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ABSTRACT
Formula 1 is a highly competitive and ever-evolving sport, with
teams constantly searching for ways to gain an edge over the com-
petition. In order to meet this challenge, we propose a custom Ge-
netic Algorithm that can simulate a race strategy given data from
free practices and compute an optimal strategy for a specific cir-
cuit. The algorithm takes into account a variety of factors that can
affect race performance, including weather conditions as well as
tire choice, pit-stops, fuel weight, and tire wear. By simulating and
computing multiple race strategies, the algorithm provides valu-
able insights and can help make informed strategic decisions, in
order to optimize the performance on the track. The algorithm
has been evaluated on both a video-game simulation and with real
data on tire consumption provided by the tire manufacturer Pirelli.
With the help of the race strategy engineers from Pirelli, we have
been able to prove the real applicability of the proposed algorithm.

CCS CONCEPTS
• Computing methodologies→Neural networks; Genetic al-
gorithms;Artificial life; Planning and scheduling; •Theory of com-
putation →Models of learning; Evolutionary algorithms.
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1 INTRODUCTION
F1 is one of the most difficult race competitions, and it offers a
number of incredibly interesting challenges from a computational
perspective. One of these problems is the optimization of the race
strategy, that is precisely the focus of the present paper.
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As a matter of fact, modern F1 cars have hundreds of sensors
that stream data from the car to the team garage. Team engineers
need to understand those data and the correlation between them,
in order to develop an effective strategy for the race. Therefore,
computational intelligence approaches can be a valuable tool in
this domain. However, F1 is an extremely closed world, where data
are usually kept secret, and it is very difficult to find state-of-the-
art works on this topic, with publicly available results and data.
Still, it is possible to identify three main approaches that can be
used for this type of problem: Monte Carlo (MC) sampling, Rein-
forcement Learning (RL), and Evolutionary Algorithms (EAs).

According to an article published in 2015 on “F1 magazine” [1],
F1 teams mainly use MC simulations in addition to game theory
techniques to obtain optimal race strategies given the telemetry
data. Typically, each team runs thousands of simulations to get its
final strategies.This process, however, can be very time-consuming
and demanding in terms of computational resources. Moreover,
with MC simulations there is still a problem of human choices, as
discussed in [3]. For this reason, [3, 12] introduce the idea to use
a machine-only method, namely RL. For instance, in [3] the total
reward is computed as the number of positions gained or lost at
the end of the race w.r.t. the other drivers. However, as with MC
simulations, also these RL-based approaches usually require a high
computational time.

A possibly computationally cheaper alternative is to use EAs
[2]. To the best of our knowledge, the only work that applied an
EA to this problem is [13]. However, that study presented a very
basic EA for optimizing the car settings, with rather stringent sim-
plifications e.g. related to the fact that only binary parameters are
considered (for this reason, a direct comparison with the method
proposed in the present paper is not possible).

In this paper, we attempt to go beyond the previous literature
by presenting a custom Genetic Algorithm (GA) with much more
complex features and degrees of freedom, which differently from
the algorithm proposed in [13] does not work only with binary
parameters. Moreover, our algorithm takes in consideration the
telemetry data with a more appropriate representation. As we will
show in the following, the proposed algorithm has competitive per-
formances both on simulated and real data (the latter provided by
engineers from Pirelli) and is very fast in terms of compute time.

The rest of the paper is structured as follows. In the next section,
we describe the background concepts of the race model. Then, in
Section 3 we describe the proposed approach based on GA. In Sec-
tion 4 we present the experimental setup, followed by the numer-
ical results in Section 5. Then, Section 6 provides the main conclu-
sions of this study.
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2 BACKGROUND
In the following, we describe the background concepts at the basis
of the race strategy optimization problem.

2.1 Tires
A tire compound defines the type of tires that are mounted on the
car. Compounds are divided into dry compounds and wet com-
pounds, that are used in dry and wet track conditions respectively.
Dry compounds are in turn divided into:
• Soft (S): it has the highest grip to increase the performances, but
it wears out very quickly;

• Medium (M): it has a good grip and it does not wear out as
quickly as the Soft compound;

• Hard (H): it has the lowest grip and it reduces the performances
w.r.t. the Medium compound. However, it wears out slowly.

Instead, wet compounds are divided into:
• Intermediate: it is the fastest and is usually preferred;
• Wet: it is used when the track is very wet and it is the only choice
given these weather conditions.

The time loss due to tire wear is computed as the time difference
at each lap. This computation is done after removing all possible
losses, such as the fuel weight. The time loss between tire com-
pound is computed as the time difference between the first valid
lap-time made with a tire compound and the first valid lap-time
made with the Soft compound (every lap-time is made with the
same amount of fuel).

2.2 Fuel
Every car loads a different quantity of fuel and cannot refuel dur-
ing a race. The main aspect to consider is that the more fuel is
loaded, the slower the car will be. The goal is to find a trade-off
between loading enough fuel to finish the race (without exceed-
ing the maximum fuel load of 110 kg) and loading the minimum
possible amount of fuel to be competitive. The fuel consumption is
computed from the telemetry data as the slope of the linear interpo-
lation between the starting and the final fuel load. Finally, the time
loss due to the fuel load is computed given the fuel consumption
and the lap time difference at each lap.

2.3 Weather
Weather is obviously not known a priori with certainty, but it is a
crucial factor for an optimal strategy.The information given by the
weather forecast for the race day is added in our algorithm. This
information is added through a value for each lap, i.e., the amount
of rain on the track. In particular, this quantity is an integer value in
[0, 100], where 0 represents 0mm of water, while 100 is for those
cases where the rain level is equal to or over 5mm. A graphical
representation of the weather data is shown in Fig. 1.

0mm 5mm1mm 2,5mm 3mm

0 10 50 80 100

Figure 1: Range for weather data. Orange is for dry weather,
while blue indicates rain.

2.4 Rules and constraints
During a race there are different rules to follow, which must be
taken in consideration in the algorithm as constraints: more specif-
ically, two rules are for the tire, and one for the fuel.

Regarding the first constraint for tires, during a race weekend
there is a limited amount of tire compounds that the tire manufac-
turer provides at the beginning of the weekend. It is up to the team
to choose carefully which tire compounds to use in free practices,
because that set of tires is not made available for the race. Indeed,
teams can plan their weekend according to the race strategy: if the
predicted strategy needs two Soft and two Medium compounds,
then the team can organize the weekend to save, or use the least
possible, those tire sets for the race. This constraint is not added.

The second constraint for tires imposes that, during a race, the
car has to mount at least two different compounds, consequently
there has to be at least one pit-stop. This constraint is added in
the algorithm, and every strategy is valid only if it has at least one
compound change. There is only one case where this constraint
can be violated: when a car mounts a wet compound in all laps.

Regarding the fuel, as said earlier a car cannot refuel during
a race. This constraint plays an important role in the algorithm,
because the strategy should be able to have enough fuel in order
to finish the race, but the minimum possible to be competitive.

3 PROPOSED GENETIC ALGORITHM
In this section the different aspects of the GA are explained.

3.1 Individual representation and fitness
Every strategy is considered as an individual in the GA, with its
corresponding genotype and fitness. The genotype is composed by
the following variables:
• TireCompound: indicates which tire compound is mounted at
each lap of the race;

• FuelLoad: contains, for each lap, the weight of the loaded fuel;
• PitStop: indicates, for each lap, if a pit-stop is made or not;
Other individual information, that are not included in the genotype
but are useful for the computations, are:
• TireWear: contains, at each lap, the tire wear % of each tire;
• TireAge: contains, at each lap, the tire age of the mounted tires;
• LapTime: at each lap a predicted lap time is generated and stored
in this array;

• NumPitStop: the total number of pit-stops;
• Weather: quantity of rain on the track at each lap, stored as pre-
sented in Section 2.3;

• Valid: indicates if the strategy violates the constraints;
• TotalTime: the total race time obtained by summing all lap times.
Notice that TotalTime is expressed in ms.
The TotalTime is used as the fitness value for each individual,

to be minimized. This value is obtained as a sum of multiple time
losses w.r.t. the best lap-time, as proposed in [10]:

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 =
𝑙𝑎𝑝𝑠∑
𝑙𝑎𝑝=1

(𝑡𝑏𝑒𝑠𝑡 + 𝑡𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 + 𝑡𝑡𝑖𝑟𝑒_𝑤𝑒𝑎𝑟 + 𝑡𝑓 𝑢𝑒𝑙

+ 𝑡𝑝𝑖𝑡−𝑠𝑡𝑜𝑝 + 𝑡𝑤𝑒𝑎𝑡ℎ𝑒𝑟 )

(1)

where:
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• 𝑡𝑏𝑒𝑠𝑡 is the best time obtained in the free practices, removing
all the possible time losses. It is expected to be the time of the
qualifying, while it is difficult to achieve it on race session due
to the multiple time losses;

• 𝑡𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 is the time loss between the different tire compounds;
• 𝑡𝑡𝑖𝑟𝑒_𝑤𝑒𝑎𝑟 is the time loss due to the tire wear;
• 𝑡𝑓 𝑢𝑒𝑙 is the time loss due to the fuel weight. This value increases
linearly, usually it is around 0.03 s per kg of fuel [10];

• 𝑡𝑝𝑖𝑡−𝑠𝑡𝑜𝑝 is the average time loss due to a pit-stop;
• 𝑡𝑤𝑒𝑎𝑡ℎ𝑒𝑟 is the time loss due to weather.

Note that the GA takes the TotalTime value inms and converts
it into hh:mm:ss.ms for better readability.

3.2 Algorithm flow
The proposed GA works as follows:
(1) Build the initial population randomly. The constraints are then

checked, in order to verify if each individual is valid or not.
(2) Check if there are individuals that are equal, and in that case

keep only one of them in the population.
(3) Sort the population with a custom penalty function and per-

form selection.
(4) From the selected individuals, arrange them in random pairs

and apply crossover with probability 𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 .
(5) Apply to each offspring mutation with probability 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 .
(6) Add the resulting individuals to the new population.
(7) Add other individuals, built randomly, to the population, until

the population has the right number of individuals.
(8) Repeat from step (2) until the maximum no. of generations.

3.3 Selection and replacement
The selection process is based on the fitness value with an appli-
cation of a penalty in some specific cases. It is important to notice
that a specific strategy could be optimal, but it could also break
only a constraint by a little, e.g., for the fuel or the compound
change. Even if the strategy is not valid, with some minor changes,
it could be turned into a very good solution. To make this happen,
the selection makes a first check about the validity of each solution
and then it applies a penalty starting from the TotalTime of each
non-valid strategy. The penalty is built in a dynamic way. At each
generation, the algorithm computes the following steps:
(1) Compute Δ. For each 𝑖-th individual in the population, Δ1 is

the absolute value of the difference between the TotalTime
and the best time found so far:

Δ𝑖 = |𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝑖 − 𝐵𝑒𝑠𝑡𝑇𝑖𝑚𝑒 |. (2)

(2) Compute 𝛼 . The latter is a multiplicative value, used to calcu-
late the penalties, and it is a value related to the number of
generation. The later the generation, the bigger 𝛼 :

𝛼 = 𝑒
1+ 𝑁𝑠𝑡𝑒𝑝

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 . (3)

(3) Compute the penalties. For each 𝑖-th individual, the algorithm
computes the penalties by normalizing Δ𝑖 and multiplying it
by the 𝛼 factor calculated in the previous step:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖 =
Δ

max𝑖∈𝑝𝑜𝑝 (Δ𝑖 )
× 𝛼. (4)

(4) At this point, if the strategy is valid no penalty is applied; oth-
erwise, we check the constraints:
(a) Constraint on the compound change: if this is not verified,

we multiply the penalty value by the same 𝛼 factor men-
tioned before. This is done because this constraint is veri-
fied or not, i.e., there is no intermediate possibility.

(b) Constraint on the fuel load: the constraint imposes that the
fuel load must be bigger than or equal to zero. Otherwise,
an exponential penalty is applied as follows:

𝑒 |𝑙𝑎𝑠𝑡_𝑙𝑎𝑝_𝑓 𝑢𝑒𝑙_𝑙𝑜𝑎𝑑 | . (5)

Finally, the population is sorted based on the penalty, and selec-
tion is applied. Only a part of the population is selected for the
next generation. The old population is replaced through elitism:
𝑛 best individuals are maintained from the previous generation,
to prevent loss of the best individuals by effect of mutations or
sub-optimal fitness evaluations. In order to maintain keep the size
of the population (𝑝𝑜𝑝) fixed, it is necessary to find the right 𝑛
for the proposed algorithm, namely: 𝑛 = ⌊𝑝𝑜𝑝/7⌋. This value re-
sults from the following reasoning. In order to compute the right
𝑛, we need to take into account how many offspring are created
through crossover and mutation at each generation. Given the fact
that there is only one type of crossover operation, at most 𝑛 new
children are created at each generation. For mutation, there will be
at maximum 5 new children for each parent, 4 from the 4 types of
mutations, and one created by the mutations applied together (see
Section 3.5). Then, it results that:

𝑛 + 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔_𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 + 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑜𝑝

𝑛 + 𝑛 + 5 × 𝑛 = 𝑝𝑜𝑝 → 𝑛 = ⌊𝑝𝑜𝑝/7⌋ .

In this way, the number of individuals in the new population
will always be less than or equal to 𝑝𝑜𝑝 . If the number is less
than 𝑝𝑜𝑝 , the new population is filled with random children un-
til it reaches 𝑝𝑜𝑝 . Then, the new population replaces the old one.

3.4 Crossover
The implemented crossover works only on the fuel. If the crossover
is applied on two strategies, they exchange their initial fuel, creat-
ing two new individuals for the next population, as shown in Fig.
2. Their fitness values are computed again with the new initial fuel
load. Note that the crossover has been applied only on the fuel
and not on the other two variables, i.e., the tires and pit-stops, be-
cause in preliminary experiments we noted that the application of
crossover on those variables was causing problems with the fea-
sibility of the resulting strategies (e.g., resulting in a number of
pit-stops not compatible with the number of compounds).

110 kg

102,9 kg 1:37:49.566

1:34:19.168

110 kg

102,9 kg

1:38:04.008

1:33:59.725

15 50 64

15 64

15 50 64

15 50 6424

5024

Figure 2: Example of crossover operation.
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3.5 Mutation
The mutations implemented are of four types and they are all ap-
plied with the same probability 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 . One of them regards the
tires, two regard the pit-stops, and the last one regards the fuel load.
The first mutation works by taking all the different compounds
used in a strategy, randomly picking one of them, and changing it
with another compound until another pit-stop is made or the race
ends. The two types of mutations on pit-stops have opposite roles:
the first one has the goal to remove the unnecessary pit-stops in
the strategy, while the second one tries to add a pit-stop in those
cases where a certain tire is too worn out. They work as follows:
• Remove a pit-stop: the algorithm takes a random number 𝑖 from
1 to the total number of pit-stops in that specific strategy, then
the 𝑖𝑡ℎ pit-stop is removed and the tire compound we would
have used until the next pit-stop or the end of the race is re-
placed with the tire of the previous laps.

• Add a pit-stop: the algorithm takes a random number 𝑗 in the
range between 1 and the total number of laps of the race, and it
adds in the 𝑗𝑡ℎ lap a pit-stop with new tires.

The fourth mutation works on the initial fuel load. If this is applied,
the initial value of the fuel is changed with a random value uni-
formly sampled from [𝐹𝑢𝑒𝑙_𝐿𝑜𝑎𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −10; 𝐹𝑢𝑒𝑙_𝐿𝑜𝑎𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +10]
where 𝐹𝑢𝑒𝑙_𝐿𝑜𝑎𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial value of the fuel load.

4 EXPERIMENTAL SETUP
In this section, we explain the experimental setup and the data
collection. Code, data, and results can be found on GitHub1.

The experimental campaign is divided in two parts: experiments
on simulated data, and experiments with real data provided by
Pirelli. We describe these two sets of experiments below.

4.1 Simulated data experiments
In the first part of our experiments, the F1 2021 simulation game
has been used to gather simulated telemetry data.The GA has been
tested on the circuits of Bahrain, Montreal, Monza, Portimao, Spiel-
berg, and Zandvoort. We should highlight the fact that, while the
data acquired from simulation are simplified, they are still reason-
ably plausible. Moreover, the driver collecting the simulated data
was an amateur driver, thus we cannot rule out the possibility that
the results of the algorithm on the simulations have been affected
by the driver abilities. Yet, as we will see below, these results pro-
vide interesting insights.

The raceweekend considered in our experimentation is arranged
as follows: (1) Free Practices (FP1, FP2, FP3); (2) Race. Specifically,
telemetry data are collected on the free practices and are then used
to compute the race strategy. Qualifying sessions are not consid-
ered, since the aim of this paper is not to search for the best tire
and fuel load to achieve the best time for qualifications.

4.1.1 Data collection. Data are collected through a script that cap-
tures all the telemetry data available from the simulator. Data are
then stored and elaborated through the GA (in particular, the pa-
rameters needed for computing all the time losses that are neces-
sary for computing the fitness function shown in Eq. (1)). In par-
ticular, data are fit into a linear function to obtain the coefficients
1https://github.com/bonom/Evolutionary-F1-Race-Strategy

for the time losses (e.g., the different values of tire compound, tire
wear, weather conditions, and fuel load).

4.1.2 Weather conditions. In order to evaluate the proposed GA,
we consider two different scenarios, namely a simple dry condition,
and a complex mixed weather condition, defined as follows:
• Dry condition: This is the simplest case, where only the dry com-
pounds are involved.

• Mixed condition: In this case both dry andwet conditions happen.
The considered weather condition assumes that for the first 15
laps the track is wet, then it becomes dry for about 20/35 laps,
depending on the circuit, then wet again for 15 laps until the last
4/5 laps, which are in dry condition. This is a very unrealistic
situation, but the goal is to stress the GA and see how it handles
unexpected conditions.

4.2 Real data experiments
For these experiments, we got in contact with race engineers from
Pirelli, who provided the relevant parameters for modeling the tire
wear of some of the 2021 circuits: Bahrain, Barcelona, Monza, Por-
timao, Silverstone, Spielberg, and Zandvoort. The parameters pro-
vided by Pirelli are: 𝑑𝑒𝑙𝑡𝑎, 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛, and the maximum number
of laps for each tire given a certain circuit. The 𝑑𝑒𝑙𝑡𝑎 is a value
that expresses the time difference w.r.t. the Soft compound. The
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 is a value that express the time loss at each lap due to
degradation. In other words: considering a linear degradation of
the tire, where the number of laps is the x-axis and the time loss
is on the y-axis, the 𝑑𝑒𝑙𝑡𝑎 is the intercept while the 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 is
the slope of such linear degradation. Note that we cannot provide
these data, because they are not publicly available.

Since the initial fuel load was kept secret, in this case an exact
computation for the fuel usage is not possible. A feasible computa-
tion is 110/𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑝𝑠 (kg/lap), and the time loss is fixed at 0.3 s/kg.
Moreover, in this case the weather forecast is not taken in consid-
eration since Pirelli proposals are for dry races only. Therefore, for
the real data experiments the fitness function is adapted as follows:

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 =
𝑙𝑎𝑝𝑠∑
𝑙𝑎𝑝=1

(𝑑𝑒𝑙𝑡𝑎 + 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 × 𝑙𝑎𝑝 + 𝑡𝑓 𝑢𝑒𝑙 + 𝑡𝑝𝑖𝑡−𝑠𝑡𝑜𝑝 )

(6)
In this case the GA returns, for each run, the fastest 1-pit strat-
egy and the fastest 2-pit strategy. The equal strategies (in terms of
number of pit-stops) are combined together in order to provide a
pit-window as Pirelli does in the real practice. Note that, given the
hypothesis explained in the first part of this Section, Eq. (1) and
(6) are still comparable. The two formulations are different only
because of the different nature of synthetic and real data.

PRoof. In Eq. (1) the following terms are modified as follows:
• 𝑡𝑏𝑒𝑠𝑡 is not provided for real data and actually is not needed for
the goal of the algorithm, so it can be deleted.

• 𝑡𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 corresponds to the𝑑𝑒𝑙𝑡𝑎 parameter provided by Pirelli.
• 𝑡𝑡𝑖𝑟𝑒_𝑤𝑒𝑎𝑟 is computed as 𝑑𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑙𝑎𝑝 .
• 𝑡𝑤𝑒𝑎𝑡ℎ𝑒𝑟 can be deleted, given the fact that the weather forecast
is not taken in consideration by Pirelli.

For these reasons, Eq. (1) and Eq. (6) are equivalent formulations
of the problem. □

https://github.com/bonom/Evolutionary-F1-Race-Strategy
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Note that the race times are very different between simulated
and real data experiments. This is because Eq. (6) does not have
the parameter 𝑡𝑏𝑒𝑠𝑡 that Eq. (1) instead has. As said this parameter
is not available in real data experiments, thus it has been removed
from the computations, leading to lower race times.

4.3 GA parameters
The GA is executed for 30 runs for each circuit and, in the case
of simulated data, also for each type of weather condition. The hy-
perparameters used for the GA are summarized in Table 1. These
parameters have been set empirically.

Table 1: Hyperparameters used for the GA.

𝑝𝑜𝑝 No. generations 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

250 1000 0.9 0.6

4.4 Baseline algorithm: reduced brute-force
Since for the problem at hand there is no specific state-of-the-art al-
gorithm to compare with, we implemented a (reduced) brute-force
method in order to have a baseline for the results of the proposed
GA.The search space of the brute-force algorithm can be seen as a
tree: starting from the root, at each lap there are different children
(one for each possible tire choice), and for each children there are
two other possible children for the choice of making a pit-stop or
not. All the possible paths starting from the root and ending in the
leafs are the possible strategies for a race. The best strategy (path
of the tree) is the one with the lowest total time computed by Eq.
(1). The space of all the possible solutions would be however too
big to explore: in fact, the complexity of a full brute-force would be
𝑂 (10𝑛), where 𝑛 is the number of laps. To ensure a feasible compu-
tation, the number of pit-stops is therefore limited to be below than
or equal to 2. Moreover, the brute-force is forced to choose a spe-
cific tire given the weather condition, to decrease the complexity
even more. While these assumptions make the computation feasi-
ble, they prevent finding some possible strategies with more than
2 pit-stops that could be optimal. Yet, this form of reduced brute-
force can provide baseline results that are sufficient for our pur-
poses. The choice for the baseline fell on the brute-force approach
rather than on MC sampling, as mentioned in Section 1, for two
reasons. The MC method outputs a certain strategy, which is con-
nected with a certain probability of winning the race, while brute-
force deterministically outputs the best strategy. Moreover, brute-
force was a better and more convenient choice than the MC al-
gorithm, because the last one typically needs more computational
power for computing accurate results, and it is especially useful
with a higher number of parameters to optimize. The proposed al-
gorithm can work with any number of variable, without change
anything in the actual flow (Section 3.2).

5 RESULTS
We present now the results obtained on the simulated and real data
by comparing the proposed GAwith the brute-force on the various
circuits and weather conditions mentioned above.

5.1 Simulated data experiments
5.1.1 Dry condition. In Table 2, the results obtained for the cir-
cuits under consideration are reported. The table shows: the brute-
force final race time, the best final race time achieved by the GA,
the mean of all the final race times achieved by the GA across the
different runs, the standard deviation of the same final race times,
and the difference between the GA best and the brute-force one.

Table 2: Simulated data experiments - Sunny weather con-
dition results. “Diff.” indicates the difference between the
GA best and the brute-force results. Results are displayed as
hh:mm:ss.ms.

Circuit Brute-force GA Best GA Mean GA Std Diff.
Bahrain 1:24:03.264 1:24:03.261 1:25:40.219 2:19.233 - 0.003
Montreal 1:25:21.596 1:25:17.117 1:25:54.326 1:43.793 - 4.479
Monza 1:14:29.778 1:14:29.838 1:16:23.050 2:28.598 + 0.060
Portimao 1:28:17.329 1:28:17.686 1:29:14.057 2:11.722 + 0.357
Spielberg 1:19:49.182 1:19:49.402 1:20:20.591 1:31.701 + 0.220
Zandvoort 1:28:26.830 1:28:26.646 1:28:48.877 1:16.399 - 0.184

We can see that the GA manages well this type of condition. It
misses the best results found by brute-force by only a fewms, while
in some cases it even beats the brute-force strategy. In Bahrain,
the best solution found by brute-force is slightly better than the
one provided by the GA because of some approximations errors. In
Montreal, the GA is capable of beating the brute-force due to the
pit-stop limitations on the brute-force: in fact, the fastest strategy
is a 3-pit, while the brute-force is limited at two. In Monza, the GA
also performs well: it finds a good strategy w.r.t. the brute-force,
with a difference of one lap on two tire compounds. On Portimao
the GA struggles more but is able to obtain a very good strategy:
the brute-force strategy performsmore laps with theMedium com-
pound, while the GA strategy performs more laps with the Soft
compound. In Spielberg, the GA has a good performance: as in
Monza, it only misses by two laps the best performance. Finally,
in Zandvoort, the GA outperforms the brute-force because it finds
that a 3-pit strategy is better than a 2-pit one.

5.1.2 Mixed condition. In Table 3, the results for each circuit in
consideration are reported.The table shows the best final race time
achieved by the GA, the mean of all the final race times achieved
by the GA across the different runs, and the standard deviation of
the same final race times. In this case brute-force is not considered
as baseline because it is not computationally feasible.

We can see that the GA managed well also the mixed weather
condition. In fact, the algorithm was able to return a strategy in
a short amount of time. Moreover, for every circuit the proposed
strategy is feasible.

5.2 Real data experiments
Tables 4-10 summarize the results obtained on the real data experi-
ments on each circuit. Accordingly, Figures 3-16 visualize the best
strategies proposed by the GA and the ones proposed by Pirelli for
each circuit before the race day. As for the GA results, we present
the best strategies found across the 30 runs available for each cir-
cuit. The Pirelli strategies are publicly available, respectively for
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Table 3: Simulated data experiments - Mixed weather condi-
tion results. Results are displayed as hh:mm:ss.ms.

Circuit GA Best GA Mean GA Std
Bahrain 1:28:35.913 1:28:58.271 19.633
Montreal 1:30:48.090 1:31:46.961 59.287
Monza 1:19:00.718 1:19:44.536 31.977
Portimao 1:33:57.904 1:34:34.585 23.166
Spielberg 1:24:36.648 1:25:48.128 57.578
Zandvoort 1:33:02.185 1:34:00.552 41.004

Bahrain [4], Barcelona [5], Monza [6], Portimao [7], Silverstone
[11], Spielberg [8], and Zandvoort [9]. In the figures, rows are or-
dered from the fastest to the slowest strategy. Red indicates the Soft
compound; yellow indicates the Medium compound; white indi-
cates the Hard compound.The green box indicates the pit-window.

It can be seen that on the real data experiments the GA per-
formed verywell: in all cases, it equals or outperforms the proposal
of Pirelli. In the following, we compare in detail the results of the
GA and the strategies proposed by Pirelli for each circuit.

Bahrain. In the circuit of Bahrain theGAfinds awell-performing
strategy. Indeed, it determines that the fastest strategy is a 2-pit
strategy with the Hard compound involved. It outperforms the
strategy proposed by Pirelli. However, it is worth noticing that it
is not obvious to have two new Hard compounds available on the
race day. Indeed, usually teams have a new Hard compound and a
used one. The strategies are shown in Fig. 3 and Fig. 4.

Table 4: Bahrain results.

Order Output Strategy Diff. [s.ms]
1 GA SHH -
2 Pirelli SHM +3.090
3 Pirelli MHM +3.220
4 GA MH +3.610
5 Pirelli SHS +3.810
6 Pirelli SMM +8.010

13 34

18 27

Figure 3: The GA strategies for Bahrain.

14 38

18 39

15 36

16 41

Figure 4: Pirelli strategies for Bahrain.

Barcelona. In the circuit of Barcelona, the GA was able to re-
produce the strategies proposed by Pirelli and, in two cases out of
three, it was even able to propose an improvement. The algorithm
got the compounds right and basically found the best strategies:
the fastest one is a 1-pit strategy with Medium and Hard, while
the second fastest one is a 2-pit strategy with Soft and Medium
compounds. In these two cases the GA proposed a little improve-
ment w.r.t. the strategies proposed by Pirelli, which differs only
for some laps in the pit-window. The strategies are shown in Fig. 5
and Fig. 6.

Table 5: Barcelona results.

Order Output Strategy Diff. [s.ms]
1 GA MH -
2 GA SSM +0.120
3 Pirelli SMS +0.140
4 Pirelli SH +1.790
5 GA SH +2.450

28 33

19 20 38 40

25

Figure 5: The GA strategies for Barcelona.

30

19 47

28

Figure 6: Pirelli strategies for Barcelona.

Monza. In the circuit of Monza the performances are very sim-
ilar, since the fastest strategy is the 1-pit strategy with the usage
of the Soft compound. The GA and Pirelli propose the same fastest
strategy, while the second fastest one is predicted to be faster if the
Soft compound is kept for some laps more than Pirelli suggested.
The strategies are shown in Fig. 7 and Fig. 8.

Table 6: Monza results.

Order Output Strategy Diff. [s.ms]
1 GA SM -
1 Pirelli MS +0.000
3 GA SH +3.460
4 Pirelli SH +4.810

Portimao. In the circuit of Portimao theGAperformed very good:
the proposals of the GA are almost identical to the Pirelli propos-
als. Indeed, the GA always proposed a pit-window that is shifted
by just a few laps. Specifically, the algorithm proposes to use a lit-
tle longer the first tire compound. The strategies are shown in Fig.
9 and Fig. 10.
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20 28

20 25

Figure 7: The GA strategies for Monza.

12 17

27 33

Figure 8: Pirelli strategies for Monza.

Table 7: Portimao results.

Order Output Strategy Diff. [s.ms]
1 GA SM -
1 Pirelli SM +0.000
3 GA SH +2.840
4 Pirelli MH +2.890

20 25

31 39

Figure 9: The GA strategies for Portimao.

28 35

17 24

Figure 10: Pirelli strategies for Portimao.

Silverstone. In the circuit of Silverstone the GA finds the fastest
strategy as the 1-pit strategy. There are also two proposals for the
2-pit strategy since Pirelli proposed one possible strategy with two
pits. In particular, the strategies are almost identical between the
GA and Pirelli proposals.The GA proposed also some intermediate
strategies that can be worth to consider. However, the third strat-
egy proposed by the GA, the Soft-Medium one, reaches the maxi-
mumwear life possible.While this strategy is in principle fine from
a numerical perspective, in the practice it can yield a high risk of
puncture. The strategies are shown in Fig. 11 and Fig. 12.

Table 8: Silverstone results.

Order Output Strategy Diff. [s.ms]
1 GA MH -
1 Pirelli MH +0.000
3 GA SH +0.210
3 Pirelli SH +0.210
5 GA SM +1.260
6 GA SSM +12.080
7 GA SMM +12.110
7 Pirelli SMM +12.110

Spielberg. In the circuit of Spielberg the GA found the same
strategies proposed by Pirelli. The only differences are, again, the
laps of the pit-window. In the case of Pirelli, they proposed the pit-
stops later than the GA, which leads to a little loss in terms of final
race time. The strategies are shown in Fig. 13 and Fig. 14.

16 25

14 22

21 22

14 3216 29

34311413

Figure 11: The GA strategies for Silverstone.

18 25

14 18

43301510

Figure 12: Pirelli strategies for Silverstone.

Table 9: Spielberg results.

Order Output Strategy Diff. [s.ms]
1 GA MH -
2 Pirelli MH +0.020
3 GA MHH +1.760
4 Pirelli MHH +2.420
5 GA SH +3.870

16 17 42 46

20 30

19

Figure 13: The GA strategies for Spielberg.

20 25 40 50

25 30

Figure 14: Pirelli strategies for Spielberg.

Zandvoort. In the circuit of Zandvoort the strategies proposed
by the GA and Pirelli are very similar. In the case of a 1-pit strategy
the compounds involved are the same and only the pit-window is
a little different. For the 2-pit strategy the GA and Pirelli proposed
a similar strategy, with Pirelli suggesting an earlier pit at each pit-
stop.The fourth strategy proposed by the GA is included but, as for
the case of Silverstone, while this strategy is numerically possible,
realistically it can be very difficult to keep those tires for such an
amount of laps. The strategies are shown in Fig. 15 and Fig. 16.

Table 10: Zandvoort results.

Order Output Strategy Diff. [s.ms]
1 GA SH -
1 Pirelli SH +0.000
3 GA MH +2.300
3 Pirelli MH +2.300
5 GA SSM +3.860
5 Pirelli SSM +3.860
7 GA SM +4.950
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25 30

27 32

23 4518 55

30 31

Figure 15: The GA strategies for Zandvoort.

25 31

29 40

25 4523 49

Figure 16: Pirelli strategies for Zandvoort.

5.3 Effect of the penalty
To evaluate the custom penalty proposed, a simple test was made
in the case of the simulated data: the GA was run 10 times with
the proposed dynamic penalty and 10 times with a rankingmethod
based only on the fitness without any type of penalty. In both cases
the selection has been applied on 1/7 of the population. As shown
in Fig. 17, for the four circuits considered in this test, the mean of
the final times with the dynamic penalty was better than the mean
of the final times of the GA without dynamic penalty. Therefore
we can conclude that the penalty is a crucial factor that effectively
leads to better results.

1:25:25,781

1:14:34,026

1:28:24,880

1:19:56,067

1:35:03,810

1:21:58,293

1:37:46,519

1:28:52,126

Montreal Monza Portimao Spielberg

Proposed Penalty Without Penalty

Figure 17: Results with and without dynamic penalty.

5.4 Complexity
One of the key points of the proposed algorithm is the speed to
compute a solution. Indeed, on a standard Linux PC (without multi-
threading) a single run of the GA makes between 1.5 and 2.5 itera-
tions for each second in the case of the simulated data and it always
reaches the minimum in less than 1min. In the case of the real data,
the GA reaches the minimum in about 5 s and it makes between 9
to 12 iterations per second.

In principle, the low computational time of the GA is also an ad-
vantage for running the algorithm in real time during a race. Even
though the strategies are already fixed before, it could be useful
to run the proposed algorithm during the race with live parame-
ters.This can be the case, for example, of an unpredictable weather
conditions where, at the beginning, the weather forecast is sunny,
while during the race it starts raining. Moreover, the tire could
have a different wear due to different track temperatures, wind, or
other parameters that were wrongly estimated before the race.

6 CONCLUSIONS
In all the experiments conducted in this study the proposed GA
was always able to find a very good strategy. In simulated data, it
performed very well, with only a tiny margin of error, while with
the real data it even found some faster strategies than Pirelli. In the
other cases, the proposals were similar.

It should be noted that the proposed GA was designed to search
for the fastest strategy under specific conditions, which may not
necessary be the best strategy overall. What we mean is that, dif-
ferently from the strategies proposed by Pirelli, which are some-
how generic, the strategies proposed by our GA can be adapted
to the driver performances and preferences as well as any other
specificity about the car, the tires, the circuit, etc. Having more
parameters to work with, the algorithm could return even more
specific strategies. Moreover, it could be possible to extend the GA
to handle also other types of mutation and crossover. Another im-
provement would be to introduce parallelization (the current im-
plementation is single-population and single-threaded). Not only
this would lower the compute time, but it would also allow migra-
tion schemes, to better explore the search space. Another possibil-
ity would be to consider more compact genotype representations.

To conclude, the proposed GA is a very good example of a real
application of Evolutionary Computation in the world of car rac-
ing. Even if the GA has been tested on F1 data, it can be obviously
applied to a variety of racing competitions, possibly even in real-
time settings, thanks to the fact that the algorithm is very fast at
computing an optimal strategy even with limited resources.
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