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Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of
substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous
clinical manifestations, chronic inflammation has been consistently reported for several
LSDs. However, the molecular mechanisms involved in the inflammatory response are
still not completely understood. In this study, we performed text-mining and systems
biology analyses to investigate the inflammatory signals in three LSDs characterized
by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency
(ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and
then built on the extracted knowledge to investigate the inflammatory signals. We found
numerous transcription factors that are putative regulators of cytokine expression in a
cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2
as candidate regulators of the monocyte Gaucher disease cytokine network. Overall,
our results suggest the presence of a complex inflammatory signaling in LSDs involving
many cellular and molecular players that could be further investigated as putative targets
of anti-inflammatory therapies.

Keywords: cytokine, text-mining, natural language processing, systems biology, lysosomal storage diseases,
Gaucher, Fabry, ASMD

INTRODUCTION

Lysosomal storage diseases (LSDs) are a group of rare metabolic disorders in which a defect in the
gene encoding a lysosomal protein causes the accumulation of substrates inside the lysosome (Platt
et al., 2018). This ultimately leads to numerous clinical manifestations. Among them, several LSDs
have been associated with abnormalities of the immune system and chronic inflammation (Bosch
and Kielian, 2015; Pandey et al., 2017, 2018; Rigante et al., 2017).

Despite the growing body of evidence supporting a connection between LSDs and inflammation,
the existing knowledge is distributed across numerous scientific publications, and a unifying
knowledgebase is still missing. Text-mining is increasingly used to extract knowledge from
unstructured text of scientific articles (Huang and Lu, 2016; Przybyla et al., 2016; Westergaard et al.,
2018; Lee et al., 2020). Successful examples of text-mining in the biomedical field include extractions
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of gene-disease associations (Piñero et al., 2015; Zhou and Fu,
2018), protein–protein interactions (Saik et al., 2016; Szklarczyk
et al., 2019), drug discovery (Azer et al., 2019; Zheng et al., 2019;
Hansson et al., 2020) and clinical trial design (Michelini et al.,
2018). Text-mining has also been applied to the study of the
immune system. Recently, a cell-cytokine network was built by
PubMed mining (Kveler et al., 2018), and specific conditions such
as the immune response to psychological stress (Priyadarshini
and Aich, 2012) or the immune-related adverse events of
immuno-oncology drugs (Yu et al., 2020) were investigated
by mining of the literature. The application of text-mining to
rare diseases is a less explored area; however, it could provide
an important contribution to better understand the underlying
biological processes that drive clinical manifestations and to
develop new treatments (Boycott and Ardigó, 2018; Sakate et al.,
2018; Shen et al., 2018; Roessler et al., 2021).

In this study, we developed an integrative analysis based
on text-mining and network analysis to study the cytokines
involved in three related LSDs: Gaucher Disease (GD), Acid
Sphingomyelinase Deficiency (ASMD), and Fabry Disease (FD).

Gaucher Disease is caused by a deficient lysosomal
β-glucosidase activity, which results in the accumulation
of glucosylceramide (GL1) in macrophages, leading to
hepatosplenomegaly, anemia, skeletal lesions, and, in some
cases, neurological manifestations. Three main forms of GD
are usually distinguished: type 1 (GD1) is the chronic non-
neurological form, type 2 (GD2) is the acute neurological form
that leads to premature death in early childhood and type 3
(GD3) is the chronic neurological form also associated with
damage to peripheral tissues (Sidransky, 2004; Stirnemann
et al., 2017). Currently, pharmacological treatments are available
for the non-neuronopathic forms of GD and include both
enzyme replacement therapies (ERT) and substrate reduction
therapies (SRT) (Weinreb et al., 2013; Peterschmitt et al.,
2018). ASMD is caused by mutations in the gene encoding
the lysosomal enzyme acid sphingomyelinase, that converts
sphingomyelin to ceramide in lysosomes. Historically, ASMD
has been referred to as Niemann-Pick Disease. While an infantile
neurovisceral type of ASMD (ASMD type A previously known
as NPD A) has an extremely severe course involving the central
nervous system (CNS), and usually a premature death in early
childhood, ASMD type B (NPD B) typically displays visceral and
pulmonary involvement without CNS involvement and a more
heterogeneous time course (Schuchman and Desnick, 2017).
Olipudase alfa, a recombinant human acid sphingomyelinase
is currently in clinical trials for AMSD treatment (Thurberg
et al., 2020). FD is caused by mutations in the gene encoding the
enzyme alpha galactosidase A that leads to globotriaosylceramide
accumulation mainly in endothelial cells, kidney cells, and
cardiomyocytes. In agreement with this, the most relevant
clinical manifestations of FD are quite different from those
of GD and ASMD and they include renal failure, cardiac and
cerebrovascular disease (Wanner et al., 2018). ERT therapy is
available for FD as well (Azevedo et al., 2021).

Independently of the disease-specific therapies, the treatment
of chronic inflammation is emerging as a potential adjuvant
therapy for LSD patients (Platt, 2018), and a comprehensive

analysis of the inflammatory signaling involved in LSDs can
help to understand the dysregulated pathways. With that goal,
computational mining of literature performed in this study
resulted with the identification of a list of cytokines associated
with GD, FD, and ASMD, which were then used as seed
for a systems biology workflow providing insight into the
inflammatory processes associated to LSDs.

MATERIALS AND METHODS

Text-Mining Pipeline
Over 31 million abstracts from PubMed and 6.1 million full
texts from PubMed Central were harmonized and indexed
on a Solr1 instance along with the clinical trial descriptions
from ClinicalTrials.org. Documents underwent an automatic
annotation of genes, proteins, diseases, species and chemicals
leveraging state-of-the-art Machine Learning (ML) methods
DNorm (Leaman et al., 2013), GNorm (Wei et al., 2015),
Huner (Weber et al., 2020), TaggerOne (Leaman and Lu, 2016),
MutationFinder (Caporaso et al., 2007). The tagged entities
were organized and curated along with paper’s keywords and
MeSH terms to identify the relevant search terms. Word2Vec
(Mikolov et al., 2013; Pyysalo et al., 2013) was also used to
identify lists of mentions appearing in contexts statistically
similar to the ones of the input keywords. A variety of data-
driven search terms were identified in this way, including
some frequent mistypings (e.g., “neimann-pick”) and other non-
standard mentions. Starting from the simple “Gaucher disease,”
“Fabry disease,” and “ASMD” queries, we picked relevant search
terms from the unbiased information coming from ML data-
driven suggestions of annotations. Some exclusions were also
easily identified from the structured results, leading to the
following three queries used to identify the relevant literature
corpora (on the 31st of December 2020):

Title, abstract, keyword, mesh: (“acid beta-glucosidase
deficiency” OR gaucher OR “gba deficiency” OR
“glucocerebrosidase deficiency” OR “glucosylceramide
beta-glucosidase deficiency”).
Title, abstract, keyword, mesh: (fabry OR “Alpha-
galactosidase deficiency” OR “alpha-galactosidase A
deficiency” OR “GLA deficiency” OR “angiokeratoma
corporis diffusum”).
AND NOT title, abstract, keyword, mesh: (“Fabry-Pérot”
OR “Fabry-Perot” OR “Pérot-Fabry” OR “Perot-Fabry”).
[Title, abstract, keyword, mesh: (asmd OR “ASM
deficiency” OR “Acid Sphingomyelinase deficiency”
OR “neimann pick” OR “smpd1 deficiency” OR “smpd1
mutation” OR “neimann-pick” OR “neimann-pick”)].
AND NOT keyword: [“asmd, absolute standardized mean
difference” OR “absolute standardized mean difference”
OR “adaptive steered molecular dynamics (asmd)” OR
“adaptive steered molecular dynamics”].

1https://lucene.apache.org/solr/
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The same methods described above were used also for
the concepts to be mined in the text. The list of concepts
corresponding to disease synonyms was defined by querying
the following databases and ontologies: OMIM2, orphanet3,
ICD-104, MeSH5, disease ontology6. Alternative names
of the mutated gene/protein were identified from NCBI
gene7, UniProt8, MedlinePlus9. Synonyms of the accumulated
metabolites and the deacylated forms (lyso-species) were instead
retrieved from PubChem10 and ChEBI11 databases. Specifically,
for GD we searched synonyms of glucosylceramide and
glucosylsphingosine (lyso-GL1), for FD we searched synonyms
of globotriaosylceramide and globotriaosylsphingosine (lyso-
Gb3), and for ASMD we searched synonyms of sphingomyelin
and lyso-sphingomyelin (lyso-SM). Moreover, we included
additional keywords from scientific articles identified in
PubMed, from machine-learning annotation of texts and by the
expanding the seed terms in the target corpora. The dictionary of
cytokines was defined by leveraging the cytokine registry from
the ImmPort (Bhattacharya et al., 2018) and the CytReg (Santoso
et al., 2020) databases.

Disease synonyms, metabolites, cytokines and genes were
identified by the entity recognition task powered by ad hoc
linguistic variant-detection (Ramponi et al., 2020). Paragraphs
where such mentions occurred were not analyzed for co-mention,
given that we were not looking at summarization statistics
which are known to suffer from poor precision associations in
the absence of intensive human screening. The text was rather
analyzed using a hi-precision method that proved highly reliable
on five different benchmark corpora (Ramponi et al., 2020).
The method identified syntactic relational structures among the
entities and extracted linguistic associations between cytokines
and disease-related concepts. The result is a structured format
defining effector, affected and a verbal association among the
two, therefore allowing for further systems analysis. The results
were filtered to retain only sentences mentioning at least one
disease-cytokine association. Sentences from clinical trial records
and the method section of the full text articles were excluded
due to their low information content. We also excluded from
subsequent analyses all cytokine names that could not be mapped
unambiguously to a gene symbol.

Evaluation of Cell-Type Expression
Specificity of the Cytokine
Gene expression information for eight blood cell types:
eosinophils, basophils, neutrophils, T-cells, B-cells, monocytes,
NK-cells, and dendritic cells was downloaded from Human

2https://www.omim.org/
3https://www.orpha.net/
4https://icd.who.int/
5https://www.ncbi.nlm.nih.gov/mesh/
6https://disease-ontology.org/
7https://www.ncbi.nlm.nih.gov/gene
8https://www.uniprot.org/
9https://medlineplus.gov/
10https://pubchem.ncbi.nlm.nih.gov/
11https://www.ebi.ac.uk/chebi/

Protein Atlas (HPA) (Uhlén et al., 2015)12. We analyzed the data
from the consensus dataset in Blood Atlas, and we considered as
expressed all genes with an HPA normalized expression value >1,
and “cell-specific” all genes classified by HPA as cell-type enriched
or group enriched.

Construction of the Cytokine Gene
Regulatory Networks
The transcription factor (TF)–cytokine gene regulatory network
(GRN) was taken from CytReg database (Santoso et al., 2020).
Disease specific, immune cell TF-cytokine networks were created
by first selecting human interactions and filtering the original
network to retain only the cytokines identified by text-mining,
and then filtering the resulting network to keep only the genes
expressed in the cell type of interest (HPA normalized expression
value >1). The co-expression between the TF-cytokine pairs of
the GD monocyte GRN network was tested using the blood
monocyte expression data downloaded from HPA Blood Atlas.
For each gene, we computed the average monocyte expression
at sample level (average of classical monocyte, intermediate
monocyte, and non-classical monocyte) and we performed the
correlation test using the Pearson method. The cytokine GRN
network of GD monocyte was visualized using Cytoscape,
version 3.7.113.

Ligand-Receptor Analysis
Ligand-receptor (LR) pairs were downloaded from CellTalkDB
(Shao et al., 2020). Pathway enrichment analysis was performed
using the enrichPathway function from the r package
ReactomePA, which uses the hypergeometric test to evaluate
whether specific Reactome pathways are enriched in a gene
list (Yu and He, 2016). As background genes we used all the
cytokines present in the dictionary used for text-mining and
their receptors, as reported in CellTalkDB. Cytokines not present
in CellTalkDB were not included in the background gene list.
The minGSSize was set equal to 5. To control for multiple
testing, we used the Benjamini-Hochberg correction. To build
the disease-immune cell networks, we identified the cytokine
receptors from CellTalkDB. We then assessed the expression
of the genes encoding cytokine and receptors produced by the
immune cells using the HPA data described above, and we
removed non-expressed genes from the networks. The cell-cell
interactions were scored based on the number of LR pairs
connecting them. By analyzing the frequency distribution of the
number of LR pairs connecting the cells, we selected the cell-cell
interactions with a number of LR pairs above the 75th percentile
and we created the network. The igraph package for R was used
to create and plot the networks14.

Enrichment Analysis of Cell-Specific
Cytokines
We defined the lists cell-specific cytokine-sets by selecting for
each cell the genes encoding cytokines that HPA Blood Atlas

12http://www.proteinatlas.org
13https://cytoscape.org/
14https://igraph.org
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reports as “cell-type enriched” or “group enriched.” The gene-set
collection of cell-specific cytokines was built using the loadGSC
function of the Bioconductor package piano. The enrichment of
GD cytokines in monocyte-specific cytokines was tested using
the Fisher’s exact test implemented in the runGSAhyper function
of the Bioconductor package piano. The analysis was performed
using all the cytokines present in the cytokine dictionary used
for the text-mining analysis corresponding to a human gene
symbol as universe.

Search of Transcriptomic and Proteomic
Datasets
To identify relevant transcriptomic datasets, NCBI Gene
Expression Omnibus (GEO)15 and EBI ArrayExpress16 were
queried on 12th July 2021. The searches were performed
using the following keywords: “gaucher” and “fabry.” GD
proteomic datasets were identified by searching Omics DI17 using
the keywork “gaucher” and NCBI PubMed using the query
“proteomic[TIAB] AND gaucher[TIAB]” (search performed on
20th July 2021). The results were manually curated to exclude
non-relevant datasets.

RESULTS

Text-Mining Analysis Identifies a List of
Cytokines Associated With LSDs in the
Literature
To identify the cytokines associated with GD, FD, and ASMD,
we devised a text-mining pipeline that uses Natural Language
Processing (NLP) techniques to process all PubMed and PubMed
Central (PMC) documents to identify sentences describing
a relationship between disease-related concepts and at least
one cytokine (Figure 1A). First, we collected a corpus of
scientific publications related to the three diseases. The available
documents are both PubMed citations and full-text articles.
Indeed, due to copyright restrictions, in some cases the
complete article was not available for text-mining, and only the
citation (including title, abstract, and the MeSH terms) could
be automatically parsed. For GD, we identified 6,068 articles
published from 1912 to 2020, 917 of which were review articles.
Among all the available documents, 693 were full-text articles,
and the others were citations. For FD, we retrieved a set of
4,982 documents published between 1947 and 2020, out of which
809 were review articles. The full text was available for 730
documents. For ASMD, we identified 4,301 articles mentioning
ASMD or Niemann-Pick (NP) disease in the text having a
range of publication dates from 1940 to 2020. In this case, the
number of identified review articles was 648 and the number
of full-text documents available for the text-mining analysis was
853 (Figure 1B). The NP disease mentions were retrieved as
described in the methods and further classified in type A, B, C,

15http://ncbi.nlm.nih.gov/geo/
16https://www.ebi.ac.uk/arrayexpress/
17https://www.omicsdi.org/

D, E, F, and generic NP, allowing to filter only for NP type A and
B in the relations.

In addition to the search of scientific articles, we also compiled
a catalog of publicly available transcriptomic datasets related
to the three diseases. By querying NCBI Gene Expression
Omnibus and ArrayExpress, we identified 17 GD transcriptomic
studies. Twelve studies are derived from GD mouse models, four
from GD human tissues/cells and one from an experiment in
fruit flies. For FD, four studies were identified, three derived
from mouse models and one from human organoids. For
ASMD, no publicly available transcriptomic study was identified
(Supplementary Table 1). We also searched for published GD
proteomic studies by querying Omics DI (see text footnote 17)
and NCBI PubMed and we identified four published proteomics
studies (Supplementary Table 1). For FD, a recent review already
compiled a comprehensive list of proteomic studies (Rossi et al.,
2021) and we could not identify any additional study. We did not
find any ASMD-related proteomic study.

The retrieved scientific articles were analyzed to identify
relevant sentences following the approach detailed in section
“Materials and Methods” and summarized in Figure 1A. Briefly,
the entire set of documents related to the disease of interest
was computationally processed to identify sentences with a
linguistic relationship between a disease-related concept (disease,
mutated enzyme, accumulated metabolites) and at least one
cytokine. In this work, we focused on a list of cytokines
identified starting from the cytokine registry made available
by the ImmPort project (Bhattacharya et al., 2018) and from
the CytReg database (Santoso et al., 2020). Growth factors
and hormones without a primary role in the immune system
and the cytokine receptors were not included in the text-
mining search. For GD, we identified 280 relevant sentences
from 102 articles (Supplementary Table 2). These sentences
mention 44 GD-related cytokines, out of which 34 could be
assigned unambiguously to a human gene symbol. A visual
summary of the disease-cytokine associations present in the
GD literature is shown in Figure 2A. This chart shows the
directed relations between the cytokines and the disease-related
concepts automatically identified by the text-mining pipeline.
The chemokine CCL18 is the most cited cytokine in GD
literature, being mentioned together with a disease term in 114
sentences from 52 articles, followed by TNF with 59 sentences
from 28 articles (Figure 2B). For FD, the list of cytokines was
obtained from 163 sentences in 47 articles (Supplementary
Table 3 and Supplementary Figure 1). These sentences report 16
cytokines, and for 12 of them we could find the corresponding
gene symbol (Figure 2A). For ASMD, we found 15 cytokines
in 72 sentences from 24 articles (Supplementary Table 4 and
Supplementary Figure 2), and we identified the corresponding
gene symbol for 12 cytokines (Figure 2A). For both FD and
ASMD, the most cited cytokine is TNF. It is also worth noting that
six cytokines, namely CCL5, CXCL8, IL1B, IL4, IL6, and TNF, are
shared among the three lists, suggesting a shared inflammatory
signal among the diseases (Figure 2C).

The sentences were manually annotated for mentions
of clinical studies, animal models, tissues, and cells
(Supplementary Tables 2–4). Overall, 66 sentences from
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FIGURE 1 | (A) Overview of the text-mining pipeline: Ontologies, DBs, and ML annotations were used to select specific queries and search terms on PubMed, PMC
for the three diseases. Over 15,000 documents were retrieved and processed with our NLP-based analytics platform. The structured knowledge derived from the
linguistic relationship extraction was normalized, analyzed, and integrated with biological databases to derive a systems outlook of the inflammatory signal.
(B) Summary of the disease-specific scientific literature we analyzed to identify the cytokines. For each disease is shown the number of articles per year of
publication. The number of review articles is highlighted in green. The violet line shows the number of full-text articles available for text-mining.

GD results report findings from clinical studies, 17 sentences
findings from studies performed on animal models, 38 sentences
findings from in vitro studies, 6 sentences mixed findings, and
153 sentences do not specify the type of study. Most of the
sentences indicating the tissue where the cytokine has been

measured report blood findings, with 55 sentences mentioning
serum, plasma, or a generic mention to blood/circulation. When
we checked the type of disease, we identified 33 GD sentences
that are specific for one type of disease, while the others do not
specify any GD type.
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FIGURE 2 | Cytokines identified by the text-mining pipeline. (A) Linguistic structure of the mined text, shown as a bi-partite information flow, in the GD literature. The
chart summarizes the directional associations between cytokines and the disease-related terms. The relations derived from sentences in which the cytokine is the
subject are shown on the left, instead those in which the cytokine is more of an object are shown on the right. (B) The chart shows the number of papers mentioning
each cytokine in association with the disease. Darker colors indicate that at least one sentence mentioning cytokine-disease association is present in the title or
abstract of the article, suggesting that the identified association is probably a key finding. Lighter colors indicate the cytokine-disease associations derived from other
sections of the article. (C) Venn diagram of the lists of cytokines obtained for the three diseases.

Most of the FD-related sentences refer to in vitro studies
(52 out of 163 sentences) and in particular they mention cell
cultures of podocytes (11 sentences), a kidney epithelial cell-type

particularly affected by globotriaosylceramide accumulation
(Waldek and Feriozzi, 2014). In vitro studies are also the most
common ones in ASMD sentences, with 26 sentences. In this
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case, most of the studies mentioned by the sentences refer to
experiments performed on fibroblasts (22 sentences).

Immune Cell-Type Specificity of the
Identified Cytokines
Since cytokines are molecular mediators of cell communication,
mainly among immune cells, we set out to investigate the
immune-cell specificity of the cytokines identified by the text-
mining pipeline. According to the consensus dataset from the
HPA Blood Atlas (Uhlén et al., 2015), 15 literature-derived
GD cytokines are cell-specific (cell type enriched or cell group
enriched) and six of them, namely CCL1, CCL2, CXCL10,
CXCL12, IL1RN, and erythropoietin (EPO), are monocyte-
specific (Figures 3A,B). When tested in a overrepresentation
analysis, the monocyte-specific cytokine-set resulted significantly
enriched in GD cytokines (Fisher’s exact test p-value = 0.04).
The other cell-specific cytokine-sets were not tested for their
enrichment in GD cytokines due to the small number of
overlapping genes (less than five genes). It is worth noting that
CCL18, the cytokine with the highest number of citations in GD
literature, was “not detected” in the HPA Blood Atlas dataset,

thus we could not evaluate its cell specificity. We identified cell-
specific cytokines also for ASMD and FD. However, in these
cases we only found one or two cytokines overlapping the cell-
specific cytokine-sets (Figures 3A,B) and thus we could not test
the significance of the overrepresentation for any cell-type.

Construction of a GD-Cytokine Gene
Regulatory Network
Next, we decided to investigate the gene regulatory network
(GRN) behind the expression of cytokine genes identified by
text-mining. We focused on the regulation of GD cytokine gene
expression in monocytes since this is the cell type with the highest
number of cell-specific cytokines (Figure 3B). We built the
cytokine GRNs by identifying the TFs regulating the expression of
the text-mining derived GD cytokines leveraging the information
provided by CytReg, a recently published database of TFs-
cytokine interactions (Santoso et al., 2020) which we filtered
according to the monocyte gene expression reported in the Blood
Atlas data (Figure 4).

Overall, we can observe that numerous TFs contribute to the
regulation of cytokine gene expression. Among the identified

FIGURE 3 | Immune-cell specificity of the identified cytokines. (A) The chart shows the cytokines that are reported as cell-specific (cell-type enriched or group
enriched) by the HPA Blood Atlas. (B) Number of cell-specific cytokines per cell-type. Compared with the analysis in panel (A), B-cells, T-cells and monocytes have
been grouped in one cell type.
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FIGURE 4 | Cytokine gene regulatory network of GD monocytes. (A) Network plot showing the TF-cytokine interactions. Only genes expressed in monocytes
according to the HPA Blood Atlas data are reported. The nodes with a red border were identified in GD literature and the red edges indicate a significant correlation
between TFs and cytokines. The big nodes (NR4A2, JUN, and STAT2) correspond to TFs identified in the GD literature with monocyte gene expression significantly
correlated with a cytokine in the network. (B) Bar chart showing the number of incoming edges for all the cytokines in the chart, corresponding to the number of
putative TFs regulating cytokine gene expression. (C) Bar chart showing the number of outgoing edges for the TF nodes with more than two degrees which
corresponds to the number of cytokine genes regulated by each TF.

TFs, there are well-known regulators of genes involved in the
immune expression, such as members of the NF-κB (REL, RELA,
RELB, and NFKB1) and different members of the interferon-
regulatory factor (IRF) proteins family (Figure 4C). Moreover,
we noticed the presence of the nuclear receptor NR4A2, a TF
encoded by a gene harboring genetic variants that have been
associated with familial Parkinson’s disease susceptibility (Le
et al., 2003). Similarly, NR3C1 has been associated with epigenetic
deregulations in Parkinson’s disease (Fernández-Santiago et al.,
2015). Since GD patients are at higher risk of developing
Parkinson’s disease (Behl et al., 2021), this finding deserves
further investigation.

To investigate the TFs present in the cytokine GRN of GD
monocytes, we used TFs as seeds of the text-mining analysis
aiming at the identification of TFs reported within the context
of GD. This analysis identified seven TFs, namely DDIT3, JUN,
IRF7, NR4A2, STAT1, STAT2, VDR, and XBP1 (Supplementary
Table 5). DDIT3 and XBP1 are TFs regulating CCL2 expression in
the GRN network and are both involved in the Unfolded Protein
Response (UPR), a mechanism activated by the endoplasmic
reticulum (ER) to cope with stress conditions. The text-mining
analysis identified contradictory findings related to the UPR
induction in GD. Indeed, we found both articles reporting UPR
activation in GD and PD patients with mutations in GBA gene
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and articles showing lack of evidence (Farfel-Becker et al., 2009;
Gegg et al., 2012; Maor et al., 2013; Braunstein et al., 2018; Do
et al., 2019; Ivanova et al., 2019). The master regulator of type I
interferon signaling IRF7, which in our network regulates CCL2
and CXCL10 gene expression (Figure 4), was reported by two
studies as elevated in the neurological forms of GD (Vitner et al.,
2016; Melamed et al., 2020). The phosphorylated form of STAT2,
a regulator of CCL2 expression in the network in Figure 4, was
also up-regulated in the brain of a GD mouse model (Vitner
et al., 2016). On the other hand, INFG-induced STAT1 activation
was shown to be inhibited in Gaucher cells (Batta et al., 2018).
STAT1 in our network regulates several cytokine genes: IL10,
IL1B, CCL2, TNF, CXCL10, CXCL11, and CXCL9. Our analysis
also pointed out a study that investigated NR4A2 expression
in dopaminergic neurons obtained from GD iPSC. This study
showed a decrease, albeit not significant, of NR4A2 expression in
these cells (Awad et al., 2017). Moreover, text-mining identified a
study indicating that the expression of glucocerebrosidase gene is
affected by JUN (Moran et al., 1997), a TF that in our network
regulates IL10, IL1B, CCL2, TNF, and CXCL12. Finally, we
identified several studies reporting polymorphisms in the VDR
gene possibly associated with GD phenotypes (Vlieger et al., 2002;
Greenwood et al., 2010a,b; Lieblich et al., 2011; Zhang et al., 2012;
Mistry et al., 2013; Gervas-Arruga et al., 2015; Zimmermann
et al., 2018; Kałużna et al., 2019).

We also investigated the correlation pattern of the identified
TF-cytokine pairs by leveraging the monocyte gene expression
data from the HPA Blood Atlas. In total, we identified
20 TF-cytokine gene pairs with a significant correlation
(Supplementary Table 6). Among them, STAT2-CCL2, JUN-
CCL2, and NR4A2-TNF involve TFs already described in
the GD literature.

Construction of a Cytokine-Driven
Immune Cell-Communication Network
Cytokines are molecular effectors that mediate the
communication between cells, mainly of the immune system.
In this study, we explored the cytokine signaling by leveraging
publicly available data on cytokine-receptor interactions. We
first identified the receptors of the text-mining derived cytokines
from CellTalkDB, a recently published, curated database of
ligand-receptor LR pairs (Shao et al., 2020). We identified 180
cytokine-receptor (CR) pairs for GD, 80 for ASMD and 95 for
FD. Pathway analysis of the GD cytokines and their receptors
identified “interleukin 10 signaling” as the most enriched
pathway, with 26 genes. This pathway is also among the top
significantly enriched pathways when considering the genes
derived from the list of FD cytokines and their corresponding
receptors. For ASMD, instead, the most enriched pathways
are related to TNF signaling, with five cytokines and receptors
(Figure 5A). Having identified the cytokine receptors, we
assessed the immune cell expression of the genes encoding the
cytokines and their receptors using the gene expression data from
the HPA Blood Atlas, and we reconstructed a putative cell-cell
interaction network based on the number of CR pairs linking two
cells (Figure 5B). In the GD network, the intercellular interaction

supported by the highest number of CR pairs is the one going
from monocytes (producing the cytokine) to T cells (expressing
the receptor), with 58 CR interactions.

In the FD network, the interaction dendritic cells - > T
cells is the one with the highest number of CR pairs with
44 CR interactions, while in the ASMD network the cell-cell
communication supported by the highest number of CR pairs is
between neutrophils and T cells, with 34 interactions.

DISCUSSION

In this study, we investigated the inflammatory signaling
characterizing GD, FD, and ASMD. Our integrative approach
starts from literature computational mining to identify the
cytokines associated with the three diseases, and then combines
the literature findings with other data sources through a
systems biology framework. Compared with previous efforts
to identify immune cells and molecular mediators by text-
mining (Kveler et al., 2018), in this study we focused on three
specific LSDs. This allowed us to set up a tailored approach
that reflects the characteristics of the LSDs of interest. For
example, we could evaluate the association between the specific
disease genes (mutated genes) or accumulated metabolites and
cytokines. Indeed, the primary driver of the LSD phenotype
is the accumulation of lipids that cause cellular, tissue and
organ dysfunctions that are frequently coupled with chronic
inflammation. The causes of the observed chronic inflammation
are still not fully understood. For example, in GD and ASMD,
these undegraded lipids mainly accumulate in macrophages
(Pandey and Grabowski, 2013), instead in FD the vasculature
is particularly affected (Bodary et al., 2007). The accumulation
of glucosylceramide in GD macrophages causes their activation,
disrupts autophagy and starts a cascade of inflammatory events
that worsen the disease itself (Simonaro, 2016). To take into
account these aspects in the text-mining analysis, we set up a
search for cytokines described in association with accumulating
lipids and their deacylated forms. These results were merged
with those obtained by searching disease-cytokine and mutated
enzyme-cytokine mentions to obtain a more comprehensive
characterization of the LSD cytokines. On the other hand,
cytokine mentions not linked to any disease-related concept
were not considered to avoid false-positive results. For example,
if a sentence mentioned a cytokine related to an immune
cell but did not specify any disease-related concept, this
sentence was not included among the results because it could
be potentially referred to another condition. We are aware
that this approach can lower the recall rate and hamper the
identification of some cytokines truly associated with LSDs but
at the same time it increases the precision. Future extensions
of this analysis could consider the extraction of relations
within paragraphs to increase the number of cytokine-disease
relations diving into “discourse parsing” and more research
into coreference and anaphora resolution (Soricut and Marcu,
2003; Sukthanker et al., 2020). Another factor that can limit the
power of the text-mining analysis is the unavailability of the
entire document for many disease-relevant articles (Figure 1).
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FIGURE 5 | Cytokine-receptor analysis to build cell-cell networks. (A) Functional enrichment analysis. For each disease, the top 5 Reactome pathways enriched in
disease cytokines and their receptors are shown. The numbers within the dots indicate the number of cytokines/receptors belonging to the pathway. (B) For each
disease, the top cell-cell interactions involving the literature-derived cytokines and their receptors are shown. The cell-cell interactions were scored based on the
number of CR pairs involved, and those above the 75th percentile are shown in the network chart. The thickness of the edge is proportional to the number of
interacting CR pairs that in ASMD network ranges from 20 to 34, in FD network from 28 to 44 and in GD from 33 to 56.

Indeed, a recent study showed that text mining of full-text
articles to identify protein–protein, disease-gene, and protein
subcellular associations outperforms the analysis using abstracts
only (Westergaard et al., 2018).

To extend the analysis we performed, other players of the
inflammatory response, such as immune cells and molecules
belonging to the complement system, could be included in the
analysis. Indeed, a dysregulation of the complement pathway
has been described in GD (Pandey et al., 2017, 2018) and its
investigation in a systems biology framework could provide hints
on the interplay with other inflammatory players. The integration
of external data sources, such as gene expression data of
immune cells, TF-cytokine gene interactions, and LR interactions
allowed us to gain insights into the inflammatory signaling
network. Indeed, cytokines are molecular effectors involved in
cell-cell signaling (Armingol et al., 2020), and their production
is regulated at the transcriptional level by combinations of
TFs (Pro et al., 2018; Santoso et al., 2020). In this study, to
evaluate the cell specificity and build the GRN, we relied on gene
expression data of blood immune cells from the blood of healthy
donors. Our literature-derived list of GD cytokines is significantly

enriched in monocyte-specific cytokines. This finding is in
agreement with the hallmark of GD pathophysiology, i.e., the
accumulation of GL1 in the cells of the macrophage-monocyte
system. Indeed, macrophages are the mediators of the removal
of erythrocytes and leukocytes, which contain large amount of
GL1 whose accumulation leads to clinical manifestations such
as splenomegaly and hepatomegaly (Stirnemann et al., 2017).
The significance of the TF-cytokine interactions in the GD
monocyte network was tested by computing the gene expression
correlation. This analysis allowed us to identify three TFs, namely
STAT2, JUN, and NR4A2, that could be further investigated in
the context of GD. The HPA Blood Atlas dataset used to perform
the correlation analysis, however, includes only six samples and
thus the analysis had a limited statistical power. The availability
of disease-specific immune cell transcriptomics datasets, for
example derived from single-cell sequencing experiments, would
allow investigating more precisely the inflammatory signaling
characterizing these diseases and to consider additional disease-
specific immune cell types.

Our results can be used as a basis to further investigate
the interplay between lipid accumulation and inflammation.
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To support drug discovery and development for LSDs, we
recently developed quantitative systems pharmacology (QSP)
models for GD type I and for ASMD, and a QSP platform
that also includes FD is under development (Kaddi C. et al.,
2018; Kaddi C. D. et al., 2018; Abrams et al., 2020). QSP
models are mathematical tools that allow studying in silico the
perturbations exerted by drugs on a biological system and test
hypotheses on their mechanism of action. Literature mining
can be effectively incorporated in the multistep process that
leads to model development, becoming particularly useful for the
definition of the model scheme and facilitating the identification
of key biological processed to represent, along with data sources
and parameter constraints needed for the model development
(Azer et al., 2021).
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