
[19]. In this work we assume that an in silico simulated microarray exper-
iment has the same abstract behaviour of the real one; for this reason all
the designs reported in literature can be applied also to the simulated case.
However, some improvements can be done relying on the fact that once the
model is developed the simulation cost is much lower than the microarray
experimental one. Moreover some hybrid designs are possible integrating in
the same design simulated and real microarray experiments.

Experiments and simulations The microarray experimental procedure has
reached a good level of standardization [1]. Instead, the possible sources of
variability in the computational simulation rely on model errors and ap-
proximations in the simulation algorithm; however, both problems regard in
general the computational modelling of biological systems, while the simu-
lation procedure is intrinsically standard.

Gene expression measurement The output of a microarray experiment is
obtained with the optical scan of the array and the analysis of the result-
ing image. Software tools for this operation are available. Both microarray
output after scanning and in silico expression results, needs normalization
procedures to make meaningful comparisons of expression levels. For mi-
croarray experiments, statistical methods and software are available [15],
while for the in silico simulations specific normalization procedures must be
developed because the distribution of the expression can a priori be different
from the microarray ones. Since in silico microarray outputs are not avail-
able, more precise discussions cannot be done, but it is reasonable to adapt
some microarray techniques with specific parameters and thresholds.

Regulated genes detection Statistical techniques for the δµA like [17] are
available and implemented. δm, instead, was never developed, but the tun-
ing of some δµA functions is reasonable, considering also that the in silico



simulations are not affected by the random experimental error and by ap-
proximation in the optical scanning of the chip and so they are less noisy.

Integration of regulated gene sets The integration of the set of regulated
genes are normal operations on sets and can thus be easily implemented.

6 Conclusions

The traditional use of biological models concerns the parameters estimation and
the qualitative and quantitative description of not directly observable and high
level behaviours. In this work we propose to use systems biology models to sup-
port analysis of high-throughput data; it can be seen as a way to compare the
current biological knowledge with new genomic experiments. The comparison
aims to discover unknown aspects of complex and wide biological networks al-
lowing to focus further investigations only on that very specific subnetworks. The
overall procedure is somehow recursive since the new discoveries reached starting
from the model suggestions, permits improvements of the biological knowledge
from which it is possible to construct more precise models.

The notation we introduced for the microarray experiments and the in sil-
ico simulations of gene expression was specialized in the context of differential
analysis. Then, we proposed two real applications of our conceptual framework
with the purpose of supporting the mining of regulated genes detected with mi-
croarray expression data. In the example on which we tested the work, we were
able to remove two genes from the regulated genes of the microarray experiment,
thus obtaining encouraging results and highlighting the utility of the approach,
even if we used a local model. For this reason, as the model size grows reaching
the systems biology level the impact of our approach on the high-throughput
data interpretation can be very important.
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