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ABSTRACT Nowadays, remote sensing image analysis is needed in various important tasks such as city
planning, land-use classification, agriculture monitoring, military surveillance, and many other applications.
In this context, hyperspectral images can play a useful role, but require specific handling. This paper presents
a convolutional neural network based on one-dimensional support vector machine (SVM) convolution
operations (1D-CSVM) for the analysis of hyperspectral images. SVM-based CNN (CSVM) was introduced
first for the classification of high spatial resolution RGB images. It relies on linear SVMs to create filter banks
in the convolution layers. In this work, the network is modified to cope with one-dimensional hyperspectral
signatures and perform pixel-based classification. It thus analyzes each pixel spectrum independently from
the pixel spatial neighborhood. Experiments were carried out on four benchmark hyperspectral datasets,
Salinas-A, Kennedy Space Center (KSC), Indian Pines (IP) and Pavia University (Pavia-U). Compared to
state-of-the-art models, the proposed network produces promising results for all tested datasets, with an
accuracy up to 99.76%.

INDEX TERMS Convolutional neural network, feedforward learning, hyperspectral signature, machine
learning, pixel-based classification, support vector machine.

I. INTRODUCTION

The satellite image is an image of the whole or part of the
earth taken using artificial satellites. It can either be visible
light images, water vapor images or infrared images [1]. The
different types of satellites produce (high spatial, radiomet-
ric, temporal, and spectral) resolution images that cover the
whole Earth in less than a day [2], [3], [4], [5]. The large-scale
nature of these data sets introduces new challenges in image
analysis. Indeed, the analysis and classification of those
remote sensing images have been considered as hot topics
recently.
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In fact, the hyperspectral images are composed of hundreds
spectral bands for the same scene. It has an important feature
which aids in differentiating materials of interest. Actually,
it has detailed spectral information which raises substantially
the power of discrimination [8].

In this work, we aim to exploit the full potential of the
spectral information conveyed by each image pixel by merg-
ing the convolutional support vector machine (CSVM) [9],
[10], which is an alternative supervised learning strategy
based on support vector machines (SVMs), and (1D-CNN)
[11] approach in one network. We call the proposed architec-
ture one dimensional convolutional support vector machine
(1D-CSVM).

Basically, it processes and analyzes the spectral signature
of each pixel through a cascade of multiple convolutional
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TABLE 1. Survey of recent publications based on deep learning methods for hyperspectral images (HSI) classification.

Reference | Year Purpose Datasets Strategy Results
[14] 2015 HSI classiﬁcatio.n in spectral Several. hyperspectral Deep CNN Be'tter perfor'manc'e than
domain images conventional classification methods
fi h -of-
[s] | 2016 HSI Classification 3 public benchmark HSI 2D-CNN Outperforms other state-of-art
methods
Objects classification based Lo
[16] 2016 Jects C, asst 1ca. ton based on HSI CNN Significant performance
image pixels
[17] 2016 Spectral-spatial 1nf0@at19n 3 benchmark Five-layers CNN 97.5%
for hyperspectral classification hyperspectral datasets
H tral I N CNN with adapti
(18] | 2017 yperspectra’ image Indian Pines with adaptive 97.84 + 0.2249
Classification convolutional kernels
Spectral-Spatial HSI Indian Pines, and Pavia Increasing the accuracy compared
[19] 2017 classification Scene 3D-CNN to traditional ANN techniques
. . Outperforms classical target
[20] 2018 HSI target detection 4 hyperspectral images 1D-CNN detection algorithms
[21] 2018 Spectral-Spatial hyperspectral 3 hyperspectral images Deep learnin Competitive results
image classification ypersp & P & P
. . KSC, SA, Pavia-U, and . 99.28%, 98.97%, 99.57%, and
221 | 2018 HSI classification aviat an Hybrid 2D/3D-CNN i o /6. an
P 99.09%
Spectral-spatial classification 5 groups of hyperspectral CNN with a single .
2 201 Higher th 9
[23] 018 of HSI images hidden layer igher than 98 %
9] 2018 Analysis of 2D Remote 2 UAV datasets (vehicles Convolutional Support 97%
Sensing (RS) imagery and solar panel) Vector Machine (CSVM) ’
[24] 2019 Reliable HSI classification 3 public benchmark HSI CNN and deep residual >95%
network ensemble
Aut tic detecti foil . .
251 | 2020 wiomatic defection ot ot UAV images Region-based CNN 97.8 %
palm trees
Very High Resolution (VHR 3 VHR and 2 UAV ..
[10] 2020 ey 1g. esorution .( ) an CSVM Competitive results
RS image analysis datasets
[6] 2021 HIS classification with few KSC, Saline}s scene, and CNN 94.2%. 97.83%. and 96.10%
labeled samples Pavia-U,
(7] 2021 HSI classiﬁca.tion with spatial P, and Salinas scene Fully convo.lutional spatial 99.6 %
consistence propagation network
Compressed synergic deep
[38] 2022 Ac.cure?te 'classiﬁcation of HSI  KSC, IP, Houston U, and COYI.VolutiOTl neurfil r}et\f/ork 9444 %
with limited labeled samples Salinas scene with Aquila optimization
(CSDCNN-AO)
[39] 2022 HSI classification IP, and Salinas scene Enhancing-CNN (e-CNN) 95.81%, and 98.39%

and reduction layers and ends by a classification layer. Each
convolutional layer in 1D-CSVM uses the linear SVMs as
filter banks to generate a set of feature vectors to reduce the
number of trainable parameters and improve the speed of data
processing. Indeed, spectral information is very important to
decide the nature of each point on the ground. In this work,
we aim at exploiting as much as possible the high potential
of this rich information source.

Il. RELATED WORK

From a classification perspective, acommon paradigm to ana-
lyze hyperspectral data is the pixel-based approach, in which
the single image pixels are classified by means of the spec-
tral information they convey. Another approach consists
to exploit spectral-spatial features [12]. Recently, convolu-
tional neural networks (CNNs) [13] have shown particularly
effective for several analysis tasks including segmentation,
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classification, and object detection. CNNs either require a
large amount of training data or have to be fine-tuned on the
specific dataset and thus classification task. Table 1 reports
some of the recent works which applied CNNs for various
hyperspectral scene classification tasks and provided promis-
ing outcomes.

IlIl. PROPOSED NETWORK ARCHITECTURE
Basically, and like traditional CNNs, 1D-CSVM consists of
an input layer, several convolutional and reduction layers
followed by a classification layer, see Fig.1.

A. INPUT LAYER

Firstly, the traditional convolutional network takes the whole
image as an input for the first and initial layer. Here, in the
proposed network, all image pixels are stored in a matrix
data structure as an input. That matrix has m x n dimension
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FIGURE 1. 1D-CSVM model with 3 convolutional layers, 2 reduction layers, and 1 classification layer at the top of the network. We suppose the number of
SVM filters are 8, 16, and 24 with kernel size 9 x 9, 5 x 5, and 3 x 3 for convolutional layers 1, 2, and 3, respectively.
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FIGURE 2. Pavia-U (left), its input matrix (upper right), and its
corresponding label matrix of groundtruth classes (lower right).

size, where m represents the total number of image spectrum
bands, whereas n represents the total number of image pixels.
Moreover, since learning is supervised, each input matrix
has a corresponding output (label) matrix which has n x z
dimension size, where z indicates the total number of ground
truth classes, see Fig.2.

Fig. 2 represents the hyperspectral image, Pavia-U. This
image has a 610 x 340 dimension size, 103 spectrum bands,
and its ground truth image has 9 different classes. Hence,
we can represent this hyperspectral image as an input matrix
with 103 x 207400 dimension size. And its corresponding
label matrix with size 207400 x 9.

B. CONVOLUTIONAL LAYER

For feature vector generation, each convolutional layer in
the network convolves the feature vectors provided by the
previous layer with SVM filter banks. Firstly, the original
input spectrum is convolved with SVM filters. The produced
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feature vector is then convolved again by the latter layers. So,
the three main steps for the convolution process are:

1) TRAINING SET CONSTRUCTION
Each pixel of the hyperspectral image is considered as an
individual vector; thus, we can obtain a global training set

as previously represented in the first input layer by its class
label.

2) SVM FILTERS GENERATION

The SVM weights are generated directly for each convolu-
tional layer in a supervised and feedforward manner, unlike
in conventional CNNs where weights are estimated via back-
propagation. For each SVM filter, the weight vector w and
bias b are computed by the following unconstrained optimiza-
tion equation:

!
min,, pw’ w + C Zi:l E(w, b; xi;, yi) (D

where C is a penalty parameter, & (w, b; x;;, y;) is a loss
function [26].

SVM filters are trained on different sub-training sets
{xi;, y,'}lf:1 of size /, which are randomly sampled from the
global training set. The number of SVM filters k for each
convolution layer is determined empirically by different tri-
als. Each filter will represent different features of a class, see
Fig.3. Then, the complete weights of these SVM filters are
grouped into one filter bank whose outcome is then flattened
into a 1D vector to be ready for the next step.

3) FEATURE VECTOR GENERATION

In the convolutional step, each pixel vector is convolved with
the k different SVM filters, for extracting both nonlinear
features from the considered pixel, which are combined in 1D
vector, for generating a hyper-feature vector, H. Moreover,
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FIGURE 3. Feature vector obtained by 15t SVUM convolutional layer. Each SVM filter represents different features of the spectral bands. These
feature vectors are then concatenated into one vector to feed it for the next convolutional layer.

this feature vector is then passed to a Rectified Linear Unit
(ReLU), a nonlinear gating function, for keeping only the
positive values. The next convolutional layers do the same
operations. Only the first layer is taking the input image, and
the latter takes the input as the feature vector produced by the
precedent layer as shown in Fig. 1.

C. REDUCTION LAYER

As in the conventional CNN, the reduction/pooling layer in
1D-CSVM works in a similar way. It subsamples small blocks
from the convolutional layer to produce a single output from
each block. For reducing the size of the representation, this
layer is placed between two successive convolutional layers.

D. CLASSIFICATION LAYER

After multiple SVM convolutional and reduction layers, high-
level features are obtained and fed to the last layer, which
is usually known as the classification (or prediction) layer.
It uses a linear SVM classifier again to classify the high-level
representations obtained by the network. It is trained on the
hyper-feature vectors extracted from the last layer to produce
a final prediction (see Fig. 1). In our experiments, the multi-
class SVM is implemented using the one-versus-all method.

IV. EXPERIMENTAL VALIDATION
A. DATASETS
In the experiments, we assessed the proposed 1D-CSVM
on four benchmark hyperspectral images namely Salinas-A,
Kennedy Space Center (KSC), Indian Pines (IP), and Pavia
University (Pavia-U) [32].

Firstly, Salinas-A is a sub-scene which acquired from
Salinas Valley, USA. It is captured by the AVIRIS sensor
[~ 3.7 m/pixel spatial resolution]. It covers the area which

VOLUME 10, 2022

includes 86 lines by 83 samples. This scene includes bare
soils, vegetables, and vineyard grounds. It includes only six
classes and background, as shown in Fig. 4. Table 2 -A
(columns: 2 and 3) indicates the ground truth classes for the
Salinas-A scene and their respective samples number.

Secondly, the KSC data set was obtained by 18-m spec-
trometer over Florida, USA. That scene has a size of 512 x
614 x 176, and contains 13 classes as ground truth, see
Fig. 5 and Table 2 -B (columns: 2 and 3).

Thirdly, The University of Pavia scene was captured in
2003 from a flight over Northern Italy (Pavia) by the ROSIS
sensor (~1.3-m/ pixel). Its dimensions are 610 x 340 x 103,
and it has 9 ground truth classes which cover the ground as
shown in Fig. 6 and Table 2 -C (columns: 2 and 3).

Finally, the scene in the test site ‘Indian pines’ was col-
lected over North-western Indiana. It is captured by the
224-band AVIRIS sensor, by the 0.4-2.5 10-6 m wavelength
range. It composes of 145 x 145 pixels. It covers 16 classes
of agricultural, forest, and road areas, as shown in Fig. 7.
Table 2 -D (columns: 2 and 3) indicates the classes of the
ground truth for the Indian pines scene.

B. EXPERIMENTAL DESIGN
In this article, we will focus on the Salinas-A dataset to
illustrate our model. Initially, we present the results of our
experiments using a three-layer 1D-CSVM. Table 3 shows
the parameters of each layer in the network including convo-
lutional, reduction, and classification layers.

First, for the input layer, we can represent Salinas-A dataset
as a matrix of 224 x 7138 dimension size; where 7138
represents the total number of image pixels and 224 repre-
sents the total number of image spectrum bands. Also, the
label matrix has a 7138 x 6, where 6 is the total number

133177



IEEE Access

M. A. Shafaey et al.: Pixel-Wise Classification of Hyperspectral Images With 1D Convolutional SVM Networks

. Brocoli_green_weeds_1
() Lettuce_romaine_dwk
. Lettuce_romaine_Swk
. Lettuce_romaine_6wk

@ Lettuce_romaine_7wk

O Corn_green_weeds

FIGURE 4. The original input (left), the ground truth data (middle), and the classification map (right) for Salinas-A.

Scrub

Willow swamp
CP hammock
0Oak

Slash pine
0ak f broadleaf

Hardwood swamp

Graminoid march

ploeX Y L1 N I

\

©C
L

Spartina march
Cattail march
Salt march
Mud flats
Water

000

Asphalt
Meadows
Gravel

Trees

Metal sheets
Bare soil
Bitumen
Bricks

000000000

Shadows

FIGURE 6. The original input (left), the ground truth data (middle), and the classification map (right) for Pavia-U.

of ground-truth classes. We excluded the background ~1790
pixels and partitioned the foreground pixels randomly into
30:70, 50:50, or 70:30 for training and validation sets.
Second, for the convolutional layer, we trained each SVM
filter by extracting randomly / samples from the training
dataset. For layers 1, 2, and 3, [ =49, 25, and 9, respectively.
These values were chosen through several trials. To compute
the weights of the SVM filters, a Liblinear-multicore-2.11-1
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software package is used [27]. The penalty parameter C is
estimated through a threefold cross-validation method for
each SVM. It is normally ranging from 10~! to 103. After
that, the convolution operation is done using vi_nnvonv of
MatConvNet, introduced by A. Vedaldi and K. Lenc [28].
Third, for the reduction layer, the ‘max_pooling’ operator
is used for the three layers created. Each reduction layer has a
different window size and stride value (for more details, refer
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FIGURE 7. The original input (left), the ground truth data (middle), and the classification map (right) for IP.

to Table 3 ). Finally, the last layer in the network produces the
high-level representations to feed it again into a linear SVM
classifier for carrying out the classification task.

To evaluate the performance, the results are presented in
terms of Average Accuracy (AA), Overall Accuracy (OA),
and Kappa coefficient (K), see Table 2. ‘AA’ is defined as
the average of the accuracy values measured over each class,
while the ‘OA’ is the ratio between total number of correct
classifications and total number of samples in the test data,
and ‘K’ is a statistical metric through qualitative items [29].
The accuracy value of each class is computed based on the
average of Producer’s Accuracy (PA) and User’s Accuracy
(UA), see the following equations as in (2) and (3), shown at
the bottom of the page.

For the other datasets, KSC, Pavia-U, and IP the network
parameters are the same as in the table above, except for
the ‘SVM_window_size’ and ‘sample_train_size’ parame-
ters. The SVM window size (kernel size) of layers 1, 2,
and 3 are 9 x 9,5 x 5, and 3 x 3, respectively. The
number of training samples is 81, 25, and 9 for the three
layers, respectively. For each dataset, the accuracy results
are averaged by running five different trials (random training
samples).

V. RESULTS AND DISCUSSIONS

The following figures provide information about the feature
vectors formed via several convolutional layers and reduced
by the pooling layers of 1D-CSVM and trained on Salinas-A
dataset. Fig. 8 illustrates the mean value over 224 spectral
bands for the 6 classes.

After applying the convolution and reduction operations
of each layer of the 3-layer network, the number of fea-
tures is reduced for each pixel vector. It reached 111
(Fig. 9-Top), 57 (Fig. 9-Middle), and 27 (Fig. 9-Bottom),
respectively. So, each pixel vector started with 224 features
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FIGURE 8. Mean spectral signature for Salinas-A.

and ended by a 27-dimensional feature vector fed to the SVM
classifier.

In order to study the effect of the different filter sizes
on the network performances, we have computed the train-
ing accuracy percentage of our different experiments on
Salinas-A, KSC, Pavia-U, and IP datasets, as shown in
Table 4 (A).

The main four factors that may affect our network per-
formance are 1) number of network layers; 2) number of
SVM filters in each convolutional layer; 3) window size of
SVM kernels; and 4) training-to-testing ratio. In general,
not all these factors significantly affect the overall perfor-
mance accuracy. For example, the three-network architecture
is enlarged by one additional convolutional and reduction
layer. Then, the classification accuracy has enhanced by a
small fractional number, but, on the other hand, it consumed
double the execution time. Also, the number of SVM kernels

correctly identified pixels

UA =

= 2
total number of pixels/class @
correctly identified pixels 3)
correctly identified pixels + incorrectly identified pixels
133179
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TABLE 2. A) Classification results of each class for Salinas-A scene B) Classification results of each class for KSC scene C) Classification results of each
class for Pavia-U D) Classification results of each class for IP scen.

A)
Class # Class Name # pixels 1D-CSVM Method
1 Brocoli_green_weeds_1 391 100 %
2 Corn_green_weeds 1343 100 %
3 Lettuce roamine 4wk 616 99 %
4 Lettuce_roamine_Swk 1525 99 %
5 Lettuce_roamine 6wk 674 100 %
6 Lettuce_roamine 7wk 799 100 %
OA 99.66 %
AA 99.66 %
K 98.28 %
B)
Class # Class Name # pixels 1D-CSVM Method
1 Spartina march 520 95 %
2 Cattail march 404 98 %
3 CP hammock 256 99.4 %
4 Slash Pine 252 97 %
5 Oak 161 99 %
6 Hardwood 229 98 %
7 Mud flats 503 99 %
8 water 927 98.2 %
9 Swamp 105 98 %
10 Graminoid march 390 99 %
11 Scrub 347 99.2 %
12 Willow swamp 243 98 %
13 Salt march 419 100 %
OA 98.03 %
AA 98.29 %
K 97.22 %
9]
Class # Class Name # pixels 1D-CSVM Method
1 Bare soil 5029 99.9 %
2 Bitumen 1330 100 %
3 Trees 3064 100 %
4 Shadows 947 99.9 %
5 Painted metal sheets 1345 100 %
6 Meadows 18649 99.9 %
7 Asphalt 6631 100 %
8 Self-blocking bricks 3682 100 %
9 Gravel 2099 100 %
OA 99.76 %
AA 99.96 %
K 98.48 %
D)

Class # Class Name # pixels 1D-CSVM Method
1 Oats 20 100 %
2 Stone-Steel-Towers 93 97 %

3 Wheat 205 92.2 %
4 Soybean-clean 593 97.4 %
5 Buildings-Grass-Trees-Drives 386 95.14 %
6 Soybean-mintill 2455 93 %
7 Hay-windrowed 478 100 %
8 Woods 1265 100 %
9 Alfalfa 46 100 %
10 Soybean-notill 972 90.5 %
11 Grass-trees 730 95 %
12 Corn-notill 1428 94.2 %
13 Grass-pasture 483 98.3 %
14 Grass-pasture-mowed 28 95.15%
15 Corn 237 96.3 %
16 Corn-mintill 830 100 %
OA 96.20 %
AA 96.51 %
K 96.46 %
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FIGURE 9. Example of feature vector representation by layers (1-3) for one-pixel vector
of Salinas-A.

in each convolutional layer improved the overall accuracy number and then incremented until a suitable accuracy value
slightly, as shown in Table 4 (A). It is firstly set to a small is reached through several trials.
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TABLE 3. Parameters defined for each layer of 1d-csvm network for
salinas-A.

Parameter Layer 1 LAYER 2 Layer 3

SVM_window_size 7x7 3x3 3x3

pooling_window_size 3x3 3x3 2x2
convolutional_stride 2 2 2
convolutional pad 0 0 0
pooling_pad 0 0 0
pooling_stride 2 2 2

pooling_type max max max
# SVM._filters 8 16 24
sample_train_size (/) 49 25 9

However, the most critical parameter is the size of the
SVM window. Hence, the experiments are carried out on
5 different sizes of the three layers: (3 x 3, 3 x 3, 3 x 3),

5x%x55%x53x%x3),7x7,3%x3,3%x3),09x%x9,5x)35,
3 x 3),and (11 x 11,7 x 7, 5 x 5). A large mask size
may reduce dramatically the classification accuracy. Finally,
the training-to-testing ratio; as known, in most experiments,
when the training set is increased, the classification accuracy
is enhanced too. We run the experiments on several training-
testing ratios (30:70, 50:50, and 70:30). The best window size
credits to dimension (7 x 7, 3 x 3, 3 x 3) for Salinas-A, and
(9x9,5x5,3 x3) for KSC, Pavia-U, and IP (refer previous
section and Table 3 ).

It is worth taking into consideration that the network
corresponding to this configuration using SVM filter banks
in the convolution operation is significantly reducing the
training computation time, in comparison with conventional
CNN. This enhancement is due to the feedforward strategy in
SVM weights computation, instead of the backpropagation
approach. This allows to add a new layer without re-building
the network again.

TABLE 4. A) Effect of SVM filters size of the 1d-csvm convolution layers on the classification accuracy through 70:30 training: validation ratio B) Effect of
several training: validation ratios on the overall classification accuracy, average, accuracy and kappa coefficient.

A)
Window size for 3 # SVM filters for three layers # SVM filters for three| [# SVM filters for three| [# SVM filters for three
layers 2,4,8 4,8,128,8,16/12,16,24 8,16, 24 layers layers layers
X3, 3X3, 3X 90.4% [90.56%90.8%| 91% | 92.33¢ 4
6x3,333,39) 1< ° 70908%|  91% % 12,16,24 | 8,16,24| | 12,16,24| 8,16,24 | Z | 12,16,24 | 8,16,24
(5X5,5X5,3x3) | £ | 95% [953%|95.7%| 96.01% | 96.3% | 3 = =
£ g x Z
(7X7,3x3,3X3) | 2 |97.2% |97.5% [98.2%| 98.59% |99.66% 98.19% | 97.88% |Z| 89.59% | 90.08% |B| 92.60% | 94.18%
n.‘ o
(99, 5X5, 3X3) 93.5% | 93.2%|93.8%| 94.12% |94.19% 98.02% | 98.03% 91.76% | 99.76% 93.48% | 96.20%
(1111, 7X7, 5X5) 88% |88.6%|90.4%| 90.3% | 91.7% 94.89% | 9537% 883% | 88.78% 90.53% | 91%
B)
TRAINING: | # SVM filters for three layers (8, 16, 24) with window size (7x7, 3x3, 3x3) for Salinas-A, and (9x9, 5x5, 3x3) for KSC, Pavia-U, and IP
VSL&%TO'O <| AA%) | 0A %) | K (%) AA () | OA(R) | K(%) || AA(W) | OA(%) | K(%) | B| AACK) | OA(H) | K(%)
% ; g
30:70 | 2| 9650 | 96.50 | 96.15 é 9537 | 0533 | 9245 |Z| 9780 | 9780 | 98.00 | Z| 932 | 9291 | 9268
=] <
50:50 | 2| 97.64 | 9764 | 97.71 96.68 | 96.68 | 95.14 |&| 98.06 | 97.23 | 96.87 | 9474 | 9473 | 9344
70: 30 99.66 | 99.66 | 98.28 98.03 | 97.87 | 97.22 99.76 | 99.03 | 9848 |7 | 9620 | 96.15 | 96.46

TABLE 5. Comparison between the proposed 1D-CSVM and state-of-art in terms of AA for Salinas-A, KSC, Pavia-U, and IP datasets.

Reference(s) Model Tr: Ts ratio Salinas-A KSC Pavia-U P # Trainable Parameters
[29] & [31] ResNet 98.09% 93.23% 98.40% 99.03% Millions of
Pre-trained models
[33] & [34] AlexNet 97.22% 96.30% 92.62% 88.26% learnable parameters
[34] & [35] RBF-SVM 70: 30 91.66% 97.25% 90.52% 87.60% -
[34] 2D- CNN 70: 30 98.90% 97.81% 98.75% 96.37% ~ 172,007
[36] & [37] 1D- CNN 90: 10 95.47% 91.80% 93.50% 83.40% -
[29] Lightweight 3D-CNN  Transfer learning 97.87% 99.68% 98.87% ~ 763,008
[38] (CSDCNN-AO) - 94.44% 93.44% - 94.44% -
[40] Deep 3-DCNN 70:30 98.87% - - 96.28% 233, 680
[41] SP-CNN Transfer learning 96.12% - 93.40% 93.57% ~1, 600, 000
el 70: 30 99.66% 98.03% 99.76% 96.20%
1D-CSVM ; ; ~64, 504
Method Pr °f.ffis.fﬁtge$'me (0.3 min) (4.7min) (@4.12min) (1.34 min) ’

133182

VOLUME 10, 2022



M. A. Shafaey et al.: Pixel-Wise Classification of Hyperspectral Images With 1D Convolutional SVM Networks

IEEE Access

The results we achieved are compared to the state-of-the-
art, especially, against the pre-trained CNNs [2]. The training
time of CNN models is typically very long, even using high
capability GPUs. They have a large number of convolutional
and reduction layers. For instance, classic and inception mod-
els consist of more than 20 consecutive layers. As well,
residual models which are known as ultra-deep models may
consist of more than 50 layers. They require for instance
from 5 to 6 days and from 2 to 3 weeks for AlexNet and ResNet
training, respectively. Also, those models require millions
of training data i.e. ImageNet [30] for image classification
usage.

The comparison between the created 1D-CSVM and state-
of-art is provided in Table 5 on the aforementioned datasets.
By comparing our proposed network versus the pre-trained
models, the proposed model provides better results. It shows
an interesting behavior in a pixel-wise classification scenario
like the one considered in this paper.

Moreover, all our experiments require modest machines,
i.e. hardware equipped by NVIDIA GTX 1050 4G with
compute capability 6.1 GPU: Intel® Core™i7-7700HQ @
2.20GHz, and 16 GB RAM. As well, the carried-out exper-
iments take few minutes in the training process; as the
proposed network has only three convolutional layers, two
reduction layers, and one classification layer. All of these
properties of 1D-CSVM exhibit clearly a better behavior
in time and accuracy for testing large-scale datasets. The
output classification maps for the test data are shown in the
Fig. 4 - Fig. 7.

VI. CONCLUSION

In this work, a novel 1D-CSVM network is proposed for
the pixel-based classification of hyperspectral images. This
network is mainly based on state-of-the-art SVM. It exploits
it as filters for feature vector generation of each convolu-
tional process, and for classifying the high-level features.
Moreover, the proposed network has important properties:
1) to compute SVM filter weights, it uses a feedforward
supervised learning strategy. 2) it consists of few (in these
experiments just three) convolutional layers, in contrast with
the Deep CNN structures. 3) it does not require a large num-
ber of training samples. 4) it consumes few hours in training
compared to pre-trained CNNs. The results obtained over
four known hyperspectral datasets, Salinas-A, KSC, Pavia-
U, and IP confirmed its effectiveness in terms of accuracy
and execution time compared to the methods in the literature.
In the future, it can be extended to handle other datasets
for model generalization. Moreover, a 3D version (Spectral-
Spatial feature-based network) could be envisioned to capture
spatial information as well in the convolution and analysis
process.
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