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Abstract

In this thesis we introduce, define and quantitatively assess the stability of

the algorithms for the reconstruction of networks. We will focus on theory,

development and implementation of operative procedures and algorithms

for the assessment of stability in complex networks for biological systems,

with gene regulatory networks as the key example. A major issue affecting

network inference is indeed the high variability of network reconstruction

and network topology inferred after data perturbation, different parameter

choices and alternative methods. Network stability will thus be used to

measure reliability of inferred topology, also obtaining confidence intervals

for the outcomes. The methods will be employed to introduce a new ap-

proach to reproducibility in the study of complex networks. It will also be

coupled with statistical machine learning models, in order to integrate fea-

ture selection and network inference within a pathway profiling approach.

The evaluation of similarity between networks will be the first and central

operative procedure of the developed pipelines, the key point being the iden-

tification of distances that can compare network structures improving over

classical measures based on the confusion matrix, too coarse for this task.

A combination of spectral and edit distances especially tailored for biological

networks will be investigated and applied to several high-throughput biolog-

ical datasets of different nature and with different tasks in oncogenomics,

neurogenomics and exposomics.
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Chapter 1

Introduction

Reproducibility, i.e., the possibility of independently repeating a suite of

experiments obtaining the same (or very similar) outcome of the original

study, is a key ingredient of the scientific method. In the last few years,

the need for reproducibility has become a major task also in very young

disciplines such as computational biology and bioinformatics, where the

relevant impact of noise and the paucity of data represent daily obstacles

to overcome in warranting a completely reproducible pipeline to be set and

shown [66, 138]. Among the several aspects included under the umbrella

definition of reproducibility, this thesis is mainly concerned with providing

a level of confidence to associate to the experiments’ results. Namely, we

aim at quantitatively define a degree of (in)stability to the biological net-

work inference tasks, which is the core of the systems biology, the meeting

point of complex network science, computational biology and statistical

machine learning. Complex networks (graph structures) appear at all lev-

els of the cellular organization, as a mathematically efficient representation

of the interactions taking place among the basic cell elements, at all scales,

from the gene to the metabolic and signaling level. Since the knowledge of

the mechanisms underlying the cellular processes requires a paradigm shift

from the reductionist approach of separately studying all ingredients to a

1
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complexity-aware overview of the net of their mutual relations, the amount

of research activities aimed at reconstructing such networks from various

biological signals has skyrocketed in the last decade [16]. Moving even one

step further, the concept of stability as the continuous dependence of the

inference algorithm result from perturbations of the original data is of par-

ticular interest because of the ever growing diffusion of two novel research

directions stemming from the network reconstruction theory. The former is

the differential network analysis methods, where the emphasis of detecting

the features discriminating two conditions or two phenotypes is moving

form the gene to the pathway (and thus the network) level [65, 31] and

the latter is the integration of the biological network with socioeconomic

and contact networks describing people’s behavior in order to construct a

brand new network medicine approach [95, 16].

As anticipated in the previous paragraph, the problem of inferring a biolog-

ical network structure starting from a set of high-throughput measurements

(e.g. gene expression arrays or digital gene expression from Next Gener-

ation Sequencing data) has been positively answered by a huge number

of deeply different solutions published in the literature in the last fifteen

years, ranging from purely deterministic (algebraic or analytic) to purely

probabilistic (Bayesian). In this thesis, we also propose a novel reconstruc-

tion method (called RegnANN) based on artificial neural networks, which

we prove to be a good compromise between performance and stability [56].

Nonetheless, network reconstruction suffers from being a underdetermined

problem, being the number of interactions highly larger than the number

of independent measurements [40]: thus any algorithm has to look for a

compromise between accuracy and feasibility, allowing simplifications that

inevitably mine the precision of the final outcome, for instance including

a relevant number of false positive links [76]. This makes the inference

problem ”a daunting task” [18], not only in terms of devising an effective
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algorithm, but also in terms of quantitatively interpreting the obtained

results. In general, the reconstruction accuracy is far from being optimal

in many situations with the presence of several pitfalls [103], related to

both the methods and the data [60], with the extreme situation of many

link prediction being statistically equivalent to random guesses [116]. In

particular, the size (and the quality) of the available data play a critical

role in the inference process, as widely acknowledged [94, 53, 105]. All

these considerations support deeming network reconstruction a still un-

solved problem [135].

Despite the ever rising number of available algorithms, only recently ef-

forts have been carried out towards an objective comparison of network

inference methods also highlighting current limitations [4, 83] and relative

strengths and disadvantages [98]. Among those, it is worthwhile men-

tioning the international DREAM challenge [100], whose key result in the

last edition advocated integration of predictions from multiple inference

methods as an effective strategy to enhance performances taking advan-

tage from the different algorithms’ complementarity [40]. Nevertheless,

the algorithm uncertainty has been so far assessed only in terms of perfor-

mance, i.e. distance of the reconstructing network from the ground truth,

wherever available, while not much has been instead investigated with re-

spect to the stability of the methods. This can be of particular interest

when no gold standard (ground truth network) is available for the given

problem, and thus there is no chance to evaluate the algorithm’s accuracy,

leaving the stability as the sole rule of thumb for judging the reliability of

the obtained network. Here we propose to tackle the issue by quantifying

inference variability with respect to data perturbation, and, in particular,

data subsampling. If a portion of data is randomly removed before infer-

ring the network, the resulting graph is likely to be different from the one

reconstructed from the whole dataset and, in general, different subsets of
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data would generate different networks. Thus, in the spirit of applying

reproducibility principles to this field, one has to accept the compromise

that the inferred/non inferred links are just an estimation, lying within a

reasonable probability interval. In brief, we aim at proposing a set of four

indicators allowing the researcher to quantitatively evaluate the reliability

of the inferred/non-inferred links. In detail, we quantitatively assess, for

a given ratio of removed data and for a give number of resampling, the

mutual distances among all inferred networks and their distances to the

network generated by the whole dataset, with the idea that, the smaller

the average distance, the stabler the network. Moreover, we provide a

ranked list of the stablest links and nodes, where the rank is induced by

the variability of the link weight and the node degree across the generated

networks, the less variable being the top ranked.

Last but not least, thorough the whole stability pipeline the major ingredi-

ent is represented by availability of a consistent network metric expressing

the distance between two graphs sharing the same nodes but a different

wiring. The part of network theory dealing with the assessment of the sim-

ilarity of two networks is called network comparison. Comparison methods

are essential with dynamic networks to measure differences between two

consecutive network states and then model the whole series, for instance

when investigating the changes of a protein-protein interaction network

during a biological process such as a disease. The theory of network com-

parison is based on the variety of similarity measures, whose taxonomy is

essentially parted into two major branches: the indirect methods of feature-

based measures and the direct methods making use of a suitable distance.

Although fruitful insights can be drawn by indirect methods, a distance

must be employed whenever a quantitative assessment of the differences

between two elements is required. Traditional choices are members of the

family of the edit distances, where the minimum number of link operations
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(deletion and insertion) for transforming one topology into the other is

evaluated, and the family of spectral distances, where the difference of the

eigenvalues distribution of one the connectivity matrices of the networks is

taken into account. To cope with the different pros and cons of both edit

and spectral similarity, we propose here the HIM distance [75] which is the

product metric of the spectral Ipsen-Mikhailov and the edit Hamming dis-

tance: the HIM distance is the base of the whole aforementioned stability

framework.

Biological applications of the HIM distance and of the stability indicators

are shown in the last chapter, where a number of tasks in exposomics,

oncogenomics and neurogenomics are presented and discuss, as examples

of how these newly introduced algorithms can be an effective tools for the

researcher in the network branch of the systems biology.

Overall, the structure of the thesis goes as follows: after Chapter 2 collect-

ing background material and notation, we show in Chapter 3 a comparative

review of spectral distances for network comparison. Chapter 4 is devoted

to the definition of the novel HIM distance together with its properties,

while Chapter 5 is the core of the thesis where the stability indicators

are introduced and discussed with some examples of applications. Finally

in Chapter 6 we extensively show a number of biological applications on

several omics realms. We conclude drawing conclusions in Chapter 7.
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Chapter 2

Background and Notation

The representation of complex systems in terms of networks allows the

formalization of the system agents and their interactions. By means of the

properties of the underlying graph it is possible to describe and analyze

the system itself. For instance the study of the power supply system of a

big city using network theory could give insights about weakness points in

the system and avoid possible failures.

2.1 Networks

2.1.1 Definitions

Any network can be formally represented as a mathematical entity called

graph. A graph consists of a number N of nodes, also called vertices that

can be finite or infinite and E edges, links or arrows that connect a couple

of vertices representing an interaction (N ∈ N{∞}). For any network G,

its topology consists of the set V (G) = {v1, ..., vn} of its nodes and the

set E(G) = {e1 = (vi1, vj1), · · · eE = (viE , vjE)} of its edges, neglecting here

weights and directions. Different types of graph sharing the same topology

are displayed in Figure 2.1. If there exist an edge connecting two nodes x
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Figure 2.1: Network types

and y we say that they are neighbors, we can identify a set of neighbors

for each node.

Links can be bidirectional or unidirectional, this basic feature determining

whether the graph is

• directed (digraph): contains exclusively unidirectional links

• undirected: contains exclusively bidirectional links

• mixed: can contain both unidirectional and bidirectional links.

Graphically edges are depicted as arrows to symbolize directed links, lines

or double-headed arrows for undirected ones. Only undirected graphs will

be used hereafter. From the definition of graph it follows that any link can

connect two nodes, but also a self connection is possible: an edge from a

vertex to itself originates a loop in the network. Another feature of the

interactions that can be carried by the edges is their intensity or weight,

in this case we have a weighted network. For instance the weight of a link

could be used to convey the information about the number of passengers

moving from an airport to another in a transportation network. Formally,

a weighted network G(V,E,W ) can be formalized as a graph in which links

(x, y) are associated to a number called weight of the link w(x, y) so that

if w(x, y) = 0 then (x, y) /∈ E and w(x, y) 6= 0 if w(x, y) ∈ E.
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Table 2.1: Adjacency matrices for the weighted directed network can be written in two

alternative ways (1) with sign indicating direction (2) asymmetric, with the (positive)

value only in the entry (i, j) to represent the connection i → j, see Fig. 2.1 and its

topology; nodes ordering is clockwise starting from the top node.

Network Adjacency matrix

0.25

0.75

0.5 0.33

0.12

0.85





















0 0.33 0 0 0 0.5

(−0.33) 0.12 0.85 0 0 0

0 (−0.85) 0 0 0 0

0 0 0 0 0 (−0.25)

0 0 0 0 0 (−0.75)

(−0.5) 0 0 0.25 0.75 0





















0 1 0 0 0 1

1 1 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 1 1 0

2.1.2 Connectivity Matrices

A widely used way to represent graphs is by means of matrices especially

the adjacency matrix.

Adjacency Matrix

The adjacency matrix A is defined as an N ×N squared matrix in which

each entry aij corresponds to the link between the nodes i and j. In

particular, for an unweighted link aij will be 1 when the link is present

((i, j) ∈ V ) and 0 otherwise, see 2.1.

A is a very important and useful tool in graph theory, it is in fact enough

to understand many of its basic topological characteristics.

• If A is symmetric, i.e. A(h, k) = A(k, h)∀h, k ∈ V , then the graph is

undirected.
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• If the diagonal of A has all entries equal to 0, i.e. A(h, h) = 0∀h ∈
1, ..., n there are no self-loops in the graph.

For a weighted link we can define a the matrix of weights of G as W =

(w(x, y))x,y∈V . The weights matrix can alone completely describe the topol-

ogy and the characteristics of a graph, in this case we talk about weighted

adjacency matrix as shown in 2.1. If A is in the form: A =

(

0 B

BT 0

)

,

where B is a p × q matrix, we have a bipartite graph, a graph in which

the nodes can be classified into two groups N1 with |N1| = p and N2 with

|N2| = q. A link (i, j) exists if and only if i and j belong to different

groups. Another specific configuration of A is the block diagonal matrix:

A =

(

B1 0

0 B2

)

, where B1 and B2 are p × p and q × q matrices respec-

tively. Also in this case we have a subdivision of the nodes into two groups

N1with|N1| = p and N2with|N2| = q, but the links connect exclusively

couples of nodes belonging to the same group forming two separate sub-

graphs. This kind of adjacency matrix, where the groups of nodes are in

general upper bounded by the number of nodes, is called disconnected

graph.

The entries in the diagonal aij can be different from zero if selfloops are

allowed; if no self-loops occur we call the graph simple: thus simple graphs

have adjacency metric with zero diagonal. In Table 2.1 we show two exam-

ples of adjacency matrices for two graphs whose representation reads the

nodes clockwise starting from the top one. In general a graphical represen-

tation is not unique, in the sense that it depends on the actual labeling of

the nodes and isomorphic graphs (identical graphs with permuted labels)

share the same adjacency matrix. Similarly, graphical representations are

not unique too, since node placement is arbitrary.
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Degree

The degree of a node is a concept of crucial importance in graph theory

since it is the measure of level of interaction of the node with its neighbors

and consequently with the whole network. We define the out-degree

dout(x) as the number of links that exit from node x. Similarly we refer

to in-degree din(x) as the number of links that point to x. Both the

previous definitions are applied to directed graphs: for undirected graph

the in- and out-degree coincide and thus the degree d(x) indicates the

number of links touching the node x itself. Following this definition for the

majority of the authors the self loops are counted twice. We also define

the N ×N degree matrix D as the diagonal matrix with the degree of each

node as entries. For instance the degree matrix of the bottom network in

Table 2.1 is D =























2

4

1

1

1

3























.

The weighted degree (also called strength) of a node x in an undirected

network is defined as the sum of the weights of all the links touching x, so

we have that s(x) =
∑

y∈V w(x, y) where V is the set of neighbors of x.

Laplacian Matrix

The Laplacian matrix L of a graph is defined as the difference between the

degree matrix and the adjacency matrix L = D − A. From the definition

follows that for an unweighted undirected graph without loops (a simple

graph), the sums of the rows and the columns of L are zero.

Two normalizations of the Laplacian matrix exist L = D−1/2LD−1/2 =

I −D−1/2AD−1/2 and δ = D1/2LD−1/2, where I is the identity matrix and
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D−1/2 is the diagonal matrix with entries − δij√
degj

. Their entries can explic-

itly written as:

L =



















1 if i = j and degi 6= 0

− 1√
degidegj

if ij is an edge

0 otherwise

∆ =



















1 if i = j and degi 6= 0

− 1
degj

if (i, j) ∈ V is an edge

0 otherwise

Other kinds of networks have been described in the literature, but will not

be used here. In labeled graphs, nodes are classified by functions from

some subsets of the integers to the vertices or edges. Hypergraphs instead

are characterized by links that can connect any number of vertices, while

in multigraphs a couple of nodes can be connected by any number of links.

2.1.3 Spectrum

The eigenvalues of a matrix M ∈ Cn×n are the n roots of its characteristic

polynomial p(z) = det(zI−M). The set of these roots is called the spectrum

and is denoted by λ(M). If λ(M) = λ1, . . . , λn then it follows that

det(a) = λ1, λ2, · · · , λn.

Moreover, if we define the trace of A by

tr(A) =
n
∑

i=1

aii

then the tr(A) = λ1 + · · ·+ λn. this follows by looking at the coefficient of

z in the characteristic polynomial.
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If λ ∈ λ(A) then the nonzero vectors x ∈ Cn that satisfy

Ax = λx

are referred to as eigenvectors. More precisely, x is a right eigenvector for λ

if Ax = λx and a left eigenvector if xHA = λxH . Unless otherwise stated,

“eigenvector” means “right eigenvector” [55].

An undirected and unweighted graph has symmetric real connectivity ma-

trices and therefore real eigenvalues and a complete set of orthonormal

eigenvectors. Also, for each eigenvalue, its algebraic multiplicity coincides

with its geometric multiplicity. Since A has zero diagonal, its trace and

hence the sum of the eigenvalues is zero. Moreover, L is positive semidefi-

nite and singular, so the eigenvalues are 0 = µ0 ≤ µ1 ≤ · · · ≤ µn1 and their

sum (the trace of L) is twice the number of edges. Finally, the eigenvalues

of L lie in the range [0, 2]. While the connectivity matrices depend on the

vertex labeling, the spectrum is a graph invariant. Two graphs are called

isospectral or cospectral if the corresponding connectivity matrices of the

graphs have equal multisets of eigenvalues. Isospectral graphs need not be

isomorphic, but isomorphic graphs are always isospectral. Moreover it can

be proved that the spectrum of the adjacency matrix of a bipartite graph

is symmetric with respect to 0, i.e. if α is an eigenvalue of A then also −α

is an eigenvalue. Network classification in terms of their spectrum is still

an open problem [144, 150, 151]: however, a first attempt to (qualitative)

network classification in terms of graph spectra can be found in [12, 13] by

Banerjee.

Cauchy-Lorentz distribution

The Cauchy-Lorentz distribution is a continuous probability distribution

with probability distribution function PDF given by:

f(x; x0, γ) =
1

π

(

γ

(x− x0)2 + γ2

)

,
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where x0 indicates the peak of the distribution (also called the mode)

of the distribution, and γ specifies half the width of the PDF at half the

maximum height: see the graphical trend of the Cauchy Lorenz distribution

in Figure 2.1.3.

Figure 2.2: Examples of Cauchy-Lorentz distributions with different parameters.

2.1.4 A minimal example

Consider the two networks I1, I2 ∈NNN with corresponding adjacency matri-

ces AI1, AI2 shown in Fig. 2.3 and 2.4.

The corresponding Laplacian matrices and eigenvalues are

LI1 =

































3 −1 0 0 −1 0 0 −1

−1 3 0 0 0 0 −1 −1

0 0 2 0 0 −1 −1 0

0 0 0 2 −1 −1 0 0

−1 0 0 −1 2 0 0 0

0 0 −1 −1 0 2 0 0

0 −1 −1 0 0 0 3 −1

−1 −1 0 0 0 0 −1 3

































spec(LI1) =

































0

0.657077

1

2.529317

3

4

4

4.813607
































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AI1 =































0 1 0 0 1 0 0 1

1 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

1 0 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 1 1 0 0 0 0 1

1 1 0 0 0 0 1 0































0

1

2

3

4

5

6

7

Figure 2.3: Adjacency matrix and graphical representation of I1

LI2 =

































3 −1 0 0 0 −1 −1 0

−1 3 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 2 0 0 −1 −1

0 −1 0 0 1 0 0 0

−1 −1 0 0 0 2 0 0

−1 0 0 −1 0 0 3 −1

0 0 0 −1 0 0 −1 2

































spec(LI2) =

































0

0

0.340321

1.145088

3

3

3.854912

4.659679

































From the above spectra, we can compute the corresponding Cauchy-Lorentz

distributions ρI{1,2}(ω, γ), where γ = 0.4450034: their plots are shown in

Fig. 2.5.
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AI2 =































0 1 0 0 0 1 1 0

1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 0 1 0 0 1 0































0

1

2

3

4

5

6

7

Figure 2.4: Adjacency matrix and graphical representation of I2

2.2 Biological Networks

Citing Barabasi in [16], “We will never understand the workings of a cell

if we ignore the intricate networks through which its proteins and metabo-

lites interact with each other”. In fact, all elements of a cell, from the genes

in the DNA to the molecules involved in the signal transduction mecha-

nisms, are deeply interconnected at various levels: all these elements and

their connections are described by all the structures known as biological

networks. The need for adopting a novel approach to mine the underlying

knowledge is nowadays shared by the entire community of researches, as

well as the need for a common new language to benefit from contributions

from different disciplines [90].

For an exhaustive description of the biological networks, we refer to [158,
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Figure 2.5: Lorentzian distribution of the Laplacian spectra for I1 and I2. Vertical lines

indicate eigenvalues.

153, 27]; hereafter we recall some basic facts and properties.

Networks in biology can be grouped under a few major categories:

• Gene Regulatory (or Transcriptional) Network: it is the structure

representing the mutual interactions (RNA and protein expression

products) within a cell of a collection of DNA segments through their

RNA and protein expression products), thus regulating the rates at

which genes in the network are transcribed into mRNA. Some of the

interacting factors serve only to activate other genes, and they are

called the transcription factors.

• Proteinprotein interaction network: it is the structure (called inter-

actome) collecting all the binding occurring between proteins in a

organism.

• Protein phosphorylation network collects all the regulation of proteins

17
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by phosphorylation.

• Metabolic interaction network (or metabolic pathway): includes the

chemical reactions of metabolism and the regulatory interactions that

guide these reactions, thus collecting all metabolic and physical pro-

cesses that determine the physiological and biochemical properties of

a cell.

• Signalling network: it is the network of reactions that govern how

a cell responds to its environment, together with the corresponding

dynamic flow through the network (transduction) (e.g, from a receptor

to a transcription factor that modifies expression of a gene).

A graphical display of the five above categories is shown in Fig. 2.2, origi-

nally included in [158].

Although the above networks are very diverse and heterogeneous, they all

share a few key characteristics. One of the most powerful empirical rules

derived by biological observations is that their topology is sparse: there is

a small constant number of edges per node, much smaller than the total

number of nodes. For instance, genes are regulated by a constant number

of other genes (2-4 in bacteria, 5-10 in eukaryotes). Recent studies have

shown that the frequency distribution of connectivity of nodes in biologi-

cal networks tends to be long tailed, similar to a power-law distribution.

Thus, biological networks are modeled according to a scale-free distribu-

tion: P (k) = k−γ , where k is the degree (number of connections) and

γ is some network-specific constant. The scale-free nature of gene net-

works yields the emergence of hubs (highly connected nodes) which are

central in the network and are responsible for a large amount of over-

all regulation. Thus, the rest of the nodes are connected by very short

paths, yielding overall short longest-path between nodes. This handful of

highly connected nodes also support network integrity, making networks

18
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Figure 2.6: Examples of the five major biological networks. (A) A yeast transcription

factor-binding network, composed of known transcription factor-binding data collected

with large-scale ChIPchip and small-scale experiments. This figure was generated with

the program Pajek [39]. (B) A yeast proteinprotein interaction network, containing pro-

teinprotein interactions identified by yeast two-hybrid and protein complexes identified by

affinity purification and mass spectrometry [17]. (Reprinted by permission from Macmil-

lan Publishers Ltd: Nature [69], 2001.) Nodes are colored according to the mutant

phenotype. (C) A yeast phosphorylation network comprised primarily of in vitro phos-

phorylation events identified using protein microarrays [117]. The figure was generated

with Osprey 1.2.0. [25]. (D) An E.Coli metabolic network with 574 reactions and 473

metabolites colored according to their modules (Reprinted by permission from Macmillan

Publications Ltd: Nature [58], 2005). (E) A yeast genetic network constructed with syn-

thetic lethal interactions using SGA analysis on eight yeast genes (From [139]; reprinted

with permission from AAAS). Nodes are colored according to their YPD cellular roles

[taken from [158]].
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robust against random failures but exceedingly vulnerable upon targeted

attack. Biological networks are very robust to fluctuations of their param-

eter values and there are strong indications that only specific topologies

can guarantee such robustness. In fact, the resistance to noise is one of the

main effects of the intrinsic robustness of networks to random fluctuations

(for instance, of the concentration of regulators) and it is an important fea-

ture also when considering the modelling process. This is a fundamental

characteristic as the input to the modelling process are observations of a bi-

ological phenomenon that are typically very noisy. As observed by Wuchty

and colleagues in [153] all these properties are biologically grounded by

the fact that many mutations have little or no phenotypic effect, which is

coherent with the occurrence of genes that either cannot propagate their

failure or whose function can be taken care of by different part is of the

network. On the other hand, the presence of genes supporting multiple

signaling and thus responsible for widespread changes upon their failure

proves the crucial role of hubs.

2.3 Network Inference

As observed by Hurley and coworkers in [64], in the last five years the num-

ber of published algorithms for reconstructing a biological network from

high-throughput measurements has grown exponentially, and they have

helped unveiling significant biological findings in several species, from sim-

ple organisms to humans. The nature of the proposed algorithms is very

heterogeneous, ranging from algebra, to differential equations to probabil-

ity: see for instance [40, 102, 111] for some comparative reviews. However,

no single method has emerged as the best performing across a wide range

of tasks, as shown for instance by the outcome of the various editions of

the DREAM challenge [131, 132, 116, 100, 115]; in particular, the main
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conclusion drawn from in the last edition is that, in average, the integra-

tion of results coming from different methods can be an effective strategy

[99].

In this thesis, we will mainly deal with two kinds of methods: the former

aims at detecting interactions as nodes’ coexpression, while the latter tries

to spot also indirect dipendencies. As described in [102] and proved on a

wide range of situations in [3], coexpression networks are biologically sound

structures in describing complex interactions. They are constructed by

computing a similarity score for each pair of genes (as weighted networks),

or reduced to unweighted graphs after thresholding the similarity above

a certain value. The underlying rationale, called the guilt-by-association

heuristic, is the assumption that if two genes show similar expression pro-

files, they are supposed to follow the same regulatory regime, i.e., coexpres-

sion is a reasonable approximation of coregulation. The Weighted Gene

Coexpression Network Analysis (WGCNA) and the Topological Overlap

Matrix (TOM) approaches described hereafter follow this line, and differ-

ent correlation measure can be used within its framework (see Sec. 2.3.1).

However, coexpression networks cannot distinguish direct from indirect

dependencies based on the similarity of expression patterns: for exam-

ple, a graph of three nodes X, Y, Z mutually connected by coexpression

can match different regulatory schemes X → Y → Z, X → (Y, Z) or

even W → (X, Y, Z) for an external node W . To deal with this issue other

methods have been developed: among these, Algorithm for the Reconstruc-

tion of Accurate Cellular Networks (ARACNE) and Context Likelihood of

Relatedness are probably the most widely used by researchers worldwide.

We provide in the following section a brief description of ARACNE and

CLR, together with the description of a novel method called Reverse En-

gineering Gene Networks by Artificial Neural Networks (RegnANN) aimed

at detecting indirect interactions with higher stability.
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(a) (b)

Figure 2.7: Adjacency functions for different parameter values. a) Sidgmoid and signum

adjacency functions. b) Power and signum adjacency functions. The value of the adja-

cency function (y-axis) is plotted as a function of the similarity (co-expression measure).

Note that the adjacency function maps the interval [0, 1] into [0, 1]. [61, 154]

2.3.1 Weighted Gene Coexpression Network Analysis

WGCNA [154, 88] is a general framework for “soft” thresholding that

weights each connection by a number in [0, 1]. In gene coexpression net-

works, each gene corresponds to a node. With the aim of retrieving the

adjacency matrix of the network starting from the data, one needs first to

define a measure of similarity between the expression profile of two genes.

In general the similarity measure s quantifies the level of connection be-

tween the two measured gene profiles. Applying s to any possible couple

(i, j) of genes in the dataset we obtain the n × n matrix S = [sij]. The

next step is to transform the S matrix into an adjacency matrix A = [aij]

that encodes the actual connection strength between each pair of nodes.

To perform this task one can use an adjacency function which transforms

the co-expression similarities into connection strengths. The parameters

of this function are derived both from statistical and biological criteria.
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In the WGCNA pipeline at this point the resulting adjacency matrix is

used to define a measure of node distance used to define network modules

through a clustering phase. At this point various intramodular and inter-

modular features can be computed such as for example the intramodular

connectivity that helps determine the significance of a module [61].

In this thesis we chose to use as function s the absolute value of the Pearson

correlation sij = |cor(i, j)| or the Maximal Information Coefficient measure

(MIC). The only constraint for the similarity measure is that to be bounded

in [0, 1]. The adjacency function is a monotonically increasing function that

maps the interval [0, 1] into [0, 1]. We can divide the adjacency functions

into two main families: soft thresholding and hard thresholding functions;

as the names suggest the former functions produce weighted adjacency

matrices while the second ones produce (binary) unweighted adjacency

matrices. The most widely used adjacency function is the signum function

that applies a hard threshold to the similarity values. The application of

this function implies the very delicate choice of the parameter τ so that:

aij = sign(aij, τ) ≡







1 if sij ≥ τ

0 if sij < τ

It is obvious that an erroneous choice of the parameter τ can lead to a

loss of information, since, for instance setting τ = 0.7 means that a value

of cor = 0.69 would lead to no link at all in the final adjacency matrix.

To avoid hard thresholding, in [154] two soft thresholding methods are

proposed: the sigmoid function

aij = sigmoid(sij, α, τ0) ≡
1

1 + e−α(aij−τ0)
,

with parameters τ0 and α and the power adjacency function

aij = power(sij, β) ≡ |sij|β ,
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with the only parameter β. For the experiments in this thesis we decided

to use the power adjacency function since the parameter β can be chosen

to approximate the sigmoid function. Another advantage of the use of the

power function is that if sij factors so that sij = sisj then aij factors as

well, aij = aiaj with ai = (si)
β. In [154] is shown that the two adjacency

functions produce very similar results provided that the parameters are

chosen following the scale-free topology criterion. The most critical step in

this approach is the choice of the parameter τ or β depending on the choice

of the functions. The choice of the parameters determines the sensitivity

and specificity of the pairwise connection strengths. For example if τ is

set too low we could incur in too many false positive links in the matrix

reconstruction because of the effect of noisy data. On the other hand, if τ

is set to high we will have an adjacency matrix too sparse, and thus we lose

important information about the structure of the connections. In order to

solve this problem several approaches have been applied in the literature to

threshold the significance level of the correlation instead of the correlation

coefficient itself. The significance level of a correlation coefficient can be

estimated by using the Fisher transformation. Thus thresholding a cor-

relation coefficient is replaced by thresholding the corresponding p-value.

Finally, instead of focusing on the significance of the correlation or the

network size, we propose to pick the threshold by making use of the fact

that despite significant variation in their individual constituents and path-

ways, metabolic networks have been found to display approximate scale

free topology [70, 119, 61].

2.3.2 Topological Overlap Matrix

The topological overlap of two nodes reflects their relative interconnected-

ness: although this method is only indirectly involving co-expression, we

still list TOM under the relevance network umbrella definition. In partic-
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ular the Topological Overlap of the couple of nodes (i, j) is:

ωi,j =
lij + aij

min{ki, kj}+ 1− aij

where lij =
∑

u aiuauj and ki =
∑

u aiu is the node connectivity. In case of

hard thresholding we have that lij equals the number of common neighbors

of the nodes i, j that are connected. The Topological Overlap ω(i, j) equals

one if the node with lower connectivity is connected with a set of nodes that

are also neighbors of the other node and i and j are directly connected. On

the other hand we have that ω(i, j) is zero in case that i and j are discon-

nected and they share no neighbors. The formula of TOM is generalizable

to weighted adjacency matrices just using the weighted 0 ≤ aij ≤ 1 in

the formula above. Moreover since lij ≤ min(
∑

u 6=j aiu,
∑

u 6=i aju) it follows

that lij ≤ min(kikj) − aij therefore if 0 ≤ aij ≤ 1 then 0 ≤ lij ≤ 1. The

topological overlap matrix Ω = [ωij] is a similarity measure [78] since it is

non-negative and symmetric [154].

2.3.3 Aracne

Aracne is a method originally written to cope with the complexity typical

of the regulatory networks of the mammalian cells. It is anyways able to

address more general deconvolution problems such as transcriptional and

metabolic networks. This technique has been designed especially to avoid

the problem of false positive which affects the great part of algorithms

based on co-expression. Applying the Data Processing Inequality (DPI),

Aracne can remove the majority of indirect links [101, 109, 35]. In this

thesis we used the algorithm implementation provided on Bioconductor

[104] and the default tolerance values for DPI were used. As often hap-

pens, Aracne makes use of a hard thresholding for the binarization of the

resulting adjacency matrix. As many other methods, ARACNE relies on

the definition of a threshold for the binarization of the adjacency matrix.
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In absence of a good heuristic for defining such threshold, on the synthetic

data-sets we will adopt the area under the curve (AUC) as performance

metric.

2.3.4 CLR

CLR is based on the mutual information score and can be seen as an

evolution of the class of the relevance network algorithms [46] designed to

predict the relations between transcription factors and target genes. The

evolution of CLR stands in an additional step of background correction

added to the phase of mutual information estimation. At first for each gene

a statistical likelihood of the mutual information score is computed with

respect to its network contest. Then for each couple Transcription Factor-

Target Gene, the mutual information score is compared to the context

likelihood of both the elements and turned into a z-score. In this thesis we

used the implementation presented in [104]. As in the case of ARACNE,

in absence of a good heuristic for defining a binarization threshold for the

inference of the adjacency matrix, on the synthetic data-sets we will adopt

the area under the curve (AUC) as performance metric.

2.3.5 RegnANN

RegnANN [56] reconstructs networks through an ensemble of feed-forward

multilayer perceptrons. Each member of the ensemble is essentially a multi-

variable regressor (one to many) trained using an input expression matrix

to learn the relationships (correlations) among a target gene and all the

other genes. Formally, let us consider the multilayer perceptron as in Fig:

2.8 (right):1 input neuron I, 1 layer of H hidden units and 1 layer of K

output units. Indicating with g the activation function of each unit and

wh,k the weights associated with the links between the output layers and
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Figure 2.8: The ad hoc procedure proposed to build the training input/output patterns

starting from a gene expression matrix.Each input pattern corresponds to the expression

value for the selected gene of interest.

the hidden layer and with ŵh the weights of the links between input neuron

and hidden layer, the value Ok for the output unit k can be calculated as

follows:

Ok = g

(

H
∑

h=1

wh,k · g(ŵh · I)
)

The value Okis the inferred interaction between the corresponding gene

k and the gene associated with the input neuron I. We proceed in de-

termining the interactions among genes separately and then we join the

information to form the overall gene network. From each row of the gene

expression matrix we build a set of input and output patterns used to

train with back-propagation [22] a selected multilayer perceptron. Each
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input pattern corresponds to the expression value for the selected gene of

interest. The output pattern is the row-vector of expression values for all

the other genes for the given row in the gene expression matrix (Figure

2.8). By cycling through all the rows in the matrix, each regressor in the

ensemble is trained to learn the correlations among one gene and all the

others. Repeating the same procedure for all the columns in the expres-

sion matrix, the ensemble of multi-variable regressors is trained to learn

the correlations among all the genes. The procedure of learning separately

the interactions among genes is very similar to the one presented in [127],

where the authors propose to estimate the neighborhood of each gene (the

correlations among one gene and all the others) independently and then

joining these neighborhoods to form the overall network, thus reducing the

problem to a set of identical atomic optimizations.

We build N (one for each of the N genes in the network) multilayer per-

ceptrons with one input node, one layer of hidden nodes and one layer of

N−1 output nodes, adopting the hyperbolic tangent as activation function.

The input node takes the expression value of the selected gene rescaled in

[−1, 1]. The number of hidden nodes is set to the square root of the number

of inputs by the number of outputs. This value is to be considered a rule of

thumb granting enough hidden units to solve the regression problem and

allowing dynamical adaptation of the structure of RegnANN to the size of

the biological network under study. The output layer provides continuous

output values in the range [−1, 1].

The algorithm of choice for training each multi-layer perceptron is the back-

propagation algorithm [22]. The back-propagation is a standard algorithm

for learning feed-forward multilayer perceptrons that essentially looks for

the minimum of the error function in the weight space using the method of

gradient descent. The error function is defined as the difference between the

output of each neuron in the multilayer perceptron and its expected value.
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The back-propagation algorithm starts with the forward-propagation of

the input value in the multilayer perceptron, followed by the backward

propagation of the errors from the output layer toward the input neuron.

The algorithm corrects the weight values according to the amount of error

each unit is responsible for. Formally, the weight values at learning epoch

τ are updated as follows:

∆w(τ) = −η∇E + µ∆w(τ−1)

To keep the notation simple w refers to both the weights associated with

the links between the output layers and the hidden layer and with the

weights of the links between input neuron and hidden layer. ∇E refers to

the gradient of the error in weight space. η is the learning rate;µ is the

momentum.

Although back-propagation is essentially a heuristic optimization method

and alternatives such as Bayesian neural network learning [108] have more

sound theoretical basis, in the proposed multi-variable regression schema

the simple back-propagation algorithm allows us to design a far less com-

plex system. This is due to how Bayesian neural network learning handles

the regression problem. As indicated in [107]: Networks are normally used

to define models for the conditional distribution of a set of target values

given a set of input values.[...]. For regression and logistic regression mod-

els, the number of target values is equal to the number of network outputs.

This implies that in the case of Bayesian learning an extra procedure is

required to discretize the target values from the continuous range [-1,1] and

that for each ensemble member the layer of output neurons (N − 1 in the

case of back-propagation) has to be translated into a matrix of neurons of

size (N − 1)× T , where T is the number of desired target values. Accord-

ingly, also the hidden layer becomes a matrix of neurons, each one with its

own set of parameters. Thus, in the context of multivariable regression,
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adopting back-propagation allows us to design a lower complexity inference

system limiting issues related to high dimensional settings. Once the en-

semble is trained, the topology of the gene regulatory network is obtained

by applying a second procedure. Considering each gene in the network

separately, we pass a value of 1 to the input neuron of the correspondent

multilayer perceptron, consequently recording its output values. The con-

tinuous output values in the range [-1,1] represent the expected normalized

expression values for the other genes (its neighborhood). This procedure

basically aims at verifying the correlation between the input gene and all

the others: assuming the input gene maximally expressed (the value 1), an

output value of 1 indicates that the correspondent gene will be also maxi-

mally expressed, thus indicating perfect correlation between the two genes.

An output value of -1 indicates that the correspondent gene will be max-

imally under-expressed: perfect anti-correlation of the two genes. Thus,

the continuous output values in the range [-1,1] are interpretable in terms

of positive correlation (> 0), anti-correlation (< 0) and no-correlation (0).

By cycling this procedure through all the ensemble members in the regres-

sion system, we obtain N (one for each of the N genes in the network)

vectors of length N − 1 of continuous values in [-1,1]. The correlation

matrix is obtained by correctly joining the N vectors. It is important to

note that all the values of the diagonal of the adjacency matrix are equal

to 0 by construction: this procedure does not allow discovering of gene

self correlation (regulation) patterns, but only correlation patterns among

different genes. Finally, the adjacency matrix of the sought gene network

is obtained by thresholding the correlation coefficients.
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2.4 Correlation Measures

2.4.1 Pearson

In statistics the Pearson correlation index between two variables is a mea-

sure of the linearity between the variables and it is computed as the ratio

of their covariance and the product of the respective standard deviations.

Given two variables x and y their Pearson correlation is thus defined as

follows:

ρxy =
σx,y
σxσy

where σxy is the covariance of the variables while σx and σy the two standard

deviations. The value of ρxy ranges in [−1, 1]: when ρxy is greater than 0

the two variables are said to be directly correlated, if ρxy is smaller than 0

then x and y are inversely correlated. If ρxy equals 0 then the variables are

uncorrelated. Pearson indexes of n variables can be collected in a squared

matrix of dimension [n×n] which will be symmetric and with the diagonal

equal to 1 since ρij = ρji and ρii =
σii

σ2

i

.

2.4.2 Biweight Midcorrelation

In order to overcome the problem of outlaiers in Pearson correlation in [152]

is proposed the bicorrelation which is considered to be a good alternative

to the standard correlation. Such algorithm was also applied in [128] by

Song and coworkers proving that, using as reference the gene ontology

enrichment, the bicorrelation coupled with TOM performs better than a

MIC based approach in the detecting of submodules.

To define the biweight midcorrelation of two variables x = (x1, . . . , xm)

and y = (y1, . . . , ym) we first define ua and ub with i = 1, . . . ,m:

ua =
xa −med(x)

9mad(x)
ub =

yb −med(y)

9mad(y)
(2.1)
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wheremed(x) stands for the median of x andmad(x) is the median absolute

deviation of x this allow us to define the weight wa of xa as:

w(x)
a = (1− u2a)

2I(1− |ua|) (2.2)

the indicator I(1|ua|) equals 1 if 1|ua| > 0 and 0 otherwise. Therefore,

wa ranges from 0 to 1. It also decreases as xa gets away from med(x),

stays at 0 when xa differs from med(x) by more than 9mad(x). Given

that we can define the analogous weight for ub we can define the biweight

midcorrelation for the variables x and y as:

BiCor(x, y) =

∑m
a=1(xa −med(x))w

(x)
a (ya −med(y))w

(y)
a

√

∑m
b=1[(xb −med(x))w

(x)
b ]2

√

∑m
c=1[(yc −med(y)w

(y)
c )]2

(2.3)

In this thesis a modified version of bicorrelation implemented in WGCNA

(R package [88, 154]) is used. Setting a coherent thereshold θ one can say

that a value of BiCor(x, y) > θ indicates that the genes described by the

variables x and y are similarly expressed. [86]

2.4.3 Maximal Information Coefficient

Maximal Information Coefficient (MIC) is one of the five similarity mea-

sures between variables originally introduced as the MINE (Maximal Information-

based Nonparametric Exploration) in the paper [120] based on the intuition

that if two variables are somehow bond by a relationship then it is possi-

ble to encapsulate their scatterplot within a grid. The calculation of MIC

consists in the exploration of all the possible subdivisions of the scatterplot

up to the maximum resolution of the grid. This resolution is dependent

from the samplesize of the considered data (See Fig:2.9). For every pair

of integers (x, y) the largest possible mutual information is computed by

applying an x− by−y grid to the scatterplot of the two variables. In order
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Figure 2.9: Computing MIC (A) For each pair (x, y), the MIC algorithm finds the x-

by-y grid with the highest induced mutual information. (B) The algorithm normalizes

the mutual information scores and compiles a matrix that stores, for each resolution, the

best grid at that resolution and its normalized score. (C) The normalized scores form

the characteristic matrix, which can be visualized as a surface; MIC corresponds to the

highest point on this surface. In this example, there are many grids that achieve the

highest score. The star in (B) marks a sample grid achieving this score, and the star in

(C) marks that grid’s corresponding location on the surface. [taken from [120]]
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to obtain values comparable within grids of different dimensions we nor-

malize the measured values obtaining the normalized values in the range

[0,1]. We define the characteristic matrix M = (mx,y), where mx,y is the

highest normalized mutual information achieved by any x − by − y grid,

and the corresponding MIC statistic as the maximum value in M (Fig. 2.9,

B and C). More formally, for a grid G, let IG denote the mutual informa-

tion of the probability distribution induced on the boxes of G, where the

probability of a box is proportional to the number of data points falling

inside the box. The (x, y)-th entry mx,y of the characteristic matrix equals

max IG/ logmin x, y, where the maximum is taken over all x-by-y grids G.

MIC is the maximum of mx,y over all the ordered pairs (x, y) such that

xy < B, where B is a function of sample size; we usually set B = n0.6.

Every entry of M falls in the range [0, 1], and so MIC does as well. MIC

is also symmetric [i.e., MIC(X, Y ) = MIC(Y,X)] due to the symmetry

of mutual information. Since IG depends only on the rank order of the

data, MIC is invariant under order-preserving transformations of the axes.

Notably, although mutual information is used to quantify the performance

of each grid, MIC is not an estimate of mutual information. To calculate

M , we would ideally optimize over all possible grids. For computational ef-

ficiency, we instead use a dynamic programming algorithm that optimizes

over a subset of the possible grids and appears to approximate well the

true value of MIC in practice. [120]

2.5 Resampling Techniques

2.5.1 Bootstrap

Bootstrap methods depend on the notion of a bootstrap sample. Let F

be the empirical distribution of the observed values xxx = (x1, x2, . . . , xn), so

f → (x∗1, x
∗
2, . . . , x

∗
n) where (x∗1, x

∗
2, . . . , x

∗
n) are a randomized or resampled

35



2.5. RESAMPLING CHAPTER 2. BACKGROUND AND NOTATION

version of (x1, x2, . . . , xn). Thus we might have x∗1 = x7, x
∗
2 = x4, . . . , x

∗
n =

x6. The bootstrap dataset or bootstrap resample (x∗1, x
∗
2, . . . , x

∗
n) consists

of members of the original dataset xxx = (x1, x2, . . . , xn), with some of the

samples taken zero, one or more times. Now suppose we wish to estimate

a parameter of interest θ = t(F ) on the basis of xxx. For this purpose we can

calculate an estimate θ̂ = s(xxx) from xxx. Now we can calculate how accurate

θ̂ is by computing:

θ̂∗ = s(xxx∗) (2.4)

where the quantity s(xxx∗) is the result of applying the same function s(·) to
xxx∗ as we applied to xxx.

So the bootstrap estimate of the standard error seF̂ (θ̂) is an estimate that

uses the F̂ function in place of the unknown distribution F . So the boot-

strap estimate of seF̂ (θ̂) is defined by

seF̂ (θ̂
∗) (2.5)

In practice the bootstrap estimate of seF (θ̂) is the standard error of θ̂ for

data sets of size n randomly sampled from F̂ [45, 37].

In particular in this thesis the bootstrap empirical distribution is widely

used to compute the confidence intervals for the presented results. We

compute 95% bootstrap confidence intervals of the data xxx = (x1, x2, . . . , xn)

by producing 1000 bootstrap resampling (xxx1,xxx2, . . . ,xxx1000) of the data and

setting the confidence intervals as the lower and upper bounds that contain

950 of the means (µµµ1,µµµ2. . . . ,µµµ1000) of the resamples.

2.5.2 Cross validation

Random cross validation is technique commonly used to honestly predict

how a statistical analysis will work on an independent dataset. It is widely

used in machine learning where the prediction is the main goal and typ-

ically one wants to know how a specific prediction model will behave on
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an independent validation dataset. In particular it is interesting to predict

what the accuracy of the system is on data different from the ones used

for the test.

Suppose we have a prediction model with one or more unknown parame-

ters. Typically a fitting process is used to find the set of parameters for

which the best classification accuracy is reached. If we now apply the

same model with the best computed parameters to an unknown validation

dataset we find that the model does not fit the new data as well as for the

training set. This phenomenon is known as overfitting and is very common

when the training set is not big enough.

Cross-validation is a technique aimed at obtaining a plausible estimation

of the accuracy of the classification model even without having an explicit

independent validation data-set. One of the most used cross-validation

setups is the k-fold cross-validation which consists of a preliminary par-

tition of the whole dataset in k groups of the same number of samples.

The training and test phase is performed k times and each time a different

one of the k groups is discarded from the training-set to be used as test-

set. The collection of k accuracy values obtained in this way is considered

an honest prediction of the accuracy of the model. The reliability of the

cross-validation depends mainly on the numerosity of the samples and the

chosen k.
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Chapter 3

Quantitative Network Comparison

In this chapter we review and benchmark a class of methods that tackle

the problem of structural comparison between networks, with particular

attention to the biological case, e.g. gene regulatory and protein networks.

As mentioned in Section 2.1 a complete network is defined in the literature

[23] as a graph with a structure that dynamically evolves in time. In terms

of structure the term ”complex” was introduced by Strogatz to identify non

”regular” networks like chains, grids, lattices and fully-connected graphs.

We can think of the extreme complex network as a completely random

graph. In real applications the observable networks lie in between the two

extremes, normally more on the random side [133] [97].

The problem of network comparison has been tackled in many different

fields over the last years. A number of solutions have been proposed with

a wide variety of approaches ranging from statistical physics to machine

learning [43] [54]. In this chapter we present a brief review of classes of

methods designed to solve the problem of comparing structure between

networks. [1] [110] [93] [84] [34]
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3.1 Global and Local Distances

A main discriminant factor among approaches is their globality or local-

ity. The former takes into account the overall structure of the network,

for instance using a function of the eigenvalues of one of the connectiv-

ity matrices of the graph of the network. Measures in this family are

called spectral distances; by definition these distances can not distinguish

isospectral graphs. The latter set of distances are also known as edit-like

and they give a quantitative measure of the diversity between two networks

as a function of the number of link operations needed to transform a graph

into the other. Even if different weight (cost) strategies can be applied to

make this approach more sophisticated its is focus on single-link variations

overlooking the overall structure of the network.

Cost-based functions stem from the parallel theory of graph alignment:

the edit distance and its variants use the minimum cost of transformation

of one graph into another by means of the usual edit operations insertion

and deletion of links. Other classical network comparison measures are

those based on the confusion matrix, such as the pairs Precision/Recall or

Sensitivity/Specificity, or the F-score. However, all these measures evalu-

ate only the number of detected/undetected links, without considering the

difference between the global structure of the inferred and the real topol-

ogy: deep structural differences can occur with the same confusion matrix.

Again, all these measures are local, because, for each link, only the struc-

ture of its neighborhood gives a contribution to the distance value, while

the structure of the whole topology is not considered.

To overcome the locality issue in network comparison, a few global dis-

tances have been proposed: among them, the family of structural measures

are particularly relevant. The label “structure-based” distance groups all

other measures that do not rely on cost functions or characteristic features.
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Structural analysis is of central importance in computational biology [84].

Structure and structural properties of networks have been studied in a wide

variety of fields in science [23, 1, 110] ranging from statistical physics to

machine learning [43, 54]. One notable example in this family is the re-

cently proposed use of Ihara ζ-functions for network volume measurements

[124, 125]. Remarkably, equivalence of some structure-based distance and

the edit distance has been proven [29].

The family of spectral measures, which is investigated in this paper, is also

part of the group of structure-based distances. As the name suggests, their

definition is based on (functions of) the spectrum of one of the possible

connectivity matrices of the network, i.e. its set of eigenvalues. Although

the idea of using spectral measures for network comparison is quite recent,

the theory of graph spectra started in the early 50’s and since then many of

its aspects have been deeply studied [32, 146], including a first classification

of networks [14]. The spectral theory has been also recently applied to

biological networks [13, 15], where the properties of being scale-free (the

degree distribution following a power law) and small-world (most nodes

are not neighbors of one another, but most nodes can be reached from

every other by a small number of hops or steps) are particularly evident.

The idea of using spectral measures for network comparison is instead

only recent and it relies on similarity measures that are functions of the

network eigenvalues. However, it is important to note that, because of the

existence of isospectral networks, all these measures are indeed distances

between classes of isospectral graphs: they are relatively rare (especially in

real networks) and qualitatively similar [59]. Estimates (also asymptotic)

of the eigenvalues distribution are available for complex networks [121].
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3.2 Spectral Similarity Measures

As mentioned in Section 2.1 we propose a short review of a set of similarity

measures based on the graph spectra analysis.

The first distance we take into consideration was originally introduced in

[10, 68] as a measure of a graph’s spectrum. Pincombe in [114] was the first

to use D1 as an intra-graph distance to analyze changes in time-series of

graphs. Here we consider G andH two graphs both having N nodes and let

λ0 = 0 ≤ λ1 ≤ · · · ≤ λN−1, µ = 0 ≤ µ1,≤ · · · ≤ µN−1 be the respective Lapla-

cian spectra. Once we set the parameter k ≤ N , the distance is defined

as:

d1(G,H) =


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(3.1)

Being the D1 non-negative, symmetric and separated we can indeed say

that it is a metric.

A more recent spectral distance was presented by Ipsen and Mikhailov

in [67] with the aim of reconstructing a graph starting from its spectrum

making use of a stochastic process of mutations and selection. The idea

behind D2 is to consider the N -nodes network as the composition of an N

physical elements structure bonded by springs. In this model every element
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Figure 3.1: Representation of the physical network model of D2 distance.

has the same mass, the springs have identical elastic properties and the

pattern of connections is set by the adjacency matrix of the considered

network see Fig. 3.1. The described dynamical system is described by the

set of N differential equations

ẍi +
N
∑

j=1

Aij(xi − xj) = 0 for i = 0, · · · , N − 1 .

The vibrational frequencies ωi are given by the eigenvalues of the Laplacian

matrix of the network: λi = ω2
i , with λ0 = ω0 = 0. For this reason in

[32], the Laplacian spectrum is called vibrational spectrum. The spectral

density for a graph as the sum of Lorentz distributions is defined as

ρ(ω) = K
N−1
∑

i=1

γ

(ω − ωk)2 + γ2

where γ is the common width, the parameter which specifies the half-width

at half-maximum (HWHM), equal to half the interquartile range. K is the

normalization constant solution of

∫ ∞

0

ρ(ω)dω = 1 .
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Then the spectral distance ǫ between two graphs G and H with densities

ρG(ω) and ρH(ω) can then be defined as

ǫ(G,H) =

√

∫ ∞

0

[ρG(ω)− ρH(ω)]
2dω . (3.2)

Note that the two above integrals can be explicitly computed through the

relation

∫

1

1 + x2
dx = arctan(x).

A simpler measure D3 was introduced in [157] for graph matching, using

the graph edit distance as the reference baseline. The authors compute

the spectrum associated to the classical adjacency matrix, laplacian ma-

trix, signless Laplacian matrix |L| = D+A, and normalized Laplacian (L)
matrix. They also introduce two more functions: the path length distribu-

tion and the heat kernel ht. The heat kernel is related to the Laplacian by

the equation
∂ht

∂t
= −Lht ,

so that

ht(u, v) =
N−1
∑

i=0

e−λitφi(u)φi(v) ,

where λi are the Laplacian eigenvalues and φi the corresponding eigen-

vectors. For t → 0, ht → I − Lt, while when t → ∞ then ht →
e−λN−1tφN−1

TφN−1. By varying t different representations can be obtained,

from the local (t → 0) to the global (t → ∞) structure of the network.

Moreover, if Dk(u, v) is the number of paths of length k between nodes u

and v, the following identity holds:

ht(u, v) = e−t
N2−1
∑

i=0

Dk(u, v)
tk

k!
,

which allows the explicit computation of the path length distribution:

Dk(u, v) =
N−1
∑

i=0

(1− λi)
kφi(u)φi(v) .
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The proposed distance is just the Euclidean distance between the vectors

of (ordered) eigenvalues (for a given matrix M) for the two networks being

compared:

dM(G,H) =

√

√

√

√

N−1
∑

i=0

(

λ
(G,M)
i − λ

(H,M)
i

)2

, (3.3)

where λ(T,M) are the eigenvalues of the graph T w.r.t. the matrix M , where

M is either a connectivity matrix, or the heat kernel matrix or the path

length matrix. As a final observation, the authors claim that the heat

kernel matrix has the highest correlation with the edit distance, while the

adjacency matrix has the lowest.

A similar formula D4 is proposed in [33] as the squared Euclidean (L2)

between the vectors of the Laplacian matrix:

d(G,H) =
N−1
∑

i=0

(

λ
(G,L)
i − λ

(H,L)
i

)2

. (3.4)

The next and last two measures are based on the concept of spectral dis-

tribution.

The distance D5 is introduced in [48], aiming at comparing Internet net-

works topologies. Let fλ be the (normalized Laplacian) eigenvalued distri-

bution, and µ(λ) a weighting function and define a generic distance between

graphs G and H as follows

dµ,p(G,H) =

∫

λ

µ(λ) (fλ,G(λ)− fλ,H(λ))
p dλ .

The weighting function is then defined as µ(λ) = (1−λ)4, an approximation

of the graph irregularity as defined in [32], while the usual Euclidean metric

is chosen, so that p = 2: the exact formula thus reads

d(G,H) =

∫

λ

(1− λ)4 (fλ,G(λ)− fλ,H(λ))
2 dλ . (3.5)
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Calculating the eigenvalues of a large (even sparse) matrix is computa-

tionally expensive; an approximated version is also proposed, based on

estimation of the distribution f of eigenvalues by means of pivoting and

Sylvester’s Law of Inertia, used to compute the number of eigenvalues that

fall in a given interval. To estimate the distribution K equally spaced bins

in the range [0, 2] are used, so that a weighted spectral distribution measure

for a graph G can be defined for an integer n > 0 as follows:

ωn(G) =
∑

k∈K
(1− k)nf(λ = k) .

The generic formula can be now specialized to:

dn(G,H) =
∑

k∈K
(1− k)n(fG(λ = k)− fH(λ = k))2 , (3.6)

a family of metrics parametrized by the integer N . The last spectral mea-

sure D6 in this review was presented in [12] and it employs two different di-

vergence measures, Kullback-Leibler and Jensen-Shannon. The Kullback-

Leibler divergence measure is defined on two probability distributions p1,

p2 of a discrete random variable X as

KL(p1, p2) =
∑

x∈X
p1(x) log

p1(x)

p2(x)
.

The Kullback-Leibler divergence measure is not a metric, because is not

symmetric and it does not satisfy the triangle inequality. To overcome this

problem, the author consider the Jensen-Shannon measure, which in some

sense is the symmetrization of KL:

JS(p1, p2) =
1

2
KL

(

p1,
p1 + p2

2

)

+
1

2
KL

(

p2,
p1 + p2

2

)

.

With this definition, the square root of JS is a metric. Thus, if f is the

(normalized Laplacian) spectral probability distribution, a distance be-

tween two networks can be defined as

d(G,H) =
√

JS(fG, fH) . (3.7)
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3.2.1 Benchmarking Experiments

Here we describe the use of the distances summarized in Tab. 3.1 for the

comparison of network topologies. To such aim, we constructed three syn-

thetic benchmark datasets, detailed hereafter. All simulations have been

performed within the R statistical environment [118]. Throughout all simu-

lations, we kept, for each distance, the parameter values as in the reference

paper wherever possible, e.g., γ = 0.08 for the scale of the Lorentz dis-

tribution in D2; the heat diffusion kernel in D3; the time t = 3.5 for the

kernel in distance D3. For D1 we choose to use the ⌊N2 ⌋ largest eigenvalues.

3.2.2 Data Description

The simulated topologies are generated within the R statistical environ-

ment [118] by means of the simulator provided by the package netsim

[41, 42], producing networks that mimic the principal characteristics of

transcriptional regulatory networks. The simulator takes into account the

scale-free distribution of the connectivity and constructs networks whose

clustering coefficient is independent of the number of nodes in the network.

All random graphs are generated by keeping the default values of netsim

for the structural parameters.

In the first experiment we consider a random network A on N vertices

and we compare it with the full connected network with the same num-

ber of nodes F , the complementary network A and a matrix Ap obtained

from A by modifying (inserting/deleting) about the p% of the nodes. For

smoothing purposes, the process is repeated b times to obtain the first

benchmarking dataset B1(b,N, p). An instance of this benchmark dataset

is shown in Fig. 3.2. In Tab. 3.2 we show the average on b = 50 instances

of the number of nodes of the starting matrix A and the perturbed matrix

A5. Because of the small number of links in the original matrix, the 5%
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Table 3.1: Spectral graph distances

Distance Formula Equation Ref.
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(3.1) [114]

D2 ǫ(G,H) =

√

∫

∞

0

[ρG(ω)− ρH(ω)]
2dω (3.2) [67]

D3 dM(G,H) =

√

√

√

√

N−1
∑

i=0

(

λ
(G,M)
i − λ

(H,M)
i

)2

(3.3) [157]

D4 d(G,H) =
N−1
∑

i=0

(

λ
(G,L)
i − λ

(H,L)
i

)2

(3.4) [33]

D5e d(G,H) =

∫

λ

(1− λ)4 (fλ,G(λ)− fλ,H(λ))
2 dλ (3.5) [48]

D5a dn(G,H) =
∑

k∈K

(1− k)n(fG(λ = k)− fH(λ = k))2 (3.6) [48]

D6 d(G,H) =
√

JS(fG, fH) (3.7) [12]
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A A5 A F

Figure 3.2: Benchmark Dataset B1(b, 25, 5): the original graph A, the perturbed graph

A5, the complemental graph A and the fully connected graph F .

perturbation mostly reflects in links insertion. On average, the density of

the original graph A can be expressed by the relation l ≃ 1.7N − 5, where

l is the number of links and N the number of vertices.

In the second experiment we simulate a time-series of T networks on N

nodes starting from a randomly generated graph S1, where each successive

element Si of the series is generated from its ancestor Si−1 by randomly

modifying p% of the links. Again b = 50 instances of the series are created

and collected into the second benchmarking dataset B2(b, T,N, p). With

this strategy, the number of existing links is increasing with the series

index, being the original adjacency matrix almost sparse. The starting

Table 3.2: Number of links in the original matrix A, in the fully connected matrix F

(maximum number of links for the given dimension) and in the perturbed matrix A5,

expressed as mean ± standard deviation on 50 replicates.

N F A A5

10 45 13.4±2.0 13.1±2.3

20 190 29.0±3.6 36.6±5.2

50 1225 79.3±7.4 131.8±4.2

100 4950 164.5±13.6 388.2±12.1
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S1 S10 S20

S1 S10 S20

Figure 3.3: Benchmark Datasets B2(b, 20, 25, 5) (upper row) and B3(b, 20, 25, 5, 5) (lower

row): the original graph S1 (first element of the series), the tenth element S10 of the series

and the final graph S20.

matrix S1 has on average 38.1±5.2 nodes, while the last element of the

series S20 has 132.3±8.2.

The third experiment is based on a benchmark dataset B3(b, T,N, nd, na).

Starting from B2(b, T,N, p), different perturbations are applied: each suc-

cessive element Si of the series is generated from its ancestor Si−1 by ran-

domly deleting nd links and adding na links. By construction, the number

of existing links for all elements of the series is constant. Three elements

of the benchmarking datasets B2 and B3 are shown in Fig. 3.3.
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Table 3.3: Results of the experiments on the first benchmarking dataset. For each measure

D1-D6 and number of network vertices N , we report the values of the distances between

the network A and the networks A5, A and F in terms of the minimum (m), mean (µ) ±
standard deviation and maximum (M) on the 50 replicates. Values of D5 are in 10−3.

N D A5 A F

m µ ± σ M m µ ± σ M m µ ± σ M

10 1 0.025 0.108 ± 0.053 0.197 0.085 0.982 ± 0.383 1.564 0.424 1.324 ± 0.350 1.811

10 2 0.215 0.319 ± 0.052 0.403 0.47 0.857 ± 0.174 1.066 1.434 1.563 ± 0.04 1.635

10 3 0 0.067 ± 0.074 0.294 0.006 0.415 ± 0.39 1.83 0.028 0.472 ± 0.402 1.925

10 4 0 2.182 ± 1.01 4.533 14.33 151.8 ± 71.5 328.1 336 470.4 ± 61.7 598

10 5 0 0.941 ± 0.603 1.844 0.092 3.635 ± 2.340 8.907 0.518 4.112 ± 2.306 9.491

10 6 0.102 0.169 ± 0.039 0.259 0.192 0.386 ± 0.084 0.507 0.431 0.507 ± 0.04 0.552

20 1 0.037 0.194 ± 0.069 0.342 2.117 2.768 ± 0.379 3.71 2.455 3.038 ± 0.372 4.006

20 2 0.202 0.284 ± 0.049 0.381 1.025 1.091 ± 0.034 1.165 1.538 1.55 ± 0.008 1.568

20 3 0.044 0.154 ± 0.132 0.577 0.588 1.04 ± 0.333 2.05 0.643 1.103 ± 0.336 2.123

20 4 1.812 15.9± 6.5 28.5 2584 3658 ± 420 4761 4898 5531 ± 243 6146

20 5 0.358 0.836 ± 0.503 2.459 2.416 3.623 ± 6.441 1.041 2.439 3.654 ± 6.45 1.036

20 6 0.135 0.207 ± 0.04 0.323 0.581 0.772 ± 0.879 0.077 0.652 0.767 ± 0.83 0.05

50 1 0.389 0.504 ± 0.072 0.606 6.676 8.057 ± 0.784 9.064 6.924 8.288 ± 0.771 9.253

50 2 0.275 0.344 ± 0.042 0.437 1.152 1.195 ± 0.025 1.228 1.533 1.54 ± 0.005 1.549

50 3 0.668 1.186 ± 0.313 1.77 2.078 3.356 ± 0.647 4.428 2.138 3.423 ± 0.649 4.497

50 4 138 237 ± 48 353 83850 92670 ± 3078 97710 102700 107300 ± 1613 110000

50 5 0.888 1.875 ± 0.541 2.765 2.379 3.993 ± 0.847 5.42 2.379 3.992 ± 0.849 5.42

50 6 0.435 0.559 ± 0.0751 0.711 1.372 1.481 ± 0.061 1.597 1.183 1.277 ± 0.063 1.39

100 1 0.804 0.977 ± 0.076 1.086 13.55 16.07 ± 1.032 17.6 13.77 16.28 ± 1.027 17.8

100 2 0.451 0.506 ± 0.025 0.544 1.215 1.264 ± 0.019 1.293 1.524 1.533 ± 0.004 1.543

100 3 2.116 3.606 ± 0.665 4.64 4.506 6.723 ± 0.992 8.166 4.566 6.79 ± 0.995 8.238

100 4 1784 2161 ± 136 240 842900 861200 ± 9575 880600 915800 925100 ± 4880 935900

100 5 1.645 2.787 ± 0.525 3.589 2.602 3.941 ± 0.630 4.824 2.602 3.941 ± 0.631 4.824

100 6 0.933 1.102 ± 0.074 1.204 2.07 2.229 ± 0.088 2.397 1.694 1.839 ± 0.078 1.997

3.2.3 Results

In Exp. 1 the six distances D1-D6 were applied on 4 instances of B1(50, N, 5)

for N = 10, 20, 25, 100 and distances between the original graph A and the

three companion matrices F , A and Ap were computed. Results are col-

lected in Tab. 3.3.

Distance D4 spans a considerably wider range than other measures, due to

the absence of the square root in the comparison of the Laplacian spectra,

while D5 is restricted into a very small interval. The same distance D4

also shows a high dependency on the dimension of the considered matrices

and the number of the links (see Tab. 3.3).

The best stability in terms of the relative standard deviation σ/µ is reached

by D2 and D4. Furthermore, D2, differently from all other measures, is

almost independent of the number of vertices. Finally, D6 is the only
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Figure 3.4: Plots of the distances of consecutive elements of the series for the dataset

B2(50, 25, 5). Solid line: mean over the b = 50 replicates; dashed lines: minimum and

maximum over the b = 50 replicates.

measure that, in the cases with N > 10, gives a lower distance for F than

for A.

The summary plots in Fig. 3.4 display results of Exp. 2 on the benchmark

dataset B2(20, 20, 25, 5). Distances between consecutive elements (Si, Si+1)

of the series (defined Step i) were computed: results are averaged on the

50 replicates. For all D1-D6, distance decreases for increasing steps, al-

though on different ranges (as already pointed out for Experiment 1) and

with different widths for the confidence intervals. D3 and D5 decrease

more quickly for initial steps, so they are less useful when comparing large

networks.

To better highlight similarities and differences among the distances regard-
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less of their ranges of values, we also computed their mutual correlations

and plotted the mutual scatter plots in Fig. 3.5. All correlation values

are quite high, ranging from 0.8225 to 0.9970: D3 and D5 are mutually

strongly correlated, but they tend to separate from the other distances,

as evidenced both from the global correlation values and the scatter plot

profiles distancing from the panel diagonals.

The Experiment 3 was performed on the benchmark dataset B3(50, 25, 5, 5),

and the results are reported in two figures matching those of Exp. 2. Since

the difference between consecutive pairs of elements of the series is quite

D1

0.9965 D2

0.8996 0.8762 D3

0.9866 0.991 0.8225 D4

0.9059 0.8859 0.997 0.8304 D5

0.9734 0.9596 0.9632 0.9317 0.9614 D6

Figure 3.5: Mutual scatterplots (upper triangle) and correlation values (lower triangle)

for the Exp. 2.
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similar throughout all the steps, as expected all distances show a nearly

constant trend as shown in Fig. 3.6.

The oscillations around the mean value are nevertheless strongly varying

among different measures, as evidenced by Fig. 3.7. In particular, distance

D3 is anticorrelated to all distances but D5; furthermore only in 4 cases

out of 15 we obtain a correlation value higher than 0.7, with again D1, D2,

D4 and D6 forming a group of more similar behaviour.

Possible hierarchy of the six distances was explored by clustering. Two

dendrograms are built for Exp. 2 and Exp. 3 by using the hclust package

in R and shown in Fig. 3.8. The clusters have average linkage and the

correlation distance cd(·, ·) = 1 − Corr(·, ·) is used as the dissimilarity

measure. Although there is an appreciable coherence among measures on

macroscopic trends, when downscaling to microscopic trends correlations

get much looser. Distances D1, D2, D4, D6 seem to group together, while

D3 has a more erratic behaviour. Finally, a wide difference in the range

of values occurs in the cluster heights between the two experiments: the

homogeneous macroscopic situation of Exp. 2 has a narrower height span

than the microscopic case in Exp. 3.
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Figure 3.6: Plots of the distances of consecutive elements of the series for the dataset

B3(50, 25, 5, 5). Solid line: mean over the b = 50 replicates; dashed lines: minimum and

maximum over the b = 50 replicates.
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D1

0.7093 D2

−0.4748 −0.1526 D3

0.9563 0.771 −0.4414 D4

0.0788 0.3979 0.6844 0.0552 D5

0.43 0.716 −0.0348 0.5123 0.4997 D6

Figure 3.7: Mutual scatterplots (upper triangle) and correlation values (lower triangle)

for the Exp. 3.
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for the two Experiments 2 and 3.
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Chapter 4

HIM, Hamming - Ipsen-Mikhailov

Distance

In the previous chapter we outlined the main families of algorithms for

the network comparison, their flows and advantages. We focused on two

of the most common families: edit-like and spectral distances. In order

to combine the strength of the two approaches and try to correct their

limitations we propose here a product metric called HIM (Hamming Ipsen-

Mikhailov) with both global and local characteristics.

4.1 Definition

The HIM distance [75] is a metric for network comparison combining an

edit distance (Hamming [143, 44]) and a spectral one (Ipsen-Mikhailov

[67]). As discussed in [74], edit distances are local, that is they focus

only on the portions of the network interested by the differences in the

presence/absence of matching links. Spectral distances evaluate instead the

global structure of the compared topologies, but they cannot distinguish

isomorphic or isospectral graphs, which can correspond to quite different

conditions within the biological context. Their combination into the HIM

distance represents an effective solution to the quantitative evaluation of
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network differences.

Let N1 and N2 be two simple networks on N nodes, described by the

corresponding adjacency matrices A1 and A2, with a
(1)
ij , a

(2)
ij ∈ F , where

F = F2 = {0, 1} for unweighted graphs and F = [0, 1] for weighted net-

works. Denote then by IN the identity N × N matrix IN =

(

1 0 ··· 0
0 1 ··· 0···
0 0 ··· 1

)

,

by 1N the unitary N × N matrix with all entries equal to one and by N

the null N × N matrix with all entries equal to zero. Finally, denote by

EN the empty network with N nodes and no links (with adjacency matrix

N) and by FN the undirected full network with N nodes and all possible

N(N − 1) links (whose adjacency matrix is 1N − IN).

The definition of the Hamming distance is the following:

Hamming(N1,N2) =
∑

1≤i 6=j≤N

|A(1)
ij − A

(2)
ij | .

To guarantee independence from the network dimension (number of nodes),

we normalize the above function by the factor η = Hamming(EN ,FN) =

N(N − 1):

H(N1,N2) =
1

N(N − 1)

∑

1≤i 6=j≤N

|A(1)
ij − A

(2)
ij | . (4.1)

When N1 and N2 are unweighted networks, H(N1,N2) is just the fraction

of different matching links (over the total number N(N − 1) of possible

links) between the two graphs. In all cases, H(N1,N2) ∈ [0, 1], where the

lower bound 0 is attained only for identical networks A1 = A2 and the

upper bound 1 is reached whenever the two networks are complementary

A1 + A2 = 1N − IN =

(

0 1 ··· 1
1 0 ··· 1···
1 1 ··· 0

)

.

Among spectral distances, we consider the Ipsen-Mikhailov distance IM

which has been proven to be the most robust in a wide range of situations

[74]. We recall here the main characteristic of the IM distance introduced

in [67] as a tool for network reconstruction from its Laplacian spectrum,
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the definition of the Ipsen-Mikhailov metric follows the dynamical interpre-

tation of a N–nodes network as a N–atoms molecule connected by identical

elastic strings, where the pattern of connections is defined by the adjacency

matrix of the corresponding network. The dynamical system is described

by the set of N differential equations

ẍi +
N
∑

j=1

Aij(xi − xj) = 0 for i = 0, · · · , N − 1 . (4.2)

We recall that the Laplacian matrix L of an undirected network is defined

as the difference between the degree D and the adjacency A matrices L =

D − A, where D is the diagonal matrix with vertex degrees as entries. L

is positive semidefinite and singular [32, 9, 130, 140], so its eigenvalues are

0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1. The vibrational frequencies ωi for the network

model in Eq. 4.2 are given by the eigenvalues of the Laplacian matrix of

the network: λi = ω2
i , with λ0 = ω0 = 0. The spectral density for a graph

as the sum of Lorentz distributions is defined as

ρ(ω, γ) = K

N−1
∑

i=1

γ

(ω − ωi)2 + γ2
,

where γ is the common width and K is the normalization constant defined

as

K =
1

γ

N−1
∑

i=1

∫ ∞

0

dω

(ω − ωi)2 + γ2

,

so that

∫ ∞

0

ρ(ω, γ)dω = 1. The scale parameter γ specifies the half-width

at half-maximum, which is equal to half the interquartile range. Then

the spectral distance ǫγ between two graphs G and H on N nodes with

densities ρG(ω, γ) and ρH(ω, γ) can then be defined as

ǫγ(G,H) =

√

∫ ∞

0

[ρG(ω, γ)− ρH(ω, γ)]
2 dω . (4.3)

61



4.1. DEFINITION CHAPTER 4. HIM DISTANCE
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Figure 4.1: An example of HIM distance. (a) Network A (top) and Network B (bottom);

(b) Representation of the HIM distance in the Ipsen-Mikhailov and Hamming distance

space between networks A versus B, E and F, where F is the fully connected network and

E is the empty one.

The highest value of ǫγ is reached, for each N , when evaluating the distance

between EN and FN . Defining γ as the (unique) solution of

ǫγ(EN ,FN) = 1 ,

we can now define the normalized Ipsen-Mikahilov distance as

IM(G,H) = ǫγ(G,H) =

√

∫ ∞

0

[ρG(ω, γ)− ρH(ω, γ)]
2 dω ,

so that IM(G,H) ∈ [0, 1] with upper bound attained only for (G,H) =

(EN ,FN). Finally, the HIM distance is defined as the product metric of

the normalized Hamming distance H and the normalized Ipsen-Mikhailov
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IM distance, normalized by the factor
√
2 to set its upper bound to 1:

HIM(N1, N2) =
1√
2

√

H(N1, N2)2 + IM(N1, N2)2

We can represent the HIM distance in the [0, 1] × [0, 1] Hamming/Ipsen-

Mikhailov space, where a point P (x, y) represents the distance between

two networks N1 and N2 whose coordinates are x = H(N1, N2) and y =

IM(N1, N2) and the norm of P is
√
2 times the HIM distanceHIM(N1, N2).

The same holds for weighted networks, provided that the weights range

in [0, 1]. In Fig. 4.1 we provide an example of this representation of

the HIM distance between networks of four nodes. Roughly splitting the

Hamming/Ipsen-Mikhailov space into four main zones I,II,III,IV as in Fig-

ure 4.1, we can say that two networks whose distances correspond to a

point in zone I are quite close both in terms of matching links and of struc-

ture, while those falling in the zone III are very different with respect to

both characteristics. Networks corresponding to a point in zone II have

many common links, but their structure is rather different, while a point

in zone IV indicates two networks with few common links, but with similar

structure. Full mathematical details about the HIM distance and its two

components H and IM are available in [75].

4.2 A Biological Example

In [82], the authors used the Keller algorithm to infer the gene regulatory

networks of Drosophila melanogaster from a time series of gene expression

data measured during its full life cycle. They selected 66 time points during

the developmental cycle, spanning across four different stages (Embryonic

time points 1 − 30, Larval t.p. 31 − 40, Pupal t.p. 41 − 58, Adult t.p.

59 − 66), following the dynamics of 588 gene ontological groups and then

constructing a time series of inferred networks Ni . Hereafter we evaluate
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the structural differences between Ni and the initial network N1, as mea-

sured by the glocal distance: the resulting plot is displayed in Figure 4.2.

The largest variations, both between consecutive terms and with respect

to the initial network N1 , occur in the embrional stage (E). In particular,

it is interesting to note that the dynamics of the networks move Ni away

from N1 until time points 23, then the following terms start getting closer

again to N1 in terms of glocal distance: such behaviour was detected also

in the original paper, but only qualitatively, while the introduced metrics

can provide a quantitative assessment of the occurring differences. Finally,

it can be appreciated the different range of the two distances: while Ham-

ming distance ranges between 0 and 0.0223, the Ipsen-Mikhailov distance

has 0.0851 as its maximum, indicating an higher variability of the networks

in terms of structure rather than matching links.

Figure 4.2: (a) Evolution of distances of the D. melanogaster network time series in

the Hamming/Ipsen-Mikhailov space and (b) evolution of glocal distances of the D.

melanogaster network along 66 time points in the 4 stages Embryonic (E), Larval (L),

Pupal (P) and Adult (A)
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4.3 Module Preservation.

In this Section we test the similarity of the behavior of the HIM distance

with some other employed measures already known in the literature. In

many biological applications it is interesting to study the variation of mod-

ules structure across different gene networks. In particular to identify the

effects of a clinical condition on a certain pathway one could determine if

its connectivity structure is still preserved. As Langfelder and coworkers

point out in [87] the fact that a module is non-preserved can either prove

a real biological difference between same tissues under the same condi-

tion (e.g., sex specific modules) or being the product of uninteresting data

outliers. An immediate approach to evaluate module preservation is to

consider just the overlap in the module membership. Of course this proce-

dure overlooks the point that the nature of connection pattern within the

modules are of great functional importance. Thus, cross-tabulation based

methods often miss structural factors important to determine whether a

module is in fact preserved or not. In case of non preserved modules apply-

ing cross-tabular approaches one can just state that the set of genes in the

reference module can not be found in any of the identified test set modules.

It is impossible to make any assertion about the presence of the module in

the test set irrespectively to the module detection parameter setting and

procedure. Module preservation analysis have important applications, e.g.

as shown in [87] the wiring of apoptosis genes in a human cortical net-

work differs from that in chimpanzees. They propose an approach based

on several module preservation statistics that do not need a true module

assignment in the test set. The statistics are identified and characterized

by the type of inherent network representation. Some preservation statis-

tics apply to generic networks uniquely defined by an adjacency matrix,

some others are defined just for correlation networks in which each value
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is the pairwise correlation value between numerical variables. They show

how the use of aggregation of different statistics allows the construction

of summary module preservation measures. The statistics we will mainly

consider here are the Zsummary and medianRanksummary described in detail

in Appendix A.1 and defined as

Zsummary =
Zconnectivity + Zdensity

2
(4.4)

medianRanksummary =
medianRankdensity +medianRankconnectivity

2
(4.5)

In what follows we compare the statistic methods presented in [87] with

the HIM distance by testing them on four gene co-expression network ap-

plications already presented in [149, 52, 122, 80, 112]:

• Preservation of cholesterol biosynthesis pathway in mouse tissues

• Comparison of human and chimpanzee brain networks

• Preservation of selected KEGG pathways between human and chim-

panzee brain networks

• Sex differences in mouse liver networks.

4.3.1 Data

Multi-tissues Mice Data

Liver gene expression data from 135 female mice were used for this analysis.

The F2 intercross used, the animal husbandry and physiological trait mea-

surement details are described in detail in [149, 52]. Genotyping was con-

ducted by ParAllele (Affymetrix, Santa Clara, California, United States)

using the molecular inversion probe (MIB) multiplex and involved over

66



CHAPTER 4. HIM DISTANCE 4.3. MODULE PRESERVATION

Table 4.1: Statistics Description Summary

Name of Eigen. dec. of SVD of Depends Uses Comp. Ave. |cor| with
statistic Conn. Matrix Expr. Data on N Perm. Test Speed other stats

Ipsen Yes No Yes No ∝ N 0.534

Hamm No No No No Fast 0.451

HIM Yes No Yes No ∝ N 0.576

ZsummQ No Yes Yes Yes Slow 0.533

Zsumm No Yes Yes Yes Slow 0.563

Zdens No Yes Yes Yes Slow 0.617

Zconn No Yes Yes Yes Slow 0.550

OsummQ No Yes No No Fast 0.501

Osumm No Yes No No Fast 0.572

Odens No Yes No No Fast 0.538

Oconn No Yes No No Fast 0.481

1,300 SNPs, genomic DNA was isolated from kidney [52]. RNA prepa-

ration and array hybridizations were performed at Rosetta Inpharmatics.

The platform for microarray analysis is the custom ink-jet microarrays (Ag-

ilent Technologies [Palo Alto, California, United States], [122]). It contains

2,186 control probes and 23,574 noncontrol oligonucleotides. RNA was ex-

tracted from livers, reverse transcribed and labeled with either Cy3 or Cy5

fluorochromes. Purified Cy3 or Cy5 complementary RNA was hybridized

to at least two microarray slides and scanned. Arrays were quantified on

the basis of spot intensity relative to background, adjusted for experimen-

tal variation between arrays using average intensity over multiple channels,

and fit to an error model to determine significance (type I error). Gene

expression is reported as the ratio of the mean log10 intensity (mlratio)

relative to the pool derived from 150 mice randomly selected from the F2

population.

Several data-filtering steps were taken in order to minimize noise in the
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gene expression dataset for the experiments about the module detection

and preservation. First, preliminary evidence showed major differences in

gene expression levels between sexes among the F2 mice used, and there-

fore only female mice were used for the analysis. Only those mice with

complete phenotype, genotype, and array data were used, this gave a final

experimental sample of 135 female. To reduce the computational burden

and to possibly enhance the signal in our data, we used only the 8,000

most-varying female liver genes in our preliminary network construction.

For module detection, we limited our analysis to the 3,600 most-connected

genes because our module construction method and visualization tools can-

not handle larger datasets at this point. By definition, module genes are

highly connected with the genes of their module (i.e., module genes tend to

have relatively high connectivity). Thus, for the purpose of module detec-

tion, restricting the analysis to the most-connected genes should not lead

to major information loss. Since the network nodes in our analysis corre-

spond to genes as opposed to probesets, we eliminated multiple probes with

similar expression patterns for the same gene. Specifically, the 3,600 genes

were examined, and where appropriate, gene isoforms and genes containing

duplicate probes were excluded by using only those with the highest ex-

pression among the redundant transcripts. This final filtering step yielded

a count of 3,421 genes for the experimental network construction [52].

Human and Chimpanzee Brains Data

The dataset used for network construction consisted of 36 Affymetrix (Santa

Clara, CA) HGU95Av2 microarrays surveying gene expression with 12,625

probe sets in three adult humans and three adult chimpanzees across six

matched brain regions: Brocas area, anterior cingulate cortex, primary vi-

sual cortex, prefrontal cortex, caudate nucleus, and cerebellar vermis [80].

After eliminating probes with sequence differences between the species, all
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arrays were scaled to the same average intensity, and quantile normaliza-

tion was performed. Four thousand probe sets were selected for network

analysis based on high variance in human brain relative to a nonneural

tissue (lung). From these, 2,241 probe sets with the highest connectivity

were clustered on the basis of TOM (see Section 2.3.1) to identify modules

of coexpressed genes.

Functional Annotation of Hub Genes and Modules. GenMAPP 2.0

http://www.genmapp.org was used to search among hub genes and mod-

ules for enrichment of functional categories of genes defined by the Gene

Ontology Consortium [7] http://www.geneontology.org. The signifi-

cance of each enriched category was also assessed on the basis of differential

connectivity between humans and chimpanzees [112].

4.3.2 Results

First we considered the data relative to the male and female liver: in

particular we want to evaluate the preservation of gene modules from the

female tissue versus the male one [52]. In figure 4.4 we show the plot of

the 12 modules individuated by WGCNA represented in three Module-

Size vs. Preservation-Measure spaces, medianRank, Zsummary and HIM

measure respectively. Here we focus on the parallelism and correspondence

between the Network-Statistics (a and b) and Spectral based measures (c).

We can notice a high overall agreement for the majority of the modules;

in particular it is interesting to highlight how the light-yellow and salmon

modules are clearly the least preserved for the HIM measure confirming

the results obtained with the Network-Statistics based measures, while the

cyan module results borderline for all the measures. High agreement is

also reached for the group of the five biggest modules brown, black, green,

blue and red especially between Zsummary and HIM. There is a general low

agreement for the remaining four modules.
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In figure 4.5 we present two boxplot relative to the data about the choles-

terol pathway data in eight different mouse tissues and in particular we

show how much the pathway is preserved using as reference the tissue indi-

cated on the y axis and using as test the one on the x axis. In the top plot

are depicted all the mutual HIM distances computed between the TOM

networks, while in the bottom one are represented the results produced

with Zsummary method. As expected the first one results symmetric and

with diagonal equal to one because of the properties of the distance. In

general the results are different between the two methods and it is interest-

ing to compare the values with the data representation of figure 4.3. HIM

distance better underlines the similarity between the samples from same

tissue across the two genders, while apart for the Liver tissue with female

reference and male test the Zsummary never top ranks the comparison be-

tween the same tissue. The Liver tissue shows a particular behaviour also

considering the HIM preservation measure that hightlights how the male

and female liver tissues are structurally similar just to eachother while they

are different from all the others. Also the muscle tissue shows a similar

but less evident characteristic while brain and adipose tissues show a high

structural similarity also across the two sexes.

Finally in figure 4.6 we present a splom graph of the correlation values be-

tween the results of each of the considered measures. Here we considered

Zsummary ans medianranksummary both used to assess the level of preser-

vation of the modules (ZsummaryP and MRsummaryP ) and also used

to measure the quality of the modules (ZsummaryQ and MRsummaryQ

A.2)

In conclusion the HIM distance not only shows a good agreement with more

classical measures, but it also better points out some subtle differences

between samples that other tested measures are not able to capture.
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Table 4.2: Mean and Standard Error of Spearman correlations across all the datasets

Ipsen Hamming Mod.Ipsen Mean

Ipsen 1±0 0.422±0.103 0.981±0.008 0.49

Hamming 0.422±0.103 1±0 0.422±0.127 0.42

Mod.Ipsen 0.981±0.008 0.422±0.127 1±0 0.53

ZsummaryQuality 0.504±0.105 0.456±0.091 0.545±0.101 0.50

ZsummaryPreser. 0.397±0.11 0.531±0.114 0.441±0.123 0.53

Zdensity 0.407±0.096 0.602±0.127 0.452±0.087 0.57

Zconnectivity 0.406±0.123 0.491±0.107 0.466±0.147 0.51

MRsummaryQuality 0.485±0.112 0.416±0.116 0.537±0.122 0.44

MRsummaryPreser. 0.46±0.101 0.293±0.087 0.499±0.104 0.53

MRdensity 0.449±0.112 0.273±0.093 0.484±0.109 0.50

MRconnectivity 0.393±0.094 0.249±0.087 0.426±0.105 0.46



72 CHAPTER 4. HIM DISTANCE

Figure 4.3: Network representation of the Cholesterol biosynthesis gene module

in the considered mouse tissues. The module is here represented as a weighted

signed correlation network where the nodes represent the genes from the GO category

Cholesterol Biosynthetic Process. Module preservation techniques applied here allow the

assessment of the similarity between these networks. Here we represent the connectivity

pattern between the cholesterol biosynthesis genes in 4 different tissues from male and

female mice. The thickness of the link represents the absolute value of correlation, while

the colors red and green show positive correlation or anticorrelation respectively. The

dimension of the nodes is proportional to their connectivity values, so the hubs of the

module are represented by larger circles. This kind of plot shows how across the tissues

there is a high resemblance between the module in male and female samples.
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Figure 4.4: Preservation Measures: a) Median Rank, b) Zsummary, c) HIM based (1-

HIM). 12 modules detected in female liver data in a Modul Size vs. Preservation plot.
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Figure 4.5: A) HIM Preservation of the cholesterol pathway between the tissues. Z

Summary Preservation of the cholesterol pathway between the tissues. B) On rows are

presented the reference tissues and on columns the test tissues

A)
HIM Preservation

Adip
os

e 
Fe

m
ale

Adip
os

e 
M

ale

Bra
in 

Fe
m

ale

Bra
in 

M
ale

Liv
er

 F
em

ale

Liv
er

 M
ale

M
us

cle
 F

em
ale

M
us

cle
 M

ale

Adipose Female

Adipose Male

Brain Female

Brain Male

Liver Female

Liver Male

Muscle Female

Muscle Male

1 0.96 0.99 0.97 0.78 0.76 0.93 0.89

0.96 1 0.96 0.95 0.79 0.77 0.89 0.86

0.99 0.96 1 0.98 0.79 0.76 0.93 0.9

0.97 0.95 0.98 1 0.79 0.77 0.94 0.9

0.78 0.79 0.79 0.79 1 0.97 0.76 0.73

0.76 0.77 0.76 0.77 0.97 1 0.74 0.71

0.93 0.89 0.93 0.94 0.76 0.74 1 0.96

0.89 0.86 0.9 0.9 0.73 0.71 0.96 1

B)

Z Summary Preservation

Adip
os

e 
Fe

m
ale

Adip
os

e 
M

ale

Bra
in 

Fe
m

ale

Bra
in 

M
ale

Liv
er

 F
em

ale

Liv
er

 M
ale

M
us

cle
 F

em
ale

M
us

cle
 M

ale

Adipose Female

Adipose Male

Brain Female

Brain Male

Liver Female

Liver Male

Muscle Female

Muscle Male

9.88 27.62 4.67 39.1 47.35 −1.04 −0.76

4.81 3.86 6.96 89.55 5.64 3.91 0.18

0.65 1.95 10.09 2.36 13.93 1.99 3.99

1.22 6.03 16.05 18.91 6.91 19.74 3.94

11.2 4.04 −8.21 4.53 20.1 −0.28 −0.46

15.96 23.51 2.02 3.02 16.08 0.11 4.82

5.23 1.82 1.11 2.64 15.99 17.74 11.25

7.34 5.67 5.53 2.15 28.6 51.84 10.34



Figure 4.6: Correlation between measures of female mouse liver module preser-

vation in male data. Correlation between the preservation measures of the 12 mod-

ules computed with the analized methods (Ipsen-Mikhailov (ǫ), Hamming (H), HIM

(φ), ZsummaryQuality, ZsummaryPreservation, Zdensity, Zconnectivity, medianRanksummaryQuality,

medianRanksummaryPreservation, medianRankdensity, medianRankconnectivity). Considering

the plot as a matrix, lower triangular elements are depicted a pairplot for each couple

of measures. Each circle represents one of the modules detected with WGCNA. On the

diagonal we present a barplot of the distribution of the measures for each method. The

upper triangular part of the plot reports the values for Spearman correlation.
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Chapter 5

Stability

The network inference algorithm uncertainty has been so far assessed only

in terms of performance, i.e. distance of the reconstructing network from

the ground truth, wherever available, while not much has been instead

investigated with respect to the stability of the methods. This can be of

particular interest when no gold standard is available for the given problem,

and thus there is no chance to evaluate the algorithm’s accuracy, leaving

the stability as the sole rule of thumb for judging the reliability of the

obtained network. Here we propose to tackle the issue by quantifying

inference variability with respect to data perturbation, and, in particular,

data resampling (see Section 2.5).

5.1 Stability indicators

We introduce now four stability indicators that, together with a subsam-

pling technique can be used to carry out the task of stability assessment

on an inference algorithm. The scheme of such analysis is presented in

Fig. 5.1.

1. Given a dataset D with s samples and p features, reconstruct (with

a chosen algorithm ALG) the network ND on the whole dataset D;
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denote the p nodes of ND by xD1 , . . . , x
D
p and its edges’ weight by aDhk,

for k, h = 1, . . . , p.

2. Choose two integers n, r with n < s and r ≤
(

s
n

)

, and build a set

D(n,r) = {D1, . . . Dr} where Di is a dataset built choosing n samples

from D.

3. Reconstruct, by using the same algorithm ALG, the corresponding

networks NDi
on the subsampled data.

4. Compute the following indicators:

• I1(n, r) = {HIM(ND, NDi
) : i = 1, . . . , r}

• I2(n, r) = {HIM(NDi
, NDj

) : i, j = 1, . . . r, i 6= j}
• I3(n, r) = {aDi

hk} for i = 1, . . . , r and k, h = 1, . . . , p

• I4(n, r) = {∂(xDi

h )} for i = 1, . . . , r and h = 1, . . . , p and ∂ the

degree function.

5. For each set of values Ii compute the mean, the range (defined as

the difference between maximum and minimum value) and the 95%

studentized bootstrap confidence intervals [37] as implemented in the

R package boot [30].

6. Comparative analysis of the statistics of the four indicators I1, . . . I4

will describe the level of confidence (stability) in the network ND, in

its links and in its nodes.

The first two indicators concern the stability of the entire network, mea-

suring the mutual distances of the networks inferred from the different

replicates and their distances to the network constructed on the whole

dataset. The other two indicators concern instead the stability (and thus

the reliability) of the single nodes and links, in terms of mutual variability
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NODES={x1
D,...,xp

D}

LINK WEIGHTS=

w11
D,...,w1p

D

wp1
D,...,wpp

D

whk
D

...

...

..
.

..
.

Figure 5.1: Scheme of a resampling framework applied on a dataset D made by p features

and s samples. In this example the number of folds is r so that each subsample training

set is made by n samples. r needs to be smaller than s choose n.

of their respective degree and weight. In particular, for all experiments on

both synthetic and biological datasets we used n = s − 1, r = 1 [leave-

one-out stability, LOO for short], and 20 different instances of k-fold cross

validation (discarding the test portion) for k = 2, 4, 10 (denoted by k2, k4

and k10 in what follows), and thus n = ⌊s(k−1)
k ⌋ and r = 20k.
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5.2 Reproducibility In Network Inference and Anal-

ysis

5.2.1 False Discovery Rate (FDR) effect on correlation networks

As a first experiment, we want to assess the different level of stability in

a correlation network inferred by a set of synthetic high-throughput sig-

nals when the inference (absolute value of Pearson correlation) is computed

with or without False Discovery Rate control (see for instance [72]). As the

correlation measure, we use the classical (absolute) Pearson correlation of

the WGCNA [61] and the novel correlation measure called Maximal Infor-

mation Coefficient (MIC), component of the Maximal Information-based

Nonparametric Exploration (MINE) statistics [120, 129, 106]. For a set of

values n < m and an adequate number of resampling r = min{20,
(

m
n

)

},
compute the indicators Ij(n, r) for j = 1, . . . , 4 for all the used algorithms.

We used the following pipeline to create the FDR-corrected correlation

networks.

1. Let be D a dataset with m samples described by q features, and let

C(h, k) = |cor(xh, xk)| where xj is the j-th feature of D across the m

samples and cor is a correlation measure.

2. Build the standard correlation networkND using the rule ahk = C(h, k)

3. Build the FDR controlled (at p-value ℘ = 10−z) correlation network

M℘
D using the rule

ahk =







C(h, k) if |F z
D(h, k)| ≤ 1

0 otherwise,

where the set Fz is defined as follows

F z
D = {cor(σi(xh), τi(xk)) ≥ C(h, k) : σi, τi ∈ Sm, i = 1, . . . ,max{10z,m!}}
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Synthetic Data Generation

As a synthetic benchmark for evaluating differences between Pearson and

MIC correlation measures, and to assess the impact of the FDR filter on

the construction of a correlation network, we built a dataset S consisting

of 100 measurements (samples) of 20 variables (features) fi, from which

we constructed the corresponding correlation networks on 20 nodes. The

dataset S was generated starting from its correlation matrix MS, which

was randomly generated with the following three constraints:

Corr(fi, fj) ≈



















0.9 for 1 ≤ i 6= j ≤ 5

0.7 for 6 ≤ i 6= j ≤ 10

0.4 for 11 ≤ i 6= j ≤ 16 ,

for Corr the Pearson correlation. The correlation matrix MS is plotted in

Fig. 5.2: clearly, the correlation values in the three groups defined by the

above constraints represent true relations between the variables, while all

other smaller correlation values are due to the underlying random genera-

tion model for MS.

Results

Starting from the dataset S we built five correlation networks, using MIC,

absolute Pearson correlation without FDR correction (WGCNA) and ab-

solute Pearson correlation with FDR correction, with p-values ℘ = 10−2, 5 ·
10−3, 10−4. The plots of the graphs for three of the networks are displayed

in Fig. 5.3. As expected, while the WGCNA networks with highest FDR

correction ℘ = 10−4 is discarding all links as not significant apart from

the edges connecting the two disjoint sets of nodes {fi : 1 ≤ i ≤ 5} and

{fi : 6 ≤ i ≤ 11} (the strongest correlations in the matrix MS), WGNCA

and MIC generates two fully connected networks with a majority of weak
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Figure 5.2: The correlation matrix MS used to generate the synthetic dataset S

links. Then we computed the four indicators I1, . . . I4 for all the five net-

works described above, in the setup described in Sec. 5.1. Main statistics

for all the indicators I1 and I2 are reported in Tab. 5.1 and displayed in

Fig. 5.4.

As expected, the ratio of the discarded data has a strong impact on both

the indicators I1 and I2: in the leave-one-out case the indicators’ values are

close to zero regardless of the algorithm, while in the k-fold cross-validation

case the stability is worsening for decreasing values of k, in terms of both

mean and confidence intervals. This means that the networks inferred from

a subset of data have larger distance both mutually and from the network

reconstructed from the whole datasets, but also that these distances have

larger variability. From the point of view of the different algorithms in-
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Figure 5.3: Correlation networks inferred by the dataset S using (a) absolute Pearson,

(b) absolute Pearson with FDR correction at p-value 10−4 and (c) MIC. Node label i

corresponds to feature fi, node size is proportional to node degree and link colors identify

different classes of link weights.
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Figure 5.4: I1 and I2 stability indicators (mean and confidence intervals) for different

instances of the WGCNA and MIC networks on the dataset S and for different values of

data subsampling.

volved, the stricter the p-value in the FDR controlled WGCNA networks,

the stabler the networks, with non controlled WGCNA and MINE as the

worst performer in terms of stability. This is due to the fact that they

are taking into account all possible correlation values, while most of the
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Table 5.1: Statistics (mean, bootstrap confidence intervals and range) of the stability

indicators I1 and I2 for different instances of the WGCNA and MIC networks on the

dataset S and for different values of data subsampling.

ALG k I mean CI lower CI upper min max

MIC k10 I1 0.052 0.051 0.052 0.041 0.067

MIC k10 I2 0.021 0.021 0.021 0.014 0.036

MIC k2 I1 0.139 0.134 0.142 0.112 0.158

MIC k2 I2 0.047 0.047 0.048 0.035 0.067

MIC k4 I1 0.055 0.054 0.057 0.040 0.071

MIC k4 I2 0.031 0.031 0.031 0.022 0.045

MIC LOO I1 0.008 0.007 0.008 0.004 0.011

MIC LOO I2 0.008 0.008 0.008 0.003 0.014

WGCNA k10 I1 0.021 0.020 0.022 0.011 0.040

WGCNA k10 I2 0.028 0.028 0.028 0.012 0.064

WGCNA k2 I1 0.070 0.065 0.076 0.037 0.108

WGCNA k2 I2 0.070 0.069 0.071 0.042 0.117

WGCNA k4 I1 0.039 0.037 0.041 0.020 0.062

WGCNA k4 I2 0.046 0.046 0.047 0.025 0.088

WGCNA LOO I1 0.005 0.005 0.006 0.001 0.015

WGCNA LOO I2 0.008 0.008 0.008 0.002 0.023

WGCNA FDR 1e-2 k10 I1 0.023 0.022 0.025 0.007 0.074

WGCNA FDR 1e-2 k10 I2 0.028 0.027 0.028 0.002 0.102

WGCNA FDR 1e-2 k2 I1 0.045 0.039 0.054 0.014 0.107

WGCNA FDR 1e-2 k2 I2 0.050 0.048 0.051 0.006 0.152

WGCNA FDR 1e-2 k4 I1 0.031 0.028 0.034 0.010 0.069

WGCNA FDR 1e-2 k4 I2 0.034 0.034 0.035 0.006 0.096

WGCNA FDR 1e-2 LOO I1 0.015 0.013 0.016 0.005 0.035

WGCNA FDR 1e-2 LOO I2 0.017 0.017 0.017 0.001 0.047

WGCNA FDR 5e-3 k10 I1 0.025 0.024 0.027 0.004 0.054

WGCNA FDR 5e-3 k10 I2 0.024 0.024 0.024 0.001 0.083

WGCNA FDR 5e-3 k2 I1 0.033 0.028 0.038 0.008 0.070

WGCNA FDR 5e-3 k2 I2 0.044 0.042 0.045 0.002 0.121

WGCNA FDR 5e-3 k4 I1 0.025 0.023 0.028 0.006 0.056

WGCNA FDR 5e-3 k4 I2 0.032 0.032 0.033 0.004 0.099

WGCNA FDR 5e-3 LOO I1 0.029 0.028 0.031 0.003 0.048

WGCNA FDR 5e-3 LOO I2 0.018 0.018 0.018 0.000 0.054

WGCNA FDR 1e-4 k10 I1 0.010 0.009 0.012 0.000 0.053

WGCNA FDR 1e-4 k10 I2 0.014 0.014 0.015 0.000 0.055

WGCNA FDR 1e-4 k2 I1 0.009 0.007 0.013 0.001 0.031

WGCNA FDR 1e-4 k2 I2 0.014 0.013 0.015 0.001 0.040

WGCNA FDR 1e-4 k4 I1 0.009 0.007 0.012 0.001 0.049

WGCNA FDR 1e-4 k4 I2 0.014 0.014 0.014 0.001 0.054

WGCNA FDR 1e-4 LOO I1 0.010 0.008 0.013 0.000 0.044

WGCNA FDR 1e-4 LOO I2 0.013 0.013 0.014 0.000 0.045

smaller values do not represent existing relations between variables, but

they are rather a noise effect. As a first result then we showed that the use
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of a FDR control procedure for correlation help stabilizing the inference

procedure, improving the performance of a method already acknowledged

as effective [3].

We move now on to discuss the stablest links and nodes in the three cases

WGCNA, WGCNA FDR 1e-4 and MIC: in particular, in Tab. 5.2 and 5.3

we show the top-ranked links and nodes ordered for decreasing range over

mean of their weights across all resampling k4. The results collected in

the tables are consistent with the structure of the starting correlation ma-

trix MS and the behaviour of the inference algorithms. For the WGCNA

case, the top 20 stablest links are those of the two fully connected sub-

groups F1,5 = {fi : 1 ≤ i ≤ 5} and F6,10{fi : 6 ≤ i ≤ 10} with largest

Pearson correlation values in MS. The same applies to WGCNA FDR

1e-4 (and with approximately the same values of weight range over weight

mean as for WGCNA), for which these 20 links are the only existing (see

Fig. 5.3). Among the following ranked links in WGCNA, those belonging

to the F11,15 = {fi : 11 ≤ i ≤ 15} group (whose correlation of about 0.3 was

imposed as a constraint for MS) are emerging, with a couple of exceptions,

but with larger instability values (0.33-0.78 vs. 0.03-0.14). The remaining

links are the unstablest, displaying Range/Mean values always larger than

0.83: they are the randomly correlated links of MS. It is interesting to note

that the MIC network, due to the nature of the MIC statistics aimed at

detecting relations between variables other than linear, displays similar but

not identical results: the values of Range/Mean are confined in a narrower

interval, and, although many links belonging to the F1,5 and F6,10 groups

are highly ranked, some of them can also be found in much lower positions

of the standing.

Similar considerations hold for the ranking of the stablest nodes: for

WGCNA, the top ranking nodes are the F1,5 and the F6,10 (with similar

Range/Mean values), with those in F11,15 come next, leaving the remain-
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ing five as the most unstable, with higher Range/Mean values. These five

nodes, on the contrary, are the stablest for WGCNA FDR 1e-4: in fact,

they are not wired to any other node in any of the resampling, so their

Range/Mean values are void. The nodes F1,5 ∪ F6,10 then follow in the

ranking with small associated values, and the nodes F11,15 close the stand-

ing with definitely higher values. In fact, although the nodes F11,15 have

degree zero in the WGCNA FDR 1e-4 inferred from the whole S, some

links involving them exist in some of the resampling on the subset of data.

To conclude with, in the MIC case again the ranking values span a much

narrower range than the other two cases, and the obtained dwranking has

most of the nodes in F1,5 in top positions, while for the other nodes the

relation with the structure of MS is very weak.

Finally, the analogous tables for other ratios of the data subsampling

schema (LOO, k2 and k10) are almost identical.

5.3 Inference Methods Comparison on Synthetic Data

We chose to analyze the performances of some of the most commonly used

inference algorithms such as:

• Aracne (ARA) [101]

• Context likelihood of relatedness (CLR) [46]

and some novel ones like:

• RegnANN (REG) 2.3.5

• Maximum Information based (MIC) 2.4.3

• Bicorrelation method (BIC) 2.4.2
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• Gene coexpression method (COR) 2.4.1

• Topological Overlap Matrix (TOM) 2.3.2

• We also considered the BIC and COR methods within a false discovery

rate (FDR) control framework 5.2.1.

5.3.1 Synthetic Data

Data Generation

We chose to use a 20 nodes network with 5 regulators and 42 interactions

were randomly generated as in Fig. 5.5. The kinetic model of the network

was generated mimicking a biologically plausible one and in particular

that of Escherichia Coli [126] (note that no self loops are present in the

topology). A synthetic gene expression dataset was generated simulating

20 steady states levels of variations of the network, which were obtained by

applying multifactorial perturbations to the original network. We simulate

multifactorial perturbations by slightly increasing or decreasing the basal

activation of all genes of the network simultaneously by different random

amounts. We considered each experiment as a gene expression profile from

a different patient. We chose to use the model of noise in microarrays that

was used for the DREAM4 challenges [116], which is similar to a mix of

normal and log-normal noise. The benchmark data we used is made by 10

different generations of the synthetic gene expression from the same kinetic

model. This benchmark was needed to evaluate also the stability of the

tested inference methods. Both the generation of the topology and the

generation of the dataset were performed with GeneNetWeaver [123].

Results

Here we show the performances of some inference algorithms both in terms

of accuracy and stability. As distance measure we use the HIM combina-
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Figure 5.5: Random topology generated with GeneNetWeaver (20 nodes, 5 regulators, 42

links).

tion between the Ipsen-Mikhailov and the Hamming distance described in

Section 4.

In Fig. 5.7 we can notice how the two classic inference algorithms Aracne

and CLR clearly outperform the others, since the HIM distance between

the inferred networks they produce and the gold standard is less than a half

of the one produced with the other systems that do not make use of the

FDR correction. The good performances of ARA and CLR can anyways

be explained with the fact that these two algorithms solve the inference

problem using a mutual information-based method and it was expected

since they were the ones who best performed in the DREAM4 Network

Inference Challenge in which GeneNetWeaver was used to generate the

data. It is also interesting to see that the confidence intervals vary greatly
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Figure 5.6: The effect of different FDR settings on accuracy and stability of network

inference performed with correlation and bicorrelation.

among the algorithms and in particular RegnANN seems to be the most

stable.

Moreover we can see how the use of FDR correction to the correlation and

bicorrelation-based methods leads to a clear improvement in the accuracy

of the inference, but the cost is an evident worsening in the stability of the

performances. This phenomenon is clearly represented in Fig. 5.6 where

the HIM distance is depicted against the FDR parameter. The increase

of FDR leads to a better average accuracy, but also to a degradation of

the stability of the result. It is safe to say that the use of the correction

can be a very important tool, but it is also crucial to choose the best

trade off between accuracy and stability. The degradation of the stability

can be explained with the fact that the FDR correction, that practically

implement a hard thresholding on the adjacency matrix, applied to noisy
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Figure 5.7: Performances of the 9 inference algorithm tested on synthetic dataset com-

puted ad HIM distance from the gold standard (GS). FDR=10−4

data can lead to a variable number of false negative that are reduced in a

more conservative approach (lower FDR parameter).

5.3.2 Escherichia Coli Data

Data Description

We selected a sub-network GS of the gene regulatory network of Es-

cherichia Coli made by 50 nodes and their 102 connections. GS includes

5 randomly chosen regulators (arcA, rutR, gadE, gadX, gadW) and their

neighbors, as shown in Fig. 5.8 the links of the topology are directed, but

we decided to consider them bidirectional. As for the synthetic example

we simulate multifactorial perturbations by slightly modifying the basal

activation of all genes of the network simultaneously by different random
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amounts. We obtained 50 steady states simulations for the 50 nodes of

the network; starting from these simulations, using GeneNetWeaver, we

produced 10 different generations of the synthetic gene expression from

the same kinetic model obtaining a benchmark for accuracy and stability

analysis.

Results

The boxplot 5.10 highlights the huge difference in accuracy between Aracne

and CLR and the other in favor of the two classic algorithms. The stability

across the 10 data generations is very high for all the methods. In Fig. 5.9

we can see how the FDR correction influences the results for bicorrelation

and correlation methods, as shown in 5.6 decreasing the FDR value the

accuracy increases while we have a degradation in the stability of the re-

sults. Though the overall behavior is the same as in the synthetic data,

the scale of the plot shows that the effect is much reduced in the case of

E.Coli data with respect of the synthetic data.
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Table 5.2: Top ranked links, ordered by weight range over weight mean across all 20 resam-

pling of k4 4-fold cross validation, for the three algorithms WGCNA, WGCNAFDR1e-4

and MIC

WGCNA WGCNA FDR 1e-4 MIC

fi − fj Range/Mean fi − fj Range/Mean fi − fj Range/Mean

1 - 3 0.03 1 - 3 0.03 3 - 4 0.20

2 - 3 0.04 3 - 4 0.04 2 - 3 0.20

1 - 2 0.04 2 - 3 0.04 1 - 3 0.21

1 - 4 0.04 1 - 4 0.05 3 - 5 0.22

3 - 4 0.04 3 - 5 0.05 1 - 2 0.23

2 - 4 0.04 1 - 2 0.05 1 - 5 0.25

4 - 5 0.04 2 - 4 0.05 1 - 4 0.26

2 - 5 0.05 2 - 5 0.06 4 - 5 0.27

1 - 5 0.05 4 - 5 0.06 7 - 10 0.28

3 - 5 0.05 1 - 5 0.06 7 - 8 0.29

6 - 8 0.08 6 - 8 0.08 6 - 8 0.29

8 - 10 0.10 7 - 8 0.09 6 - 10 0.30

7 - 8 0.11 8 - 10 0.10 1 - 20 0.31

7 - 9 0.11 8 - 9 0.11 2 - 4 0.31

8 - 9 0.11 6 - 7 0.11 8 - 10 0.31

9 - 10 0.11 7 - 10 0.12 2 - 5 0.32

6 - 7 0.11 7 - 9 0.12 9 - 10 0.32

7 - 10 0.12 9 - 10 0.13 7 - 20 0.33

6 - 10 0.13 6 - 9 0.13 14 - 16 0.33

6 - 9 0.14 6 - 10 0.15 5 - 17 0.35

11 - 13 0.33 6 - 7 0.35

14 - 15 0.41 11 - 17 0.36

13 - 14 0.46 6 - 9 0.36

12 - 13 0.58 1 - 10 0.37

12 - 15 0.60 10 - 11 0.37

11 - 14 0.62 10 - 20 0.37

13 - 15 0.71 4 - 17 0.37

11 - 15 0.78 2 - 8 0.37

14 - 18 0.78 4 - 10 0.37

3 - 11 0.83 6 - 13 0.37

5 - 11 0.83 2 - 14 0.37

1 - 11 0.84 9 - 11 0.38

4 - 11 0.85 15 - 16 0.38

3 - 10 0.87 15 - 17 0.38

5 - 16 0.89 7 - 13 0.39

8 - 17 0.89 9 - 18 0.39

2 - 11 0.91 12 - 19 0.39

8 - 12 0.91 6 - 18 0.39

4 - 13 0.91 8 - 9 0.39

1 - 13 0.93 4 - 18 0.39

3 - 13 0.93 16 - 17 0.39

8 - 13 0.94 4 - 19 0.39

9 - 17 0.94 16 - 19 0.39

1 - 16 0.95 7 - 19 0.40

1 - 10 0.95 5 - 8 0.40

14 - 16 0.97 14 - 15 0.40

5 - 10 0.97 13 - 15 0.40

11 - 12 0.98 4 - 11 0.40

12 - 16 0.98 7 - 9 0.41

2 - 13 0.99 13 - 19 0.41
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Table 5.3: Top ranked nodes, ordered by degree range over degree mean across all 20

resampling of k4 4-fold cross validation, for the three algorithms WGCNA, WGCNA

FDR 1e-4 and MIC. (*) indicates that Ratio and Mean are both zero.

WGCNA WGCNA FDR 1e-4 MIC

fi Range/Mean fi Range/Mean fi Range/Mean

4 0.17 16 0* 3 0.08

10 0.18 17 0* 19 0.08

3 0.20 18 0* 1 0.08

1 0.21 19 0* 4 0.09

9 0.23 20 0* 8 0.09

2 0.23 3 0.03 10 0.09

5 0.24 1 0.04 5 0.10

7 0.24 2 0.04 2 0.10

6 0.24 5 0.05 17 0.10

8 0.25 7 0.07 20 0.10

11 0.40 8 0.07 15 0.11

13 0.40 6 0.09 9 0.11

15 0.43 9 0.09 13 0.11

12 0.45 10 0.09 11 0.11

14 0.48 4 0.13 16 0.11

18 0.55 15 4.42 12 0.11

16 0.60 14 7.05 7 0.11

17 0.68 12 22.82 6 0.12

20 0.70 13 26.05 14 0.13

19 1.15 11 41.83 18 0.13
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Figure 5.8: A subnetwork of Escherichia Coli consisting of 50 nodes and their 102 connec-

tions; in particular notice the connections involving the 5 regulators (arcA, rutR, gadE,

gadX, gadW).
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Figure 5.9: The effect of different FDR settings on accuracy and stability of network

inference performed with correlation and bicorrelation.
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Chapter 6

Differential Networking

In this chapter we present three applications of network comparison and

stability assessment in the framework of (biological) differential network

analysis.

6.1 Biological Network Comparison: a miRNA ex-

ample

Investigating the relations connecting human microRNA (miRNA) and

how they evolve in cancer has been recently a key topic for researcher

in biology [147, 11], with hepatocellular carcinoma (HCC) as a notable

example [89, 57]. In the following example, we use the stability indica-

tors I1, . . . , I4 on a recent miRNA microarray dataset with two phenotypes

to highlight differences in the corresponding inferred networks. As recon-

struction algorithm we use the Context Likelihood of Relatedness (CLR)

approach [46], belonging to the relevance networks class of algorithms and

generating undirected weighted graphs with weights bounded between zero

and one. In particular, interactions are scored by using the mutual infor-

mation between the corresponding gene expression levels coupled with an

adaptive background correction step. Although suboptimal if the number
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of variables is much larger than the number of variables, it was observed

that CLR performs well in terms of prediction accuracy and some CLR

predictions in literature were later experimentally validated [5].

Data description

We start out from the Hepatocellular Carcinoma dataset introduced in the

paper [28] and later used in [71], publicly available at the Gene Expres-

sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) at the acces-

sion number GSE6857. The dataset collects 482 tissue samples from 241

patients affected by hepatocellular carcinoma (HCC). For each patients,

a sample from cancerous hepatic tissue and a sample from surrounding

non-cancerous hepatic tissue are available, hybridized on the Ohio State

University CCC MicroRNA Microarray Version 2.0 platform consisting of

11520 probes collecting expressions of 250 non-redundant human and 200

mouse microRNA (miRNA). After a preprocessing phase including impu-

tation of missing values as in [141] and discarding probes corresponding

to non-human (mouse and controls) miRNA, we end up with the dataset

HCC of 240+240 paired samples described by 210 human miRNA, with the

cohort consisting of 210 male and 30 female patients. We thus parted the

whole dataset HCC into four subsets combining the sex and disease status

phenotypes, collecting respectively the cancer tissue for the male patients

(MT), the cancer tissue for the female patients (FT) and the corresponding

two datasets including the non cancer tissues (MnT, FnT).

Results

Using the CLR algorithm we first generated the four networks inferred

from the whole sets of data and corresponding to the combinations of the

two binary phenotypes: a portrait of the resulting graphs is depicted in

Fig. 6.2, discarding links whose weight is smaller than 0.1. As a first ob-
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servation, the four networks have a different structure, for instance the

tumoral tissues graphs being more connected than the controls and the

female graphs more than the corresponding male ones (see for instance

the density values in Fig. 6.2). In particular, their mutual HIM distances

are reported in Tab. 6.1, together with the corresponding two-dimensional

scaling plot, showing that the networks corresponding to the female pa-

tients (and, in particular, the one inferred from cancer tissue) are notably

different from those arising from the subset of data for the male patients.

We then computed the stability indicators I1 and I2 in the setup described

MnT FT FnT

0.0412 0.0858 0.0235 MT

0.1265 0.0618 MnT
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Figure 6.1: Mutual HIM distances for the four CLR inferred networks MT, MnT, FT,

FnT reconstructed from the whole corresponding subsets and corresponding 2D multidi-

mensional scaling plot.

in Sec. 5.1, and the corresponding statistics are collected and displayed in

Tab. 6.1 and Fig. 6.3.

It is immediately evident the different sample size impact on the network

stability: the networks corresponding to male patients have smaller values

for I1 and I2 (and thus they are much stabler) than the corresponding

female counterparts, and this effect is even stronger than the one due to

the ratio of the chosen subsets of data: the leave-one-out stability for FT

and FnT is worse than k10 and k4 stability for MT and MnT. On the other
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hand, while control and cancer networks display similar level of stability

in the male networks at all levels of subsampling ratio, in the female group

the network associated to the controls is much stabler than the matching

control networks, and this is evident when the size of the subset used for

inference gets smaller, in particular for k = 2.

Table 6.1: Statistics (mean, bootstrap confidence intervals and range) of the stability

indicators I1 and I2 for the CLR inferred networks on the datasets MT, MnT, FT, FnT,

for different values of data subsampling.

PROBL k I mean lower upper min max

FT k10 I1 0.040 0.037 0.044 0.002 0.177

FT k10 I2 0.054 0.054 0.055 0.000 0.256

FT k2 I1 0.069 0.056 0.082 0.006 0.154

FT k2 I2 0.089 0.084 0.093 0.005 0.250

FT k4 I1 0.057 0.049 0.066 0.004 0.190

FT k4 I2 0.078 0.076 0.080 0.003 0.305

FT LOO I1 0.022 0.016 0.032 0.002 0.093

FT LOO I2 0.032 0.030 0.035 0.001 0.143

FnT k10 I1 0.032 0.029 0.035 0.002 0.093

FnT k10 I2 0.045 0.044 0.045 0.000 0.179

FnT k2 I1 0.094 0.071 0.117 0.006 0.257

FnT k2 I2 0.119 0.113 0.124 0.006 0.391

FnT k4 I1 0.062 0.054 0.072 0.005 0.203

FnT k4 I2 0.080 0.078 0.082 0.003 0.307

FnT LOO I1 0.022 0.017 0.027 0.003 0.048

FnT LOO I2 0.030 0.028 0.032 0.001 0.094

MT k10 I1 0.011 0.010 0.013 0.001 0.048

MT k10 I2 0.016 0.016 0.016 0.001 0.092

MT k2 I1 0.040 0.033 0.051 0.003 0.146

MT k2 I2 0.051 0.048 0.054 0.003 0.218

MT k4 I1 0.024 0.020 0.029 0.002 0.099

MT k4 I2 0.033 0.032 0.033 0.001 0.148

MT LOO I1 0.002 0.002 0.002 0.000 0.018

MT LOO I2 0.003 0.003 0.003 0.000 0.030

MnT k10 I1 0.009 0.008 0.010 0.001 0.034

MnT k10 I2 0.013 0.013 0.013 0.001 0.061

MnT k2 I1 0.033 0.026 0.041 0.003 0.104

MnT k2 I2 0.037 0.035 0.039 0.002 0.158

MnT k4 I1 0.018 0.015 0.022 0.001 0.067

MnT k4 I2 0.025 0.024 0.026 0.001 0.102

MnT LOO I1 0.002 0.002 0.002 0.000 0.009

MnT LOO I2 0.003 0.003 0.003 0.000 0.016

Finally, to show how to use indicators I3 and I4 to extract information

about stability of some interesting links, we first rank all links according to
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their weight Range/Mean value for all the four cases MT, MnT, FT, FnT,

and then we point out six links worth a comment, listed in Tab. 6.2. The

link (a) is top ranking in all four cases as expected, since hsa-mir 321No1

and hsa-mir 321No2 denote essentially the same miRNA (identical or with

very similar sequences, [6]. The same applies to the links (b) and (c),

but in these cases the stability of these two links in the FnT network is

not as good as in the other three cases, probably due to the presence of

noise in the data. The link (d) is interesting because of the difference of

its stability between the male and the female networks, indicating a link

probably associated to sex rather than HCC. The behavior of link (e) is

even more singular: it is one of the stablest links for the FT network, while

is not even picked up as a link by CLR in the FnT network. Finally, link

(f) is a very well known connection in literature, strongly associated to

cancer [147, 24, 51] as confirmed by its high stability in the MT and FT

networks only.

Table 6.2: Position in the weight Range/Mean ranking in the four cases MT, MnT, FT,

FnT for six miRNA-miRNA links.

id hsa-mir idx1 hsa-mir idx2 MT MnT FT FnT

(a) 321No1 321No2 1 1 9 2

(b) 016b.chr3 16.2No1 3 12 15 309

(c) 021.prec.17No1 21No1 27 5 2 921

(d) 219.1No1 321No2 2 6 1903 314

(e) 326No1 342No2 132 1017 3 -

(f) 192.2.3No1 215.precNo1 4 300 4 3340
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Figure 6.2: CLR networks (and corresponding density values) inferred from the 4 subsets

(a) Male Tumoral (MT) (b) Male not Tumoral (MnT) (c) Female Tumoral (FT) and (d)

Female non Tumoral (FnT) of the datasets HCC. Links are thresholded at weight 0.1,

node position is fixed across the four networks, node dimension is proportional to the

degree and edge width is proportional to link weight.
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Figure 6.3: I1 and I2 stability indicators (mean and confidence intervals) of CLR inferred

networks for different values of data subsampling on the four subgroups Male Tumoral

(MT), Male not Tumoral (MnT), Female Tumoral (FT) and Female non Tumoral (FnT)

of the datasets HCC.
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6.2 Sources of Variability in Pathway Profiling

We apply the HIM distance within a framework which includes a set of net-

work medicine tools (see schema in Fig. 6.4). The framework is adapted

from a computational pipeline for benchmarking feature selection algo-

rithms, enrichment procedure and network inference methods [19]. Here

we discuss the main modules composing the framework.

Figure 6.4: The general scheme of the HIM framework. Algorithms and tools used in the

PD study are listed in ovals.

M module. In the first step, the most relevant features are selected by

means of a predictive model M according to a proper Data Analysis Pro-

tocol (DAP), as proposed in [138]. For M, we consider first the ℓ1ℓ2 reg-

ularization algorithm with double optimization [38], which can be tuned

to give a minimal set of discriminative genes or larger sets including corre-

lated genes and it is based on the optimization principle presented in [159].

The ℓ1ℓ2 DAP is implemented in two stages organized as nested loops of

10-fold cross-validation [20]. The first stage identifies the minimal set of

relevant variables in terms of prediction error; starting from the minimal

list, the second one selects the family of nested lists of relevant variables for

increasing values of linear correlation. As alternative model, we consider

Liblinear, a linear Support Vector Machine (SVM) classifier specifically de-

signed for large datasets [47]. In particular, the classical dual optimization

problem with L2-SVM loss function is solved with a coordinate descent
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method. For our experiment we adopt the ℓ2-regularized penalty term and

the module of the weights for ranking purposes within a 100× 3-fold cross

validation schema. We build a model for increasing feature sublists where

the feature ranking is defined according to the importance for the classi-

fier. We choose the model, and thus the top ranked features, by balancing

classifier accuracy and signature stability [73].

E-D module. Enrichment procedures (E) are knowledge-based pathway

analysis methods, which exploit the information stored as in public reposi-

tories (D), such as the Gene Ontology (GO) [136] and the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [77], both used in this study. For

each term, GO provides a level of evidence, in total 22 evidences grouped

in six categories. We used levels: IMP, inferred from mutant phenotype;

IGI, from genetic interaction; IPI, from physical interaction; ISS, from se-

quence similarity; IDA, from direct assay; IEP, from expression pattern;

IEA, from electronic annotation [137].

The two knowledge bases GO and KEGG were used in combination with

three enrichment methods. As they can be categorized according to the

underlying algorithm [63, 81], we considered WebGestalt as representative

of the Singular Enrichment Analysis family, GSEA for the Gene Set En-

richment Analysis one, and the Pathways and Literature Strainer (PaLS)

for the Modular Enrichment Analysis category [63].

WebGestalt is an online gene set analysis toolkit [155] taking as input a

list of relevant genes or probesets. It adopts the hypergeometric test to

evaluate functional category enrichment and performs a multiple test ad-

justment (the default method is the one from [21]). The user may choose

different significance levels and the minimum number of genes belonging

to the selected functional groups.

GSEA [134] first performs a correlation analysis between the features and

the phenotype defining a ranking on the feature list. Secondly GSEA de-
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termines whether the members of given gene sets are randomly distributed

in the obtained ranked feature list or primarily found at the top or bottom.

It thus calculates enrichment scores considering separately pathways over-

represented at the top and at the bottom of the ranked list. We used the

GSEA Preranked tool, feeding the gene list of top-ranked genes according

to model M into the GSEA enrichment engine. In our framework we thus

consider only the positively scoring gene sets of the preranked list output,

which includes also genes that are highly discriminant and down-regulated

in cases vs controls.

PaLS [2] takes a list or a set of lists of genes (or protein identifiers) and

shows which ones share the same GO terms or KEGG pathways, following

a criterion based on a threshold t percentage set by the user. The tool

provides as output those functional groups that are shared at least by the

t% of the selected genes. PaLS is aimed at easing the biological interpre-

tation of results from studies of differential expression and gene selection,

without assigning any statistical significance to the final output.

N module. We adopted three different subnetwork reconstruction algo-

rithmsN : the Weighted Gene Co-Expression Networks Analysis (WGCNA)

algorithm [61], the Algorithm for the Reconstruction of Accurate Cellular

Networks (ARACNE) (see Section 2.3.3) [101], and the Context Likelihood

of Relatedness (CLR) (see Section 2.3.4) approach [46]. WGCNA is based

on the idea of using (a function of) the absolute correlation between the

expression of a couple of genes across the samples to define a link between

them.

Procedure. The typical analysis considers a collection of n subjects, each

described by a p-dimensional vector x of measurements. Each sample is

associated with a phenotype label, e.g. y={1,−1}, assigning it to a class,

in a classification task. Hence the dataset is defined as n×p expression data

matrix X, where p≫ n, and Y vector of labels. The output of a model
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M is a gene signature g1, ..., gk containing the k most discriminant fea-

tures. We move the focus of the analysis from single genes to functionally

related pathways by applying an enrichment algorithm E , with reference

to a knowledge base D such as KEGG, to explore known information on

molecular interaction networks [77], or GO, to explore functional char-

acterization and biological annotation. We retrieve for each gene gi the

corresponding whole pathway pi = {h1, ..., ht}, where the genes hj 6= gi

not necessarily belong to the original signature g1, ..., gk. Extending the

analysis to all the hj genes of the pathway allows us to explore functional

interactions that would otherwise get lost. For each pathway pi, networks

Npi,y are reconstructed separately on data from the different classes, lim-

iting the inference to the sole genes belonging to the pathway pi in order

to avoid the problem of intrinsic underdeterminacy of the task. As an

additional caution against underdeterminacy, in our experiments we limit

the analysis to pathways having more than 4 nodes and less than 1000

nodes. In summary, a real-valued adjacency matrix is inferred from X

for each class y, for each model M, for each enrichment tool E , for each

source of information D, for each pathway pi, and for each subnetwork

inference algorithm N . In the framework, the quantitative assessment of

network differences is the key step for evaluating the impact of each com-

ponent. As outlined in subsection 4.1, we use the HIM distance to detect

the most disrupted pathways and to evaluate the stability of the network

reconstruction.

6.3 HIM Framework on Biological datasetata

6.3.1 Children susceptibility to air pollution

The first dataset (GSE7543) collects data of children living in two regions

of the Czech Republic with different air pollution levels ([145]): 23 children
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recruited in the polluted area of Teplice and 24 children living in the cleaner

area of Prachatice. Blood samples were hybridized on Agilent Human 1A

22k oligonucleotide microarrays. After normalization we retained 17564

features.

Experimental Results

The SRDA analysis of the air pollution dataset was performed within a

100 × 5-fold cross validation (CV) schema, producing a gene signature,

characterizing the molecular differences between children in Teplice (pol-

luted) and Prachatice (not polluted). The signature consists of 50 probe-

sets, corresponding to 43 genes, achieving 76% accuracy.

The enrichment analysis on the signature allowed a functional characteriza-

tion of the relevant genes, identifying 11 enriched ontologies in GO (listed

in Appendix Table 6.3). We then constructed the corresponding WGCN

network for the 11 selected pathways for both cases and controls.

Table 6.3 lists the 11 enriched pathways identified during the analysis of the

air pollution dataset and the total number of the genes belonging to each

pathway. The list is ranked by the normalized Ipsen-Mikhailov distance

ǫ̂ (see Section 3.2): the top elements of the list are the most disrupted

pathways between the two conditions. The pathways listed in Table 6.5

are a subset of those reported in Table 6.3.

Most of these pathways concern the developmental processes: this GO

class contains ontologies especially related to the development of skele-

tal and nervous systems (GO:0001501 and GO:0007399) that undergo a

rapid and constant growth in children. Other enriched terms are related

to the capacity of an organism to defend itself (i.e response to wounding,

GO:0009611 and inflammatory response, GO:0006954), to the regulation

of the cell death (i.e. negative regulation of apoptosis, GO:0043066), the

multicellular organismal process, GO:0032501, the glycerlolipid metabolic
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process, GO:0046486, the response to external stimuli (i.e. inflammatory

response, response to wounding) and to the locomotion (i.e. GO:0040011,

GO:0007626).

Table 6.3: Air Pollution Experiment: pathways corresponding to mostly discriminant

genes g1, ..., gk ranked by the normalized Ipsen-Mikhailov distance ǫ̂. The number of

genes belonging to the pathway is also provided.

Pathway ǫ̂ # Genes

GO:0043066 0.257 21

GO:0001501 0.149 89

GO:0009611 0.123 16

GO:0007399 0.093 252

GO:0016787 0.078 718

GO:0005516 0.076 116

GO:0007275 0.076 453

GO:0006954 0.048 180

GO:0005615 0.038 417

GO:0007626 0.000 5

GO:0006066 0.000 8

Table 6.4 provides the subset of Agilent probesets (together with their

corresponding Gene Symbol and GO pathway) belonging to the signature

g1, ..., gk and having a non zero value of the differential node degree ∆d.

Since the ∆d score is computed as the difference between the weighted

degree in the two classes, the top elements in Table 6.4 are those whose

number of interactions varies most between the two conditions.

In Table 6.5 we report the most biologically relevant pathways, ranked for

decreasing normalized Ipsen-Mikhailov distance ǫ̂, which provides a mea-

sure of the structural distance between the networks inferred for the two

classes. The most disrupted pathway is GO:0043066, i.e. apoptosis fol-

lowed by GO:0001501 i.e. skeletal development. Since the children under
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Table 6.4: Air Pollution Experiment: list of Agilent probesets in the signature with their

corresponding Entrez Gene Symbol ID and GO pathway. The list is ranked according to

the decreasing absolute value of the differential node degree ∆d.

Agilent ID Gene Symbol Pathway ∆d

4701 NRGN GO:0007399 -2.477

12235 DUSP15 GO:0016787 -1.586

8944 CLC GO:0016787 -1.453

3697 ITGB5 GO:0007275 -1.390

4701 NRGN GO:0005516 -1.357

12537 PROK2 GO:0006954 1.069

13835 OLIG1 GO:0007275 0.834

11673 HOXB8 GO:0007275 -0.750

16424 FKHL18 GO:0007275 -0.685

13094 DHX32 GO:0016787 -0.575

8944 CLC GO:0007275 0.561

14787 MATN3 GO:0001501 0.495

15797 CXCL1 GO:0006954 0.467

15797 CXCL1 GO:0005615 0.338

11302 MYH1 GO:0005516 -0.194

15797 CXCL1 GO:0007399 0.131

study are undergoing natural development, especially physical changes of

their skeleton, the high differentiation between cases and controls of the

GO:0001501 and the involvement of pathway GO:0007275 i.e. develop-

mental process is biologically very sound. Another relevant pathway is

GO:0006954, representing the response to infection or injury caused by

chemical or physical agents. Several genes included in GO:0005516, (i.e.

calmodulin binding) bind or interact with calmodulin, that is a calcium-

binding protein involved in many essential processes, such as inflammation,

apoptosis, nerve growth, and immune response. This is a key pathway that

is linked with all the above mentioned terms as well as to GO:0007399, i.e.

112



CHAPTER 6. DIFFERENTIAL NETWORKING 6.3. HIM, FRAMEWORK

Table 6.5: Air Pollution Experiment: most important pathways ranked by the normalized

Ipsen-Mikhailov distance ǫ̂. The Entrez gene symbol ID is also provided for the selected

probesets g1, ..., gk in the corresponding pathway.

Pathway Code ǫ̂ Gene Symbol

GO:0043066 0.257

GO:0001501 0.149 MATN3

GO:0007399 0.093 NRGN

GO:0016787 0.078 DHX32, CLC

GO:0005516 0.076 MYH1

GO:0007275 0.076 FKHL18, HOXB8, OLIG1

GO:0006954 0.048 PROK2

nervous system development, being one of the most stimulated pathways

together with GO:0001501.

As described in Section 6.2 the pipeline also provides a score ∆d of the

variation of the number of interactions for g1, ..., gk. The full list is provided

in Appendix Table 6.4, here we discuss a subset of the most biologically

relevant genes.

FKHL18, HOXB8, PROK2, DHX32, MATN3 are directly involved in the

development. CLC is a key element in the inflammation and immune

system. OLIG1 is a transcription factor that works in the oligodendro-

cytes within the brain. NRGN binds calcium and is a target for thyroid

hormones in the brain. Finally, MYH1 encodes for myosin that is a ma-

jor contractile protein that forms striated, smooth and non-muscle cells.

MYH1 isoforms show expression that is spatially and temporally regulated

during development.

Figure 6.5 shows the network of the GO:0007399 pathway, related to the

nervous system development in the two cohorts. It is clear that several con-

nections among the genes within this pathway are missing in the subjects

living in the polluted area (Teplice). Therefore the nervous system devel-
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opment in these children is potentially at risk compared to those living in

the not polluted city (Prachatice).

(a) Prachatice (b) Teplice

Figure 6.5: Networks of the pathway GO:0007399 (nervous system development) for

Prachatice children (a) compared with Teplice children (b). Node diameter is propor-

tional to the degree, and edge width is proportional to connection strength (estimated

correlation).
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6.3.2 Alzheimer’s Disease

For AD we analyzed two GEO datasets: GSE9770 and GSE5281 ([92, 91]).

The first includes 74 controls and 34 samples from non-demented patients

with AD (since it is the earliest AD diagnosed, we will label it as early

hereafter) and the second is composed of 74 controls and 80 samples from

patients with late onset AD. The samples were extracted from six brain

regions, differently susceptible to the disease: entorhinal cortex (EC), hip-

pocampus (HIP), middle temporal gyrus (MTG), posterior cingulate cortex

(PC), superior frontal gyrus (SFG) and primary visual cortex (VCX). The

latter is known to be relatively spared by the disease, therefore we did

not consider the samples within the VCX region. Overall, we analyzed

62 controls and 29 AD samples for GSE9770 and 62 controls and 68 AD

samples for GSE5281. Biological data were hybridized on Affymetrix HG-

U133Plus2.0 platform, estimating the expression of 54713 probesets for

each sample.

Experimental Results

Classification and feature selection via ℓ1ℓ2, performed within a 9-fold

nested CV schema for AD early and 8-fold for AD late, gives respectively

90% accuracy and 95% with 50 probesets for both cases.

We apply in the AD case the same network analysis strategy as in the PD

experiment inferring for both cases and controls 51 selected pathways for

early stage AD and 34 for late stage AD. The full list of reconstructed

pathways is reported in Table 6.7. In Table 6.6 we summarize the main

findings discussed hereafter.

Similarly to the PD analysis, we attempt a comparative analysis of the

outcome for early and late stage AD having characterized the functional

alteration of pathways for the two AD stages and comment the most mean-
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(a) early AD patients (b) controls

Figure 6.6: Networks of the pathway GO:0019787 for AD early development patients (a)

compared with healthy subjects (b). Node diameter is proportional to the degree, and

edge width is proportional to connection strength (estimated correlation).

ingful results from the biological viewpoint.

Four common pathways were identified: GO:0019226 i.e. transmission of

nerve impulse, GO:0008015 i.e. blood circulation, GO:0000267 i.e. cell

fraction and GO:0042598 i.e. vesicular fraction.

The majority of pathways characterizing early stages of AD are related

to the nervous system, and the blood. Among the nervous system re-

lated pathways the most damaged are: GO:0007399 i.e. nervous sys-

tem development, GO:0007417 i.e. central nervous system development,

GO:0042391 i.e. regulation of membrane potential, GO:0042552 i.e. myeli-

nation, GO:0050877 i.e. neurological system process, GO:0001508 i.e. reg-

ulation of action potential and GO:0019226 i.e. transmission of nerve

impulse.

The majority of the pathways characterizing late stage AD are related to

the cell, to the nervous system and to the response of the organism to var-
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Table 6.6: AD: most important pathways ranked by normalized Ipsen-Mikhailov distance

ǫ̂. The Entrez gene symbol ID is also provided for the selected probesets g1, ..., gk in the

corresponding pathway. In bold, common pathways between early and late stage AD.
Pathway Code ǫ̂ Gene Symbol

AD early GO:0042598 0.21

GO:0019787 0.16 UBE2D3

GO:0007417 0.10 MPB

GO:0001508 0.14

GO:0051246 0.15 UBE2D3

GO:0016874 0.12 UBE2D3

GO:0004842 0.11 UBE2D3

GO:0005768 0.08 EGFR

GO:0016567 0.07 UBE2D3

GO:0050877 0.06

GO:0042552 0.05

GO:0008015 0.04

GO:0042391 0.04

GO:0007399 0.04 NTRK2

GO:0046982 0.03 EGFR

GO:0006633 0.02 PTGDS

GO:0019226 0.00

GO:0000267 0.00

AD late GO:0040012 0.36 SNCA

GO:0042598 0.23

GO:0019226 0.12

GO:0030334 0.10

GO:0045892 0.09 SPEN

GO:0042493 0.06 SNCA

GO:0042127 0.05

GO:0008283 0.04 CAT

GO:0005215 0.03 XK

GO:0008217 0.03 HBD

GO:0007601 0.03

GO:0007268 0.03

GO:0007610 0.03

GO:0008289 0.03

GO:0008015 0.02

GO:0016564 0.02 SPEN, ATXN1

GO:0008284 0.02

GO:0008285 0.02 EIF2AK1

GO:0020037 0.02 EIF2AK1, CAT, HBD

GO:0000267 0.00

GO:0050890 0.00

ious stimuli, see Table 6.6 and 6.7. Among the pathways centered on the

cell, mentioned in descending order based on the numerosity of the genes,

there are: GO:0008283 i.e. cell proliferation, GO:0008283 i.e. negative

regulation of cell proliferation, GO:0008284 i.e. positive regulation of cell

proliferation, GO:0042127 i.e. regulation of cell proliferation, GO:0030334

i.e. regulation of cell migration. The pathways related to the nervous

system are: GO:0007268 i.e. synaptic transmission, GO:0007610 i.e. be-

havior, GO:0050890 i.e. cognition. Other relevant nodes are those related

to the transcription regulation (GO:0016564, GO:0045892), the visual per-
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ception (GO:0007601), and the heme and lipid binding (i.e. GO:0020037,

GO:0008289).

The genes characterizing the early stage AD are reported in Table 6.6 and

6.8. UBE2D3 is an ubiquitin, targeting abnormal or short-lived proteins for

degradation. It is a member of the E2 ubiquitin-conjugating enzyme fam-

ily. This enzyme functions in the ubiquitination of the tumor-suppressor

protein p53. It is also involved in several signaling pathways (BMP, TGF-

β, TNF-α/NF-kB and in the immune system), in the protein processing

in the endoplasmatic reticulum. PTGDS is an enzyme that catalyzes the

conversion of prostaglandin H2 (PGH2) to postaglandin D2 (PGD2). It

functions as a neuromodulator as well as a trophic factor in the central ner-

vous system and it is also involved in smooth muscle contraction/relaxation

and is a potent inhibitor of platelet aggregation. This gene is preferentially

expressed in brain. Quantifying the protein complex of PGD2 and TTR in

CSF may be useful in the diagnosis of AD, possibly in the early stages of the

disease ([96]). EGFR is a transmembrane glycoprotein that is a member

of the protein kinase superfamily. This protein is a receptor for members

of the epidermal growth factor family that binds to epidermal growth fac-

tor. Binding of the protein to a ligand induces receptor dimerization and

tyrosine autophosphorylation and leads to cell proliferation. This gene is

involved in several pathways related to signaling, some type of cancer, to

the cell proliferation, migration and adhesion and to the axon guidance.

It is expressed in pediatric brain tumors ([113]). NTRK2 is member of

the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a

membrane-bound receptor that upon neurotrophin binding phosphorylates

itself and members of the MAPK pathway. Signalling through this kinase

leads to cell differentiation. Mutations in this gene have been associated

with obesity and mood disorders. SNPs in this gene is associated with AD

([36]).
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The genes associated to late stage AD are listed in Table 6.6 and 6.9. Even

if SNCA is a known hallmark for PD, it also known to be expressed in

late-onset familial AD ([142]). Other relevant genes are: SPEN, EIF2AK1,

CAT, HBD, ATXN1, XK. The first gene a hormone inducible transcrip-

tional repressor. Repression of transcription by this gene product can occur

through interactions with other repressors by the recruitment of proteins

involved in histone deacetylation or through sequestration of transcrip-

tional activators. SPEN is involved in the Notch signaling pathway that

is important for cell-dell communication since it involves gene regulation

mechanisms that control multiple cell differentiation processes (i.e. neu-

ronal function and development, stabilization of arterial endothelial fate

and angiogenesis, cardiac valve homeostasis) during embryonic and adult

life. EIF2AK1 acts at the level of translation initiation to downregulate

protein synthesis in response to stress, therefore it seems to have a pro-

tective role diminishing the overproduction of proteins such as SNCA or

beta amyloid. CAT encodes for catalase a key antioxidant enzyme in the

bodies defense against oxidative stress, therefore it act against the oxida-

tive stress present in the brain of AD patients. This gene together with

EIF2AK1 seems to fight against the disease. HBD like, HBB commented

in subsection 6.3.3, could display the same role ([8]). ATXN1 i s involved

in the autosomal dominant cerebellar ataxias (ADCA), an heterogeneous

group of neurodegenerative disorders characterized by progressive degen-

eration of the cerebellum brain stem and spinal cord. Therefore, because

of specific characteristics of these diseases (like the affected brain areas

and the characteristics of the movement disorders), it might as well play a

role in AD. Finally, mutations of XK have been associated with McLeod

syndrome an X-linked recessive disorder characterized by abnormalities in

the neuromuscular and hematopoietic systems.

Table 6.7 reports the most discriminant pathways for the two AD stages
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as selected by the presented pipeline, ranked by decreasing normalized ǫ̂

distance. Table 6.6 summarizes the main results here detailed in Table 6.7,

6.8 and 6.9. The common pathways are: GO:0019226 i.e. transmission

of nerve impulse, GO:0008015 i.e. blood circulation, GO:0000267 i.e. cell

fraction and GO:0042598 i.e. vesicular fraction. The relevance of blood

circulatory system in AD has already been highlighted in [26] and references

therein.

Figure 6.7 visualizes the enriched pathways in the Molecular Function and

Biological Process domains. Despite only 4 pathways were found as com-

mon between early and late AD, it is easy to note that the majority of

selected pathways belong to common GO classes.

Tables 6.8 and 6.9 provide details of the network analysis results on early

and late stage AD, respectively. The elements of the two signatures having

non zero ∆d are listed for decreasing absolute value of the differential

node degree score, thus giving top positions to genes that change most the

interaction network between the case/control condition.

Table 6.8 reports the most disrupted probesets within the early stage AD,

ranked according to the differential node degree ∆d. We note that the most

disrupted gene is HBB, within regulation of blood vessel size and regulation

of blood vessels. Table 6.9 reports the most disrupted genes within the

late stage AD, ranked according to the differential node degree ∆d. The

majority of such genes (SPEN, SNCA, EIF2AK1, ELF1, CAT, ATXN1,

HBD) belong to regulation of locomotion, transcription repressor activity,

response to drug and heme binding.
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Table 6.7: AD Experiment: selected pathways for early (left) and late (right) stage corre-

sponding to mostly discriminant genes g1, ..., gk ranked by the normalized Ipsen-Mikhailov

distance ǫ̂. The number of genes belonging to the pathway is also provided. In bold, the

common pathways.

AD early AD late

Pathway ǫ̂ # Genes Pathway ǫ̂ # Genes

GO:0048514 0.22 22 GO:0040012 0.36 9

GO:0042598 0.21 16 GO:0042598 0.23 16

GO:0016881 0.19 109 GO:0019226 0.12 27

GO:0019787 0.16 116 GO:0030334 0.10 93

GO:0019725 0.16 14 GO:0045892 0.09 218

GO:0051246 0.15 121 GO:0009968 0.06 107

GO:0001508 0.14 31 GO:0042493 0.06 160

GO:0006631 0.14 171 GO:0050877 0.06 31

GO:0030234 0.13 29 GO:0042127 0.05 140

GO:0016874 0.12 735 GO:0009725 0.05 47

GO:0004842 0.11 368 GO:0042277 0.05 63

GO:0007417 0.10 199 GO:0015630 0.05 99

GO:0012505 0.10 216 GO:0008283 0.04 785

GO:0050880 0.09 26 GO:0005819 0.04 142

GO:0048471 0.08 263 GO:0008217 0.03 106

GO:0005792 0.08 409 GO:0005626 0.03 68

GO:0005768 0.08 490 GO:0000165 0.03 94

GO:0004857 0.08 57 GO:0005215 0.03 685

GO:0031982 0.07 34 GO:0007268 0.03 377

GO:0016567 0.07 206 GO:0007601 0.03 402

GO:0008217 0.07 105 GO:0008289 0.03 285

GO:0001666 0.07 225 GO:0007610 0.03 84

GO:0030141 0.06 69 GO:0008284 0.02 507

GO:0050877 0.06 31 GO:0001503 0.02 171

GO:0042552 0.05 36 GO:0007243 0.02 220

GO:0001568 0.05 79 GO:0008285 0.02 578

GO:0048511 0.04 49 GO:0008015 0.02 103

GO:0016023 0.04 108 GO:0016564 0.02 380

GO:0007399 0.04 806 GO:0020037 0.02 265

GO:0008015 0.04 103 GO:0051270 0.00 9

GO:0042391 0.04 67 GO:0010033 0.00 44

GO:0031410 0.03 482 GO:0050890 0.00 31

GO:0046982 0.03 364 GO:0050953 0.00 24

GO:0006633 0.02 109 GO:0000267 0.00 5

GO:0045121 0.02 136

GO:0004866 0.02 194

GO:0008366 0.00 22

GO:0019228 0.00 19

GO:0006873 0.00 10

GO:0042592 0.00 25

GO:0001974 0.00 28

GO:0019226 0.00 27

GO:0001944 0.00 4

GO:0048771 0.00 12

GO:0048856 0.00 20

GO:0019838 0.00 85

GO:0017076 0.00 11

GO:0030414 0.00 42

GO:0001882 0.00 8

GO:0000267 0.00 4

GO:0031090 0.00 6
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(a) MF

(b) BP

Figure 6.7: GO subgraphs for Alzheimer’s early and late stage (Molecular Function and

Biological Processes domains). Selected nodes are represented in light gray, gray and dark

gray for late, early and common nodes.
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Table 6.8: AD Experiment (early): list of Affymetrix probesets in the early stage signa-

ture with their corresponding Entrez Gene Symbol and GO pathway. The list is ranked

according to the decreasing absolute value of the differential node degree ∆d.

Affy Probeset ID Gene Symbol Pathway ∆d

209116 x at HBB GO:0050880 1.670

209116 x at HBB GO:0008217 1.445

211748 x at PTGDS GO:0006633 1.273

240383 at UBE2D3 GO:0016874 -1.165

240383 at UBE2D3 GO:0019787 -0.703

201061 s at STOM GO:0045121 -0.662

240383 at UBE2D3 GO:0051246 -0.613

201983 s at EGFR GO:0046982 -0.476

221795 at NTRK2 GO:0007399 -0.262

212226 s at PPAP2B GO:0001568 0.259

201983 s at EGFR GO:0005768 -0.256

211696 x at HBB GO:0050880 -0.224

209072 at MBP GO:0008366 0.166

211696 x at HBB GO:0008217 -0.149

212187 x at PTGDS GO:0006633 -0.139

201185 at HTRA1 GO:0019838 0.124

240383 at UBE2D3 GO:0004842 0.120

209072 at MBP GO:0007417 0.113

240383 at UBE2D3 GO:0016567 -0.047
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Table 6.9: AD Experiment (late): list of Affymetrix probesets in the late stage signa-

ture with their corresponding Entrez Gene Symbol and GO pathway. The list is ranked

according to the decreasing absolute value of the differential node degree ∆d.

Affy Probeset ID Gene Symbol Pathway ∆d

201996 s at SPEN GO:0016564 1.590

211546 x at SNCA GO:0040012 1.410

211546 x at SNCA GO:0042493 1.310

201996 s at SPEN GO:0045892 1.246

217736 s at EIF2AK1 GO:0020037 -1.066

201005 at CD9 GO:0008285 0.725

210943 s at LYST GO:0015630 0.706

204466 s at SNCA GO:0042493 0.461

207827 x at SNCA GO:0040012 0.434

206698 at XK GO:0005215 0.433

209184 s at IRS2 GO:0008283 0.208

212420 at ELF1 GO:0016564 -0.203

207827 x at SNCA GO:0042493 0.201

205592 at SLCA4A1 GO:0005215 0.180

211922 s at CAT GO:0008283 0.173

211922 s at CAT GO:0020037 -0.094

203231 s at ATXN1 GO:0016564 -0.073

217736 s at EIF2AK1 GO:0008285 -0.072

204466 s at SNCA GO:0040012 0.048

206834 at HBD GO:0008217 0.045

206834 at HBD GO:0020037 0.019
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6.3.3 Parkinson’s Disease

A gene expression dataset of PD was considered to test the HIM framework

[156]. PD is a neurodegenerative disorder that impairs the motor skills at

the onset and the cognitive and the speech functions successively. The

biological samples consisted of whole substantia nigra tissue from 11 PD

patients and 18 healthy controls. Gene expression was measured by the

Affymetrix HG-U133A platform, available at Gene Expression Omnibus

(GEO) as GSE20292. Data were normalized with the rma algorithm in

the R Bioconductor affy package with a custom CDF adopting the most

up-to-date platform annotation and Entrez identifiers (from BrainArray:

http://brainarray.mbni.med.umich.edu, v. 14.1.0, ENTREZG), while the

enrichment phase was performed using HUGO gene symbol identifiers.

Results and Discussion

The ℓ1ℓ2 feature selection identified 458 discriminant genes giving an av-

erage prediction performance of 80.8%, while Liblinear selected the top-

500 genes with an accuracy of 80% (95% boostrap Confidence Interval:

(0.78,0.83)) and a stability of 0.70. The two lists have only 119 genes

in common. As the feature selection method is the starting point of our

analysis, to limit its impact we employed two approaches from the same

family of regularization methods: both classifiers adopt a ℓ2-regularization

penalty term combined with different loss functions and, for ℓ1ℓ2, with an

alternative regularization term. We used similar model selection proto-

cols, both ensuring that results are not affected by selection-bias. We first

compare together the impact of the different sources of variability, but will

come back later to difference in pathways when the model choice is the

only difference.

In general, the number of significantly enriched pathways varied greatly
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Table 6.10: Number (n)m of pathways found for the network inference step for different

combinations of model M, knowledge-base D, and enrichment E . n: all networks (unfil-
tered); m: filtered networks, having more than 5 and less than 1000 genes on HG-U133A

with non-null intra-class variance. Intersections ℓL, E3∩ and E2∩ are respectively defined

as ℓL := ℓ1ℓ2 ∩Liblinear, E2∩ := WebGestalt∩PaLS, E3∩ := WebGestalt∩GSEA∩PaLS.

M D E E3∩ E2∩
WebGestalt GSEA PaLS

ℓ1ℓ2
GO (114) 92 (7) 7 (381) 331 (0) 0 (39) 30

KEGG (43) 43 (2) 2 (71) 71 (2) 2 (43) 43

Liblinear
GO (83) 45 (0) 0 (404) 356 (0) 0 (21) 12

KEGG (56) 55 (1) 1 (77) 77 (1) 1 (56) 55

ℓL
GO (21) 8 (0) 0 (272) 225 (0) 0 (5) 1

KEGG (21) 20 (0) 0 (45) 45 (0) 0 (21) 20

depending on the model M, the enrichment E and the knowledge-base D,

as reported in Table 6.10. For this metric, the main source of variation is

the choice of enrichment procedure, followed by the reference knowledge-

base. For M=ℓ1ℓ2 and globally for GO and KEGG, we found 157, 452 and

9 enriched pathways for WebGestalt, PaLS and GSEA respectively and

similarly for M=Liblinear, 139, 481 and 1. No GO terms were found as

common to all three enrichment methods for M=ℓ1ℓ2 and D = GO, but if

we limit the observation to WebGestalt and PaLS we found a small overlap

(39 GO terms). Similar result were found forM = Liblinear, but with only

21 GO terms shared between WebGestalt and PaLS. For D = KEGG, two

pathways are common to the three enrichment algorithms for ℓ1ℓ2 and

one for Liblinear. Excluding the GSEA algorithm, we found a significant

overlap: 43 pathways for ℓ1ℓ2 and 56 for Liblinear. In general, WebGestalt

and PaLS provide results which are closer than those provided by GSEA

both in terms of number of retrieved pathways. Also, more numerous

enrichment lists were found for GO rather than KEGG, but with a smaller
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overlap.

The HIM distance between networks separately inferred for cases and con-

trols was computed for all combinations of choices for M, E ,D,N ; a full

landscape is available in Supplementary Fig. 6.8. Including all choices of

M, E ,D,N , H ranges in [0.002, 0.431] and IM in [0.005, 0.703], respectively

with medians medH = 0.044, medIM = 0.133 and variances varH = 0.001

and varIM = 0.016. The choice of the feature selection method has a lim-

ited effect, with respect to the variation found across E and D. A remark-

able difference in number of pathways and in variability is found between

E = GSEA vs PaLS (see Table 6.10). In general, we observe that struc-

tural changes (variability in the IM component) have more impact than

differences in rewiring (variability along the H axis).

As an example of HIM analysis, we considered N=Aracne, with D=GO

and all models M (Fig. 6.10): two clusters are identified, with one cluster

prevalently along the IM coordinate. Considering the distribution of the

HIM distances Fig.6.9, the threshold HIM=0.15 (equidistant from the two

centroids located by kmeans at HIM=0.06 and HIM=0.25) was used to de-

fine a separation surface in the HIM maps in Fig. 6.10(a). We found that

the distribution of pathway cardinality is skewed towards smaller networks

(less than 100 nodes) within the threshold, and instead almost equally

distributed above threshold, as shown in Fig. 6.10(b).

From now on, we focus our analysis on the subset of most disrupted path-

ways (MDPs). Given the strong variability due to N , MDPs are defined as

the pathways whose HIM distance between the network inferred on cases

and that on controls is larger than a threshold τ = 0.05 for all network in-

ference methods. As shown in Table 6.11, the incidence of MDPs increases

approximately twofold if we weaken the MDP definition to HIM> τ for at

least one reconstruction method N .

The HIM analysis reveals strong differences between the reconstruction
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Table 6.11: Summary of most disrupted pathways retrieved by WebGestalt and PaLS.

M D at least one N all N (*)

ℓ1ℓ2
GO 30 18 (60%)

KEGG 43 21 (49%)

Liblinear
GO 12 6 (50%)

KEGG 55 21 (38%)

(*) incidence of MDPs (HIM > τ = 0.05)

methods, with an increasing fraction of MDPs for WGCNA over CLR and

Aracne (see Fig. 6.11(a) and (b) for M = Liblinear and D = KEGG). We

conclude that the variability due to the choice of reconstruction methods

should be seriously taken into account in network medicine studies.
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Figure 6.8: HIM maps for all combinations of M,D, E and N . Subplot (c) is reproduced

in the main paper as Figure 6.8(d).
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Figure 6.9: Distance distribution for N = Aracne and D = GO (all enrichment methods

and all models). (a) Distribution of the HIM distance. Gray line: kmeans centroids

(HIM ≈ 0.056 and HIM ≈ 0.247). Red line: chosen threshold HIM ≈ 0.152, equidistant

from the two centroids. (b) HIM map of the two centroids. Red line: HIM = 0.15.
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Figure 6.10: Distance distribution for N = Aracne and D = GO. (a) HIM maps distance

for different E methods. Red line corresponds to threshold HIM = 0.15 separating two

clusters. (b) Histograms of pathway cardinality below and above threshold.
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Figure 6.11: HIM plots for M = Liblinear and D = KEGG, for all enrichment methods.

Symbols indicate enrichment methods: Aracne (squares), CLR (circles), WGCNA (tri-

angle). Red line: the threshold τ = 0.05 defining MDPs. (a) HIM maps grouped by E .
Each pathway is inferred by the three methods N as detailed in the legend on top of the

figure. (b) Trellis displays for histogram plots of HIM distance distribution conditioned

for WebGestalt and PaLS and the three subnetwork inference algorithms N .
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Similarly, given a fixed common threshold on HIM, we also found that MDP

lists can significantly differ for different M models, or reference ontologies:

as shown in Supplementary Tables 6.12 and 6.13 for GO terms and KEGG

pathways respectively, different methods may select rather different list of

MDPs pathways. However, when all methods agree, the biological signifi-

cance can be high. The Amyotrophic Lateral Sclerosis (ALS) KEGG 05014

pathway is the only MDP selected by all three enrichment tools E . This

finding is of biological interest as both ALS and PD are neurodegenera-

tive diseases severely affecting the skeletal muscles, and sharing significant

features, mainly at the mitochondrial level.

To complete this prototype network medicine study, we quantified the dif-

ference between networks as separately inferred from PD patients and con-

trols for the ALS pathway (Fig. 6.12). For WGCNA, higher correlation

links were found for PD cases (Fig 6.12 (a-b)). We also computed the sta-

bility of reconstruction in terms of HIM distance between m=100 networks

for a 2/3 subsampling and that on all data, given a class. We found that

stability depends on N , the networks inferred with ARACNE being the

most diverse between cases and controls, as shown in Fig. 6.12(c). The

variability between individual networks due to resampling can be severe

(Fig. 6.13). We replicated the stability analysis by using the Leave-one-

out schema: in terms of distribution we found less striking differences but

a similar behavior, as shown in Fig. 6.14. By projecting the information

on the HIM map (Fig. 6.12(d)), it is clear that for WGCNA the variability

on the PD network results due both to structural changes as well as to link

weight differences. On the other hand, for ARACNE, the changes regard

mostly the IM component.

We also compared the HIM ranks of the MDPs found for both WebGestalt

and PaLS, for fixed D = KEGG, listed in Tab: 6.13. Five highly disrupted

pathways were found as shared between WebGestalt and PaLS (bold en-
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tries in Tab: 6.13). In particular, the Pathogenic E. coli infection KEGG

pathway 05130 is top ranked for both models, which is consistent with re-

cent findings of increased presence of the gram negative bacteria E. coli in

sigmoid mucosa samples from patients with PD compared to controls [49].

Further effects of exposure to E. coli bacterial products in PD has also been

reported [148]. Indeed, stronger correlations were found for PD cases in

the case/control pair of WGCNA networks for KEGG 05130 (Fig. 6.14(a-

b)). The HIM stability analysis for the same pathway found ARACNE

as the most unstable method, in particular for the PD cases, 6.14(c,d)).

Leave-One-Out estimates lower instability levels, but confirms that stabil-

ity between classes is more similar for CLR rather than for Aracne and

WGCNA and that WGCNA is the most stable method on the PD dataset

for this pathway (Fig. 6.15(e,f)).
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Figure 6.12: Network analysis of the ALS KEGG pathway (as defined by PALS). (a-

b): Networks were separately inferred by WGCNA for the PD patients (a) and controls

(b). The networks are thresholded at edge weight 0.5 for graphic purposes. Node labels

represent Entrez IDs. (c): Boxplots of the HIM stability distribution (m = 100 replicates

as defined in Subsection 4.1) comparing PD patients and controls separately for the 3

inference methods N . (d): HIM map of all m comparisons.
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Figure 6.13: Variability of networks on the ALS KEGG pathway, defined by PALS, in-

ferred by WGCNA on PD samples, for m=100 replicates and 2/3 resampling. The two

network instances have (a) smallest HIM and (b) largest HIM from the network inferred

on all samples (shown in the main paper, Fig: 6.11(a)). Only links of weight > 0.5 are

displayed. Node labels represent Entrez ID.
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Figure 6.14: Leave-One-Out stability of the ALS KEGG pathway (as defined by PALS).

(a): Boxplots of the Leave-One-Out HIM stability distribution comparing PD patients

and controls separately for the 3 inference methods N . (b): HIM map of all m+1 and

m−1 comparisons. Different colors are used for the three N .
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Figure 6.15: Network analysis of the Pathogenic E. coli infection KEGG pathway (as

defined by PALS). (a-b): Networks were separately inferred by WGCNA for the PD pa-

tients (a) and controls (b). The networks are thresholded at edge weight 0.5 for graphic

purposes. Node labels represent Entrez ID. (c): Boxplots of the HIM stability distribution

(m = 100 replicates as defined in the main paper, Subsection 2.1) comparing PD patients

and controls separately for the 3 inference methods N . (d): HIM map of all m compar-

isons. Different colors are used for the three N . (e): Boxplots of the HIM Leave-One-Out

stability distribution comparing PD patients and controls separately for the 3 inference

methods N . (f): HIM map of all m+1 and m−1 comparisons. Different colors are used

for the three N .
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Table 6.12: Summary of GO terms in MDPs common between WG and PaLS, for both

M models. GO terms are sorted for decreasing HIM median (computed over E and N ).

Bold fonts identify the GO terms shared by models.
ℓ1ℓ2 Liblinear

ID Term name HIM ID Term name HIM

GO:0031966 Mitochondrial membrane 0.272 GO:0005783 Endoplasmic reticulum 0.256

GO:0005739 Mitochondrion 0.261 GO:0042127 Regulation of cell proliferation 0.252

GO:0005743 Mitochondrial inner membrane 0.148 GO:0016973 Poly(A)+ mRNA export from nucleus 0.192

GO:0046961 Proton-transporting ATPase activity, rotational mechanism 0.126 GO:0015629 Actin cytoskeleton 0.115

GO:0042802 Identical protein binding 0.112 GO:0006469 Negative regulation of protein kinase activity 0.098

GO:0007018 Microtubule-based movement 0.110 GO:0005747 Mitochondrial respiratory chain complex I 0.081

GO:0048487 Beta-tubulin binding 0.110

GO:0045202 Synapse 0.109

GO:0000502 Proteasome complex 0.107

GO:0005753 Mitochondrial proton-transporting ATP synthase complex 0.106

GO:0015986 ATP synthesis coupled proton transport 0.105

GO:0042734 Presynaptic membrane 0.103

GO:0005747 Mitochondrial respiratory chain complex I 0.081

GO:0015078 Hydrogen ion transmembrane transporter activity 0.080

GO:0008137 NADH dehydrogenase (ubiquinone) activity 0.065

GO:0015992 Proton transport 0.064

GO:0006120 Mitochondrial electron transport, NADH to ubiquinone 0.061

GO:0005874 Microtubule 0.057

Table 6.13: Summary of KEGG pathways in MDPs common between WebGestalt and

PaLS, for both M models. KEGG pathways are sorted for decreasing HIM median

(computed over E and N ). Bold fonts identify the KEGG pathways shared by models

M.
ℓ1ℓ2 Liblinear

ID Pathway name HIM ID Pathway name HIM

01100 Metabolic pathways 0.239 04630 Jak-STAT signaling pathway 0.281

05130 Pathogenic Escherichia coli infection 0.169 01100 Metabolic pathways 0.239

03050 Proteasome 0.162 05130 Pathogenic Escherichia coli infection 0.169

04910 Insulin signaling pathway 0.162 04623 Cytosolic DNA-sensing pathway 0.163

00620 Pyruvate metabolism 0.140 04910 Insulin signaling pathway 0.162

05213 Endometrial cancer 0.133 00330 Arginine and proline metabolism 0.158

00310 Lysine degradation 0.119 03030 DNA replication 0.134

00240 Pyrimidine metabolism 0.114 05213 Endometrial cancer 0.133

05110 Vibrio cholerae infection 0.105 05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.123

00270 Cysteine and methionine metabolism 0.105 05212 Pancreatic cancer 0.117

05120 Epithelial cell signaling in Helicobacter pylori infection 0.098 04912 GnRH signaling pathway 0.109

00230 Purine metabolism 0.096 05210 Colorectal cancer 0.099

00562 Inositol phosphate metabolism 0.096 04662 B cell receptor signaling pathway 0.090

04140 Regulation of autophagy 0.096 05332 Graft-versus-host disease 0.086

05014 Amyotrophic lateral sclerosis (ALS)∗ 0.094 04660 T cell receptor signaling pathway 0.084

00600 Sphingolipid metabolism 0.092 04520 Adherens junction 0.083

00020 Citrate cycle (TCA cycle) 0.091 04310 Wnt signaling pathway 0.079

05218 Melanoma 0.074 04621 NOD-like receptor signaling pathway 0.074

00051 Fructose and mannose metabolism 0.073 04722 Neurotrophin signaling pathway 0.070

04722 Neurotrophin signaling pathway 0.070 05214 Glioma 0.065

00980 Metabolism of xenobiotics by cytochrome P450 0.064 04370 VEGF signaling pathway 0.064

*Note: This is the only pathway shared across all enrichment methods E.
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Chapter 7

Conclusions

Network medicine and differential network analysis requires that a fair de-

gree of trust be assigned to networks built from omics data in order to

develop reliable network signatures of disease. Variability in network re-

construction and pathway profiling can be injected by different sources,

from noise in the data to choices in network modeling; moreover, under-

determinacy from limited sample sizes is also a major issue, given that

the ratio between network dimension (number of nodes) and the number

of available data to infer interactions has a key role for the stability of

the inferred structure [40]. In this thesis we proposed a solution for the

assessment of stability and quality of network reconstruction which is quan-

titative (and thus reproducible) and consistent as shown by the outcomes

of the biological applications. The aim here is to provide the researchers

with an effective tool to compare either the inference algorithms or the

investigated dataset. In particular, we introduced a suite of four stability

indicators for assessing the variability of network reconstruction algorithm

as functions of a data subsampling procedure. Two indicators are based

on a measure of a normalized distance between networks and they are

global, giving a confidence measure on the whole inferred dataset, while

the other two are local, associating a reliability score to the network nodes
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and detected links. They are of particular interest when no gold standard

is known for the studied task, so they can work as a substitute for the al-

gorithm accuracy. The proposed approach is extensively tested on a broad

range of biological applications from high-throughput data to practically

demonstrate its use in various research tasks.

Empirical quantitativeness in this framework is provided by the use of

the novel Hamming-Ipsen-Mikhailov (HIM) network distance to evaluate

differences between graphs. The HIM distance captures both local (link

occurrence) and global (spectral) structural differences between the investi-

gated graph, avoiding the pitfalls affecting its components when separately

considered. HIM metric is consistent with more classical network similar-

ity approaches, but it is able to better capture finer differences, while

avoiding unwanted behaviors affecting other distances. Furthermore, we

showed how HIM can be effectively used to turn qualitative considerations

(for instance, on dynamic network evolution) into quantitative ones, thus

available for objective comparisons.

Finally, we also introduced the novel inference method RegnANN, based

on Artificial Neural Networks, aimed at effectively detect higher order rela-

tions between graph nodes (e.g., genes in a transcriptional network): this

method proved to achieve reconstruction performances comparable with

those reached by more classical algorithm, but, in average, showing a bet-

ter stability.

We conclude with the remark that most of the shown applications were

computationally very intensive and thus not feasible on a standard work-

station: we thus made intensive use of the HPC facility at FBK, the Linux

KORE cluster endowed with more than 700 cores and 200 TB disk space.
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Appendix A

Module Preservation: Measures and

Results

A.1 Module Preservation Measures

Because preservation statistics measure different aspects of module preser-

vation, their results may not always agree. We find it useful to aggregate

different module preservation statistics into composite preservation statis-

tics. Composite preservation statistics also facilitate a fast evaluation of

many modules in multiple networks. We define several composite statis-

tics. For correlation networks based on quantitative variables, the 4 density

preservation statistics are summarized by Zdensity A.2, the 3 connectivity

based statistics are summarized by Zconnectivity A.3, and all individual Z

statistics are summarized by Zsummary defined as follows

Zsummary =
Zconnectivity + Zdensity

2
(A.1)

Zdensity = median(ZmeanCor, ZmeanAdj, ZpropV arExpl, ZmeanKME). (A.2)

Zconnectivity = median(Zcor.kIM , Zcor.Adj, Zcor.kME, Zcor.kMEall, Zcor.cor).

(A.3)

The Z statistics often depends on the module size (i.e. the number of nodes

in a module). This fact reflects the intuition that it is more significant
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to observe that the connectivity patterns among hundreds of nodes are

preserved than to observe the same among say only 5 nodes. Having said

this, there will be many situations when the dependence on module size

is not desirable, e.g., when preservation statistics of modules of different

sizes are to be compared. In this case, we recommend to either focus on the

observed values of the individual statistics or alternatively to summarize

them using the composite module preservation statistic medianRank.

We define the medianRank as an alternative rank-based measure that

relies on observed preservation statistics rather than the permutation Z

statistics. For each statistic a, we rank the modules based on the observed

values obs
(q)
a . Thus, each module is assigned a rank rank

(q)
a for each ob-

served statistic. We then define the median density and connectivity ranks

medianRank.density(q) = mediana∈Densitystatistics(rank
(q)
a )

medianRank.connectivity(q) = mediana∈Connectivitystatistics(rank
(q)
a )

(A.4)

The medianRank is useful for comparing relative preservation among mul-

tiple modules: a module with lower median rank tends to exhibit stronger

observed preservation statistics than a module with a higher median rank.

Since medianRank is based on the observed preservation statistics (as op-

posed to Z statistics) we find that it is much less dependent on module

size [87].

medianRanksummary =
medianRank.density +medianRank.connectivity

2
(A.5)

Module preservation statistics for general networks Here we de-

scribe module preservation statistics that can be used to determine whether

a module that is present in a reference network (with adjacency A[ref ])

can also be found in an independent test network (with adjacency A[test]).

Specifically, assume the vector Cl[ref ] encodes the module assignments in
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the reference network. Thus Cl
[ref ]
i = q(q ∈ {1, . . . , Q[ref ]}) if node i is

assigned to module q. We reserve the label Cl = 0 for nodes that are not

assigned to any module. For a given module q with nq nodes, the nq × nq

module adjacency matrices are denoted A[ref ](q) and A[test](q) in the refer-

ence and test networks, respectively. We propose network concepts that

can be useful for determining whether a module q(found in the reference

network) is preserved in the test network.

Intuitively, one may call a module q preserved if it has a high density in the

test network. We define the meanadjacency for module q as the module

density in the test network,

meanAdj[test](q) = density[test](q) = mean(vectorizeMatrix(A[test](q)))

(A.6)

Connectivity preservation statistics quantify how similar connectivity of

a given module is between a reference and a test network. For example,

module connectivity preservation can mean that, within a given module q,

nodes with a high connection strength in the reference network also exhibit

a high connection strength in the test network. This property can be quan-

tified by the correlation of intramodular adjacencies in reference and test

networks. Specifically, if the entries of the first adjacency matrix A[ref ](q)

are correlated with those of the second adjacency matrix A[test](q) then

the adjacency pattern of the module is preserved in the second network.

Therefore, we define the adjacencycorrelation of the module q network as

cor.Adj(q) = cor(vectorizeMatrix(A[ref ](q)), vectorizeMatrix(A[test](q)))

(A.7)

High cor.Adj(q) indicates that adjacencies within the module q in the refer-

ence and test networks exhibit similar patterns. If module q is preserved in

the second network, the highly connected hub nodes in the reference net-

work will often be highly connected hub nodes in the test network. In other
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words, the intramodular connectivity kIM [ref ](q) in the reference network

should be highly correlated with the corresponding intramodular connec-

tivity kIM [test](q) in the test network. Thus, we define the correlation of

intramodular connectivities,

cor.kIM (q) = cor(kIM [ref ](q), kIM [test](q)), (A.8)

where kIM [ref ](q) and kIM [test](q) are the vectors of intramodular connec-

tivities of all nodes in module q in the reference and test networks, respec-

tively.

Module preservation statistics for correlation networks The spe-

cific nature of correlation networks allows us to define additional module

preservation statistics. The underlying information carried by the sign of

the correlation can be used to further refine the statistics irrespective of

whether a signed or unsigned similarity is used in network construction

[87]. To simplify notation, we define

r
[ref ]
ij = cor(x

[ref ]
i , x

[ref ]
j )

r
[test]
ij = cor(x

[test]
i , x

[test]
j )

(A.9)

We will use the notation r
[ref ](q)
ij for the correlation matrix restricted to the

nodes in module q. We define the mean correlation density of module q as

meanCor[test](q) = mean{vectorizeMatrix(sign(r
[ref ](q)
ij )r

[test](q)
ij )}.

(A.10)

Thus the correlation measure of module preservation is the mean correla-

tion in the test network multiplied by the sign of the corresponding corre-

lations in the reference network. We note that a correlation that has the

same sign in the reference and test networks increases the mean, while a

correlation that changes sign decreases the mean. Because the preserva-

tion statistic keeps track of the sign of the corresponding correlation in the

reference network, we call it the mean sign-aware correlation.
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To measure the preservation of connectivity patterns within module q be-

tween the reference and test networks, we define a correlation-based mea-

sure cor.cor similar to the cor.Adj statistic

cor.cor(q) = cor(vectorizeMatrix(r[ref ](q)), cvectorizeMatrix(z[test](q)))

(A.11)

Eigennode summarizes a correlation module and provides a mea-

sure of module membership. Many module construction methods lead

to correlation network modules comprised of highly correlated variables.

For such modules one can summarize the corresponding module vectors us-

ing the first principal component denoted by E(q), referred to as the module

eigennode (ME) or (in gene co-expression networks) the module eigengene.

For example, the gene expression profiles of a given co-expression module

can be summarized with the module eigengene [62, 85, 79]. To visualize

the meaning of the module eigengene, consider the heat map in Figure 5A.

Here rows correspond to genes inside a given module and columns cor-

respond to microarray samples. The module eigennode E(q) can be used

to define a quantitative measure of module membership [62] of node i in

module q:

kME
(q)
i = cor(xi, E

(q)), (A.12)

where xi is the profile of node i. The module membership kME
(q)
i lies in

[−1, 1] and specifies how close node i is to module q. kME
(q)
i is also referred

to as module eigengene-based connectivity [52, 50]. Both intramodular

network concepts and inter modular network concepts can be used to study

the preservation of network modules. By measuring how these network

concepts are preserved from a reference network to a test network, one can

define network module preservation statistics as described below [87].

Eigennode-based density preservation statistics. The concept of the

module eigennode also gives rise to several preservation statistics that in

effect measure module density, or, from a different point of view, how well

169



A.2. WGCNA, QUALITY ASSESSMENTAPPENDIX A. MODULE PRESERVATION

the eigennode represents the whole module. In [87] is proven that the

proportion of variance explained (PVE) can also be calculated as mean

squared kME value:

propV arExpl[test](q) = meani∈Mq
{(kME

[test](q)
i )}, (A.13)

where E [test](q) is the eigennode of module q in the test network. The

meansign− awaremodulemembership is defined as:

meanKME [test](q) = meani∈Mq
{sign(kME

[ref ](q)
i )kME

[test](q)
i )} (A.14)

Eigennode-based connectivity preservation statistics. Intuitively,

if the internal structure of a module is preserved between a reference and

a test network , we expect that a variable with a high module member-

ship in the reference network will have a high module membership in the

test network as well; conversely, variables with relatively low module mem-

bership in the reference network should also have a relatively low module

membership in the test network. In other words, intramodular hubs in the

reference network should also be intramodular hubs in the test network.

For a given module q we define the cor.kME(q) statistic as

cor.kME(q) = cori∈Mq
(kME

[ref ](q)
i , kME

[test](q)
i )

where the correlation runs only over variables that belong to module q. We

also define an analogous statistic by correlating the module membership of

all network variables in the reference and test networks:

cor.kMEall(q) = cor(kME
[ref ](q)
i , kME

[test](q)
i )

A.2 Statistics for module quality assessment

An important use of module preservation statistics is to define measures of

module quality (or robustness), which may inform the module definition.
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For example, to measure how robustly a module is defined in a given corre-

lation network, one can use resampling techniques to create reference and

test sets from the original data and evaluate module preservation across

the resulting networks. Thus, any module preservation statistic naturally

gives rise to a module quality statistic by applying it to repeated random

splits (interpreted as reference and test set) of the data. By averaging the

module preservation statistic across multiple random splits of the original

data, one arrives at a module quality statistic. [87] Implementing the above

mentined idea we indicate the two quality control measures ZsummQ and

MRsummQ that refer to Zsummary A.1 and medianranksummary A.5 re-

spectively.

A.3 Additional Results

Table A.1: Preservation of female mouse liver modules in male data ref 1 test 2 (corr

method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.00 0.62 0.97

Hamming 0.62 1.00 0.72

Mod.Ipsen 0.97 0.72 1.00

ZsummaryQuality 0.26 -0.05 0.29

ZsummaryPreserv. 0.71 0.48 0.76

Zdensity 0.74 0.34 0.73

Zconnectivity 0.56 0.69 0.70

MRsummaryQuality 0.42 0.88 0.52

MRsummaryPreserv. -0.74 -0.37 -0.73

MRdensity -0.61 -0.22 -0.56

MRconnectivity -0.75 -0.63 -0.83
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Table A.2: Preservation of human brain modules in chimpanzee brains and vice versa ref

1 test 2 (corr method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.00 0.11 0.96

Hamming 0.11 1.00 -0.04

Mod.Ipsen 0.96 -0.04 1.00

ZsummaryQuality 0.68 -0.43 0.79

ZsummaryPreser. 0.75 -0.36 0.86

Zdensity 0.43 -0.61 0.57

Zconn 0.64 -0.46 0.79

MRsummaryQuality 0.47 -0.14 0.58

MRsummaryPreser. -0.36 0.25 -0.43

MRdensity -0.20 0.18 -0.29

MRconnectivity -0.54 0.21 -0.61

Table A.3: Preservation of human brain modules in chimpanzee brains and vice versa ref

2 test 1 (corr method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.00 0.11 0.96

Hamming 0.11 1.00 -0.04

Mod.Ipsen 0.96 -0.04 1.00

ZsummaryQuality 0.21 -0.68 0.32

ZsummaryPreser. 0.21 -0.68 0.32

Zdensity 0.14 -0.79 0.29

Zconn 0.79 -0.25 0.86

MRsummaryQuality 0.58 -0.47 0.72

MRsummaryPreser. 0.50 -0.11 0.67

MRdensity 0.46 -0.14 0.64

MRconnectivity 0.18 0.00 0.23
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Figure A.1: A) Preservation of human brain modules in chimpanzee brains (corr method:

Spearman). B) Preservation of chimpanzee brain modules in human brains (corr method:

Spearman)
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Figure A.2: A) Preservation of KEGG pathways between human and chimpanzee data

using human as reference and chimp as test (corr method: Spearman). B) Preservation

of KEGG pathways between human and chimpanzee data using chimp as reference and

human as test (corr method: Spearman)
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Figure A.3: Preservation of Cholesterol Biosynthesis Process module among 8 tis-

sue/gender cobinations in F2 mice (corr method: Spearman)

Ipsen

0.96 0.99

0.69 1.00

0 60

−0.16 −0.07

0 100

−0.15 0.31

1.0 2.5

−0.09 −0.38

1.0 3.0

−0.05

0.
6

0.
9

−0.55

0.
96

0.
99 ●●●

●●

●●●●●

●●

●● ●●
●

●●

●● ●●
●

●●

●●

●●●●

●

●●
●●●●

●

●●

●●●●

●●

●
●●●●

●●

● Hamming

0.73 −0.41 −0.09 −0.35 0.46 0.21 −0.19 0.11 −0.46

●●●

●●

●●
●●●

●●

●●

●●●

●●

●●
●●
●

●●

●●

●●●●

●

●●●●●●

●

●●

●●
●●

●●

●
●●●●

●●

● ●●●

●●

●●
●●●

●●

●●

●●●

●●

●●
●●

●

●●

●●

●●●●

●

●●●●●●

●

●●

●●
●●

●●

●
●●●
●

●●

● Mod.Ips.

−0.18 −0.04 −0.14 0.36 −0.07 −0.39 −0.05

0.
80

0.
95

−0.59

0
60

●●●●● ●●●●●●● ●● ●●●●
●

●● ●●●

●

● ●

●

●●

●●

●
●

●
●●●

●

●

●
●

●●●●●● ●●●●●●● ● ●●●●● ●●●●●●● ●●●●●●
●

●●●●●

●

● ●

●

●●

●●

●
●
●
●●●

●

●

●
●

●●●●●● ●●●●●●● ● ●●●●● ●●●●●●● ●● ●●●●
●

●●●●●

●

● ●

●

●●

●●

●
●
●
●●●

●

●

●
●

●●●●●● ●●●●●●● ●

ZsummQ

−0.20 −0.10 −0.09 −0.70 0.07 0.12 0.02

●
●
●

●●

●●●●●

●

● ●● ●●●●● ●● ●●
●●● ●

●●●●●
●

●●
●●●●

●
●● ●●●●
●● ●●●●●

●
●

● ●
●
●

●●

●●●●●

●

● ●●●●●●● ●●●●
●●● ●

●●●●●
●

●●
●●●●

●
●● ●●●●
●● ●●●●●
●
●

● ●
●
●

●●

●●●●●

●

● ●● ●●●●● ●●●●
●●● ●

●●●●●
●

●●
●●●●

●
●● ●●●●
●● ●●●●●
●
●

● ●
●
●
●●

●●●●●

●

●●●●●●● ●●●●●
● ●●● ●●● ●●
●

●●
●●● ●●

●●●●●●
●●●●●●●
●
●

●

ZsummP

0.84 0.53 0.17 −0.21 −0.45

0
40−0.18

0
10

0

●
●
●

●
● ●●●●●

●

● ●● ●●●●● ●● ●●●●● ●●●●●● ●●●●●●● ●●● ●●●●
●●

●●●●●
●
●

● ●
●
●

●
● ●●●●●

●

● ●●●●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●● ●●●●
●●

●●●●●
●
●

● ●
●
●

●
● ●●●●●

●

● ●● ●●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●● ●●●●
●●

●●●●●
●
●

● ●
●
●
●
●●●●●●

●

●●●●●●● ●●●●●●
●●● ●●● ●●● ●●●●● ●● ●●●●●●

●●
●●●●●
●
●

● ●
●

●
●
●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●

●
●

●

Zdens.

0.14 0.01 −0.26 −0.62 −0.10

●●●●

●

●●●●●●● ●● ●●●●● ●● ●●
●

●●

●
●●●

●
●

●
●●
●
●

●● ●●● ●●●●●●
●●●●●●●
● ●●●●

●

●●●●●●● ●●●●●●● ●●●●
●

●●

●
●●●

●
●

●
●●
●
●

●● ●●● ●●●●●●
●●●●●●●
● ●●●●

●

●●●●●●● ●● ●●●●● ●●●●
●

●●

●
●●●

●
●

●
●●
●
●

●● ●●● ●●●●●●
●●●●●●●
● ●●●●

●

●●●●●●●●●●●●● ●●●●●
●

●●

●
●●●
●
●

●
●●

●
●

● ●● ●●●●●●●●
●●●●●●●
● ●●● ●

●

●●●●● ●●●●●●●●●●●●●
●
●●

●
●●●

●
●
●

●●
●
●

●●●●●●●●●●●
●●●●●●●
● ●●● ●

●

●●●●● ●●●●●●●●●●●●●
●
●●

●
●●●
●
●
●

●●
●
●

●●●●●●●●●●●
●●●●● ●●
●

Zconn.

0.03 −0.32 −0.10

−
20

40−0.50

1.
0

2.
5

●●
●

●

●

●●●●●●● ●● ●●●●● ●● ●●●●● ●●●●●● ●●●●●●● ●●●

●
●●

●
●● ●

●
●
●●

●●
●

●●
●

●

●

●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●●

●
●●
●

●● ●

●
●
●●

●●
●

●●
●

●

●

●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●●

●
●●

●
●● ●

●
●
●●

●●
●

●●
●
●

●

●●●●●●●●●●●●● ●●●●●● ●●● ●●● ●●● ●●●●● ●● ●●

●
●●
●
●●●

●
●
●●
●●
●

●●
●

●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●

●
●
●●

●●
●

●●
●

●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●

●
●
●●

●●
●

●●
●
●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●

●
●●
●
●●●

●
●
●●

●●
●

MRsummQ

0.13 −0.03 0.23

●●●●● ●

●

●●●●●
●

●

●●●

●

● ●● ●●●

●

● ●●●●

●●

●

●
●

●●●● ●

●●
●

●●●●

●
●●

●
●●

●

●

●

●●●●● ●

●

●●●●●
●
●

●●●

●

● ●●●●●

●

● ●●●●

●●

●

●
●

●●●● ●

●●
●

●●●●

●
●●

●
●●

●

●

●

●●●●● ●

●

●●●●●
●

●

●●●

●

● ●●●●●

●

● ●●●●

●●

●

●
●

●●●● ●

●●
●

●●●●

●
●●

●
●●

●

●

●

●●●●●●

●

●●●●●
●
●

●●●

●

●●●●●●

●

●● ●●●

●●

●

●
●

●●● ●●

●●
●

●●●●

●
●●
●
●●

●

●

●

●●● ●●●

●

●●● ●●
●
●

●●●

●

●●●●●●

●

●●●●●

●●

●

●
●

●●●●●

●●
●

●●●●

●
●●
●
●●

●

●

●

●●● ●●●

●

●●● ●●
●
●

●●●

●

●●●●●●

●

●●●●●

●●

●

●
●

●●●●●

●●
●

●●●●

●
●●
●
●●

●

●

●

●●●● ●●

●

●●●●●
●
●

●●●

●

●●●●●●

●

● ●●●●

●●

●

●
●

●●●●●

●●
●

●●●●

●
●●

●
●●

●

●

●

●●●● ●●

●

●●●●●
●
●

●●●

●

●●●●●●

●

●●●●●

●●

●

●
●

●●●●●

●●
●

●●●●

●
●●

●
●●

●

●

● MRsummP

0.62

1.
0

3.
0

0.73

1.
0

3.
0

●●●●● ●

●

●●●●●
●

●
●

●●●● ●●

●

●●●● ●●●●
●
● ●

●
●

●●●● ●
●●

●

●●●●●
●

●
●●●●●

●

●●●●● ●

●

●●●●●
●

●
●

●●●● ●●

●

●●●● ●●●●
●
● ●

●
●

●●●● ●
●●

●

●●●●●
●

●
●●●●●

●

●●●●● ●

●

●●●●●
●

●
●

●●●● ●●

●

●●●● ●●●●
●
● ●

●
●

●●●● ●
●●

●

●●●●●
●

●
●●●●●

●

●●●●●●

●

●●●●●
●

●
●

●●● ●●●

●

●● ●●● ●●●
●
●●

●
●

●●● ●●
●●

●

●●●●●
●
●
●●●●●

●

●●● ●●●

●

●●● ●●
●

●
●

●●●●●●

●

●●●●●●●●
●
●●

●
●

●●●●●
●●
●

●●●●●
●
●
●●●●●

●

●●● ●●●

●

●●● ●●
●

●
●

●●●●●●

●

●●●●●●●●
●
●●

●
●

●●●●●
●●
●

●●●●●
●
●
●●● ●●

●

●●●● ●●

●

●●●●●
●

●
●

●●●●●●

●

●●●● ●●●●
●

●●

●
●

●●●●●
●●
●

●●●●●
●

●
●●●●●

●

●●●● ●●

●

●●●●●
●

●
●

●●●●●●

●

●●●●●●●●
●
●●

●
●

●●●●●
●●

●

●●●●●
●

●
●●●●●

●

●●●●●●

●

●●●●●
●

●
●

●● ●●●●

●

●● ●●●●●●
●
●●

●
●

●●●●●
●●

●

●●●● ●
●
●

●●● ●●

●

MRdens.

0.40

0.6 0.9

●●●●● ●

●

●
●
●●●

●
●

●

●

●

●
●

●● ●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●

●

●●

●● ●●
●

●●

●● ●

●●●●● ●

●

●
●
●●●
●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●
●

●●

●● ●●
●

●●

●● ●

0.80 0.95

●●●●● ●

●

●
●
●●●

●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●

●

●●

●● ●●
●

●●

●● ●

●●●●●●

●

●
●
●●●
●
●

●

●

●

●
●

●●●●●

●●

● ●●●

●●

●

●●

●●

● ●

●

●●
●
●

●●

●●●●
●

●●

●●●

0 40

●●● ●●●

●

●
●
● ●●
●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●
●

●●

●●●●
●

●●

●●●

●●● ●●●

●

●
●
● ●●
●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●
●

●●

●●●●
●

●●

●●●

−20 40

●●●● ●●

●

●
●
●●●
●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●

●

●●

●●●●
●

●●

●●●

●●●● ●●

●

●
●
●●●
●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●●
●

●

●●

●●●●
●

●●

●●●

1.0 3.0

●●●●●●

●

●
●
●●●

●
●

●

●

●

●
●

●●●●●

●●

●●●●

●●

●

● ●

●●

●●

●

●●
●

●

●●

● ●●●
●

●●

●● ●

●●●●●●

●

●
●
●●●

●
●

●

●

●

●
●

●● ●●●

●●

●●●●

●●

●

● ●

●●

●●

●

●●
●

●

●●

●● ●●
●

●●

●● ●

1.0 3.0
1.

0
3.

0MRconn.

Table A.4: Preservation of KEGG pathways between human and chimp data ref 1 test 2

(corr method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.0 -0.50 1.00

Hamming -0.50 1.0 -0.50

Mod.Ipsen 1.00 -0.50 1.0

ZsummaryQuality 0.62 -0.62 0.62

ZsummaryPreser. 0.38 -0.88 0.38

Zdensity 0.62 -0.95 0.62

Zconnectivity 0.24 -0.74 0.24

MRsummaryQuality -0.49 0.47 -0.49

MRsummaryPreser. -0.60 0.58 -0.60

MRdensity -0.74 0.63 -0.74

MRconnectivity -0.42 0.22 -0.42
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Table A.5: Preservation of KEGG pathways between human and chimp data ref 2 test 1

(corr method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.00 -0.50 1.00

Hamming -0.50 1.00 -0.50

Mod.Ipsen 1.00 -0.50 1.00

ZsummaryQuality 0.86 -0.52 0.86

ZsummaryPreser. 0.19 -0.69 0.19

Zdensity 0.29 -0.79 0.29

Zconnectivity 0.19 -0.69 0.19

MRsummaryQuality -0.90 0.44 -0.90

MRsummaryPreser. -0.54 0.44 -0.54

MRdensity -0.64 0.46 -0.64

MRconnectivity -0.33 0.30 -0.33

Table A.6: Preservation of Cholesterol Biosynthesis Process module among 8 tis-

sue/gender combinations in F2 mice (corr method: Spearman)

Ipsen Hamming Mod.Ipsen

Ipsen 1.00 0.69 1.00

Hamming 0.69 1.00 0.73

Mod.Ipsen 1.00 0.73 1.00

ZsummaryQuality -0.40 -0.44 -0.39

ZsummaryPreser. 0.14 0.10 0.14

Zdensity 0.22 0.13 0.21

Zconnectivity -0.02 0.11 -0.02

MRsummaryQuality -0.05 0.09 -0.01

MRsummaryPreser. -0.02 -0.01 -0.02

MRdensity -0.04 -0.01 -0.04

MRconnectivity 0.14 0.13 0.14
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Table A.7: Correlation between Mod.Ipsen distance and the Network-based module

preservation measures for each tissue used as Reference (corr method: Spearman). Miss-

ing values are due to zero standard deviation in the considered values
AdiposeF AdiposeM BrainF BrainM LiverF LiverM MuscleF MuscleM Mean

ZsummaryQuality 0.57 0.36 -0.61 -0.32 -0.57 -0.57 0.21 0.11 0.42

ZsummaryPreser. -0.36 -0.29 -0.61 -0.07 0.79 0.75 -0.46 -0.61 0.49

Zdensity -0.07 -0.07 -0.46 -0.29 0.82 0.75 -0.64 -0.89 0.50

Zconnectivity -0.46 -0.18 -0.25 0.71 0.68 0.57 0.39 0.86 0.51

MRsummaryQuality -0.27 -0.32 -0.87 0.48

MRsummaryPreser. -0.20 -0.18 -0.41 -0.41 -0.77 -0.79 -0.18 0.09 0.38

MRdensity -0.20 -0.18 0.61 0.41 -0.91 -0.79 0.40 0.53 0.50

MRconnectivity -0.20 0.06 -0.60 -0.79 -0.87 -0.87 -0.48 -0.38 0.53

Mean 0.29 0.19 0.51 0.43 0.77 0.73 0.39 0.54

Table A.8: Correlation between Mod.Ipsen distance and the Network-based module

preservation measures for each tissue used as Test (corr method: Spearman). Missing

values are due to zero standard deviation in the considered values
AdiposeF AdiposeM BrainF BrainM LiverF LiverM MuscleF MuscleM Mean

ZsummaryQuality -0.46 -0.25 -0.39 -0.68 0.68 0.50 -0.71 -0.54 0.53

ZsummaryPreser. -1.00 -0.14 0.75 0.54 0.32 -0.32 0.64 0.32 0.50

Zdensity -0.71 0.29 0.64 0.18 0.14 -0.82 0.71 0.00 0.44

Zconnectivity -0.96 -0.21 0.50 0.86 0.64 0.82 0.64 0.46 0.64

MRsummaryQuality -0.13 -0.13 -0.13 0.30 -0.76 -0.60 0.61 0.61 0.41

MRsummaryPreser. -0.16 -0.20 -0.41 -0.41 -0.64 -0.41 -0.30 -0.70 0.40

MRdensity 0.69 -0.41 -0.30 -0.56 0.49

MRconnectivity -0.18 0.12 -0.70 -0.79 -0.87 -0.85 -0.39 -0.38 0.53

Mean 0.54 0.19 0.49 0.54 0.58 0.62 0.54 0.45 0.49
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