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Abstract
The maximum likelihood decoding problem (MLD) is known to be NP-hard and its com-
plexity is strictly related to the security of some post-quantum cryptosystems, that is, the 
so-called code-based primitives. Analogously, the multivariate quadratic system problem 
(MQ) is NP-hard and its complexity is necessary for the security of the so-called multi-
variate-based primitives. In this paper we present a closed formula for a polynomial-time 
reduction from any instance of MLD to an instance of MQ, and viceversa. We also show a 
polynomial-time isomorphism between MQ and MLD, thus demonstrating the direct link 
between the two post-quantum cryptographic families.

Keywords Maximum likelihood decoding · Quadratic multivariate systems · Polynomial-
time reductions · Code-based cryptography · Multivariate-based cryptography

Mathematics Subject Classification 94B35 · 11T06 · 68Q17

1 Introduction

Computationally difficult algebraic problems, e.g. the discrete logarithm problem (DLP) 
and the integer factorisation problem (IP), have historically been successfully exploited to 
construct secure cryptographic protocols, such as RSA, Diffie-Hellmann and ECDSA. An 
interested reader can find details on these schemes and the underlying algebraic problems 
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in [1] or [2]. The advent of quantum algorithms, for example Shor’s algorithm [3], has, 
however, incited several established primitives vulnerable to quantum attackers, thus 
encouraging researchers to design and analyse new families of cryptosystems based on 
NP-hard problems, since no quantum algorithm is known to be able to efficiently solve 
them. Post-Quantum Cryptography [4] refers to the the class of cryptographic primitives 
built upon computational problems not readily solvable by quantum computers. Among 
these, of particular interest we list lattice-based, code-based and multivariate-based crypto-
systems, namely, systems whose security is intertwined with the computational complex-
ity of solving problems over lattices, e.g. the shortest vector problem (SVP) or the closest 
vector problem (CVP) [5], problems based on coding theory, e.g. the Maximum Likeli-
hood Decoding Problem (MLD) [6], and problems over polynomial ideals, e.g. the prob-
lem of deciding whether a quadratic Boolean polynomial system admits a solution, usually 
referred to as Multivariate Quadratic Problem (MQ) [7].

This massive research effort is still ongoing, as can be noticed by the wide participation 
to the NIST standardisation process for post-quantum primitives1. The round-3 finalists for 
key-encapsulation mechanisms (KEM) are Classic McEliece [8], CRYSTALS-KYBER 
[9], NTRU [10] and SABER [11], while the round-3 finalists for digital signature schemes 
are CRYSTALS-DILITHIUM [12], FALCON [13] and Rainbow [14]. Notably, the only 
round-3 finalists which are not lattice-based are Classic McEliece and Rainbow, which are, 
respectively, code-based and multivariate-based.

As briefly stated above, code-based schemes are designed by exploiting computational 
and decision problems obtained by questions arising from Coding Theory, such as for 
example the Maximum-Likelihood Decoding problem (MLD) for linear codes. Using the 
words of Guruswami and Vardy, “MLD is one of the central (perhaps, the central) algorith-
mic problems in coding theory" [15]. This problem, given here in Definition 1, has been 
proven to be NP-complete in 1978 by Berlekamp, McEliece and van Tilborg in [6], where 
the authors provide a reduction from the Three-Dimensional Matching problem for graphs 
[16]. Then, in 1990, MLD was proven to be in P/Poly by Bruck and Naor [17] and by Lob-
stein [18]. Other interesting results on the complexity of MLD were then given by several 
authors, and an interested reader can find more information in [6, 19] for the general case 
and in [15, 20–22] for specific classes of codes.

In the context of post-quantum code-based cryptography, the most famous cryptosystem 
is that proposed by McEliece in 1978 [23]. This scheme has been studied for over forty 
years, proving its resilience and security, and it was then used, together with the Nieder-
reiter scheme [24], as a building block for the NIST round-3 finalist Classic McEliece. We 
remark that the security of each of these primitives is related to both MLD and the problem 
of distinguishing between apparently-random codes and permuted versions of algebraic 
codes. In this work, we focus on the first of these two problems. A presentation of code-
based cryptography and the underlying problems can be found in the chapter Code-based 
cryptography by Overbeck and Sendrier in [4].

Before stating MLD, we provide some basics on binary linear codes. An [n, k] lin-
ear code C is a k dimensional subspace of 

(
�q

)n . The parameters n and k are called the 
length and dimension of the code. Since we are interested in binary codes, through-
out this paper we only consider the case q = 2 , hence with �  we mean �2 and we often 
omit the term binary whenever we use the term code. A codeword is any vector in the 

1 https:// csrc. nist. gov/ proje cts/ post- quant um- crypt ograp hy, accessed on 2022-01-18.

https://csrc.nist.gov/projects/post-quantum-cryptography
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code. A generator matrix G of C is a k × n matrix whose rows span C. Similarly, a 
parity-check matrix of C is a generator matrix of the dual of C. Due to this definition, 
a vector c is a codeword if and only if H ⋅ c⊤ = 0 . We recall that if G is systematic, i.e. 
G =

[
Ik ∣ R

]
 , then H =

[
−RT ∣ In−k

]
 . The (Hamming) weight of a vector v is the number 

w(v) of its nonzero components.

Definition 1 (MLD) Let H = [hi,j]i=1,…m,j=1,…,n be an m × n binary matrix, let s ∈ �
m and 

let t ≤ n be a positive integer. Decide whether there is a vector v ∈ �
n of weight at most t, 

such that Hv⊤ = s⊤.

We denote with IMLD a generic instance of MLD, determined by the triple 
IMLD = (H, s, t) . The values (n, m) determine the memory space required to store IMLD , 
indeed, we need a total of nm + m + ⌊log2 n⌋ + 1 bits to write a given instance (H, s, t). 
We call (n, m) the complexity parameters of IMLD , and �IMLD� = nm + m + ⌊log2 n⌋ + 1 
the size of IMLD . We can assume that m ≤ n , since this case has the same hardness as the 
general case.

The second problem we consider is to decide whether a multivariate-quadratic 
Boolean system admits a solution. This problem, known as the “multivariate quadratic 
equation system problem” (MQ) is linked to the security of multivariate-based crypto-
systems (e.g. Oil and Vinegar [25], Rainbow [14], GeMSS [26]).

Let I be an ideal of a polynomial ring R over a field � and let � be an extension field 
of � , we denote by

the set of all the zeroes of I in �� . V
�
(I) is called the variety of I over � . An MQ-system of 

equations over �  is a set of � polynomial equations of degree at most 2 in � [x1,… , x
�
] of 

the form:

where for every h ∈ {1,… ,�}

with � (h)
ij
, �(h)

i
, �(h) ∈ �  . The (decision) multivariate quadratic equation system problem 

(MQ) can now be stated as

Definition 2 (MQ) Consider a polynomial system S = {f1,… , f
�
} as in (1) of degree at 

most 2 over �  and let I be the ideal generated by S.
Decide whether V

�
(I) is non-empty.

We denote with IMQ a generic instance of MQ, determined by the polynomial system S. 
Similarly to the case of MLD, the values (�,�) determine the memory space required to 

V
�
(I) = {A ∈ �

� ∣ f (A) = 0 ∀f ∈ I}

(1)S =

⎧⎪⎨⎪⎩

f1(x1,… , x
�
) = 0

f2(x1,… , x
�
) = 0

⋮

f
�
(x1,… , x

�
) = 0

(2)fh(x1,… , x
�
) =

∑
1≤i<j≤�

𝛾 (h)
ij
xixj +

∑
1≤i≤�

𝜆(h)
i
xi + 𝛿(h)
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store an instance IMQ . In this case, we need a total of �
((

�

2

)
+ � + 1

)
 bits to write S. We 

call (�,�) the complexity parameters of IMQ , and |IMQ| = �

((
�

2

)
+ � + 1

)
 its size.

MQ has been proven to be NP-hard over any field [7], and many cryptosystems rely 
their security on such problem [25, 27, 28]. Several mathematical approaches have been 
employed to tackle this problem, such as the Newton and the tensor-based algorithms 
[29, 30], Gröbner bases, resultants and eigenvalues/eigenvectors of companion matrices 
[31], semidefinite relaxations [32–34], numerical homotopy [35, 36], low-rank matrix 
recovery [37], and symbolic computation [38].

The most established method to perform cryptanalysis of public-key systems is to 
focus on the algebraic problems underlying them. In this work we look at it from a 
slightly different perspective, establishing a link between MLD and MQ, and thus pro-
viding new directions in the analysis of both code-based and multivariate-based primi-
tives. More precisely, the aim of this paper is to show explicit reductions between the 
two previous problems. Since both are NP-complete problems, one might be reduced 
to the other, but it is not obvious how to do it explicitly without losing their algebraic 
nature.

MQ and MLD are problems of a purely algebraic nature, naturally stated and studied 
in the context of vector spaces and polynomial rings over �2 , the smallest possible field. 
Interestingly, their complexity and the complexity of the numerous related problems 
(including search problems) is at the heart of research for the mathematical community 
working in coding theory and cryptography. Yet, known results about their complex-
ity are obtained via techniques of a rather different nature, such as graph theory. As 
far as we know, this is the first paper that investigates their direct explicit complexity 
links, using only languages and tools familiar to standard research in coding theory and 
cryptography alike. To be more precise, we will establish in Sect. 3 an explicit reduc-
tion from MLD to MQ, while in Sect. 4 we will present a reduction from MQ to MLD. 
The remainder of this paper contains Sect. 2, where we provide preliminaries and our 
notation, Sect. 6, where we leave some open problems, and notably Sect. 5. In this latter 
section we draw some significant conclusions, among which we report our proof of the 
existence of a polynomial-time isomorphism between NP and MQ, and thus between 
code-based and multivariate-based primitives.

2  Preliminary results and definitions

Before introducing the reductions between MLD and MQ we need some preliminary 
notation. Throughout this paper we consider vectors to be row vectors, unless otherwise 
specified. Moreover, we denote with ⋅̄ each element of a set which is not a variable 
(regardless it being an element of fields or vector spaces), whereas without the nota-
tion ⋅̄ we mean variables. As an example, if f(x) is a polynomial in the variable x then 
f (x̄) is to be considered as the evaluation of f at the point x̄ . In Sect. 4, we will also use 
the notation ⋅̂  and ⋅̃  instead of ⋅̄ to distinguish between elements belonging to distinct 
spaces. As an example, in Sect. 4 we will define two distinct sets Σ̂ and Σ̃ , which are 
somewhat linked. In this case, to distinguish between their elements, we will use v̂ ∈ Σ̂ 
and ṽ ∈ Σ̃.

Let l be a positive integer. We define the map ��� ∶ 𝔽
l
→ ℤ as
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where the sum on the right-hand side is over the integers. In this way, ���(ā) is the inte-
ger value corresponding to the input vector of bits ā = (ā1,… , āl) ∈ �

l . When we regard 
a vector in � l as the binary representation of an integer, we list its bits from the least-
significant to the most-significant, e.g. if l = 4 then 3 = (1, 1, 0, 0) . From now on we will 
often use the binary representation of the parameter t of an MLD instance (H, s,  t) as a 
vector of � = ⌊log2 n⌋ + 1 bits (t1,… , t�) , and therefore we will use both w(v) ≤ t and 
w(v) ≤ ���(t1,… , t�).

Let 1 be the vector (1,… , 1) . We define the map �������� ∶ �
l
→ �

l such that, for all 
ā ≠ 1 , we have

namely, if ā =
(
ā1,… , āz,… , āl

)
 , where āz = 0 is the left-most 0 bit of ā , then

Finally, we introduce the projection and truncation maps � and � . Let i ≤ l be a non-
negative integer, and let �i ∶ �

l
→ �

l the projection defined as

for 1 ≤ i ≤ l and

Similarly, let i ≤ l be a positive integer. We define the truncation �i ∶ �
l
→ �

i as

Consider now a polynomial equation f = 0 , where f ∈ � [x1,… , xl] with 
deg(f ) = d > 2 . The goal of the algorithm described in the following fact is to reduce this 
equation to a set of equations of degree at most 2. We use an idea similar to that described 
by Kipnis and Shamir [39] in their relinearization technique.

Fact 1 Let xi1xi2 ⋯ xid be a monomial with degree d. We introduce a set of new d − 2 vari-
ables as follows

and thus rewrite xi1xi2 ⋯ xid as yd−2xid . With this procedure, a monomial of degree d is sub-
stituted by a set of d − 1 quadratic equations by introducing d − 2 variables.

By applying the same argument to each monomial of f, we obtain a system of quadratic 
equations, as required.

���(a) = ���
((
a1,… , al

))
∶=

l∑
j=1

aj ⋅ 2
j−1 ,

���(��������(ā)) = ���(ā) + 1 ,

��������(ā) =

{ (
0,… , 0, 1, āz+1,… , āl

)
if ā ≠ 1

ā if ā = 1 .

𝜋i
(
v̄1,… , v̄l

)
=
(
v̄1,… , v̄i, 0,… , 0

)

𝜋0
(
v̄1,… , v̄l

)
= (0,… , 0) .

𝜏i
(
v̄1,… , v̄l

)
=
(
v̄1,… , v̄i

)
.

⎧
⎪⎨⎪⎩

y1 = xi1xi2
y2 = y1xi3
⋮

yd−2 = yd−3xid−1
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For convenience, given a polynomial equation f = 0 we denote with �����(f ) the quad-
ratic polynomial system obtained by applying the procedure in Fact 1 to f. Similarly, given 
a polynomial system S, we denote with �����(S) the quadratic system obtained by apply-
ing the procedure to each of the polynomials in S and joining all the systems of equations, 
formally

Example 1 Let S = {f1, f2} be the polynomial system

To compute �����(S) we start with computing �����(f1) . There are two monomials 
of degree larger than 2 in f1 , namely x1x2x4 and x1x3x4 , which have degree d1 = 3 . When 
dealing with a monomial with degree d1 = 3 , as stated in Fact 1, we introduce d1 − 2 = 1 
variable and then we obtain a set of d1 − 1 = 2 quadratic equations (including the rewriting 
of the starting equation f1 = 0 in terms of the new variables).

We start from x1x2x4 , we call the new variable y1 , and we create the quadratic equation 
y1 = x1x2 . Due to this new equation, we can substitute x1x2 with y1 into f1 = 0 , obtaining

Similarly, we deal with the monomial x1x3x4 by introducing y2 = x1x3 . The system 
becomes

We proceed now with the second equation. In f2 only x1x2x3x4 has degree larger than 2, 
and in this case we need to introduce two variables z1, z2 and transform f2 = 0 into a sys-
tem of 3 quadratic equations:

Thus �����(S) = �����(f1) ∪ �����(f2) is a quadratic system equivalent to S.

Definition 3 A system of equations is said to be in standard form if

• it contains equations of the form xy + z = 0 which do not share any variable;
• it contains linear equations with up to three monomials, that is, of the form 

x + 𝛿 = 0 , x + y + 𝛿 = 0 or x + y + z + 𝛿 = 0 , with 𝛿 ∈ � ;
• each variable that appears in a linear equation appears also in exactly one quadratic 

equation;
• it does not contain any other kind of equation.

(3)�����(S) =
⋃
f∈S

�����(f ).

S =

{
f1 = x1x2x4 + x1x3x4 + x2x3 + x1 = 0

f2 = x1x2x3x4 + 1 = 0

f1 = 0 ⇔

{
y1 = x1x2
y1x4 + x1x3x4 + x2x3 + x1 = 0

�����(f1) =

⎧⎪⎨⎪⎩

y1 = x1x2
y2 = x1x3
y1x4 + y2x4 + x2x3 + x1 = 0

�����(f1) =

{
z1 = x1x2
z2 = z1x3z2x4 + 1 = 0
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In Lemma 1, we will show that any system of quadratic equations can be brought to 
standard form by adding (a bounded number of) new variables and equations. A prelimi-
nary result for the case of linear equations is the following:

Fact 2 Let us consider a linear equation with l variables

If we define yi to be the sum of the the first i variables x1 +…+ xi , then 
x1 + x2 + x3 +…+ xl = 0 is equivalent to the linear system

which has l − 2 equations, each one involving exactly three variables, and a total of 2l − 3 
variables.

2.1  Our computational model

To establish reductions’ performances between MLD and MQ we need a computational 
model that defines the computational cost of operations performed in the reduction. In our 
case, the set of operations we need in order to perform a reduction are the sum and multi-
plication in the finite field �  . The two operations can be identified with OR and AND logi-
cal operators, respectively, to which we assign cost 1. We also need to carefully consider 
the memory requirements of our method, so we assign cost 1 to every coefficient required 
to express a single polynomial. Notice that the number of bits required to completely define 
a single quadratic polynomial is approximately the square of the number of variables.

In Sect. 3 we will present a reduction � ∶ MLD → MQ , whose memory analysis will be 
based on the number of equations and variables required to describe the related polynomi-
als (i.e. the complexity parameters of the resulting MQ instance). In Sect. 4 we present a 
reduction � ∶ MQ → MLD whose memory analysis is based on the size of the generated 
parity-check matrix in the reduction (i.e. the complexity parameters of the resulting MLD 
instance).

The following lemma, together with Fact 2, implies that every instance of MQ can be 
reduced to an instance in which the polynomial system is given in standard form.

Lemma 1 Consider a polynomial system S = {f1,… , f
�
} with fi ∈ � [x1,… , x

�
] and 

deg(fi) = 2 for each i = 1,… ,� . S can be taken to standard form in O(��
2) operations.

More precisely, the number of quadratic equations is at most �
(

�(�−1)

2

)
 and the number 

of linear equations is at most �
(

3�2−�

2
− 2

)
.

x1 + x2 + x3 +…+ xl = 0 .

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 + x2 + y2 = 0

y2 + x3 + y3 = 0

y3 + x4 + y4 = 0

⋮

yl−3 + xl−2 + yl−2 = 0

yl−2 + xl−1 + xl = 0
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Proof Assume first S = {f } . In the worst case

with 𝛿 ∈ �  . Clearly, f has 
(
�

2

)
=

�(�−1)

2
 quadratic monomials xixj . As a first step, we intro-

duce 
(
�

2

)
 new variables, along with a set of 

(
�

2

)
 equations of the form xij + xixj = 0 . 

These newly introduced variables are then substituted into f, obtaining in this way a linear 
polynomial f ′ with �(�+1)

2
 variables.

Notice that the quadratic equations we just introduced share some variables xi : for 
each i, xi appears indeed in � − 1 such equations. However, our aim is to have variables in 
degree-2 monomials appearing in exactly one monomial. This is achieved in a second step 
by introducing new variables and new linear equations: if xi appears in both x1,i + x1xi = 0 
and x2,i + x2xi = 0 then we define a new variable x′

i
 and write

By doing this for all shared variables, we add a set of �(� − 1) linear equations of the 
form x�

i
+ xi = 0 , each one introducing a new variable.

With the first step we have produced a linear polynomial f ′ with �(�+1)
2

 variables. How-
ever, for the system to be in standard form, each linear equation has to involve at most three 
variables. As in Fact 2, this can be done in a third step by substituting f ′ with �(�+1)

2
− 2 

linear equations involving each one three variables, for a total of 2
(

�(�+1)

2

)
− 3 variables.

We end up with a set of �(�−1)
2

 quadratic equations and a set of 3�
2−�

2
− 2 linear equations. 

The total number of variables is 5�
2−�

2
− 3.

Now let S contain � equations. We perform the same transformation as above for each 
of them; however, the sets of quadratic equations of the polynomials might share variables. 
To solve this problem, we rename the variables of each quadratic polynomial: if the h-th 
polynomial contains the variable xk then we substitute xk with a new variable Xh,k . We also 
need to track this substitution, therefore add a new set of linear equations Xh,k + xk = 0 for 
h = 1,… ,� and k = 1,… , � . In this way, the quadratic equations do not share variables, 
and we can substitute each one of them with a system in standard form, as we did in the 
first part of this proof. As a consequence, the total number of quadratic equations is 

bounded by �
(

�(�−1)

2

)
 and the number of linear equations is at most �

(
3�2−�

2
− 2

)
 . Simi-

larly, the number of variables is bounded by �
(

5�2−�

2
− 3

)
.

Putting everything together, we obtain O(��
2) new variables and equations.   ◻

f =
∑

i<j∈{1,…,�}

xixj +
∑

i∈{1,…,�}

xi + 𝛿 ,

⎧⎪⎨⎪⎩

x1,i + x1xi = 0

x2,i + x2x
�
i
= 0

xi + x�
i
= 0 .
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3  MLD to MQ reduction

In this section, we provide an explicit reduction � , which maps an instance IMLD of the 
MLD problem to an instance IMQ of the MQ problem. More precisely, for any pair of com-
plexity parameters (n, m) we are going to define a reduction �n,m , which deals with binary 
codes of length n and dimension at least n − m.

An MLD instance IMLD = (H̄, s̄, t̄) can be thought of as the union of two requirements: 

1. parity-check constraint; the solution v̄ has to satisfy H̄v̄⊤ = s̄⊤;
2. weight constraint; the solution v̄ has to satisfy w(v̄) ≤ t̄ . To obtain our reduction, we 

split this constraint in two parts: w(v̄) = w and w ≤ t̄.

We propose three encodings, each one parametrised by the complexity parameters m 
and n of MLD, which together correspond to a reduction from MLD to MQ. Here the term 
encoding has nothing to do with the mapping of a message to a codeword, instead it is the 
the rewriting of a constraint in terms of quadratic equations. The set of quadratic Boolean 
polynomials ����n,m is the encoding of the parity-check constraint H̄v⊤ = s̄⊤ . A complete 
description is provided in Sect. 3.1. The polynomial system ����n,m , detailed in Sect. 3.2, 
corresponds to the Hamming weight computation of v̄ . The third encoding ���n,m , in 
Sect. 3.3, is a polynomial system corresponding to the weight constraint w(v) ≤ t̄.

We define the map �n,m = ����n,m ∪ ����n,m ∪ ���n,m , where we mean that, given a specific 

instance IMLD = (H̄, s̄, t̄) , the actual reduction is given by IMQ = 𝛼
n,m

(IMLD) = ����
n,m

(H̄, s̄, t̄)

∪����
n,m

(H̄, s̄, t̄) ∪ ���
n,m

(H̄, s̄, t̄).

Observe that �n,m is a system of polynomial equations depending only on n and m, and 
whose evaluation on a specific MLD instance gives us an MQ instance.

3.1  Parity‑check constraint encoding

We claim that the parity-check matrix constraint Hv⊤ = s is equivalent to a set of m linear 
equations corresponding to polynomials

of the form fi =
∑n

j=1
hi,jvj + si . Indeed, H̄v̄⊤ = s̄ if and only if fi(H̄, v̄, s̄) = 0 for every 

1 ≤ i ≤ m . Thus, we can define ����n,m as

and so

Observe that fi(H̄, v, s̄) belongs to � [v1,… , vn].
We explicitly state the following trivial result for completeness.

Lemma 2 Let IMLD be an instance with complexity parameters n and m. Then, 
����n,m(IMLD) contains m linear equations in n variables.

fi ∈ � [hi,1,… , hi,n, v1,… , vn, si]

{fi = 0}i=1,…,m ,

����n,m(H̄, s̄, t̄) = {fi(H̄, v, s̄) = 0}i=1,…,m .
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3.2  Weight‑computation encoding

Let v̄ ∈ �
n and � = ⌊log2(n)⌋ + 1 , so that the weight of a length-n vector can be written 

as a length-� vector. For i = 0,… , n and j = 1,… ,� we want to define some functions 
a(i) ∶ �

n
→ �

� and their component functions a(i)(v̄) = (a
(i)

1
(v̄),… , a

(i)

�
(v̄)) ∈ �

� . We set 
a(0)(v̄) = (0,… , 0) for any v̄ (for convenience), and we define a(i) recursively for i = 1,… , n 
by computing its coefficients a(i)

j
 as the polynomials in � [v1,… , vn] = � [v]

The following lemma and theorem prove that a(i)(v̄) is the implementation of a coun-
ter that stores the Hamming weight of v̄ until the i-th coordinate.

Lemma 3 Let 0 ≤ k ≤ n − 1 . If v̄k+1 = 1 then a(k+1)(v̄) = ��������(a(k)(v̄)) . If v̄k+1 = 0 then 
a(k+1)(v̄) = a(k)(v̄).

Proof Let a(k)
z
(v̄) be the leftmost 0 in a(k)(v̄) , 1 ≤ z ≤ � , and let Λ ∈ ℕ . Observe that

We start with the case v̄k+1 = 1 and we compute a(k+1)
j

(v̄) according to the value of j.

• if 1 ≤ j ≤ z − 1 then a(k+1)
j

(v̄) = a
(k)

j
(v̄) +

�∏j−1

h=1
a
(k)

h
(v̄)

�
v̄k+1 = 1 + (1) ⋅ 1 = 0;

• if j = z we have a(k+1)
z

(v̄) = a(k)
z
(v̄) +

�∏z−1

h=1
a
(k)

h
(v̄)

�
⋅ 1 = 0 + (1) ⋅ 1 = 1;

• if j ≥ z + 1 then a(k+1)
j

(v̄) = a
(k)

j
(v̄) +

�∏j−1

h=1
a
(k)

h
(v̄)

�
⋅ 1 = a

(k)

j
(v̄) + (0) ⋅ 1 = a

(k)

j
(v̄).

The procedure we described flips every 1-bit (until the (z − 1)-th bit) and the first 
0-bit, while leaving all the other bits unchanged, which is the behaviour of the function 
��������().

The second possible case is v̄k+1 = 0 . Observe that, regardless of j, the value a(k+1)
j

(v̄) is 
given by

which, since v̄k+1 = 0 , is simply

  ◻

a
(i)

j
(v) = a

(i−1)

j
(v) +

(
j−1∏
h=1

a
(i−1)

h
(v)

)
vi .

Λ∏
h=1

a
(k)

h
=

{
1 if Λ < z

0 otherwise.

a
(k+1)

j
(v̄) = a

(k)

j
(v̄) +

(
j−1∏
h=1

a
(k)

h
(v̄)

)
v̄k+1 ,

a
(k+1)

j
(v̄) = a

(k)

j
(v̄) +

(
j−1∏
h=1

a
(k)

h
(v̄)

)
⋅ 0 = a

(k)

j
(v̄) .
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Theorem 4 Let v̄ ∈ �
n and let 1 ≤ i ≤ n . Then

Proof We proceed by induction on i. Let i = 1 , then a(1)
1
(v̄) = a

(0)

1
(v̄) + v̄1 = v̄1 , while 

a
(1)

j
(v̄) = 0 + 0 ⋅ 0 = 0 for every j = 2,… ,� . Therefore ���(a(1)(v̄)) = ���(v̄

1
, 0,… , 0)

= w(𝜋
1
(v̄)).

Assume that ���(a(i)(v̄)) = w(𝜋i(v̄)) holds for a certain value of 1 ≤ i ≤ n − 1 , then 
we are going to prove ���(a(i+1)(v̄)) = w(𝜋i+1(v̄)) . We have two cases: either v̄i+1 = 0 or 
v̄i+1 = 1 . 

1. If v̄i+1 = 0 then by Lemma 3 a(i+1)(v̄) = a(i)(v̄) , in accordance with 𝜋i+1(v̄) = 𝜋i(v̄).
2. If v̄i+1 = 1 then, by Lemma 3, we have a(i+1)(v̄) = ��������(a(i)(v̄)) and therefore 

���(a(i+1)(v̄)) = ���(��������(a(i)(v̄))) = ���(a(i)(v̄)) + 1 = w(𝜋i(v̄)) + 1 = w(𝜋i+1(v̄)) , 
where the last equality comes from obvious properties of weights.

  ◻

The following corollary states that the Hamming weight of a vector v̄ ∈ �
n is exactly 

the integer represented by the vector 
(
a
(n)

1
(v̄),… , a

(n)

�
(v̄)

)
.

Corollary 5 Let v̄ ∈ �
n then

Proof It follows from Theorem 4 by noticing that 𝜋n(v̄) = (v̄1,… , v̄n) = v̄ .   ◻

Observe that, for 1 ≤ j ≤ � and for any 1 ≤ i ≤ n , Formula (4) is an equation of 
degree j of the form x + y +M = 0 where M is a degree-j monomial. By using the pro-
cedure described in Remark 1 each equation can be reduced to a system of less than � 
quadratic equations by adding less than � new variables. Indeed, �����(x + y +M = 0) 
is a quadratic system with j − 1 < � equations in j − 2 < � variables.

By performing this procedure to each of n ⋅ 𝓁 equations we obtain a system of quad-
ratic equations. We remark that many variables were shared between equations, so there 
are several possible optimisations to be applied instead of applying �����() to each Eq. 
(4). However, since the degree of each Eq. (4) is bounded by � , even without optimising 
the procedure, we end up with a system with a manageable number of quadratic equa-
tions, as stated by the following lemma.

Lemma 6 The number of quadratic equations in

w(𝜋i(v̄)) = ���

(
a
(i)

1
(v̄),… , a

(i)

�
(v̄)

)
.

(4)w(v̄) = ���

(
a
(n)

1
(v̄),… , a

(n)

�
(v̄)

)

�����

⎛⎜⎜⎝

�
a
(i)

j
= a

(i−1)

j
+

�
j−1�
h=1

a
(i−1)

h

�
vi

�

i=1,…,n, j=1,…,�

⎞⎟⎟⎠



978 A. Meneghetti et al.

1 3

is O(n�2 ). The total number of variables is O(n�2).

Proof Each of the n� equations is transformed into a set of less than � quadratic equations 
by adding less than � variables.   ◻

We are finally ready to construct the set of equations corresponding to the (Hamming) 
weight-computation encoding, which contains the polynomials corresponding to the 
weight-computation procedure depicted in this section. We define

where the variables a(i)
j

 obviously play the role of the previously defined functions. From 
Theorem 4 and Corollary 5, it follows that by evaluating ����n,m at v̄ we obtain the vector 
(a

(n)

1
(v̄),… , a

(n)

�
(v̄)) containing the binary expansion of w(v̄).

3.3  Weight constraint encoding

The idea for the construction of this encoding is the definition of a quadratic Boolean poly-
nomial capable of comparing two Boolean vectors according to the values of these two 
vectors when seen as integers. More precisely, in this section we construct a polynomial 
whose evaluation at a pair of Boolean vectors ū and v̄ is 0 if and only if ���(ū) ≤ ���(v̄) . 
For the sake of completeness, we define the claimed polynomial for a more general situa-
tion, and in the end we specify the parameters useful in the context of our reduction from 
MLD to MQ.

Consider two binary vectors ū, v̄ ∈ �
l , where the most significant bits are ūl and v̄l , 

respectively. To compare the integers associated to ū and v̄ we can follow the following 
procedure, which outputs 0 when ���(ū) ≤ ���(v̄) and 1 otherwise, starting from j = l:

• if ūj = v̄j , then we move to the next bits ūj−1 and v̄j−1;
• if ūj ≠ v̄j , we output ūj , since ���(ū) ≤ ���(v̄) if ūj = 0;
• if we reach j = 1 and ū1 = v̄1 , then we output 0.

We make use of this procedure to define a polynomial F ∈ � [u1,… , ul, v1,… , vl] such 
that

Define gh(u, v) = (uh + vh) ∈ � [uh, vh] for every h = 1,… , l and notice that gh(ū, v̄) = 0 
if and only if ūh = v̄h . Moreover, for j = 1,… , l , define the polynomials

����n,m = �����

⎛⎜⎜⎝

�
a
(i)

j
= a

(i−1)

j
+

�
j−1�
h=1

a
(i−1)

h

�
vi

�

i=1,…,n, j=1,…,�

⎞⎟⎟⎠
,

(5)F(ū, v̄) =

{
0 if ���(ū) ≤ ���(v̄)

1 if ���(ū) > ���(v̄) .

(6)fj = gj

l∏
h=j+1

(gh + 1) ,
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where fj ∈ � [u1,… , ul, v1,… , vl] . Clearly in the special case j = l we have fl = gl . 
Observe that the degree of fj is l − j + 1.

Given two vectors ū, v̄ ∈ �
l , the purpose of the set of polynomials {fj}lj=1 in (6) is to 

locate the most significant bit in which ū and v̄ differ. We prove this in the following 
lemmas.

Lemma 7 Let ū, v̄ ∈ �
l , then fj(ū, v̄) = 1 for at most one value of j.

Proof Assume by contradiction that fj(ū, v̄) = fi(ū, v̄) = 1 for i ≠ j . We can assume, with-

out loss of generality, that i < j . By construction of fj we must have that gj(ū, v̄) = 1 . But 

(gj + 1) ∣ fi since i < j , (gj + 1)(ū, v̄) = 0 , and therefore fi(ū, v̄) = 0 , which is a contradic-

tion.   ◻

Lemma 8 Let ū, v̄ ∈ �
l , then fj(ū, v̄) = 0 ∀ j = 1,… , l if and only if ū = v̄.

Proof We show the first implication. Since fl(ū, v̄) = gl(ū, v̄) = 0 , then ūl = v̄l.

We claim that, for any 1 ≤ k ≤ l − 1 , ūk is equal to v̄k , provided that ūh = v̄h for any 

k + 1 ≤ h ≤ l . Notice that (gh + 1) ∣ fk for every value h = k + 1,… , l . Since ūh = v̄h then 

(gh + 1)(ū, v̄) = 1 , for h = k + 1,… , l . This implies 0 = fk(ū, v̄) = gk(ū, v̄) ⋅ 1 = ūk + v̄k and 

therefore ūk = v̄k.

The first implication follows by an iterated application of our claim from k = l − 1 until 

k = 1.

As regards the second implication, ū = v̄ implies ūj = v̄j for every j = 1,… , l , and so 

gj(ū, v̄) = 0 . Observe also that, by construction in (6), gj ∣ fj for every j = 1,… , l , which 

forces fj(ū, v̄) = 0 .   ◻

Lemma 9 Let ū, v̄ ∈ �
l with ū ≠ v̄ , then there exists a unique j such that fj(ū, v̄) = 1 . Moreo-

ver ūj ≠ v̄j while ūk = v̄k for every k = j + 1,… , l.

Proof If ū ≠ v̄ then there exists j such that ūj ≠ v̄j . Let j be such that ūj ≠ v̄j and ūk = v̄k 

for every k > j . This implies (gk + 1)(ū, v̄) = 1 for each k > j , as well as gj(ū, v̄) = 1 , thus 

fj(ū, v̄) = 1 . The uniqueness of j follows from Lemma 7.

For the second part of the statement, if there exists k > j such that ūk ≠ v̄k , then 

gk(ūk, v̄k) = 1 . However, (gk + 1) ∣ fj and (gk + 1)(ū, v̄) = 0 imply fj(ū, v̄) = 0 , which is a 

contradiction.   ◻

We are ready to define our function F as in Eq. (5).



980 A. Meneghetti et al.

1 3

Proposition 10 Let F =
∑l

j=1
fj ⋅ (vj + 1) ∈ � [u1,… , ul, v1,… , vl] and let ū, v̄ ∈ �

l . Then 

F(ū, v̄) = 0 if and only if ���(ū) ≤ ���(v̄).

Proof We have two cases: either fj(ū, v̄) = 0 for every value j = 1,… , l , or there exists a 

(by Lemma 9) unique k such that fk(ū, v̄) = 1.

The first case, due to Lemma 8, is equivalent to ū = v̄ and thus it corresponds to the 

equality ���(ū) = ���(v̄) . By definition of F, the first case also implies F(ū, v̄) = 0.

We have proved that ���(ū) = ���(v̄) implies F(ū, v̄) = 0 , while F(ū, v̄) = 0 implies 

either that ���(ū) = ���(v̄) or that we are not in the first case.

In the second case, let fk(ū, v̄) = 1 for a certain value k. Lemma 8 implies that 

���(ū) ≠ ���(v̄) , and by Lemma 9 we have ūj = v̄j for k + 1 ≤ j ≤ l and ūk ≠ v̄k.

If ūk = 0 and v̄k = 1 , then ���(ū) < ���(v̄) and

If instead ūk = 1 and v̄k = 0 , then ���(ū) > ���(v̄) and

Either way, if ���(ū) ≠ ���(v̄) then F(ū, v̄) = 0 if and only if ���(ū) < ���(v̄) .   ◻

Observe that the degree of F is equal to deg(f1) + 1 = l + 1 . Observe also that the degree 
of f evaluated at v̄1,… , v̄l , which is a polynomial in � [u1,… , ul] , is at most l.

Let IMLD = (H̄, s̄, t̄) , let v̄ be a vector for which H̄v̄⊤ = s̄⊤ and let t̄ = (t̄1,… , t̄�) . We 
recall that in Sect. 3.2 we defined a set of � Boolean functions a(n)

1
,… , a

(n)

�
 representing the 

weight of a length-n vector v, i.e. by Corollary 5���(a(n)
1
(v̄),… , a

(n)

�
(v̄)) = w(v̄).

Then, by Corollary 5 and Proposition 10,

if and only if

Let us consider the following polynomial

which is obtained by rewriting F in the variables a(n)
1
,… , a

(n)

�
 and in (the new variables 

of) t1,… , t� . Clearly, F�(a
(n)

1
,… , a

(n)

�
, t1,… , t�) = 0 encodes the constraint w(v̄) ≤ ���(t̄) . 

Obviously, the degree of F�(a
(n)

1
,… , a

(n)

�
, t̄1,… , t̄�) ∈ � [a

(n)

1
,… , a

(n)

�
] is at most � . By 

applying the map �����() to F� (see Remark 1) we obtain the system of quadratic equations

F(ū, v̄) =
∑
j≠k

fj(ū, v̄) ⋅ (v̄j + 1) + fk(ū, v̄) ⋅ (v̄k + 1) =
∑
j≠k

0 ⋅ (v̄j + 1) + 1 ⋅ (v̄k + 1) = v̄k + 1 = 0 .

F(ū, v̄) =
∑
j≠k

fj(ū, v̄) ⋅ (v̄j + 1) + fk(ū, v̄) ⋅ (v̄k + 1) =
∑
j≠k

0 ⋅ (v̄j + 1) + 1 ⋅ (v̄k + 1) = v̄k + 1 = 1 .

F

(
a
(n)

1
(v̄),… , a

(n)

�
(v̄), t̄

1
,… , t̄�

)
= 0

w(v̄) ≤ ���(t̄) .

F� ∈ �

[
a
(n)

1
,… , a

(n)

�
, t
1
,… , t�

]
,
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Lemma 11 ���n,m(IMLD) is a system of O(n�) quadratic equations in O(n�) variables.

Proof Since the degree of F� is at most � and the size of its support, i.e. the number of 
monomials, is at most 2� , by applying �����() we obtain a system with at most 2�� equa-
tions in 2�� variables. However, 2� ≤ 2n , and so the system contains O(n�) equations in 
O(n�) variables.   ◻

3.4  MLD to MQ

By combining the results of Sects. 3.1, 3.2 and 3.3, we construct the reduction �n,m , a func-
tion mapping MLD instances to MQ instances.

Theorem 12 Let IMLD = (H̄, s̄, t̄) and let �n,m ∶ MLD → MQ be defined by

If ū is a witness of �n,m(IMLD) then it is also a witness of IMLD.

Proof By ordering the variables according to their first appearance in this paper, the first n 
variables in �n,m(IMLD) are v1,… , vn and the first n bits of a witness u for �n,m(IMLD) are the 
values v̄1,… , v̄n . Let us call v̄ = (v̄1,… , v̄n).

The set ����n,m(H̄, s̄, t̄) contains only equations in the variables v1,… , vn . Therefore, 
since ū is a witness for �n,m(IMLD) , we have f (ū) = 0 for f ∈ ����n,m(H̄, s̄, t̄) , meaning that 
H̄v̄⊤ = s̄.

From Corollary 5, we can use the polynomials in ����n,m(H̄, s̄, t̄) to compute a binary 
expansion of the weight of w(v̄) . More precisely, we have that

Finally, since F�

(
a
(n)

1
(v̄),… , a

(n)

l
(v̄), t̄

)
= 0 , by Proposition 10 we have w(v̄) ≤ ���(t̄) .  

 ◻

Theorem  13 Let (n,  m) be the complexity parameters of IMLD and let IMQ = �n,m(IMLD) . 
Then, the complexity parameters (�,�) of IMQ are in O(n log2

2
n).

Proof We analyse the 3 sub-problems separately.

• According to Lemma 2, ����n,m(IMLD) is a linear system with m equations and n vari-
ables.

• As described by Lemma 6, ����n,m(IMLD) is a quadratic system of O(n�2) equations in 
O(n�2) variables.

• In the weight-constraint step described in Sect.  3.3, we introduce a quadratic system 
���n,m(IMLD) containing O(n�) equations and variables, as stated in Lemma 11.

���n,m = �����
(
{F�}

)
.

𝛼n,m(H̄, s̄, t̄) = ����n,m(H̄, s̄, t̄) ∪ ����n,m(H̄, s̄, t̄) ∪ ���n,m(H̄, s̄, t̄) ;

���

(
a
(n)

1
(v̄),… , a

(n)

l
(v̄)

)
= w(v̄) .
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By putting everything together we can compute the complexity parameters (�,�) of 
�n,m(IMLD) .   ◻

4  MQ to MLD reduction

In this section we construct a reduction � ∶ MQ → MLD . We consider a general system 
of equations and we take it to standard form S, as defined in Definition 3, by using the 
procedure hinted in the Proof of Lemma 1. The result of the process will be an instance 
�(IMQ) = (H, s, t) ∈ MLD , with H ∈ �

m×n for some m, n, t ∈ ℤ
+ , s ∈ �

m . The key idea is 
to regard the two different types of equations in S separately. First we create one part of the 
MLD instance according to the quadratic equations in S, and then we complete the work by 
integrating the linear ones. We also build a transformation that takes as input a solution of 
�(IMQ) and outputs a solution of IMQ , proving that � is actually a reduction between the two 
problems.

4.1  Quadratic equations

Consider a system S containing solely the equation xy + z = 0 and let I = ⟨xy + z⟩ ⊂ � [x, y, z] 
be the principal ideal generated by S. The associated variety V

�
(I) ⊂ �

3 is

Lemma 14 Let Ĉ be the linear code generated by the generator matrix

let

let Σ̂ be the coset �𝜖 + �C ⊆ �
10 and let v ∈ Σ̂.

Then, v has weight at most 3 if and only if �3(v) ∈ V
�
(I) as in (7).

Proof It follows by direct inspection of the 8 vectors in Σ̂ .   ◻

The truncation map present in the statement of the previous Lemma, �3 ∶ �
10

→ �
3 defined 

as 𝜏3(v̄1, v̄2, v̄3, v̄4, v̄5, v̄6, v̄7, v̄8, v̄9, v̄10) = (v̄1, v̄2, v̄3) , can be represented in matrix form as

where �3 is the identity matrix of dimension 3 and � is the 3 × 7 zero matrix, namely

(7)V
�
(I) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

(8)Ĝ =

⎡⎢⎢⎣

1 0 0 1 1 0 0 1 1 1

0 1 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

⎤⎥⎥⎦
,

�̂ = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) ,

M�3
=

[
�3

�

]
,
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Proposition 15 Let Ĥ be a parity-check matrix for the code Ĉ generated by Ĝ as defined 
in Lemma 14, let �s = �H ⋅ �𝜖⊤ and let t̂ = 3 . Let �W ⊂ �Σ be the set of witnesses of the MLD 
instance IMLD = ( Ĥ, ŝ, t̂ ) and let V

�
(I) be as in (7). Then V

�
(I) = �3(Ŵ).

Proof It follows by Lemma 14 and the well-known bijection between cosets and syndromes 
(once the parity-check matrix has been chosen).   ◻

Remark 1 The witnesses of the MLD instance ( Ĥ, ŝ, t̂ ) we constructed, i.e. solutions of 
�Hv⊤ = �s⊤ with weight at most t̂ = 3 , have Hamming weight exactly 3, which is the weight 
of any coset leader (e.g. �̂  ). Notice that the remaining solutions of �Hv⊤ = �s⊤ have weight 
at least 5. This gap in the weight is crucial for the generalisation we are going to give next.

We now extend the construction in Proposition 15 to a standard-form system S that con-
tains more than one quadratic equation. Assume that S contains q quadratic equations fi ’s of 
the form xiyi + zi = 0 , for i = 1,… , q . Recall that by Definition 3, such equations do not share 
any variable with each other. Consider the ideal J = ⟨f1,… fq⟩ ⊂ � [{xi, yi, zi}i=1,…,q] . The 
variety V

�
(J) can be seen as

where V
�
(I) is as in (7). To address the case of standard-form systems consisting of only 

quadratic equations, we construct a new parity-check matrix as the diagonal block matrix 
H̃ of size 7q × 10q

where Ĥ is a parity-check matrix for the code generated by Ĝ in Eq. (8). Obviously, the null 
space of H̃ is the direct product of q copies of Ĉ , i.e.

Define Σ̃ =

q

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Σ̂ × Σ̂ ×⋯ × Σ̂ , t̃ = 3q and �̃ = (

q

⏞⏞⏞⏞⏞⏞⏞⏞⏞
�̂‖�̂‖⋯ ‖�̂ ) where ‖ denotes vector con-

catenation. With this setting, for any ṽ ∈ Σ̃ , we can write ṽ =
�
v̂(1)‖v̂(2)‖⋯ ‖v̂(q)� with 

v̂(i) ∈ Σ̂ for any i. In the following lemma Ŵ  is the set of vectors in Σ̂ with weight at 

most t̂  , as defined in Proposition 15.

Lemma 16 Let W̃ = {v̂ ∈ Σ̃ ∣ w(̂v) ≤ t̃} . Then W̃ = Ŵ × Ŵ ×⋯ × Ŵ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

q

.

𝜏3(v̄) = v̄M𝜏3
.

(9)
V
�
(J) = V

�
(I) × V

�
(I) ×⋯ × V

�
(I)

�������������������������������������
q

⊂ �
3q ,

H̃ =

⎡⎢⎢⎣

Ĥ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Ĥ

⎤⎥⎥⎦
,

�C × �C ×⋯ × �C
�����������������

q

⊂ �
10q .
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Proof Notice that, by Remark 1, w(̂v) = t̂ = 3 for every v̂ ∈ Ŵ . So w(�v) = t̃ = 3q for every 

ṽ ∈ Ŵ × Ŵ ×⋯ × Ŵ . Therefore �W ⊇ �W × �W ×⋯ × �W.

To prove the other inclusion consider ṽ ∈ W̃.

Then ṽ can be written as a concatenation of q vectors in Σ̂ and, by Remark 1, each of 

such vectors has Hamming weight at least 3, and w(̃v) =
∑q

i=1
w(̂v(i)) . If there is a v̂(i) with 

weight more than 3, then the weight of ṽ is strictly larger that 3q. Therefore, all v̂(i) must 

have weight exactly 3. This proves �W ⊆ �W × �W ×⋯ × �W .   ◻

Consider the truncation map � ∶ �
10q

→ �
3q whose matrix representation is

The following lemma proves a useful property of � that comes at hand to prove the sub-
sequent theorem.

Lemma 17 Let ṽ ∈ Σ̃ then � (̃v) =
(
�3 (̂v

(1)),… , �3 (̂v
(q))

)
 where v̂(i) ∈ Σ̂ for every i = 1,… , q

.

Proof Considering the matrix representation of � , we obtain

  ◻

Proposition 18 Set �s = �H�𝜖⊤ , then W̃ solves the MLD instance 
(
H̃, s̃, t̃

)
 . Moreover 

V
�
(J) = �(W̃).

Proof We need to prove that given ṽ ∈ W̃ it holds �H�v⊤ = �s  and w(̃v) ≤ t̃  . The null space of 
H̃ is �H⊥ = �C × �C ×⋯ × �C . Observe that

(10)M� =

⎡⎢⎢⎣

M�3
⋯ 0

⋮ ⋱ ⋮

0 ⋯ M�3

⎤⎥⎥⎦
.

� (̃v) = ṽM�

=
�
v̂(1)‖⋯ ‖v̂(q)�

⎡⎢⎢⎣

M�3
⋯ 0

⋮ ⋱ ⋮

0 ⋯ M�3

⎤⎥⎥⎦
=
�
v̂(1)M�3

,… , v̂(q)M�3

�

=
�
�3 (̂v

(1)),… , �3 (̂v
(q))

�
.

�Σ = �Σ × �Σ ×⋯ × �Σ

=
(
�C + �𝜖

)
×
(
�C + �𝜖

)
×⋯ ×

(
�C + �𝜖

)

=
(
�C × �C ×⋯ × �C

)
+ �𝜖

= �H⊥ + �𝜖 = {v + �𝜖 ∣ v ∈ �C × �C ×⋯ × �C}
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Therefore, for every ṽ ∈ Σ̃ , we have �H⊥�v⊤ = �H⊥�v⊤ + �H⊥�𝜖⊤ = �s  . Considering 
�v ∈ �W ⊂ �Σ we also obtain w(̃v) ≤ t̃ .

For the second claim we have, by Lemmas 16 and 17, that

where the last two equalities hold due to Proposition 15 and Eq. (9).   ◻

4.2  Linear equations

Let S be a standard-form system containing q quadratic equations. Due to Definition 3, S 
is a system in exactly 3q variables. We can thus write S ⊂ � [x1,… , x3q].

Remark 2 Consider a linear polynomial f in � [x1,… , x3q] for some value of q ∈ ℤ
+ . We can 

write f =
∑3q

i=1
aixi + � and define the vector of its coefficients af = (a1,… , a3q) ∈ �

3q . 
Notice that the vector af  contains only the coefficients of x1,… , x3q and not the term � . With 
this notation we observe that w̄ ∈ �

3q belongs to V
�
(⟨f ⟩) if and only if the product w̄ ⋅ a⊤

f
= 𝛿.

The reduction introduced in Sect. 4.1 deals with standard-form systems that include 
only quadratic equations. This reduction is formalised in Proposition 18 as a map taking 
as input a system of q equations in 3q variables and outputting an MLD instance cor-
responding to a 3q × 10q parity-check matrix. To deal with linear equations we need a 
map � sending a linear polynomial in � [x1,… , x3q] to a vector in � 10q . We define � as

with M� as in (10).

Example 2 Assume q = 2 , then we are working in � [x1,… , x6] . Let f = x1 + x3 + x5 and 
af = (1, 0, 1, 0, 1, 0) . Since q = 2 then M⊤

𝜏  is the matrix

We obtain

The following lemma will be used to prove the correctness of our reduction.

Lemma 19 Let f =
∑3q

i=1
aixi + � ∈ � [x1,… , x3q] be a linear polynomial. Let ṽ ∈ �

10q . 
�v ⋅ 𝜈(f )⊤ = 𝛿 if and only if � (̃v) ∈ V

�
(⟨f ⟩).

�
(
W̃
)
= �

(
Ŵ × Ŵ ×⋯ × Ŵ

)

= �3(Ŵ) × … × �3(Ŵ)

= V
�
(I) × V

�
(I) ×⋯ × V

�
(I)

= V
�
(J) ,

𝜈(f ) = afM
⊤
𝜏 ,

M⊤
𝜏 =

[
�3 � � �

� � �3 �

]
.

𝜈(f ) = afM
⊤
𝜏 = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
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Proof By Remark 2, observing that

  ◻

We construct now the MLD instance (H, s, t) for a general MQ system. The basic 
idea is to see the parity-check matrix H̃ we built so far as a matrix of coefficients for an 
equation system. Adding rows to the matrix means adding new equations to the system 

and thus reducing the solution space. Consider a standard-form system S ∈ � [x1,… , x3q] 

containing q quadratic equations and � linear equations, as in Definition 3. Let K = ⟨S⟩ 
and V

�
(K) ⊂ �

10q be its variety. Denote by SQ ⊂ S the subset of quadratic equations in S, 

and by ⟨SQ⟩ the ideal generated by it.

Let also 
(
H̃, s̃, t̃

)
 be the MLD instance corresponding to SQ . Let {f1,… , f𝜆} ⊂ S be the 

set of linear equations of S. We build a parity-check matrix H as follows

Consider the following syndrome vector

where fi(0) = �i for any i, and set t = t̃ = 3q.
Consider furthermore the set W = {�v ∈ �W ∣ �v ⋅ 𝜈(fi)

⊤ = 𝛿i ∀i = 1,… , 𝜆} ⊂ �W.

Theorem  20 W is the set of witnesses for the MLD instance (H, s, t) . Moreover 
V
�
(K) = �(W).

Proof We need to prove that given ṽ ∈ W it holds H�v⊤ = s⊤ and w(̃v) ≤ t . By definition 
of W, we obtain that ṽ ∈ W implies ṽ ∈ W̃ , which means w(̃v) ≤ t̃  and also �H�v⊤ = �s⊤ . 
Moreover we have �v ⋅ 𝜈(fi)⊤ = 𝛿i for every i = 1,… , � implying

Due to Lemma 19 we have � (̃v) ∈ V
�
(⟨fi⟩) for i = 1,… , � . Therefore � (̃v) ∈

⋂�
i=1

V
�
(⟨f

i
⟩) = V

�
(⟨f

1
,… , f�⟩) . Since by Proposition 18 we have � (̃v) ∈ V

�
(Sq) , then 

� (̃v) ∈ V
�
(⟨Sq⟩) ∩ V

�
(⟨f1,… , f�⟩) = V

�
(⟨S⟩) = V

�
(K).

On the other hand let z ∈ V
�
(⟨K⟩) = V

�
(⟨Sq⟩) ∩ V

�
(⟨f

1
,… , f�⟩) = �(W̃) ∩ V

�
(⟨f

1
,… ,

f𝜆⟩) ⊆ 𝜏( �W) , where the last equality comes from Proposition 18. Therefore there exists 

�v ⋅ 𝜈(f )⊤ = �v ⋅
(
afM

⊤
𝜏

)⊤
= �vM𝜏a

⊤
f
=
(
�vM𝜏

)
⋅ a⊤

f
= 𝜏(�v) ⋅ a⊤

f
= f (𝜏(�v)) .

(11)H =

⎡
⎢⎢⎢⎣

H̃

�(f1)
⋮

�(f�)

⎤
⎥⎥⎥⎦
∈ �

(7q+�)×10q

s = s̃‖�1‖⋯ ‖�� ,

⎡
⎢⎢⎢⎣

�H
𝜈(f1)
⋮

𝜈(f𝜆)

⎤
⎥⎥⎥⎦
�v⊤ =

⎛
⎜⎜⎜⎝

�s
𝛿1
⋮

𝛿𝜆

⎞
⎟⎟⎟⎠
= s⊤ .
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z� ∈ �(W̃) such that z = �(z�) . Since afi ⋅ z
⊤ = afi ⋅ 𝜏(z

�)⊤ = 𝛿i for every i = 1,… , � , this 
implies 𝜈(afi ) ⋅ z

�⊤ = 𝛿i and therefore z ∈ �(W) .   ◻

We can now define the map � ∶ MQ → MLD as follows

where H, s and t are as in Theorem 20. We now prove that a witness of such instance can 
be transformed into a witness of S by applying the truncation �.

Theorem  21 Let IMQ = S where S is a standard form system of quadratic equations. If 
ṽ ∈ �

10q is a solution of �(IMQ) then � (̃v) is a solution of IMQ.

Proof Let K = ⟨S⟩ and apply Theorem 20. If ṽ solves �(IMQ) = (H, s, t) then � (̃v) ∈ V
�
(K) , 

i.e. � (̃v) is a solution of S.   ◻

Theorem 22 Given a MQ system S ∈ � [x1,… , x
�
] consisting of � equations, the reduction 

� runs in polynomial space bounded by O(�4�2).

Proof Recall that by Lemma 1 we can transform S into a standard form system S′ in O(�2�) 
operations. This process produces S� = S�

Q
∪ S�

L
 where S′

Q
 and S′

L
 are sets of quadratic and 

linear equations, namely. Let q = |S�
Q
| ≤ �

(
�(�−1)

2

)
≤ ��

2 and � = |S�
L
| ≤ �

(
3�

2−�

2
− 2

)
≤

3

2
��

2 . We estimate only the construction of the matrix H since s and t have a significant 

smaller size.
The matrix H generated via � has dimension (7q + �) × 10q as in (11), therefore it takes 

space at most

  ◻

5  Conclusions

In this work we introduced two polynomial-time reductions: � , from MLD to MQ, and � , 
from MQ to MLD. Therefore, the composition of � and � is a polynomial-time auto-reduc-
tion in MLD , while �◦� is a polynomial-time auto-reduction in MQ . Hence each MLD 
instance can be solved if we are able to solve each MLD instance defined by �◦� and even 
more so if we are able to solve those defined by � . Similarly, each MQ instance can be 
solved if we are able to solve each MQ instance defined by �◦� , or even only defined by 
� . So if we can decide in polynomial time the existence of solutions for all systems in the 
image of � , then we can solve MQ in polynomial time. Notice that the same property holds 

�(S) = (H, s, t)

(
7(��

2
)
+

3

2
��

2) ⋅ 10��
2 = 85�

2
�
4 ∈ O(�2

�
4).
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for systems in standard form. So we can identify two families of systems which play a spe-
cial role in the MQ problem: one is classical and the other comes from our reduction.

In the case of MLD there exist families of codes that plays a similar role in the MLD 
context, for example the one obtained via the reductions in [6] and the one obtained with 
our results. We can formalise this in the following theorem.

Theorem 23 Let C be the family of codes defined by parity-check matrices as in (11).

If we can solve all MLD instances for C in polynomial time, then we can solve in polyno-
mial time all instances of MLD, and so, P=NP.

Regarding the relation between MLD and MQ, we remark that two NP-complete prob-
lems might be not isomorphic (see [40] for a formal definition of polynomial-time iso-
morphism and for the Berman-Hartmanis conjecture on isomorphic NP problems). We 
rephrase here [40,  Th.1] since it is needed in our subsequent discussion.

Theorem 24 ([40,  Th.1]) If there are two length-increasing invertible p-reductions, one of 
A to B and the other of B to A, then A and B are isomorphic.

In our case A and B are MLD and MQ, while the two reductions are � and � , which are 
polynomial-time length-increasing reductions. However, only � can be inverted, since � 
requires the reduction in MQ instances into standard-form systems (a many-to-one reduc-
tion), hence the hypotheses of Theorem 24 are not completely satisfied. To obtain a one-to-
one reduction from MQ to MLD, we can modify the definition of standard-form systems 
by adding new equations containing the information about the original MQ instance. For 

example, we can consider an additional set of �
((

�

2

)
+ � + 1

)
 equations and new varia-

bles of the form

namely, these equations specify the monomials’ coefficients of the polynomials in the orig-
inal MQ instance (see (2)).

Once we modify the definition of standard-form instance (and � accordingly), we obtain 
a one-to-one reduction from MQ to MLD. In this way both � and � satisfy the hypotheses 
of Theorem 24, thus proving the existence of an isomorphism between MLD and MQ.

Theorem 25 MLD and MQ are isomorphic.

This isomorphism shows our claimed equivalence and it implies the importance of stud-
ying the security of code-based and multivariate-based schemes by meaning of both meth-
ods from Coding Theory and Computational Algebra.

⎧⎪⎨⎪⎩

�̄� (h)
ij

+ 𝛾 (h)
ij

= 0 1 ≤ h ≤ �, 1 ≤ i < j ≤ �

�̄�(h)
i

+ 𝜆(h)
i

= 0 1 ≤ h ≤ �, 1 ≤ i ≤ �

𝛿(h) + 𝛿(h) = 0 1 ≤ h ≤ �
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6  Open problems

We highlight here a few directions for future works.

• An investigation of the image of � . Polynomial systems obtained via � have a special 
form, and by analysing them new hints on the difficulty of MLD could be determined. 
Similarly for polynomials coming from �◦� . In particular, MLD instances obtained 
from code-based cryptosystems are of particular interests. We recall that, in terms of 
MLD, most cryptographic code-based schemes are modelled as triples (H,  s,  t) with 
H defined as a permuted version of the parity-check matrix of an algebraic code (for 
instance, in Classic McEliece [8], H hides the parity-check matrix of a binary irreduc-
ible Goppa code). Loosely speaking, only who can solve the instance can decrypt a 
ciphertext, and, to the current knowledge, this is feasible only to those who know the 
hidden Goppa code. However, some vulnerabilities may be revealed by looking at the 
associated MQ instance.

• Analogously, for codes coming from the image of � and �◦� . In particular, similar to 
above, it would be interesting to focus on MQ instances corresponding to multivariate-
based cryptosystems. For instance, in the Digital Signature Scheme Rainbow [14] the 
public key is a masked version of a quadratic Boolean polynomial system for which 
there exists a fast solving algorithm based on Gaussian elimination. It appears that 
only those who know the original form of the polynomial system are capable of sign-
ing messages. However, it may be the case that hidden vulnerabilities are disclosed by 
applying � to these instances.

• Even though apparently similar to the directions hinted above, the third future work 
we propose is even more linked to the security of code-based and multivariate-based 
cryptosystems. As already introduced, both post-quantum cryptographic families rely 
on the security of two kinds of problems, the first is the NP-hard problem of solving 
a generic instance (i.e. MLD for code-based ciphers and MQ for multivariate-based 
ciphers), the second is the ability of distinguishing between a generic instance and the 
masked easy-to-solve underlying algebraic instance (e.g. the Goppa code hidden inside 
a Classic McEliece public key or the multi-level Oil &Vinegar system hidden inside a 
Rainbow public key). Instead of blindly applying our reductions to cryptographic pub-
lic keys, it would be important to model the precise problem of extrapolating the private 
keys from the public keys, and thus study the complexity of attacking code-based and 
multivariate-based schemes by understanding their key-generation algorithms.
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