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ABSTRACT Assistive care robots operate in cluttered, complex environments, akin to human residences,
and need to face sensor and actuator faults during their operation without compromising safety. In these
situations, the system must foresee and provide reactions that are beyond robust in addition to compensating
for uncertainty and volatility in its functioning. We propose a new control design framework based on
the principles of antifragility. In this work, we provide a formal concept of antifragile control and outline
the design procedures for creating a mobile robot trajectory-tracking antifragile controller. An extended
comparative evaluation against other controllers and a methodical investigation of the performance under
parametrizable uncertainty and errors is also provided. Our findings demonstrate the effectiveness of
antifragile closed-loop control in volatile and unanticipated circumstances.

INDEX TERMS Antifragile control, mobile robotics, trajectory tracking, uncertainty.

I. INTRODUCTION
Autonomous robotic vehicles are increasingly being adopted
in everyday life, for instance through car-platooning appli-
cations [1], urban transportation services [2], and robotic
wheelchairs [3]. The last class of vehicles is an effective
solution for individuals with severe disabilities or handicaps
who have no possibility of controlling a typical motorized
wheelchair. In fact, robotic wheelchairs recognize the min-
imal input from the user, plan a route, and follow it within the
constraints of the task’s time constraints and the intricacy of
the operating environment. Our goal in this exploratory work
is to build amotion control algorithm that permits safe motion
in situations where there is uncertainty and volatility about
the operational states of the actuator and sensor. It should be
noted that volatility pertains to the beginning and length of the
fault in our study, whereas uncertainty defines the unknown
amplitude and type of sensor and actuator faults.
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A. FRAGILITY-ROBUSTNESS-ANTIFRAGILITY SPECTRUM
IN ROBOT CONTROL
Antifragility, as defined in [4] and [5], is a feature of a system
that allows it to benefit from uncertainty, unpredictability,
and volatility, in contrast to fragility. The reaction of an
antifragile system to external perturbations or internal faults
is beyond robust and resilient such that mild stresses can
increase the system’s future response by adding a significant
anticipation component (see Fig. 1). In this work, we propose
an alternative controller synthesis mechanism for mobile
robots, extending the work in [9], based on the novel
antifragile control framework introduced in [6] for therapy
control and extended in [7] to traffic control. To provide an
intuitive understanding of the antifragile control framework,
we illustrate the fragility-robustness-antifragility spectrum
inFig. 1. This is a basic representation of how different types
of controllers would function when faced with escalating
levels of uncertainty, such as sensor and actuator faults,
such as wheel slippage, actuator fault, or sensor fault.
Please note that this is a theoretical effect designed for
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FIGURE 1. Fragility–robustness–antifragility spectrum in robot trajectory
tracking. Existing approaches can compensate for an increase in
amplitude and timing (i.e., uncertainty and volatility) of the disturbance
of the system, while antifragile control aims at gaining from these
adverse events.

pictorial reasons. The main goal of our work is to achieve
an antifragile closed-loop control performance that not only
gains from unforeseen, increasingly strong defects but also
grows accustomed to them. An important note is that, in the
current study, we extend the intrinsic and inherited fragility–
robustness–antifragility detection heuristics of [5] through a
novel type, termed induced antifragility. Our study proposes
realizing antifragility through the design of a closed-loop
control system that compensates for uncertainty (i.e. fault
amplitude) and volatility (i.e. fault onset and duration) during
trajectory tracking.

B. TRAJECTORY TRACKING FOR WHEELED MOBILE
ROBOTS
Trajectory tracking control of nonholonomic mobile robots
seeks to control a robot’s motion to follow a specific time-
varying trajectory. It is a basic motion control challenge
that the robotics community has studied in great detail [9],
[10], [11], [12], [13], [14], [15], [16]. Instead of offering yet
another solution to an already well-known issue, our study
aims to encourage the community to adopt a novel control
synthesis strategy called antifragile control. Conventional
methods obtain the reference trajectory by using a reference
(virtual) robot; therefore, all kinematic constraints are
implicitly taken into account in the reference trajectory.
A stabilizing controller is then designed using a mix of
feed-forward inputs estimated from the reference trajectory
and feedback control rules [12], [13] or via Lyapunov stable
time-varying state-tracking control laws [17], [18].
The design of robust controllers allows to compensate

for uncertainty (e.g., wheel slip); these include dynamic
modeling [14], robust [19], data-driven [20], and adaptive
control [21], as well as sliding control [8], [15], [22].
Typical controllers aim to recover the desired robot behaviour
by either ‘‘suppressing’’ uncertainty (i.e., robust control),
modelling it (i.e., adaptive control), or predicting it (i.e.,
resilient control). In contrast, our antifragile controller
pushes performance (i.e., minimal tracking error) through
anticipation. Three key design components–explained in the
sections that follow–help achieve this.

Uncertainty prediction can be effectively exploited to
improve the controller response. In this regard, model
predictive control anticipation capabilities have been used for
mobile robot trajectory tracking [23], [24], [25]. On the other
side, the goal of robust controllers is to provide (bounded)
mediation actions that handle uncertainty, whereas our
antifragile controller seeks to anticipate the uncertainty by
accumulating ‘‘capacity’’ to accommodate the later effects.
In the experiments, we compare our approach with the
adaptive model predictive controller inspired by the work
of [25].

Finally, the antifragile control is compared with a resilient
control strategy where the control law is built to model
specific uncertainties using fuzzy logic; the implementation
is inspired by the work in [26]. It should be noted that this
study is not an established framework prepared to overtake
state-of-the-art, but rather an attempt to forge a new route
in antifragile control synthesis with a real-world robotics
application. We are excited to challenge the community
to evaluate the framework instead of the solution to a
well-known issue.

C. CONTRIBUTIONS
The main contributions of our study are:

• a control system design mapping the mobile robot
trajectory tracking problem under sensor and actuator
faults to the fragile–robust–antifragile continuum;

• an implementation of an antifragile controller for mobile
robot trajectory tracking with closed-loop benefits from
variability (i.e. fault amplitude) and volatility (i.e. fault
onset and duration);

• a systematic characterization of mobile robot trajectory
tracking problem under uncertainty and volatility (i.e.,
environment conditions, sensor and actuator faults in a
space–time–intensity reference system);

II. MATERIALS AND METHODS
This section is dedicated to themodels and tools we employed
in our study and discusses the proposed approach for
controller synthesis within the antifragile control framework.

A. WHEELED MOBILE ROBOT TRAJECTORY TRACKING
In our study, we consider a differential drive wheelchair,
as shown in Fig. 2. In trajectory tracking mode, the real
mobile robot must track a virtual mobile robot’s trajectory
under time constraints. The robotic setup was developed in
[9] and [22]. The control objective is to compute the velocity
of the robot such that its pose Pr = [xr , yr , φr ]⊤ follows a
reference trajectory of the virtual robot Pd = [xd , yd , φd ]⊤.
Such robots are subject to nonholonomic constraints, making
motion perpendicular to the wheels impossible. The velocity
of Pr is assumed in the direction of the axis of symmetry and,
additionally, the wheels do not skid.

To improve tracking performance, we consider the robot’s
dynamics and divide the controller synthesis into two phases:
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FIGURE 2. Description of the mobile robot trajectory tracking problem.
Adapted with permission from [9].

• an inner loop that can be utilized to control both the
linear and angular velocities – dynamic-level control.

• an outer loop to control the pose of the robot in the xOy
reference frame– kinematic-level.

For the inner loop, we consider the DC motor model in [9],
whereas, for the outer loop, the kinematic mobile robot model
in [9] 

ẋr (t) = vr (t) cos(φr (t))
ẏr (t) = vr (t) sin(φr (t))
φ̇r (t) = ωr ,

(1)

where xr and yr are the Cartesian coordinates of the geometric
centre of the mobile robot, vr is the linear and ωr is the
angular velocity of the robot, and φr is the robot’s heading
angle. Knowing the wheel radius r and the distance between
the wheels 2b, it is straightforward to compute the Robot
Dynamics Transform in Fig. 3, i.e., the relation between
the linear v and angular ω velocities of the robot and the
individual wheel angular velocities ωR, ωL .

The trajectory tracking errors can be described by the
vector [xe, ye, φe]⊤ (see Fig. 2). The designed controller
needs to generate a command vector [vc, ωc]⊤. Considering
the model in (1), the error vector is given byxeye

φe

 =

 cos(φd ) sin(φd ) 0
− sin(φd ) cos(φd ) 0

0 0 1

 xr − xd
yr − yd
φr − φd

 , (2)

where the vector [xd , yd , φd ]⊤ is the virtual robot pose. The
corresponding error derivatives are then computed as

ẋe(t) = −vd + vr cos(φe) + yeωd
ẏe(t) = vr sin(φe) − xeωd
φ̇e(t) = ωr − ωd ,

(3)

where vd and ωd are the desired robot linear and angular
velocities, respectively. Note that a feasible desired trajectory
for the mobile robot is pre-specified by the velocity
planner in [27]. This approach generates speed profiles and
trajectories that are comfortable for humans, as validated
in [15].

FIGURE 3. The proposed antifragile control framework consists of two
nested loops. a) In the outer loop the antifragile controller generates the
desired trajectory. b) The inner loop controls the individual velocities of
the wheels.

B. ANTIFRAGILE CONTROL
This section is dedicated to introducing the mathematical
apparatus of antifragile control, going from its theory and
principles to the control synthesis for robot trajectory tracking
under uncertainty. The control framework is shown in Fig. 3.

1) PRELIMINARIES
Let us consider the dynamical system associated with
the mobile robot, assumed to be fully observable and
controllable, in the form{

ẋ = f (x, u, dx)
z = g(x, u, dz),

(4)

where x ∈ Rn is the state, u ∈ Rp is the input, z ∈ Rm is the
output, dx ∈ Rn and dz ∈ Rm are faults acting on the state and
output of the system, respectively. Considering system (4),
we can reformulate the definition of antifragility given in [5].
Definition 1 (Local Antifragility): The system (4) is locally

antifragile iff ∀ x(t0) ∈ X ⊂ Rn, for u = 0, dx ∈ Dx ⊂ Rn,
and dz ∈ Dz ⊂ Rm, the error z−yd = g(x, 0, dz)−yd , where
yd ∈ Rm is the desired output, is a convex function.
Definition 2 (Global Antifragility): The system (4) is

globally antifragile iff ∀ x(t0) ∈ Rn, for u = 0, dx ∈ Dx ⊂

Rn, and dz ∈ Dz ⊂ Rm, the error z − yd = g(x, 0, dz) − yd ,
where yd ∈ Rm is the desired output, is a convex function.
Consequently, fragility is defined as the ‘‘opposite’’ of
antifragility, i.e.,
Definition 3 (Fragility): The system (4) is fragile iff

∃ x(t0) ∈ X ⊂ Rn such that, for u = 0, dx ∈ Dx ⊂ Rn,
and dz ∈ Dz ⊂ Rm, the error z−yd = g(x, 0, dz)−yd , where
yd ∈ Rm is the desired output, is a concave function.

An uncontrolled dynamics (u = 0) can be fragile in nature,
but it is possible to induce an antifragile behaviour through
control.
Definition 4 (Induced Antifragility): The system (4) is

locally inducedly antifragile iff ∀ x(t0) ∈ X ⊂ Rn, and for
dx ∈ Dx ⊂ Rn and dz ∈ Dz ⊂ Rm, ∃ u that renders the
error z− yd = g(x, u, dz)− yd , where yd ∈ Rm is the desired
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output, a convex function. If the previous holds ∀ x(t0) ∈ Rn,
we say that the system (4) is globally induced antifragile.

Producing an antifragile behaviour in a feedback control
loop (induced antifragility) demands a unique design and
synthesis method in which: 1) redundant overcompensation
may drive the system into an overshooting mode that
accumulates extra capacity and capability in anticipation;
2) structure-variability can elicit stressors that carry intrin-
sic information which emerges only under volatility and
unpredictability of the system dynamics affected by the
application of a high-frequency component; 3) time scales
separation of the interacting system’s dynamics undergoes an
order-reduction while driven towards the desired antifragile
operation region. The following sections are dedicated to
integrating the methodology above with the robot trajectory
tracking problem.

2) CONTROL SYNTHESIS
The work of [6] and [7] was an attempt to cast the control
design in geometric control and Riemannian geometry. This
made it possible for us to operate in a coordinate-free setting
by depending on a manifold’s embedding into an expanded
dynamical space, which allowed for the construction of
control laws that were more straightforward and suitable
for manifolds with curvature. In this work, a concrete
control synthesismethod is provided, while consolidating this
methodology and reducing a number of prior assumptions.

Our goal is to design a controller that forces the robot
to track a prescribed trajectory (i.e., a velocity-parametrized
reference temporal evolution) with certain geometrical prop-
erties. The problem can be also formulated to compute a
control signal (i.e., reference linear and angular velocities)
such that the robot’s state trajectory confines itself to desired
dynamics where the error vector (xe, ye, φe) is minimized.
In other words, in order to drive the closed-loop system state
evolution to a manifold such that the longitudinal xe, the lat-
eral error ye, and the angular error φe are internally mutually
coupled leading to convergence of all three variables. In our
control synthesis, we decouple the two internal control loops
in Fig. 3 (see the darkly shaded boxes termed Antifragile
Control and PID control) in order to describe the specific
design steps of 1) redundant overcompensation; 2) structure-
variability; and 3) time scales separation for uncertainty
isolation.

3) TIME SCALE SEPARATION
Given the interactions between the two nested control loops
in Fig. 3, in order to handle uncertainty and high-frequency
phenomena, the closed-loop system separates the time scales
of the loops. A very useful tool for such interventions
is (singular) perturbation theory [28]. The high-frequency
dynamics are considered in this paradigm by taking them
into account on a different timeline. Similar to a parallel
transport map on the Riemannian manifold of the system
state trajectory, this transformation is accomplished by a

dynamic change in the order of the controlled system
as a parameter perturbation. Such a change in the con-
trolled system dynamics is more ‘‘abrupt’’ than a normal
perturbation to which the system is exposed—hence the
singular perturbation. The main argument for using such
an approach in our antifragile control design resides in the
fact that such high-frequency phenomena are able to build
capacity in reacting to high-amplitude changes in the robot’s
operation (e.g., wheel slipping, flat tire, and shaft bending).
The core idea of time scale separation is to capture the
dominant phenomena dynamics and then capture the stressors
and is typically achieved by ‘‘outer’’ series expansions or
‘‘inner’’ boundary layer expansions [28], as shown in Fig. 4.
More precisely, considering singularly perturbed dynamical
systems, we can benefit from solutions with fast variation
zones. These areas, which may be seen in the solution or
its derivatives, are referred to as layers, and they frequently
exist near the domain border (see Fig. 4). Inner solutions are
found for the layers, whereas outer solutions are obtained
for the regular distinguished limits. The uniform solution is
described by the curvature (i.e., second-order effect) of the
overlapping region between the inner and the outer layer.
Interestingly, this can be exploited in our design to define
fragile and antifragile control regimes (Definitions 1) to 4))
depending on the curvature in the overlap region of the
solutions (i.e., attractors/solutions in the state space). From
Definition 4), the antifragile region is the convex region of the
solution curve (see Fig. 4a). Hence, the closed-loop system
response is antifragile if the curvature is negative, otherwise
is fragile.

In the case of robot trajectory tracking, the reference
trajectory is a path, which is an explicit function of time (see
Fig. 4b). To achieve a smooth robot movement, the trajectory
must be twice differentiable to give continuous velocity and
acceleration. In our experiments, we used the method in [8] to
obtain smooth longitudinal and angular velocity profiles (v(t)
and ω(t)) that are compatible with the characteristics of the
actuators of the robot (i.e., DC motor regimes) and assigned
total path length, and it must comply with human comfort
travel.

Given the explicit expression of curvature κi,i+1 between
consecutive points i and i+ 1 as

κi,i+1(t) =
ẋi,i+1ÿi,i+1 − ẍi,i+1ẏi,i+1

ẋ2i,i+1 + ẏ2i,i+1

, (5)

and its sign, the computed signals v(t) and ω(t) to move
the robot from point p1 to point p2 will generate two possible
paths, fragile (red) and antifragile green (i.e., antifragile
control signals for tracking if the curvature is negative,
otherwise fragile). Both fragile (red) and antifragile (green)
are feasible solutions. The antifragile solution will limit the
curvature and, implicitly, the magnitude of the control input
v(t) and ω(t). This reduces the stress on the robot’s actuators
and ensures higher robustness in the case of uncertainty while
maintaining comfort. The fragile path and curvature will have
more prominent curvature variation at the beginning and at
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FIGURE 4. Singular perturbation for time scale separation in antifragile
controller synthesis. Using boundary layers and matched asymptotic
expansions to probe antifragile behaviour. a) Generic depiction of a
boundary layer and the types of solutions in singularly perturbed
dynamic systems. b) Mapping the boundary layers and shape
(convexity/concavity) of the solution to robot velocity planning akin to
the desired dynamics to track in the presence of uncertainty.

the closing of the spline respectively, which might reduce
robustness in case of wheel slippage or mechanical damage
during navigation.

4) REDUNDANT OVERCOMPENSATION
In the following, we revisit the core idea of time scale
separation, graphically depicted in Fig. 4. Let us consider a
more general form of the robot model in (1) as{

ẋ = f (x, z, ε, t), x(t0) = x0, x ∈ Rn

εż = g(x, z, ε, t), z(t0) = z0, z ∈ Rm,
(6)

where f , g are continuous differentiable functions of x, z, ε, t .
The scalar ε > 0 quantifies all small parameters of the system
(i.e., Im, Iw, etc.), which in the antifragile control framework
are termed as stressors for capacity build-up. Furthermore,
considering two small time constants T1 and T2, we can
assume that T1 = ε and T2 = αε, where α = T2/T1 is a
known constant. Now, if we set ε = 0 in (6), the dimension of
the state space of the system reduces from n+m to n because
the second equation degenerates into 0 = g(x, z, 0, t) where z
can rapidly converge to a root of g due to its velocity ż = g/ε,
which can be high if ε is small.
From a more intuitive perspective, the model in (6) is

a reduced-order modelling technique, which allows us to
convert the robot’s dynamics simplification (reduction) into
a parameter perturbation, called ‘‘singular’’. The solutions
of the ‘‘slow’’ dynamics x(t, ε) and the ‘‘fast’’ dynamics
z(t, ε) of the singularly perturbed system in (6) consist of a
fast boundary layer and a slow quasi-steady-state, as shown

in Fig. 4. From the Riemannian geometry perspective of
antifragile control, there exists a manifold Mε depending
on ε that can be defined in the space n + m of x and z
such that Mε : z = φ(x, ε). This reduces the dimension
of the state space by restricting it to remain on Mε. The
redundant overcompensation and time scale separation’s
explicit concept and implementation is now introduced. For
this purpose, we utilize a Proportional Integral Derivative
(PID) controller for every DC motor to achieve redundant
overcompensation. The problem is then formulated in the
Laplace domain with complex frequency s in order to
concentrate on the singular perturbation design. Later we
will come back to the time domain to describe the actual
time-scale separation.

The transfer function of the PID controller is u(s)/e(s) =

Kp(1 + KDs + KI 1s ) where the error e(s) = w(s) − y(s).
Furthermore, we consider the DC motor model of [9], where
L is small in practice and may serve as our parameter ε.
This maps to our generic formulation in (6) if ω = x,
i = z and R ̸= 0. Model reduction is addressed by ignoring
the inductance L and solving −kω−Ri + u = 0 to obtain
the value of the current i =

u−kω
R which we then use to

obtain the first-order model of the DC motor in the form
J ω̇ = −

k2
R ω +

k
Ru. This accounts for finding the manifold

Mε and restricting the DC motor dynamics to remain on it.
In our design, the goal is to express that the integral effect

of the PID control is much slower than the proportional
and the derivative components. The singular perturbation
theory supports us in the task of rewriting the control law
u given the fact that KP and KD offer speed and stability of
the system, respectively, whereas KI reduces the error e to
zero. Assuming that KI = εK̂I , and changing notation as to
k1 = KP, k2 = KPKD, and k3 = KPK̂I , the control law is

u(s) = (k1 + k2s+ εk3
1
s
)e(s). (7)

The fast variables will build capacity for the antifragile
response to uncertain events in the robot’s operation, such as
wheel slipping, flat tire, andDCmotor actuator shaft bending.
More precisely, the choice of k1 and k2 must be done such
that in the PD part of the motor controller, the system matrix
is Hurwitzian.

5) STRUCTURE VARIABILITY
Variable Structure Control (VSC) offers a very powerful tool
for handling uncertainty in closed-loop [29], by providing a
powerful reaction to minimal deviations from a chosen con-
straint. Typically, VSC is practically implemented through
sliding mode control [29].

In our framework, VSC is related to redundant over-
compensation, as shown in Fig. 4 and 5. The antifragile
controller needs to provide a proper control signal (i.e., a pair
(v, ω)), such that the path from origin to destination (see
Fig. 5) is tracked under time constraints, uncertainty about the
driving surface, actuator failures, and with increased comfort
(i.e., minimal curvature). To deal with uncertainty about the
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FIGURE 5. VSC through sliding modes in antifragile control synthesis with
fragile (red) and antifragile (green) control signals and dynamics. The
antifragile control manages to drive the system’s dynamics toward the
antifragile region benefiting from redundant overcompensation,
stressors, and volatility.

driving surface and actuator failures, this is accomplished by
properly synthesizing the control law (see initial conditions
of the system dynamics converging from the green manifold
to the induced antifragile dynamics from Fig. 5). When
starting from a fragile region of the system’s solutions (the
red manifold in Fig. 5) the controller handles stressors and
volatility (i.e., increased curvature of the trajectory and then
tracking the desired path) by using the provided ‘‘inertia’’ to
converge to the induced antifragile dynamics.

Now, to attain such dynamics under induced antifragile
control, the following sub-section covers the relevant design
steps of a VSC concerning our problem.

a: DESIRED MANIFOLD SELECTION
To obtain system performance during the sliding motion,
a sliding manifold must be selected in this control design
stage that has a lower order than the system. This stage is
rather application-dependent, so we’ll explain why we chose
the trajectory tracking problem we did. We start from the
canonical form of a sliding manifold s depending on system
state dynamics x (see (6) for the general dynamical system
formulation) in (8).

ṡ =
∂s
∂x
ẋ =

∂x
∂x
s(x) = λ1x1 + λ2x2 + . . . + xn = 0 (8)

where the coefficients λi in ṡ define the desired charac-
teristics of the sliding mode, that is the characteristics of
the closed-loop system after the manifold reaching phase,
as broadly described in [29]. Finding these parameters is
typically formulated as an optimization problem, and solved
using linear programming techniques (e.g., Linear Quadratic
(LQ) approach), as shown in [29]. Here, a criteria for a second
order system J =

∫
∞

ts
(x⊤

1 Q11x2 + 2x⊤

1 Q12x2 + x⊤

2 Q2x2)dt
was minimized to get the optimal system motion manifold.
Considering Q12 = 0 then the optimal control x2 =

−Q−1
22 A

⊤

12Px1 = −kx1 where P is a p.d. matrix solution of the
Riccati equationA⊤

11P+PA11−PA12Q
−1
22 A

⊤

12P = −Q11 where
A is the input matrix of the system. The switching function is
obtained by considering s(x) = kx1 + x2 = [Q−1

22 A
⊤

12P, I ]x.

In our case, the desired motion manifold choice imposes
that the longitudinal error xe, the lateral error ye, and the
angular error φe are intrinsically coupled in order to guarantee
mutual convergence. Given the robot error in the outer
loop (see Fig. 2) defined in Equation 2, the desired motion
manifolds are chosen as below.{

s1 = ẋe + λ1xe
s2 = ẏe + λ2ye + λ0sgn(ye)φe

(9)

with λ0, λ1, λ2 > 0. Interestingly, if s1 converges to 0 then
xe converges to 0. Additionally, if s2 converges to 0, then at
steady state ẏe = −λ2ye − λ0sgn(ye)φe. Here, for negative
lateral error ye < 0 then ẏe > 0 if and only if λ0 < λ2

|ye|
|φe|

and for a positive lateral error ye > 0 then ẏe < 0 if and only
if λ0 < λ2

|ye|
|φe|

.

b: CONTROL LAW DESIGN
In this step, we need to design a switched feedback control
law that satisfies the reaching condition (see Fig. 5) and
drives the system trajectory to the manifold in finite time
and keeps it there thereafter. In this study, we consider the
analysis of [8] and [9] that uses Gao’s reaching law [30]. This
approach employs the differential equation ṡ = −Qsgn(s) −

Ph(s), where Q = diag[q1, q2, . . . , qn] with qi > 0, i =

1, . . . , n; P = diag[p1, p2, . . . , pn], with pi > 0, i =

1, . . . , n; sgn(s) = [sgn(s1), sgn(s2), . . . , sgn(sm)]⊤; h(s) =

[h1(s1), h2(s2), . . . , hm(sm)]⊤; and sihi(s) > 0with hi(0) = 0.
The reaching time needed by the system state x to move
from an initial state to the switching manifold si is finite and
given by

Ti =
1
pi
ln
pi|si| + qi

qi
(10)

With the reaching law equation in conjunction, we can now
identify the control rule u that directs the robot along the
designated tracking trajectory. In our situation, the control
law is calculated using the first derivative (i.e., the velocity)
of s(x) along the reaching mode trajectory (see Fig. 5) as
ṡ =

∂s
∂x (A(x) + B(x)u) = −Qsgn(s) − Ph(s) where, in the

generic form, A is the state transformation matrix and B is
the control input gain matrix. We then have the control law
given by u = −( ∂s

∂xA(x)+Qsgn(s)+Ph(s))( ∂s
∂xB(x))

⊤. In this
instance, the resultant sliding mode is not preassigned but
instead adopts a first-order switching scheme’s natural state
trajectory, as demonstrated in [29]. As shown in Fig. 5, the
switching takes place depending on the location in the state
space of the initial state.

In our particular case, we choose the control law u, derived
in [8] and [9], defined as

ṡ = −Qs− Psgn(s), (11)

with P,Q > 0. Opposite to the approach of [29], we use
the proportional term −Qs instead of the sgn(s) to force the
system’s state to approach the switchingmanifold faster when
ṡ is large, while the discontinuous (magnitude) component is
given by h(s) = sgn(s) in the second term (i.e.. the constant
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rate reaching). Now, given the ordinary form for control of
the mobile robot

d
dt

xy
φ

 =

cos(φ) 0
sin(φ) 0
0 1

 [
v
ω

]
, (12)

and the derivative of the manifold (9) as{
ṡ1 = ẍe + λ1ẋe
ṡ2 = ÿe + λ2ẏe + λ0sgn(ye)φ̇e

(13)

Through mathematical manipulation, we obtain the control
law u = [vc, ωc]⊤ where the linear acceleration is
and the angular velocity is

ωc

=
−Q2s2 − P2sgn(s2)−λ2ẏe−v̇r sin(φe)+ω̇dxe+ωd ẋe

ve cos(φe)+λ0sgn(ye)
.

(15)

Note that, based on the study of [8], the sign function sgn(·)
in the control signals can be replaced in the practical imple-
mentation by the saturation function sat(·) with thresholds
to reduce the chattering phenomenon. Now, we define the
Lyapunov function candidate, introduced in [9] and [22],

V =
1
2
s⊤s. (16)

The time derivative V̇ is given by

V̇ = s1(−Q1s1 − P1sgn(s1)) + s2(−Q2s2 − P2sgn(s2))

= −s⊤Qs− P1|s1| − P2|s2|. (17)

For V̇ to be negative semi-definite, we choose Qi and Pi such
that QiPi ≥ 0. Then, given that V > 0 and that V̇ ≤ 0, the
control law is stable in the Lyapunov sense, as shown in [8].
Finally, the single-wheel velocity commands for the mobile
robot are given by 

�r =
vc + bωc

r
�l =

vc − bωc
r

,
(18)

where, following the conventions in Fig. 2, r is radius
of the driving wheels, b is half the distance between the
driving wheels, vc is the computed control velocity, and ωc
the computed control angular velocity (see 14, as shown
at the bottom of the next page and 15). These values are
subsequently sent to the inner loop of the closed-loop system
in Fig. 3, where the encoder revolutions Nr and Nl are
available from odometric computations.

C. COMPETITIVE CONTROL ALGORITHMS
For the trajectory tracking problem, we chose competitive
approaches among the most well-known approaches within
the spectrum outlined in Figure 1. It should be noted that the
goal of this exploratory work is to provide the community
with a novel antifragile control synthesis method that benefits
from uncertainty.

1) ROBUST CONTROL
For the robust control, we have chosen sliding mode control,
as a very powerful method for robot trajectory tracking
control, because it shares the advantages of variable structure
controller design. The specific control synthesis is based
on the work of [15]. In our experiments, the sliding mode
controller is denoted as ROBUST. The proposed controller
used also variable structure synthesis based on equivalent
control 

ueq1(t) =
−D1(t)

α(t) cos(φe(t))

ueq2(t) =
−D2(t)

β

(19)

where r is the wheel radius, α = 1/rm(t) and β(t) = b/rI (t)
uncertainty parameters in mass m and inertia I , and 2b is the
robot’s base width. In (19), D1 and D2 are two functions of
the kinematic error derivative in (3).

2) ADAPTIVE RECEDING HORIZON CONTROL
To approach adaptive receding horizon control, we consid-
ered model predictive control (MPC) as a suitable candidate
given its prediction capabilities which contrast well with the
anticipation capabilities of the antifragile controller. More
precisely, our design is based on the controller design of [25].
The suggested controller uses the robot’s dynamic model as
the controller model, which increases tracking accuracywhile
simultaneously accounting for the robot’s dynamic stability
during the tracking procedure. Additionally, by adaptively
raising the weight of the cost function, the driving comfort
issue caused by the use of a typical MPC controller when the
vehicle deviates from the intended course is resolved. The
model predictive controller is referred to as ADAPTIVE in
our experiments. In order to enable the robot to precisely
follow the target trajectory and achieve lateral stability,
MPC-based trajectory tracking control aims to minimize
the error between the anticipated output variables and the
reference values. Therefore, the cost functionwas constructed
as follows

J = ∥Q(y(t) − ŷref (t))∥2 + ∥Ru(t)∥2 (20)

where Q and R are weighting matrices of the controlled
outputs and inputs, y(t) is the 2D location and the heading
angle, ŷref (t) is the reference location and the heading angle
in prediction horizon, and u(t) is the control input vector.

3) RESILIENT CONTROL
Finally, in order to represent resilient controller design,
a fuzzy logic controller is considered as it provides an
effective approach to approximate any smooth nonlinear
dynamics in the form of IF-THEN rules. The concrete
implementation in our experiments is based on the work
of [26]. This study proposes a trajectory-tracking method that
imitates human driving behaviour using a fuzzy logic set of
rules. Estimated information about the next curve in front of
the robot is sent into the fuzzy system, and its corresponding
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output is the cruising velocity required for the robot to safely
follow the path within the allotted time. The fuzzy logic
controller is referred to as RESILIENT throughout our study
where a 4-rule Takagi-Sugeno-Kang fuzzy inference system
was developed. The model provides an output in a crisp
format that can be immediately applied to the actuators of
the robot. The control signal is

u = [vl; vr ] = [kd (t)de + kt (t)φe; kd (t)de − kt (t)φe], (21)

where de is the Euclidian distance error in Cartesian space,
φe is the heading error of the robot, and kd and kt positive
sub-unit proportional gain factors.

III. EXPERIMENTS AND RESULTS
In order to evaluate the control strategies and demonstrate the
benefits that an antifragile design brings, we have designed a
systematic analysis and evaluation framework that:

1) generates reference trajectories for the closed-loop
robot control,

2) supports the induction of user-defined uncertainty
injection, e.g., wheel slippage, actuator fault, or sensor
fault,

3) supports the parametrization (i.e., timing, duration,
amplitude, frequency) of user-defined uncertainty
injection,

4) compares the performance when different types of
uncertainty and/or faults are injected.

Considered controllers are parameterized as follows:
• ROBUST control: separated xe and φe surfaces in the
sliding mode design; PID control parametrization;

• ADAPTIVE control: MPC with cost function based on
lateral position error ye and heading error φe;

• RESILIENT control: 2 inputs (de and |φe|), 2 outputs
(vl , vr ) controller; 4 IF-THEN rules;

• ANTIFRAGILE Control: combined xe, ye errors
and separated φe surfaces in the variable structure
component design; singular perturbation PID control.

All the experiments, analysis, and additional experiments
not discussed in this paper, can be reproduced through the
codebase available on GitHub.1

A. IDEAL TRAJECTORY TRACKING ROBOT CONTROL
We first analyze the basic behaviour of the selected control
approaches on the basic (fault-free) task. This will help us
get some intuition of how each control solves the trajectory
tracking.

We observed that profiles of the velocities and acceler-
ations are very close to the profile of the reference ones
(see Fig. 6). The trademarks of ANTIFRAGILE control in

1https://gitlab.com/akii-microlab/antifragile-robot-control/

FIGURE 6. Analysis of the ANTIFRAGILE controller: a) linear velocity, b)
linear acceleration, c) angular velocity, and d) angular acceleration.

FIGURE 7. Comparative qualitative results on trajectory tracking.

the actual control signals for the robot motion are already
visible in Fig. 6. As an example, the variable structure control
component of the antifragile control influences the rate of
change of linear velocity and, consequently, capacity building
in handling fast-changing curvature values apparent through
an overshoot in the trajectory (see also the rightmost loop
in Fig. 7). Interestingly, the capacity-building feature of the
ANTIFRAGILE controller is active (i.e., overshooting) when
exiting a section of the trajectory from high curvature to low
curvature, whereas the anticipation feature is active when
exiting a section of the trajectory from low curvature to high-
curvature (see Fig. 7 a - leftmost loop toward STOP). When
considering the kinematic assessment of the ANTIFRAGILE
trajectory tracking control in Fig. 8, the longitudinal error xe
is kept around 0, with a deviation of maximum 3 cm, whereas
the lateral error ye varies largely due to the often changes in
the direction of the robot (see Fig. 7). However, the controller
compensates jointly through the variable structure component
(i.e. high-frequency changes in the linear and angular velocity
control signal in Fig. 6), for both xe and ye, for an overall 5 cm
maximum deviation. The angular error φe is also kept low,

v̇c =
−Q1s1 − P1sgn(s1) − λ1ẋe − ω̇dye − ωd ẏe + vr φ̇e sin(φe) + v̇d

cos(φe)
, (14)
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FIGURE 10. Trajectory tracking performance analysis in the presence of
cascaded faults. After starting the operation with no faults (i.e. fault-free
region) the faults and uncertainty injection system introduces one after
the other the three types of faults at different times (tslipping = 10 s,
tflat = 28 s, tbump = 46 s, and back to fault-free from tfree = 62 s onward).

injection in mobile robot trajectory tracking control. The
competitive algorithms were chosen among typical and
relevant (i.e. see Figure 1) approaches for trajectory tracking,
namely ROBUST control (i.e., a sliding mode controller),
ADAPTIVE control (i.e., MPC), and RESILIENT control
(i.e., fuzzy logic controller). The experiments and evaluation
were designed to capture the comparative performance
degradation of the closed-loop controllers in the presence of
sensor and actuator faults.

A. TIME SCALE SEPARATION
A strong component in the ANTFRAGILE control synthesis
is the time scale separation component responsible for the
low-level actuator control robustness. Using singular pertur-
bation theory, we have implemented time scale separation
within the ANTFRAGILE controller based on the analysis
of the dynamics boundary layers shapes (see Fig. 4) and
the shape of the prescribed path and curvature quantities
given as a reference for the actuators. Interestingly, we could
obtain a separation of the control regimes in antifragile
and fragile based solely on the curvature of the uniform
solution shape of the closed-loop system, given by 5. This
separation is then exploited in the computation of the actuator
control signal (i.e., v(t) and w(t)) which takes either the
form of a ‘‘rapid’’ or ‘‘slow’’ dynamics. A similar behaviour,
or at least comparable, is achieved in the ROBUST design
through the variable structure control. More precisely, the
lower-order design of the controller using equivalent control
(see 19) accounts for a reduced-order technique analogous
to the effect singular perturbation offers. The ADAPTIVE
control attempts a time scale separation through the choice
of a multi-scale cost function with regularizing terms for
each temporal scale magnitude (see 20). This is especially
visible in the MPC instantiation we considered where the

prediction horizon can be weighted separately on ‘‘fast’’
and ‘‘slow’’ dynamics. Finally, the RESILIENT control can
induce, in principle, such time-scale separation explicitly.
In our case, this can be achieved through fuzzy inference rules
that capture the co-variance of the first derivative of error
terms and their rate of change in (21). Time scale separation
is a design component that determines the low-level actuator
control and the benefits of a curvature-aware synthesis of
control law (see Fig. 4).

B. REDUNDANT OVER COMPENSATION
Redundant over-compensation refers to the capacity of the
controller to build capacity to compensate (promptly) for
uncertainty and faults. This ‘‘capacity’’ building can be
seen as a measure of compensation, which goes beyond
accommodating the uncertain event and up to gaining (i.e.
sudden convergence of error) from the unexpected event.
ANTIFRAGILE control uses redundant over-compensation
when designing the low-level control of the actuators (see
Fig. 5). After identifying the ‘‘fast’’ and the ‘‘slow’’ dynamics
of the closed-loop system of the actuators, the design
focuses on rewriting the dynamics such that the closed-loop
system dynamics are described solely by the solution
in the overlap region in Fig. 4, where convexity of
the response can be probed through (5). To analyze the
redundant over-compensation behaviour of the competitive
control strategies, we start with a thorough overview of
the experimental results in Fig. 7. Here, the differences in
compensating for the curvature (i.e. second-order effects)
of the prescribed dynamics (i.e. the trajectory is a place
and a dynamics) are visible. More precisely, in Fig. 7 b
one can observe that the ANTIFRAGILE and ROBUST
controllers follow the prescribed trajectory closely (see
Table 1 for quantitative assessment), with small magnitude
overshooting in high-curvature regions. On the other side,
the ADAPTIVE and RESILIENT controllers capture the
overall inflexions of the trajectory but fail to smoothly capture
highly convex regions and the end position. Finally, to get
a more intuitive understanding of the benefits of redundant
over-compensation, we analyze the results in Fig. 6. Here,
the kinematic (i.e., linear and angular velocities) and the
dynamic (i.e. linear and angular acceleration) quantities
describing the robot’s motion are analyzed, for the reference,
control, and real velocities and accelerations. A trademark
of ANTIFRAGILE control is the fact that the control linear
velocity signal overshoots at regions where the curvature
sign changes (see Fig. 6a) on the trajectory, visible also in
the rate of change of velocity, depicted in Fig. 6b. These
high-frequency changes are also determined by the variable
structure control synthesis at the core of the ANTIFRAGILE
design. This ‘‘capacity’’ building is also visible in the angular
control signals, where both angular velocity control signals,
depicted in Fig. 6c, and their rate of change surpasses shortly
the prescribed values at the high-curvature inflexions of the
trajectory. This behaviour is motivated by the simplified
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dynamics of the DC motor which describe a proportional
effect to changes in the dynamics of the ‘‘fast variables.’’

C. VARIABLE STRUCTURE CONTROL
The final ingredient of the ANTIFRAGILE control design
is the variable structure control synthesis. This approach
is highly used in the realm of robust control design as
a means to inherently handle uncertainty, be it structured
(i.e. parametric uncertainty) or unstructured (i.e. unmodelled
dynamics). This is also the common design component
between the ROBUST and ANTIFRAGILE controllers. Such
a control pushes the system to a manifold that describes
the prescribed dynamics of the closed-loop system and
ensures that the system stays there. As mentioned earlier,
the manifold becomes a place and a dynamics, as depicted
in Fig. 5. Intuitively, the control signal to generate will be
discontinuous in nature and stability is a strong prerequisite
(see (14)–(17)). The induced behaviour of the variable
structure control in both the ROBUST and ANTIFRAGILE
controllers is visible in Fig. 6. This is even more clear
when analyzing the performance in Table 1. Here, one can
observe that the ANTIFRAGILE and ROBUST controllers
outperform the ADAPTIVE and RESILIENT controllers
in giving the lowest RMSE on longitudinal and lateral
deviations when just the fault-free (baseline) scenario is taken
into account. Due to ANTIFRAGILE’s implicit weighting of
the heading in the manifold design, the dominance is altered
in the heading error, where it only ranks three (please refer
to (8)). This is further emphasized in Fig. 8 and motivated
by the fact that in trajectory tracking heading is secondary.
In contrast, the overall (Euclidean) position needs to match
as well as possible the prescribed trajectory. Due to the
underlying model predictive control, the ADAPTIVE control
does a comparatively good job across deviations RMSE in
the fault-free scenarios, even better than the RESILIENT
control which excels in the heading error minimization.
When considering the scenarios with uncertainty and faults,
we considered a performance evaluation for the different
trajectory control algorithms under the impact of 4 types
of faults (i.e., 2 sensor faults— modelled as flat tires—and
2 actuator faults— modelled as motor shaft periodic bump—
of robot’s driving wheels), as shown in Table 1. Overall,
the ANTIFRAGILE control outperforms the other control
techniques with minimum RMSE across all fault types,
albeit with a rather narrow margin from ROBUST. In close
quarters, the ROBUST control outperforms ANTIFRAGILE
and the other techniques in minimizing orientation errors.
ADAPTIVE control approaches ROBUST with a slight
penalty that may depend on the cost function selection.
Lastly, a slower changing response is offered via RESILIENT
control (akin to the hypothetical situation in Fig. 1) but
with a stable outcome. Finally, in our last and most extreme
example, cascaded faults and uncertainty in the robot’s
trajectory tracking operation (see Fig. 10) were considered.
The overall evaluation criteria were chosen based on the
Euclidean deviation from the prescribed trajectory. As one

can see, and also supported by the previous discussion and
analysis, the experiments bring us closer to validating the
hypothesis (visually described in Fig. 1). The analysis in
Fig. 10 shows that ANTIFRAGILE control (red trace) offers
the smallest deviation, with small regions (typically before
a new fault occurs) where the errors decrease even more.
Closely behind is the robust behaviour of the ROBUST con-
troller, which displays a high-frequency oscillatory control
law causing oscillations in the actuator’s commands and
eventually in the trajectory due to its variable structure control
law (see the green trace in Fig. 10). By taking advantage
of the underlying model’s predictive properties and receding
horizon, ADAPTIVE maximizes the benefits of MPC while
delivering high performance. Ultimately, each inserted defect
causes RESILIENT to respond slowly, increasing the total
position inaccuracy.

V. CONCLUSION
Handling uncertainty in closed-loop robot control is still an
openly debated and fruitful area of research. To tackle control
synthesis in this setting, we present ANTIFRAGILE control,
a novel design framework that aims to capture the unique
characteristics of the system’s response to control. In regions
of the solutions space where the system is not only resistant
to uncertainty and volatility but also capable of profiting
from it and anticipating future uncertain events, first- and
second-order effects offer useful guidance on when and how
to issue control signals that can drive the system. This is the
main reason for the current investigation andANTIFRAGILE
control. We were able to validate both the controller design
for a robotic task and the ANTIFRAGILE control framework
through the tests with parametrizable faults. Developing a
coherent theory and framework based on the idea of induced
antifragility in technical systems starts with this.
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